forked from CVHub520/yolov5_obb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdivide.py
219 lines (195 loc) · 7.69 KB
/
divide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import os.path as osp
from tqdm import tqdm
import random
import shutil
import importlib
try:
import logger
except ImportError:
import subprocess
subprocess.check_call(["pip", "install", "logger"])
importlib.import_module("logger")
def mkdir(p, is_remove=False):
"""Create a folder
Args:
p: file path.
is_remove: whether delete the exist folder or not. Default [False].
"""
paths = p if isinstance(p, list) else [p]
for p in paths:
if is_remove and os.path.exists(p):
shutil.rmtree(p)
os.makedirs(p, exist_ok=True)
def load_nxywh_info(p, sep=' '):
'''extract a list object from the *.txt file
Args:
p: *.txt file path.
sep: Separators. [Default: ' ']
Returns:
A list object. [[*], [*], [*], ...]
'''
with open(p) as f:
info = f.readlines()
res = [x.strip() for x in info]
res = [x.split(sep=sep) for x in res]
return res
def divide_yolo_dataset(path_dict, save_path, keep_neg=True, seed=10086, mode='obb'):
"""path_dict format:
|- folderA
| |- images
| |- labels(hbb) / labelTxt(obb)
|- folderB
| |- images
| |- labels
| ...
Args:
path_dict:
{
#folder: tran/val/test
folderA: [0.8, 0.2, 0.0],
folderB: [0.7, 0.2, 0.1],
...,
}
keep_neg: whether to reserve the background sample or not.
"""
assert mode in ['hbb', 'obb'], f"Invalid mode:{mode}!"
label_name = ''
if mode == 'hbb':
label_name = 'labels'
elif mode == 'obb':
label_name = 'labelTxt'
train_flag, val_flag, test_flag = False, False, False
logger.info(f"Checking the dataset info >>>")
for path, ratios in path_dict.items():
tolerance = 1e-10
assert abs(sum(ratios) - 1.0) < tolerance, f"'train + val + test' must be equal to 1."
dirs_to_check = ['images', label_name]
assert all([osp.exists(osp.join(path, subdir)) for subdir in dirs_to_check]), f"'images' and {label_name} folder must be existed in {path}"
train_ratio, val_ratio, test_ratio = ratios
if train_ratio > 0:
train_flag = True
if val_ratio > 0:
val_flag = True
if test_ratio > 0:
test_flag = True
if train_flag and val_flag and test_flag:
break
random.seed(seed)
if train_flag:
dst_img_train_path = osp.join(save_path, 'images', 'train')
dst_lbl_train_path = osp.join(save_path, label_name, 'train')
mkdir([dst_img_train_path, dst_lbl_train_path], is_remove=True)
if val_flag:
dst_img_val_path = osp.join(save_path, 'images', 'val')
dst_lbl_val_path = osp.join(save_path, label_name, 'val')
mkdir([dst_img_val_path, dst_lbl_val_path], is_remove=True)
if test_flag:
dst_img_test_path = osp.join(save_path, 'images', 'test')
dst_lbl_test_path = osp.join(save_path, label_name, 'test')
mkdir([dst_img_test_path, dst_lbl_test_path], is_remove=True)
train_cnt, val_cnt, test_cnt, drop_cnt = 0, 0, 0, 0
file_list = []
for path, ratios in path_dict.items():
train_ratio, val_ratio, test_ratio = ratios
img_path = osp.join(path, 'images')
lbl_path = osp.join(path, label_name)
img_list = sorted(os.listdir(img_path))
drop_index = []
for i, img_name in enumerate(img_list):
lbl_name = osp.splitext(img_name)[0] + '.txt'
src_lbl_file = osp.join(lbl_path, lbl_name)
try:
lbl_info = load_nxywh_info(src_lbl_file)
if not lbl_info and not keep_neg:
logger.warning(f"⚠️ empty label filterd! -> {src_lbl_file}")
drop_index.append(i)
except FileNotFoundError:
logger.error(f"❌ file not exist! -> {src_lbl_file}")
drop_index.append(i)
if img_name in file_list:
drop_index.append(i)
else:
file_list.append(img_name)
drop_cnt += len(drop_index)
filtered_img_list = [element for index, element in enumerate(img_list) if index not in drop_index]
filtered_img_nums = len(filtered_img_list)
train_img_nums = int(filtered_img_nums * train_ratio)
if train_ratio + val_ratio == 1.0:
val_img_nums = filtered_img_nums - train_img_nums
test_img_nums = 0
else:
val_img_nums = int(filtered_img_nums * val_ratio)
test_img_nums = filtered_img_nums - train_img_nums - val_img_nums
train_cnt += train_img_nums
val_cnt += val_img_nums
test_cnt += test_img_nums
train_img_list = filtered_img_list[:train_img_nums]
if train_ratio + val_ratio == 1.0:
val_img_list = filtered_img_list[train_img_nums:]
test_img_list = []
else:
val_img_list = filtered_img_list[train_img_nums: train_img_nums+val_img_nums]
test_img_list = filtered_img_list[train_img_nums+val_img_nums:]
if train_img_list:
for img_name in tqdm(train_img_list):
lbl_name = osp.splitext(img_name)[0] + '.txt'
src_img_file = osp.join(img_path, img_name)
src_lbl_file = osp.join(lbl_path, lbl_name)
lbl_info = load_nxywh_info(src_lbl_file)
dst_img_file = osp.join(dst_img_train_path, img_name)
dst_lbl_file = osp.join(dst_lbl_train_path, lbl_name)
os.symlink(src_img_file, dst_img_file)
os.symlink(src_lbl_file, dst_lbl_file)
if val_img_list:
for img_name in tqdm(val_img_list):
lbl_name = osp.splitext(img_name)[0] + '.txt'
src_img_file = osp.join(img_path, img_name)
src_lbl_file = osp.join(lbl_path, lbl_name)
lbl_info = load_nxywh_info(src_lbl_file)
dst_img_file = osp.join(dst_img_val_path, img_name)
dst_lbl_file = osp.join(dst_lbl_val_path, lbl_name)
os.symlink(src_img_file, dst_img_file)
os.symlink(src_lbl_file, dst_lbl_file)
if test_img_list:
print(f"test_img_list = {test_img_list}")
for img_name in tqdm(test_img_list):
lbl_name = osp.splitext(img_name)[0] + '.txt'
src_img_file = osp.join(img_path, img_name)
src_lbl_file = osp.join(lbl_path, lbl_name)
lbl_info = load_nxywh_info(src_lbl_file)
dst_img_file = osp.join(dst_img_test_path, img_name)
dst_lbl_file = osp.join(dst_lbl_test_path, lbl_name)
os.symlink(src_img_file, dst_img_file)
os.symlink(src_lbl_file, dst_lbl_file)
logger.info(f"{path} done!")
logger.info("🚀 Results:")
logger.info(f" train_cnt: {train_cnt}")
logger.info(f" val_cnt : {val_cnt}")
logger.info(f" test_cnt : {test_cnt}")
logger.info(f" drop_cnt : {drop_cnt}")
logger.info("✅ Processing completed!")
if __name__ == '__main__':
'''
|- folderA
| |- images
| | |- xxx.jpg
| | |- yyy.png
| | |- ...
| |- labelTxt
| | |- xxx.txt
| | |- yyy.txt
| | |- ...
|- folderB
| |- images
| |- labelTxt
| |- ...
[a, b, c]: train/val/test
'''
path_dict = {
"/path/to/folderA": [0.7, 0.2, 0.1],
"/path/to/folderB": [0.8, 0.2, 0.0],
"...": []
}
save_path = '/dataset/task_name'
divide_yolo_dataset(path_dict, save_path, keep_neg=True, seed=10086, mode='obb')