-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.c
106 lines (91 loc) · 3.64 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <stdint.h>
#include <stm32l476xx.h>
#include "table.h"
#include "uart.h"
#include <math.h>
#define nop() __asm__ __volatile__ ("nop" ::)
#define PI 3.14159265f
// Globals for data that is either persistent or used for debuging
int i1, i2, i3; // Phase currents
int total_current; // Total instantaneous current
int angle; // The angle of the stator voltage
int voltage; // The magnitude of the stator voltage
int encoder_position_previous; // The previous encoder value
// Analog to digital converter DMA data
uint16_t adc_data[4]; // [i1, i2, i3, throttle]
// Motor parameters
#define MOTOR_POLES 4
#define ENCODER_RESOLUTION 2400
#define MAGNETIZING_CURRENT 3000
#define MAX_TORQUE_CURRENT 7000
#define GAIN 2
// This runs at the PWM frequency: 9765.625Hz
// It runs 0.000048s after it's triggered (approx half the PWM period)
// This means data is collected during the first half of each
// pwm cycle ready for calculations in the second half.
void DMA1_Channel1_IRQHandler(void) {
// Fetch the phase currents
i1 = adc_data[0] - 32840; // Offset to 0A
i2 = adc_data[1] - 32840; // Offset to 0A
i3 = adc_data[2] - 32840; // Offset to 0A
// Calculate the total current (FPU operation)
total_current = sqrtf((float)i1*(float)i1 + (float)i2*(float)i2 + (float)i3*(float)i3);
// Calculate encoder ticks change since the last iteration
uint32_t encoder_position_current = TIM2->CNT; // Atomic as possible
int encoder_position_change = encoder_position_current - encoder_position_previous; // Nasty casting to signed here
encoder_position_previous = encoder_position_current;
// 1 Revolution = 67108864 (2**26) increments
// 1 RPM = 6872 increments per loop (2**26 / 9765.625Hz)
// Encoder at 1 RPM produces 0.24576 pulses per loop (2400 / 9765.625Hz)
// Determine slip from the throttle
// By happy coincidence this gives +/- 32768 (+/- 5Hz)
int slip = adc_data[3] - 32768;
// Increment the angle by the requested slip
angle += slip;
// Increment the angle by the encoder measurement
angle += encoder_position_change * 67108864 / ENCODER_RESOLUTION * MOTOR_POLES / 2;
// Wrap angle
angle &= 0x3FFFFFF;
// Calculate the target current.
// This starts at MAGNETIZING_CURRENT and increases wih slip
// up to a maximum of MAGNETIZING_CURRENT + MAX_TORQUE_CURRENT.
// We use floating point operations here to avoid overflows
int target_current;
if(slip >= 0) {
target_current = (float)MAGNETIZING_CURRENT + (float)MAX_TORQUE_CURRENT * (float)slip / 32768.0f;
} else {
target_current = (float)MAGNETIZING_CURRENT - (float)MAX_TORQUE_CURRENT * (float)slip / 32768.0f;
}
// Apply current error to voltage output
if(total_current < target_current && voltage < 4000) voltage += GAIN;
if(total_current > target_current && voltage > 0) voltage -= GAIN;
// Update PWM outputs from SVM style lookup table
TIM1->CCR3 = (voltage * table1[angle >> 13]) >> 15;
TIM1->CCR2 = (voltage * table2[angle >> 13]) >> 15;
TIM1->CCR1 = (voltage * table3[angle >> 13]) >> 15;
// Clear interrupt
DMA1->IFCR = 0xFFFFFFFF;
}
void TIM1_UP_TIM16_IRQHandler(void) {
// Start ADC conversions each time PWM restarts
// This runs at 80000000/8192 = 9765.625Hz
ADC1->CR |= ADC_CR_ADSTART;
TIM1->SR = ~TIM_SR_UIF;
}
int main() {
while(1) {
// A handy loop for debugging
// All the real work is interrupt driven
uart_write_int(i1);
uart_write_char(',');
uart_write_int(i2);
uart_write_char(',');
uart_write_int(i3);
uart_write_char(',');
uart_write_int(total_current);
uart_write_char(',');
uart_write_int(voltage);
uart_write_nl();
//int n; for(n=0;n<1000;n++) nop();
}
}