-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy path1313_exam2020.tex
218 lines (186 loc) · 6.93 KB
/
1313_exam2020.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
This is not the full 2020 exam, only the first two exercises.
%-----------------------
\subsection*{Exercise 1}
Let us consider a spherically symmetric body of radius $R$.
\begin{enumerate}
\item (1 pt) use symmetry considerations with regards to the 3 axis
to arrive at the moment of inertia $I$:
\begin{equation}
I=\frac{8\pi}{3} \int_0^R \rho(r) r^4 dr
\end{equation}
\item (1/2 pt) The density inside the sphere is given by
\[
\rho(r)=\rho_0 \left[ a \left(\frac{r}{R}\right)^2+ b \left(\frac{r}{R}\right) + c \right]
\]
Compute coefficients $a,b,c$ such that the density matches the curve on the following figure:
\begin{center}
\includegraphics[width=9cm]{images/gravity/exam2020/rho.pdf}
\end{center}
\item (1 pt) Compute the total mass $M$ of the planet using this expression for the density.
\item (1 pt) Compute the moment of inertia $I$
\item (1/2 pt) Can $I$ be written $I=fMR^2$? if so, give $f$.
\item (1/2 pt) What are the dimensions of $\rho$, $I$ and $M$?
\end{enumerate}
\subsection*{Exercise 1 - answer}
Question 1 was treated in class.
Looking at the figure, we see that $\rho(r=0)=\rho_0$, i.e. $c=1$.
Also, we see that $\rho(r=R)=0$, i.e.
\[
\rho_0 \left[ a +b + 1 \right] =0
\]
or, $a+b=-1$.
Finally, we see that $\rho(r=R/2)=3\rho_0/4$, so
\[
\rho_0 \left[ \frac{a}{4} +\frac{b}{2} +1 \right] = \frac{3}{4}\rho_0
\]
or, $a/4 + b/2 = -1/4$.
This leads to $a=-1$ and $b=0$ so
\[
\rho(r) = \rho_0 \left[ 1 - \left(\frac{r}{R}\right)^2 \right]
\]
The total mass is given by
\begin{eqnarray}
M
&=& \int_V \rho(r) dV \nn\\
&=& 4\pi \int_0^R \rho(r) r^2 dr \nn\\
&=& 4\pi \int_0^R \rho_0 \left[ 1 - \left(\frac{r}{R}\right)^2 \right] r^2 dr \nn\\
&=& 4\pi \rho_0 \int_0^R \left[ r^2 - \frac{r^4}{R^2} \right] dr \nn\\
&=& \frac{8 \pi}{15} \rho_0 R^3
\end{eqnarray}
The moment of inertia $I$ is
\begin{eqnarray}
I
&=& \frac{8\pi}{3} \int_0^R \rho(r) r^4 dr \nn\\
&=& \frac{16 \pi}{105} \rho_0 R^5
\end{eqnarray}
Finally,
\[
I = \frac{16 \pi}{105} \rho_0 R^5 = \frac{2}{7} (\frac{8 \pi}{15} \rho_0 R^3) R^2
\]
so $f=2/7$.
%-----------------------
\subsection*{Exercise 2}
Let us consider the same sphere as in the previous exercise, and the same density profile $\rho(r)$.
The gravitational potential satisfies the Poisson equation:
\begin{equation}
\Delta U = 4 \pi {\cal G} \rho({\vec r}) \label{exam2020:eqlap}
\end{equation}
and we have the following relationship between the gravitational acceleration
vector and the potential: ${\vec g}=-{\vec \nabla} U$.
\begin{enumerate}
\item (1/2 pt) Write explicitely Eq.(\ref{exam2020:eqlap}) for a point inside the sphere and a point outside the sphere.
\item (1 pt) Compute $g(r)$ and $U(r)$ for a point inside the sphere as a function of $r$. Use
$\lim_{r\rightarrow 0} g(r) \neq \infty$
to get rid of an integration constant.
\item (1 pt) Compute $g(r)$ and $U(r)$ for a point outside the sphere as a function of $r$.
Use $\lim_{r\rightarrow\infty}U(r)=0$ to get rid of another integraion constant.
\item (1 pt) Use the continuity of $g(r)$ and $U(r)$ at $r=R$
to compute the last two remaining integration constants.
\end{enumerate}
%-----------------------
\subsection*{Exercise 2 - answer}
Inside the sphere Eq.(\ref{exam2020:eqlap}) is
\begin{equation}
\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial U}{\partial r} \right) = 4 \pi {\cal G}
\rho_0 \left[ a \left(\frac{r}{R}\right)^2+ b \left(\frac{r}{R}\right) + c \right] \nn
\end{equation}
We could use the values of $a$, $b$ and $c$ obtained above but I here choose not to, in order to show that
this exercise can be carried out independently from the first one. Then:
\begin{equation}
\frac{\partial}{\partial r} \left( r^2 \frac{\partial U}{\partial r} \right) = 4 \pi {\cal G}
\rho_0 \left[ a \frac{r^4}{R^2}+ b \frac{r^3}{R} + c r^2 \right] \nn
\end{equation}
\begin{equation}
r^2 \frac{\partial U}{\partial r} = 4 \pi {\cal G} \rho_0 \left[ a \frac{r^5}{5R^2}+ b \frac{r^4}{4R} + c \frac{r^3}{3} \right] + A \nn
\end{equation}
\begin{equation}
\frac{\partial U}{\partial r} = 4 \pi {\cal G} \rho_0 \left[ a \frac{r^3}{5R^2}+ b \frac{r^2}{4R} + c \frac{r}{3} \right] + \frac{A}{r^2} \nn
\end{equation}
so that
\begin{equation}
g(r)=-\frac{\partial U}{\partial r} = -4 \pi {\cal G} \rho_0 \left[ a \frac{r^3}{5R^2}+ b \frac{r^2}{4R} + c \frac{r}{3} \right] + \frac{A}{r^2} \nn
\end{equation}
We use $\lim_{r\rightarrow 0} g(r) \neq \infty$ to arrive at $A=0$.
Finally
\begin{equation}
U_{in}(r) = 4 \pi {\cal G} \rho_0 \left[ a \frac{r^4}{20R^2}+ b \frac{r^3}{12R} + c \frac{r^2}{6} \right] + B \nn
\end{equation}
With $a=-1$, $b=0$ and $c=1$:
\begin{eqnarray}
g_{in}(r) &=& -4 \pi {\cal G} \rho_0 \left[ - \frac{r^3}{5R^2}+ \frac{r}{3} \right] \nn\\
U_{in}(r) &=& 4 \pi {\cal G} \rho_0 \left[ - \frac{r^4}{20R^2} + \frac{r^2}{6} \right] + B \nn
\end{eqnarray}
Outside the sphere we must solve
\begin{equation}
\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial U}{\partial r} \right) = 0 \nn
\end{equation}
\begin{equation}
r^2 \frac{\partial U}{\partial r} = C \nn
\end{equation}
\begin{equation}
\frac{\partial U}{\partial r} = \frac{C}{r^2} \nn
\end{equation}
\begin{equation}
U_{out}(r) = -\frac{C}{r} + D \nn
\end{equation}
We use $\lim_{r\rightarrow\infty}U(r)=0$ to arrive at $D=0$ so that
\begin{eqnarray}
g_{out}(r) &=& -\frac{C}{r^2} \nn\\
U_{out}(r) &=& -\frac{C}{r} \nn
\end{eqnarray}
Both fields should match at $r=R$:
\begin{eqnarray}
g_{in}(r=R) &=& g_{out}(r=R) \nn\\
U_{in}(r=R) &=& U_{out}(r=R) \nn
\end{eqnarray}
i.e.
\[
-4 \pi {\cal G} \rho_0 \left[ a \frac{R^3}{5R^2}+ b \frac{R^2}{4R} + c \frac{R}{3} \right] = -\frac{C}{R^2}
\]
so
\[
C = 4 \pi {\cal G} \rho_0 R^3 \left[ \frac{a}{5}+ \frac{b}{4} + \frac{c}{3} \right]
\]
Now,
\[
4 \pi {\cal G} \rho_0 \left[ a \frac{R^4}{20R^2}+ b \frac{R^3}{12R} + c \frac{R^2}{6} \right] + B = -\frac{C}{R}
\]
\[
4 \pi {\cal G} \rho_0 R^3 \left[ \frac{a}{20}+ \frac{b}{12} + \frac{c}{6} \right] + B R = -4 \pi {\cal G} \rho_0 R^3 \left[ \frac{a}{5}+ \frac{b}{4} + \frac{c}{3} \right]
\]
so
\[
B R= -4 \pi {\cal G} \rho_0 R^3 \left[
\frac{a}{5}+ \frac{a}{20}
+\frac{b}{4}+ \frac{b}{12}
+\frac{c}{3}+ \frac{c}{6}
\right]
\]
\[
B = -4 \pi {\cal G} \rho_0 R^2 \left[
\frac{a}{4}
+\frac{b}{3}
+\frac{c}{2}
\right]
\]
With $a=-1$, $b=0$ and $c=1$:
\[
B = - \pi {\cal G} \rho_0 R^2
\qquad
C = \frac{8\pi}{15} {\cal G} \rho_0 R^3
\]
Finally
\begin{eqnarray}
g_{in}(r) &=& -4 \pi {\cal G} \rho_0 \left[ - \frac{r^3}{5R^2}+ \frac{r}{3} \right] \nn \\
U_{in}(r) &=& 4 \pi {\cal G} \rho_0 \left[ - \frac{r^4}{20R^2} + \frac{r^2}{6} \right]
- \pi {\cal G} \rho_0 R^2 \nn\\
g_{out}(r) &=& - \frac{8\pi}{15} {\cal G} \rho_0 R^3 \frac{1}{r^2} \nn\\
U_{out}(r) &=& -\frac{8\pi}{15} {\cal G} \rho_0 R^3 \frac{1}{r} \nn
\end{eqnarray}
Also, remembering that the mass of the planet is $M=\frac{8 \pi}{15} \rho_0 R^3$
so that
\begin{eqnarray}
g_{out}(r) &=& - \frac{ {\cal G} M}{r^2} \nn\\
U_{out}(r) &=& - \frac{ {\cal G} M}{r} \nn
\end{eqnarray}
No surprise there...