-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
177 lines (147 loc) · 5.51 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from functools import reduce
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import PIL
import io
from models import ConstructionCycle
# TODO: cleanup this module and properly document it.
def plot_construction_graph(filename: str, cc: ConstructionCycle, colored_pheromones: bool = False):
data, layout = _get_base_graph_layout(cc, colored_pheromones)
fig = go.Figure(data=data, layout=layout)
fig.update_traces(line=dict(width=4))
if colored_pheromones:
fig.update_traces(
marker=dict(
colorscale="BuPu",
colorbar=dict(
title="Pheromone",
len=0.5,
thickness=20,
tickvals=[0, 2, 4, 6, 8, 10],
ticktext=[0, 0.4, 0.8, 1.2, 1.6, 2],
),
)
)
fig.write_image(file=filename, format="png")
def plot_construction_solution_path(filename: str, cc: ConstructionCycle, colored_pheromones: bool = False):
data, layout = _get_base_graph_layout(cc, colored_pheromones)
sp_data = _get_solution_path_data(cc)
fig = go.Figure(data=data + sp_data, layout=layout)
fig.update_traces(line=dict(width=4))
fig.write_image(file=filename, format="png")
def plot_construction_animation(filename: str, cc: ConstructionCycle):
graph_data, layout = _get_base_graph_layout(cc)
animation_data, frames = _get_construction_animation(cc)
data = reduce(lambda x, y: x + y, [animation_data, graph_data])
fig = go.Figure(data=data, layout=layout, frames=frames)
_write_to_gif(filename, fig, graph_data)
def _get_base_graph_layout(cc: ConstructionCycle, colored_pheromones: bool = False):
vertices = pd.DataFrame(
columns=["x", "y", "info"],
data=[(v[0], v[1], v.info if v.info else "vertex") for v in cc.construction_graph.vertices],
)
edges = pd.DataFrame(
columns=["edge", "v1_x", "v1_y", "v2_x", "v2_y", "pheromone"],
data=[(str(e), e.i[0], e.i[1], e.j[0], e.j[1], e.pheromone) for e in cc.construction_graph.edges],
)
fig_1 = px.scatter(
vertices,
x="x",
y="y",
color="info",
color_discrete_map={
"vertex": "rgba(0, 0, 0, 0.1)",
"destination": "rgba(245, 72, 66, 0.8)",
"origin": "rgba(28, 176, 72, 0.8)",
},
range_x=[0.9, 6.1],
range_y=[0.9, 6.1],
template="simple_white",
height=700,
width=800,
)
fig_1.update_traces(marker=dict(size=12, line=dict(width=2, color="DarkSlateGrey")), selector=dict(mode="markers"))
fig_2 = [
px.line(
x=[row["v1_x"], row["v2_x"]],
y=[row["v1_y"], row["v2_y"]],
color_discrete_sequence=(
px.colors.sample_colorscale("BuPu", np.clip(np.array([row["pheromone"]]) - 0.5, 0, 1))
if colored_pheromones
else ["rgba(0, 0, 0, 0.1)"]
),
).data
for _, row in edges.iterrows()
]
fig_1.update_layout(
showlegend=True, xaxis={"visible": False}, yaxis={"visible": False}, legend={"font": {"size": 20}}
)
fig_data = reduce(lambda x, y: x + y, [*fig_2, fig_1.data])
return fig_data, fig_1.layout
def _get_solution_path_data(cc: ConstructionCycle):
name_generator = _get_ant_names()
data = _flatten_list(
[
[(name, v[0] + j[0], v[1] + j[1]) for v in ant.solution_path.convert_to_list_of_vertices()]
for ant, (name, j) in zip(cc.ants, [(next(name_generator), _jitter()) for _ in range(len(cc.ants))])
]
)
solution_paths = pd.DataFrame(columns=["ant", "x", "y"], data=data)
fig = px.line(data_frame=solution_paths, x="x", y="y", color="ant")
return fig.data
def _get_construction_animation(cc: ConstructionCycle):
name_generator = _get_ant_names()
sp = [ant.solution_path.convert_to_list_of_vertices() for ant in cc.ants]
max_len = max([len(s) for s in sp])
sp = [
[
(n, e, v[0] + j[0], v[1] + j[1])
for n, (e, v), j in zip([next(name_generator)] * len(s), enumerate(s), [_jitter()] * len(s))
]
for s in sp
]
data = _flatten_list(_flatten_list([[(a[0], i, a[2], a[3]) for i in range(a[1], max_len)] for a in s]) for s in sp)
df = pd.DataFrame(columns=["ant", "construction_step", "x", "y"], data=data)
fig = px.line(
df,
x="x",
y="y",
animation_frame="construction_step",
animation_group="ant",
# line_dash_sequence=["dash"],
color="ant",
hover_name="ant",
)
return fig.data, fig.frames
def _write_to_gif(filename, fig, graph_data):
# generate images for each step in animation
frames = []
for s, fr in enumerate(fig.frames):
# set main traces to appropriate traces within plotly frame
fig.update(data=fr.data + graph_data)
# generate image of current state
frames.append(PIL.Image.open(io.BytesIO(fig.to_image(format="png"))))
# create animated GIF
frames[0].save(
filename,
save_all=True,
append_images=frames[1:],
optimize=True,
duration=1000,
loop=0,
)
def _get_ant_names():
while True:
yield "Armin"
yield "Berthold"
yield "Reiner"
yield "Levi"
yield "Eren"
yield "Erwin"
yield "Annie"
def _jitter():
return (np.random.rand(1, 2)[0] - 0.5) * 0.15
def _flatten_list(x):
return reduce(lambda a, b: a + b, x)