-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_evaluation.py
329 lines (296 loc) · 12.3 KB
/
run_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import warnings
torch.autograd.set_detect_anomaly(True)
warnings.simplefilter("ignore")
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
import json
import argparse
import timm
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import tqdm
from utils.config_utils import load_yaml
from vis_utils import ImgLoader
def build_model(pretrainewd_path: str,
img_size: int,
fpn_size: int,
num_classes: int,
num_selects: dict,
use_fpn: bool = True,
use_selection: bool = True,
use_combiner: bool = True,
comb_proj_size: int = None):
from models.pim_module.pim_module_eval.py import PluginMoodel
model = \
PluginMoodel(img_size = img_size,
use_fpn = use_fpn,
fpn_size = fpn_size,
proj_type = "Linear",
upsample_type = "Conv",
use_selection = use_selection,
num_classes = num_classes,
num_selects = num_selects,
use_combiner = use_combiner,
comb_proj_size = comb_proj_size)
if pretrainewd_path != "":
ckpt = torch.load(pretrainewd_path)
model.load_state_dict(ckpt['model'])
model.eval()
return model
@torch.no_grad()
def sum_all_out(out, sum_type="softmax"):
target_layer_names = \
['layer1', 'layer2', 'layer3', 'layer4',
'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4',
'comb_outs']
sum_out = None
for name in target_layer_names:
if name != "comb_outs":
tmp_out = out[name].mean(1)
else:
tmp_out = out[name]
if sum_type == "softmax":
tmp_out = torch.softmax(tmp_out, dim=-1)
if sum_out is None:
sum_out = tmp_out
else:
sum_out = sum_out + tmp_out # note that use '+=' would cause inplace error
return sum_out
if __name__ == "__main__":
# ===== 0. get setting =====
parser = argparse.ArgumentParser("Visualize SwinT Large")
parser.add_argument("-pr", "--pretrained_root", type=str,
help="contain {pretrained_root}/best.pt, {pretrained_root}/config.yaml")
parser.add_argument("-ir", "--image_root", type=str)
args = parser.parse_args()
load_yaml(args, args.pretrained_root + "/config.yaml")
# ===== 1. build model =====
model = build_model(pretrainewd_path = args.pretrained_root + "/best.pt",
img_size = args.data_size,
fpn_size = args.fpn_size,
num_classes = args.num_classes,
num_selects = args.num_selects)
model.cuda()
img_loader = ImgLoader(img_size = args.data_size)
cls_folders = os.listdir(args.image_root)
cls_folders.sort()
top1, top3, top5 = 0, 0, 0
total = 0
n_samples = 0
flycatcher = np.zeros([8, 8], dtype=np.float32) # 36~42
gull = np.zeros([9, 9], dtype=np.float32) # 58~65
kingfisher = np.zeros([6, 6], dtype=np.float32) # 78~82
sparrow = np.zeros([22, 22], dtype=np.float32) #112~132
tern = np.zeros([8, 8], dtype=np.float32) # 140~146
vireo = np.zeros([8, 8], dtype=np.float32) # 150~156
warbler = np.zeros([26, 26], dtype=np.float32) # 157~181
woodpecker = np.zeros([7, 7], dtype=np.float32) # 186~191
wren = np.zeros([26, 26], dtype=np.float32) # 192~198
for ci, cf in enumerate(cls_folders):
n_samples += len(os.listdir(args.image_root + "/" + cf))
pbar = tqdm.tqdm(total=n_samples, ascii=True)
wrongs = {}
for ci, cf in enumerate(cls_folders):
files = os.listdir(args.image_root + "/" + cf)
imgs = []
img_paths = []
update_n = 0
for fi, f in enumerate(files):
img_path = args.image_root + "/" + cf + "/" + f
img_paths.append(img_path)
img, ori_img = img_loader.load(img_path)
img = img.unsqueeze(0) # add batch size dimension
imgs.append(img)
update_n += 1
if (fi+1) % 32 == 0 or fi == len(files) - 1:
imgs = torch.cat(imgs, dim=0)
else:
continue
with torch.no_grad():
imgs = imgs.cuda()
outs = model(imgs)
sum_outs = sum_all_out(outs, sum_type="softmax") # softmax
preds = torch.sort(sum_outs, dim=-1, descending=True)[1]
for bi in range(preds.size(0)):
if preds[bi, 0] == ci:
top1 += 1
top3 += 1
top5 += 1
else:
if ci not in wrongs:
wrongs[ci] = []
wrongs[ci].append(img_paths[bi])
if preds[bi, 1] == ci or preds[bi, 2] == ci:
top3 += 1
top5 += 1
if preds[bi, 3] == ci or preds[bi, 4] == ci:
top5 += 1
total += update_n
basic_n = None
if 36 <= ci <= 42:
basic_n = 36
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= flycatcher.shape[0]-1:
in_pred = flycatcher.shape[0]-1
flycatcher[ci-basic_n][in_pred] += 1
elif 58 <= ci <= 65:
basic_n = 58
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= gull.shape[0]-1:
in_pred = gull.shape[0]-1
gull[ci-basic_n][in_pred] += 1
elif 78 <= ci <= 82:
basic_n = 78
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= kingfisher.shape[0]-1:
in_pred = kingfisher.shape[0]-1
kingfisher[ci-basic_n][in_pred] += 1
elif 112 <= ci <= 132:
basic_n = 112
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= sparrow.shape[0]-1:
in_pred = sparrow.shape[0]-1
sparrow[ci-basic_n][in_pred] += 1
elif 140 <= ci <= 146:
basic_n = 140
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= tern.shape[0]-1:
in_pred = tern.shape[0]-1
tern[ci-basic_n][in_pred] += 1
elif 150 <= ci <= 156:
basic_n = 150
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= vireo.shape[0]-1:
in_pred = vireo.shape[0]-1
vireo[ci-basic_n][in_pred] += 1
elif 157 <= ci <= 181:
basic_n = 157
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= warbler.shape[0]-1:
in_pred = warbler.shape[0]-1
warbler[ci-basic_n][in_pred] += 1
elif 186 <= ci <= 191:
basic_n = 186
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= woodpecker.shape[0]-1:
in_pred = woodpecker.shape[0]-1
woodpecker[ci-basic_n][in_pred] += 1
elif 192 <= ci <= 198:
basic_n = 192
for bi in range(preds.size(0)):
in_pred = int(preds[bi,0])-basic_n
if in_pred < 0 or in_pred >= wren.shape[0]-1:
in_pred = wren.shape[0]-1
wren[ci-basic_n][in_pred] += 1
imgs = []
img_paths = []
top1_acc = round(top1 / total * 100, 3)
top3_acc = round(top3 / total * 100, 3)
top5_acc = round(top5 / total * 100, 3)
if flycatcher.sum() != 0:
flycatcher_acc = round(np.trace(flycatcher) / flycatcher.sum() * 100, 3)
flycatcher_out = flycatcher[:, -1].sum()
else:
flycatcher_acc = -1
flycatcher_out = -1
if gull.sum() != 0:
gull_acc = round(np.trace(gull) / gull.sum() * 100, 3)
gull_out = gull[:, -1].sum()
else:
gull_acc = -1
gull_out = -1
if kingfisher.sum() != 0:
kingfisher_acc = round(np.trace(kingfisher) / kingfisher.sum() * 100, 3)
kingfisher_out = kingfisher[:, -1].sum()
else:
kingfisher_acc = -1
kingfisher_out = -1
if sparrow.sum() != 0:
sparrow_acc = round(np.trace(sparrow) / sparrow.sum() * 100, 3)
sparrow_out = sparrow[:, -1].sum()
else:
sparrow_acc = -1
sparrow_out = -1
if tern.sum() != 0:
tern_acc = round(np.trace(tern) / tern.sum() * 100, 3)
tern_out = tern[:, -1].sum()
else:
tern_acc = -1
tern_out = -1
if vireo.sum() != 0:
vireo_acc = round(np.trace(vireo) / vireo.sum() * 100, 3)
vireo_out = vireo[:, -1].sum()
else:
vireo_acc = -1
vireo_out = -1
if warbler.sum() != 0:
warbler_acc = round(np.trace(warbler) / warbler.sum() * 100, 3)
warbler_out = warbler[:, -1].sum()
else:
warbler_acc = -1
warbler_out = -1
if woodpecker.sum() != 0:
woodpecker_acc = round(np.trace(woodpecker) / woodpecker.sum() * 100, 3)
woodpecker_out = woodpecker[:, -1].sum()
else:
woodpecker_acc = -1
woodpecker_out = -1
if wren.sum() != 0:
wren_acc = round(np.trace(wren) / wren.sum() * 100, 3)
wren_out = wren[:, -1].sum()
else:
wren_acc = -1
wren_out = -1
msg = "top1: {}%, top3: {}%, top5: {}%".format(top1_acc, top3_acc, top5_acc)
pbar.set_description(msg)
pbar.update(update_n)
update_n = 0
pbar.close()
msg = "\n=== evaluation result on CUB200-2011 ===\n\
top1: {}%, top3: {}%, top5: {}%, \n\
flycatcher:{}% out:{}, \n\
gull:{}%, out:{}, \n\
kingfisher:{}% out:{}, \n\
sparrow:{}% out:{}, \n\
tern:{}% out:{}, \n\
vireo:{}% out:{}, \n\
warbler:{}% out:{}, \n\
woodpecker:{}% out:{}, \n\
wren:{}% out:{}".format(
top1_acc, top3_acc, top5_acc,
flycatcher_acc, flycatcher_out,
gull_acc, gull_out,
kingfisher_acc, kingfisher_out,
sparrow_acc, sparrow_out,
tern_acc, tern_out,
vireo_acc, vireo_out,
warbler_acc, warbler_out,
woodpecker_acc, woodpecker_out,
wren_acc, wren_out
)
print(msg)
# np.save('flycatcher.npy', flycatcher)
# np.save('gull.npy', gull)
# np.save('kingfisher.npy', kingfisher)
# np.save('sparrow.npy', sparrow)
# np.save('tern.npy', tern)
# np.save('vireo.npy', vireo)
# np.save('warbler.npy', warbler)
# np.save('woodpecker.npy', woodpecker)
# np.save('wren.npy', wren)
# with open("wrongs_list.json", "w") as fjson:
# fjson.write(json.dumps(wrongs, indent=2))