-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbertevaluate.py
137 lines (106 loc) · 4.61 KB
/
bertevaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# This is an intent to use a Roberta model as a language model with Wav2Vec2
# but the initial results are worse than just using the wav2vec2 model
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import os
DATASET_PATH = os.environ.get('DATASET_PATH') or './'
dataset = load_dataset(
'csv', data_files={'test': 'test.csv'})
test_dataset = dataset['test']
processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-catala-1/checkpoint-166000")
model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-catala-1/checkpoint-166000")
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(
os.path.join(DATASET_PATH, batch["wav_filename"]))
batch["speech"] = speech_array[0].numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def levenshtein(a, b):
"Calculates the Levenshtein distance between a and b."
n, m = len(a), len(b)
if n > m:
# Make sure n <= m, to use O(min(n,m)) space
a, b = b, a
n, m = m, n
current = list(range(n+1))
for i in range(1, m+1):
previous, current = current, [i]+[0]*n
for j in range(1, n+1):
add, delete = previous[j]+1, current[j-1]+1
change = previous[j-1]
if a[j-1] != b[i-1]:
change = change + 1
current[j] = min(add, delete, change)
return current[n]
def process_result(ground_truth, prediction):
char_distance = levenshtein(ground_truth, prediction)
char_length = len(ground_truth)
word_distance = levenshtein(ground_truth.split(), prediction.split())
word_length = len(ground_truth.split())
wer = word_distance / word_length
cer = char_distance / char_length
wer = min(wer, 1.0)
cer = min(cer, 1.0)
result = {
'original': ground_truth,
'prediction': prediction,
'word_distance': word_distance,
'word_length': word_length,
'wer': wer,
'char_distance': char_distance,
'char_length': char_length,
'cer': cer
}
return result
from transformers import RobertaForMaskedLM, RobertaTokenizer
tokenizer = RobertaTokenizer.from_pretrained("jordimas/julibert")
julibert = RobertaForMaskedLM.from_pretrained("jordimas/julibert").to("cuda")
print(julibert.config)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
print(voice_prob.size())
gpt_input = torch.cat((torch.tensor([tokenizer.cls_token_id]).to("cuda"),pred_ids[pred_ids>0]), 0).unsqueeze(1)
print(gpt_input.shape)
gpt_prob = torch.nn.functional.softmax(julibert(gpt_input, labels=gpt_input).logits, dim=-1)
print(gpt_prob.shape)
bert_prob = gpt_prob.squeeze(1)[:voice_prob.size()[0],:vocab_size]
print(bert_prob.size())
comb_pred_ids = torch.argmax(bert_prob*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
print(decoded_results)
batch["pred_strings"] = decoded_results[0]
processed = process_result(batch["transcript"],batch["pred_strings"])
print(f"{processed['wer']},{batch['transcript']},{batch['pred_strings']}")
batch['word_distance'] = processed['word_distance']
batch['word_length'] = processed['word_length']
batch['char_distance'] = processed['char_distance']
batch['char_length'] = processed['char_length']
return batch
result = test_dataset.map(evaluate)
word_distance_sum = 0
word_length_sum = 0
char_distance_sum = 0
char_length_sum = 0
for one in result:
word_distance_sum += one['word_distance']
word_length_sum += one['word_length']
char_distance_sum += one['char_distance']
char_length_sum += one['char_length']
total = f"TOTAL,{min(word_distance_sum/word_length_sum,1):.6f},{min(char_distance_sum/char_length_sum,1):.6f},,"
print(total)
# print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["transcript"])))