-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreec.c
716 lines (640 loc) · 19.7 KB
/
streec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/********** segtre_mig.c **********************************
*
* This subroutine uses a Monte Carlo algorithm described in
* Hudson,R. 1983. Theor.Pop.Biol. 23: 183-201, to produce
* a history of a random sample of gametes under a neutral
* Wright-Fisher model with recombination and geographic structure.
* Input parameters
* are the sample size (nsam), the number of sites between
* which recombination can occur (nsites), and the recombination
* rate between the ends of the gametes (r). The function returns
* nsegs, the number of segments the gametes were broken into
* in tracing back the history of the gametes. The histories of
* these segments are passed back to the calling function in the
* array of structures seglst[]. An element of this array, seglst[i],
* consists of three parts: (1) beg, the starting point of
* of segment i, (2) ptree, which points to the first node of the
* tree representing the history of the segment, (3) next, which
* is the index number of the next segment.
* A tree is a contiguous set of 2*nsam nodes. The first nsam
* nodes are the tips of the tree, the sampled gametes. The other
* nodes are the nodes ancestral to the sampled gametes. Each node
* consists of an "abv" which is the number of the node ancestral to
* that node, an "ndes", which is not used or assigned to in this routine,
* and a "time", which is the time (in units of 4N generations) of the
* node. For the tips, time equals zero.
* Returns a pointer to an array of segments, seglst.
**************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "ms.h"
#define NL putchar('\n')
#define size_t unsigned
#define MIN(x, y) ( (x)<(y) ? (x) : (y) )
#define ERROR(message) fprintf(stderr,message),NL,exit(1)
#define SEGINC 80
extern int flag;
int nchrom, begs, nsegs;
long nlinks ;
static int *nnodes = NULL ;
double t, cleft , pc, lnpc ;
static unsigned seglimit = SEGINC ;
static unsigned maxchr ;
struct seg{
int beg;
int end;
int desc;
};
struct chromo{
int nseg;
int pop;
struct seg *pseg;
} ;
static struct chromo *chrom = NULL ;
struct node *ptree1, *ptree2;
struct segl {
int beg;
struct node *ptree;
int next;
} ;
static struct segl *seglst = NULL ;
struct segl *
segtre_mig(struct c_params *cp, int *pnsegs )
{
int i, j, k, seg, dec, pop, pop2, c1, c2, ind, rchrom, intn ;
int migrant, source_pop, *config, flagint ;
double ran1(), sum, x, tcoal, ttemp, rft, clefta, tmin, p ;
double prec, cin, prect, nnm1, nnm0, mig, ran, coal_prob, prob, rdum , arg ;
char c, event ;
int re(), cinr(), cleftr(), eflag, cpop, ic ;
int nsam, npop, nsites, nintn, *inconfig ;
double r, f, rf, track_len, *nrec, *npast, *tpast, **migm ;
double *size, *alphag, *tlast ;
struct devent *nextevent ;
int ca(int nsam, int nsites, int c1, int c2);
void pick2_chrom(int pop,int config[], int *pc1, int *pc2);
nsam = cp->nsam;
npop = cp->npop;
nsites = cp->nsites;
inconfig = cp->config;
r = cp->r ;
f = cp->f ;
track_len = cp->track_len ;
migm = (double **)malloc( (unsigned)npop*sizeof(double *) ) ;
for( i=0; i<npop; i++) {
migm[i] = (double *)malloc( (unsigned)npop*sizeof( double) ) ;
for( j=0; j<npop; j++) migm[i][j] = (cp->mig_mat)[i][j] ;
}
nextevent = cp->deventlist ;
/* Initialization */
if( chrom == NULL ) {
maxchr = nsam + 20 ;
chrom = (struct chromo *)malloc( (unsigned)( maxchr*sizeof( struct chromo) )) ;
if( chrom == NULL ) perror( "malloc error. segtre");
}
if( nnodes == NULL ){
nnodes = (int*) malloc((unsigned)(seglimit*sizeof(int))) ;
if( nnodes == NULL ) perror("malloc error. segtre_mig");
}
if( seglst == NULL ) {
seglst = (struct segl *)malloc((unsigned)(seglimit*sizeof(struct segl)) ) ;
if( seglst == NULL ) perror("malloc error. segtre_mig.c 2");
}
config = (int *)malloc( (unsigned) ((npop+1)*sizeof(int) )) ;
if( config == NULL ) perror("malloc error. segtre.");
size = (double *)malloc( (unsigned) ((npop)*sizeof(double) )) ;
if( size == NULL ) perror("malloc error. segtre.");
alphag = (double *)malloc( (unsigned) ((npop)*sizeof(double) )) ;
if( alphag == NULL ) perror("malloc error. segtre.");
tlast = (double *)malloc( (unsigned) ((npop)*sizeof(double) )) ;
if( alphag == NULL ) perror("malloc error. segtre.");
for(pop=0;pop<npop;pop++) {
config[pop] = inconfig[pop] ;
size[pop] = (cp->size)[pop] ;
alphag[pop] = (cp->alphag)[pop] ;
tlast[pop] = 0.0 ;
}
for(pop=ind=0;pop<npop;pop++)
for(j=0; j<inconfig[pop];j++,ind++) {
chrom[ind].nseg = 1;
if( !(chrom[ind].pseg = (struct seg*)malloc((unsigned)sizeof(struct seg)) ))
ERROR("calloc error. se1");
(chrom[ind].pseg)->beg = 0;
(chrom[ind].pseg)->end = nsites-1;
(chrom[ind].pseg)->desc = ind ;
chrom[ind].pop = pop ;
}
seglst[0].beg = 0;
if( !(seglst[0].ptree = (struct node *)calloc((unsigned)(2*nsam),sizeof(struct node)) ))
perror("calloc error. se2");
nnodes[0] = nsam - 1 ;
nchrom=nsam;
nlinks = ((long)(nsam))*(nsites-1) ;
nsegs=1;
t = 0.;
r /= (nsites-1);
if( f > 0.0 ) pc = (track_len -1.0)/track_len ;
else pc = 1.0 ;
lnpc = log( pc ) ;
cleft = nsam* ( 1.0 - pow( pc, (double)(nsites-1) ) ) ;
if( r > 0.0 ) rf = r*f ;
else rf = f /(nsites-1) ;
rft = rf*track_len ;
flagint = 0 ;
/* Main loop */
while( nchrom > 1 ) {
prec = nlinks*r;
cin = nlinks*rf ;
clefta = cleft*rft ;
prect = prec + cin + clefta ;
mig = 0.0;
for( i=0; i<npop; i++) mig += config[i]*migm[i][i] ;
if( (npop > 1) && ( mig == 0.0) && ( nextevent == NULL)) {
i = 0;
for( j=0; j<npop; j++)
if( config[j] > 0 ) i++;
if( i > 1 ) {
fprintf(stderr," Infinite coalescent time. No migration.\n");
exit(1);
}
}
eflag = 0 ;
if( prect > 0.0 ) { /* cross-over or gene conversion */
while( (rdum = ran1() ) == 0.0 ) ;
ttemp = -log( rdum)/prect ;
if( (eflag == 0) || (ttemp < tmin ) ){
tmin = ttemp;
event = 'r' ;
eflag = 1;
}
}
if(mig > 0.0 ) { /* migration */
while( (rdum = ran1() ) == 0.0 ) ;
ttemp = -log( rdum)/mig ;
if( (eflag == 0) || (ttemp < tmin ) ){
tmin = ttemp;
event = 'm' ;
eflag = 1 ;
}
}
for(pop=0; pop<npop ; pop++) { /* coalescent */
coal_prob = ((double)config[pop])*(config[pop]-1.) ;
if( coal_prob > 0.0 ) {
while( ( rdum = ran1() ) == .0 )
;
if( alphag[pop] == 0 ){
ttemp = -log( rdum )*size[pop] /coal_prob ;
if( (eflag == 0) || (ttemp < tmin ) ){
tmin = ttemp;
event = 'c' ;
eflag = 1 ;
cpop = pop;
}
}
else {
arg = 1. - alphag[pop]*size[pop]*exp(-alphag[pop]*(t - tlast[pop] ) )* log(rdum) / coal_prob ;
if( arg > 0.0 ) { /*if arg <= 0, no coalescent within interval */
ttemp = log( arg ) / alphag[pop] ;
if( (eflag == 0) || (ttemp < tmin ) ){
tmin = ttemp;
event = 'c' ;
eflag = 1 ;
cpop = pop ;
}
}
}
}
}
if( (eflag == 0) && ( nextevent == NULL) ) {
fprintf(stderr,
" infinite time to next event. Negative growth rate in last time interval or non-communicating subpops.\n");
exit( 0);
}
if( ( ( eflag == 0) && (nextevent != NULL))|| ( (nextevent != NULL) && ( (t+tmin) >= nextevent->time)) ) {
t = nextevent->time ;
switch( nextevent->detype ) {
case 'N' :
for(pop =0; pop <npop; pop++){
size[pop]= nextevent->paramv ;
alphag[pop] = 0.0 ;
}
nextevent = nextevent->nextde ;
break;
case 'n' :
size[nextevent->popi]= nextevent->paramv ;
alphag[nextevent->popi] = 0.0 ;
nextevent = nextevent->nextde ;
break;
case 'G' :
for(pop =0; pop <npop; pop++){
size[pop] = size[pop]*exp( -alphag[pop]*(t - tlast[pop]) ) ;
alphag[pop]= nextevent->paramv ;
tlast[pop] = t ;
}
nextevent = nextevent->nextde ;
break;
case 'g' :
pop = nextevent->popi ;
size[pop] = size[pop]*exp( - alphag[pop]*(t-tlast[pop]) ) ;
alphag[pop]= nextevent->paramv ;
tlast[pop] = t ;
nextevent = nextevent->nextde ;
break;
case 'M' :
for(pop =0; pop <npop; pop++)
for( pop2 = 0; pop2 <npop; pop2++) migm[pop][pop2] = (nextevent->paramv) /(npop-1.0) ;
for( pop = 0; pop <npop; pop++)
migm[pop][pop]= nextevent->paramv ;
nextevent = nextevent->nextde ;
break;
case 'a' :
for(pop =0; pop <npop; pop++)
for( pop2 = 0; pop2 <npop; pop2++) migm[pop][pop2] = (nextevent->mat)[pop][pop2] ;
nextevent = nextevent->nextde ;
break;
case 'm' :
i = nextevent->popi ;
j = nextevent->popj ;
migm[i][i] += nextevent->paramv - migm[i][j];
migm[i][j]= nextevent->paramv ;
nextevent = nextevent->nextde ;
break;
case 'j' : /* merge pop i into pop j (join) */
i = nextevent->popi ;
j = nextevent->popj ;
config[j] += config[i] ;
config[i] = 0 ;
for( ic = 0; ic<nchrom; ic++) if( chrom[ic].pop == i ) chrom[ic].pop = j ;
/* the following was added 19 May 2007 */
for( k=0; k < npop; k++){
if( k != i) {
migm[k][k] -= migm[k][i] ;
migm[k][i] = 0. ;
}
}
/* end addition */
nextevent = nextevent->nextde ;
break;
case 's' : /*split pop i into two;p is the proportion from pop i, and 1-p from pop n+1 */
i = nextevent->popi ;
p = nextevent->paramv ;
npop++;
config = (int *)realloc( config, (unsigned)(npop*sizeof( int) ));
size = (double *)realloc(size, (unsigned)(npop*sizeof(double) ));
alphag = (double *)realloc(alphag, (unsigned)(npop*sizeof(double) ));
tlast = (double *)realloc(tlast,(unsigned)(npop*sizeof(double) ) ) ;
tlast[npop-1] = t ;
size[npop-1] = 1.0 ;
alphag[npop-1] = 0.0 ;
migm = (double **)realloc(migm, (unsigned)(npop*sizeof( double *)));
for( j=0; j< npop-1; j++)
migm[j] = (double *)realloc(migm[j],(unsigned)(npop*sizeof(double)));
migm[npop-1] = (double *)malloc( (unsigned)(npop*sizeof( double) ) ) ;
for( j=0; j<npop; j++) migm[npop-1][j] = migm[j][npop-1] = 0.0 ;
config[npop-1] = 0 ;
config[i] = 0 ;
for( ic = 0; ic<nchrom; ic++){
if( chrom[ic].pop == i ) {
if( ran1() < p ) config[i]++;
else {
chrom[ic].pop = npop-1 ;
config[npop-1]++;
}
}
}
nextevent = nextevent->nextde ;
break;
}
}
else {
t += tmin ;
if( event == 'r' ) {
if( (ran = ran1()) < ( prec / prect ) ){ /*recombination*/
rchrom = re(nsam);
config[ chrom[rchrom].pop ] += 1 ;
}
else if( ran < (prec + clefta)/(prect) ){ /* cleft event */
rchrom = cleftr(nsam);
config[ chrom[rchrom].pop ] += 1 ;
}
else { /* cin event */
rchrom = cinr(nsam,nsites);
if( rchrom >= 0 ) config[ chrom[rchrom].pop ] += 1 ;
}
}
else if ( event == 'm' ) { /* migration event */
x = mig*ran1();
sum = 0.0 ;
for( i=0; i<nchrom; i++) {
sum += migm[chrom[i].pop][chrom[i].pop] ;
if( x <sum ) break;
}
migrant = i ;
x = ran1()*migm[chrom[i].pop][chrom[i].pop];
sum = 0.0;
for(i=0; i<npop; i++){
if( i != chrom[migrant].pop ){
sum += migm[chrom[migrant].pop][i];
if( x < sum ) break;
}
}
source_pop = i;
config[chrom[migrant].pop] -= 1;
config[source_pop] += 1;
chrom[migrant].pop = source_pop ;
}
else { /* coalescent event */
/* pick the two, c1, c2 */
pick2_chrom( cpop, config, &c1,&c2); /* c1 and c2 are chrom's to coalesce */
dec = ca(nsam,nsites,c1,c2 );
config[cpop] -= dec ;
}
}
}
*pnsegs = nsegs ;
free(config);
free( size ) ;
free( alphag );
free( tlast );
for( i=0; i<npop; i++) free ( migm[i] ) ;
free( migm ) ;
return( seglst );
}
/****** recombination subroutine ***************************
Picks a chromosome and splits it in two parts. If the x-over point
is in a new spot, a new segment is added to seglst and a tree set up
for it. ****/
int
re(nsam)
int nsam;
{
struct seg *pseg ;
int el, lsg, lsgm1, ic, is, in;
long spot;
double ran1();
/* First generate a random x-over spot, then locate it as to chrom and seg. */
spot = nlinks*ran1() + 1.;
/* get chromosome # (ic) */
for( ic=0; ic<nchrom ; ic++) {
lsg = chrom[ic].nseg ;
lsgm1 = lsg - 1;
pseg = chrom[ic].pseg;
el = ( (pseg+lsgm1)->end ) - (pseg->beg);
if( spot <= el ) break;
spot -= el ;
}
is = pseg->beg + spot -1;
xover(nsam, ic, is);
return(ic);
}
int
cleftr( int nsam)
{
struct seg *pseg ;
int lsg, lsgm1, ic, is, in, spot;
double ran1(), x, sum, len ;
while( (x = cleft*ran1() )== 0.0 )
;
sum = 0.0 ;
ic = -1 ;
while ( sum < x ) {
sum += 1.0 - pow( pc, links(++ic) ) ;
}
pseg = chrom[ic].pseg;
len = links(ic) ;
is = pseg->beg + floor( 1.0 + log( 1.0 - (1.0- pow( pc, len))*ran1() )/lnpc ) -1 ;
xover( nsam, ic, is);
return( ic) ;
}
int
cinr( int nsam, int nsites)
{
struct seg *pseg ;
int len, el, lsg, lsgm1, ic, is, in, spot, endic ;
double ran1();
int ca() ;
/* First generate a random x-over spot, then locate it as to chrom and seg. */
spot = nlinks*ran1() + 1.;
/* get chromosome # (ic) */
for( ic=0; ic<nchrom ; ic++) {
lsg = chrom[ic].nseg ;
lsgm1 = lsg - 1;
pseg = chrom[ic].pseg;
el = ( (pseg+lsgm1)->end ) - (pseg->beg);
if( spot <= el ) break;
spot -= el ;
}
is = pseg->beg + spot -1;
endic = (pseg+lsgm1)->end ;
xover(nsam, ic, is);
len = floor( 1.0 + log( ran1() )/lnpc ) ;
if( is+len >= endic ) return(ic) ;
if( is+len < (chrom[nchrom-1].pseg)->beg ){
ca( nsam, nsites, ic, nchrom-1);
return(-1) ;
}
xover( nsam, nchrom-1, is+len ) ;
ca( nsam,nsites, ic, nchrom-1);
return(ic);
}
int
xover(int nsam,int ic, int is)
{
struct seg *pseg, *pseg2;
int i, lsg, lsgm1, newsg, jseg, k, in, spot;
double ran1(), len ;
pseg = chrom[ic].pseg ;
lsg = chrom[ic].nseg ;
len = (pseg + lsg -1)->end - pseg->beg ;
cleft -= 1 - pow(pc,len) ;
/* get seg # (jseg) */
for( jseg=0; is >= (pseg+jseg)->end ; jseg++) ;
if( is >= (pseg+jseg)->beg ) in=1;
else in=0;
newsg = lsg - jseg ;
/* copy last part of chrom to nchrom */
nchrom++;
if( nchrom >= maxchr ) {
maxchr += 20 ;
chrom = (struct chromo *)realloc( chrom, (unsigned)(maxchr*sizeof(struct chromo))) ;
if( chrom == NULL ) perror( "malloc error. segtre2");
}
if( !( pseg2 = chrom[nchrom-1].pseg = (struct seg *)calloc((unsigned)newsg,sizeof(struct seg)) ) )
ERROR(" alloc error. re1");
chrom[nchrom-1].nseg = newsg;
chrom[nchrom-1].pop = chrom[ic].pop ;
pseg2->end = (pseg+jseg)->end ;
if( in ) {
pseg2->beg = is + 1 ;
(pseg+jseg)->end = is;
}
else pseg2->beg = (pseg+jseg)->beg ;
pseg2->desc = (pseg+jseg)->desc ;
for( k=1; k < newsg; k++ ) {
(pseg2+k)->beg = (pseg+jseg+k)->beg;
(pseg2+k)->end = (pseg+jseg+k)->end;
(pseg2+k)->desc = (pseg+jseg+k)->desc;
}
lsg = chrom[ic].nseg = lsg-newsg + in ;
lsgm1 = lsg - 1 ;
nlinks -= pseg2->beg - (pseg+lsgm1)->end ;
len = (pseg+lsgm1)->end - (pseg->beg) ;
cleft += 1.0 - pow( pc, len) ;
len = (pseg2 + newsg-1)->end - pseg2->beg ;
cleft += 1.0 - pow(pc, len) ;
if( !(chrom[ic].pseg =
(struct seg *)realloc(chrom[ic].pseg,(unsigned)(lsg*sizeof(struct seg)) )) )
perror( " realloc error. re2");
if( in ) {
begs = pseg2->beg;
for( i=0,k=0; (k<nsegs-1)&&(begs > seglst[seglst[i].next].beg-1);
i=seglst[i].next, k++) ;
if( begs != seglst[i].beg ) {
/* new tree */
if( nsegs >= seglimit ) {
seglimit += SEGINC ;
nnodes = (int *)realloc( nnodes,(unsigned)(sizeof(int)*seglimit)) ;
if( nnodes == NULL) perror("realloc error. 1. segtre_mig.c");
seglst =
(struct segl *)realloc( seglst,(unsigned)(sizeof(struct segl)*seglimit));
if(seglst == NULL ) perror("realloc error. 2. segtre_mig.c");
/* printf("seglimit: %d\n",seglimit); */
}
seglst[nsegs].next = seglst[i].next;
seglst[i].next = nsegs;
seglst[nsegs].beg = begs ;
if( !(seglst[nsegs].ptree = (struct node *)calloc((unsigned)(2*nsam), sizeof(struct
node)) )) perror("calloc error. re3.");
nnodes[nsegs] = nnodes[i];
ptree1 = seglst[i].ptree;
ptree2 = seglst[nsegs].ptree;
nsegs++ ;
for( k=0; k<=nnodes[i]; k++) {
(ptree2+k)->abv = (ptree1+k)->abv ;
(ptree2+k)->time = (ptree1+k)->time;
}
}
}
return(ic) ;
}
/***** common ancestor subroutine **********************
Pick two chromosomes and merge them. Update trees if necessary. **/
int
ca(int nsam, int nsites, int c1, int c2)
{
int yes1, yes2, seg1, seg2, seg ;
int tseg, start, end, desc, k;
struct seg *pseg;
struct node *ptree;
int isseg(int start, int c, int *psg);
seg1=0;
seg2=0;
if( !(pseg = (struct seg *)calloc((unsigned)nsegs,sizeof(struct seg) )))
perror("alloc error.ca1");
tseg = -1 ;
for( seg=0, k=0; k<nsegs; seg=seglst[seg].next, k++) {
start = seglst[seg].beg;
yes1 = isseg(start, c1, &seg1);
yes2 = isseg(start, c2, &seg2);
if( yes1 || yes2 ) {
tseg++;
(pseg+tseg)->beg=seglst[seg].beg;
end = ( k< nsegs-1 ? seglst[seglst[seg].next].beg-1 : nsites-1 ) ;
(pseg+tseg)->end = end ;
if( yes1 && yes2 ) {
nnodes[seg]++;
if( nnodes[seg] >= (2*nsam-2) ) tseg--;
else
(pseg+tseg)->desc = nnodes[seg];
ptree=seglst[seg].ptree;
desc = (chrom[c1].pseg + seg1) ->desc;
(ptree+desc)->abv = nnodes[seg];
desc = (chrom[c2].pseg + seg2) -> desc;
(ptree+desc)->abv = nnodes[seg];
(ptree+nnodes[seg])->time = t;
}
else {
(pseg+tseg)->desc = ( yes1 ?
(chrom[c1].pseg + seg1)->desc :
(chrom[c2].pseg + seg2)->desc);
}
}
}
nlinks -= links(c1);
cleft -= 1.0 - pow(pc, (double)links(c1));
free(chrom[c1].pseg) ;
if( tseg < 0 ) {
free(pseg) ;
chrom[c1].pseg = chrom[nchrom-1].pseg;
chrom[c1].nseg = chrom[nchrom-1].nseg;
chrom[c1].pop = chrom[nchrom-1].pop ;
if( c2 == nchrom-1 ) c2 = c1;
nchrom--;
}
else {
if( !(pseg = (struct seg *)realloc(pseg,(unsigned)((tseg+1)*sizeof(struct seg)))))
perror(" realloc error. ca1");
chrom[c1].pseg = pseg;
chrom[c1].nseg = tseg + 1 ;
nlinks += links(c1);
cleft += 1.0 - pow(pc, (double)links(c1));
}
nlinks -= links(c2);
cleft -= 1.0 - pow(pc, (double)links(c2));
free(chrom[c2].pseg) ;
chrom[c2].pseg = chrom[nchrom-1].pseg;
chrom[c2].nseg = chrom[nchrom-1].nseg;
chrom[c2].pop = chrom[nchrom-1].pop ;
nchrom--;
if(tseg<0) return( 2 ); /* decrease of nchrom is two */
else return( 1 ) ;
}
/*** Isseg: Does chromosome c contain the segment on seglst which starts at
start? *psg is the segment of chrom[c] at which one is to begin
looking. **/
int
isseg(int start, int c, int *psg)
{
int ns;
struct seg *pseg;
ns = chrom[c].nseg;
pseg = chrom[c].pseg;
/* changed order of test conditions in following line on 6 Dec 2004 */
for( ; ((*psg) < ns ) && ( (pseg+(*psg))->beg <= start ) ; ++(*psg) )
if( (pseg+(*psg))->end >= start ) return(1);
return(0);
}
void
pick2_chrom(int pop,int config[], int *pc1, int *pc2)
{
int c1, c2, cs,cb,i, count;
pick2(config[pop],&c1,&c2);
cs = (c1>c2) ? c2 : c1;
cb = (c1>c2) ? c1 : c2 ;
i=count=0;
for(;;){
while( chrom[i].pop != pop ) i++;
if( count == cs ) break;
count++;
i++;
}
*pc1 = i;
i++;
count++;
for(;;){
while( chrom[i].pop != pop ) i++;
if( count == cb ) break;
count++;
i++;
}
*pc2 = i ;
}
/**** links(c): returns the number of links between beginning and end of chrom **/
int
links(int c)
{
int ns;
ns = chrom[c].nseg - 1 ;
return( (chrom[c].pseg + ns)->end - (chrom[c].pseg)->beg);
}