-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathAlgebra Cheat Sheet.rtf
142 lines (124 loc) · 6.31 KB
/
Algebra Cheat Sheet.rtf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{\rtf1\ansi\ansicpg1252\deff0\nouicompat\deflang1040{\fonttbl{\f0\fnil\fcharset0 Cambria;}{\f1\fnil\fcharset0 Calibri;}{\f2\fnil\fcharset0 Consolas;}{\f3\fnil\fcharset1 Cambria Math;}{\f4\fnil\fcharset161 Consolas;}{\f5\fnil\fcharset1 Unifont;}{\f6\fnil\fcharset0 Unifont;}{\f7\fnil Unifont;}{\f8\fnil\fcharset161 Unifont;}}
{\colortbl ;\red165\green165\blue165;}
{\*\generator Riched20 10.0.17134}{\*\mmathPr\mmathFont3\mwrapIndent1440 }\viewkind4\uc1
\pard\sl276\slmult1\b\f0\fs96\lang16 Rules\fs40\par
Number Rules\b0\f1\fs22\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\f2 a*0=0\par
{\pntext\f2 2.\tab}1*a=a\par
{\pntext\f2 3.\tab}a-a=0\line -a+a=0\line a\'b1a=\{0, 2a\}\par
{\pntext\f2 4.\tab}a\'b1b=\{a+b, a-b\}\par
{\pntext\f2 5.\tab}a+0=a\line 0+a=a\line a-0=a\line 0-a=a\line a\'b10=a\line 0\'b1a=a\par
{\pntext\f2 6.\tab}\{REMOVED\}\par
{\pntext\f2 7.\tab}a+a=2a\par
\pard\sl276\slmult1\par
\b\f0\fs40 Variable Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs24\lang1040 ax+bx=(a+b)*x (a,b NUMBER; x VARIABLES)\line xa+xb=(a+b)*x (a,b NUMBER; x VARIABLES)\par
{\pntext\f2 2.\tab}ax+x=(a+1)*x (a,b NUMBER; x VARIABLES)\par
{\pntext\f2 3.\tab}x+ax=(a+1)*x (a,b NUMBER; x VARIABLES)\par
\pard\sl276\slmult1\b\f0\fs40\lang16\par
Expand Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 -(a+b)=-a-b\line -(a-b)=-a+b\par
{\pntext\f2 2.\tab}a(b+c)=ab+ac\par
{\pntext\f2 3.\tab}\par
{\pntext\f2 4.\tab}\par
{\pntext\f2 5.\tab}-(-a)=a\par
\pard\sl276\slmult1\b\f0\fs40\par
Syntax Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22\{DELETED, MANAGED WHEN PARSING THE INPUT\}\cf1 (\cf0 a*b\cf1 )\cf0 *c=a*\cf1 (\cf0 b*c\cf1 )\cf0\par
{\pntext\f2 2.\tab}\{DELETED, MANAGED WHEN PARSING THE INPUT\} a+\cf1 (\cf0 b+c\cf1 )\cf0 =\cf1 (\cf0 a+b\cf1 )\cf0 +c\par
\pard\sl276\slmult1\b\f0\fs40\par
Fractions Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0/a=0\par
{\pntext\f2 2.\tab}a/1=a\par
{\pntext\f2 3.\tab}a/a=1\par
{\pntext\f2 4.\tab}(a/b)\super -1\nosupersub =b/a\par
{\pntext\f2 5.\tab}(a/b)\super -c\nosupersub =(b/a)\super c\nosupersub\par
{\pntext\f2 6.\tab}\par
{\pntext\f2 7.\tab}\par
{\pntext\f2 8.\tab}\par
{\pntext\f2 9.\tab}\par
{\pntext\f2 10.\tab}\par
{\pntext\f2 11.\tab}a / (b / c) = (a * c) / b\par
{\pntext\f2 12.\tab}(b / c) / a = b / (c * a)\par
{\pntext\f2 13.\tab}\par
{\pntext\f2 14.\tab}(a/b)*(c/d)=(a*c)/(b*d)\par
\pard\sl276\slmult1\b\f0\fs40\par
Absolute Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Exponent Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 1\super a\nosupersub =1\par
{\pntext\f2 2.\tab}a\super 1\nosupersub =a\par
{\pntext\f2 3.\tab}a\super 0\nosupersub =1\par
{\pntext\f2 4.\tab}(a*b)\super n\nosupersub =(a)\super n\nosupersub *(b)\super n\nosupersub\par
{\pntext\f2 5.\tab}\par
{\pntext\f2 6.\tab}\par
{\pntext\f2 7.\tab}\par
{\pntext\f2 8.\tab}a\super b+c\nosupersub =a\super b\nosupersub a\super c \cf1\ul\nosupersub only when b+c cannot be simplified\cf0\ulnone\par
{\pntext\f2 9.\tab}(a\super b\nosupersub )\super c\nosupersub =a\super b*c\nosupersub\par
{\pntext\f2 10.\tab}\par
{\pntext\f2 11.\tab}\par
{\pntext\f2 12.\tab}\par
{\pntext\f2 13.\tab}\par
{\pntext\f2 14.\tab}\par
{\pntext\f2 15.\tab}a*a=(a)\super 2\nosupersub\par
{\pntext\f2 16.\tab}a\super b\nosupersub *a\super c\nosupersub =a\super b+c\nosupersub\par
{\pntext\f2 17.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 x=x\super 1/a\nosupersub\par
{\pntext\f2 18.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b+c\super d\nosupersub =b\super 1/a\nosupersub +c\super d\nosupersub\line a\super b\nosupersub +\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub +c\super 1/d\nosupersub\par
{\pntext\f2 19.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b-c\super d\nosupersub =b\super 1/a\nosupersub -c\super d\nosupersub\line a\super b\nosupersub -\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub -c\super 1/d\nosupersub\par
{\pntext\f2 20.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b*c\super d\nosupersub =b\super 1/a\nosupersub *c\super d\nosupersub\line a\super b\nosupersub *\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub *c\super 1/d\nosupersub\par
{\pntext\f2 21.\tab}\super a\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 b/c\super d\nosupersub =b\super 1/a\nosupersub /c\super d\nosupersub\line a\super b\nosupersub /\super c\nosupersub\f3\fs29\u8730?\f2\fs22\lang16 d=a\super b\nosupersub /c\super 1/d\nosupersub\line\par
\pard\sl276\slmult1\b\f0\fs40\par
Factor Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Factorial Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Log Rules\par
\b0\f2\fs22 empty\par
\b\f0\fs40\par
Undefined\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 0\super 0\nosupersub =undefined\par
{\pntext\f2 2.\tab}a/0=undefined\par
\pard\sl276\slmult1\b\f0\fs40\par
Complex Number Rules\par
\pard
{\pntext\f2 1.\tab}{\*\pn\pnlvlbody\pnf2\pnindent0\pnstart1\pndec{\pntxta.}}
\fi-360\li720\sl276\slmult1\b0\f2\fs22 e\super i\f4\lang1032\'c8\nosupersub\f2\lang16 =cos(\f4\lang1032\'c8\f2\lang16 )*i*sin(\f4\lang1032\'c8\f2\lang16 )\par
\pard\sl276\slmult1\par
\par
\b\f0\fs96 Methods\fs40\par
Sum Method 1\b0\f1\fs22\par
\f2 3+3X+1 = 3X+4\par
\b\f0\fs40 Multiplication Method 1\b0\f1\fs22\par
\f2 X*3*X*2 = 6*X\super 2\nosupersub\par
\par
\b\f0\fs96 Characters\b0\par
\pard\f5\fs29\lang1040\u9398?\f6\tab SQUARE ROOT\par
\f3\u8730?\f6\lang1040\tab ROOT\f7\par
\f5\u9399?\f6\tab POWER\par
^\tab POWER\f2\fs22\lang16\par
\pard\sl276\slmult1\f5\fs29\lang1040\u9400?\f6\tab SIN\f7\par
\f5\u9401?\f6\tab COS\f7\par
\f5\u9402?\f6\tab TAN\f7\par
\f5\u9403?\f6\tab ARC SIN\f7\par
\f5\u9404?\f6\tab ARC COS\par
\f5\u9405?\f6\tab ARC TAN\par
\f8\lang1032\'f0\f6\lang1040\tab PI\b\f0\fs40\lang16\par
}