-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStan_summary_full_model.csv
We can make this file beautiful and searchable if this error is corrected: It looks like row 2 should actually have 1 column, instead of 2 in line 1.
108 lines (106 loc) · 6.77 KB
/
Stan_summary_full_model.csv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
Inference for Stan model: Stan_model_PPP_quadratic.
4 chains, each with iter=5000; warmup=2500; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=10000.
mean se_mean sd 2.5% 97.5% n_eff Rhat
alpha 0.6839 0.0015 0.0908 0.5064 0.8622 3634 1.0004
beta_day[1] -0.6313 0.0011 0.0694 -0.7660 -0.4977 4266 1.0006
beta_day[2] 0.2017 0.0008 0.0510 0.1004 0.3011 3980 1.0008
sigmaID[1] 1.2933 0.0012 0.0572 1.1839 1.4051 2365 1.0002
sigmaID[2] 0.5638 0.0013 0.0461 0.4737 0.6561 1261 1.0019
sigmaID[3] 0.2764 0.0012 0.0368 0.2038 0.3491 953 1.0055
sigmaID[4] 0.5830 0.0006 0.0242 0.5359 0.6308 1741 1.0006
Rho[1,1] 1.0000 0.0000 0.0000 1.0000 1.0000 10000 NaN
Rho[1,2] 0.3760 0.0011 0.0657 0.2448 0.4998 3878 1.0012
Rho[1,3] -0.5439 0.0013 0.0753 -0.6831 -0.3872 3463 1.0003
Rho[1,4] 0.0013 0.0012 0.0499 -0.0969 0.1009 1597 1.0025
Rho[2,1] 0.3760 0.0011 0.0657 0.2448 0.4998 3878 1.0012
Rho[2,2] 1.0000 0.0000 0.0000 1.0000 1.0000 10000 0.9996
Rho[2,3] -0.7512 0.0033 0.0736 -0.8751 -0.5866 495 1.0057
Rho[2,4] -0.3697 0.0033 0.0736 -0.5135 -0.2225 510 1.0054
Rho[3,1] -0.5439 0.0013 0.0753 -0.6831 -0.3872 3463 1.0003
Rho[3,2] -0.7512 0.0033 0.0736 -0.8751 -0.5866 495 1.0057
Rho[3,3] 1.0000 0.0000 0.0000 1.0000 1.0000 10000 0.9996
Rho[3,4] 0.2380 0.0054 0.0939 0.0529 0.4200 307 1.0072
Rho[4,1] 0.0013 0.0012 0.0499 -0.0969 0.1009 1597 1.0025
Rho[4,2] -0.3697 0.0033 0.0736 -0.5135 -0.2225 510 1.0054
Rho[4,3] 0.2380 0.0054 0.0939 0.0529 0.4200 307 1.0072
Rho[4,4] 1.0000 0.0000 0.0000 1.0000 1.0000 9281 0.9996
L_Rho[1,1] 1.0000 0.0000 0.0000 1.0000 1.0000 10000 NaN
L_Rho[1,2] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[1,3] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[1,4] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[2,1] 0.3760 0.0011 0.0657 0.2448 0.4998 3878 1.0012
L_Rho[2,2] 0.9239 0.0004 0.0268 0.8661 0.9696 3905 1.0011
L_Rho[2,3] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[2,4] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[3,1] -0.5439 0.0013 0.0753 -0.6831 -0.3872 3463 1.0003
L_Rho[3,2] -0.5882 0.0035 0.0850 -0.7389 -0.4051 585 1.0053
L_Rho[3,3] 0.5818 0.0034 0.0824 0.4159 0.7382 589 1.0060
L_Rho[3,4] 0.0000 0.0000 0.0000 0.0000 0.0000 10000 NaN
L_Rho[4,1] 0.0013 0.0012 0.0499 -0.0969 0.1009 1597 1.0025
L_Rho[4,2] -0.4004 0.0034 0.0755 -0.5522 -0.2523 485 1.0060
L_Rho[4,3] 0.0013 0.0099 0.1329 -0.2545 0.2604 181 1.0159
L_Rho[4,4] 0.9014 0.0019 0.0362 0.8196 0.9614 371 1.0092
Beta1[1] 0.1222 0.0007 0.0455 0.0330 0.2118 3816 1.0003
Beta1[2] 0.0395 0.0006 0.0408 -0.0408 0.1198 5262 1.0006
Beta1[3] -0.6085 0.0008 0.0504 -0.7105 -0.5113 4461 1.0002
Beta1[4] -0.0360 0.0006 0.0395 -0.1129 0.0413 5121 1.0008
Beta1[5] 0.0248 0.0005 0.0372 -0.0489 0.0980 4609 1.0000
Beta1[6] 0.2043 0.0008 0.0544 0.0998 0.3120 4154 1.0001
Beta1[7] -0.0799 0.0011 0.0806 -0.2425 0.0763 5166 0.9999
Beta1[8] -0.1148 0.0008 0.0539 -0.2215 -0.0103 4108 0.9999
Beta1[9] 0.1821 0.0010 0.0684 0.0493 0.3170 4772 1.0003
Beta1[10] -0.3299 0.0013 0.0854 -0.4992 -0.1675 4068 1.0013
Beta1[11] 0.0499 0.0012 0.1164 -0.1847 0.2781 10000 0.9997
Beta1[12] -0.1311 0.0012 0.0856 -0.2977 0.0310 5141 1.0002
Beta2[1] -0.0610 0.0004 0.0335 -0.1264 0.0052 5963 1.0005
Beta2[2] -0.0061 0.0004 0.0305 -0.0662 0.0531 7027 0.9998
Beta2[3] -0.1951 0.0005 0.0363 -0.2658 -0.1260 5322 1.0002
Beta2[4] 0.0353 0.0004 0.0307 -0.0248 0.0971 6835 1.0001
Beta2[5] 0.0399 0.0004 0.0277 -0.0149 0.0937 6248 1.0001
Beta2[6] -0.1095 0.0006 0.0411 -0.1913 -0.0286 5361 1.0003
Beta2[7] -0.0336 0.0008 0.0619 -0.1544 0.0863 5885 1.0000
Beta2[8] -0.3063 0.0006 0.0411 -0.3887 -0.2256 5295 0.9998
Beta2[9] -0.0881 0.0007 0.0521 -0.1897 0.0152 6136 1.0004
Beta2[10] -0.1001 0.0009 0.0664 -0.2293 0.0285 5504 1.0008
Beta2[11] 0.0608 0.0010 0.1032 -0.1426 0.2618 10000 1.0000
Beta2[12] -0.0058 0.0008 0.0687 -0.1416 0.1254 6916 1.0003
Beta3[1] -0.0290 0.0003 0.0216 -0.0717 0.0127 6072 1.0005
Beta3[2] -0.0044 0.0002 0.0203 -0.0449 0.0353 6750 1.0007
Beta3[3] 0.0779 0.0003 0.0233 0.0324 0.1241 6665 1.0006
Beta3[4] -0.0506 0.0002 0.0200 -0.0904 -0.0118 7208 1.0002
Beta3[5] -0.0138 0.0002 0.0184 -0.0503 0.0230 6929 0.9998
Beta3[6] -0.0016 0.0004 0.0267 -0.0538 0.0505 5472 1.0002
Beta3[7] 0.0132 0.0005 0.0391 -0.0642 0.0898 5902 1.0004
Beta3[8] 0.1210 0.0004 0.0270 0.0688 0.1747 5246 1.0006
Beta3[9] 0.1118 0.0005 0.0345 0.0447 0.1789 5490 1.0010
Beta3[10] 0.0381 0.0007 0.0488 -0.0563 0.1363 4561 1.0019
Beta3[11] -0.0684 0.0010 0.0829 -0.2346 0.0920 6857 1.0005
Beta3[12] 0.0112 0.0007 0.0517 -0.0876 0.1124 5726 1.0009
Beta4[1] 0.0603 0.0003 0.0207 0.0200 0.1013 5427 1.0007
Beta4[2] 0.0260 0.0003 0.0200 -0.0128 0.0662 5830 1.0003
Beta4[3] 0.0466 0.0002 0.0200 0.0072 0.0853 6600 1.0006
Beta4[4] 0.0328 0.0002 0.0176 -0.0021 0.0671 6225 1.0002
Beta4[5] -0.0330 0.0002 0.0179 -0.0677 0.0022 6428 1.0000
Beta4[6] 0.0245 0.0004 0.0283 -0.0309 0.0807 5226 1.0001
Beta4[7] 0.0514 0.0006 0.0440 -0.0336 0.1379 5823 1.0000
Beta4[8] -0.0084 0.0004 0.0269 -0.0617 0.0434 5758 0.9999
Beta4[9] -0.0190 0.0005 0.0353 -0.0881 0.0489 5766 0.9999
Beta4[10] -0.2398 0.0006 0.0442 -0.3252 -0.1534 5667 1.0004
Beta4[11] -0.0130 0.0009 0.0777 -0.1610 0.1407 8105 1.0000
Beta4[12] -0.1389 0.0006 0.0463 -0.2308 -0.0484 5360 1.0011
delta 0.6090 0.0008 0.0482 0.5149 0.7036 3533 1.0008
Beta_sigma 0.1507 0.0002 0.0196 0.1168 0.1943 10000 1.0002
thresh_raw[1] 0.2376 0.0001 0.0059 0.2261 0.2491 3177 1.0004
thresh_raw[2] 0.0954 0.0000 0.0034 0.0889 0.1022 10000 0.9998
thresh_raw[3] 0.1317 0.0000 0.0043 0.1234 0.1402 10000 0.9997
thresh_raw[4] 0.5353 0.0001 0.0084 0.5190 0.5517 3774 1.0000
thresh[1] 1.5000 0.0000 0.0000 1.5000 1.5000 10000 NaN
thresh[2] 2.4503 0.0004 0.0236 2.4043 2.4964 3177 1.0004
thresh[3] 2.8321 0.0005 0.0285 2.7761 2.8879 3321 1.0003
thresh[4] 3.3588 0.0005 0.0334 3.2931 3.4240 3774 1.0000
thresh[5] 5.5000 0.0000 0.0000 5.5000 5.5000 10000 0.9996
Samples were drawn using NUTS(diag_e) at Tue Feb 14 03:37:22 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).