forked from afliu22/Alzheimers-ML
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeature_extract.py
192 lines (163 loc) · 7.77 KB
/
feature_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#==============================================================================
# Lexicosyntatic, semantic and other Feature Extraction
#==============================================================================
import os
import nltk
import data_process as dp
import argparse
import numpy as np
import pandas as pd
import math
from scipy import spatial
from nltk.corpus import brown
from collections import Counter
from nltk.stem.wordnet import WordNetLemmatizer
lmtzr = WordNetLemmatizer()
# POS TAGS
#NN noun, singular 'desk', #NNS noun plural 'desks', #NNP proper noun, singular 'Harrison', #NNPS proper noun, plural 'Americans'
#PRP personal pronoun I, he, she, #PRP$ possessive pronoun my, his, hers,
#VB verb, base form take, #VBD verb, past tense took, #VBG verb, gerund/present participle taking
#VBN verb, past participle taken, #VBP verb, sing. present, non-3d take, #VBZ verb, 3rd person sing. present takes
#RB adverb very, silently,#RBR adverb, comparative better, #RBS adverb, superlative best
#CC coordinating conjunction, #IN preposition/subordinating conjunction
#TO to go 'to' the store, #RP particle give up, #MD modal could, will
#CD cardinal digit, #LS list marker 1), #FW foreign word, #UH interjection errrrrrrrm
#DT determiner, #PDT predeterminer 'all the kids'
#EX existential there (like: "there is" ... think of it like "there exists")
#JJ adjective 'big', #JJR adjective, comparative 'bigger', #JJS adjective, superlative 'biggest'
#POS possessive ending parent's
#WDT wh-determiner which, #WP wh-pronoun who, what
#WP$ possessive wh-pronoun whose, #WRB wh-abverb where, when
def similarity(content, POS_tag):
temp_info = nltk.pos_tag(nltk.word_tokenize(content))
temp_fd = nltk.FreqDist(tag for (word, tag) in temp_info)
tot_pos = sum([temp_fd[tag] for tag in POS_tag]) #sum(temp_fd.values())
local_pos_vec = []
for tag in POS_tag:
if tag in list(temp_fd.keys()):
local_pos_vec.append(temp_fd[tag]/tot_pos)
else:
local_pos_vec.append(0)
return local_pos_vec
def get_tag_info(input):
# ----------------- Initialize ---------------
input_text = input[0]
data = nltk.word_tokenize(input_text) # the string produced by process_string separated into a list of words
data_tag_info = []
feature_set = []
ttr = {}
features = {'prp_count': 0, 'VP_count': 1, 'NP_count': 2, 'prp_noun_ratio': 3, 'word_sentence_ratio': 4,
'count_pauses': 5, 'count_unintelligible': 6, 'count_repetitions': 7,
'ttr': 8, 'R': 9, 'ARI': 10, 'CLI': 11}
feature_set = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
feature_set[5] = input[1]
feature_set[6] = input[2]
feature_set[7] = input[4]
# --------------- Noun tag and Verb tag lists ---------------
noun_list = ['NN', 'NNS', 'NNP', 'NNPS']
verb_list = ['VB', 'VBD', 'VBG', 'VBN', 'VBP']
# ---------- Define production rules / VP, NP definition ----------
grammar = r"""
DTR: {<DT><DT>}
NP: {<DT>?<JJ>*<NN.*>}
PP: {<IN><NP>}
VPG: {<VBG><NP | PP>}
VP: {<V.*><NP | PP>}
CLAUSE: {<NP><VP>}
"""
# ---------- Distribution feature ----------
text = brown.words(categories='news')
tag_info = nltk.pos_tag(text)
tag_fd = nltk.FreqDist(tag for (word, tag) in tag_info)
del_key = []
for key in tag_fd.keys():
if not key.isalpha():
del_key.append(key)
while not (del_key == []):
tag_fd.pop(del_key.pop(), None)
POS_tag = ['NN', 'IN', 'DT', 'VBD', 'VBFG', 'VBG', 'PRP', 'JJ', 'NNP', 'RB', 'NNS', 'CC']
tot_pos = sum([tag_fd[tag] for tag in POS_tag]) #sum(tag_fd.values())
global_pos_vec = []
for tag in POS_tag:
if tag in list(tag_fd.keys()):
global_pos_vec.append(tag_fd[tag]/tot_pos)
else:
global_pos_vec.append(0)
# ---------------------tagging information -------------------
for i in range(len(data)):
text = data
# ========= LEXICOSYNTACTIC FEATURES =========
# ------- POS tagging -------
tag_info = np.array(nltk.pos_tag(text))
tag_fd = nltk.FreqDist(tag for i, (word, tag) in enumerate(tag_info))
freq_tag = tag_fd.most_common()
data_tag_info.append(freq_tag)
# ------- Lemmatize each word -------
#text_root = []
text_root = [lmtzr.lemmatize(j) for indexj, j in enumerate(text)]
for indexj, j in enumerate(text):
if tag_info[indexj,1] in noun_list:
text_root[indexj] = lmtzr.lemmatize(j)
elif tag_info[indexj,1] in verb_list:
text_root[indexj] = lmtzr.lemmatize(j,'v')
# ------- Phrase type -------
sentence = nltk.pos_tag(text)
cp = nltk.RegexpParser(grammar)
phrase_type = cp.parse(sentence)
# ------- Pronoun frequency -------
prp_count = sum([pos[1] for pos in freq_tag if pos[0]=='PRP' or pos[0]=='PRP$'])
feature_set[features['prp_count']] = prp_count
# ------- Noun frequency -------
noun_count = sum([pos[1] for pos in freq_tag if pos[0] in noun_list])
# ------- Gerund frequency -------
vg_count = sum([pos[1] for pos in freq_tag if pos[0]=='VBG'])
# ------- Pronoun-to-Noun ratio -------
if noun_count != 0:
prp_noun_ratio = prp_count/noun_count
else:
prp_noun_ratio = prp_count
feature_set[features['prp_noun_ratio']] = prp_noun_ratio
# Noun phrase, Verb phrase, Verb gerund phrase frequency
NP_count = 0
VP_count = 0
VGP_count = 0
for index_t, t in enumerate(phrase_type):
if not isinstance(phrase_type[index_t],tuple):
if phrase_type[index_t].label() == 'NP':
NP_count = NP_count + 1
elif phrase_type[index_t].label() == 'VP':
VP_count = VP_count + 1
elif phrase_type[index_t].label() == 'VGP':
VGP_count = VGP_count + 1
feature_set[features['NP_count']] = NP_count
feature_set[features['VP_count']] = VP_count
# ------- TTR type-to-token ratio -------
numtokens = len(text)
freq_token_type = Counter(text) # or len(set(text)) # text_root
v = len(freq_token_type)
ttr = float(v)/numtokens
feature_set[features['ttr']] = ttr
# ------- Honore's statistic -------
freq_token_root = Counter(text_root)
occur_once = 0
for j in freq_token_root:
if freq_token_root[j] == 1:
occur_once = occur_once + 1
v1 = occur_once
R = 100 * math.log(numtokens / (1 - (v1/v)))
feature_set[features['R']] = R
# ------- Automated readability index -------
num_char = len([c for c in input_text if c.isdigit() or c.isalpha()])
num_words = len([word for word in input_text.split(' ') if not word=='' and not word=='.'])
num_sentences = input_text.count('.') + input_text.count('?')
ARI = 4.71*(num_char/num_words) + 0.5*(num_words/num_sentences) - 21.43
feature_set[features['ARI']] = ARI
# ------- Coleman–Liau index -------
L = (num_char/num_words)*100
S = (num_sentences/num_words)*100
CLI = 0.0588*L - 0.296*S - 15.8
feature_set[features['CLI']] = CLI
# ------- Word-to-sentence_ratio -------
word_sentence_ratio = num_words/num_sentences
feature_set[features['word_sentence_ratio']] = word_sentence_ratio
return feature_set