-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathanalyze_fft1024_iq_F32.cpp
193 lines (180 loc) · 7.51 KB
/
analyze_fft1024_iq_F32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
* analyze_fft1024_iq_F32.cpp Assembled by Bob Larkin 3 Mar 2021
* Rev 6 Mar 2021 - Added setXAxis()
* Rev 10 Mar 2021 Corrected averaging bracket - Bob L
*
* Converted to F32 floating point input and also extended
* for complex I and Q inputs
* * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary
* * Future: Add outputs for I & Q FFT x2 for overlapped FFT
* * Windowing None, Hann, Kaiser and Blackman-Harris.
*
* Conversion Copyright (c) 2021 Bob Larkin
* Same MIT license as PJRC:
*
* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, [email protected]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "analyze_fft1024_iq_F32.h"
// Note: Suppports block size of 128 only. Very "built in."
// Move audio data from audio_block_f32_t to the interleaved FFT instance buffer.
static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) {
const float *srcI = (const float *)sourceI;
const float *srcQ = (const float *)sourceQ;
float *dst = (float *)destination; // part of fft_buffer array. 256 floats per call
for (int i=0; i < 128; i++) {
*dst++ = *srcI++; // real sample, interleave
*dst++ = *srcQ++; // imag
}
}
static void apply_window_to_fft_buffer1(void *fft_buffer, const void *window) {
float *buf = (float *)fft_buffer; // 0th entry is real (do window) 1st is imag
const float *win = (float *)window;
for (int i=0; i < 1024; i++) {
buf[2*i] *= *win; // real
buf[2*i + 1] *= *win++; // imag
}
}
void AudioAnalyzeFFT1024_IQ_F32::update(void) {
audio_block_f32_t *block_i,*block_q;
int ii;
block_i = receiveReadOnly_f32(0);
if (!block_i) return;
block_q = receiveReadOnly_f32(1);
if (!block_q) {
release(block_i);
return;
}
// Here with two new blocks of data
switch (state) {
case 0:
blocklist_i[0] = block_i; blocklist_q[0] = block_q;
state = 1;
break;
case 1:
blocklist_i[1] = block_i; blocklist_q[1] = block_q;
state = 2;
break;
case 2:
blocklist_i[2] = block_i; blocklist_q[2] = block_q;
state = 3;
break;
case 3:
blocklist_i[3] = block_i; blocklist_q[3] = block_q;
state = 4;
break;
case 4:
blocklist_i[4] = block_i; blocklist_q[4] = block_q;
state = 5;
break;
case 5:
blocklist_i[5] = block_i; blocklist_q[5] = block_q;
state = 6;
break;
case 6:
blocklist_i[6] = block_i; blocklist_q[6] = block_q;
state = 7;
break;
case 7:
blocklist_i[7] = block_i; blocklist_q[7] = block_q;
copy_to_fft_buffer1(fft_buffer+0x000, blocklist_i[0]->data, blocklist_q[0]->data);
copy_to_fft_buffer1(fft_buffer+0x100, blocklist_i[1]->data, blocklist_q[1]->data);
copy_to_fft_buffer1(fft_buffer+0x200, blocklist_i[2]->data, blocklist_q[2]->data);
copy_to_fft_buffer1(fft_buffer+0x300, blocklist_i[3]->data, blocklist_q[3]->data);
copy_to_fft_buffer1(fft_buffer+0x400, blocklist_i[4]->data, blocklist_q[4]->data);
copy_to_fft_buffer1(fft_buffer+0x500, blocklist_i[5]->data, blocklist_q[5]->data);
copy_to_fft_buffer1(fft_buffer+0x600, blocklist_i[6]->data, blocklist_q[6]->data);
copy_to_fft_buffer1(fft_buffer+0x700, blocklist_i[7]->data, blocklist_q[7]->data);
if (pWin)
apply_window_to_fft_buffer1(fft_buffer, window);
#if defined(__IMXRT1062__)
// Teensyduino core for T4.x supports arm_cfft_f32
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag)
arm_cfft_f32(&Sfft, fft_buffer, 0, 1);
#else
// For T3.x go back to old (deprecated) style
arm_cfft_radix4_f32(&fft_inst, fft_buffer);
#endif
count++;
for (int i = 0; i < 512; i++) {
// From complex FFT the "negative frequencies" are mirrors of the frequencies above fs/2. So, we get
// frequencies from 0 to fs by re-arranging the coefficients. These are powers (not Volts)
// See DD4WH SDR
float ss0 = fft_buffer[2 * i] * fft_buffer[2 * i] +
fft_buffer[2 * i + 1] * fft_buffer[2 * i + 1];
float ss1 = fft_buffer[2 * (i + 512)] * fft_buffer[2 * (i + 512)] +
fft_buffer[2 * (i + 512) + 1] * fft_buffer[2 * (i + 512) + 1];
if(count==1) { // Starting new average
sumsq[i+512] = ss0;
sumsq[i] = ss1;
}
else if (count <= nAverage) { // Adding on to average
sumsq[i+512] += ss0;
sumsq[i] += ss1;
}
}
if (count >= nAverage) { // Average is finished
count = 0;
float inAf = 1.0f/(float)nAverage;
for (int i=0; i < 1024; i++) {
// xAxis, bit 0 left/right; bit 1 low to high
if(xAxis & 0X02)
ii = i;
else
ii = i^512;
if(xAxis & 0X01)
ii = (1023 - ii);
if(outputType==FFT_RMS)
output[i] = sqrtf(inAf*sumsq[ii]);
else if(outputType==FFT_POWER)
output[i] = inAf*sumsq[ii];
else if(outputType==FFT_DBFS) {
if(sumsq[i]>0.0f)
output[i] = 10.0f*log10f(inAf*sumsq[ii])-54.1854f; // Scaled to FS sine wave
else
output[i] = -193.0f; // lsb for 23 bit mantissa
}
else
output[i] = 0.0f;
} // End, set output[i] over all 512
outputflag = true; // moved; rev10mar2021
} // End of average is finished
release(blocklist_i[0]); release(blocklist_q[0]);
release(blocklist_i[1]); release(blocklist_q[1]);
release(blocklist_i[2]); release(blocklist_q[2]);
release(blocklist_i[3]); release(blocklist_q[3]);
blocklist_i[0] = blocklist_i[4];
blocklist_i[1] = blocklist_i[5];
blocklist_i[2] = blocklist_i[6];
blocklist_i[3] = blocklist_i[7];
blocklist_q[0] = blocklist_q[4];
blocklist_q[1] = blocklist_q[5];
blocklist_q[2] = blocklist_q[6];
blocklist_q[3] = blocklist_q[7];
state = 4;
break; // From case 7
} // End of switch & case 7
} // End update()