-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
82 lines (66 loc) · 3.23 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
MIT License
Copyright (c) 2021 Christian Landgraf
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import pandas as pd
import numpy as np
from scipy.spatial.transform import Rotation
class RobotAccuracyDataset(object):
"""
A simple starting point to use the dataset
"""
def __init__(self):
pass
def read_csv_ur10(self, csv_file):
"""
Read a given dataset csv file
"""
df = pd.read_csv(csv_file, sep=';', decimal=',', header=0)
return df
def get_LT_TM_trafo(self, row):
"""
Return a homogenous transformation matrix from Laser tracker to T-Mac
"""
rot_LT_TM = Rotation.from_euler('XYZ',
[row['measurement_rx'],
row['measurement_ry'],
row['measurement_rz']],
degrees = True)
trafo_LT_TM = np.identity(4)
trafo_LT_TM[:3, :3] = rot_LT_TM.as_matrix()
trafo_LT_TM[:3, 3] = [row['measurement_x'], row['measurement_y'], row['measurement_z']]
return trafo_LT_TM
def get_R_F_trafo(self, row):
"""
Return a homogenous transformation matrix from robot base to flange
"""
# [x, y, z, roll, pitch, yaw] format
if 'Goal x' in row:
rot_R_F = Rotation.from_euler('xyz',
[row['Goal roll'], row['Goal pitch'], row['Goal yaw']],
degrees = False)
trafo_R_F = np.identity(4)
trafo_R_F[:3, :3] = rot_R_F.as_matrix()
trafo_R_F[:3, 3] = [row['Goal x']*1000, row['Goal y']*1000, row['Goal z']*1000]
# [x, y, z, qx, qy, qz, qw] format (in case of calibration)
elif 'flange_x' in row:
rot_R_F = Rotation.from_quat([row['flange_qx'], row['flange_qy'], row['flange_qz'], row['flange_qw']])
trafo_R_F = np.identity(4)
trafo_R_F[:3, :3] = rot_R_F.as_matrix()
trafo_R_F[:3, 3] = [row['flange_x']*1000, row['flange_y']*1000, row['flange_z']*1000]
return trafo_R_F