-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathbasis_Q2_2D.tex
67 lines (63 loc) · 3.55 KB
/
basis_Q2_2D.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\begin{flushright} {\tiny {\color{gray} \tt basis\_Q2\_2D.tex}} \end{flushright}
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This element is part of the so-called Lagrange family \cite{raki00}.
Inside an element the local numbering of the nodes is as follows\footnote{I have adopted here
a numbering scheme starting at zero! Also, it is a numbering among many other possible choices!}:
\input{tikz/tikz_q22d}
Note that this numbering is also employed in Li \cite[p56]{li06}.
The polynomial representation of the function $\phi$ over this element is then taken to be biquadratic:
\[
\phi^h(r,s) = a + br + cs + drs + er^2 + fs^2 + gr^2s + hrs^2 + i r^2s^2 = \sum_{i=0}^8 \bN_i(r,s) \phi_i
\]
and one can show that the basis functions are:
\begin{mdframed}[backgroundcolor=blue!5]
\begin{eqnarray}
\bN_0(r,s)&=& \frac{1}{2}r(r-1) \frac{1}{2}s(s-1)\nonumber\\
\bN_1(r,s)&=& \frac{1}{2}r(r+1) \frac{1}{2}s(s-1)\nonumber\\
\bN_2(r,s)&=& \frac{1}{2}r(r+1) \frac{1}{2}s(s+1)\nonumber\\
\bN_3(r,s)&=& \frac{1}{2}r(r-1) \frac{1}{2}s(s+1)\nonumber\\
\bN_4(r,s)&=& (1-r^2) \frac{1}{2}s(s-1)\nonumber\\
\bN_5(r,s)&=& \frac{1}{2}r(r+1) (1-s^2)\nonumber\\
\bN_6(r,s)&=& (1-r^2) \frac{1}{2}s(s+1)\nonumber\\
\bN_7(r,s)&=& \frac{1}{2}r(r-1) (1-s^2)\nonumber\\
\bN_8(r,s)&=& (1-r^2) (1-s^2)\nonumber
\end{eqnarray}
\end{mdframed}
Note that we have $\bN_i(r_j,s_j)=\delta_{ij}$ and then obviously $\bN_i(r_i,s_i)=1$.
\begin{center}
\includegraphics[width=4cm]{images/basis_Q2_2D/N1}
\includegraphics[width=4cm]{images/basis_Q2_2D/N2}
\includegraphics[width=4cm]{images/basis_Q2_2D/N3}\\
\includegraphics[width=4cm]{images/basis_Q2_2D/N4}
\includegraphics[width=4cm]{images/basis_Q2_2D/N5}
\includegraphics[width=4cm]{images/basis_Q2_2D/N6}\\
\includegraphics[width=4cm]{images/basis_Q2_2D/N7}
\includegraphics[width=4cm]{images/basis_Q2_2D/N8}
\includegraphics[width=4cm]{images/basis_Q2_2D/N9}\\
{\captionfont Surface representation of the basis functions on the reference element.
{\color{gray} in images/basis\_Q2\_2D/ }}
\end{center}
Their derivatives are given by:
\begin{mdframed}[backgroundcolor=blue!5]
\begin{align}
\frac{\partial \bN_0}{\partial r}&= \frac{1}{2}(2r-1) \frac{1}{2}s(s-1) &
\frac{\partial \bN_0}{\partial s}&= \frac{1}{2}r(r-1) \frac{1}{2}(2s-1)\nonumber\\
\frac{\partial \bN_1}{\partial r}&= \frac{1}{2}(2r+1) \frac{1}{2}s(s-1) &
\frac{\partial \bN_1}{\partial s}&= \frac{1}{2}r(r+1) \frac{1}{2}(2s-1)\nonumber\\
\frac{\partial \bN_2}{\partial r}&= \frac{1}{2}(2r+1) \frac{1}{2}s(s+1) &
\frac{\partial \bN_2}{\partial s}&= \frac{1}{2}r(r+1) \frac{1}{2}(2s+1)\nonumber\\
\frac{\partial \bN_3}{\partial r}&= \frac{1}{2}(2r-1) \frac{1}{2}s(s+1) &
\frac{\partial \bN_3}{\partial s}&= \frac{1}{2}r(r-1) \frac{1}{2}(2s+1)\nonumber\\
\frac{\partial \bN_4}{\partial r}&= (-2r) \frac{1}{2}s(s-1) &
\frac{\partial \bN_4}{\partial s}&= (1-r^2) \frac{1}{2}(2s-1)\nonumber\\
\frac{\partial \bN_5}{\partial r}&= \frac{1}{2}(2r+1) (1-s^2)&
\frac{\partial \bN_5}{\partial s}&= \frac{1}{2}r(r+1) (-2s)\nonumber\\
\frac{\partial \bN_6}{\partial r}&= (-2r) \frac{1}{2}s(s+1)&
\frac{\partial \bN_6}{\partial s}&= (1-r^2) \frac{1}{2}(2s+1)\nonumber\\
\frac{\partial \bN_7}{\partial r}&= \frac{1}{2}(2r-1) (1-s^2)&
\frac{\partial \bN_7}{\partial s}&= \frac{1}{2}r(r-1) (-2s)\nonumber\\
\frac{\partial \bN_8}{\partial r}&= (-2r) (1-s^2)&
\frac{\partial \bN_8}{\partial s}&= (1-r^2) (-2s)\nonumber
\end{align}
\end{mdframed}
These basis functions are used for example in \stone 18.