-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoveral_model_stats.py
75 lines (66 loc) · 3.1 KB
/
overal_model_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import pandas as pd
import argparse
import utils
import os
def remove_dup_runs(df):
# repeated experiments are annoying. Use to keep only the most recent records in the file
# get index for duplicate generations, remove these later occurances, keeping the first ones
df = df.drop_duplicates(keep='last', subset=['generation'], ignore_index=True)
return df
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='ColoredMNIST', help='Dataset')
parser.add_argument('--model', type=str, default='ano_label', help='Name of model to analyse')
parser.add_argument('--res-dir', type=str, default='./results', help='Overall directory where result csvs are stored.')
parser.add_argument('--is-valid', type=int, default=0, help='Plot results from validiation set (1) or test set (0, default).')
parser.add_argument('--overwrite', type=int, default=0, help='Will overwrite previous data if set to 1.')
arg = parser.parse_args()
# we care about starting performances.
# perf of annotators, starting classifiers
res_dir = arg.res_dir
model = arg.model
# dataset = f"{arg.dataset}_{exp_id}"
dataset = arg.dataset
last_seed = utils.get_last_seed(os.path.join(res_dir, dataset), f"{arg.dataset}_MC_")
seeds = list(range(last_seed+1))
print(f"Reading csvs from {res_dir}/{arg.dataset}/{arg.dataset}_EXPID_SEED/{model}_test_OVER/AGG.csv")
frames = []
aframes = []
if dataset == "ColoredMNIST":
id_list = ['MC', 'ARGEN', 'AR', 'NOMC25', 'ARNOMC25']
elif dataset == "celeba":
id_list = ['MC']
else:
id_list = ['MC', 'ARGEN', 'ARCLA', 'NOMC25', 'ARNOMC25']
for exp_id in id_list:
for seed in seeds:
# print(seed)
res_file = os.path.join(res_dir, dataset, f"{dataset}_{exp_id}_{seed}", f'{model}_test_overall.csv')
# print(res_file)
agg_file = os.path.join(res_dir, dataset, f"{dataset}_{exp_id}_{seed}", f'{model}_test_aggregated.csv')
# print(agg_file)
frame = pd.read_csv(res_file)
aframe = pd.read_csv(agg_file)
frame = remove_dup_runs(frame)
aframe = remove_dup_runs(aframe)
seed_col = [seed] * len(frame)
frame['seed'] = seed_col
aframe['seed'] = seed_col
frames.append(frame)
aframes.append(aframe)
data = pd.concat(frames, ignore_index = True)
agg_data = pd.concat(aframes, ignore_index=True)
over_mean = np.mean(data, axis=0)
over_stdev = np.std(data, axis=0)
agg_mean = np.mean(agg_data, axis=0)
agg_std = np.std(agg_data, axis=0)
print(f"Acc: {over_mean['Accuracy']} +- {over_stdev['Accuracy']}")
print(f"Acc diff: {agg_mean['difference_Accuracy']} +- {agg_std['difference_Accuracy']}")
print(f"DP diff: {agg_mean['difference_Selection rate']} +- {agg_std['difference_Selection rate']}")
# tprfpr_diffs = agg_mean[['difference_tpr', 'difference_fpr']]
# diffs = agg_std[['difference_tpr', 'difference_fpr']]
print(f"Eoods: {max(agg_mean['difference_tpr'], agg_mean['difference_fpr'])} +- {max(agg_std['difference_tpr'], agg_std['difference_fpr'])}")
total_count = over_mean['Count']
# print(agg_mean)
# print(over_mean)
# print(f"Count : {agg_mean['difference_Count'] / total_count}")