-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsc2DqnAgent.py
2596 lines (2151 loc) · 123 KB
/
sc2DqnAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
import warnings
# framework imports
from keras.layers import Lambda, Input, Dense, Conv2D, Flatten
from rl.memory import RingBuffer
from rl.agents.dqn import Agent
from rl.policy import EpsGreedyQPolicy, GreedyQPolicy
from rl.util import *
from baselines.common.schedules import LinearSchedule
# eigene Klassen
from agent2 import Agent2, Agent3
from noisyNetLayers import NoisyDense, NoisyConv2D
# Repräsentation einer Aktion für den Agent, bestehend aus
# einer Aktion und zugehörigen Koordinaten (die ggf. ignoriert werden)
class Sc2Action:
# default: noop
def __init__(self, act=0, x=0, y=0):
self.coords = (x, y)
self.action = act
# Der Klassenstruktur des Keras-rl Frameworks folgend (siehe rl.agents.dqn.py) Kopien der Klasse AbstractDQNAgent,
# welche kaum modifiziert sind (in den jeweiligen Kommentaren am Klassenanfang beschrieben).
class AbstractSc2DQNAgent(Agent):
"""
Keine Änderungen, außer dem Erben von einer anderen Agent-Klasse,
sowie dem Entfernen einiger Assertions, welche die Dimension des Outputs prüften.
"""
def __init__(self, nb_actions, screen_size, memory, gamma=.99, batch_size=32, nb_steps_warmup=1000,
train_interval=1, memory_interval=1, target_model_update=10000,
delta_range=None, delta_clip=np.inf, custom_model_objects={}, **kwargs):
super(AbstractSc2DQNAgent, self).__init__(**kwargs)
# Soft vs hard target model updates.
if target_model_update < 0:
raise ValueError('`target_model_update` must be >= 0.')
elif target_model_update >= 1:
# Hard update every `target_model_update` steps.
target_model_update = int(target_model_update)
else:
# Soft update with `(1 - target_model_update) * old + target_model_update * new`.
target_model_update = float(target_model_update)
if delta_range is not None:
warnings.warn(
'`delta_range` is deprecated. Please use `delta_clip` instead, which takes a single scalar. For now we\'re falling back to `delta_range[1] = {}`'.format(
delta_range[1]))
delta_clip = delta_range[1]
# Parameters.
self.nb_actions = nb_actions
self.screen_size = screen_size
self.gamma = gamma
self.batch_size = batch_size
self.nb_steps_warmup = nb_steps_warmup
self.train_interval = train_interval
self.memory_interval = memory_interval
self.target_model_update = target_model_update
self.delta_clip = delta_clip
self.custom_model_objects = custom_model_objects
# Related objects.
self.memory = memory
# State.
self.compiled = False
def process_state_batch(self, batch):
batch = np.array(batch)
if self.processor is None:
return batch
return self.processor.process_state_batch(batch)
def compute_batch_q_values(self, state_batch):
batch = self.process_state_batch(state_batch)
q_values = self.model.predict_on_batch(batch)
# assert q_values.shape == (len(state_batch), self.nb_actions) (len(state_batch), 2)
return q_values
def compute_q_values(self, state):
q_values = self.compute_batch_q_values([state])
# q_values = self.compute_batch_q_values([state]).flatten()
# assert q_values.shape == (2, 1) ?
return q_values
def get_config(self):
return {
'nb_actions': self.nb_actions,
'screen_size': self.screen_size,
'gamma': self.gamma,
'batch_size': self.batch_size,
'nb_steps_warmup': self.nb_steps_warmup,
'train_interval': self.train_interval,
'memory_interval': self.memory_interval,
'target_model_update': self.target_model_update,
'delta_clip': self.delta_clip,
'memory': get_object_config(self.memory),
}
class AbstractSc2DQNAgent2(Agent2):
"""
Keine Änderungen, außer dem Erben von einer anderen Agent-Klasse,
sowie dem Entfernen einiger Assertions, welche die Dimension des Outputs prüften.
"""
def __init__(self, nb_actions, screen_size, memory, gamma=.99, batch_size=32, nb_steps_warmup=1000,
train_interval=1, memory_interval=1, target_model_update=10000,
delta_range=None, delta_clip=np.inf, custom_model_objects={}, **kwargs):
super(AbstractSc2DQNAgent2, self).__init__(**kwargs)
# Soft vs hard target model updates.
if target_model_update < 0:
raise ValueError('`target_model_update` must be >= 0.')
elif target_model_update >= 1:
# Hard update every `target_model_update` steps.
target_model_update = int(target_model_update)
else:
# Soft update with `(1 - target_model_update) * old + target_model_update * new`.
target_model_update = float(target_model_update)
if delta_range is not None:
warnings.warn(
'`delta_range` is deprecated. Please use `delta_clip` instead, which takes a single scalar. For now we\'re falling back to `delta_range[1] = {}`'.format(
delta_range[1]))
delta_clip = delta_range[1]
# Parameters.
self.nb_actions = nb_actions
self.screen_size = screen_size
self.gamma = gamma
self.batch_size = batch_size
self.nb_steps_warmup = nb_steps_warmup
self.train_interval = train_interval
self.memory_interval = memory_interval
self.target_model_update = target_model_update
self.delta_clip = delta_clip
self.custom_model_objects = custom_model_objects
# Related objects.
self.memory = memory
# State.
self.compiled = False
def process_state_batch(self, batch):
batch = np.array(batch)
if self.processor is None:
return batch
return self.processor.process_state_batch(batch)
def compute_batch_q_values(self, state_batch):
batch = self.process_state_batch(state_batch)
q_values = self.model.predict_on_batch(batch)
# assert q_values.shape == (len(state_batch), self.nb_actions) (len(state_batch), 2)
return q_values
def compute_q_values(self, state):
q_values = self.compute_batch_q_values([state])
# q_values = self.compute_batch_q_values([state]).flatten()
# assert q_values.shape == (2, 1) ?
return q_values
def get_config(self):
return {
'nb_actions': self.nb_actions,
'screen_size': self.screen_size,
'gamma': self.gamma,
'batch_size': self.batch_size,
'nb_steps_warmup': self.nb_steps_warmup,
'train_interval': self.train_interval,
'memory_interval': self.memory_interval,
'target_model_update': self.target_model_update,
'delta_clip': self.delta_clip,
'memory': get_object_config(self.memory),
}
class AbstractSc2DQNAgent3(Agent3):
"""
Keine Änderungen, außer dem Erben von einer anderen Agent-Klasse,
sowie dem Entfernen einiger Assertions, welche die Dimension des Outputs prüften.
"""
def __init__(self, nb_actions, screen_size, memory, gamma=.99, batch_size=32, nb_steps_warmup=1000,
train_interval=1, memory_interval=1, target_model_update=10000,
delta_range=None, delta_clip=np.inf, custom_model_objects={}, **kwargs):
super(AbstractSc2DQNAgent3, self).__init__(**kwargs)
# Soft vs hard target model updates.
if target_model_update < 0:
raise ValueError('`target_model_update` must be >= 0.')
elif target_model_update >= 1:
# Hard update every `target_model_update` steps.
target_model_update = int(target_model_update)
else:
# Soft update with `(1 - target_model_update) * old + target_model_update * new`.
target_model_update = float(target_model_update)
if delta_range is not None:
warnings.warn(
'`delta_range` is deprecated. Please use `delta_clip` instead, which takes a single scalar. For now we\'re falling back to `delta_range[1] = {}`'.format(
delta_range[1]))
delta_clip = delta_range[1]
# Parameters.
self.nb_actions = nb_actions
self.screen_size = screen_size
self.gamma = gamma
self.batch_size = batch_size
self.nb_steps_warmup = nb_steps_warmup
self.train_interval = train_interval
self.memory_interval = memory_interval
self.target_model_update = target_model_update
self.delta_clip = delta_clip
self.custom_model_objects = custom_model_objects
# Related objects.
self.memory = memory
# State.
self.compiled = False
def process_state_batch(self, batch):
batch = np.array(batch)
if self.processor is None:
return batch
return self.processor.process_state_batch(batch)
def compute_batch_q_values(self, state_batch):
batch = self.process_state_batch(state_batch)
q_values = self.model.predict_on_batch(batch)
# assert q_values.shape == (len(state_batch), self.nb_actions) (len(state_batch), 2)
return q_values
def compute_q_values(self, state):
q_values = self.compute_batch_q_values([state])
return q_values
def get_config(self):
return {
'nb_actions': self.nb_actions,
'screen_size': self.screen_size,
'gamma': self.gamma,
'batch_size': self.batch_size,
'nb_steps_warmup': self.nb_steps_warmup,
'train_interval': self.train_interval,
'memory_interval': self.memory_interval,
'target_model_update': self.target_model_update,
'delta_clip': self.delta_clip,
'memory': get_object_config(self.memory),
}
# Die eigentlichen Agents inklusive der Lernalgorithmen! V4 ist die neueste Klasse, die zum FullyConv V10 Agent gehört!
# V5 ist der Versuch der Implementierung von Distributional RL, welcher gerade noch nicht lernt
# (aber ansonsten funktioniert). Ältere Agents wurden aus historischen Gründen nicht gelöscht,
# sind aber kaum kommentiert.
# V4 -> unified agent, only distributional rl missing to rainbow, to be paired with FullyConv_V10
# A modified version of the Keras-rl DQN Agent to handle a much larger actionspace (multiple outputs required)
class Sc2DqnAgent_v4(AbstractSc2DQNAgent3):
"""
For references to all algorithms please have a look at the README.MD of the Project.
# Arguments
model__: A Keras model.
policy__: A Sc2Policy.
test_policy__: A Sc2Policy.
enable_double_dqn__: A boolean which enable target network as a second network proposed by van Hasselt et al. to decrease overfitting.
enable_dueling_dqn__: A boolean which enable dueling architecture proposed by Mnih et al.
dueling_type__: If `enable_dueling_dqn` is set to `True`, a type of dueling architecture must be chosen which calculate Q(s,a) from V(s) and A(s,a) differently. Note that `avg` is recommanded in the [paper](https://arxiv.org/abs/1511.06581).
`avg`: Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-Avg_a(A(s,a;theta)))
`max`: Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-max_a(A(s,a;theta)))
`naive`: Q(s,a;theta) = V(s;theta) + A(s,a;theta)
noisy_nets__: A boolean which changes the last Dense-Layer and Conv2D_Layer in the dueling architecture to their noisy equivalents. Note that if dueling is inactive, noisyNets have to be added to the Model before it's passed to this class.
prio_replay__: A boolean which signals the Agent, if the memory is PrioritizedReplayBuffer (true) or ReplayBuffer (false) and if true, enables priority calculation.
prio_replay_beta__: A 3-tuple which contains (start_value_beta, end_value_beta, number_of_steps) as parameters for prio_replay (ignored if it's inactive).
multi_step_size__: Positive integer that determines the step-size of the algorithm, see readme.md for reference of multi-step algorithm.
# Anmerkung - Übersicht!
Für die Implementierung interessant sind insbesondere die folgenden Methoden:
- __init__(): hier wird die Dueling-Modifikation vorgenommen, falls eingeschaltet.
- compile(): hier steht die Loss-Funktion, welche als Lambda-Layer implementiert wird.
- forward(): Speichert State-Action Paare im RingBuffer
- backward(): Speichert Rewards im RingBuffer, Speichert (S, A, R_n, S_n, done) Tupel im Replay Memory,
zieht Werte aus dem ReplayMemory, berechnet neue Target-Q-Werte, führt einen
Lernschritt (train_on_batch() Methode) aus, berechnet ggf. neue Prioritäten.
"""
def __init__(self, model, policy=None, test_policy=None, enable_double_dqn=False, enable_dueling_network=False,
dueling_type='avg', noisy_nets=True, prio_replay=True, prio_replay_beta=(0.5, 1.0, 200000),
bad_prio_replay=True, multi_step_size=3, *args, **kwargs):
super(Sc2DqnAgent_v4, self).__init__(*args, **kwargs)
# Validate (important) input. Falls man sein Model falsch definiert hat ( ^:
if hasattr(model.output, '__len__') and len(model.output) != 2:
raise ValueError(
'Model "{}" has more or less than two outputs. DQN expects a model that has exactly 2 outputs.'.format(
model))
# Parameters.
self.enable_double_dqn = enable_double_dqn
self.enable_dueling_network = enable_dueling_network
self.dueling_type = dueling_type
self.noisy_nets = noisy_nets
self.prio_replay = prio_replay
self.prio_replay_beta = prio_replay_beta
self.bad_prio_replay = bad_prio_replay
self.multi_step_size = multi_step_size
# Wenn Dueling Networks eingeschaltet ist, werden hier die letzten Ebenen des Netzwerks ersetzt
# durch ein Dueling-Modul. Jeweils für den linearen Output und den zweidimensionalen Output.
if self.enable_dueling_network:
# linearer Output
# vorletzte Ebene des linearen Outputs holen (letzte Ebene wird vergessen)
layer = model.layers[5]
nb_action = model.output[0]._keras_shape[-1]
# layer y has a shape (nb_action+1,)
# y[:,0] represents V(s;theta)
# y[:,1:] represents A(s,a;theta)
if self.noisy_nets:
y = NoisyDense(nb_action + 1, activation='linear', kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(layer.output)
else:
y = Dense(nb_action + 1, activation='linear')(layer.output)
# calculate the Q(s,a;theta)
# dueling_type == 'avg'
# Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-Avg_a(A(s,a;theta)))
# dueling_type == 'max'
# Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-max_a(A(s,a;theta)))
# dueling_type == 'naive'
# Q(s,a;theta) = V(s;theta) + A(s,a;theta)
# Lambda-Layer, welche den gesplitteten Output der Dueling-Layer zusammenführt, je nach Modus.
if self.dueling_type == 'avg':
lin_outputlayer = Lambda(
lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:] - K.mean(a[:, 1:], keepdims=True),
output_shape=(nb_action,))(y)
elif self.dueling_type == 'max':
lin_outputlayer = Lambda(
lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:] - K.max(a[:, 1:], keepdims=True),
output_shape=(nb_action,))(y)
elif self.dueling_type == 'naive':
lin_outputlayer = Lambda(lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:], output_shape=(nb_action,))(y)
else:
assert False, "dueling_type must be one of {'avg','max','naive'}"
# zweidimensionaler Output
# vorletzte Ebene des 2D-Outputs holen (letzte Ebene wird vergessen)
conv_layer = model.layers[3].output
conv_flat = Flatten()(conv_layer)
if noisy_nets:
conv_value = NoisyDense(1, activation="linear", kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(conv_flat)
conv_action = NoisyConv2D(1, (1, 1), padding="same", activation="linear",
kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(conv_layer)
else:
conv_value = Dense(1, activation="linear")(conv_flat)
conv_action = Conv2D(1, (1, 1), padding="same", activation="linear")(conv_layer)
conv_lambda_in = [conv_value, conv_action]
# Lambda-Layer, welche den gesplitteten Output der Dueling-Layer zusammenführt, je nach Modus.
if self.dueling_type == 'avg':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1] - K.mean(a[1], keepdims=True)
)(conv_lambda_in)
elif self.dueling_type == 'max':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1] - K.max(a[1], keepdims=True)
)(conv_lambda_in)
elif self.dueling_type == 'naive':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1]
)(conv_lambda_in)
else:
assert False, "dueling_type must be one of {'avg','max','naive'}"
# Zsammenführen des neuen Dueling-Models
model = Model(inputs=model.input, outputs=[lin_outputlayer, conv_outputlayer])
# Related objects.
self.model = model
assert policy is not None
if test_policy is None:
test_policy = policy
self.policy = policy
self.test_policy = test_policy
if self.prio_replay:
assert len(prio_replay_beta) == 3
self.beta_schedule = LinearSchedule(prio_replay_beta[2],
initial_p=prio_replay_beta[0],
final_p=prio_replay_beta[1])
# RingBuffer für State-Action Paare, speichert abhängig der Größe der StepSize die entsprechende
# Anzahl an Einträgen in form von 2-Tupeln (State, Action)
self.recent = RingBuffer(maxlen=multi_step_size)
# RingBuffer für Rewards
self.recent_r = RingBuffer(maxlen=multi_step_size)
# State.
self.reset_states()
def get_config(self):
config = super(Sc2DqnAgent_v4, self).get_config()
config['enable_double_dqn'] = self.enable_double_dqn
config['dueling_type'] = self.dueling_type
config['enable_dueling_network'] = self.enable_dueling_network
config['model'] = get_object_config(self.model)
config['policy'] = get_object_config(self.policy)
config['test_policy'] = get_object_config(self.test_policy)
if self.compiled:
config['target_model'] = get_object_config(self.target_model)
return config
def compile(self, optimizer, metrics=[]):
metrics += [mean_q] # register default metrics
# We never train the target model, hence we can set the optimizer and loss arbitrarily.
self.target_model = clone_model(self.model, self.custom_model_objects)
self.target_model.compile(optimizer='sgd', loss='mse')
self.model.compile(optimizer='sgd', loss='mse')
# Compile model.
if self.target_model_update < 1.:
# We use the `AdditionalUpdatesOptimizer` to efficiently soft-update the target model.
updates = get_soft_target_model_updates(self.target_model, self.model, self.target_model_update)
optimizer = AdditionalUpdatesOptimizer(optimizer, updates)
# Lambda-Layer, welche den Loss des Netzwerks berechnet!
def clipped_masked_error(args):
y_true_a, y_true_b, y_pred_a, y_pred_b, mask_a, mask_b = args
loss = [huber_loss(y_true_a, y_pred_a, self.delta_clip),
huber_loss(y_true_b, y_pred_b, self.delta_clip)]
loss[0] *= mask_a # apply element-wise mask
loss[1] *= mask_b # apply element-wise mask
sum_loss_a = K.sum(loss[0])
sum_loss_b = K.sum(loss[1])
return K.sum([sum_loss_a, sum_loss_b], axis=-1)
# Kommentar aus der Keras-rl Implementierung
# Create trainable model. The problem is that we need to mask the output since we only
# ever want to update the Q values for a certain action. The way we achieve this is by
# using a custom Lambda layer that computes the loss. This gives us the necessary flexibility
# to mask out certain parameters by passing in multiple inputs to the Lambda layer.
y_pred = self.model.output
y_true_a = Input(name='y_true_a', shape=(self.nb_actions,))
y_true_b = Input(name='y_true_b', shape=(self.screen_size, self.screen_size, 1))
mask_a = Input(name='mask_a', shape=(self.nb_actions,))
mask_b = Input(name='mask_b', shape=(self.screen_size, self.screen_size, 1))
loss_out = Lambda(clipped_masked_error, output_shape=(1,), name='loss')(
[y_true_a, y_true_b, y_pred[0], y_pred[1], mask_a, mask_b])
ins = [self.model.input] if type(self.model.input) is not list else self.model.input
# Finale Model-Definition, die ermöglicht, eine Observation (ins) sowie zwei Target-Q-Werte (y_true_a linearer
# Output, y_true_b zweidimensionaler Output) und zwei Masken (Null-Vektor/Null-Matrix mit einer Eins an der
# Position der gewählten Aktion) an das Netzwerk zu übergeben, dessen erster Output dann der Loss ist.
trainable_model = Model(inputs=ins + [y_true_a, y_true_b, mask_a, mask_b],
outputs=[loss_out, y_pred[0], y_pred[1]])
print(trainable_model.summary())
losses = [
lambda y_true, y_pred: y_pred, # loss is computed in Lambda layer
lambda y_true, y_pred: K.zeros_like(y_pred), # we only include this for the metrics
lambda y_true, y_pred: K.zeros_like(y_pred), # we only include this for the metrics
]
trainable_model.compile(optimizer=optimizer, loss=losses) # metrics=combined_metrics
self.trainable_model = trainable_model
self.compiled = True
def load_weights(self, filepath):
self.model.load_weights(filepath)
self.update_target_model_hard()
def save_weights(self, filepath, overwrite=False):
self.model.save_weights(filepath, overwrite=overwrite)
def reset_states(self):
self.recent_action = None
self.recent_observation = None
if self.compiled:
self.model.reset_states()
self.target_model.reset_states()
def update_target_model_hard(self):
self.target_model.set_weights(self.model.get_weights())
def forward(self, observation):
# Select an action.
state = [observation]
q_values = self.compute_q_values(state)
if self.training:
action = self.policy.select_action(q_values=q_values)
else:
action = self.test_policy.select_action(q_values=q_values)
# Book-keeping.
self.recent.append((observation, action))
return action
def backward(self, reward, terminal, observation_1):
# Reward in den RingBuffer.
self.recent_r.append(reward)
# Store most recent experience in memory. (s_t, a_t, r_t1 + gamma*r_t2, s_t2, ter2)
# I cheated here: if you receive a reward in the last step to a terminal state, it will be discounted falsely.
if self.step % self.memory_interval == 0:
# some resetting after terminal/done stuff to not save cross episodes.
if self.recent.__len__() == self.recent.maxlen:
if self.recent.__getitem__(0) is not None:
acc_r = 0
for i in range(self.recent_r.maxlen):
acc_r += self.recent_r.__getitem__(i) * (self.gamma ** i)
rec_0 = self.recent.__getitem__(0)
obs_0 = rec_0[0]
act_0 = rec_0[1]
# Neues Tupel ins ReplayMemory einfügen!
self.memory.add(obs_0, act_0, acc_r, observation_1, terminal)
metrics = [np.nan for _ in self.metrics_names]
if not self.training:
# We're done here. No need to update the experience memory since we only use the working
# memory to obtain the state over the most recent observations.
return metrics
# Train the network on a single stochastic batch.
if self.step > self.nb_steps_warmup and self.step % self.train_interval == 0:
# Ziehen der Erfahrungen aus dem ReplayMemory
if self.prio_replay:
experiences = self.memory.sample(self.batch_size, self.beta_schedule.value(self.step))
else:
experiences = self.memory.sample(self.batch_size)
assert len(experiences[0]) == self.batch_size
# Start by extracting the necessary parameters (we use a vectorized implementation).
state0_batch = []
action_batch = []
reward_batch = []
state2_batch = []
terminal2_batch = []
if self.prio_replay:
prio_weights_batch = []
id_batch = []
if self.prio_replay:
experiences = zip(experiences[0], experiences[1], experiences[2], experiences[3], experiences[4],
experiences[5], experiences[6])
else:
experiences = zip(experiences[0], experiences[1], experiences[2], experiences[3], experiences[4])
for e in experiences:
state0_batch.append(e[0])
action_batch.append(e[1])
reward_batch.append(e[2])
state2_batch.append(e[3])
terminal2_batch.append(0. if e[4] else 1.)
if self.prio_replay:
prio_weights_batch.append(e[5])
id_batch.append(e[6])
# Prepare and validate parameters.
state0_batch = self.process_state_batch(state0_batch)
state2_batch = self.process_state_batch(state2_batch)
terminal2_batch = np.array(terminal2_batch)
reward_batch = np.array(reward_batch)
if self.prio_replay:
prio_weights_batch = np.array(prio_weights_batch)
else:
prio_weights_batch = np.ones(reward_batch.shape)
assert reward_batch.shape == (self.batch_size,)
assert terminal2_batch.shape == reward_batch.shape
assert len(action_batch) == len(reward_batch)
# Compute Q values for mini-batch update.
if self.enable_double_dqn:
# According to the paper "Deep Reinforcement Learning with Double Q-learning"
# (van Hasselt et al., 2015), in Double DQN, the online network predicts the actions
# while the target network is used to estimate the Q value.
q2_values = self.model.predict_on_batch(state2_batch)
actions_a = np.argmax(q2_values[0], -1)
actions_b = []
for ac_b in q2_values[1]:
actions_b.append(np.unravel_index(ac_b.argmax(), ac_b.shape)[0:2])
actions_b = np.array(actions_b)
# Now, estimate Q values using the target network but select the values with the
# highest Q value wrt to the online model (as computed above).
target_q2_values = self.target_model.predict_on_batch(state2_batch)
q_batch_a = target_q2_values[0][range(self.batch_size), actions_a]
q_batch_b = []
for (i, square_q) in enumerate(target_q2_values[1]):
q_batch_b.append(square_q[:, :, 0][actions_b[i][0], actions_b[i][1]])
q_batch_b = np.array(q_batch_b)
else:
# Compute the q_values given state1, and extract the maximum for each sample in the batch.
# We perform this prediction on the target_model instead of the model for reasons
# outlined in Mnih (2015). In short: it makes the algorithm more stable.
# target_q_values = self.target_model.predict_on_batch(state1_batch)
target_q2_values = self.target_model.predict_on_batch(state2_batch)
q_batch_a = np.max(target_q2_values[0], axis=-1)
q_batch_b = np.max(target_q2_values[1], axis=(1, 2))[:, 0]
q_batch_a = np.array(q_batch_a)
q_batch_b = np.array(q_batch_b)
# Sammeln der Werte in für das Netzwerk lesbarem Format, Generieren der Masken für die gewählten Actions.
targets_a = np.zeros((self.batch_size, self.nb_actions,))
targets_b = np.zeros((self.batch_size, self.screen_size, self.screen_size, 1))
masks_a = np.zeros((self.batch_size, self.nb_actions,))
masks_b = np.zeros((self.batch_size, self.screen_size, self.screen_size, 1))
# Compute r_t+n (included discounting) + gamma^n * max_a Q(s_t+n, a) and update the targets accordingly,
# but only for the affected output units (as given by action_batch). (Called Rs_a and Rs_b)
discounted_reward_batch_a = (self.gamma ** self.multi_step_size) * q_batch_a
discounted_reward_batch_b = (self.gamma ** self.multi_step_size) * q_batch_b
# Set discounted reward to zero for all states that were terminal.
discounted_reward_batch_a = discounted_reward_batch_a * terminal2_batch[:]
discounted_reward_batch_b = discounted_reward_batch_b * terminal2_batch[:]
Rs_a = reward_batch[:] + discounted_reward_batch_a
Rs_b = reward_batch[:] + discounted_reward_batch_b
for idx, (target_a, target_b, mask_a, mask_b, R_a, R_b, action, prio_weight) in \
enumerate(zip(targets_a, targets_b, masks_a, masks_b, Rs_a, Rs_b, action_batch, prio_weights_batch)):
target_a[action.action] = R_a # update action with estimated accumulated reward
target_b[action.coords] = R_b # update action with estimated accumulated reward
if self.bad_prio_replay:
mask_a[action.action] = 1 # enable loss for this specific action
mask_b[action.coords] = 1 # enable loss for this specific action
else:
mask_a[action.action] = prio_weight # enable loss for this specific action
mask_b[action.coords] = prio_weight # enable loss for this specific action
targets_a = np.array(targets_a).astype('float32')
targets_b = np.array(targets_b).astype('float32')
masks_a = np.array(masks_a).astype('float32')
masks_b = np.array(masks_b).astype('float32')
# Finally, perform a single update on the entire batch. We use a dummy target since
# the actual loss is computed in a Lambda layer that needs more complex input. However,
# it is still useful to know the actual target to compute metrics properly.
ins = [state0_batch] if type(self.model.input) is not list else state0_batch
metrics = self.trainable_model.train_on_batch(ins + [targets_a, targets_b, masks_a, masks_b],
[np.zeros(self.batch_size), targets_a, targets_b])
metrics = [metric for idx, metric in enumerate(metrics) if
idx not in (1, 2)] # throw away individual losses
# Berechnung neuer Prioritäten nach dem Update.
if self.prio_replay:
pred = self.trainable_model.predict_on_batch(ins + [targets_a, targets_b, masks_a, masks_b])
# update priority batch
if self.prio_replay:
prios = []
if self.bad_prio_replay:
# "Schlechte" Version, die nicht funktionieren dürfte, es aber besser oder gleichgut tut als die
# richtige Implementierung.
for pre in zip(pred[1], pred[2]):
loss = [target_a - pre[0],
target_b - pre[1]]
loss[0] *= mask_a # apply element-wise mask
loss[1] *= mask_b # apply element-wise mask
sum_loss_a = np.sum(loss[0])
sum_loss_b = np.sum(loss[1])
prios.append(np.abs(np.sum([sum_loss_a, sum_loss_b])))
else:
# Richtige Implementierung.
for (pre_a, pre_b, target_a, target_b, mask_a, mask_b, prio_weight) \
in zip(pred[1], pred[2], targets_a, targets_b, masks_a, masks_b, prio_weights_batch):
# need to remove prio weight from masks
mask_a = mask_a / prio_weight
mask_b = mask_b / prio_weight
loss = [pre_a - target_a,
pre_b - target_b]
loss[0] *= mask_a # apply element-wise mask
loss[1] *= mask_b # apply element-wise mask
sum_loss_a = np.sum(loss[0])
sum_loss_b = np.sum(loss[1])
prios.append(np.abs(np.sum([sum_loss_a, sum_loss_b])))
self.memory.update_priorities(id_batch, prios)
metrics += self.policy.metrics
if self.processor is not None:
metrics += self.processor.metrics
# Target-Model updaten nach ca. 10000 Schritten.
if self.target_model_update >= 1 and self.step % self.target_model_update == 0:
self.update_target_model_hard()
return metrics
@property
def layers(self):
return self.model.layers[:]
@property
def metrics_names(self):
# Throw away individual losses and replace output name since this is hidden from the user.
assert len(self.trainable_model.output_names) == 3
dummy_output_name = self.trainable_model.output_names[1]
model_metrics = [name for idx, name in enumerate(self.trainable_model.metrics_names) if idx not in (1, 2)]
model_metrics = [name.replace(dummy_output_name + '_', '') for name in model_metrics]
names = model_metrics + self.policy.metrics_names[:]
if self.processor is not None:
names += self.processor.metrics_names[:]
return names
@property
def policy(self):
return self.__policy
@policy.setter
def policy(self, policy):
self.__policy = policy
self.__policy._set_agent(self)
@property
def test_policy(self):
return self.__test_policy
@test_policy.setter
def test_policy(self, policy):
self.__test_policy = policy
self.__test_policy._set_agent(self)
# V5 -> modded for distributional
# A modified version of the Keras-rl DQN Agent to handle a much larger actionspace (multiple outputs required)
class Sc2DqnAgent_v5(AbstractSc2DQNAgent3):
"""
# Arguments
model__: A Keras model.
policy__: A Keras-rl policy that are defined in [policy](https://github.com/keras-rl/keras-rl/blob/master/rl/policy.py).
test_policy__: A Keras-rl policy.
enable_double_dqn__: A boolean which enable target network as a second network proposed by van Hasselt et al. to decrease overfitting.
enable_dueling_dqn__: A boolean which enable dueling architecture proposed by Mnih et al.
dueling_type__: If `enable_dueling_dqn` is set to `True`, a type of dueling architecture must be chosen which calculate Q(s,a) from V(s) and A(s,a) differently. Note that `avg` is recommanded in the [paper](https://arxiv.org/abs/1511.06581).
`avg`: Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-Avg_a(A(s,a;theta)))
`max`: Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-max_a(A(s,a;theta)))
`naive`: Q(s,a;theta) = V(s;theta) + A(s,a;theta)
"""
def __init__(self, model, policy=None, test_policy=None, enable_double_dqn=False, enable_dueling_network=False,
dueling_type='avg', noisy_nets=True, prio_replay=True, prio_replay_beta=(0.5, 1.0, 200000),
multi_step_size=3, distributed=True, z=[], *args, **kwargs):
super(Sc2DqnAgent_v5, self).__init__(*args, **kwargs)
# Validate (important) input.
if hasattr(model.output, '__len__') and len(model.output) != 2:
raise ValueError(
'Model "{}" has more or less than two outputs. DQN expects a model that has exactly 2 outputs.'.format(
model))
# no shape checks yet
# if model.output[0]._keras_shape != (None, self.nb_actions):
# raise ValueError(
# 'Model output "{}" has invalid shape. DQN expects a model that has one dimension for each action'
# ', in this case {}.'.format(model.output, self.nb_actions))
# Parameters.
self.enable_double_dqn = enable_double_dqn
self.enable_dueling_network = enable_dueling_network
self.dueling_type = dueling_type
self.noisy_nets = noisy_nets
self.prio_replay = prio_replay
self.prio_replay_beta = prio_replay_beta
self.multi_step_size = multi_step_size
self.distributed = distributed
self.z = z
if self.distributed:
assert len(z) > 0
if self.enable_dueling_network:
# linearOutput
# get the second last layer of the model, abandon the last layer
# layer = model.layers[-2]
layer = model.layers[5]
# nb_action = model.output._keras_shape[-1]
nb_action = model.output[0]._keras_shape[-1]
# layer y has a shape (nb_action+1,)
# y[:,0] represents V(s;theta)
# y[:,1:] represents A(s,a;theta)
if self.noisy_nets:
y = NoisyDense(nb_action + 1, activation='linear', kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(layer.output)
else:
y = Dense(nb_action + 1, activation='linear')(layer.output)
# caculate the Q(s,a;theta)
# dueling_type == 'avg'
# Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-Avg_a(A(s,a;theta)))
# dueling_type == 'max'
# Q(s,a;theta) = V(s;theta) + (A(s,a;theta)-max_a(A(s,a;theta)))
# dueling_type == 'naive'
# Q(s,a;theta) = V(s;theta) + A(s,a;theta)
if self.dueling_type == 'avg':
lin_outputlayer = Lambda(
lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:] - K.mean(a[:, 1:], keepdims=True),
output_shape=(nb_action,))(y)
elif self.dueling_type == 'max':
lin_outputlayer = Lambda(
lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:] - K.max(a[:, 1:], keepdims=True),
output_shape=(nb_action,))(y)
elif self.dueling_type == 'naive':
lin_outputlayer = Lambda(lambda a: K.expand_dims(a[:, 0], -1) + a[:, 1:], output_shape=(nb_action,))(y)
else:
assert False, "dueling_type must be one of {'avg','max','naive'}"
# conv layer -> include 1,1x1 conv (?) [yes didn't work now trying no no works]
conv_layer = model.layers[3].output
conv_flat = Flatten()(conv_layer)
if noisy_nets:
conv_value = NoisyDense(1, activation="linear", kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(conv_flat)
conv_action = NoisyConv2D(1, (1, 1), padding="same", activation="linear",
kernel_initializer='lecun_uniform',
bias_initializer='lecun_uniform')(conv_layer)
else:
conv_value = Dense(1, activation="linear")(conv_flat)
conv_action = Conv2D(1, (1, 1), padding="same", activation="linear")(conv_layer)
conv_lambda_in = [conv_value, conv_action]
if self.dueling_type == 'avg':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1] - K.mean(a[1], keepdims=True)
)(conv_lambda_in)
elif self.dueling_type == 'max':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1] - K.max(a[1], keepdims=True)
)(conv_lambda_in)
elif self.dueling_type == 'naive':
conv_outputlayer = Lambda(
lambda a: K.expand_dims(K.expand_dims(a[0], -1), -1) + a[1]
)(conv_lambda_in)
else:
assert False, "dueling_type must be one of {'avg','max','naive'}"
model = Model(inputs=model.input, outputs=[lin_outputlayer, conv_outputlayer])
# Related objects.
self.model = model
assert policy is not None
if test_policy is None:
test_policy = policy
self.policy = policy
self.test_policy = test_policy
if self.prio_replay:
assert len(prio_replay_beta) == 3
self.beta_schedule = LinearSchedule(prio_replay_beta[2],
initial_p=prio_replay_beta[0],
final_p=prio_replay_beta[1])
self.recent = RingBuffer(maxlen=multi_step_size)
self.recent_r = RingBuffer(maxlen=multi_step_size)
self.recent_reward_2 = 0
self.recent_reward = 0
# State.
self.reset_states()
def get_config(self):
config = super(Sc2DqnAgent_v5, self).get_config()
config['enable_double_dqn'] = self.enable_double_dqn
config['dueling_type'] = self.dueling_type
config['enable_dueling_network'] = self.enable_dueling_network
config['model'] = get_object_config(self.model)
config['policy'] = get_object_config(self.policy)
config['test_policy'] = get_object_config(self.test_policy)
if self.compiled:
config['target_model'] = get_object_config(self.target_model)
return config
def compile(self, optimizer, metrics=[]):
metrics += [mean_q] # register default metrics
# We never train the target model, hence we can set the optimizer and loss arbitrarily.
self.target_model = clone_model(self.model, self.custom_model_objects)
self.target_model.compile(optimizer='sgd', loss='mse')
self.model.compile(optimizer='sgd', loss='mse')
# Compile model.
if self.target_model_update < 1.:
# We use the `AdditionalUpdatesOptimizer` to efficiently soft-update the target model.
updates = get_soft_target_model_updates(self.target_model, self.model, self.target_model_update)
optimizer = AdditionalUpdatesOptimizer(optimizer, updates)
def clipped_masked_kl_error(args):
y_true_a, y_true_b, y_pred_a, y_pred_b, mask_a, mask_b = args
# y_true_a shape is [self.nb_actions * len(self.z)] np.reshape(z_values[0], [self.nb_actions, len(self.z)])
# y_true_b shape is [len(self.z), _SCREEN, _SCREEN]
y_t_a = K.tf.reshape(y_true_a, [-1, self.nb_actions, len(self.z)]) # HAS already right shape
y_p_a = K.tf.reshape(y_pred_a, [-1, self.nb_actions, len(self.z)])
loss_a = -K.tf.reduce_sum(K.tf.multiply(y_t_a, K.tf.log(y_p_a + 1e-8)), axis=-1)
loss_b = -K.tf.reduce_sum(K.tf.multiply(y_true_b, K.tf.log(y_pred_b + 1e-8)), axis=-1)
# mask_b = np.reshape(mask_b, [self.screen_size, self.screen_size])
loss_a *= mask_a # apply element-wise mask
loss_b *= mask_b # apply element-wise mask
sum_loss_a = K.sum(loss_a)
sum_loss_b = K.sum(loss_b)
return K.sum([sum_loss_a, sum_loss_b], axis=-1)
def clipped_masked_error(args):
y_true_a, y_true_b, y_pred_a, y_pred_b, mask_a, mask_b = args
loss = [huber_loss(y_true_a, y_pred_a, self.delta_clip),
huber_loss(y_true_b, y_pred_b, self.delta_clip)]
loss[0] *= mask_a # apply element-wise mask
loss[1] *= mask_b # apply element-wise mask
sum_loss_a = K.sum(loss[0])
sum_loss_b = K.sum(loss[1])
return K.sum([sum_loss_a, sum_loss_b], axis=-1)
def clipped_masked_error_v2(args):
y_true_a, y_true_b, y_pred_a, y_pred_b, mask_a, mask_b = args
loss = [huber_loss(y_true_a, y_pred_a, self.delta_clip),
huber_loss(y_true_b, y_pred_b, self.delta_clip)]
loss[0] *= mask_a # apply element-wise mask
loss[1] *= mask_b # apply element-wise mask
sum_loss_a = K.sum(loss[0])
sum_loss_a = sum_loss_a * 0
sum_loss_b = K.sum(loss[1])
return K.sum([sum_loss_a, sum_loss_b], axis=-1)
# Create trainable model. The problem is that we need to mask the output since we only
# ever want to update the Q values for a certain action. The way we achieve this is by
# using a custom Lambda layer that computes the loss. This gives us the necessary flexibility
# to mask out certain parameters by passing in multiple inputs to the Lambda layer.
y_pred = self.model.output
if self.distributed:
y_true_a = Input(name='y_true_a', shape=(self.nb_actions, len(self.z),))
y_true_b = Input(name='y_true_b', shape=(self.screen_size, self.screen_size, len(self.z)))
mask_a = Input(name='mask_a', shape=(self.nb_actions,))
mask_b = Input(name='mask_b', shape=(self.screen_size, self.screen_size,))
loss_out = Lambda(clipped_masked_kl_error, output_shape=(1,), name='loss')(
[y_true_a, y_true_b, y_pred[0], y_pred[1], mask_a, mask_b])
ins = [self.model.input] if type(self.model.input) is not list else self.model.input
trainable_model = Model(inputs=ins + [y_true_a, y_true_b, mask_a, mask_b],
outputs=[loss_out, y_pred[0], y_pred[1]])
else:
y_true_a = Input(name='y_true_a', shape=(self.nb_actions,))
y_true_b = Input(name='y_true_b', shape=(self.screen_size, self.screen_size, 1))
mask_a = Input(name='mask_a', shape=(self.nb_actions,))
mask_b = Input(name='mask_b', shape=(self.screen_size, self.screen_size, 1))
loss_out = Lambda(clipped_masked_error, output_shape=(1,), name='loss')(
[y_true_a, y_true_b, y_pred[0], y_pred[1], mask_a, mask_b])
ins = [self.model.input] if type(self.model.input) is not list else self.model.input
trainable_model = Model(inputs=ins + [y_true_a, y_true_b, mask_a, mask_b],
outputs=[loss_out, y_pred[0], y_pred[1]])
print(trainable_model.summary())
# assert len(trainable_model.output_names) == 2 what is this??
# combined_metrics = {trainable_model.output_names[1]: metrics} i dunno ??
losses = [
lambda y_true, y_pred: y_pred, # loss is computed in Lambda layer