-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloader.py
151 lines (125 loc) · 5.48 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os, glob
import numpy as np
import pandas as pd
import torch
import torch.utils.data as data
from torchvision import datasets, models, transforms
from sklearn.utils import shuffle
from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM
from preprocess import preprocess_text
import settings
MAX_LEN = 200
aux_columns = ['severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat']
identity_columns = [
'male', 'female', 'homosexual_gay_or_lesbian', 'christian', 'jewish',
'muslim', 'black', 'white', 'psychiatric_or_mental_illness'
]
'''
def preprocess(data):
#Credit goes to https://www.kaggle.com/gpreda/jigsaw-fast-compact-solution
punct = "/-'?!.,#$%\'()*+-/:;<=>@[\\]^_`{|}~`" + '""“”’' + '∞θ÷α•à−β∅³π‘₹´°£€\×™√²—–&'
#CHARS_TO_REMOVE = '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n“”’\'∞θ÷α•à−β∅³π‘₹´°£€\×™√²—'
def clean_special_chars(text, punct):
for p in punct:
text = text.replace(p, ' ')
return text
data = data.astype(str).apply(lambda x: clean_special_chars(x, punct))
return data
'''
class ToxicDataset(data.Dataset):
def __init__(self, df, train_mode=True, labeled=True):
super(ToxicDataset, self).__init__()
self.df = df
self.train_mode = train_mode
self.labeled = labeled
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def get_token_ids(self, text):
tokens = ['[CLS]'] + self.tokenizer.tokenize(str(text))[:MAX_LEN-2] + ['[SEP]']
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
if len(token_ids) < MAX_LEN:
token_ids += [0] * (MAX_LEN - len(token_ids))
return torch.tensor(token_ids[:MAX_LEN])
def get_label(self, row):
return int(row.target >= 0.5), torch.tensor((row[aux_columns].values >= 0.5).astype(np.int16)), row.weights
def __getitem__(self, index):
row = self.df.iloc[index]
token_ids = self.get_token_ids(row.comment_text)
if self.labeled:
labels = self.get_label(row)
return token_ids, labels[0], labels[1], labels[2]
else:
return token_ids
def __len__(self):
return len(self.df)
def collate_fn(self, batch):
if self.labeled:
token_ids = torch.stack([x[0] for x in batch])
labels = torch.tensor([x[1] for x in batch])
aux_labels = torch.stack([x[2] for x in batch])
weights = torch.tensor([x[3] for x in batch])
return token_ids, labels, aux_labels, weights
else:
return torch.stack(batch)
def add_loss_weight(df):
# Overall
weights = np.ones((len(df),)) / 4
# Subgroup
weights += (df[identity_columns].fillna(0).values>=0.5).sum(axis=1).astype(bool).astype(np.int) / 4
# Background Positive, Subgroup Negative
weights += (( (df['target'].values>=0.5).astype(bool).astype(np.int) +
(df[identity_columns].fillna(0).values<0.5).sum(axis=1).astype(bool).astype(np.int) ) > 1 ).astype(bool).astype(np.int) / 4
# Background Negative, Subgroup Positive
weights += (( (df['target'].values<0.5).astype(bool).astype(np.int) +
(df[identity_columns].fillna(0).values>=0.5).sum(axis=1).astype(bool).astype(np.int) ) > 1 ).astype(bool).astype(np.int) / 4
#loss_weight = 1.0 / weights.mean()
df['weights'] = weights
def get_train_val_loaders(batch_size=64, val_batch_size=256, val_percent=0.95, val_num=10000):
#df = shuffle(pd.read_csv(os.path.join(settings.DATA_DIR, 'train_clean.csv')), random_state=1234)
df = shuffle(pd.read_csv(os.path.join(settings.DATA_DIR, 'train.csv')), random_state=1234)
#print(df.head())
df.comment_text = preprocess_text(df.comment_text)
add_loss_weight(df)
print(df.shape)
split_index = int(len(df) * val_percent)
df_train = df[:split_index]
df_val = df[split_index:]
if val_num is not None:
df_val = df_val[:val_num]
print(df_train.head())
print(df_val.head())
ds_train = ToxicDataset(df_train)
train_loader = data.DataLoader(ds_train, batch_size=batch_size, shuffle=True, num_workers=4, collate_fn=ds_train.collate_fn, drop_last=True)
train_loader.num = len(df_train)
ds_val = ToxicDataset(df_val)
val_loader = data.DataLoader(ds_val, batch_size=val_batch_size, shuffle=False, num_workers=4, collate_fn=ds_val.collate_fn, drop_last=False)
val_loader.num = len(df_val)
val_loader.df = df_val
return train_loader, val_loader
def get_test_loader(batch_size):
#df = pd.read_csv(os.path.join(settings.DATA_DIR, 'test_clean.csv'))
df = pd.read_csv(os.path.join(settings.DATA_DIR, 'test.csv'))
#print(df.head())
df.comment_text = preprocess_text(df.comment_text)
#print(df.head())
ds_test = ToxicDataset(df, train_mode=False, labeled=False)
loader = data.DataLoader(ds_test, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=ds_test.collate_fn, drop_last=False)
loader.num = len(df)
return loader
def test_train_loader():
loader, _ = get_train_val_loaders(4)
for ids, labels, aux_labels, weights in loader:
print(ids)
print(labels)
print(aux_labels)
print(weights)
break
def test_test_loader():
loader = get_test_loader(4)
for ids in loader:
print(ids.shape)
print(ids)
#print(labels)
break
if __name__ == '__main__':
test_train_loader()
#test_test_loader()