-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathwf_queue_ppopp12.h
484 lines (433 loc) · 15.7 KB
/
wf_queue_ppopp12.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Copyright (c) 2012-2013, the Scal Project Authors. All rights reserved.
// Please see the AUTHORS file for details. Use of this source code is governed
// by a BSD license that can be found in the LICENSE file.
// Implementing the wait-free queue from:
//
// A. Kogan and E. Petrank. A methodology for creating fast wait-free data
// structures. In Proceedings of the 17th ACM SIGPLAN symposium on Principles
// and Practice of Parallel Programming, PPoPP ’12, pages 141–150, New York, NY,
// USA, 2012. ACM.
// Note: This implementation may suffer from the ABA problem, as the head
// pointer's reference counter (head_->aba()) is used by the algorithm to stamp
// the dequeueing thread. The problem could be solved by using the approach of
// their PPoPP'11 paper, where deq_tid is stored in the node.
//
// We also cannot use the queue with more than kAbaMax threads, which is a
// problem when used with single-word CAS, where the last few bits represent the
// ABA counter.
#ifndef SCAL_DATASTRUCTURES_WF_QUEUE_PPOPP12_H_
#define SCAL_DATASTRUCTURES_WF_QUEUE_PPOPP12_H_
#include <assert.h>
#include <inttypes.h>
#include "datastructures/queue.h"
#include "util/atomic_value.h"
#include "util/malloc.h"
#include "util/platform.h"
#include "util/threadlocals.h"
namespace wf_ppopp12_details {
// Serves as container for a linked list element.
template<typename T>
struct Node {
// Marks a node as free for other threads.
static const uint64_t kTidNotSet = AtomicValue<uint64_t>::kAbaMax;
Node() {
init((T)NULL);
}
explicit Node(T data) {
init(data);
}
void init(T data) {
this->data = data;
this->enq_tid = kTidNotSet;
}
T data;
AtomicPointer<Node<T>*> next;
uint64_t enq_tid;
};
// Descriptor describes the state of each thread's operation.
template<typename T>
struct OperationDescriptor {
enum Type {
kEnqueue,
kDequeue
};
static const int64_t kNoPhase = -1;
OperationDescriptor(void) {}
OperationDescriptor(int64_t phase, bool pending, Type type, Node<T> *node) {
init(phase, pending, type, node);
}
void init(int64_t phase, bool pending, Type type, Node<T>* node) {
this->phase = phase;
this->pending = pending;
this->type = type;
this->node = node;
}
int64_t phase;
bool pending;
Type type;
Node<T> *node;
};
template<typename T>
class HelpRecord {
public:
static void prepare(uint64_t num_threads,
uint64_t helping_delay,
volatile AtomicPointer<OperationDescriptor<T>*> **state) {
NumThreads = num_threads;
HelpingDelay = helping_delay;
State = state;
}
HelpRecord() {
cur_thread_id_ = -1;
reset();
}
void reset(void) volatile {
cur_thread_id_ = (cur_thread_id_ + 1) % NumThreads;
last_phase_ = State[cur_thread_id_]->value()->phase;
next_check_ = HelpingDelay;
}
bool do_next_check(void) volatile {
if (next_check_-- == 0) {
return true;
}
return false;
}
uint64_t cur_thread_id() volatile {
return cur_thread_id_;
}
uint64_t last_phase() volatile {
return last_phase_;
}
private:
static uint64_t NumThreads;
static uint64_t HelpingDelay;
static volatile AtomicPointer<OperationDescriptor<T>*> **State;
int64_t cur_thread_id_;
uint64_t last_phase_;
uint64_t next_check_;
};
template<typename T>
uint64_t HelpRecord<T>::NumThreads = 0;
template<typename T>
uint64_t HelpRecord<T>::HelpingDelay = 0;
template<typename T>
volatile AtomicPointer<OperationDescriptor<T>*>** HelpRecord<T>::State = NULL;
} // namespace wf_ppopp12_details
template<typename T>
class WaitfreeQueue : public Queue<T> {
public:
WaitfreeQueue(uint64_t num_threads,
uint64_t max_retries,
uint64_t helping_delay);
bool enqueue(T item);
bool dequeue(T *item);
private:
typedef wf_ppopp12_details::Node<T> Node;
typedef wf_ppopp12_details::OperationDescriptor<T> OperationDescriptor;
typedef wf_ppopp12_details::HelpRecord<T> HelpRecord;
static const uint64_t kPtrAlignment = scal::kCachePrefetch;
void fix_tail(AtomicPointer<Node*> tail_old, AtomicPointer<Node*> next);
void wf_enq(Node *node);
bool wf_deq(T *item);
void help_enq(uint64_t thread_id, int64_t phase);
void help_deq(uint64_t thread_id, int64_t phase);
void help_finish_enq();
void help_finish_deq();
void help_if_needed();
inline bool is_still_pending(uint64_t thread_id, int64_t phase);
uint64_t num_threads_;
uint64_t max_retries_;
uint64_t helping_delay_;
volatile AtomicPointer<Node*> *head_;
volatile AtomicPointer<Node*> *tail_;
volatile AtomicPointer<OperationDescriptor*> **state_;
volatile HelpRecord **records_;
};
template<typename T>
WaitfreeQueue<T>::WaitfreeQueue(uint64_t num_threads,
uint64_t max_retries,
uint64_t helping_delay) {
num_threads_ = num_threads;
max_retries_ = max_retries;
helping_delay_ = helping_delay;
// Create sentinel node.
Node *node = scal::get<Node>(kPtrAlignment);
// Create aligned head and tail pointers, that point to the sentinel node.
AtomicPointer<Node*> *head = scal::get<AtomicPointer<Node*> >(kPtrAlignment);
head->weak_set_value(node);
head->set_aba(Node::kTidNotSet);
head_ = const_cast<volatile AtomicPointer<Node*>*>(head);
AtomicPointer<Node*> *tail = scal::get<AtomicPointer<Node*> >(kPtrAlignment);
tail->weak_set_value(node);
tail_ = const_cast<volatile AtomicPointer<Node*>*>(tail);
// Each thread gets its own OperationDescriptor.
state_ = const_cast<volatile AtomicPointer<OperationDescriptor*>**>(
static_cast<AtomicPointer<OperationDescriptor*>**>(calloc(
num_threads_, sizeof(AtomicPointer<OperationDescriptor*>*))));
for (uint64_t i = 0; i < num_threads_; i++) {
OperationDescriptor *opdesc = scal::get<OperationDescriptor>(kPtrAlignment);
opdesc->init(OperationDescriptor::kNoPhase,
false,
OperationDescriptor::Type::kEnqueue,
NULL);
state_[i] = scal::get<AtomicPointer<OperationDescriptor*> >(kPtrAlignment);
state_[i]->weak_set_value(opdesc);
}
HelpRecord::prepare(num_threads_, helping_delay_, state_);
// Each thread gets its own HelpRecord.
records_ = const_cast<volatile HelpRecord**>(static_cast<HelpRecord**>(calloc(
num_threads_, sizeof(*records_))));
for (uint64_t i = 0; i < num_threads_; i++) {
records_[i] = scal::get<HelpRecord>(kPtrAlignment);
}
}
template<typename T>
void WaitfreeQueue<T>::help_if_needed() {
uint64_t thread_id = scal::ThreadContext::get().thread_id();
volatile HelpRecord *rec = records_[thread_id];
if (rec->do_next_check()) {
OperationDescriptor *desc = state_[rec->cur_thread_id()]->value();
if (desc->pending && desc->phase == (int64_t)rec->last_phase()) {
if (desc->type == OperationDescriptor::Type::kEnqueue) {
help_enq(rec->cur_thread_id(), rec->last_phase());
} else {
help_deq(rec->cur_thread_id(), rec->last_phase());
}
}
rec->reset();
}
}
template<typename T>
void WaitfreeQueue<T>::fix_tail(AtomicPointer<Node*> tail_old,
AtomicPointer<Node*> next) {
if (next.value()->enq_tid == Node::kTidNotSet) { // fast path enqueue
AtomicPointer<Node*> tail_new(next.value(), tail_old.aba() + 1);
tail_->cas(tail_old, tail_new);
} else { // slow path enqueue
help_finish_enq();
}
}
template <typename T>
bool WaitfreeQueue<T>::is_still_pending(uint64_t thread_id, int64_t phase) {
return state_[thread_id]->value()->pending &&
state_[thread_id]->value()->phase <= phase;
}
template<typename T>
bool WaitfreeQueue<T>::enqueue(T item) {
assert(item != (T)NULL);
help_if_needed();
Node *node = scal::tlget<Node>(kPtrAlignment);
node->init(item);
unsigned int trials = 0;
AtomicPointer<Node*> tail_old;
AtomicPointer<Node*> next;
while (trials++ < max_retries_) {
tail_old = *tail_;
next = tail_old.value()->next;
if (tail_old.raw() == tail_->raw()) {
if (next.value() == NULL) {
AtomicPointer<Node*> next_new(node, next.aba() + 1);
if (tail_old.value()->next.cas(next, next_new)) {
return true;
}
} else {
fix_tail(tail_old, next);
}
}
}
wf_enq(node);
return true;
}
template<typename T>
bool WaitfreeQueue<T>::dequeue(T *item) {
help_if_needed();
unsigned int trials = 0;
AtomicPointer<Node*> tail_old;
AtomicPointer<Node*> head_old;
AtomicPointer<Node*> next;
while (trials++ < max_retries_) {
head_old = *head_;
tail_old = *tail_;
next = head_old.value()->next;
if (head_->raw() == head_old.raw()) {
if (head_old.value() == tail_old.value()) {
if (next.value() == NULL) {
return false;
}
fix_tail(tail_old, next);
} else if (head_->aba() == Node::kTidNotSet) { // no slow deq
*item = next.value()->data;
AtomicPointer<Node*> head_new(next.value(), Node::kTidNotSet);
if (head_->cas(head_old, head_new)) {
return true;
}
} else { // slow deq
help_finish_deq();
}
}
}
return wf_deq(item);
}
template<typename T>
void WaitfreeQueue<T>::wf_enq(Node *node) {
uint64_t thread_id = scal::ThreadContext::get().thread_id();
int64_t phase = state_[thread_id]->value()->phase + 1;
node->enq_tid = thread_id;
OperationDescriptor *opdesc = scal::tlget<OperationDescriptor>(kPtrAlignment);
opdesc->init(phase, true, OperationDescriptor::Type::kEnqueue, node);
AtomicPointer<OperationDescriptor*> state_new(
opdesc, state_[thread_id]->aba() + 1);
state_[thread_id]->set_raw(state_new.raw());
help_enq(thread_id, phase);
help_finish_enq();
}
template<typename T>
void WaitfreeQueue<T>::help_enq(uint64_t thread_id, int64_t phase) {
AtomicPointer<Node*> tail_old;
AtomicPointer<Node*> next;
while (is_still_pending(thread_id, phase)) {
tail_old = *tail_;
next = tail_old.value()->next;
if (tail_old.raw() == tail_->raw()) {
if (next.value() == NULL) {
if (is_still_pending(thread_id, phase)) {
AtomicPointer<Node*> new_next(state_[thread_id]->value()->node,
next.aba() + 1);
if (tail_old.value()->next.cas(next, new_next)) {
help_finish_enq();
return;
}
}
} else { // There's still an enqueue in progress.
help_finish_enq();
}
}
}
}
template<typename T>
void WaitfreeQueue<T>::help_finish_enq() {
AtomicPointer<Node*> tail_old = *tail_;
AtomicPointer<Node*> next = tail_old.value()->next;
if (next.value() != NULL) {
uint64_t thread_id = next.value()->enq_tid;
if (thread_id != Node::kTidNotSet) {
AtomicPointer<OperationDescriptor*> cur_state = *state_[thread_id];
if ((tail_old.raw() == tail_->raw()) &&
((state_[thread_id]->value())->node == next.value())) {
OperationDescriptor *new_desc =
scal::tlget<OperationDescriptor>(kPtrAlignment);
new_desc->init(state_[thread_id]->value()->phase, false,
OperationDescriptor::Type::kEnqueue, next.value());
AtomicPointer<OperationDescriptor*> new_state(new_desc,
cur_state.aba() + 1);
state_[thread_id]->cas(cur_state, new_state);
AtomicPointer<Node*> new_tail(next.value(), tail_old.aba() + 1);
tail_->cas(tail_old, new_tail);
}
} else { // node was appended on the fast path
AtomicPointer<Node*> new_tail(next.value(), tail_old.aba() + 1);
tail_->cas(tail_old, new_tail);
}
}
}
template<typename T>
bool WaitfreeQueue<T>::wf_deq(T *item) {
uint64_t thread_id = scal::ThreadContext::get().thread_id();
int64_t phase = state_[thread_id]->value()->phase + 1;
OperationDescriptor *opdesc = scal::tlget<OperationDescriptor>(kPtrAlignment);
opdesc->init(phase, true, OperationDescriptor::Type::kDequeue, NULL);
AtomicPointer<OperationDescriptor*> state_new(
opdesc, state_[thread_id]->aba() + 1);
state_[thread_id]->set_raw(state_new.raw());
help_deq(thread_id, phase);
help_finish_deq();
Node *node = state_[thread_id]->value()->node;
if (node == NULL) {
return false;
}
*item = node->next.value()->data;
return true;
}
template<typename T>
void WaitfreeQueue<T>::help_deq(uint64_t thread_id, int64_t phase) {
AtomicPointer<Node*> head_old;
AtomicPointer<Node*> tail_old;
AtomicPointer<Node*> next;
while (is_still_pending(thread_id, phase)) {
head_old = *head_;
tail_old = *tail_;
next = head_old.value()->next;
if (head_->raw() == head_old.raw()) {
if (head_old.value() == tail_old.value()) {
if (next.value() == NULL) { // Queue is empty.
AtomicPointer<OperationDescriptor*> cur_state = *state_[thread_id];
if (tail_old.value() == tail_->value()
&& is_still_pending(thread_id, phase)) {
OperationDescriptor *new_desc =
scal::tlget<OperationDescriptor>(kPtrAlignment);
new_desc->init(state_[thread_id]->value()->phase,
false,
OperationDescriptor::Type::kDequeue,
NULL);
AtomicPointer<OperationDescriptor*> new_state(new_desc,
cur_state.aba() + 1);
// If the next CAS fails, another thread changed the state, which
// is also ok since the descriptor will not indicate pending in the
// next try.
state_[thread_id]->cas(cur_state, new_state);
}
} else { // Help finish a pending enqueue.
help_finish_enq();
}
} else { // Queue is not empty.
AtomicPointer<OperationDescriptor*> cur_state = *state_[thread_id];
OperationDescriptor *cur_desc = cur_state.value();
Node *node = cur_desc->node;
if (!is_still_pending(thread_id, phase)) {
break;
}
if (head_->raw() == head_old.raw()
&& node != head_old.value()) {
OperationDescriptor *new_desc =
scal::tlget<OperationDescriptor>(kPtrAlignment);
new_desc->init(state_[thread_id]->value()->phase, true,
OperationDescriptor::Type::kDequeue,
head_old.value());
AtomicPointer<OperationDescriptor*> new_state(new_desc,
cur_state.aba() + 1);
if (!state_[thread_id]->cas(cur_state, new_state)) {
continue;
}
}
AtomicPointer<Node*> head_expected(head_old.value(), Node::kTidNotSet);
AtomicPointer<Node*> head_new(head_old.value(), thread_id);
head_->cas(head_expected, head_new);
help_finish_deq();
}
}
}
}
template<typename T>
void WaitfreeQueue<T>::help_finish_deq(void) {
AtomicPointer<Node*> head_old = *head_;
AtomicPointer<Node*> next = head_old.value()->next;
uint64_t thread_id = head_old.aba();
if (thread_id != Node::kTidNotSet) {
AtomicPointer<OperationDescriptor*> cur_state = *state_[thread_id];
if (head_old.raw() == head_->raw()
&& next.value() != NULL) {
OperationDescriptor *new_desc =
scal::tlget<OperationDescriptor>(kPtrAlignment);
new_desc->init(state_[thread_id]->value()->phase,
false,
OperationDescriptor::Type::kDequeue,
state_[thread_id]->value()->node);
AtomicPointer<OperationDescriptor*> state_new(new_desc,
cur_state.aba() + 1);
state_[thread_id]->cas(cur_state, state_new);
AtomicPointer<Node*> head_new(next.value(), Node::kTidNotSet);
head_->cas(head_old, head_new);
}
}
}
#endif // SCAL_DATASTRUCTURES_WF_QUEUE_PPOPP12_H_