-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes.c
495 lines (428 loc) · 16.7 KB
/
nodes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
Nodes builder by Rapha‰l Quinet <[email protected]>
You are allowed to use any parts of this code in another program, as
long as you give credits to the authors in the documentation and in
the program itself. Read the file README.1ST for more information.
This program comes with absolutely no warranty.
*------- PLEASE READ THE COMMENT AT THE END OF THIS FILE. -------*
| If you use the algorithm or even some of the ideas taken from |
| this file, you must put a message in your program, so that the |
| user knows that all or part of the algorithm comes from DEU. |
*------- PLEASE READ THE COMMENT AT THE END OF THIS FILE. -------*
NODES.C - automatic builder for Nodes, Segs and SSectors.
*/
/* the includes */
#include "deu.h"
#include "levels.h"
/*
display some informations while the user is waiting
*/
void ShowProgress( int objtype)
{
static int SavedNumVertexes = 0;
if (UseMouse)
HideMousePointer();
switch (objtype)
{
case OBJ_VERTEXES:
DrawScreenBox3D( 0, 0, 203, 22);
DrawScreenText( 10, 8, "Number of Vertices: %d", NumVertexes);
break;
case OBJ_SIDEDEFS:
DrawScreenBox3D( 0, 30, 203, 52);
DrawScreenText( 10, 38, "Number of SideDefs: %d", NumSideDefs);
SavedNumVertexes = NumVertexes;
break;
case OBJ_SSECTORS:
DrawScreenBox3D( 0, 60, 203, 92);
DrawScreenText( 10, 68, "Number of Segs: %d", NumSegs);
DrawScreenText( 10, 78, "Number of SSectors: %d", NumSSectors);
DrawScreenMeter( 225, 28, ScrMaxX - 10, 48, (float) NumSegs / (float) (NumSideDefs + NumVertexes - SavedNumVertexes));
break;
}
if (UseMouse)
ShowMousePointer();
}
/*
find the point of intersection for two lines (return FALSE if there is none)
*/
Bool ComputeIntersection( int *x, int *y, SEPtr seg1, SEPtr seg2) /* SWAP - needs Vertexes */
{
/* floating-point required because long integers cause errors */
double x1 = Vertexes[ seg1->start].x;
double y1 = Vertexes[ seg1->start].y;
double dx1 = Vertexes[ seg1->end].x - Vertexes[ seg1->start].x;
double dy1 = Vertexes[ seg1->end].y - Vertexes[ seg1->start].y;
double x2 = Vertexes[ seg2->start].x;
double y2 = Vertexes[ seg2->start].y;
double dx2 = Vertexes[ seg2->end].x - Vertexes[ seg2->start].x;
double dy2 = Vertexes[ seg2->end].y - Vertexes[ seg2->start].y;
double d;
d = dy1 * dx2 - dx1 * dy2;
if (d != 0.0)
{
x1 = y1 * dx1 - x1 * dy1;
x2 = y2 * dx2 - x2 * dy2;
/* (*x, *y) = intersection */
*x = (int) ((dx1 * x2 - dx2 * x1) / d);
*y = (int) ((dy1 * x2 - dy2 * x1) / d);
/* check if the intersection is not at one end of a Seg (vertex grid = 8*8) */
if (*x >= Vertexes[ seg1->start].x - 7 && *x <= Vertexes[ seg1->start].x + 7 && *y >= Vertexes[ seg1->start].y - 7 && *y <= Vertexes[ seg1->start].y + 7)
{
return FALSE; /* not a real intersection point (round-off error in a previous operation) */
}
if (*x >= Vertexes[ seg1->end].x - 7 && *x <= Vertexes[ seg1->end].x + 7 && *y >= Vertexes[ seg1->end].y - 7 && *y <= Vertexes[ seg1->end].y + 7 )
{
return FALSE; /* not a real intersection point (round-off error in a previous operation) */
}
if (*x >= Vertexes[ seg2->start].x - 7 && *x <= Vertexes[ seg2->start].x + 7 && *y >= Vertexes[ seg2->start].y - 7 && *y <= Vertexes[ seg2->start].y + 7)
{
return FALSE; /* not a real intersection point (round-off error in a previous operation) */
}
if (*x >= Vertexes[ seg2->end].x - 7 && *x <= Vertexes[ seg2->end].x + 7 && *y >= Vertexes[ seg2->end].y - 7 && *y <= Vertexes[ seg2->end].y + 7 )
{
return FALSE; /* not a real intersection point (round-off error in a previous operation) */
}
return TRUE; /* intersection OK */
}
else
return FALSE; /* parallel lines */
}
/*
choose a nodeline amongst the list of Segs
*/
SEPtr FindNodeLine( SEPtr seglist) /* SWAP - needs Vertexes */
{
int splits;
#ifdef OLD_ALGORITHM
int minsplits = 32767;
#endif /* OLD_ALGORITHM */
int mindiff = 32767;
int num1, num2;
SEPtr nodeline, bestnodeline;
SEPtr curseg;
long x, y;
long dx, dy;
long a, b, c, d;
int dummyx, dummyy;
/* ***DEBUG*** */
static SEPtr lastnodeline = NULL;
/* find nodeline - brute force: try with all Segs */
bestnodeline = NULL;
for (nodeline = seglist; nodeline; nodeline = nodeline->next)
{
/* compute x, y, dx, dy */
x = Vertexes[ nodeline->start].x;
y = Vertexes[ nodeline->start].y;
dx = Vertexes[ nodeline->end].x - Vertexes[ nodeline->start].x;
dy = Vertexes[ nodeline->end].y - Vertexes[ nodeline->start].y;
/* compute number of splits */
if (dx == 0 || dy == 0)
splits = 0;
else
splits = 1; /* small penalty for oblique lines */
num1 = 0;
num2 = 0;
for (curseg = seglist; curseg; curseg = curseg->next)
{
if (curseg == nodeline)
{
num1++;
continue;
}
/* you love maths, don't you? */
a = ((long) Vertexes[ curseg->start].x - x) * dy;
b = ((long) Vertexes[ curseg->start].y - y) * dx;
c = ((long) Vertexes[ curseg->end].x - x) * dy;
d = ((long) Vertexes[ curseg->end].y - y) * dx;
if ((a != b) && (c != d) && ((a > b) != (c > d)) && ComputeIntersection( &dummyx, &dummyy, nodeline, curseg))
{
splits++; /* one more split */
num1++;
num2++;
}
else if ((a > b) || ((a == b) && (c > d))
|| ((a == b) && (c == d) && ((dx > 0) == ((Vertexes[ curseg->end].x - Vertexes[ curseg->start].x) > 0)) && ((dy > 0) == ((Vertexes[ curseg->end].y - Vertexes[ curseg->start].y) > 0))))
num1++; /* one more Seg on the first (right) side */
else
num2++; /* one more Seg on the second (left) side */
#ifdef OLD_ALGORITHM
if (splits > minsplits)
break; /* don't waste time */
#else
if (max( num1, num2) + SplitFactor * splits > mindiff)
break; /* don't waste time */
#endif /* OLD_ALGORITHM */
}
/* there must be at least one Seg on each side */
if (num1 > 0 && num2 > 0)
{
#ifdef OLD_ALGORITHM
/* now, num1 = difference in number of Segs between two sides */
if (num1 > num2)
num1 = num1 - num2;
else
num1 = num2 - num1;
/* minimal number of splits = candidate for nodeline */
if (splits < minsplits || (splits == minsplits && num1 < mindiff))
{
minsplits = splits; /* minimal number of splits */
mindiff = num1; /* minimal difference between the two sides */
bestnodeline = nodeline; /* save the nodeline */
}
#else
/* now, num1 = rating for this nodeline */
num1 = max( num1, num2) + SplitFactor * splits;
/* this nodeline is better than the previous one */
if (num1 < mindiff)
{
mindiff = num1; /* save the rating */
bestnodeline = nodeline; /* save the nodeline */
}
#endif /* OLD_ALGORITHM */
}
}
/* ***DEBUG*** */
if (bestnodeline && bestnodeline == lastnodeline)
ProgError( "nodeline picked twice (this is a BUG!)");
lastnodeline = nodeline;
return bestnodeline;
}
/*
Move a Seg into a list and update the bounding box
*/
void StoreInSegList( SEPtr seg, SEPtr *seglist, SEPtr *slistend) /* SWAP - needs Vertexes */
{
if (*seglist)
{
(*slistend)->next = seg;
*slistend = (*slistend)->next;
}
else
{
*seglist = seg;
*slistend = *seglist;
}
(*slistend)->next = NULL;
}
/*
compute the bounding box (limits on X, Y) for a list of Segs
*/
void ComputeBoundingBox( SEPtr seglist, int *minx, int *maxx, int *miny, int *maxy) /* SWAP - needs Vertexes */
{
SEPtr curseg;
*maxx = -32767;
*maxy = -32767;
*minx = 32767;
*miny = 32767;
for (curseg = seglist; curseg; curseg = curseg->next)
{
if (Vertexes[ curseg->start].x < *minx)
*minx = Vertexes[ curseg->start].x;
if (Vertexes[ curseg->start].x > *maxx)
*maxx = Vertexes[ curseg->start].x;
if (Vertexes[ curseg->start].y < *miny)
*miny = Vertexes[ curseg->start].y;
if (Vertexes[ curseg->start].y > *maxy)
*maxy = Vertexes[ curseg->start].y;
if (Vertexes[ curseg->end].x < *minx)
*minx = Vertexes[ curseg->end].x;
if (Vertexes[ curseg->end].x > *maxx)
*maxx = Vertexes[ curseg->end].x;
if (Vertexes[ curseg->end].y < *miny)
*miny = Vertexes[ curseg->end].y;
if (Vertexes[ curseg->end].y > *maxy)
*maxy = Vertexes[ curseg->end].y;
}
}
/*
create a SSector from a list of Segs
*/
int CreateSSector( SEPtr seglist)
{
/* update the SSectors list */
NumSSectors++;
if (SSectors)
{
LastSSector->next = GetMemory( sizeof( struct SSector));
LastSSector = LastSSector->next;
}
else
{
SSectors = GetMemory( sizeof( struct SSector));
LastSSector = SSectors;
}
LastSSector->next = NULL;
/* number of first Segment in this SubSector */
LastSSector->first = NumSegs;
/* update the Segs list */
if (Segs == NULL)
Segs = seglist;
else
LastSeg->next = seglist;
NumSegs++;
for (LastSeg = seglist; LastSeg->next; LastSeg = LastSeg->next)
NumSegs++;
/* total number of Segments in this SubSector */
LastSSector->num = NumSegs - LastSSector->first;
/* while the user is waiting... */
ShowProgress( OBJ_SSECTORS);
/* return the number of this SubSector */
return NumSSectors - 1;
}
/*
create all Nodes from a list of Segs
*/
Bool CreateNodes( NPtr *node_r, int *ssector_r, SEPtr seglist) /* SWAP - needs Vertexes */
{
NPtr node;
SEPtr segs1, segs2;
static SEPtr nodeline, curseg;
static long a, b, c, d;
static SEPtr lastseg1, lastseg2;
/* new Node */
node = GetMemory( sizeof( struct Node));
/* find the best nodeline */
nodeline = FindNodeLine( seglist);
/* nodeline could not be found: return a SSector */
if (nodeline == NULL)
{
*node_r = NULL;
*ssector_r = CreateSSector( seglist) | 0x8000;
return FALSE;
}
/* compute x, y, dx, dy */
node->x = Vertexes[ nodeline->start].x;
node->y = Vertexes[ nodeline->start].y;
node->dx = Vertexes[ nodeline->end].x - node->x;
node->dy = Vertexes[ nodeline->end].y - node->y;
/* split seglist in segs1 and segs2 */
segs1 = NULL;
segs2 = NULL;
while (seglist)
{
curseg = seglist;
seglist = seglist->next;
/* now, where is that old book about analytic geometry? */
a = (long) (Vertexes[ curseg->start].x - node->x) * (long) (node->dy);
b = (long) (Vertexes[ curseg->start].y - node->y) * (long) (node->dx);
c = (long) (Vertexes[ curseg->end].x - node->x) * (long) (node->dy);
d = (long) (Vertexes[ curseg->end].y - node->y) * (long) (node->dx);
/* check if starting vertex is on the right side of the nodeline, */
/* or if starting vertex is on the nodeline and ending vertex on the right side, */
/* or if both are on the nodeline and the Seg has the same orientation as the nodeline. */
if ((a > b) || ((a == b) && (c > d))
|| ((a == b) && (c == d) && ((node->dx > 0) == ((Vertexes[ curseg->end].x - Vertexes[ curseg->start].x) > 0)) && ((node->dy > 0) == ((Vertexes[ curseg->end].y - Vertexes[ curseg->start].y) > 0))))
{
/* the starting Vertex is on the first side (right) of the nodeline */
StoreInSegList( curseg, &segs1, &lastseg1);
if (c < d)
{
int newx, newy;
/* the ending Vertex is on the other side: split the Seg in two */
if (ComputeIntersection( &newx, &newy, nodeline, curseg))
{
InsertObject( OBJ_VERTEXES, -2, newx, newy);
StoreInSegList( GetFarMemory( sizeof( struct Seg)), &segs2, &lastseg2);
lastseg2->start = NumVertexes - 1;
lastseg2->end = lastseg1->end;
lastseg2->angle = lastseg1->angle;
lastseg2->linedef = lastseg1->linedef;
lastseg2->flip = lastseg1->flip;
lastseg2->dist = lastseg1->dist + ComputeDist( newx - Vertexes[ lastseg1->start].x, newy - Vertexes[ lastseg1->start].y);
lastseg1->end = NumVertexes - 1;
ShowProgress( OBJ_VERTEXES);
}
}
}
else
{
/* the starting Vertex is on the second side (left) of the nodeline */
StoreInSegList( curseg, &segs2, &lastseg2);
if (c > d)
{
int newx, newy;
/* the ending Vertex is on the other side: split the Seg in two */
if (ComputeIntersection( &newx, &newy, nodeline, curseg))
{
InsertObject( OBJ_VERTEXES, -2, newx, newy);
StoreInSegList( GetFarMemory( sizeof( struct Seg)), &segs1, &lastseg1);
lastseg1->start = NumVertexes - 1;
lastseg1->end = lastseg2->end;
lastseg1->angle = lastseg2->angle;
lastseg1->linedef = lastseg2->linedef;
lastseg1->flip = lastseg2->flip;
lastseg1->dist = lastseg2->dist + ComputeDist( newx - Vertexes[ lastseg2->start].x, newy - Vertexes[ lastseg2->start].y);
lastseg2->end = NumVertexes - 1;
ShowProgress( OBJ_VERTEXES);
}
}
}
}
/* now, we should have all the Segs in segs1 and segs2 (seglist is empty) */
if (segs1 == NULL || segs2 == NULL)
ProgError("could not split the Segs list (this is a BUG!)");
/* compute bounding box limits for segs1 */
ComputeBoundingBox( segs1, &(node->minx1), &(node->maxx1), &(node->miny1), &(node->maxy1));
/* create Nodes or SSectors from segs1 */
CreateNodes( &(node->node1), &(node->child1), segs1);
/* compute bounding box limits for segs2 */
ComputeBoundingBox( segs2, &(node->minx2), &(node->maxx2), &(node->miny2), &(node->maxy2));
/* create Nodes or SSectors from segs2 */
CreateNodes( &(node->node2), &(node->child2), segs2);
/* this Node is OK */
*node_r = node;
*ssector_r = 0;
return TRUE;
}
/*
IF YOU ARE WRITING A DOOM EDITOR OR ANOTHER ADD-ON, PLEASE READ THIS:
I spent a lot of time writing the Nodes builder. There may be some bugs in
it, but most of the code is OK. If you steal any ideas from this program,
put a prominent message in your own editor (i.e. it must be displayed when
the program starts or in an "about" box) to make it CLEAR that some
original ideas were taken from DEU. You need not credit me. Just credit
DEU and its contributors. Thanks.
While everyone was talking about LineDefs, I had the idea of taking only
the Segs into account, and creating the Segs directly from the SideDefs.
Also, dividing the list of Segs in two after each call to CreateNodes makes
the algorithm faster. I use several other tricks, such as looking at the
two ends of a Seg to see on which side of the nodeline it lies or if it
should be split in two. I took me a lot of time and efforts to do this.
I give this algorithm to whoever wants to use it, but with this condition:
if your program uses SOME of the IDEAS from DEU or the whole ALGORITHM, you
MUST tell it to the user. And if you post a message with all or parts of
this algorithm in it, please post THIS NOTICE also. I don't want to speak
legalese; I hope that you understand me... I kindly give the sources of my
program to you: please be kind with me...
If you need more information about this, here is my E-mail address:
[email protected] (Rapha‰l Quinet).
Short description of the algorithm:
1 - Create one Seg for each SideDef: pick each LineDef in turn. If it
has a "first" SideDef, then create a normal Seg. If it has a
"second" SideDef, then create a flipped Seg.
2 - Call CreateNodes with the current list of Segs. The list of Segs is
the only argument to CreateNodes.
3 - Save the Nodes, Segs and SSectors to disk. Start with the leaves of
the Nodes tree and continue up to the root (last Node).
CreateNodes does the following:
1 - Pick a nodeline amongst the Segs (minimize the number of splits and
keep the tree as balanced as possible).
2 - Move all Segs on the right of the nodeline in a list (segs1) and
move all Segs on the left of the nodeline in another list (segs2).
3 - If the first list (segs1) contains references to more than one
Sector or if the angle between two adjacent Segs is greater than
180ø, then call CreateNodes with this (smaller) list. Else, create
a SubSector with all these Segs.
4 - Do the same for the second list (segs2).
5 - Return the new node (its two children are already OK).
Each time CreateSSector is called, the Segs are put in a global list.
When there is no more Seg in CreateNodes' list, then they are all in the
global list and ready to be saved to disk.
Note: now that the nice guys at Id software have released their algorithm,
I have changed the way CreateNodes work. Instead of checking if the Segs
list should be split, I try to find a nodeline. If I found one, then I
split the list of Segs and call CreateNodes on both lists. Else, I just
return a SSector which contains the list of Segs.
*/
/* end of file */