-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathd-trace.py
230 lines (190 loc) · 7.41 KB
/
d-trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Chester Holtz - [email protected]
# d-trace precision Estimator
import numpy as np
from numpy import linalg as la
from sklearn.linear_model import Lasso
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
MAXIT = 1000
TOL = 10**(-7)
EPS = 10**(-2)
def dict_stats(dict_list):
mean_dict = {}
for key in dict_list[0].keys():
vals = [d[key] for d in dict_list]
mean_dict[key] = (round(np.mean(vals),2), round(np.std(vals),2))
return mean_dict
def gen_5folds(X):
X_folds = np.split(X, 5, axis=1)
S_folds = []
for x_fold in X_folds:
S_folds.append(np.cov(x_fold))
return X_folds, S_folds
def risk(T,T_star):
risk = {'fro':0, 'op':0, 'mat':0, 'tp':0, 'tn':0}
# frobenius risk
risk['fro'] = la.norm(T-T_star,'fro')
# operator risk
risk['op'] = la.norm(T-T_star,2)
# matrix l1infty risk
risk['mat'] = la.norm(la.norm((T-T_star),1,axis=0),np.inf)
# sparsity accuracy
risk['tp'] = np.sum(np.logical_and(T == 0, T_star == 0))/(T.shape[0]*T.shape[1])
risk['tn'] = np.sum(np.logical_and(T != 1, T_star != 1))/(T.shape[0]*T.shape[1])
return risk
def G(A, B):
#l, U_A = la.eig(A) # numerical instabillity makes life miserable
U_A, l, V_A = la.svd(A, full_matrices=True)
l = l.real
U_A = U_A.real
S_A = np.diag(l)
def c(i,j):
i = i.astype(int)
j = j.astype(int)
return 2/(l[i] + l[j])
C = np.fromfunction(lambda i, j: c(i,j), (l.shape[0],l.shape[0]))
return U_A.dot( np.multiply(U_A.T.dot(B).dot(U_A), C) ).dot(U_A.T)
def S(A, l):
def a(i,j):
i = i.astype(int)
j = j.astype(int)
return np.where(i == j, A[i,j], 0) + \
np.where((A[i,j] > l) & (i!=j), A[i,j] - l, 0) + \
np.where((A[i,j] < -l) & (i!=j), A[i,j] + l, 0)
return np.fromfunction(lambda i, j: a(i,j), (A.shape[0],A.shape[1]))
def p(X):
U_X, l, V_X = la.svd(X, full_matrices=True)
e = EPS*np.ones(l.shape[0])
return U_X.dot(np.diag(np.maximum(l, e))).dot(U_X.T)
def scad(l,th,a):
for i in range(th.shape[0]):
if th[i] <= 2*l[i]:
th[i] = np.sign(th[i])*(th[i] - l[i])
elif 2*l[i] <= th[i] and th[i] <= a*l[i]:
th[i] = np.sign(th[i])*((a-1)*th[i] - a*l)/(a-2)
elif a*l[i] <= th[i]:
th[i] = th[i]
return th
def obj(th, l_n, S_hat):
return 1/2 * th.dot(th).dot(S_hat) - np.trace(th) + l_n * la.norm(th - np.diag(np.diag(th)),1)
def update_lambda(l, th, a):
if not th.any():
return np.zeros(th.shape[0])
return l * np.less_equal(th,l) + np.clip(np.divide((a*l - th),(a-1)*l),0,np.inf) * np.greater(th,l)
def lla(L_init, Th_0_init, S_hat, rho, l_init):
a = 3
th_prev = Th_0_init
l_n = l_init
for i in tqdm(range(MAXIT), desc="lla"):
th_k = alg1(L_init, Th_0_init, S_hat, rho, l_n)
l_n = update_lambda(l_n, np.abs(th_k), a)
if la.norm(th_k - th_prev, np.inf) <= TOL:
break
th_prev = th_k
return th_k, l_n
def alg1(L_init, Th_0_init, S_hat, rho, l_n):
Th_init = Th_0_init = la.inv(np.diag(np.diag(S_hat)))
I = np.eye(S_hat.shape[0])
L_init = np.zeros(S_hat.shape)
Th = Th_init
Th_0 = Th_1 = Th_0_init
L_0 = L_1 = L_init
t = tqdm(range(MAXIT))
for k in t:
Th_prev = Th
Th_0_prev = Th_0
Th_1_prev = Th_1
Th = G(S_hat + 2*rho * I, I + rho * Th_0 + rho*Th_1 - L_0 - L_1)
Th_0 = S(Th + 1.0/rho * L_0, 1.0/rho * l_n)
Th_1 = p(Th + 1.0/rho * L_1)
L_0 = L_0 + rho*(Th - Th_0)
L_1 = L_1 + rho*(Th - Th_1)
# convergence
t.set_description(str(('alg1',la.norm(Th - Th_prev,'fro')/max(1, la.norm(Th, 'fro'), la.norm(Th_prev,'fro')), \
la.norm(Th_0 - Th_0_prev,'fro')/max(1, la.norm(Th_0, 'fro'), la.norm(Th_0_prev,'fro')), \
la.norm(Th_1 - Th_1_prev,'fro')/max(1, la.norm(Th_1, 'fro'), la.norm(Th_1_prev,'fro')))))
if la.norm(Th - Th_prev,'fro')/max(1, la.norm(Th, 'fro'), la.norm(Th_prev,'fro')) < TOL and \
la.norm(Th_0 - Th_0_prev,'fro')/max(1, la.norm(Th_0, 'fro'), la.norm(Th_0_prev,'fro')) < TOL and \
la.norm(Th_1 - Th_1_prev,'fro')/max(1, la.norm(Th_1, 'fro'), la.norm(Th_1_prev,'fro')) < TOL:
break
return Th
def alg2(L_init, Th_0_init, S_hat, rho, l_n):
Th_init = Th_0_init = la.inv(np.diag(np.diag(S_hat)))
I = np.eye(S_hat.shape[0])
L_init = np.zeros(S_hat.shape)
Th = Th_init
Th_0 = Th_0_init
L = L_init
t = tqdm(range(MAXIT))
for k in t:
Th_prev = Th
Th_0_prev = Th_0
Th = G(S_hat + rho * I, I + rho * Th_0 - L)
Th_0 = S(Th + 1.0/rho * L, 1.0/rho * l_n)
L = L + rho*(Th - Th_0)
# convergence
t.set_description(str(('alg2',la.norm(Th - Th_prev,'fro')/max(1, la.norm(Th, 'fro'), la.norm(Th_prev,'fro')), \
la.norm(Th_0 - Th_0_prev,'fro')/max(1, la.norm(Th_0, 'fro'), la.norm(Th_0_prev,'fro')))))
if la.norm(Th - Th_prev,'fro')/max(1, la.norm(Th, 'fro'), la.norm(Th_prev,'fro')) < TOL and \
la.norm(Th_0 - Th_0_prev,'fro')/max(1, la.norm(Th_0, 'fro'), la.norm(Th_0_prev,'fro')) < TOL:
break
s = la.svd(Th, compute_uv=False)
if min(s) < EPS:
Th = alg1(L_init, Th, S_hat, rho, l_n)
return Th
def cv_lambda(L_init, Th_0_init, X, rho, l_init):
a = 3
X_folds, S_folds = gen_5folds(X)
errs = []
for i, fold in enumerate(tqdm(X_folds, desc='cv')):
X = np.concatenate(X_folds[:i] + X_folds[(i + 1):])
S_hat = np.mean(S_folds[:i] + S_folds[(i + 1):], axis=0)
th, l_n = lla(L_init, Th_0_init, S_hat, rho, l_init)
errs.append(obj(th,l_n,S_folds[i]))
return np.sum(errs)/len(X_folds)
# Experiments from sec. 4
n = 400 # samples size
p12 = 500 # dimension
p3 = 484
mean12 = np.zeros(p12)
mean3 = np.zeros(p3)
PR0 = np.eye(p12)
COV0 = la.inv(PR0)
def pr1(i,j):
return np.where(i == j, 1, 0) + np.where((1 <= np.abs(i-j)) & (np.abs(i-j) <= 2), 0.2, 0)
PR1 = np.fromfunction(lambda i,j: pr1(i,j),(p12,p12))
COV1 = la.inv(PR1)
def pr2(i,j):
return np.where(i == j, 1, 0) + np.where((1 <= np.abs(i-j)) & (np.abs(i-j) <= 4), 0.2, 0)
PR2 = np.fromfunction(lambda i, j: pr2(i,j), (p12,p12))
COV2 = la.inv(PR2)
def pr3(i,j):
return np.where(i == j, 1, 0) + \
np.where((i % pow(p3,1/2) != 0) & (j == i+1), 0.2, 0) + \
np.where((i % pow(p3,1/2) == 0) & (j == i + pow(p3,1/2)), 0.2, 0)
PR3 = np.fromfunction(lambda i, j: pr3(i,j), (p3,p3))
COV3 = la.inv(PR3)
X0 = np.random.multivariate_normal(mean12, COV0, n).T
X1 = np.random.multivariate_normal(mean12, COV1, n).T
X2 = np.random.multivariate_normal(mean12, COV2, n).T
X3 = np.random.multivariate_normal(mean3, COV3, n).T
test_cases = [(X0, PR0), (X1, PR1), (X2, PR2), (X3, PR3)]
rho = 1
l_init = 0.25
R = []
for i, (X, S_star) in tqdm(enumerate(test_cases),desc="test cases"):
S_hat = np.cov(X)
Th_0_init = np.zeros(S_hat.shape)
L_init = np.zeros(S_hat.shape)
risks = []
for j in tqdm(range(100), desc="trials"):
th, l_n = lla(L_init, Th_0_init, S_hat, rho, l_init)
th = np.around(th, 6)
#th = alg2(L_init, Th_0_init, S_hat, rho, l_init)
#print(cv_lambda(L_init, Th_0_init, X, rho, l_init))
#tqdm.write(str(risk(th, PR1)))
r = risk(th,S_star)
risks.append(r)
tqdm.write(str((i,dict_stats(risks))))
R.append(dict_stats(risks))