We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
~/MetaOptNet$ python train.py --gpu 0 --save-path "./experiments/miniImageNet_MetaOptNet_SVM" --train-shot 15 --head SVM --network ResNet --dataset miniImageNet --eps 0.1 --episodes-per-batch 1 Loading mini ImageNet dataset - phase train Loading mini ImageNet dataset - phase val ('using gpu:', '0') {'episodes_per_batch': 1, 'head': 'SVM', 'val_query': 15, 'test_way': 5, 'train_way': 5, 'eps': 0.1, 'save_epoch': 10, 'val_episode': 2000, 'num_epoch': 60, 'train_query': 6, 'save_path': './experiments/miniImageNet_MetaOptNet_SVM', 'train_shot': 15, 'val_shot': 5, 'gpu': '0', 'dataset': 'miniImageNet', 'network': 'ResNet'} Train Epoch: 1 Learning Rate: 0.1000 10%|███████████▍ | 99/1000 [01:04<09:34, 1.57it/s]Train Epoch: 1 Batch: [100/1000] Loss: 1.4024 Accuracy: 46.83 % (56.67 %) 20%|██████████████████████▉ | 199/1000 [02:09<08:43, 1.53it/s]Train Epoch: 1 Batch: [200/1000] Loss: 1.4666 Accuracy: 46.93 % (46.67 %) 30%|██████████████████████████████████▍ | 299/1000 [03:13<07:46, 1.50it/s]Train Epoch: 1 Batch: [300/1000] Loss: 1.4943 Accuracy: 47.28 % (40.00 %) 40%|█████████████████████████████████████████████▉ | 399/1000 [04:22<06:36, 1.52it/s]Train Epoch: 1 Batch: [400/1000] Loss: 1.4684 Accuracy: 47.37 % (43.33 %) 50%|█████████████████████████████████████████████████████████▍ | 499/1000 [05:31<05:45, 1.45it/s]Train Epoch: 1 Batch: [500/1000] Loss: 1.5299 Accuracy: 47.83 % (33.33 %) 60%|████████████████████████████████████████████████████████████████████▉ | 599/1000 [06:39<04:32, 1.47it/s]Train Epoch: 1 Batch: [600/1000] Loss: 1.4971 Accuracy: 48.47 % (33.33 %) 70%|████████████████████████████████████████████████████████████████████████████████▍ | 699/1000 [07:48<03:26, 1.45it/s]Train Epoch: 1 Batch: [700/1000] Loss: 1.3542 Accuracy: 48.91 % (43.33 %) 80%|███████████████████████████████████████████████████████████████████████████████████████████▉ | 799/1000 [08:57<02:16, 1.47it/s]Train Epoch: 1 Batch: [800/1000] Loss: 1.2025 Accuracy: 49.25 % (60.00 %) 90%|███████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 899/1000 [10:06<01:09, 1.45it/s]Train Epoch: 1 Batch: [900/1000] Loss: 1.4882 Accuracy: 49.54 % (33.33 %) 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 999/1000 [11:15<00:00, 1.44it/s]Train Epoch: 1 Batch: [1000/1000] Loss: 1.1104 Accuracy: 49.76 % (66.67 %) 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [11:16<00:00, 1.45it/s] 0%| | 1/2000 [00:00<16:29, 2.02it/s]THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu line=58 error=2 : out of memory Exception KeyError: KeyError(<weakref at 0x7fa14aa80e10; to 'tqdm' at 0x7fa126bc1d10>,) in <bound method tqdm.del of 0%| | 1/2000 [00:01<16:29, 2.02it/s]> ignored Traceback (most recent call last): File "train.py", line 245, in emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 114, in forward x = self.layer2(x) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx//MetaOptNet/models/ResNet12_embedding.py", line 56, in forward out = self.relu(out) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/activation.py", line 447, in forward return F.leaky_relu(input, self.negative_slope, self.inplace) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/functional.py", line 731, in leaky_relu return torch._C._nn.leaky_relu(input, negative_slope) RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu:58
The text was updated successfully, but these errors were encountered:
No branches or pull requests
~/MetaOptNet$ python train.py --gpu 0 --save-path "./experiments/miniImageNet_MetaOptNet_SVM" --train-shot 15 --head SVM --network ResNet --dataset miniImageNet --eps 0.1 --episodes-per-batch 1
Loading mini ImageNet dataset - phase train
Loading mini ImageNet dataset - phase val
('using gpu:', '0')
{'episodes_per_batch': 1, 'head': 'SVM', 'val_query': 15, 'test_way': 5, 'train_way': 5, 'eps': 0.1, 'save_epoch': 10, 'val_episode': 2000, 'num_epoch': 60, 'train_query': 6, 'save_path': './experiments/miniImageNet_MetaOptNet_SVM', 'train_shot': 15, 'val_shot': 5, 'gpu': '0', 'dataset': 'miniImageNet', 'network': 'ResNet'}
Train Epoch: 1 Learning Rate: 0.1000
10%|███████████▍ | 99/1000 [01:04<09:34, 1.57it/s]Train Epoch: 1 Batch: [100/1000] Loss: 1.4024 Accuracy: 46.83 % (56.67 %)
20%|██████████████████████▉ | 199/1000 [02:09<08:43, 1.53it/s]Train Epoch: 1 Batch: [200/1000] Loss: 1.4666 Accuracy: 46.93 % (46.67 %)
30%|██████████████████████████████████▍ | 299/1000 [03:13<07:46, 1.50it/s]Train Epoch: 1 Batch: [300/1000] Loss: 1.4943 Accuracy: 47.28 % (40.00 %)
40%|█████████████████████████████████████████████▉ | 399/1000 [04:22<06:36, 1.52it/s]Train Epoch: 1 Batch: [400/1000] Loss: 1.4684 Accuracy: 47.37 % (43.33 %)
50%|█████████████████████████████████████████████████████████▍ | 499/1000 [05:31<05:45, 1.45it/s]Train Epoch: 1 Batch: [500/1000] Loss: 1.5299 Accuracy: 47.83 % (33.33 %)
60%|████████████████████████████████████████████████████████████████████▉ | 599/1000 [06:39<04:32, 1.47it/s]Train Epoch: 1 Batch: [600/1000] Loss: 1.4971 Accuracy: 48.47 % (33.33 %)
70%|████████████████████████████████████████████████████████████████████████████████▍ | 699/1000 [07:48<03:26, 1.45it/s]Train Epoch: 1 Batch: [700/1000] Loss: 1.3542 Accuracy: 48.91 % (43.33 %)
80%|███████████████████████████████████████████████████████████████████████████████████████████▉ | 799/1000 [08:57<02:16, 1.47it/s]Train Epoch: 1 Batch: [800/1000] Loss: 1.2025 Accuracy: 49.25 % (60.00 %)
90%|███████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 899/1000 [10:06<01:09, 1.45it/s]Train Epoch: 1 Batch: [900/1000] Loss: 1.4882 Accuracy: 49.54 % (33.33 %)
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 999/1000 [11:15<00:00, 1.44it/s]Train Epoch: 1 Batch: [1000/1000] Loss: 1.1104 Accuracy: 49.76 % (66.67 %)
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [11:16<00:00, 1.45it/s]
0%| | 1/2000 [00:00<16:29, 2.02it/s]THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu line=58 error=2 : out of memory
Exception KeyError: KeyError(<weakref at 0x7fa14aa80e10; to 'tqdm' at 0x7fa126bc1d10>,) in <bound method tqdm.del of 0%| | 1/2000 [00:01<16:29, 2.02it/s]> ignored
Traceback (most recent call last):
File "train.py", line 245, in
emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 114, in forward
x = self.layer2(x)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx//MetaOptNet/models/ResNet12_embedding.py", line 56, in forward
out = self.relu(out)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/activation.py", line 447, in forward
return F.leaky_relu(input, self.negative_slope, self.inplace)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/functional.py", line 731, in leaky_relu
return torch._C._nn.leaky_relu(input, negative_slope)
RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu:58
The text was updated successfully, but these errors were encountered: