-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSection4-Time Series.Rmd
280 lines (214 loc) · 10 KB
/
Section4-Time Series.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
title: "project"
author: "Zhikang Dong zd2241"
date: "4/25/2020"
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Time series analysis
In this section, we would like to analyze performance of stocks and forecast stock price based on time series theory, especially GARCH models.
## Time varying betas
CAPM (capital asset pricing model) is one of the most common financial model. People use this model to establish the portfolio and estimate returns and market sensitivity. Here, we can use GARCH model to find betas (stock sensitivity) of the stock in different time.
We have the CAPM model like this:
$$r_{t}=\alpha+\beta r_{m, t}+e_{t}, \quad t=1, \ldots, T$$
where $\alpha$ (Jensen index) means the mispricing of the stock compared with the market.
Generally, if $\beta$ is significantly greater than 0, which means that the stock responds aggresively to the market. On the other hand, if $\beta$ is relatively close to 0, then the market doesn't have much impact on it. Thus $\beta<1$ is regarded as less risky than the market, and $\beta>1$ indicates a high risk investment.
In practice, we would like to see an asset outperform the market with less risk. Mathematically, $\alpha>0$ and $\beta$ is small.
For the CAPM model above, we have
$$\hat\beta=\frac{\operatorname{Cov}\left(r_{t}, r_{m, t}\right)}{\operatorname{Var}\left(r_{m, t}\right)}$$
where $r_t$ and $r_{m,t}$ are the log-return of the stock and the index we choose at time $t$.
By fitting a good GARCH(1, 1) model, we can easily get volatility of the stock and the market.
Here we can use $$\operatorname{Cov}\left(r_{t}, r_{m, t}\right)=\frac{\operatorname{Var}\left(r_t+r_{m, t}\right)-\operatorname{Var}\left(r_t-r_{m, t}\right)}{4}$$
```{r load data, echo=F, message=FALSE}
library(readr)
library(fGarch)
dji <- read_csv("~/Documents/CU 2020 Spring/Stoc in Fin/^DJI.csv")
log_return_dji <- log(dji$Close[-1]/dji$Close[-1090])
stocks <- read_csv("~/Documents/CU 2020 Spring/Stoc in Fin/data_return.csv")
log_return_stocks <- log(stocks[-1,]/stocks[-1090,])
names(log_return_stocks) <- c("MMM","AXP","AAPL","BA","CAT",
"CVX","CSCO","KO","JNJ","NKE",
"PG","RTX","UNH","VZ","DIS")
```
Firstly, we consider $\beta$ in traditional CAPM model.
```{r trad_beta, echo=FALSE}
trad_beta_all <- sapply(log_return_stocks, function(x) lm(x~log_return_dji)$coefficient)
rownames(trad_beta_all) <- c("alpha", "beta")
trad_beta_all
```
We plot each stock's time-varying $\beta$ below. The horizontal blue line is traditional $\beta$.
```{r time_vary_beta, echo=FALSE, message=FALSE, results='hide', fig.width=9, fig.height=2.5}
time_vary_beta <- function(rtn){
xp <- rtn+log_return_dji
xm <- rtn-log_return_dji
m1 <- garchFit(~1+garch(1, 1), data = xp, trace = F)
m2 <- garchFit(~1+garch(1, 1), data = xm, trace = F)
m3 <- garchFit(~1+garch(1, 1), data = log_return_dji, trace = F)
vxp <- volatility(m1)
vxm <- volatility(m2)
vdji <- volatility(m3)
beta <- (vxp^2-vxm^2)/(4*vdji^2)
}
par(mfcol=c(1, 3))
for (i in 1:15){
ts.plot(time_vary_beta(log_return_stocks[,i]), main=paste0(names(log_return_stocks)[i],"'s Beta"), ylab="Beta")
abline(h=trad_beta_all[2,i], col="blue", lwd=1.5)
}
sort(sapply(log_return_stocks,function(x) mean(time_vary_beta(x))))
```
By selecting positive $\alpha$ and five smallest expected $\beta's$, we have these five stocks: PG, KO, VZ, JNJ, DIS. (Ordered by descending $\beta$)
The industries these stocks belong to respectively are Fast moving consumer goods, food industry, Telecommunication, Pharmaceutical industry, Broadcasting and entertainment. It seems like traditional industries and essential industries are less risky to the market.
# Minimum variance portfolios
In Markovitz portfolio theory, we can derive minimum variance porfolios from the time series. Combined with GARCH model, we can estimate time-varying covariances of asset returns for portfolio selection. Here we assume that short selling is not allowed. Then we solve this quadratic optimization problem:
$$\min _{w} w^{\prime} V_{t} w \quad \text { such that } \quad \sum_{i=1}^{k} w_{i}=1 \quad \text{and} \quad w_{i}\geq0$$
For simplicity, we use five stocks we mentioned before to establish a portfolio. Here we estimate covariances by using GARCH(1, 1) model for individual asset returns and their sums and differences.
```{r MVP, echo=F, warning=FALSE}
library(quadprog)
library(Matrix)
"GMVP" <- function(rtn,start=500){
# compute the weights and variance of global minimum variance portfolio.
# The time period is from (start) to end of the data.
#
# uses cov(x,y) = [var(x+y)-var(x-y)]/4.
#
if(!is.matrix(rtn))rtn=as.matrix(rtn)
#
library(fGarch)
T=dim(rtn)[1]
k=dim(rtn)[2]
wgt = NULL
mVar=NULL
VAR = NULL
ONE=matrix(1,k,1)
prtn=NULL
Det=NULL
for (t in start:T){
# estimate variances and covariances at time "t".
COV=matrix(0,k,k)
for (i in 1:k){
m1=garchFit(~1+garch(1,1),data=rtn[1:t,i],trace=F)
COV[i,i]=volatility(m1)[t]^2
if(i < k){
for (j in (i+1):k){
x=rtn[1:t,i]+rtn[1:t,j]
y=rtn[1:t,i]-rtn[1:t,j]
m2=garchFit(~1+garch(1,1),data=x,trace=F)
m3=garchFit(~1+garch(1,1),data=y,trace=F)
v2=volatility(m2)[t]
v3=volatility(m3)[t]
COV[j,i]=(v2^2-v3^2)/4
COV[i,j]=COV[j,i]
# end of j-loop
}
# end of (if-statement)
}
# end of i-loop
}
result <- solve.QP(Dmat = nearPD(COV)$mat,
dvec = t(rep(0, k)),
Amat = t(rbind(rep(1, k), diag(1, k))),
bvec = c(1, rep(0,k)),
meq = 1)
Psi <- result$solution
mv <- 2*result$value
Det=c(Det,det(COV))
#V=solve(COV)
VAR=rbind(VAR,diag(COV))
#Psi=V%*%ONE
#W=sum(ONE*Psi)
#Psi=Psi/W
wgt=cbind(wgt,Psi)
mVar=c(mVar,mv) ## Calculating minimum variance
if(t < T){
prtn=c(prtn,sum(rtn[t+1,]*Psi))
}
}
GMVP <- list(weights=wgt, minVariance=mVar,variances=VAR, returns=prtn,det=Det)
}
gmvp_five <- GMVP(log_return_stocks[c("PG","KO","VZ" ,"JNJ", "DIS")], 1089-500)
plot(1:501, gmvp_five$weights[1,], "l", main="Weights", ylab="Weight", xlab="Time")
lines(1:501, gmvp_five$weights[2,], col="blue")
lines(1:501, gmvp_five$weights[3,], col="yellow")
lines(1:501, gmvp_five$weights[4,], col="green")
lines(1:501, gmvp_five$weights[5,], col="orange")
legend("topright", c("PG","KO","VZ" ,"JNJ", "DIS"),
col=c("black","blue", "yellow", "green", "orange"),
lty=1, cex=.8)
plot(1:501, sqrt(gmvp_five$minVariance), "l", main="Volatility", xlab="Time", ylab="Vol")
lines(1:501, sqrt(gmvp_five$variances[,1]), col="red")
lines(1:501, sqrt(gmvp_five$variances[,2]), col="blue")
lines(1:501, sqrt(gmvp_five$variances[,3]), col="yellow")
lines(1:501, sqrt(gmvp_five$variances[,4]), col="green")
lines(1:501, sqrt(gmvp_five$variances[,5]), col="orange")
legend(x=17, y=.037, c("Portfolio", "PG","KO","VZ" ,"JNJ", "DIS"),
col=c("black","blue", "yellow", "green", "orange"),
lty=1)
```
As expected, the minimum variance portfolio reduces the risk.
# Prediction
Another application of GARCH model is to improve the modeling and forecasting of a time series. From the price plot, we can see a clear trend, which means the time series is non-stationary. Therefore, a pure ARMA model for price change is not adequate. In order to analyzing volatility, we can use ARMA-GARCH model to handle complexity of data and improve prefiction.
Again, we use PG, KO, VZ, JNJ, DIS as examples.
Firstly, we plot price and price changes data of each stock. We can find weak stationarity in price change plots. Therefore, we use price change data instead of raw price data.
```{r forecasting, fig.width=9, fig.height=2.5, echo=F}
par(mfcol=c(1, 2))
ts.plot(stocks$PG.Close, ylab="Price", main="PG")
c_pg <- diff(stocks$PG.Close)
ts.plot(c_pg, ylab="Price Change", main="PG")
ts.plot(stocks$KO.Close, ylab="Price", main="KO")
c_ko <- diff(stocks$KO.Close)
ts.plot(c_ko, ylab="Price Change", main="KO")
ts.plot(stocks$VZ.Close, ylab="Price", main="VZ")
c_vz <- diff(stocks$VZ.Close)
ts.plot(c_vz, ylab="Price Change", main="VZ")
ts.plot(stocks$JNJ.Close, ylab="Price", main="JNJ")
c_jnj <- diff(stocks$JNJ.Close)
ts.plot(c_jnj, ylab="Price Change", main="JNJ")
ts.plot(stocks$DIS.Close, ylab="Price", main="DIS")
c_dis <- diff(stocks$DIS.Close)
ts.plot(c_dis, ylab="Price Change", main="DIS")
```
Next, we use the function auto.arima to find best ARMA coefficients and combine it with GARCH(1, 1) model.
Finally, we would like to use skew t-distribution innovations instead of normal innovations to fit the data.
```{r, message=FALSE, echo=FALSE, results='hide'}
library(forecast)
m1 <- auto.arima(c_pg, max.p = 5, max.q = 5, max.P = 10, max.Q = 10)$arma
summary(arima(c_pg, order = c(4, 0, 5)))
m2 <- garchFit(~arma(0, 1)+garch(1, 1), data = c_pg,
trace = F, include.mean = F, cond.dist = "sstd")
m3 <- auto.arima(c_ko, max.p = 5, max.q = 5, max.P = 10, max.Q = 10)$arma
m4 <- garchFit(~arma(1, 0)+garch(1, 1), data = c_ko,
trace = F, include.mean = F, cond.dist = "sstd")
m5 <- auto.arima(c_vz, max.p = 5, max.q = 5, max.P = 10, max.Q = 10)$arma
m6 <- garchFit(~arma(1, 0)+garch(1, 1), data = c_vz,
trace = F, include.mean = F, cond.dist = "sstd")
m7 <- auto.arima(c_jnj, max.p = 5, max.q = 5, max.P = 10, max.Q = 10)$arma
m8 <- garchFit(~arma(1, 1)+garch(1, 1), data = c_jnj,
trace = F, include.mean = F, cond.dist = "sstd")
m9 <- auto.arima(c_dis, max.p = 10, max.q = 10, max.P = 10, max.Q = 10)$arma
m10 <- garchFit(~arma(1, 1)+garch(1, 1), data = c_dis,
trace = F, include.mean = F, cond.dist = "sstd")
```
And we can reveal prediction for each stock:
PG:
```{r, echo=FALSE}
predict(m2, n.ahead=2)
```
KO:
```{r, echo=FALSE}
predict(m4, n.ahead=2)
```
VZ:
```{r, echo=FALSE}
predict(m6, n.ahead=2)
```
JNJ:
```{r, echo=FALSE}
predict(m8, n.ahead=2)
```
DIS:
```{r, echo=FALSE}
predict(m10, n.ahead=2)
```
We can know that ARMA-GARCH model yields good one-step ahead and two-stpe ahead predictions.