forked from BerkeleyLab/Bedrock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcic_wave_recorder_tb.v
225 lines (190 loc) · 6.09 KB
/
cic_wave_recorder_tb.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
`timescale 1ns / 1ns
`include "constants.vams"
/* Bare-bones testbench to facilitate compile checks on DUT and check connectivity.
Not intended to be comprehensive or do any self-checks. For more thorough testing see:
- cic_multichannel_tb
- circle_buf_serial_tb
*/
module cic_wave_recorder_tb;
// Configurable parameters
parameter n_chan = 2;
// Testbench stimulus
localparam SIM_CYCLES = 50000;
localparam CIC_DWI = 16;
localparam BUF_DWI = 16;
integer num_tx=0;
reg iclk;
integer cc, errors;
initial begin
if ($test$plusargs("vcd")) begin
$dumpfile("cic_wave_recorder.vcd");
$dumpvars(5,cic_wave_recorder_tb);
end
errors=0;
for (cc=0; cc<SIM_CYCLES; cc=cc+1) begin
iclk=0; #5;
iclk=1; #5;
end
$display("WARNING: Not a self-checking testbench. Will always pass.");
$display("%s","PASS");
$finish();
end
reg oclk=0;
always begin
oclk=0; #3;
oclk=1; #3;
end
// ---------------------
// Generate stimulus
// ---------------------
reg reset = 0, ext_trig = 0;
always @(posedge iclk) begin
@(cc==30) begin
reset <= 1;
ext_trig <= 0;
end
@(cc==50) begin
reset <= 0;
ext_trig <= 1;
end
end
localparam den=33, logden=6;
localparam ampi=10000.0;
reg [2:0] shift;
real fden, fnum, ampo_expect, phsi, phs_marg;
reg overload=0;
initial begin
// Test not designed to work with phsi near pi
// 4 <= den <= 128, no factor of fnum
ampo_expect=ampi;
phs_marg=0.00002;
phs_marg=0.95/ampi;
if (ampi > 32765.0) begin
overload=1;
ampo_expect=32764.0;
phs_marg=0.2;
end
$display("ampi=%.2f ampo_expect=%.2f phsi=%.5f phs_marg=%.5f",
ampi, ampo_expect, phsi, phs_marg);
fden=den;
fnum=3.0;
shift=logden-2;
$display("den=%d logden=%d shift=%d", den, logden, shift);
end
reg signed [15:0] adc=0;
real th0;
integer ax; // can be huge in the face of clipping. Don't be stupid and
// set amplitude larger than 2^31 in ADC sine wave below.
// 100 X overdrive is plenty for this purpose.
always @(posedge iclk) begin
th0 = (cc)*`M_TWO_PI*fnum/fden - phsi;
ax = $floor(ampi*$cos(th0)+0.5);
if (ax > 32767) ax = 32767;
if (ax < -32678) ax = -32768;
adc <= ax;
end
// Input stimulus
`ifdef RAND_IN
reg [n_chan*CIC_DWI-1:0] d_in_flat=0;
reg [CIC_DWI-1:0] data=12345;
always @(negedge iclk) begin
// Shift in random data every cycle
data <= $urandom;
d_in_flat <= {d_in_flat[(n_chan-1)*CIC_DWI-1:0], data};
end
`else
wire [n_chan*CIC_DWI-1:0] d_in_flat;
assign d_in_flat = {adc, adc};
`endif
// Readout emulation
reg [9:0] read_addr=0;
reg stb_out=0, odata_val=0;
reg [1:0] ocnt=0;
wire enable;
wire otrig=(ocnt==3) & enable;
integer frame=0;
always @(posedge oclk) begin
ocnt <= ocnt+1;
if (otrig) read_addr <= read_addr+1;
if (otrig & (&read_addr)) frame <= frame+1;
stb_out <= otrig;
odata_val <= stb_out;
end
// ---------------------
// Instantiate Sampler
// ---------------------
wire cic_sample, cc_sample;
multi_sampler #(
.sample_period_wi(8),
.dsample0_en(1),
.dsample0_wi(8),
.dsample1_en(0),
.dsample1_wi(8),
.dsample2_en(0),
.dsample2_wi(8))
i_multi_sampler (
.clk(iclk),
.reset(reset),
.ext_trig(ext_trig),
.sample_period(8'h2), // Sample input at half the line rate
.dsample0_period(8'h1),
.dsample1_period(8'h1),
.dsample2_period(8'h0),
.sample_out(cic_sample),
.dsample0_stb(cc_sample),
.dsample1_stb(), // Unused output
.dsample2_stb() // Unused output
);
// ---------------------
// Instantiate DUT
// ---------------------
wire [BUF_DWI-1:0] d_out;
cic_wave_recorder #(
.n_chan (n_chan),
// DI parameters
.di_dwi (CIC_DWI), // data width
.di_rwi (32), // result width
// Difference between above two widths should be N*log2 of the maximum number
// of samples per CIC sample, where N=2 is the order of the CIC filter.
.di_noise_bits (0),
.cc_outw (20), // CCFilt output width; Must be 20 if using half-band filter
.cc_halfband (1),
.cc_use_delay (0), // Match pipeline length of filt_halfband=1
.cc_shift_base (0), // Bits to discard from previous acc step
.buf_dw (BUF_DWI),
.buf_aw (10),
.lsb_mask (1),
.buf_stat_w (16),
.buf_auto_flip (1)
)
dut
(
.iclk (iclk),
.reset (reset),
.stb_in (ext_trig),
.d_in (d_in_flat), // Flattened array of unprocessed data streams. CH0 in LSBs
.cic_sample (cic_sample),
// Post-integrator conveyor belt tap
.di_stb_out (),
.di_sr_out (),
.cc_sample (cc_sample),
.cc_shift ({1'b0, shift}), // controls scaling of filter result
// Channel selector controls
.chan_mask (2'b11), // Bitmask of channels to record. chan_mask[0] -> CH0
// Circular Buffer control and statistics
.oclk (oclk),
.buf_write (1'b1),
.buf_sync (), // single-cycle when buffer starts/ends
.buf_transferred(), // single-cycle when a buffer has been
.buf_stop (1'b0), // single-cycle - interrupts cbuf writing
.buf_count (),
.buf_stat2 (), // includes fault bit
.buf_stat (), // includes fault bit(), and (if set) the last valid location
.debug_stat (), // {stb_in(), boundary(), btest(), wbank(), rbank(), wr_addr}
// Circular Buffer data readout
.buf_stb (stb_out),
.buf_enable (enable),
.buf_read_addr(read_addr), // nominally 8192 locations
.buf_d_out (d_out)
);
endmodule