-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuler_Explicit.py
26 lines (26 loc) · 1.07 KB
/
Euler_Explicit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#Last update:Piyush 8 Aug 2022
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0,4,100)
def euler_explicit(f_prime, y_0, a, b, h): #defining the euler method
N=int((b-a)/h) #Number of steps
x = a ; y = y_0 #Initial Values to the equation y(0) and x(0)
x_out,y_out =[],[]
for i in range(N):
y = y + h*f_prime(x, y) #y_n+1 = y_n + h * f
x = x + h
x_out.append(x)
y_out.append(y)
return x_out, y_out
def solution(x):
return np.exp(x/2)*np.sin(5*x)
def f_prime(x, y):
return -0.5*np.exp(x/2)*np.sin(5*x)+5*np.exp(x/2)*np.cos(5*x)+y
#return y*np.exp(y)+np.exp(y)
x_euler, y_euler = euler_explicit(f_prime, 0, 0, 3, 0.1) #call the function and store the values in x and y
#plt.xlim([0,2])#plt.ylim([0.7,1.1])
plt.figure(figsize=(7,6))
plt.plot(x,solution(x),linewidth=3.0,color='mediumslateblue',label='Exact')
plt.plot(x_euler,y_euler,linewidth=3.0,color='orchid',label='Euler-Explicit')
plt.xlabel(r'$x$',fontsize=15);plt.ylabel(r'$y$',fontsize=15)
plt.legend(loc='upper right')