forked from BerkeleyLab/Bedrock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcic_multichannel_tb.v
269 lines (229 loc) · 7.86 KB
/
cic_multichannel_tb.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
`timescale 1ns / 1ns
`include "constants.vams"
module cic_multichannel_tb;
// Configurable parameters
parameter n_chan = 12;
// Testbench stimulus
localparam ADC_DWI = 16;
localparam MULT_GUARD_BITS = 3; // Guard bits to keep in output of mixer
localparam OSC_WIDTH = 18; // Width of local oscillator
localparam CLK_PERIOD = 10;
localparam CLK_SLOW_RATIO = 2; // TODO: Make this programmable
localparam CLK_PER_SLOW = CLK_PERIOD*CLK_SLOW_RATIO;
integer den, logden;
reg [2:0] shift;
real fden, fnum, ampi, ampo_expect, phsi, phs_marg;
reg overload=0;
integer num_tx=0;
initial begin
// Test not designed to work with phsi near pi
// 4 <= den <= 128, no factor of fnum
if (!$value$plusargs("amp=%f", ampi)) ampi=10000.0;
if (!$value$plusargs("phs=%f", phsi)) phsi=0.0;
if (!$value$plusargs("den=%d", den )) den=16;
ampo_expect=ampi;
phs_marg=0.00002;
phs_marg=0.95/ampi;
if (ampi > 32765.0) begin
overload=1;
ampo_expect=32764.0;
phs_marg=0.2;
end
$display("ampi=%.2f ampo_expect=%.2f phsi=%.5f phs_marg=%.5f",
ampi, ampo_expect, phsi, phs_marg);
fden=den;
fnum=3.0;
logden=$clog2(den);
shift=logden-2;
$display("den=%d logden=%d shift=%d", den, logden, shift);
end
reg clk, slow_clk;
integer cc, errors;
initial begin
if ($test$plusargs("vcd")) begin
$dumpfile("cic_multichannel.vcd");
$dumpvars(5,cic_multichannel_tb);
end
errors=0;
$display(" X1 Y1 X2 Y2 R1 OK Phi1 OK");
for (cc=0; cc<64*den; cc=cc+1) begin
clk=0; #(CLK_PERIOD/2);
clk=1; #(CLK_PERIOD/2);
end
if (num_tx == 0) begin
$display("ERROR: No transactions, nothing was tested.");
errors = errors + 1;
end
$display("%s",errors==0?"PASS":"FAIL");
$finish();
end
integer cc_s;
initial begin
for (cc_s=0; cc_s <64*den*CLK_SLOW_RATIO; cc_s = cc_s + 1) begin
slow_clk=0; #(CLK_PER_SLOW/2);
slow_clk=1; #(CLK_PER_SLOW/2);
end
end
// ---------------------
// Generate stimulus
// ---------------------
reg signed [ADC_DWI-1:0] adc=0;
integer noise;
integer nseed=1234;
integer ccmod;
real th0, tha, thb;
reg signed [OSC_WIDTH-1:0] cosa=0, sina=0, cosb=0, sinb=0;
reg signed [OSC_WIDTH-1:0] xcosa, xsina, xcosb, xsinb;
integer ax; // can be huge in the face of clipping. Don't be stupid and
// set amplitude larger than 2^31 in ADC sine wave below.
// 100 X overdrive is plenty for this purpose.
reg sample=0;
reg stb_in=0;
// Generate stimulus at half rate to test strobe capability
// Stimulus code based on mon_12_tb.v
// TODO: Make this configurable
always @(posedge clk) begin
stb_in <= ~stb_in;
end
always @(posedge slow_clk) begin
noise = $dist_normal(nseed,0,1024);
th0 = (cc_s)*`M_TWO_PI*fnum/fden - phsi;
ax = $floor(ampi*$cos(th0)+0.5+noise/1024.0);
if (ax > 32767) ax = 32767;
if (ax < -32678) ax = -32768;
adc <= ax;
// $display("%d adc", adc);
ccmod = cc_s%den;
tha = ccmod*`M_TWO_PI*fnum/fden;
// Scaling of LO is non-obvious. Set such that a square-wave input
// can't overflow CIC. Conceptually that's pi/2, so set to pi/4 of full
// scale and absorb a factor of two later.
// 2^17 = 131072 - a little bit to cover rounding
xcosa = $floor(131070.0*$cos(tha)+0.5); cosa <= xcosa;
xsina = $floor(131070.0*$sin(tha)+0.5); sina <= xsina;
thb = ccmod*`M_TWO_PI*7.0/fden;
xcosb = $floor(13107.00*$cos(tha)+0.5); cosb <= xcosb;
xsinb = $floor(13107.00*$sin(tha)+0.5); sinb <= xsinb;
sample <= ccmod==0;
end
// ---------------------
// Instantiate Mixers
// ---------------------
wire signed [ADC_DWI+MULT_GUARD_BITS-1:0] adc_a_cos, adc_a_sin, adc_b_cos, adc_b_sin;
mixer #(
.dwi(ADC_DWI),
.davr(MULT_GUARD_BITS),
.dwlo(OSC_WIDTH))
i_mixer_a_cos (
.clk(slow_clk),
.adcf(adc),
.mult(cosa),
.mixout(adc_a_cos)
);
mixer #(
.dwi(ADC_DWI),
.davr(MULT_GUARD_BITS),
.dwlo(OSC_WIDTH))
i_mixer_a_sin (
.clk(slow_clk),
.adcf(adc),
.mult(sina),
.mixout(adc_a_sin)
);
// ---------------------
// Instantiate Sampler
// ---------------------
wire cic_sample, cc_sample;
multi_sampler #(
.sample_period_wi(8),
.dsample0_en(1),
.dsample0_wi(8),
.dsample1_en(0),
.dsample1_wi(8),
.dsample2_en(0),
.dsample2_wi(8))
i_multi_sampler (
.clk(clk),
.ext_trig(1'b1),
.sample_period({den[6:0],1'b0}),
.dsample0_period(8'h1),
.dsample1_period(8'h1),
.dsample2_period(8'h1),
.sample_out(cic_sample),
.dsample0_stb(cc_sample),
.dsample1_stb(), // Unused output
.dsample2_stb() // Unused output
);
// ---------------------
// Instantiate DUT
// ---------------------
wire sr_val;
wire [19:0] sr_out;
wire [n_chan*(ADC_DWI+MULT_GUARD_BITS)-1:0] d_in_flat;
wire di_stb_out;
wire [31:0] di_sr_out;
assign d_in_flat = {{(n_chan-4)*(ADC_DWI+MULT_GUARD_BITS){1'b0}},
adc_a_sin,
adc_a_cos,
adc_a_sin,
adc_a_cos};
cic_multichannel #(
.n_chan (n_chan),
// DI parameters
.di_dwi (ADC_DWI+MULT_GUARD_BITS), // data width
.di_rwi (32), // result width
// Difference between above two widths should be N*log2 of the maximum number
// of samples per CIC sample, where N=2 is the order of the CIC filter.
.di_noise_bits (1), // NOTE: Setting to 1 to compensate for removed /2 from double_inte
.cc_outw (20), // CCFilt output width; Must be 20 if using half-band filter
.cc_halfband (1),
.cc_use_delay (0), // Match pipeline length of filt_halfband=1
.cc_shift_base (0)) // Bits to discard from previous acc step
dut
(
.clk (clk),
.reset (1'b0),
.stb_in (stb_in),
.d_in (d_in_flat), // Flattened array of unprocessed data streams. CH0 in LSBs
.cic_sample (cic_sample),
.cc_sample (cc_sample),
.cc_shift ({shift,1'b1}), // controls scaling of filter result
.di_stb_out (di_stb_out), // TODO: Test Double Integrator tap
.di_sr_out (di_sr_out),
.cc_stb_out (sr_val),
.cc_sr_out (sr_out)
);
reg strobe1=0;
integer col=0;
reg signed [19:0] out_set[0:n_chan-1];
always @(posedge clk) begin
strobe1 <= sr_val;
if (sr_val) begin
col <= (col==n_chan-1) ? 0 : col+1;
out_set[col] <= sr_out;
// $display("%d: out[%d] <= %d", cc, col, result);
end
end
real xr, xi, ampo, phso;
reg amp_pass, phs_pass, fault, use_row;
always @(negedge clk) if (cc_s/den > 18) begin
//if (strobe & ~strobe1) $display("#");
//if (strobe) $display("%d", result);
xr=out_set[0];
xi=out_set[1];
ampo=$sqrt(xr*xr+xi*xi)/(fden*fden)*(1<<(2*shift));
ampo=ampo*131072.0/131070.0;
phso=$atan2(xi,xr);
amp_pass = overload ? ampo > ampo_expect :
((ampo > ampo_expect*0.99995-0.7) & (ampo < ampo_expect*1.00005+0.7));
phs_pass = (phso>phsi-phs_marg) & (phso<phsi+phs_marg);
if (sr_val && (col==0)) begin
num_tx <= num_tx + 1;
$display("%d %d %d %d %8.2f %b %8.5f %b %s.",
out_set[0], out_set[1], out_set[2], out_set[3],
ampo, amp_pass, phso, phs_pass, fault ? "FAULT" : "");
fault = (~amp_pass | ~phs_pass);
if (fault) errors=errors+1;
end
end
endmodule