-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathapp_ders.tex
360 lines (320 loc) · 12.6 KB
/
app_ders.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
The following is a brief review of some basics of differential calculus which underlie many
derivations in continuum mechanics.
%.......................................
\subsection{Directional derivative}
Let's start with a 2-dimensional example of a function $f$ of the two variables $x$ and $y$, hence
$f(x,y)$.
Consider an arbitrary point ($x_0,y_0$) in the domain of $f$.
We want to determine the rate of change of $f$ in any direction in $(x_0,y_0)$.
Let $(x_1,y_1)$ be another point and define the unit vector
points from $(x_0,y_0)$ in the direction of $(x_1,y_1)$ as:
\[
\vec{n} =
\left(
\begin{array}{c}
n_1 \\ n_2
\end{array}
\right)
=
\frac{1}{d}
\left(
\begin{array}{c}
x_1-x_0 \\
y_1-y_0
\end{array}
\right)
\qquad\text{with}\qquad
d=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}
\]
The line segment connecting the two points can be
parameterised as:
\begin{eqnarray}
x &=& x_0 + s n_1 \nn\\
y &=& y_0 + s n_2 \qquad \text{,} \quad s\in[0,d]
\label{aybntr}
\end{eqnarray}
Note that $s$, the arclength parameter, has the same dimension as the coordinates. On this
line the function $f$ is described by the 1-D function $f(s) = f(x(s), y(s))$, $s \in [0;d]$.
The rate of change of $f(x,y)$ in the direction of $\vec{n}$ at some point $(x(s),y(s))$
on the line is then $\partial f(s)/\partial s$.
This derivative can be related to the original coordinates as follows using the change
rule of partial differentiation:
\[
\frac{d f(s)}{d s}
=
\frac{f(x(s),y(s))}{ds}
=
\frac{\partial f}{\partial x}
\frac{\partial x}{\partial s}
+
\frac{\partial f}{\partial y}
\frac{\partial y}{\partial s}
\]
Using Eq.~\eqref{aybntr} this gives:
\begin{equation}
\frac{d f(s)}{d s}
=
\frac{\partial f}{\partial x} n_1
+
\frac{\partial f}{\partial y} n_2
=
\vec\nabla f \cdot \vec{n}
\label{sgeoete}
\end{equation}
This is the so-called directional derivative which can be computed in any point $(x,y)$ and
direction $\vec{n}$ as long as the two basic partial derivatives
$\partial f/\partial x$ and $\partial f/\partial y$, which give the rate of
change in the positive direction of the two axes, respectively, exist in $(x,y)$.
Importantly,
$df(s)/ds$ can be directly compared to $\partial f/\partial x$ and
$\partial f/\partial y$ because all derivatives have the
same physical dimension in any application by virtue of the parameterisation \eqref{aybntr}.
A change of parameterisation parameter affects the l.h.s. of \eqref{sgeoete}
but not the r.h.s because the latter depends on the $x$ and $y$
coordinates and the unit vector n (which by definition \eqref{aybntr} is
dimensionless). A change of parameterisation variable from arc-length s to time $t=s/v$ will
change the l.h.s. into
\[
\frac{df}{ds} = \frac{df}{dt} \frac{dt}{ds} = \frac{1}{v} \frac{df}{dt}
\]
Substituting this result in \eqref{sgeoete} and rewriting gives another type of directional derivative:
\[
\frac{df(t)}{dt} = \vec\nabla \cdot \vec{\upnu}
\]
where $\vec{upnu}=\upnu \vec{n}$ can be interpreted as the local velocity vector,
but only if this would be useful
in the context of what $f$ physically represents. Such re-parameterisation is useful in case
one explicitly wants to determine the rate-of-change of $f$ with respect to a parameter
different from the arc-length $s$. The material derivative of continuum mechanics is an
example of such a scaled directional derivative (see below).
%.......................................
\subsection{Total differential}
We can make the result \eqref{sgeoete} independent of parameterization as follows.
By differentiating \eqref{aybntr} to $s$, we find
\begin{equation}
dx(s) = n_1 ds \qquad \text{and} \qquad dy(s)=n_2 ds
\label{jsbwrdjdsix}
\end{equation}
If we align the differential vector $d\vec{r}=(dx,dy)^T$
with the line segment we can write $d\vec{r} = (dx(s),dy(s))^T$.
By using \eqref{jsbwrdjdsix} we get $d\vec{r}(s)=\vec{n} ds$
and $|d\vec{r}|=ds = \sqrt{dx^2+dy^2}$ because $\vec{n}$ is
of unit length.
These relations between $d\vec{r}$, $dx$, $dy$, and $ds$, all with the same physical dimension,
are general used.
Next, rewriting \eqref{sgeoete} as $df(s)=(\vec\nabla \cdot \vec{n})ds = \vec\nabla \cdot (\vec{n} ds)$
gives:
\[
df(s) = \vec\nabla f \cdot d\vec{r}(s)
\]
Because the line segment $(x_0,y_0)\rightarrow(x_1,y_1)$ is arbitrarily chosen we can as well write
\begin{equation}
df = \vec\nabla f \cdot d\vec{r}
= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy
\label{qfgagsyeight}
\end{equation}
Equation \eqref{qfgagsyeight} is called the {\bf total differential} of $f(x,y)$
which holds in each point $(x,y)$ where the partial derivatives are calculated.
This leads to the following interpretation: Given a function $f(x,y)$
then in any point $(x,y)$ in which the partial derivatives
$\partial f/\partial x$ and $\partial f/\partial y$ exist we can compute
the change $df$ in $f$ that occurs when going from $(x,y) \rightarrow (x + dx, y + dy)$ as
\eqref{qfgagsyeight}, where $df =f(x + dx, y + dy) - f(x, y)$.
This holds for every choice, including $0$ or negative, of the
differential steps $dx$ and $dy$.
Generalisation to $N$-dimensional space: For any multi-parameter function $f(x_1,...x_N)$
equation \eqref{qfgagsyeight} generalizes to the total differential
\[
df=
\frac{\partial f}{\partial x_1} dx_1
+ ...
\frac{\partial f}{\partial x_N} dx_N
=
\vec\nabla f^T \cdot d\vec{r}
\]
Similarly, equations \eqref{aybntr} and \eqref{sgeoete} can be generalized to functions of any number of
parameters by parameterising the line connecting points $(x_1^0,...x_N^0)$ and
$(x_1,...x_N)$:
\begin{eqnarray}
x_1 &=& x_1^0 + s n_1 \nn\\
& ...& \nn\\
x_N &=& x_N^0 + s n_N \nn
\end{eqnarray}
with $s\in[0;d]$ and $d=\sqrt{(x_1-x_1^0)^2 + (x_N-x_N^0)^2}$.
Direction of maximal change: It follows from \eqref{sgeoete} or \eqref{qfgagsyeight}
that the change of a function is
largest if $\vec\nabla f \cdot d\vec{r}$ is maximum which occurs in any chosen point when
$\vec\nabla f$ is parallel to $d\vec{r}$.
This implies that in every point the gradient vector $\vec\nabla f$
always points in the direction of maximum change of $f$ and that
$| \vec\nabla f|= | df(s)/ds |$ is that maximum change.
{\it Calculating a normal vector}:
Suppose that $f(x_1, ... ,x_N) = k$ is the level surface of function $f$
for the constant $k$ (for example the irregular and time-dependent temperature surface
$T(t,x_1,x_2,x_3) = 20$ degrees in a room full of people).
The equation $f(x_1, ... ,x_N) = k$ implicitly defines the
$(N-1)$-dimensional surface in $N$-dimensional space of all points for
which $f=k$. We want to determine in any chosen point of this surface the vector $\vec{n}$
that is perpendicular to the surface. This is done as follows:
Consider \eqref{qfgagsyeight}: $ df = \vec\nabla f \cdot d\vec{r}$
and take $d\vec{r}$ to be a step from a point $(x_1,...x_N)$
on $f=k$ along the level surface,
i.e. $d\vec{r}$ lies in the level surface.
In this case $df = 0$ because $f=k$ on the level
surface. We find from \eqref{qfgagsyeight} that $\vec\nabla f \cdot d\vec{r}=0$,
implying that $\vec\nabla f$ is perpendicular to $d\vec{r}$. Hence,
$\vec\nabla f$ is a vector which is always normal to a level surface. The unit normal in any point
$(x_1,...x_N)$ on the level surface is then calculated as:
$\vec{n}= \vec\nabla f/ \left|\vec\nabla f \right|$
where $\vec\nabla f$ is the gradient in that point.
A corollary of this result is that if one calculates $\vec\nabla f$
in some point $(x_1^0,...x_N^0)$ in $N$-space, then one also knows the local
direction of the level surface $f(x_1,...x_N) = f(x_1^0,...x_N^0)$
that passes through $(x_1^0,...x_N^0)$.
%.......................................
\subsection{The material derivative}
In continuum mechanics we distinguish the spatial coordinates $x_1,x_2,x_3$ and time $t$. Hence
any function defined on this 4-parameter space is written as $f(t,x_1,x_2,x_3)$. The total
differential (10) is then
\begin{equation}
df=
\frac{\partial f}{\partial t} dt
+\frac{\partial f}{\partial x_1} dx_1
+\frac{\partial f}{\partial x_2} dx_2
+\frac{\partial f}{\partial x_3} dx_3
\label{eqjdkfdkfeleven}
\end{equation}
In principle, the time differential $dt$ and spatial differentials $dx_i$
can be arbitrarily chosen.
For instance, taking $dt=0$ that only the spatial changes in the function
at fixed time are
considered, while taking $dx_i=0$ focuses on the temporal variation
in a chosen fixed point.
Generally, in continuum mechanics a special choice is made for
the directional derivative,
which involves the local direction of the flow.
This direction is given at any point $(x_1,x_2,x_3)$
and any time $t$ by the velocity vector
\begin{equation}
\vec\upnu(t,x_1,x_2,x_3)=\frac{d\vec{r}}{dt}
\end{equation}
where $d\vec{r}$ is the spatial step taken by a flow particle
from $(x_1,x_2,x_3)\rightarrow (x_1+dx_1,x_2+dx_2,x_3+dx_3)$
during the time interval $t \rightarrow t + dt$.
Hence, the flow direction $d\vec{r}$ in point
$(x_1,x_2,x_3)$ depends on the time $t$ such that
$d\vec{r}(t) = v(t,x_1,x_2,x_3)dt$.
Taking $\vec\upnu=(\upnu_1,\upnu_2,\upnu_3)^T$ equation \eqref{eqjdkfdkfeleven}
becomes
\[
df=
\frac{\partial f}{\partial t} dt
+\frac{\partial f}{\partial x_1} \upnu_1 dt
+\frac{\partial f}{\partial x_2} \upnu_2 dt
+\frac{\partial f}{\partial x_3} \upnu_3 dt
\]
Dividing by $\delta t$ yields
\[
\frac{Df}{Dt}
=\frac{\partial f}{\partial t}
+\frac{\partial f}{\partial x_1} \upnu_1
+\frac{\partial f}{\partial x_2} \upnu_2
+\frac{\partial f}{\partial x_3} \upnu_3
=
=\frac{\partial f}{\partial t}
+\vec\upnu \cdot \vec\nabla f
\]
This equation is called the material derivative of $f$
and describes the rate of change of $f$ with time in the local direction of
the flow.
FINISH
%.......................................
\subsection{Material derivative of a volume integral \label{app:matdervi}}
Let $F(\vec{r},t)$ be some scalar function depending on spatial coordinates $\vec{r}$ and time $t$ and
$V(t)$ a volume that may also depend on $t$. Define the volume integral
\[
I(t) = \int_{V(t)} F(\vec{r},t) dV.
\]
For example, if $F$ is density, then $I(t)$ is the mass contained in the volume.
Assume a deforming medium with incremental displacement field $\vec{s}(\vec{r},t)$.
Consider the
deformation that occurs between $t$ and $t+\Delta t$ in which $\Delta t$ is a very small time step such
that we can write that a particle at position $\vec{r}$ at time $t$ will be displaced to
$\vec{r} + \Delta \vec{r}$ at $t + \Delta t$.
Then
\[
\Delta \vec{r}
= \vec{s}(\vec{r},t+\Delta t)-\vec{s}(\vec{r},t)
= \frac{\vec{s}(\vec{r},t+\Delta t)-\vec{s}(\vec{r},t)}{\Delta t} \Delta t
= \vec{\upnu} \Delta t
\]
where
$\vec{\upnu}=d\vec{s}/dt$ is the velocity vector at $(\vec{r},t)$.
The volume $V(t)$ will deform to $V'(t + \Delta t)$.
The material derivative of $I(t)$ is defined as:
\begin{equation}
\frac{DI}{Dt}
=
\frac{D}{Dt}
\int_{V(t)} F(\vec{r},t) dV
=
\lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t}
\left[
\int_{V'(t+\Delta t)} F(\vec{r}+\Delta \vec{r},t+\Delta t) dV' - \int_{V(t)} F(\vec{r},t) dV
\right]
\end{equation}
For incremental $\Delta t$ we can approximate
\[
F(\vec{r}+\Delta \vec{r},t+\Delta t)
= F(\vec{r},t)
+\frac{\partial F}{\partial x_j}v_j \Delta t + \frac{\partial F}{\partial t} \Delta t
= F(\vec{r},t) + \frac{DF}{Dt} \Delta t
\]
Further, from continuum mechanics we have for the volume change associated with the
incremental displacement field $\vec{s}(\vec{r}, t)$:
\[
\frac{dV'-dV}{dV'} = \vec\nabla \cdot \vec{s} = \vec\nabla \cdot (\vec\upnu \Delta t)
\]
or
\[
dV' = \left( 1 + \frac{\partial v_j}{\partial x_j} \Delta t \right) dV
\]
Using these results
\[
F(\vec{r}+\Delta \vec{r},t+\Delta t) dV'
=
\left(
F(\vec{r},t) + \frac{DF}{Dt} \Delta t
\right)
\left( 1 + \frac{\partial v_j}{\partial x_j} \Delta t \right) dV
=
F(\vec{r},t) dV + \frac{DF}{Dt} \Delta t dV + F(\vec{r},t) \frac{\partial v_j}{\partial x_j}
\Delta t dV + \frac{DF}{Dt} \frac{\partial v_j}{\partial x_j} \Delta t^2 dV
\]
such that now the integration over $V'$ can be replaced by an integration over $V$:
\[
\int_{V'(t+\delta t)} F(\vec{r}+\Delta \vec{r},t+\Delta t) dV'
\simeq
\int_{V(t)} F(\vec{r},t) dV
+
\int_{V(t)}
\left[
\left( \frac{DF}{Dt} + \frac{\partial v_j}{\partial x_j} \right) \Delta t
+\frac{DF}{Dt} \frac{\partial v_j}{\partial x_j} \Delta t^2
\right] dV
\]
Substituting this result in the above definition of the material derivative
\[
\frac{DI}{Dt}
=
\lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t}
\left[
\int_{V(t)}
\left( \frac{DF}{Dt} + \frac{\partial v_j}{\partial x_j} \right) \Delta t
+\frac{DF}{Dt} \frac{\partial v_j}{\partial x_j} \Delta t^2 \quad dV
\right]
\]
This leads to material derivative of a volume integral:
\[
\frac{D}{Dt} \int_{V(t)} F fV = \int_{V(t)} \frac{DF}{Dt} + F \frac{\partial v_j}{\partial x_j} \quad dV
\]