forked from nmagerko/planar-mis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
89 lines (73 loc) · 2.82 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import networkx as nx
import networkx.algorithms.approximation as apxa
import random
import matplotlib.pyplot as plt
import planarity
import os
from igraph import *
# global declarations
data = []
starting_vertices = 3
ending_vertices = 50
total_vertices = ending_vertices - starting_vertices
trials = 100
output_file = "data/output.txt"
def make_planar_graph(vertices, edge_probability):
"""
Returns a planar networkx graph with the specified
number of vertices and with edges chosen using
the specified edge probability
"""
G = nx.fast_gnp_random_graph(vertices, edge_probability)
G = planarity.planarity_networkx.pgraph_graph(G)
G_nx = planarity.planarity_networkx.networkx_graph(G)
while planarity.planarity_functions.is_planar(G) is not True:
edge_removals = planarity.planarity_functions.kuratowski_edges(G)[:1]
G_nx.remove_edges_from(edge_removals)
G = planarity.planarity_networkx.pgraph_graph(G_nx)
return G_nx
def sort_dict(d):
'return a sorted list of tuples from the dictionary'
return sorted(d.viewitems(), cmp=lambda x,y: cmp(x[1], y[1]))
def maximum_independent_set(graph):
H = G.copy()
n=H.__len__()
e=H.edges()
igraph = Graph(n=n,edges=e)
alpha = igraph.alpha()
#if n >= 5:
# plot(igraph,target=None,bbox=(0, 0, 600, 600))
#independent_set_size = 0
#while len(H.nodes()) > 0:
# sorted_degrees = sort_dict(H.degree(H.nodes()))
# lowest_degree_vertex = sorted_degrees[0][0]
# H.remove_nodes_from(H.neighbors(lowest_degree_vertex))
# H.remove_node(lowest_degree_vertex)
# independent_set_size += 1
return alpha
for vertices in range(starting_vertices, ending_vertices + 1):
print("Running test " + str(vertices - starting_vertices) + "/" + str(total_vertices))
for i in range(trials):
edge_probability = random.uniform(0, 3.0/vertices)
G = make_planar_graph(vertices, edge_probability)
max_indep_set = maximum_independent_set(G)
#print max_indep_set
#if vertices/float(ending_vertices) >=0.15:
##planarity.planarity_networkx.draw(G, labels=True)
# nx.draw_networkx(G)
# plt.show()
data.append((vertices, G.number_of_edges(), max_indep_set))
# sort the data by n(G), then by alpha(G), then by e(G)
data = sorted(data, key = lambda trial: (trial[0], trial[2], trial[1]))
# get rid of the old data before writing
# then open the file, and print add the header
os.remove(output_file) if os.path.exists(output_file) else None
output = open(output_file, 'w')
output.write("n(G)\te(G)\ta(G)\tmax(e)\tmin(a)\tmax(a)\n")
# add all data to the output file
for trial_num in range(len(data)):
min_alpha = trial_num/100*100
max_alpha = trial_num/100*100+99
output.write(str(data[trial_num][0]) + "\t" + str(data[trial_num][1]) + "\t" + str(data[trial_num][2]) + "\t" + str(3*data[trial_num][0] - 6) + "\t" + str(data[min_alpha][2]) + "\t" + str(data[max_alpha][2]) + "\n")
# close the file and exit
output.close()