We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(metaopnet) x~/MetaOptNet$ python train.py --gpu 0 --save-path "./experiments/miniImageNet_MetaOptNet_SVM" --train-shot 5 --head SVM --network ResNet --dataset miniImageNet --eps 0.1 --episodes-per-batch 1 Loading mini ImageNet dataset - phase train Loading mini ImageNet dataset - phase val ('using gpu:', '0') {'episodes_per_batch': 1, 'head': 'SVM', 'val_query': 15, 'test_way': 5, 'train_way': 5, 'eps': 0.1, 'save_epoch': 10, 'val_episode': 2000, 'num_epoch': 60, 'train_query': 6, 'save_path': './experiments/miniImageNet_MetaOptNet_SVM', 'train_shot': 5, 'val_shot': 5, 'gpu': '0', 'dataset': 'miniImageNet', 'network': 'ResNet'} Train Epoch: 1 Learning Rate: 0.1000 10%|███████████▍ | 99/1000 [00:28<04:20, 3.46it/s]Train Epoch: 1 Batch: [100/1000] Loss: 1.5324 Accuracy: 39.87 % (36.67 %) 20%|██████████████████████▉ | 199/1000 [00:57<03:59, 3.34it/s]Train Epoch: 1 Batch: [200/1000] Loss: 1.4797 Accuracy: 39.05 % (43.33 %) 30%|██████████████████████████████████▍ | 299/1000 [01:26<03:25, 3.41it/s]Train Epoch: 1 Batch: [300/1000] Loss: 1.3376 Accuracy: 39.41 % (53.33 %) 40%|█████████████████████████████████████████████▉ | 399/1000 [01:55<02:52, 3.48it/s]Train Epoch: 1 Batch: [400/1000] Loss: 1.3189 Accuracy: 39.65 % (53.33 %) 50%|█████████████████████████████████████████████████████████▍ | 499/1000 [02:24<02:25, 3.43it/s]Train Epoch: 1 Batch: [500/1000] Loss: 1.5739 Accuracy: 39.84 % (43.33 %) 60%|████████████████████████████████████████████████████████████████████▉ | 599/1000 [02:54<01:57, 3.41it/s]Train Epoch: 1 Batch: [600/1000] Loss: 1.2768 Accuracy: 40.34 % (53.33 %) 70%|████████████████████████████████████████████████████████████████████████████████▍ | 699/1000 [03:24<01:31, 3.29it/s]Train Epoch: 1 Batch: [700/1000] Loss: 1.6253 Accuracy: 40.80 % (30.00 %) 80%|███████████████████████████████████████████████████████████████████████████████████████████▉ | 799/1000 [03:55<01:01, 3.29it/s]Train Epoch: 1 Batch: [800/1000] Loss: 1.3110 Accuracy: 41.17 % (53.33 %) 90%|███████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 899/1000 [04:26<00:31, 3.26it/s]Train Epoch: 1 Batch: [900/1000] Loss: 1.3345 Accuracy: 41.54 % (56.67 %) 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 999/1000 [04:57<00:00, 3.16it/s]Train Epoch: 1 Batch: [1000/1000] Loss: 1.2660 Accuracy: 41.81 % (56.67 %) 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [04:57<00:00, 3.20it/s] 0%| | 1/2000 [00:00<09:57, 3.35it/s]THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu line=58 error=2 : out of memory Exception KeyError: KeyError(<weakref at 0x7f60e517ae10; to 'tqdm' at 0x7f60c12bbd10>,) in <bound method tqdm.del of 0%| | 1/2000 [00:00<09:57, 3.35it/s]> ignored Traceback (most recent call last): File "train.py", line 245, in emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 114, in forward x = self.layer2(x) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 54, in forward residual = self.downsample(x) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward input = module(input) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call result = self.forward(*input, **kwargs) File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/conv.py", line 301, in forward self.padding, self.dilation, self.groups) RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu:58
The text was updated successfully, but these errors were encountered:
No branches or pull requests
(metaopnet) x~/MetaOptNet$ python train.py --gpu 0 --save-path "./experiments/miniImageNet_MetaOptNet_SVM" --train-shot 5 --head SVM --network ResNet --dataset miniImageNet --eps 0.1 --episodes-per-batch 1
Loading mini ImageNet dataset - phase train
Loading mini ImageNet dataset - phase val
('using gpu:', '0')
{'episodes_per_batch': 1, 'head': 'SVM', 'val_query': 15, 'test_way': 5, 'train_way': 5, 'eps': 0.1, 'save_epoch': 10, 'val_episode': 2000, 'num_epoch': 60, 'train_query': 6, 'save_path': './experiments/miniImageNet_MetaOptNet_SVM', 'train_shot': 5, 'val_shot': 5, 'gpu': '0', 'dataset': 'miniImageNet', 'network': 'ResNet'}
Train Epoch: 1 Learning Rate: 0.1000
10%|███████████▍ | 99/1000 [00:28<04:20, 3.46it/s]Train Epoch: 1 Batch: [100/1000] Loss: 1.5324 Accuracy: 39.87 % (36.67 %)
20%|██████████████████████▉ | 199/1000 [00:57<03:59, 3.34it/s]Train Epoch: 1 Batch: [200/1000] Loss: 1.4797 Accuracy: 39.05 % (43.33 %)
30%|██████████████████████████████████▍ | 299/1000 [01:26<03:25, 3.41it/s]Train Epoch: 1 Batch: [300/1000] Loss: 1.3376 Accuracy: 39.41 % (53.33 %)
40%|█████████████████████████████████████████████▉ | 399/1000 [01:55<02:52, 3.48it/s]Train Epoch: 1 Batch: [400/1000] Loss: 1.3189 Accuracy: 39.65 % (53.33 %)
50%|█████████████████████████████████████████████████████████▍ | 499/1000 [02:24<02:25, 3.43it/s]Train Epoch: 1 Batch: [500/1000] Loss: 1.5739 Accuracy: 39.84 % (43.33 %)
60%|████████████████████████████████████████████████████████████████████▉ | 599/1000 [02:54<01:57, 3.41it/s]Train Epoch: 1 Batch: [600/1000] Loss: 1.2768 Accuracy: 40.34 % (53.33 %)
70%|████████████████████████████████████████████████████████████████████████████████▍ | 699/1000 [03:24<01:31, 3.29it/s]Train Epoch: 1 Batch: [700/1000] Loss: 1.6253 Accuracy: 40.80 % (30.00 %)
80%|███████████████████████████████████████████████████████████████████████████████████████████▉ | 799/1000 [03:55<01:01, 3.29it/s]Train Epoch: 1 Batch: [800/1000] Loss: 1.3110 Accuracy: 41.17 % (53.33 %)
90%|███████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 899/1000 [04:26<00:31, 3.26it/s]Train Epoch: 1 Batch: [900/1000] Loss: 1.3345 Accuracy: 41.54 % (56.67 %)
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 999/1000 [04:57<00:00, 3.16it/s]Train Epoch: 1 Batch: [1000/1000] Loss: 1.2660 Accuracy: 41.81 % (56.67 %)
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [04:57<00:00, 3.20it/s]
0%| | 1/2000 [00:00<09:57, 3.35it/s]THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu line=58 error=2 : out of memory
Exception KeyError: KeyError(<weakref at 0x7f60e517ae10; to 'tqdm' at 0x7f60c12bbd10>,) in <bound method tqdm.del of 0%| | 1/2000 [00:00<09:57, 3.35it/s]> ignored
Traceback (most recent call last):
File "train.py", line 245, in
emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:])))
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 114, in forward
x = self.layer2(x)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/MetaOptNet/models/ResNet12_embedding.py", line 54, in forward
residual = self.downsample(x)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/container.py", line 91, in forward
input = module(input)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/xxx/anaconda3/envs/metaopnet/lib/python2.7/site-packages/torch/nn/modules/conv.py", line 301, in forward
self.padding, self.dilation, self.groups)
RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524577523076/work/aten/src/THC/generic/THCStorage.cu:58
The text was updated successfully, but these errors were encountered: