-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboard.py
246 lines (212 loc) · 7.87 KB
/
board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from copy import copy
from constants import (
BLACK,
WHITE,
UNKNOWN,
CONTRADICTION,
GIVENS,
DEBUG,
is_success,
)
from utility import mdist
class Board(object):
"""
Implements solving and assumption tracking logic.
Every non-abstract subclass of board must implement an is_valid function.
This function returns False if the current state is certainly invalid, or
True if it is valid or potentially valid.
"""
def __init__(self):
self.last_conclusion = None # used for search heuristics
self.limit = None
def solve(self, max_depth=1, verify_unique=False):
if not self.is_valid():
return False
Board.early_solution = None
Board.verify_unique = verify_unique
Board.max_depth = max_depth
Board.depth_reached = 0
Board.is_valid_count = 0
solve_thread = self.solve_thread(depth=0)
result = None
for result in solve_thread:
if self.limit and Board.is_valid_count > self.limit:
return
if result is True:
self.data = Board.early_solution.data
return True
if DEBUG(1):
if is_success(result):
print self
print
elif result == False:
print 'board unsolvable'
if result is False or len(self.unknown_positions) > 0:
return False # incomplete
else:
return True # fully solved
def solve_thread(self, depth):
if depth > Board.max_depth:
return
if depth > Board.depth_reached:
Board.depth_reached = depth
yield None
while True:
for result in self.conclusion_thread(depth):
if result is None:
yield None
elif result is True:
yield True
return
else:
position, color = result
self.last_conclusion = position
self.set_value(position, color)
Board.is_valid_count += 1
if not self.is_valid(position, color):
yield False
return
yield result
if not Board.verify_unique and len(self.unknown_positions) == 0:
Board.early_solution = self
yield True
return
break # restart while loop, continue searching
else:
return # conclusion thread found nothing, stop searching
def conclusion_thread(self, depth):
assumption_threads = []
for pos in self.prioritized_positions():
for color in (BLACK, WHITE):
assumption_threads.append(self.assumption_thread(pos, color, depth))
while assumption_threads:
finished_threads = []
for at in assumption_threads:
result = None
try:
result = at.next()
except StopIteration:
finished_threads.append(at)
if result is None:
pass
elif result is True:
yield True
return
else:
yield result
return
for ft in finished_threads:
assumption_threads.remove(ft)
yield None # now that all threads have gone once, pass control
def assumption_thread(self, position, color, depth):
self.set_value(position, color)
Board.is_valid_count += 1
valid = self.is_valid(position, color)
self.set_value(position, UNKNOWN)
if not valid:
yield (position, opposite_color(color))
yield None
assumption_board = self.copy()
assumption_board.set_value(position, color)
assumption_board.last_conclusion = position
for result in assumption_board.solve_thread(depth + 1):
if result is None:
yield None
elif result is False:
yield (position, opposite_color(color))
elif result is True:
yield True
return
def is_valid(self, position=None, color=None):
"""
Determine whether a board has a legal or illegal position.
Each subclass must provide a validity_checks list.
The position and color arguments that are passed on to each validity
function are the position and color of the most changed cell, and are
only used for optimization, not for correctness.
"""
for valid_func in self.validity_checks:
if not valid_func(self, position, color):
return False
return True
# optimization #
def prioritized_positions(self):
priority_dict = {}
for pos in self.unknown_positions:
priority_dict[pos] = self.priority(pos)
position_list = list(self.unknown_positions)
return sorted(position_list, key=priority_dict.__getitem__, reverse=True)
def priority(self, position):
score = 0
if self.last_conclusion is not None:
dist = mdist(position, self.last_conclusion)
score += max(5 - dist, 0)
for adj in self.adjacencies[position]:
if not self.is_unknown(adj):
score += 1
return score
def update_color_caches(self, pos, value):
if pos in self.black_positions:
self.black_positions.remove(pos)
if pos in self.white_positions:
self.white_positions.remove(pos)
if pos in self.unknown_positions:
self.unknown_positions.remove(pos)
if value == BLACK:
self.black_positions.add(pos)
elif value == WHITE or value in GIVENS:
self.white_positions.add(pos)
elif value == UNKNOWN:
self.unknown_positions.add(pos)
# grid overrides #
def _in_bounds(self, x, y):
"""Determine whether a particular point is within the hexagonal boundary of the board."""
return False
def _adjacencies(self, pos):
"""Return all in-bounds adjacencies of the given position."""
return []
def __str__(self):
return repr(self)
def copy(self):
#TODO: implement more precise copying, less shotgun approach.
new_board = copy(self)
new_board.data = copy(self.data)
new_board.positions = copy(self.positions)
new_board.black_positions = copy(self.black_positions)
new_board.white_positions = copy(self.white_positions)
new_board.unknown_positions = copy(self.unknown_positions)
return new_board
def clear_data(self):
for pos in self.positions:
self.set_unknown(pos)
def is_black(self, pos):
return self[pos] == BLACK
def is_white(self, pos):
value = self[pos]
return value == WHITE or value in GIVENS # givens are white
def is_unknown(self, pos):
return self[pos] == UNKNOWN
def set_black(self, pos):
self.set_value(pos, BLACK)
def set_white(self, pos):
self.set_value(pos, WHITE)
def set_unknown(self, pos):
self.set_value(pos, UNKNOWN)
def set_value(self, pos, value):
if pos in self.positions:
if self[pos] != value:
self[pos] = value
self.update_color_caches(pos, value)
def __getitem__(self, key):
return self.data[key]
def __setitem__(self, key, value):
self.data[key] = value
def __eq__(self, other):
return self.data == other.data
def __ne__(self, other):
return not (self == other)
def opposite_color(color):
if color == WHITE:
return BLACK
if color == BLACK:
return WHITE