diff --git a/Project.toml b/Project.toml index adffdb9..99d9e7d 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "Vecchia" uuid = "8d73829f-f4b0-474a-9580-cecc8e084068" authors = ["Chris Geoga "] -version = "0.9.11" +version = "0.9.12" [deps] ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" diff --git a/example/example_estimate.jl b/example/example_estimate.jl index 9734e18..6bef9d7 100644 --- a/example/example_estimate.jl +++ b/example/example_estimate.jl @@ -15,5 +15,5 @@ const cfg = Vecchia.kdtreeconfig(sim, # your simulated data, a Matrix{Float64}. # Now just compute the estimator and let autodiff and Ipopt take care of the rest! # Note that you can provide kwargs here for the optimizer. But if you're # providing your own optimizer you're probably customizing more than that anyway. -#const estimator = vecchia_estimate(cfg, init[1:3], warn_box=false) +const estimator = vecchia_estimate(cfg, init[1:3], warn_box=false) diff --git a/src/sqp.jl b/src/sqp.jl index 2d3b9b2..5ddddc5 100644 --- a/src/sqp.jl +++ b/src/sqp.jl @@ -52,7 +52,7 @@ end # cheap by comparison. So it is my hope/expectation, which has been sort of born # out through my own ad-hoc testing, that it can save at least a few iterations # total to do this exactly. -function solve_qp(xk, gk, hk::Symmetric, delta, +function solve_qp(xk, gk, hk::Hermitian, delta, box_lower, box_upper, iter) try n = length(xk) @@ -98,7 +98,7 @@ function sqptr_optimize(f, init; catch er return failureresult(:FGH_ERROR, x0, j, er) end - mk = LocalQuadraticApprox(fk, gk, Symmetric(hk)) + mk = LocalQuadraticApprox(fk, gk, Hermitian(hk)) rho = 0.0 while rho < args[:eta] vrb && print(".")