-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathhss_generate.c
930 lines (834 loc) · 39.2 KB
/
hss_generate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
* This is the routine that generates the ephemeral ("working") key from the
* short private value. It builds all the various current, building and
* next subtrees for the various levels (to at least the extent required
* for the current count within the key).
*
* The code is made considerably more complex because we try to take
* advantage of parallelism. To do this, we explicitly list the parts
* of the subtrees we need to build (which is most of the computation), and
* have different worker threads build the various parts,
*
* However, it turns out that this is sometimes insufficient; sometimes,
* the work consists of one or two expensive nodes (perhaps the top level
* subtree), and a lot of comparatively cheap ones; in this case, we'd have
* most of our threads go through the cheap ones quickly, and have one or
* two threads working on the expensive one, and everyone will end up waiting
* for that. To mitigate that, we attempt to subdivide the most expensive
* requests; instead of having a single thread computing the expensive node,
* we may issue four or eight threads to compute the nodes two or three
* levels below (and have the main thread do the final computation when
* all the threads are completed).
*
* This works out pretty good; however man does add complexity :-(
*/
#include <string.h>
#include <limits.h>
#include "hss.h"
#include "hss_internal.h"
#include "hss_aux.h"
#include "hash.h"
#include "hss_thread.h"
#include "hss_reserve.h"
#include "lm_ots_common.h"
#include "endian.h"
#define DO_FLOATING_POINT 1 /* If clear, we avoid floating point operations */
/* You can turn this off for two reasons: */
/* - Your platform doesn't implement floating point */
/* - Your platform is single threaded (we use floating point to figure */
/* out how to split up tasks between threads; if the same thread */
/* will do all the work, dividing it cleverly doesn't buy anything */
/* (and that's a quite a bit of code that gets eliminated) */
/* On the other hand, if you are threaded, you'd really want this if */
/* at all possible; without this, one thread ends up doing the bulk of */
/* the work, and so we end up going not that much faster than single */
/* threaded mode */
/*
* This routine assumes that we have filled in the bottom node_count nodes of
* the subtree; it tries to compute as many internal nodes as possible
*/
static void fill_subtree(const struct merkle_level *tree,
struct subtree *subtree,
merkle_index_t node_count,
const unsigned char *I) {
if (node_count <= 1) return; /* If we can't compute any more nodes, */
/* don't bother trying */
unsigned h_subtree = (subtree->level == 0) ? tree->top_subtree_size :
tree->subtree_size;
/* Index into the node array where we're starting */
merkle_index_t lower_index = ((merkle_index_t)1 << h_subtree) - 1;
unsigned hash_size = tree->hash_size;
/* The node identier (initially of the bottom left node of the */
/* subtree */
merkle_index_t node_id = (((merkle_index_t)1 << tree->level) +
subtree->left_leaf)
>> subtree->levels_below;
/* Fill in as many levels of internal nodes as possible */
int sublevel;
for (sublevel = h_subtree-1; sublevel >= 0; sublevel--) {
node_count >>= 1;
if (node_count == 0) break; /* Can't do any more */
merkle_index_t prev_lower_index = lower_index;
lower_index >>= 1;
node_id >>= 1;
merkle_index_t i;
for (i=0; i<node_count; i++) {
hss_combine_internal_nodes(
&subtree->nodes[ hash_size *(lower_index + i)],
&subtree->nodes[ hash_size *(prev_lower_index + 2*i)],
&subtree->nodes[ hash_size *(prev_lower_index + 2*i+1)],
tree->h, I, hash_size,
node_id + i);
}
}
}
/*
* This routine takes the 2**num_level hashes, and computes up num_level's,
* returning the value of the top node. This is sort of like fill_tree,
* except that it returns only the top node, not the intermediate ones
* One warning: this does modify the passed value of hashes; our current
* caller doesn't care about that.
*/
static void hash_subtree( unsigned char *dest,
unsigned char *hashes,
unsigned num_level, merkle_index_t node_index,
unsigned hash_size,
int h, const unsigned char *I) {
/* Combine the nodes to form the tree, until we get to the two top nodes */
/* This will overwrite the hashes array; that's OK, because we don't */
/* need those anymore */
for (; num_level > 1; num_level--) {
unsigned i;
merkle_index_t this_level_node_index = node_index << (num_level-1);
for (i = 0; i < (1<<(num_level-1)); i++) {
hss_combine_internal_nodes(
&hashes[ hash_size * i ],
&hashes[ hash_size * (2*i) ],
&hashes[ hash_size * (2*i + 1) ],
h, I, hash_size,
this_level_node_index + i);
}
}
/* Combine the top two nodes to form our actual target */
hss_combine_internal_nodes(
dest,
&hashes[ 0 ],
&hashes[ hash_size ],
h, I, hash_size,
node_index);
}
#if DO_FLOATING_POINT
/*
* This structure is a note reminding us that we've decided to split this
* init_order into several requests, which can be run on independent threads
*/
struct sub_order {
unsigned num_hashes; /* The number of hashes this suborder is */
/* split up into */
unsigned level; /* Levels deep into the tree we go */
merkle_index_t node_num_first_target; /* The node number of the left */
/* most hash that we're standing in for */
unsigned char h[1]; /* The hashes go here; we'll malloc */
/* enough space to let them fit */
};
#endif
/*
* This is an internal request to compute the bottom N nodes (starting from the
* left) of a subtree (and to contruct the internal nodes that based solely on
* those N leaf nodes)
*/
struct init_order {
const struct merkle_level *tree;
struct subtree *subtree;
merkle_index_t count_nodes; /* # of bottom level nodes we need to */
/* generate */
const unsigned char *prev_node; /* For nonbottom subtrees, sometimes one */
/* of the nodes is the root of the */
/* next level subtree that we compute in */
/* its entirety. If so, this is a pointer */
/* to where we will find the precomputed */
/* value. This allows us to avoid */
/* computing that specific node */
merkle_index_t prev_index; /* This is the index of the */
/* precomputed node, where 0 is the */
/* leftmost bottom node of this subtree */
char next_tree; /* If clear, we do this on the current */
/* tree level (seed, I values); if set, */
/* we do this on the next */
char already_computed_lower; /* If set, we've already computed the */
/* lower nodes (and all we need to do is */
/* fill the upper); no need to ask the */
/* threads do do anything */
/* We may still need to build the */
/* interiors of the subtrees, of course */
#if DO_FLOATING_POINT
float cost; /* Approximate number of hash compression */
/* operations per node */
struct sub_order *sub; /* If non-NULL, this gives details on how */
/* we want to subdivide the order between */
/* different threads */
#endif
};
#if DO_FLOATING_POINT
/* This comparison function sorts the most expensive orders first */
static int compare_order_by_cost(const void *a, const void *b) {
const struct init_order *p = a;
const struct init_order *q = b;
if (p->cost > q->cost) return -1;
if (p->cost < q->cost) return 1;
return 0;
}
#else
/* This comparison function sorts the higher level subtrees first */
static int compare_order_by_subtree_level(const void *a, const void *b) {
const struct init_order *p = a;
unsigned p_subtree = p->subtree->level;
const struct init_order *q = b;
unsigned q_subtree = q->subtree->level;
if (p_subtree < q_subtree) return -1;
if (p_subtree > q_subtree) return 1;
return 0;
}
#endif
#if DO_FLOATING_POINT
static float estimate_total_cost(struct init_order *order,
unsigned count_order);
/*
* This is a simple minded log function, returning an int. Yes, using the
* built-in log() function would be easier, however I don't want to pull in
* the -lm library just for this
*/
static unsigned my_log2(float f) {
#define MAX_LOG 10
unsigned n;
for (n=1; f > 2 && n < MAX_LOG; n++)
f /= 2;
return n;
}
#endif
/*
* This is the point of this entire file.
*
* It fills in an already allocated working key, based on the private key
*/
bool hss_generate_working_key(
bool (*read_private_key)(unsigned char *private_key,
size_t len_private_key, void *context),
void *context,
const unsigned char *aux_data, size_t len_aux_data, /* Optional */
struct hss_working_key *w,
struct hss_extra_info *info) {
struct hss_extra_info temp_info = { 0 };
if (!info) info = &temp_info;
if (!w) {
info->error_code = hss_error_got_null;
return false;
}
w->status = hss_error_key_uninitialized; /* In case we detect an */
/* error midway */
if (!read_private_key && !context) {
info->error_code = hss_error_no_private_buffer;
return false;
}
/* Read the private key */
unsigned char private_key[ PRIVATE_KEY_LEN ];
if (read_private_key) {
if (!read_private_key( private_key, PRIVATE_KEY_LEN, context)) {
info->error_code = hss_error_private_key_read_failed;
goto failed;
}
} else {
memcpy( private_key, context, PRIVATE_KEY_LEN );
}
/*
* Make sure that the private key and the allocated working key are
* compatible; that the working_key was initialized with the same
* parameter set
*/
{
if (w->levels > MAX_HSS_LEVELS) {
info->error_code = hss_error_internal;
goto failed;
}
unsigned char compressed[PRIVATE_KEY_PARAM_SET_LEN];
param_set_t lm_type[MAX_HSS_LEVELS], lm_ots_type[MAX_HSS_LEVELS];
int i;
for (i=0; i<w->levels; i++) {
lm_type[i] = w->tree[i]->lm_type;
lm_ots_type[i] = w->tree[i]->lm_ots_type;
}
if (!hss_compress_param_set( compressed, w->levels,
lm_type, lm_ots_type,
sizeof compressed )) {
/* We're passed an unsupported param set */
info->error_code = hss_error_internal;
goto failed;
}
if (0 != memcmp( private_key + PRIVATE_KEY_PARAM_SET, compressed,
PRIVATE_KEY_PARAM_SET_LEN )) {
/* The working set was initiallized with a different parmset */
info->error_code = hss_error_incompatible_param_set;
goto failed;
}
}
sequence_t current_count = get_bigendian(
private_key + PRIVATE_KEY_INDEX, PRIVATE_KEY_INDEX_LEN );
if (current_count > w->max_count) {
info->error_code = hss_error_private_key_expired; /* Hey! We */
goto failed; /* can't generate any more signatures */
}
hss_set_reserve_count(w, current_count);
memcpy( w->private_key, private_key, PRIVATE_KEY_LEN );
/* Initialize all the levels of the tree */
/* Initialize the current count for each level (from the bottom-up) */
int i;
sequence_t count = current_count;
for (i = w->levels - 1; i >= 0 ; i--) {
struct merkle_level *tree = w->tree[i];
unsigned index = count & tree->max_index;
count >>= tree->level;
tree->current_index = index;
}
/* Initialize the I values */
for (i = 0; i < w->levels; i++) {
struct merkle_level *tree = w->tree[i];
/* Initialize the I, I_next elements */
if (i == 0) {
/* The root seed, I value is derived from the secret key */
hss_generate_root_seed_I_value( tree->seed, tree->I,
private_key+PRIVATE_KEY_SEED );
/* We don't use the I_next value */
} else {
/* The seed, I is derived from the parent's values */
/* Where we are in the Merkle tree */
struct merkle_level *parent = w->tree[i-1];
merkle_index_t index = parent->current_index;
hss_generate_child_seed_I_value( tree->seed, tree->I,
parent->seed, parent->I,
index, parent->lm_type,
parent->lm_ots_type );
/* The next seed, I is derived from either the parent's I */
/* or the parent's next value */
if (index == tree->max_index) {
hss_generate_child_seed_I_value( tree->seed_next, tree->I_next,
parent->seed_next, parent->I_next,
0, parent->lm_type,
parent->lm_ots_type);
} else {
hss_generate_child_seed_I_value( tree->seed_next, tree->I_next,
parent->seed, parent->I,
index+1, parent->lm_type,
parent->lm_ots_type);
}
}
}
/* Generate the expanded aux data structure (or NULL if we don't have a */
/* viable aux structure */
struct expanded_aux_data *expanded_aux, temp_aux;
expanded_aux = hss_expand_aux_data( aux_data, len_aux_data, &temp_aux,
w->tree[0]->hash_size, w );
/*
* Now, build all the subtrees within the tree
*
* We initialize the various data structures, and create a list of
* the nodes on the bottom levels of the subtrees that need to be
* initialized
*/
/* There are enough structures in this array to handle the maximum */
/* number of orders we'll ever see */
struct init_order order[MAX_HSS_LEVELS * MAX_SUBLEVELS * NUM_SUBTREE];
struct init_order *p_order = order;
int count_order = 0;
/* Step through the levels, and for each Merkle tree, compile a list of */
/* the orders to initialize the bottoms of the subtrees that we'll need */
for (i = w->levels - 1; i >= 0 ; i--) {
struct merkle_level *tree = w->tree[i];
unsigned hash_size = tree->hash_size;
/* The current count within this tree */
merkle_index_t tree_count = tree->current_index;
/* The index of the leaf we're on */
merkle_index_t leaf_index = tree_count;
/* Generate the active subtrees */
int j;
int bot_level_subtree = tree->level; /* The level of the bottom of */
/* the subtree */
unsigned char *active_prev_node = 0;
unsigned char *next_prev_node = 0;
for (j=tree->sublevels-1; j>=0; j--) {
/* The height of this subtree */
int h_subtree = (j == 0) ? tree->top_subtree_size :
tree->subtree_size;
/* Initialize the active tree */
struct subtree *active = tree->subtree[j][ACTIVE_TREE];
/* Total number of leaf nodes below this subtree */
merkle_index_t size_subtree = (merkle_index_t)1 <<
(h_subtree + active->levels_below);
/* Fill in the leaf index that's on the left side of this subtree */
/* This is the index of the leaf that we did when we first */
/* entered the active subtree */
merkle_index_t left_leaf = leaf_index & ~(size_subtree - 1);
/* This is the number of leaves we've done in this subtree */
merkle_index_t subtree_count = leaf_index - left_leaf;
/* If we're not in the bottom tree, it's possible that the */
/* update process will miss the very first update before we */
/* need to sign. To account for that, generate one more */
/* node than what our current count would suggest */
if (i != w->levels - 1) {
subtree_count++;
}
active->current_index = 0;
active->left_leaf = left_leaf;
merkle_index_t num_bottom_nodes = (merkle_index_t)1 << h_subtree;
/* Check if we have aux data at this level */
int already_computed_lower = 0;
if (i == 0) {
merkle_index_t lower_index = num_bottom_nodes-1;
merkle_index_t node_offset = active->left_leaf>>active->levels_below;
if (hss_extract_aux_data(expanded_aux, active->level+h_subtree,
w, &active->nodes[ hash_size * lower_index ],
node_offset, num_bottom_nodes)) {
/* We do have it precomputed in our aux data */
already_computed_lower = 1;
}
}
/* No aux data at this level; schedule the bottom row to be computed */
/* Schedule the creation of the entire active tree */
p_order->tree = tree;
p_order->subtree = active;
p_order->count_nodes = (merkle_index_t)1 << h_subtree; /* All */
/* the nodes in this subtree */
p_order->next_tree = 0;
/* Mark the root we inherented from the subtree just below us */
p_order->prev_node = already_computed_lower ? NULL : active_prev_node;
p_order->prev_index = (tree->current_index >> active->levels_below) & (num_bottom_nodes-1);
p_order->already_computed_lower = already_computed_lower;
p_order++; count_order++;
/* For the next subtree, here's where our root will be */
active_prev_node = &active->nodes[0];
/* And initialize the building tree, assuming there is one, and */
/* assuming that the active subtree isn't at the right edge of */
/* the Merkle tree */
if (j > 0 && (leaf_index + size_subtree <= tree->max_index )) {
struct subtree *building = tree->subtree[j][BUILDING_TREE];
/* The number of leaves that make up one bottom node */
/* of this subtree */
merkle_index_t size_below_tree = (merkle_index_t)1 << building->levels_below;
/* We need to initialize the building tree current index */
/* to a value at least as large as subtree_count */
/* We'd prefer not to have to specificallly initialize */
/* the stack, and so we round up to the next place the */
/* stack is empty */
merkle_index_t building_count =
(subtree_count + size_below_tree - 1) &
~(size_below_tree - 1);
/* # of bottom level nodes we've building right now */
merkle_index_t num_nodes = building_count >> building->levels_below;
building->left_leaf = left_leaf + size_subtree;
building->current_index = building_count;
/* Check if this is already in the aux data */
already_computed_lower = 0;
if (i == 0) {
merkle_index_t lower_index = num_bottom_nodes-1;
merkle_index_t node_offset = building->left_leaf>>building->levels_below;
if (hss_extract_aux_data(expanded_aux, building->level+h_subtree,
w, &building->nodes[ hash_size * lower_index ],
node_offset, num_nodes)) {
/* We do have it precomputed in our aux data */
already_computed_lower = 1;
}
}
/* Schedule the creation of the subset of the building tree */
p_order->tree = tree;
p_order->subtree = building;
/* # of nodes to construct */
p_order->count_nodes = num_nodes;
p_order->next_tree = 0;
/* We generally can't use the prev_node optimization */
p_order->prev_node = NULL;
p_order->prev_index = 0;
p_order->already_computed_lower = already_computed_lower;
p_order++; count_order++;
} else if (j > 0) {
tree->subtree[j][BUILDING_TREE]->current_index = 0;
}
/* And the NEXT_TREE (which is always left-aligned) */
if (i > 0) {
struct subtree *next = tree->subtree[j][NEXT_TREE];
next->left_leaf = 0;
merkle_index_t leaf_size =
(merkle_index_t)1 << next->levels_below;
merkle_index_t next_index = tree_count;
/* If we're not in the bottom tree, it's possible that the */
/* update process will miss the very first update before we */
/* need to sign. To account for that, potetially generate */
/* one more node than what our current count would suggest */
if (i != w->levels - 1) {
next_index++;
}
/* Make next_index the # of leaves we'll need to process to */
/* forward this NEXT subtree to this state */
next_index = (next_index + leaf_size - 1)/leaf_size;
/* This is set if we have a previous subtree */
merkle_index_t prev_subtree = (next->levels_below ? 1 : 0);
merkle_index_t num_nodes;
unsigned char *next_next_node = 0;
/* If next_index == 1, then if we're on a nonbottom subtree */
/* the previous subtree is still building (and so we */
/* needn't do anything). The exception is if we're on the */
/* bottom level, then there is no subtree, and so we still */
/* need to build the initial left leaf */
if (next_index <= prev_subtree) {
/* We're not started on this subtree yet */
next->current_index = 0;
num_nodes = 0;
} else if (next_index < num_bottom_nodes) {
/* We're in the middle of building this tree */
next->current_index = next_index << next->levels_below;
num_nodes = next_index;
} else {
/* We've completed building this tree */
/* How we note "we've generated this entire subtree" */
next->current_index = MAX_SUBINDEX;
num_nodes = num_bottom_nodes;
/* We've generated this entire tree; allow it to */
/* be inhereited for the next one */
next_next_node = &next->nodes[0];
}
if (num_nodes > 0) {
/* Schedule the creation of these nodes */
p_order->tree = tree;
p_order->subtree = next;
/* # of nodes to construct */
p_order->count_nodes = num_nodes;
p_order->next_tree = 1;
p_order->prev_node = next_prev_node;
p_order->prev_index = 0;
p_order->already_computed_lower = 0;
p_order++; count_order++;
}
next_prev_node = next_next_node;
}
bot_level_subtree -= h_subtree;
}
}
#if DO_FLOATING_POINT
/* Fill in the cost estimates */
for (i=0; i<count_order; i++) {
p_order = &order[i];
/*
* While we're here, NULL out all the suborders; we'll fill them in
* later if necessary
*/
p_order->sub = 0;
if (p_order->already_computed_lower) {
/* If we pulled the data from the aux, no work required */
p_order->cost = 0;
continue;
}
unsigned winternitz = 8;
unsigned p = 128;
(void)lm_ots_look_up_parameter_set(p_order->tree->lm_ots_type, 0, 0,
&winternitz, &p, 0);
struct subtree *subtree = p_order->subtree;
unsigned levels_below = subtree->levels_below;
/*
* Estimate the number of hashes that we'll need to compute to compute
* one node; this is the number of leaf nodes times the number of
* hashes used during a winternitz computation. This ignores a few
* other hashes, but gets the vast bulk of them
*/
p_order->cost = (float)((merkle_index_t)1<<levels_below) *
(float)p *
(float)(1<<winternitz);
}
/*
* We have a list of work items to be done. It doesn't matter (for
* correctness) what order we do them in; however we'd like to keep the
* threads as busy as possible (an idle thread is wasted time). So, what
* we try is sort the list in decreasing work order; that makes it more
* likely that all the threads will complete moderately close to the same
* time. Doing this optimally is (in the general case) an NP-hard
* problem; this is a fairly decent heuristic.
*/
qsort( order, count_order, sizeof *order, compare_order_by_cost );
#else
/*
* We have a list of work items to be done. We don't need to sort the
* objects into 'most costly first' order; however the prev_node logic
* will assume that if a higher order subtree depends on a lower one,
* the higher order subtree will appear first. Make it so.
*/
qsort( order, count_order, sizeof *order, compare_order_by_subtree_level );
#endif
#if DO_FLOATING_POINT
/* Generate an estimate of the total cost */
float est_total = estimate_total_cost( order, count_order );
/* Estimate how much we should target each work item should take */
unsigned num_tracks = 4 * hss_thread_num_tracks(info->num_threads);
if (num_tracks == 0) num_tracks = 4; /* Divide by 0; just say no */
float est_max_per_work_item = est_total / num_tracks;
/* Scan through the items, and see which ones should be subdivided */
for (i=0; i<count_order; i++) {
p_order = &order[i];
if (p_order->cost <= est_max_per_work_item) {
break; /* Break because once we hit this point, the rest of the */
/* items will be cheaper */
}
/* Try to subdivide each item into subdiv pieces */
unsigned subdiv = my_log2(p_order->cost / est_max_per_work_item);
struct subtree *subtree = p_order->subtree;
/* Make sure we don't try to subdivide lower than what the */
/* Merkle tree structure allows */
if (subdiv > subtree->levels_below) subdiv = subtree->levels_below;
if (subdiv == 0) continue;
merkle_index_t max_subdiv = (merkle_index_t)1 << subtree->levels_below;
if (subdiv > max_subdiv) subdiv = max_subdiv;
if (subdiv <= 1) continue;
const struct merkle_level *tree = p_order->tree;
size_t hash_len = tree->hash_size;
merkle_index_t count_nodes = p_order->count_nodes;
size_t total_hash = (hash_len * count_nodes) << subdiv;
unsigned h_subtree = (subtree->level == 0) ? tree->top_subtree_size :
tree->subtree_size;
struct sub_order *sub = malloc( sizeof *sub + total_hash );
if (!sub) continue; /* On malloc failure, don't bother trying */
/* to subdivide */
/* Fill in the details of this suborder */
sub->level = subdiv;
sub->num_hashes = 1 << subdiv;
sub->node_num_first_target =
(subtree->left_leaf >> subtree->levels_below) +
((merkle_index_t)1 << (h_subtree + subtree->level));
p_order->sub = sub;
}
#endif
/* Now, generate all the nodes we've listed in parallel */
struct thread_collection *col = hss_thread_init(info->num_threads);
enum hss_error_code got_error = hss_error_none;
/* We use this to decide the granularity of the requests we make */
#if DO_FLOATING_POINT
unsigned core_target = 5 * hss_thread_num_tracks(info->num_threads);
float prev_cost = 0;
#endif
for (i=0; i<count_order; i++) {
p_order = &order[i];
if (p_order->already_computed_lower) continue; /* If it's already */
/* done, we needn't bother */
/* If this work order is cheaper than what we've issued, allow */
/* for a greater amount of consolidation */
#if DO_FLOATING_POINT
if (prev_cost > 0) {
if (p_order->cost <= 2 * prev_cost) {
/* The cost per node has decreased by a factor of 2 (at */
/* least); allow a single core to do more of the work */
float ratio = prev_cost / p_order->cost;
if (ratio > 1000) {
core_target = 1;
} else {
core_target = core_target / ratio;
if (core_target == 0) core_target = 1;
}
prev_cost = p_order->cost;
}
} else {
prev_cost = p_order->cost;
}
#endif
const struct merkle_level *tree = p_order->tree;
struct subtree *subtree = p_order->subtree;
unsigned h_subtree = (subtree->level == 0) ? tree->top_subtree_size :
tree->subtree_size;
merkle_index_t lower_index = ((merkle_index_t)1 << h_subtree) - 1;
unsigned hash_size = tree->hash_size;
#if DO_FLOATING_POINT
unsigned max_per_request = p_order->count_nodes / core_target;
if (max_per_request == 0) max_per_request = 1;
#else
unsigned max_per_request = UINT_MAX;
#endif
/* If we're skipping a value, make sure we compute up to there */
merkle_index_t right_side = p_order->count_nodes;
if (p_order->prev_node && right_side > p_order->prev_index) {
right_side = p_order->prev_index;
}
merkle_index_t n;
struct intermed_tree_detail detail;
detail.seed = (p_order->next_tree ? tree->seed_next : tree->seed);
detail.lm_type = tree->lm_type;
detail.lm_ots_type = tree->lm_ots_type;
detail.h = tree->h;
detail.tree_height = tree->level;
detail.I = (p_order->next_tree ? tree->I_next : tree->I);
detail.got_error = &got_error;
#if DO_FLOATING_POINT
/* Check if we're actually doing a suborder */
struct sub_order *sub = p_order->sub;
if (sub) {
/* Issue all the orders separately */
unsigned hash_len = tree->hash_size;
for (n = 0; n < p_order->count_nodes; n++ ) {
if (n == right_side) continue; /* Skip the omitted value */
unsigned char *dest = &sub->h[ n * sub->num_hashes * hash_len ];
merkle_index_t node_num = (sub->node_num_first_target+n) << sub->level;
int k;
for (k=0; k < sub->num_hashes; k++) {
detail.dest = dest;
dest += hash_len;
detail.node_num = node_num;
node_num++;
detail.node_count = 1;
hss_thread_issue_work(col, hss_gen_intermediate_tree,
&detail, sizeof detail );
}
}
continue;
}
#endif
{
/* We're not doing a suborder; issue the request in as large of */
/* a chunk as we're allowed */
for (n = 0; n < p_order->count_nodes; ) {
merkle_index_t this_req = right_side - n;
if (this_req > max_per_request) this_req = max_per_request;
if (this_req == 0) {
/* We hit the value we're skipping; skip it, and go on to */
/* the real right side */
n++;
right_side = p_order->count_nodes;
continue;
}
/* Issue a work order for the next this_req elements */
detail.dest = &subtree->nodes[ hash_size * (lower_index + n)];
detail.node_num = (subtree->left_leaf >> subtree->levels_below) +
n + ((merkle_index_t)1 << (h_subtree + subtree->level));
detail.node_count = this_req;
hss_thread_issue_work(col, hss_gen_intermediate_tree,
&detail, sizeof detail );
n += this_req;
}
}
}
/* We've issued all the order; now wait until all the work is done */
hss_thread_done(col);
if (got_error != hss_error_none) {
/* One of the worker threads detected an error */
#if DO_FLOATING_POINT
/* Don't leak suborders on an intermediate error */
for (i=0; i<count_order; i++) {
free( order[i].sub );
}
#endif
info->error_code = got_error;
goto failed;
}
#if DO_FLOATING_POINT
/*
* Now, if we did have suborders, recombine them into what was actually
* wanted
*/
for (i=0; i<count_order; i++) {
p_order = &order[i];
struct sub_order *sub = p_order->sub;
if (!sub) continue; /* This order wasn't subdivided */
const struct merkle_level *tree = p_order->tree;
const unsigned char *I = (p_order->next_tree ? tree->I_next : tree->I);
struct subtree *subtree = p_order->subtree;
unsigned hash_size = tree->hash_size;
unsigned h_subtree = (subtree->level == 0) ? tree->top_subtree_size :
tree->subtree_size;
merkle_index_t lower_index = ((merkle_index_t)1 << h_subtree) - 1;
int n;
for (n = 0; n < p_order->count_nodes; n++ ) {
if (p_order->prev_node && n == p_order->prev_index) continue;
hash_subtree( &subtree->nodes[ hash_size * (lower_index + n)],
&sub->h[ hash_size * sub->num_hashes * n ],
sub->level, sub->node_num_first_target + n,
hash_size, tree->h, I);
}
free( sub );
p_order->sub = 0;
}
#endif
/*
* Now we have generated the lower level nodes of the subtrees; go back and
* fill in the higher level nodes.
* We do this in backwards order, so that we do the lower levels of the trees
* first (as lower levels are cheaper, they'll be listed later in the
* array; that's how we sorted, them, remember?).
* That means if any subtrees inherit the root values of lower trees,
* we compute those root values first
*/
for (i=count_order; i>0; i--) {
p_order = &order[i-1];
const struct merkle_level *tree = p_order->tree;
const unsigned char *I = (p_order->next_tree ? tree->I_next : tree->I);
struct subtree *subtree = p_order->subtree;
if (p_order->prev_node) {
/* This subtree did have a bottom node that was the root node */
/* of a lower subtree; fill it in */
unsigned hash_size = tree->hash_size;
unsigned h_subtree = (subtree->level == 0) ? tree->top_subtree_size :
tree->subtree_size;
merkle_index_t lower_index = ((merkle_index_t)1 << h_subtree) - 1;
/* Where in the subtree we place the previous root */
unsigned set_index = (lower_index + p_order->prev_index) * hash_size;
memcpy( &subtree->nodes[ set_index ], p_order->prev_node, hash_size );
}
/* Now, fill in all the internal nodes of the subtree */
fill_subtree(tree, subtree, p_order->count_nodes, I);
}
/*
* Hey; we've initialized all the subtrees (at least, as far as what
* they'd be expected to be given the current count); hurray!
*/
/*
* Now, create all the signed public keys
* Again, we could parallelize this; it's also fast enough not to be worth
* the complexity
*/
for (i = 1; i < w->levels; i++) {
if (!hss_create_signed_public_key( w->signed_pk[i], w->siglen[i-1],
w->tree[i], w->tree[i-1], w )) {
info->error_code = hss_error_internal; /* Really shouldn't */
/* happen */
goto failed;
}
}
hss_zeroize( private_key, sizeof private_key );
/*
* And, we make each level as not needing an update from below (as we've
* initialized them as already having the first update)
*/
for (i = 0; i < w->levels - 1; i++) {
w->tree[i]->update_count = UPDATE_DONE;
}
w->status = hss_error_none; /* This working key has been officially */
/* initialized, and now can be used */
return true;
failed:
hss_zeroize( private_key, sizeof private_key );
return false;
}
#if DO_FLOATING_POINT
/*
* This goes through the order, and estimates the total amount
* This assumes that the highest cost element is listed first
*
* It returns the estimated number of hash compression operations total
*
* We use floating point because the number of hash compression functions can
* vary a *lot*; floating point has great dynamic range.
*/
static float estimate_total_cost( struct init_order *order,
unsigned count_order ) {
if (count_order == 0) return 0;
float total_cost = 0;
int i;
for (i=0; i<count_order; i++) {
unsigned long count = order[i].count_nodes;
if (order[i].prev_node) count--;
total_cost += (float)order[i].cost * count;
}
return total_cost;
}
#endif