-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRK4.py
33 lines (31 loc) · 1.06 KB
/
RK4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#Last Update:Piyush
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 5, 100)
def RK4(f_prime, y_0, a, b, h):
N=int((b-a)/h) #Number of steps
x = a ; y = y_0
x_out,y_out =[],[]
for i in range(N):
k1 = h*f_prime(x,y)
k2 = h*f_prime(x+0.5*h,y+0.5*k1)
k3 = h*f_prime(x+0.5*h,y+0.5*k2)
k4 = h*f_prime(x+h,y+k3)
y = y+ (1/6)*(k1+2*k2+2*k3+k4) #RK-4
x = x + h
#print(x,y)
x_out.append(x)
y_out.append(y)
return x_out, y_out
def f_prime(x, y): #Differential equation
return 50*(np.cos(x)-y)
def solution(x): #Analytical solution
return (50/2501)*(np.sin(x)+50*np.cos(x)-50*np.exp(-50*x)) #y(0)=0
x_RK, y_RK = RK4(f_prime, 0, 0, 4, 0.05)
x_RK1, y_RK1 = RK4(f_prime, 0, 0, 4, 0.01)
plt.xlabel(r'$x$');plt.ylabel(r'$y$')
plt.ylim([-1.5,1.5])
plt.plot(x,solution(x),color='black',linewidth=2.0,label='Exact')
plt.plot(x_RK,y_RK,color='deeppink',linewidth=2.0,label='h=0.05')
plt.plot(x_RK1,y_RK1,color='orange',linewidth=2.0,label='h=0.01')
plt.legend(loc='upper right')