-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgdal_reclassify.py
executable file
·195 lines (173 loc) · 7.25 KB
/
gdal_reclassify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
import sys
import optparse
from osgeo import gdal
import numpy as np
import operator
from osgeo.gdalconst import *
gdal.AllRegister()
def getIntType(array_of_numbers):
low, high = min(array_of_numbers), max(array_of_numbers)
int_types = [
(0, 255, np.uint8),
(-128, 127, np.int16),
(0, 65535, np.uint16),
(-32768, 32767, np.int16),
(0, 4294967295, np.uint32),
(-2147483648, 2147483647, np.int32),
(0, 18446744073709551615, np.uint64),
(-9223372036854775808, 9223372036854775807, np.int64)
]
for i in int_types:
if low >= i[0] and high <= i[1]:
int_np_type = i[2]
break
return int_np_type
def parseOutClasses(number_string, default=None):
data_types = {
np.dtype(np.uint8): GDT_Byte,
np.dtype(np.int8): GDT_Int16,
np.dtype(np.uint16): GDT_UInt16,
np.dtype(np.int16): GDT_Int16,
np.dtype(np.uint32): GDT_UInt32,
np.dtype(np.int32): GDT_Int32,
np.dtype(np.float32): GDT_Float32,
np.dtype(np.int64): GDT_Int32,
np.dtype(np.float64): GDT_Float64
}
out_classes = [i.strip() for i in number_string]
pytype = int
np_dtype = np.int
for i in out_classes:
if '.' in i:
pytype = float
if default:
pytype = type(default)
out_classes_parsed = [pytype(g) for g in out_classes]
if pytype == float:
np_dtype = np.float_
else:
np_dtype = getIntType(out_classes_parsed)
gdal_dtype = data_types[np.dtype(np_dtype)]
return np_dtype, gdal_dtype, out_classes_parsed
def parseDefault(default_in):
if '.' in default_in:
default_out = float(default_in)
else:
default_out = int(default_in)
return default_out
def parseInClasses(conds, pytype):
parsed_conds = []
for i in conds:
oplist = ["!", "=", ">", "<"]
op = ''
num = ''
for j in i:
if j in oplist:
op += j
else:
num += j
parsed_conds.append((op, pytype(num)))
return parsed_conds
def reclassArray(np_array, in_classes, out_classes, np_dtype, default):
if np_dtype not in (np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64):
in_array = np_array.astype(float)
else:
in_array = np_array
op_dict = {"<": operator.lt, "<=": operator.le, "==": operator.eq,
"!=": operator.ne, ">=": operator.ge, ">": operator.gt}
try:
#rr = np.piecewise(in_array, [op_dict[i[0]](in_array,i[1]) for i in in_classes], out_classes)
select_result = np.select([op_dict[i[0]](in_array,i[1]) for i in in_classes], out_classes, default)
select_result_type_set = select_result.astype(np_dtype)
finally:
in_array = None
return select_result_type_set
def processDataset(infile, outfile, classes, reclasses, default, nodata, output_format, compress_type):
"""
Much of the code in this function relating to reading and writing gdal
datasets - especially reading block by block was acquired from
Chris Garrard's Utah State Python Programming GIS slides:
http://www.gis.usu.edu/~chrisg/
"""
if default:
default = parseDefault(default)
np_dtype, gdal_dtype, out_classes = parseOutClasses(reclasses, default)
src_ds = gdal.Open(infile)
if src_ds is None:
print('Could not open image')
sys.exit(1)
rows, cols = src_ds.RasterYSize, src_ds.RasterXSize
transform = src_ds.GetGeoTransform()
block_size = src_ds.GetRasterBand(1).GetBlockSize()
proj = src_ds.GetProjection()
driver = gdal.GetDriverByName(output_format)
dst_ds = driver.Create(outfile, cols, rows, 1, gdal_dtype, options = compress_type)
#dst_ds = driver.Create(outfile, cols, rows, 1, 6, options = compress_type)
out_band = dst_ds.GetRasterBand(1)
x_block_size = block_size[0]
y_block_size = block_size[1]
sample = src_ds.ReadAsArray(0, 0, 1, 1)
pytype = float
if sample.dtype in (np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64):
pytype = int
in_classes = parseInClasses(classes, pytype)
for i in range(0, rows, y_block_size):
if i + y_block_size < rows:
num_rows = y_block_size
else:
num_rows = rows - i
for j in range(0, cols, x_block_size):
if j + x_block_size < cols:
num_cols = x_block_size
else:
num_cols = cols - j
block = src_ds.ReadAsArray(j, i, num_cols, num_rows)
reclassed_block = reclassArray(block, in_classes, out_classes, np_dtype, default)
out_band.WriteArray(reclassed_block, j, i)
out_band.FlushCache()
dst_ds.SetGeoTransform(transform)
if nodata in ["True", "true", "t", "T", "yes", "Yes", "Y", "y"]:
out_band.SetNoDataValue(default)
print('setting', default, 'as no data value')
out_band.GetStatistics(0, 1)
dst_ds.SetProjection(proj)
src_ds = None
def main():
p = optparse.OptionParser()
p.add_option('-c', '--conditions', default=[], help=("A comma delimited"
" string of values to be reclassified. Comparison operators must be"
" separated from values with a space."
" EXAMPLE: '< 1, == 3, > 45'"))
p.add_option('--result_classes', '-r', default=[], help=("Output classes."
" A comma delimited string of values. The number of input classes must"
" match the number of result values. The order of the output classes"
" must match the order of the input classes. EXAMPLE: '5, 6, 7'"))
p.add_option('--of', '-o', default='GTiff', help = ("Output GDAL format"
" The default is 'GTiff'"))
p.add_option('--default', '-d', default=False, help=("Value used to fill"
" pixels that do not meet any conditions of the input classes. If"
" this value is not specified, the default will be 0."))
p.add_option('--default_as_nodata', '-n', default=[], help=("Setting to"
" 'true' sets the default value as the nodata value."))
p.add_option('--compress_method', '-p', default='COMPRESS=NONE', help=("GDAL compression"
" method. Examples:'COMPRESS = LZW','COMPRESS = PACKBITS','COMPRESS = DEFLATE' or "
"'COMPRESS = JPEG'. The default is no compression."))
options, arguments = p.parse_args()
src_file, dst_file, str_cond, str_reclass = arguments[0], arguments[1], options.conditions, options.result_classes
in_classes = [i.strip() for i in str_cond.split(",")]
out_classes = str_reclass.split(",")
output_format = options.of
nodata = options.default_as_nodata
default = options.default
compression = [options.compress_method]
if default == False:
print("Default value not specified. Input values that do not meet any reclass conditions will be 0. GDAL will set nodata value.")
if default != False and len(nodata) == 0:
print("GDAL will set nodata value.")
if len(in_classes) == len(out_classes):
processDataset(src_file, dst_file, in_classes, out_classes, default, nodata, output_format, compression)
else:
print("The number of conditions must equal the number of result classes.")
if __name__ == '__main__':
main()