-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathns_randomVoronoi.m
164 lines (139 loc) · 4.5 KB
/
ns_randomVoronoi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
%% function description.
% for a given seed point. Generate Voronoi diagram with periodic boundary
% condition and determine internal vertices and the relation between vertex
% id and face. Also check the boundary crossing of vertices.
function [vrtx,edge,face,rg]=ns_randomVoronoi(gmp,sdPt)
%% Define output variables
% specify range of data structure for vrtx, edge, and face
rg=struct;
rg.vi=[1,4,7,9];
rg.vf=[3,6,8,10];
rg.ei=[1,3,5,6,7];
rg.ef=[2,4,5,6,10];
rg.fi=[1,2,3,4,5,6,8,10,12,13];
rg.ff=[1,2,3,4,5,7,9,11,12,13];
vrtx=zeros(2*gmp.nFa,rg.vf(end));
edge=cell(4,1);
edge{1}=zeros(3*gmp.nFa,rg.ef(end));
[edge{2},edge{3},edge{4}]=deal(cell(3*gmp.nFa,1));
face=cell(3,1);
face{1}=zeros(gmp.nFa,rg.ff(end));
[face{2},face{3}]=deal(cell(gmp.nFa,1));
%% Voronoi diagram generation
% copy seed points for periodic boundary condition
spCp=zeros(9*gmp.nFa,2);
spCp(1:gmp.nFa,:)=sdPt;
pb=[1,1;1,0;1,-1;0,1;0,-1;-1,1;-1,0;-1,-1]*gmp.bs;
for ii=1:size(pb,1)
spCp(gmp.nFa*ii+1:gmp.nFa*(ii+1),:)=...
sdPt+repmat(pb(ii,:),gmp.nFa,1);
end
% generate Voronoi diagram. Sort vertices for each face in
% counter-clock wise.
[vr,fVrIni]=voronoin(spCp);
for ii=1:gmp.nFa
fVrIni{ii}=ns_vrtxIdSort(fVrIni{ii},vr,gmp.bs,0);
end
fVrIni=fVrIni.';
%% Identify vertex-face relation for all vertices.
vFaMat=zeros(9*gmp.nFa,size(vr,1));
for ii=1:9*gmp.nFa
vFaMat(ii,fVrIni{ii})=1;
end
ivId=unique(cell2mat(fVrIni(1:gmp.nFa)));
ivFa=zeros(size(ivId,2),3);
for ii=1:size(ivId,2)
ivFa(ii,:)=find(vFaMat(:,ivId(ii))==1);
ivFa(ii,:)=mod(ivFa(ii,:),gmp.nFa)...
+gmp.nFa*(mod(ivFa(ii,:),gmp.nFa)==0);
ivFa(ii,:)=sort(ivFa(ii,:));
end
vrtx(:,rg.vi(2):rg.vf(2))=unique(ivFa,'rows');
%% Identify face-vertex relation with new vertex ID.
vIdPr=zeros(size(ivId,2),2);
vIdPr(:,1)=transpose(ivId);
for ii=1:size(ivId,2)
vIdPr(ii,2)=find(ismember(vrtx(:,rg.vi(2):rg.vf(2)),...
ivFa(ii,:),'rows')==1);
end
for ii=1:gmp.nFa
for jj=1:size(fVrIni{ii},2)
face{2}{ii}(jj)=vIdPr(vIdPr(:,1)==fVrIni{ii}(jj),2);
end
end
%% Assign vertex coordinates for new vertex ID.
for ii=1:size(vIdPr,1)
vrtx(vIdPr(ii,2),rg.vi(3):rg.vf(3))=mod(vr(vIdPr(ii,1),:),gmp.bs);
end
%% Identify edge-vertex relation.
eVr=zeros(gmp.nFa*10,2);
edCnt=1;
for ii=1:gmp.nFa
fvTmp=face{2}{ii};
fvTmp=fvTmp(fvTmp~=0);
vrTmp=[fvTmp,fvTmp(1)];
for jj=1:size(vrTmp,2)-1
eVr(edCnt,:)=sort([vrTmp(jj),vrTmp(jj+1)]);
edCnt=edCnt+1;
end
end
edge{1}(:,rg.ei(1):rg.ef(1))=unique(eVr(1:edCnt-1,:),'rows');
%% Identify vertex-edge relation.
veCnt=ones(2*gmp.nFa,1);
for ii=1:3*gmp.nFa
for jj=1:2
vrtx(edge{1}(ii,jj),veCnt(edge{1}(ii,jj)))=ii;
veCnt(edge{1}(ii,jj))=veCnt(edge{1}(ii,jj))+1;
end
end
%% find edge-face relation.
for ii=1:3*gmp.nFa
edge{1}(ii,rg.ei(2):rg.ef(2))=sort(intersect(vrtx(edge{1}(ii,1),...
rg.vi(2):rg.vf(2)),vrtx(edge{1}(ii,2),rg.vi(2):rg.vf(2))));
end
%% Define intermediate point of initial configuration
for ii=1:3*gmp.nFa
evr=ns_crdLocal(vrtx(edge{1}(ii,rg.ei(1):rg.ef(1)),...
rg.vi(3):rg.vf(3)),gmp.bs,gmp.sstn);
[edge{2}{ii},edge{1}(ii,rg.ei(4))]=...
ns_edgeMidVrtxAverage(evr,gmp.edpc);
end
%% Identify face-edge relation.
for ii=1:gmp.nFa
face{3}{ii}=ns_faceEdgeId(edge,face,gmp,rg,ii);
end
%% Calculate edge length.
for ii=1:3*gmp.nFa
edge{4}{ii}=ns_edgeLen(edge{2}{ii});
end
%% Assign face type.
% Face type 1 is normal cell and face type 2 is empty space.
face{1}(:,rg.fi(1))=ones(gmp.nFa,1);
%% calculate area, perimeter, and number of neighbors and center.
for ii=1:gmp.nFa
fEd=face{3}{ii};
[face{1}(ii,rg.fi(2)),face{1}(ii,rg.fi(6):rg.ff(6))]...
=ns_faceArea(fEd,edge{2},gmp.bs,gmp.sstn);
for jj=1:size(fEd,2)
face{1}(ii,rg.fi(3))=face{1}(ii,rg.fi(3))+...
sum(edge{4}{abs(fEd(jj))});
end
face{1}(ii,rg.fi(4))=...
ns_faceNeiCount(fEd,edge{1}(:,rg.ei(2):rg.ef(2)),ii);
face{1}(ii,rg.fi(5))=size(fEd,2);
end
%% calculate edge tension
edge{1}(:,rg.ei(3))=1;
% edge{1}(:,rg.ei(3))=face{1}(edge{1}(:,3),rg.fi(1))+...
% face{1}(edge{1}(:,4),rg.fi(1))-...
% mcp.gam*face{1}(edge{1}(:,3),rg.fi(1))...
% .*face{1}(edge{1}(:,4),rg.fi(1));
%% Calculate edge range
for ii=1:3*gmp.nFa
edge{1}(ii,rg.ei(5):rg.ef(5))=ns_edgeRange(edge,ii);
end
%% Assign nucleus position as cell centroid.
face{1}(:,rg.fi(7):rg.ff(7))=face{1}(:,rg.fi(6):rg.ff(6));
%% Assign nucleus orientation randomly
face{1}(:,rg.fi(9):rg.ff(9))=rand(gmp.nFa,1)*2*pi;
end