-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhackaton.py
349 lines (279 loc) · 13 KB
/
hackaton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
__author__ = 'christiaan'
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARIMA
import numpy as np
from sklearn.ensemble import RandomForestRegressor as RFR
from sklearn.model_selection import TimeSeriesSplit
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.svm import SVR
from scipy import stats
from sklearn.svm import LinearSVR
import datetime
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
trainingSet=pd.read_csv('/Users/christiaan/Desktop/train-file.csv',parse_dates=True,index_col=0)
testSet=pd.read_csv('/Users/christiaan/Desktop/test-file.csv',parse_dates=True,index_col=0)
def plot_series(df):
df['Vehicles'].plot()
plt.show()
def extract_time_features_dummies(df,test=False):
df['year'] = df.index.year- 2015
df['month'] = df.index.month
#df[['Jan','Feb','Maa','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']]= pd.DataFrame([pd.get_dummies(df.index.month)], index=df.index)
#df['Jan'],df['Feb'],df['Maa'],df['Apr'],df['May'],df['Jun'],df['Jul'],df['Aug'],df['Sep'],df['Oct'],df['Nov'],df['Dec']= pd.get_dummies(df.index.month)
dummies = pd.get_dummies(df['month'],columns=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
#dummies = pd.DataFrame(dummies,axis=1,columns=['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
df2 = pd.concat([df,dummies], axis=1,ignore_index=True)
if test==True:
for i in range(8):
df2['extrMonth'+str(i)] = 0
df2.columns = ['Junction','ID' , 'year', 'month','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
else:
df2.columns = ['Junction', 'Vehicles','ID' , 'year', 'month','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
df2.drop(['Dec'],axis=1,inplace=True)
df2['day'] = df.index.day
df2['dayOfWeek']=df.index.weekday
df2['hour']=df.index.hour
df2['dayOfTheYear']= df.index.dayofyear
if test == False:
df2['IndexTimeSeries']= range(len(df))
else:
df2['IndexTimeSeries']= range(48120,48120+len(df))
return df2
def extract_time_features_Cat(df,test=False):
df['year'] = df.index.year- 2015
df['month'] = df.index.month
df['day'] = df.index.day
df['dayOfWeek']=df.index.weekday
df['hour']=df.index.hour
df['dayOfTheYear']= df.index.dayofyear
if test == False:
df['IndexTimeSeries']= range(len(df))
else:
df['IndexTimeSeries']= range(48120,48120+len(df))
df['quarterOfYear']=df.index.quarter
print(df)
#holidays?
return df
def addLaggingVariables(df,listOfLags):
for el in listOfLags:
df['Vehicles_lag'+str(el)] = df['Vehicles'].shift(el)
df.drop(df.index[:max(listOfLags)], inplace=True)
return df
def groupByJunction(df):
listOfJunctions = sorted(df['Junction'].unique())
return [df.loc[df['Junction']==i] for i in listOfJunctions]
def pipeline(df_train,df_test):
extendedDf_training = extract_time_features_Cat(df_train)
dfs_training = groupByJunction(extendedDf_training)
extendedDf_test = extract_time_features_Cat(df_test)
dfs_test = groupByJunction(extendedDf_test)
testperiod = (dfs_test[0].index[0],dfs_test[0].index[-1])
print(testperiod)
'''
for df in dfs:
plot_series(df)
FindArimaCoefs(df['Vehicles'])
'''
#FindArimaCoefs(dfs[0]['Vehicles'])
model = ARIMA(dfs_training[0]['Vehicles'].astype(np.float64), order=(7,1,0))
model_fit = model.fit()
output = model_fit.predict(testperiod[0],testperiod[1])
print(output)
plt.plot(output)
plt.show()
print(model_fit.summary())
return dfs_training
def inspectAutoCorrelation(df):
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df.values.squeeze(),lags=200,ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df,lags=200,ax=ax2)
'''
for i in range(10):
for j in range(10):
try:
arma_mod42_shift = sm.tsa.ARMA(df,(i,j)).fit()
print(arma_mod42_shift.summary(),"AIC:",arma_mod42_shift.aic,"BIC: ",arma_mod42_shift.bic)
print(i,j,"AIC:",arma_mod42_shift.aic,"BIC: ",arma_mod42_shift.bic)
except:
print(i,j,'fail')
'''
plt.show()
def param_tuning(trainSetX, trainSetY, model, parameters, cvSplits, verbose=False):
tscv = TimeSeriesSplit(n_splits=cvSplits)
models = GridSearchCV(model, parameters, cv=tscv, n_jobs=-1)
models.fit(trainSetX, trainSetY)
if (verbose):
print("========== PARAMETER TUNING RESULTS ===========")
print ("Winner:")
print (models.best_estimator_)
return models
def train_model_RFR(trainSetX, trainSetY):
cvSplits = 2
maxDepths = [8,10,18]
max_features=range(3,trainSetX.shape[1])
nEstimators =[200]
criterion=['mse']
n_jobs=[-1]
parameters = {'max_depth': maxDepths,'n_estimators':nEstimators,'criterion':criterion,'max_features':max_features,'n_jobs':n_jobs}
RFRs = param_tuning(trainSetX, trainSetY,RFR(),parameters,cvSplits,verbose=True)
return RFRs.best_estimator_
def train_model_SVM(trainSetX, trainSetY):
cvSplits = 5
ParameterTuningRanges= [{'C': [0.0000001,0.001,0.01,1, 100, 1000],
'kernel':['rbf']
}]
svrs = param_tuning(trainSetX, trainSetY, SVR(), ParameterTuningRanges,cvSplits, verbose=True)
#train_err = -svrs.best_score_
model = svrs.best_estimator_
return model
def generate_next_predictionVector(predictionLastWeek,NewFeatureVector):
augmented_time_series = np.hstack([NewFeatureVector, predictionLastWeek.reshape(len(predictionLastWeek),1)])
return augmented_time_series
def iterative_forecast(model, x, window, H):
""" Implements iterative forecasting strategy
Arguments:
----------
model: scikit-learn model that implements a predict() method
and is trained on some data x.
x: Numpy array containing the time series.
h: number of time periods needed for the h-step ahead
forecast
"""
forecast = np.zeros(H)
forecast[0] = model.predict(x)
for h in range(1, H):
features = generate_next_predictionVector(x, forecast[:h], window)
forecast[h] = model.predict(features)
return forecast
def predictAll(intialLaggedVariables,model,lag,featureVectorsToPredict):
intialLaggedVariables = intialLaggedVariables
firstVec = generate_next_predictionVector(intialLaggedVariables,featureVectorsToPredict[0:lag])
initialpredictions = model.predict(firstVec)
predictions = [[round(x) for x in initialpredictions]]
NumberOfTimeSpans= int(len(featureVectorsToPredict)/lag)
print('numbr of spans',NumberOfTimeSpans)
for i in range(1,NumberOfTimeSpans):
if i==1:
predictionsLastWeek = initialpredictions
pred = model.predict(generate_next_predictionVector(predictionsLastWeek,featureVectorsToPredict[i*lag:(i+1)*lag]))
predictions.append([round(x) for x in pred])
predictionsLastWeek=pred
if(len(featureVectorsToPredict) % lag !=0):
pred = model.predict(generate_next_predictionVector(predictionsLastWeek[:(len(featureVectorsToPredict)-NumberOfTimeSpans*lag)],featureVectorsToPredict[NumberOfTimeSpans*lag:len(featureVectorsToPredict)]))
predictions.append([round(x) for x in pred])
predictions = [item for sublist in predictions for item in sublist]
print(predictions)
return predictions
def pipelineRFR(df_train,df_test,lags):
extendedDf_training = extract_time_features_Cat(df_train)
extendedDf_training= addLaggingVariables(extendedDf_training,lags)
dfs_training = groupByJunction(extendedDf_training)
df_trainings_x=[]
df_trainings_y=[]
for df_train in dfs_training:
df_train=df_train[(np.abs(stats.zscore(df_train['Vehicles'])) < 3)]
df_train=df_train.resample('H').bfill()
#all_days = pd.date_range(df_train.index.min(), df_train.index.max(), freq='H')
df_trainings_y.append(df_train['Vehicles'])
df_trainings_x.append(df_train.drop('Vehicles',axis=1))
bestRFR = train_model_RFR(df_trainings_x[0][:13000], df_trainings_y[0][:13000])
testSetX=df_trainings_x[0][13025:13200]
testSetX=testSetX.drop(['Vehicles_lag'+str(lags[0])],axis=1).values
testSetY=df_trainings_y[0][13025:13200].values
intialLaggedVariables=testSetY[:lags[0]]
predictions = predictAll(intialLaggedVariables,bestRFR,lags[0],testSetX[lags[0]:])
print('pred',predictions)
print('testset',testSetY)
plt.plot(predictions,label='Prediction')
plt.plot(testSetY,label='Observations')
print(rmse(predictions, testSetY))
plt.legend()
plt.show()
def pipelineRFR2(df_train,df_test,lags):
extendedDf_training = extract_time_features_Cat(df_train)
extendedDf_training=addLaggingVariables(extendedDf_training,lags)
dfs_training = groupByJunction(extendedDf_training)
df_trainings_x=[]
df_trainings_y=[]
for df_train in dfs_training:
df_train=df_train[(np.abs(stats.zscore(df_train['Vehicles'])) < 3)]
#df_train=df_train.resample('H').ffill()
df_train=pd.rolling_mean(df_train.resample("1H", fill_method="ffill"), window=3, min_periods=1)
#all_days = pd.date_range(df_train.index.min(), df_train.index.max(), freq='H')
df_trainings_y.append(df_train['Vehicles'])
df_trainings_x.append(df_train.drop('Vehicles',axis=1))
for i in range(3,4):#,len(df_trainings_x)):
splitIndex = int(0.88*len(df_trainings_x[i]))
print('training models for junction '+str(i))
bestRFR = train_model_RFR(df_trainings_x[i][:splitIndex], df_trainings_y[i][:splitIndex])
testSetX=df_trainings_x[i][splitIndex+25:splitIndex+200]
#testSetX=testSetX.drop(['Vehicles_lag'+str(lags[0])],axis=1).values
testSetY=df_trainings_y[i][splitIndex+25:splitIndex+200].values
targets=testSetY[lags[0]:]
intialLaggedVariables=testSetY[:lags[0]] #take lag-last ones of trainingset
featureSetToTest=testSetX.drop(['Vehicles_lag'+str(lags[0])],axis=1)[lags[0]:]
#predictedLabels = featureSetToTest['ID']
inputFeatures=featureSetToTest.values
predictions = predictAll(intialLaggedVariables,bestRFR,lags[0],inputFeatures)
#print('lenLabels',len(predictedLabels))
output=list(map(list, zip(*[featureSetToTest['ID'].values,predictions])))
output = pd.DataFrame(output,columns=['ID','Vehicles'])
plt.plot(predictions,label='Prediction')
plt.plot(targets,label='Observations')
print(rmse(predictions, targets))
plt.legend()
plt.show()
def pipelineRFR3(df_train,df_test,lags):
extendedDf_training = extract_time_features_Cat(df_train)
extendedDf_test = extract_time_features_Cat(df_test,test=True)
extendedDf_training=addLaggingVariables(extendedDf_training,lags)
#group training per junction
dfs_training = groupByJunction(extendedDf_training)
df_trainings_x=[]
df_trainings_y=[]
df_test_x=[]
for df_train in dfs_training:
df_train=df_train[(np.abs(stats.zscore(df_train['Vehicles'])) < 3)]
df_train=pd.rolling_mean(df_train.resample("1H", fill_method="ffill"), window=3, min_periods=1)
df_trainings_y.append(df_train['Vehicles'])
df_trainings_x.append(df_train.drop('Vehicles',axis=1))
#group test per junction:
dfs_test = groupByJunction(extendedDf_test)
df_test_x=dfs_test
result=[]
for i in range(len(df_trainings_x)):
print('training model for junction '+str(i+1))
gapsize=lags[0]
trainSetX=df_trainings_x[i][:-gapsize].drop('ID',axis=1)
trainSetY=df_trainings_y[i][:-gapsize].values
bestRFR = train_model_RFR(trainSetX, trainSetY)
intialLaggedVariables=df_trainings_y[i][-gapsize:].values #take lag-last ones of trainingset
featureSetToTest=df_test_x[i]
featureSetToTest_withoutID =featureSetToTest.drop('ID',axis=1)
#predictedLabels = featureSetToTest['ID']
inputFeatures=featureSetToTest_withoutID.values
predictions = predictAll(intialLaggedVariables,bestRFR,gapsize,inputFeatures)
output=list(map(list, zip(*[featureSetToTest['ID'].values,predictions])))
output = pd.DataFrame(output,columns=['ID','Vehicles'])
result.append(output)
#plt.plot(predictions,label='Prediction')
#plt.legend()
#plt.show()
resultDF = pd.concat(result,axis=0)
print('result',resultDF)
print('result length',len(resultDF))
now = datetime.datetime.time(datetime.datetime.now())
resultDF.to_csv('result'+str(now)+'.csv')
print('file saved:''result'+str(now)+'.csv')
def main():
#df = trainingSet.loc[trainingSet['Junction'] == 4]
#print(df)
#plot_series(df)
#inspectAutoCorrelation()
pipelineRFR3(trainingSet,testSet,[24])
if __name__ == "__main__": main()