-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
93 lines (76 loc) · 3.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from __future__ import print_function
import argparse
from passers import Passer
from savers import save_checkpoint, save_losses
from loaders import *
from labels import *
from models.utils import get_model, get_criterion
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.backends.cudnn as cudnn
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--net')
parser.add_argument('--dataset')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--trial', default=0, type=int)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--resume', default=0, type=int, help='resume from checkpoint')
parser.add_argument('--resume_epoch', default=20, type=int, help='resume from epoch')
parser.add_argument('--save_every', default=1, type=int)
parser.add_argument('--permute_labels', default=0, type=float)
parser.add_argument('--binarize_labels', default=-1, type=int)
parser.add_argument('--fixed_init', default=0, type=int)
parser.add_argument('--train_batch_size', default=128, type=int)
parser.add_argument('--test_batch_size', default=100, type=int)
parser.add_argument('--input_size', default=32, type=int)
parser.add_argument('--subset', default=0, type=float)
args = parser.parse_args()
SAVE_EPOCHS = list(range(11)) + list(range(10, args.epochs+1, args.save_every)) # At what epochs to save train/test stats
ONAME = args.net + '_' + args.dataset # Meta-name to be used as prefix on all savings
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 1 # start from epoch 1 or last checkpoint epoch
''' Prepare loaders '''
trainloader = loader(args.dataset+'_train', batch_size=args.train_batch_size, sampling=args.binarize_labels)
n_samples = len(trainloader)*args.train_batch_size
subset = list(np.random.choice(n_samples, int(args.subset*n_samples)))
subsettrainloader = loader(args.dataset+'_train', batch_size=args.train_batch_size, subset=subset, sampling=args.binarize_labels)
testloader = loader(args.dataset+'_test', batch_size=args.test_batch_size, sampling=args.binarize_labels)
criterion = get_criterion(args.dataset)
''' Build models '''
print('==> Building model..')
net = get_model(args.net, args.dataset)
print(net)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
''' Initialize weights from checkpoint '''
if args.resume:
net, best_acc, start_acc = init_from_checkpoint(net)
''' Optimization '''
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
lr_scheduler = ReduceLROnPlateau(optimizer, factor=0.5, mode='max', verbose=True)
''' Define passer '''
if not args.subset:
passer_train = Passer(net, trainloader, criterion, device)
else:
passer_train = Passer(net, subsettrainloader, criterion, device)
passer_test = Passer(net, testloader, criterion, device)
''' Define manipulator '''
manipulator = load_manipulator(args.permute_labels, args.binarize_labels)
''' Make intial pass before any training '''
loss_te, acc_te = passer_test.run()
save_checkpoint(checkpoint = {'net':net.state_dict(), 'acc': acc_te, 'epoch': 0}, path='./checkpoint/'+ONAME+'/', fname='ckpt_trial_'+str(args.trial)+'_epoch_0.t7')
losses = []
for epoch in range(start_epoch, start_epoch+args.epochs):
print('Epoch {}'.format(epoch))
loss_tr, acc_tr = passer_train.run(optimizer, manipulator=manipulator)
loss_te, acc_te = passer_test.run()
losses.append({'loss_tr':loss_tr, 'loss_te': loss_te, 'acc_tr': acc_tr, 'acc_te':acc_te})
lr_scheduler.step(acc_te)
if epoch in SAVE_EPOCHS:
save_checkpoint(checkpoint = {'net':net.state_dict(), 'acc': acc_te, 'epoch': epoch}, path='./checkpoint/'+ONAME+'/', fname='ckpt_trial_'+str(args.trial)+'_epoch_'+str(epoch)+'.t7')
'''Save losses'''
save_losses(losses, path='./losses/'+ONAME+'/', fname='stats_trial_' + str(args.trial) +'.pkl')