From c76c0708a0be45c804eb179c13abd00e99213a43 Mon Sep 17 00:00:00 2001 From: Dimitri Komatitsch Date: Mon, 6 Mar 2017 14:08:20 +0100 Subject: [PATCH] better utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 --- ...kappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 b/utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 index 861b21aae..7d7cdcc72 100644 --- a/utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 +++ b/utils/attenuation/conversion_from_Qkappa_Qmu_to_Qp_Qs_from_Dahlen_Tromp_959_960.f90 @@ -1,13 +1,20 @@ program conversion -! Dimitri Komatitsch, CNRS Marseille, France, October 2015 +! Dimitri Komatitsch, CNRS Marseille, France, October 2015 and March 2017 ! see formulas 9.59 and 9.60 in the book of Dahlen and Tromp, 1998 -! (in that book, P is called alpha and S is called beta) +! (in that book, P is called alpha and S is called beta). +! The formulas in Dahlen and Tromp, 1998 are for the 3D case, +! in the 2D plane strain case the 4/3 coefficient must be changed to 1, +! see more details in file doc/Qkappa_Qmu_versus_Qp_Qs_relationship_in_2D_plane_strain.pdf implicit none +! coefficient for the 3D case is 4/3, for the 2D plane strain case it is 1, +! see more details in file doc/Qkappa_Qmu_versus_Qp_Qs_relationship_in_2D_plane_strain.pdf + double precision, parameter :: coefficient = 4.d0/3.d0 !! 1.d0 + double precision :: Qkappa,Qmu,Qp,Qs,inverse_of_Qp,cp,cs !!! this is for the Carcione et al. 1988 example @@ -34,7 +41,7 @@ program conversion Qs = Qmu ! for Qp the formula is more complex - inverse_of_Qp = (1.d0 - (4.d0/3.d0)*(cs**2)/(cp**2))/Qkappa + (4.d0/3.d0)*(cs**2)/(cp**2)/Qmu + inverse_of_Qp = (1.d0 - coefficient*(cs**2)/(cp**2))/Qkappa + coefficient*(cs**2)/(cp**2)/Qmu Qp = 1.d0/inverse_of_Qp ! print the result