-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpeclet.m
118 lines (104 loc) · 4.54 KB
/
peclet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
function [Pe] = peclet(d,thck,sfz,varargin)
% peclet calculates the Peclet number along a glacier flowline using the
% formulation by Felikson et al., 2017.
%
%% Syntax
%
% Pe = peclet(d,thck,sfz)
% Pe = peclet(...,'m',m)
% Pe = peclet(...,'CouplingLength',Nthck)
% Pe = peclet(...,'endpoints','fill')
%
%% Description
%
% Pe = peclet(d,thck,sfz) returns the Peclet number along a glacier flowline
% where d is distance along the flowline in meters, and thck and sfz are the
% corresponding thickness and surface elevation in meters. The dimensions of
% d, thck, and sfz must all match. Tip: You can use pathdistps or pathdistpsn
% to get the distance along the flowline d in meters.
%
% Pe = peclet(...,'m',m) specifies a positive exponent m that relates to basal
% sliding (see Supp. Eq. 4 of Felikson et al., 2017.). By default, m = 1.
%
% Pe = peclet(...,'CouplingLength',Nthck) specifies a longitudinal
% coupling length as a multiple of ice thickesses. This is equivalent to l/H
% in Kamb & Echelmeyer's paper cited below. Important: Nthick is not the same
% thing as the total window width. The Kamb & Echelmeyer paper describes it
% in detail, but the "averaging length" is the full width of a boxcar window
% and is equal to 4*l. In this function, the default value of Nthck is 2.5,
% which is equivalent to a moving average window width of 10 ice thicknesses.
%
% For guidance on choosing a value of Nthck, Kamb & Echelmeyer state that
% "l/H ranges from about 1.5 to 10...for temperate valley glaciers, with f
% near 0.5 and with longitudinal strain-rates typically of order 0.01-0.05 /yr,
% l/H should be in the range from about 1 to 3, whereas for ice sheets ...
% the expected l/H is in the range from about 4 to 10, distinctly higher
% than for valley glaciers."
%
% Pe = peclet(...,'endpoints','fill') sets endpoints to NaN when performing
% the moving window average on the thickness and surface profiles, in a manner
% equivalent to the 'fill' option in the movmean function. By default, the
% moving window shrinks at each end, to provide continuous measurements at the
% edges. This option will result in missing data at each end of the profile, as
% well as near each NaN datapoint.
%
%% Examples
%
% For examples, type
%
% showdemo peclet_documentation
%
%% Citing this function
% The formulas in this function are taken directly from Felikson et al.,
% 2017, so if you use this function, please cite Denis' paper! And at least
% for accountability's sake, it's probably prudent to cite my Antarctic Mapping
% Tools paper too. Here are the citations:
%
% Felikson, Denis, Timothy C. Bartholomaus, Ginny A. Catania, Niels J. Korsgaard,
% Kurt H. Kjær, Mathieu Morlighem, Brice Noël et al. "Inland thinning on the Greenland
% ice sheet controlled by outlet glacier geometry." Nature Geoscience 10, no. 5
% (2017): 366-369. https://doi.org/10.1038/ngeo2934
%
% Greene, C. A., Gwyther, D. E., & Blankenship, D. D. Antarctic Mapping Tools for Matlab.
% Computers & Geosciences. 104 (2017) pp.151-157.
% http://dx.doi.org/10.1016/j.cageo.2016.08.003
%
%% Error checks:
narginchk(3,Inf)
assert(isequal(size(d),size(thck),size(sfz)),'Dimensions of d, thck, and sfz must all agree.')
assert(issorted(d,'ascend'),'Input vector d must be monotonic and increasing.')
assert(exist('ice_profile_smoother.m','file')==2,'Cannot find the ice_profile_smoother.m function. Make sure it is in your filepath.')
%% Input parsing:
% Set defaults:
Nthck = 2.5; % number of ice thicknesses for smoothing window
endpoints = 'shrink'; % option for moving average window
m = 1;
tmp = strcmpi(varargin,'m');
if any(tmp)
m = varargin{find(tmp)+1};
assert(isscalar(m),'Exponent m must be a positive scalar.')
end
tmp = strncmpi(varargin,'CouplingLength',3);
if any(tmp)
Nthck = varargin{find(tmp)+1};
end
tmp = strncmpi(varargin,'endpoints',3);
if any(tmp)
endpoints = varargin{find(tmp)+1};
end
%% Moving averages
if isequal(Nthck,0)
thck0 = thck;
sfz0 = sfz;
else
thck0 = ice_profile_smoother(d,thck,thck,'CouplingLength',Nthck,'EndPoints',endpoints);
sfz0 = ice_profile_smoother(d,sfz,thck,'CouplingLength',Nthck,'EndPoints',endpoints);
end
% Along-flow slope:
d_d = gradient(d);
alpha0 = gradient(sfz0)./d_d;
%% Calculate Peclet
C0 = (m+1) .* (thck0.^m) .* alpha0.^m; % Supplemental Eq. 14 (this is actually C0/Kb)
D0 = m .* thck0.^(m+1) .* alpha0.^(m-1); % Supp Eq. 15 (this is actually D0/Kb)
Pe = d.*(C0 - gradient(D0)./d_d)./D0; % Eq. 4 of main text. (Assumes di=0 @ terminus. Here my di is equivalent to Felikson's l.)
end