-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
839 lines (708 loc) · 32.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
import logging
import os
import pandas as pd
import numpy as np
import torch
import shutil
from collections import defaultdict
import custom_model
from datasets_utils.pancreas.pancreas_utils import prepare_pancreas_data, \
get_pancreas_data, get_list_private_data_pancreas, all_study_ids
from datasets_utils.xray.xray_utils import prepare_xray_data, \
get_xray_dataset, get_list_private_data_xray, all_xray_ids
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import json
import pickle
from torch.utils.data import BatchSampler, Sampler
from collections import OrderedDict
from typing import Any, Callable, TypeVar, Generic, Sequence, List, Optional, Iterable
import sklearn
import torch.nn as nn
from itertools import chain
from tqdm import tqdm
import torchvision
from privacy_utils.rdp_accountant import compute_rdp, get_privacy_spent
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def set_args_fl(args):
if "xray" in args.dataset:
args.num_clients = len(all_xray_ids)
print(f"num clients: {args.num_clients}")
if args.dataset.lower() == "pancreas":
args.num_clients = len(all_study_ids)
print(f"num clients: {args.num_clients}")
private_trainset_list = get_dataset(args, train=True, dataset_id='all',
get_list=True)
args.list_dataset_length = np.array(list(map(len, private_trainset_list)))
args.client_data_split_ratio = args.list_dataset_length
print(args.client_data_split_ratio)
if len(args.batch_size) != args.num_clients:
if len(args.batch_size) == 1:
args.batch_size *= args.num_clients
else:
raise ValueError(f"invalid input for batch_size "
f"{args.batch_size}")
if len(args.physical_batch_size) != args.num_clients:
if len(args.physical_batch_size) == 1:
args.physical_batch_size *= args.num_clients
else:
raise ValueError(f"invalid input for physical_batch_size "
f"{args.physical_batch_size}")
if len(args.lr) != args.num_clients:
if len(args.lr) == 1:
args.lr *= args.num_clients
else:
raise ValueError(f"invalid input for lr "
f"{args.lr}")
if len(args.optimizer) != args.num_clients:
if len(args.optimizer) == 1:
args.optimizer *= args.num_clients
else:
raise ValueError(f"invalid input for optimizer "
f"{args.optimizer}")
if len(args.weight_decay) != args.num_clients:
if len(args.weight_decay) == 1:
args.weight_decay *= args.num_clients
else:
raise ValueError(f"invalid input for weight_decay "
f"{args.weight_decay}")
if args.dp_option != 'None':
args.freeze_running_stats = 1
def set_args(args):
private_trainset = get_dataset(args, train=True, dataset_id='all',
get_list=False)
private_trainset_list = get_dataset(args, train=True, dataset_id='all', get_list=True)
args.sampling_rate = args.batch_size / len(private_trainset)
args.list_dataset_length = np.array(list(map(len, private_trainset_list)))
args.list_batch_sizes = np.round(args.list_dataset_length * args.sampling_rate).astype(int)
args.batch_size = int(sum(args.list_batch_sizes))
sampling_rate = max(args.list_batch_sizes / args.list_dataset_length)
args.sampling_rate = sampling_rate
if not args.no_dp:
args.target_delta = min(args.delta, 1 / (len(private_trainset) * 1.1))
if not args.no_dp:
args.freeze_running_stats = 1
def get_log(args):
'''
get logger
:param args:
:return: logger
'''
logger = logging.getLogger('{}-log'.format(args.dataset))
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(os.path.join(args.save_dir, 'log'))
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)
return logger
def prepare_dataset(args):
if args.dataset.lower() == 'pancreas':
print("preparing pancreas data for train test split")
prepare_pancreas_data(args.dataset_path, args.split_info_path, kfold=args.kfold,
seed=args.seed, recreate_data=args.recreate_data)
elif "xray" in args.dataset:
print("preparing xray data for train test split")
prepare_xray_data(args.dataset_path, args.split_info_path, args.xray_views,
unique_patients=args.unique_patients,
kfold=args.kfold,
seed=args.seed, recreate_data=args.recreate_data,
only_include=args.only_include)
else:
raise NotImplementedError(f"split data for {args.dataset} dataset is not implemented")
def get_dataset(args, train, dataset_id='all',
get_list=False):
"""
get the dataset
@param args:
@param train:
@param download:
@return:
"""
if args.dataset.lower() == 'pancreas':
if not get_list:
data = get_pancreas_data(args.dataset_path, args.split_info_path,
study_id=dataset_id,
train=train, exp_id=args.exp_id,
log_transform=args.log_transform
)
else:
data = get_list_private_data_pancreas(args.dataset_path, args.split_info_path,
ids_to_include=dataset_id,
train=train,
exp_id=args.exp_id,
log_transform=args.log_transform
)
elif "xray" in args.dataset:
if not get_list:
data = get_xray_dataset(args.dataset_path, args.split_info_path, xray_id=dataset_id,
xray_views=args.xray_views,
xray_img_size=args.xray_img_size, data_aug_rot=args.data_aug_rot,
data_aug_trans=args.data_aug_trans,
data_aug_scale=args.data_aug_scale, unique_patients=args.unique_patients,
train=train, exp_id=args.exp_id,
only_include=args.only_include)
else:
data = get_list_private_data_xray(args.dataset_path, args.split_info_path,
xray_views=args.xray_views,
xray_img_size=args.xray_img_size,
data_aug_rot=args.data_aug_rot,
data_aug_trans=args.data_aug_trans,
data_aug_scale=args.data_aug_scale,
unique_patients=args.unique_patients,
train=train,
exp_id=args.exp_id,
only_include=args.only_include)
else:
raise NotImplementedError("dataset not implemented")
return data
def load_pretrained_state(model, args):
if os.path.exists(args.initial_model_state):
print(f"load pretrained {args.initial_model_state}")
if isinstance(args.device, int):
device = f"cuda:{args.device}"
else:
device = args.device
model_state = torch.load(args.initial_model_state,
map_location=device)
try:
model.load_state_dict(model_state['net'])
except:
new_state_dict = OrderedDict()
for k, v in model_state['net'].items():
if not 'classifier' in k:
new_state_dict[k] = v
else:
new_state_dict[k] = v[-1:]
model.load_state_dict(new_state_dict)
else:
print_and_log(args, f"initial state ({args.initial_model_state}) doesn't exist", 1)
def get_loss_func(args):
"""
return the loss function object
@param args:
@return: loss function object
"""
if args.dataset.lower() == 'pancreas':
if args.architecture == custom_model.SVC:
loss_func = torch.nn.MultiMarginLoss().to(args.device)
elif args.architecture == custom_model.MLP_Classifier:
loss_func = torch.nn.CrossEntropyLoss().to(args.device)
else:
raise NotImplementedError("loss function not implemented ")
elif "xray" in args.dataset:
loss_func = torch.nn.BCELoss().to(args.device)
else:
raise NotImplementedError("loss function not implemented ")
return loss_func
def get_batch_data(data, dataset, device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
if 'xray' in dataset:
images = data["img"].to(device).contiguous()
labels = data["lab"].float().to(device).contiguous()
else:
images, labels = data[0].to(device), data[1].to(device)
return images, labels
def get_output(inputs, model, dataset, device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
outputs = model(inputs)
return outputs
def get_loss(outputs, labels, criterion, dataset, device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
if 'xray' in dataset:
loss = torch.zeros(1).to(device).float()
for task in range(labels.shape[1]):
task_output = outputs[:, task]
task_target = labels[:, task]
mask = ~torch.isnan(task_target)
task_output = task_output[mask]
task_target = task_target[mask]
if len(task_target) > 0:
task_loss = criterion(task_output.float(), task_target.float())
loss += task_loss
loss = loss.sum()
else:
loss = criterion(outputs, labels)
return loss
def mia_inference_and_score(dataset, model, dataloader,
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),
num_aug_mia=0, args=None, epoch_num=1):
model.eval()
with torch.no_grad():
stats = []
labels = []
dataloader_t = tqdm(dataloader)
logits_save_path = f"{args.save_dir}/logits"
if not os.path.exists(logits_save_path):
os.makedirs(logits_save_path)
if num_aug_mia:
augs = []
affine = torchvision.transforms.RandomAffine(
args.data_aug_rot,
translate=(args.data_aug_trans, args.data_aug_trans),
scale=(1.0 - args.data_aug_scale, 1.0 + args.data_aug_scale))
augs.append(affine)
data_aug = torchvision.transforms.Compose(augs)
for i, data in enumerate(dataloader_t):
outs = [] # get all augmentation for this minibatch
xbatch, y = get_batch_data(data, dataset, device)
labels.append(y.squeeze().cpu().numpy().astype(np.int64))
if not num_aug_mia:
for this_x in [xbatch]: # no augmentation
logits = model(this_x).squeeze()
if len(logits.shape) == 1:
logits = torch.concat([1. - logits[:, None], logits[:, None]], dim=1)
outs.append(logits.detach().cpu().numpy())
else:
aug_pad = [data_aug(xbatch) for _ in range(num_aug_mia)]
for this_x in [xbatch]+aug_pad: # no augmentation
logits = model(this_x).squeeze()
if len(logits.shape) == 1:
logits = torch.concat([1. - logits[:, None], logits[:, None]], dim=1)
outs.append(logits.detach().cpu().numpy())
stats.extend(np.array(outs).transpose((1, 0, 2)))
opredictions = np.array(stats)[:,None,:,:]
print("inference shape", np.array(opredictions).shape)
labels = np.concatenate(labels)
if dataset.lower() != 'xray':
## Be exceptionally careful.
## Numerically stable everything, as described in the paper.
predictions = opredictions - np.max(opredictions, axis=3, keepdims=True)
predictions = np.array(np.exp(predictions), dtype=np.float64)
predictions = predictions / np.sum(predictions, axis=3, keepdims=True)
else:
predictions = opredictions
COUNT = predictions.shape[0]
# x num_examples x num_augmentations x logits
y_true = predictions[np.arange(COUNT), :, :, labels[:COUNT]]
print(y_true.shape)
print('mean acc', np.mean(predictions[:, 0, 0, :].argmax(1) == labels[:COUNT]))
predictions[np.arange(COUNT), :, :, labels[:COUNT]] = 0
y_wrong = np.sum(predictions, axis=3)
logit = (np.log(y_true.mean((1)) + 1e-45) - np.log(y_wrong.mean((1)) + 1e-45))
print("score shape", logit.shape)
return opredictions, logit
def get_mia_testloader(args):
testdata = get_dataset(args, train=False, dataset_id='mia_inference_all',
get_list=False)
mia_testloader = torch.utils.data.DataLoader(testdata, batch_size=args.eval_batch_size,
num_workers=args.num_workers, pin_memory=True,
shuffle=False)
return mia_testloader
def save_mia_scores(aggregate_model, args, epoch_num, mia_testloader=None, num_aug_mia=0):
scores_save_path = f"{args.save_dir}/scores"
if not os.path.exists(scores_save_path):
os.makedirs(scores_save_path)
if os.path.exists(f"{scores_save_path}/{epoch_num}.npy"):
print(f"{scores_save_path}/{epoch_num}.npy already exists. ")
return
if mia_testloader is None:
mia_testloader = get_mia_testloader(args)
opredictions, scores = mia_inference_and_score(args.dataset, aggregate_model, mia_testloader,
device=args.device,
num_aug_mia=num_aug_mia, args=args, epoch_num=epoch_num)
np.save(f"{scores_save_path}/{epoch_num}.npy", scores)
def evaluate_model(dataset, model, dataloader,
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
"""
evaluate the model with dataloader
@param model:
@param dataloader:
@return: the test accuracy
"""
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.eval()
if 'xray' in dataset:
task_outputs = defaultdict(list)
task_targets = defaultdict(list)
else:
task_outputs = []
task_targets = []
with torch.no_grad():
dataloader_t = tqdm(dataloader)
for i, data in enumerate(dataloader_t):
images, labels = get_batch_data(data, dataset, device)
model.to(device)
outputs = get_output(images, model, dataset, device).detach()
if 'xray' in dataset:
for task in range(labels.shape[1]):
task_output = outputs[:, task]
task_target = labels[:, task]
mask = ~torch.isnan(task_target)
task_output = task_output[mask]
task_target = task_target[mask]
task_outputs[task].append(task_output.detach().cpu().numpy())
task_targets[task].append(task_target.detach().cpu().numpy())
else:
_, predicted = torch.max(outputs.data, 1)
task_targets.extend(labels.cpu().tolist())
task_outputs.extend(predicted.cpu().tolist())
if 'xray' in dataset:
for task in range(len(task_targets)):
task_outputs[task] = np.concatenate(task_outputs[task])
task_targets[task] = np.concatenate(task_targets[task])
task_aucs = []
for task in range(len(task_targets)):
if len(np.unique(task_targets[task])) > 1:
task_auc = sklearn.metrics.roc_auc_score(task_targets[task], task_outputs[task])
# print(task, task_auc)
task_aucs.append(task_auc)
else:
task_aucs.append(np.nan)
task_aucs = np.asarray(task_aucs)
auc = np.mean(task_aucs[~np.isnan(task_aucs)])
# print(f'Avg AUC = {auc:4.4f}')
# print(dict(zip(dataloader.dataset.pathologies, task_aucs)))
return task_outputs, task_targets
def print_xray(args, y_val_dict, y_pred_dict, name="all", type="train", to_save=True, epsilon=None, best_alpha=None):
predicted_dict = {}
opt_thres_dict = {}
tn_dict = {}
fp_dict = {}
fn_dict = {}
tp_dict = {}
ppv_dict = {}
npv_dict = {}
auc_dict = {}
for pathologies in y_val_dict.keys():
y_val = y_val_dict[pathologies]
y_pred = y_pred_dict[pathologies]
fpr, tpr, thres = sklearn.metrics.roc_curve(y_val, y_pred)
auc_roc_score = sklearn.metrics.auc(fpr, tpr)
auc_dict[pathologies] = auc_roc_score
pente = tpr - fpr
opt_thres = thres[np.argmax(pente)]
opt_thres_dict[pathologies] = opt_thres
predicted = np.array(y_pred > opt_thres, dtype=int)
predicted_dict[pathologies] = predicted
m = confusion_matrix(y_val, predicted)
tn, fp, fn, tp = m.ravel()
ppv = tp / (tp + fp)
npv = tn / (tn + fn)
tn_dict[pathologies] = tn
fp_dict[pathologies] = fp
fn_dict[pathologies] = fn
tp_dict[pathologies] = tp
ppv_dict[pathologies] = ppv
npv_dict[pathologies] = npv
report_dict = {}
for pathologies in y_val_dict.keys():
report_dict[pathologies] = {}
for pathologies in y_val_dict.keys():
report_dict[pathologies]["opt_thres"] = opt_thres_dict[pathologies]
report_dict[pathologies]["tn"] = tn_dict[pathologies]
report_dict[pathologies]["fp"] = fp_dict[pathologies]
report_dict[pathologies]["fn"] = fn_dict[pathologies]
report_dict[pathologies]["tp"] = tp_dict[pathologies]
report_dict[pathologies]["ppv"] = ppv_dict[pathologies]
report_dict[pathologies]["npv"] = npv_dict[pathologies]
report_dict[pathologies]["auc"] = auc_dict[pathologies]
report_dict["mean_auc"] = np.mean(list(auc_dict.values()))
report_dict["eps"] = epsilon
report_dict["best_alpha"] = best_alpha
print_and_log(args, f"mean AUROC: {np.mean(list(auc_dict.values()))}", 'all' in name)
print_and_log(args, auc_dict, 'all' in name)
# opt_min = y_pred.min()
# opt_max = y_pred.max()
# ppv, recall, thres = sklearn.metrics.precision_recall_curve(y_val, y_pred)
# auc_prc_score = sklearn.metrics.auc(ppv, recall)
# print_and_log(args, f"auc prec-recall score: {auc_prc_score}", 1)
# ppv80_thres_idx = np.where(ppv > 0.8)[0][0]
# ppv80_thres = thres[ppv80_thres_idx - 1]
#
# predicted = np.array((y_pred > ppv80_thres), dtype=int)
# m = confusion_matrix(y_val, predicted)
# print_and_log(args, f"thres from prc conf matrix: \n {m}", 1)
#
# target_names = ['w/o patho', 'w/ patho']
# print_and_log(args, f"\n{classification_report(y_val, predicted, target_names=target_names)}", 1)
# report_dict = classification_report(y_val, predicted, target_names=target_names, output_dict=True)
# if to_save:
# res_dir = f"{args.save_dir}/report_prc_{name}_{type}.csv"
# if os.path.exists(res_dir):
# df = pd.read_csv(res_dir)
# else:
# df = pd.DataFrame()
# report_dict['prc_auc'] = np.median(auc_prc_score)
# df = df.append({**report_dict}, ignore_index=True)
# df.to_csv(res_dir, index=False)
def print_f1(args, y_val, y_pred, name="all", type="train", epsilon=None, best_alpha=None):
m = confusion_matrix(y_val, y_pred)
print_and_log(args, f"conf matrix: \n {m}",'all' in name)
target_names = ['alpha', 'beta', 'gamma', 'delta']
print_and_log(args, f"\n{classification_report(y_val, y_pred, target_names=target_names)}",
'all' in name)
report_dict = classification_report(y_val, y_pred, target_names=target_names, output_dict=True)
list_f1 = [report_dict[cell_type]['f1-score'] for cell_type in target_names]
report_dict['median_f1'] = np.median(list_f1)
report_dict["eps"] = epsilon
report_dict["best_alpha"] = best_alpha
print_and_log(args, f"{type}: median f1 score: {np.median(list_f1)}", 1)
def print_and_log(args, message, force_print=0):
args.logger.info(message)
if args.verbose or force_print:
print(message)
def print_save_epoch_results(args, i, train_acc, test_acc, y_val1, y_pred1, y_val2, y_pred2, name='all',
epsilon=None, best_alpha=None):
if args.dataset.lower() == 'pancreas':
if y_pred1 is not None and y_val1 is not None:
print_and_log(args, f"train {name}: ",'all' in name)
print_f1(args, y_val1, y_pred1, name=name, type='train',
epsilon=epsilon, best_alpha=best_alpha)
print_and_log(args, f"testing {name}: ",'all' in name)
print_f1(args, y_val2, y_pred2, name=name, type='test',
epsilon=epsilon, best_alpha=best_alpha)
if args.dataset.lower() == 'xray':
if y_pred1 is not None and y_val1 is not None:
print_and_log(args, f"train {name}: ",'all' in name)
print_xray(args, y_val1, y_pred1, name=name, type='train',
epsilon=epsilon, best_alpha=best_alpha)
print_and_log(args, f"testing {name}: ",'all' in name)
print_xray(args, y_val2, y_pred2, name=name, type='test',
epsilon=epsilon, best_alpha=best_alpha)
def create_sequences(batch_size, dataset_size, epochs, replace=False, drop_last=True):
# create a sequence of data indices used for training
sequence = np.concatenate([np.random.choice(dataset_size, size=dataset_size, replace=replace)
for i in range(epochs)])
ind = [(j + 1) * batch_size for j in range(len(sequence) // batch_size)]
sequence = np.split(sequence, ind)
if not sequence[-1].tolist(): # last element is empty
sequence = sequence[:-1]
if len(sequence[-1]) < batch_size and drop_last:
sequence = sequence[:-1]
return sequence
def get_or_load_sequence(batch_size, dataset_size, total_epochs, drop_last=True,
):
if isinstance(dataset_size, int):
sequence = create_sequences(batch_size=batch_size, dataset_size=dataset_size,
epochs=total_epochs, drop_last=drop_last)
return sequence
elif isinstance(dataset_size, Iterable) and isinstance(batch_size, Iterable):
offset = 0
list_sequence = []
resultant_sequence = []
assert len(dataset_size) == len(batch_size)
for i in range(len(dataset_size)):
sequence = create_sequences(batch_size=batch_size[i],
dataset_size=dataset_size[i],
epochs=total_epochs, drop_last=drop_last)
sequence = list(map(lambda x: x + offset, sequence))
offset += dataset_size[i]
list_sequence.append(sequence)
for temp in zip(*list_sequence):
resultant_sequence.append(np.concatenate(temp))
return resultant_sequence
elif isinstance(dataset_size, Iterable) and isinstance(batch_size, int):
offset = 0
list_sequence = []
list_iter_sequence = []
shuffle_list = []
resultant_sequence = []
for i in range(len(dataset_size)):
sequence = create_sequences(batch_size=batch_size,
dataset_size=dataset_size[i],
epochs=total_epochs, drop_last=drop_last)
sequence = list(map(lambda x: x + offset, sequence))
offset += dataset_size[i]
list_sequence.append(sequence)
list_iter_sequence.append(iter(sequence))
shuffle_list.extend([i] * len(sequence))
# randomly shuffle all clients
np.random.shuffle(shuffle_list)
for client_id in shuffle_list:
resultant_sequence.append(next(list_iter_sequence[client_id]))
return resultant_sequence
def client_name_to_id(dataset, client_name):
if "gemini" in dataset.lower():
assert client_name in all_hospital_ids
return all_hospital_ids.index(client_name)
elif "pancreas" in dataset.lower():
assert client_name in all_study_ids
return all_study_ids.index(client_name)
elif "xray" in dataset.lower():
assert client_name in all_xray_ids
return all_xray_ids.index(client_name)
else:
raise NotImplementedError(f"{dataset} not supported")
def save_state(model, optimizer, privacy_engine, save_dir, scheduler=None):
state = {}
state["net"] = model.state_dict()
state["optimizer"] = optimizer.state_dict()
if privacy_engine is not None:
state["privacy_engine"] = privacy_engine.state_dict()
if scheduler is not None:
state["scheduler"] = scheduler.state_dict()
torch.save(state,
f"{save_dir}temp")
shutil.move(f"{save_dir}temp",
f"{save_dir}")
# torch.save(state, save_dir)
def load_state(model, optimizer, privacy_engine, save_dir, device, scheduler=None):
state = torch.load(save_dir, map_location=device)
new_state_dict = OrderedDict()
try:
for k, v in state['net'].items():
name = "module." + k
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
except:
model.load_state_dict(state['net'])
# model.load_state_dict(state["net"])
optimizer.load_state_dict(state["optimizer"])
if privacy_engine is not None:
privacy_engine.load_state_dict(state['privacy_engine'])
if scheduler is not None:
scheduler.load_state_dict(state['scheduler'])
def get_global_save_dir(args):
if "single_client" in args.type_exp or "agg" in args.type_exp:
base_dir = f"dpfl_baseline_save_dir_{args.dataset}_{args.type_exp}_{args.client_to_include}_dp{int(not args.no_dp)}"
elif 'FL' in args.type_exp:
base_dir = f'dpfl_fl_save_dir_{args.dataset}_sample{args.sample_clients_ratio}_dp{args.dp_option}'
elif "DeCaPH" in args.type_exp:
base_dir = f'dpfl_DeCaPH_save_dir_{args.dataset}_dp{int(not args.no_dp)}'
else:
raise NotImplementedError(f"type_exp {args.type_exp} not recognized")
save_dir_suffix = f'{base_dir}_{args.exp_name}_fold{args.exp_id}'
save_dir = f"outputs/{save_dir_suffix}"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print(save_dir)
return save_dir
def compute_epsilon(steps, sampling_probability, noise_multiplier, delta):
"""Computes epsilon value for given hyperparameters."""
if noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
rdp = compute_rdp(
q=sampling_probability,
noise_multiplier=noise_multiplier,
steps=int(steps),
orders=orders)
return get_privacy_spent(orders, rdp, target_delta=delta)
class MyFixedBatchNorm(torch.nn.Module):
""" Custom Linear layer but mimics a standard linear layer """
def __init__(self, running_mean, running_var, weight, bias):
super().__init__()
self.mean = running_mean
self.var = running_var
self.weight = torch.nn.Parameter(weight)
self.bias = torch.nn.Parameter(bias)
def forward(self, x):
x = (x-self.mean[:, None, None]) / torch.pow(self.var[:, None, None] + 1e-05, 0.5) \
* self.weight[:, None, None] + self.bias[:, None, None]
return x
class MySampler(Sampler[List[int]]):
r"""Wraps another sampler to yield a mini-batch of indices.
Args:
sampler (Sampler or Iterable): Base sampler. Can be any iterable object
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``
Example:
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> list(MySampler(iter([[1,2,3],[4,5,6,7],[8,9]])))
[[1, 2, 3], [4, 5, 6, 7], [8, 9]]
"""
def __init__(self, sampler) -> None:
# Since collections.abc.Iterable does not check for `__getitem__`, which
# is one way for an object to be an iterable, we don't do an `isinstance`
# check here.
self.sampler = sampler
def __iter__(self) :
for batch in self.sampler:
yield batch
def __len__(self):
# Can only be called if self.sampler has __len__ implemented
# We cannot enforce this condition, so we turn off typechecking for the
# implementation below.
# Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
return len(list(self.sampler)) # type: ignore[arg-type]
class MySequenceSampler(Sampler[int]):
r"""Samples elements sequentially, always in the same order.
Args:
data_source (Dataset): dataset to sample from
"""
def __init__(self, index: List) -> None:
self.index = index
def __iter__(self):
return iter(self.index)
def __len__(self) -> int:
return len(np.concatenate(self.index))
from typing import List
import torch
from torch.utils.data import Sampler
class UniformWithReplacementSampler(Sampler[List[int]]):
r"""
This sampler samples elements according to the Sampled Gaussian Mechanism.
Each sample is selected with a probability equal to ``sample_rate``.
"""
def __init__(self, *, num_samples: int, sample_rate: float, generator=None):
r"""
Args:
num_samples: number of samples to draw.
sample_rate: probability used in sampling.
generator: Generator used in sampling.
"""
self.num_samples = num_samples
self.sample_rate = sample_rate
self.generator = generator
if self.num_samples <= 0:
raise ValueError(
"num_samples should be a positive integer "
"value, but got num_samples={}".format(self.num_samples)
)
def __len__(self):
return int(1 / self.sample_rate)
def __iter__(self):
num_batches = int(1 / self.sample_rate)
while num_batches > 0:
mask = (
torch.rand(self.num_samples, generator=self.generator)
< self.sample_rate
)
indices = mask.nonzero(as_tuple=False).reshape(-1).tolist()
# print("batch size: ", len(indices))
yield indices
num_batches -= 1
class UniformWithReplacementSampler2(Sampler[List[int]]):
r"""
This sampler samples elements according to the Sampled Gaussian Mechanism.
Each sample is selected with a probability equal to ``sample_rate``.
"""
def __init__(self, *, num_samples: int, sample_rate: float, generator=None):
r"""
Args:
num_samples: number of samples to draw.
sample_rate: probability used in sampling.
generator: Generator used in sampling.
"""
self.num_samples = num_samples
self.sample_rate = sample_rate
self.generator = generator
if self.num_samples <= 0:
raise ValueError(
"num_samples should be a positive integer "
"value, but got num_samples={}".format(self.num_samples)
)
def __len__(self):
return int(1 / self.sample_rate)
def __iter__(self):
num_batches = int(1 / self.sample_rate)
while num_batches > 0:
mask = np.random.binomial(1, self.sample_rate, self.num_samples).astype(bool)
indices = np.arange(self.num_samples)[mask].tolist()
# print("batch size: ", len(indices))
yield indices
num_batches -= 1