-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathuse.py
265 lines (251 loc) · 9.53 KB
/
use.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# 开发于 python3
# 依赖 pytorch:(官网找安装方式)开发使用版本为 torch-1.4.0-cp36-cp36m-win_amd64.whl
# 依赖 opencv: (pip install opencv-contrib-python==3.4.1.15)需要使用sift图像算法。所以注意安装版本。
# 直接执行即可测试
import cv2
import numpy as np
import torch
import torch.nn as nn
import os
import math
USE_CUDA = True if torch.cuda.is_available() else False
DEVICE = 'cuda' if USE_CUDA else 'cpu'
# 旋转图片的函数,目前没有被使用到
def rotate_about_center(src, angle, scale=1.):
w = src.shape[1]
h = src.shape[0]
rangle = np.deg2rad(angle)
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
return cv2.warpAffine(src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)
# 将经过 backbone 的矩阵数据转换成坐标和分类名字
def parse_y_pred(ypred, anchors, class_types, islist=False, threshold=0.2, nms_threshold=0):
ceillen = 5+len(class_types)
sigmoid = lambda x:1/(1+math.exp(-x))
infos = []
for idx in range(len(anchors)):
if USE_CUDA:
a = ypred[:,:,:,4+idx*ceillen].cpu().detach().numpy()
else:
a = ypred[:,:,:,4+idx*ceillen].detach().numpy()
for ii,i in enumerate(a[0]):
for jj,j in enumerate(i):
infos.append((ii,jj,idx,sigmoid(j)))
infos = sorted(infos, key=lambda i:-i[3])
def get_xyxy_clz_con(info):
gap = 416/ypred.shape[1]
x,y,idx,con = info
gp = idx*ceillen
contain = torch.sigmoid(ypred[0,x,y,gp+4])
pred_xy = torch.sigmoid(ypred[0,x,y,gp+0:gp+2])
pred_wh = ypred[0,x,y,gp+2:gp+4]
pred_clz = ypred[0,x,y,gp+5:gp+5+len(class_types)]
if USE_CUDA:
pred_xy = pred_xy.cpu().detach().numpy()
pred_wh = pred_wh.cpu().detach().numpy()
pred_clz = pred_clz.cpu().detach().numpy()
else:
pred_xy = pred_xy.detach().numpy()
pred_wh = pred_wh.detach().numpy()
pred_clz = pred_clz.detach().numpy()
exp = math.exp
cx, cy = map(float, pred_xy)
rx, ry = (cx + x)*gap, (cy + y)*gap
rw, rh = map(float, pred_wh)
rw, rh = exp(rw)*anchors[idx][0], exp(rh)*anchors[idx][1]
clz_ = list(map(float, pred_clz))
xx = rx - rw/2
_x = rx + rw/2
yy = ry - rh/2
_y = ry + rh/2
np.set_printoptions(precision=2, linewidth=200, suppress=True)
if USE_CUDA:
log_cons = torch.sigmoid(ypred[:,:,:,gp+4]).cpu().detach().numpy()
else:
log_cons = torch.sigmoid(ypred[:,:,:,gp+4]).detach().numpy()
log_cons = np.transpose(log_cons, (0, 2, 1))
for key in class_types:
if clz_.index(max(clz_)) == class_types[key]:
clz = key
break
return [xx, yy, _x, _y], clz, con, log_cons
def nms(infos):
if not infos: return infos
def iou(xyxyA,xyxyB):
ax1,ay1,ax2,ay2 = xyxyA
bx1,by1,bx2,by2 = xyxyB
minx, miny = max(ax1,bx1), max(ay1, by1)
maxx, maxy = min(ax2,bx2), min(ay2, by2)
intw, inth = max(maxx-minx, 0), max(maxy-miny, 0)
areaA = (ax2-ax1)*(ay2-ay1)
areaB = (bx2-bx1)*(by2-by1)
areaI = intw*inth
return areaI/(areaA+areaB-areaI)
rets = []
infos = infos[::-1]
while infos:
curr = infos.pop()
if rets and any([iou(r[0], curr[0]) > nms_threshold for r in rets]):
continue
rets.append(curr)
return rets
if islist:
v = [get_xyxy_clz_con(i) for i in infos if i[3] > threshold]
if nms_threshold:
return nms(v)
else:
return v
else:
return get_xyxy_clz_con(infos[0])
class Mini(nn.Module):
class ConvBN(nn.Module):
def __init__(self, cin, cout, kernel_size=3, stride=1, padding=None):
super().__init__()
padding = (kernel_size - 1) // 2 if not padding else padding
self.conv = nn.Conv2d(cin, cout, kernel_size, stride, padding, bias=False)
self.bn = nn.BatchNorm2d(cout, momentum=0.01)
self.relu = nn.LeakyReLU(0.1, inplace=True)
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
def __init__(self, anchors, class_types, inchennel=3):
super().__init__()
self.oceil = len(anchors)*(5+len(class_types))
self.model = nn.Sequential(
OrderedDict([
('ConvBN_0', self.ConvBN(inchennel, 32)),
('Pool_0', nn.MaxPool2d(2, 2)),
('ConvBN_1', self.ConvBN(32, 48)),
('Pool_1', nn.MaxPool2d(2, 2)),
('ConvBN_2', self.ConvBN(48, 64)),
('Pool_2', nn.MaxPool2d(2, 2)),
('ConvBN_3', self.ConvBN(64, 80)),
('Pool_3', nn.MaxPool2d(2, 2)),
('ConvBN_4', self.ConvBN(80, 96)),
('Pool_4', nn.MaxPool2d(2, 2)),
('ConvBN_5', self.ConvBN(96, 102)),
('ConvEND', nn.Conv2d(102, self.oceil, 1)),
])
)
def forward(self, x):
return self.model(x).permute(0,2,3,1)
def get_clz_rect(filename, state):
net = state['net'].to(DEVICE)
optimizer = state['optimizer']
anchors = state['anchors']
class_types = state['class_types']
net.eval() # 重点中的重点,被坑了一整天。
npimg = cv2.imread(filename)
height, width = npimg.shape[:2]
npimg = cv2.cvtColor(npimg, cv2.COLOR_BGR2RGB) # [y,x,c]
npimg = cv2.resize(npimg, (416, 416))
npimg_ = np.transpose(npimg, (2,1,0)) # [c,x,y]
y_pred = net(torch.FloatTensor(npimg_).unsqueeze(0).to(DEVICE))
img = cv2.imread(filename)
v = parse_y_pred(y_pred, anchors, class_types, islist=True, threshold=0.2, nms_threshold=0.4)
ret = []
for i in v:
rect, clz, con, log_cons = i
rw, rh = width/416, height/416
rect[0],rect[2] = int(rect[0]*rw),int(rect[2]*rw)
rect[1],rect[3] = int(rect[1]*rh),int(rect[3]*rh)
ret.append([clz, rect])
return ret
def get_cut_img(npimg, rects):
ret = []
for clz, (x1,y1,x2,y2) in rects:
ret.append([clz, npimg[y1:y2,x1:x2,:], (x1,y1,x2,y2)])
return ret
# 处理顺序的问题
def get_flags_rects(file, state):
s = cv2.imread(file)
a = s[160:,0*28:1*28-6,:]
b = s[160:,1*28:2*28-6,:]
c = s[160:,2*28:3*28-6,:]
a1, a2 = a[40:60], a[0:20]
b1, b2 = b[40:60], b[0:20]
c1, c2 = c[40:60], c[0:20]
def get_match_lens(i1, i2):
i1 = cv2.resize(i1, (int(i1.shape[1]*8), int(i1.shape[0]*8)))
i2 = cv2.resize(i2, (i2.shape[1]*4, i2.shape[0]*4))
s = cv2.xfeatures2d.SIFT_create()
kp1,des1 = s.detectAndCompute(i1,None)
kp2,des2 = s.detectAndCompute(i2,None)
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
good = []
DIS = .88
for m,n in matches:
if m.distance <= DIS * n.distance:
good.append([m])
i3 = cv2.drawMatchesKnn(i1,kp1,i2,kp2,good,None)
# cv2.imshow('nier', i3)
# cv2.waitKey(0)
return len(good)
def get_flag_rect(k12, cut_imgs, st):
k1, k2 = k12
r = []
for clz, npimg, rect in cut_imgs:
if clz == '1':
r1 = get_match_lens(k1, npimg)
r.append([r1, rect, st])
if clz == '2':
r2 = get_match_lens(k2, npimg)
r.append([r2, rect, st])
return sorted(r, key=lambda i:i[0])
v = get_cut_img(s, get_clz_rect(file, state))
rs1 = get_flag_rect([a1, a2], v, 1)
rs2 = get_flag_rect([b1, b2], v, 2)
rs3 = get_flag_rect([c1, c2], v, 3)
rs = rs1 + rs2 + rs3
r = []
t = []
v = max([j for j in rs if j[2] not in t], key=lambda i:i[0])
r.append(v)
t.append(v[2])
q = []
for i in rs:
if i[1] == v[1]:
q.append(i)
for i in q:
rs.remove(i)
v = max([j for j in rs if j[2] not in t], key=lambda i:i[0])
r.append(v)
t.append(v[2])
q = []
for i in rs:
if i[1] == v[1]:
q.append(i)
for i in q:
rs.remove(i)
v = max([j for j in rs if j[2] not in t], key=lambda i:i[0])
r.append(v)
t.append(v[2])
r1, r2, r3 = sorted(r,key=lambda i:i[2])
return r1[1], r2[1], r3[1]
def draw_rects(filename, rects):
def drawrect(img, rect, text):
cv2.rectangle(img, tuple(rect[:2]), tuple(rect[2:]), (10,250,10), 2, 1)
x, y = rect[:2]
cv2.putText(img, text, (x,y), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (10,10,250), 1)
return img
img = cv2.imread(filename)
for idx, rect in enumerate(rects, 1):
img = drawrect(img, rect, '{}'.format(idx))
cv2.imshow('test', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
xmlpath = './testimg'
v = [os.path.join(xmlpath, i) for i in os.listdir(xmlpath) if i.endswith('.jpg')]
v = v[::-1]
print('loading net')
state = torch.load('net.pkl', map_location=torch.device(DEVICE))
# state = torch.load('net.pkl') # 如果上面的加载方式不行就去掉 map_location 参数再试试
print('loading net ok.')
for file in v:
print(file)
rects = get_flags_rects(file, state)
draw_rects(file, rects)