-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathanalyze_fft256_iq_F32.cpp
151 lines (140 loc) · 5.97 KB
/
analyze_fft256_iq_F32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* analyze_fft256_iq_F32.cpp
*
* Converted to F32 floating point input and also extended
* for complex I and Q inputs
* * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary
* * Future: Add outputs for I & Q FFT x2 for overlapped FFT
* * Windowing None, Hann, Kaiser and Blackman-Harris.
* See analyze_fft256_iq_F32. for more info.
*
* Conversion Copyright (c) 2021 Bob Larkin
* Same MIT license as PJRC:
*
* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, [email protected]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "analyze_fft256_iq_F32.h"
// Move audio data from audio_block_f32_t to the interleaved FFT instance buffer.
static void copy_to_fft_buffer0(void *destination, const void *sourceI, const void *sourceQ) {
const float *srcI = (const float *)sourceI;
const float *srcQ = (const float *)sourceQ;
float *dst = (float *)destination;
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
*dst++ = *srcI++; // real sample, interleave
*dst++ = *srcQ++; // imag
}
}
static void apply_window_to_fft_buffer1(void *fft_buffer, const void *window) {
float *buf = (float *)fft_buffer; // 0th entry is real (do window) 1th is imag
const float *win = (float *)window;
for (int i=0; i < 256; i++) {
buf[2*i] *= *win; // real
buf[2*i + 1] *= *win++; // imag
}
}
void AudioAnalyzeFFT256_IQ_F32::update(void) {
audio_block_f32_t *block_i,*block_q;
int ii;
block_i = receiveReadOnly_f32(0);
if (!block_i) return;
block_q = receiveReadOnly_f32(1);
if (!block_q) {
release(block_i);
return;
}
// Here with two new blocks of data
// prevblock_i and _q are pointers to the IQ data collected last update()
if (!prevblock_i || !prevblock_q) { // Startup
prevblock_i = block_i;
prevblock_q = block_q;
return; // Nothing to release
}
// FFT is 256 and blocks are 128, so we need 2 blocks. We still do
// this every 128 samples to get 50% overlap on FFT data to roughly
// compensate for windowing.
// ( dest, i-source, q-source )
copy_to_fft_buffer0(fft_buffer, prevblock_i->data, prevblock_q->data);
copy_to_fft_buffer0(fft_buffer+256, block_i->data, block_q->data);
if (pWin)
apply_window_to_fft_buffer1(fft_buffer, window);
#if defined(__IMXRT1062__)
// Teensyduino core for T4.x supports arm_cfft_f32
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag)
arm_cfft_f32(&Sfft, fft_buffer, 0, 1);
#else
// For T3.x go back to old (deprecated) style
arm_cfft_radix4_f32(&fft_inst, fft_buffer);
#endif
count++;
for (int i = 0; i < 128; i++) {
// From complex FFT the "negative frequencies" are mirrors of the frequencies above fs/2. So, we get
// frequencies from 0 to fs by re-arranging the coefficients. These are powers (not Volts)
// See DD4WH SDR (Note - here and at "if(xAxis & xxxx)" below, we may have redundancy in index changing.
// Leave as is for now.)
float ss0 = fft_buffer[2 * i] * fft_buffer[2 * i] +
fft_buffer[2 * i + 1] * fft_buffer[2 * i + 1];
float ss1 = fft_buffer[2 * (i + 128)] * fft_buffer[2 * (i + 128)] +
fft_buffer[2 * (i + 128) + 1] * fft_buffer[2 * (i + 128) + 1];
if(count==1) { // Starting new average
sumsq[i+128] = ss0;
sumsq[i] = ss1;
}
else if (count <= nAverage) { // Adding on to average
sumsq[i+128] += ss0;
sumsq[i] += ss1;
}
}
if (count >= nAverage) { // Average is finished
count = 0;
float inAf = 1.0f/(float)nAverage;
for (int i=0; i < 256; i++) {
// xAxis, bit 0 left/right; bit 1 low to high
if(xAxis & 0X02)
ii = i;
else
ii = i^128;
if(xAxis & 0X01)
ii = (255 - ii);
if(outputType==FFT_RMS)
output[i] = sqrtf(inAf*sumsq[ii]);
else if(outputType==FFT_POWER)
output[i] = inAf*sumsq[ii];
else if(outputType==FFT_DBFS) {
if(sumsq[i]>0.0f)
output[i] = 10.0f*log10f(inAf*sumsq[ii]) - 42.144f; // Scaled to FS sine wave
else
output[i] = -193.0f; // lsb for 23 bit mantissa
}
else
output[i] = 0.0f;
} // End, set output[i] over all 512
outputflag = true; // moved; rev10mar2021
} // End of average is finished
release(prevblock_i); // Release the 2 blocks that were block_i
release(prevblock_q); // and block_q on last time through update()
prevblock_i = block_i; // We will use these 2 blocks on next update()
prevblock_q = block_q; // Just change pointers
}