forked from suno-ai/bark
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpredict.py
68 lines (61 loc) · 2.62 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from typing import Optional
from scipy.io.wavfile import write as write_wav
from cog import BasePredictor, Input, Path, BaseModel
from bark import SAMPLE_RATE, generate_audio, preload_models, save_as_prompt
from bark.generation import ALLOWED_PROMPTS
class ModelOutput(BaseModel):
prompt_npz: Optional[Path]
audio_out: Path
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
# for the pushed version on Replicate, the CACHE_DIR from bark/generation.py is changed to a local folder to
# include the weights file in the image for faster inference
preload_models()
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests "
"such as playing tic tac toe.",
),
history_prompt: str = Input(
description="history choice for audio cloning, choose from the list",
default=None,
choices=sorted(list(ALLOWED_PROMPTS)),
),
custom_history_prompt: Path = Input(
description="Provide your own .npz file with history choice for audio cloning, this will override the "
"previous history_prompt setting",
default=None,
),
text_temp: float = Input(
description="generation temperature (1.0 more diverse, 0.0 more conservative)",
default=0.7,
),
waveform_temp: float = Input(
description="generation temperature (1.0 more diverse, 0.0 more conservative)",
default=0.7,
),
output_full: bool = Input(
description="return full generation as a .npz file to be used as a history prompt", default=False
),
) -> ModelOutput:
"""Run a single prediction on the model"""
if custom_history_prompt is not None:
history_prompt = str(custom_history_prompt)
audio_array = generate_audio(
prompt,
history_prompt=history_prompt,
text_temp=text_temp,
waveform_temp=waveform_temp,
output_full=output_full,
)
output = "/tmp/audio.wav"
if not output_full:
write_wav(output, SAMPLE_RATE, audio_array)
return ModelOutput(audio_out=Path(output))
out_npz = "/tmp/prompt.npz"
save_as_prompt(out_npz, audio_array[0])
write_wav(output, SAMPLE_RATE, audio_array[-1])
return ModelOutput(prompt_npz=Path(out_npz), audio_out=Path(output))