-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteecnet_exp_0_concept.py
338 lines (273 loc) · 13.7 KB
/
teecnet_exp_0_concept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
####################################################################################################
# This script is used to perform experiment 0: concept proof of TEECNet
# The script will create simulations on low and high resolution dataset on different orders of shape functions, and then train a model on the created dataset.
# The coefficients of TEECNet trained on different orders of shape functions will be compared.
import os
os.environ['HDF5_DISABLE_VERSION_CHECK'] = '2' # Only add this for TRACE to work, comment out for other cases!
import shutil
import time
import numpy as np
import torch
import wandb
from fenics import *
from dolfin import *
from fenicstools.Interpolation import interpolate_nonmatching_mesh
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
from sklearn.metrics import r2_score
# from torch_geometric.nn import global_mean_pool
from torch_geometric.loader import DataLoader
from torch_geometric.data import Data, InMemoryDataset
from tqdm import tqdm
import matplotlib.pyplot as plt
from matplotlib.tri import Triangulation
import h5py
from utils import train_test_split, get_cur_time, initialize_model, initialize_dataset, parse_args, load_yaml
class HeatEquationDataset(InMemoryDataset):
def __init__(self, root, transform=None, pre_transform=None, res_low=1, res_high=3, order_sf=1):
self.res_list = [8, 16, 32, 64]
self.order_sf = order_sf
self.res_low = res_low
self.res_high = res_high
self.pre_transform = pre_transform
# self.res_list = [10, 20, 40, 80]
super(HeatEquationDataset, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
# enforce processing for all apllications
self.process()
@property
def raw_file_names(self):
return os.listdir(self.raw_dir)
@property
def is_processed(self):
return False
@property
def raw_file_names(self):
return None
@property
def mesh_file_names(self):
return None
@property
def processed_file_names(self):
return ['heat_transfer_data.pt']
def process(self):
data_list = []
mesh_low = UnitSquareMesh(self.res_list[self.res_low], self.res_list[self.res_low])
mesh_high = UnitSquareMesh(self.res_list[self.res_high], self.res_list[self.res_high])
V = FunctionSpace(mesh_high, "CG", self.order_sf)
coordinate = mesh_high.coordinates()
edge_lists = edges(mesh_high)
edge_index = np.zeros((2, 2 * mesh_high.num_edges()), dtype=np.int64)
for i, edge in enumerate(edge_lists):
edge_index[0, i] = edge.entities(0)[0]
edge_index[1, i] = edge.entities(0)[1]
edge_index[0, i + mesh_high.num_edges()] = edge.entities(0)[1]
edge_index[1, i + mesh_high.num_edges()] = edge.entities(0)[0]
edge_attr = np.concatenate([coordinate[edge_index[0]], coordinate[edge_index[1]], ], axis=1)
for i in range(1000):
random_heat_source = generate_random_heat_source()
u_low = steady_state_heat_equation(self.order_sf, random_heat_source, mesh_low)
u_high = steady_state_heat_equation(self.order_sf, random_heat_source, mesh_high)
u_low = interpolate_nonmatching_mesh(u_low, V)
u_low = u_low.compute_vertex_values(mesh_high)
u_high = u_high.compute_vertex_values(mesh_high)
u_low = u_low.reshape(-1, 1).astype(np.float32)
u_high = u_high.reshape(-1, 1).astype(np.float32)
data = Data(x=torch.from_numpy(u_low), y=torch.from_numpy(u_high), edge_index=torch.from_numpy(edge_index), edge_attr=torch.from_numpy(edge_attr).float(), pos=torch.from_numpy(coordinate).float())
data_list.append(data)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def visualize_prediction(data, model, epoch, mode='writer', **kwargs):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = x.to(kwargs['device'])
edge_index = edge_index.to(kwargs['device'])
edge_attr = edge_attr.to(kwargs['device'])
pred = model(x, edge_index, edge_attr).detach().cpu().numpy()
# pred = model(x, edge_index).detach().cpu().numpy() # for GCN
x = data.pos[:, 0].detach().cpu().numpy()
y = data.pos[:, 1].detach().cpu().numpy()
# x = data.pos[:, 0].detach().cpu().numpy()
# y = data.pos[:, 1].detach().cpu().numpy()
x_values = np.unique(x)
y_values = np.unique(y)
temp_grid = pred.squeeze().reshape(len(x_values), len(y_values))
fig = plt.figure(figsize=(12, 6))
plt.contourf(x_values, y_values, temp_grid, levels=np.linspace(0, 1, 100))
# plt.contourf(x_values, y_values, temp_grid)
plt.colorbar(label='Velocity Magnitude')
plt.title('Velocity Contour Plot')
plt.xlabel('x')
plt.ylabel('y')
if mode == 'writer':
wandb.log({"prediction": wandb.Image(plt)})
elif mode == 'save':
save_dir = kwargs['save_dir']
plt.savefig(os.path.join(save_dir, 'prediction.png'))
plt.close(fig)
temp_grid_true = data.y.cpu().detach().numpy().squeeze().reshape(len(x_values), len(y_values))
fig = plt.figure(figsize=(12, 6))
plt.contourf(x_values, y_values, temp_grid_true, levels=np.linspace(0, 1, 100))
# plt.contourf(x_values, y_values, temp_grid_true)
# limit the three figures to have the same colorbar
plt.colorbar(label='Velocity Magnitude')
plt.title('Velocity Contour Plot')
plt.xlabel('x')
plt.ylabel('y')
if mode == 'writer':
wandb.log({"ground_truth": wandb.Image(plt)})
elif mode == 'save':
save_dir = kwargs['save_dir']
plt.savefig(os.path.join(save_dir, 'true.png'))
plt.close(fig)
temp_grid_error = np.abs(temp_grid - temp_grid_true)
fig = plt.figure(figsize=(12, 6))
plt.contourf(x_values, y_values, temp_grid_error, levels=np.linspace(0, 1, 100))
# plt.contourf(x_values, y_values, temp_grid_error)
plt.colorbar(label='Velocity Magnitude')
plt.title('Velocity Error Map')
plt.xlabel('x')
plt.ylabel('y')
if mode == 'writer':
wandb.log({"error": wandb.Image(plt)})
elif mode == 'save':
save_dir = kwargs['save_dir']
plt.savefig(os.path.join(save_dir, 'error.png'))
plt.close(fig)
x_low = data.pos[:, 0].detach().cpu().numpy()
y_low = data.pos[:, 1].detach().cpu().numpy()
x_values_low = np.unique(x_low)
y_values_low = np.unique(y_low)
# temp_grid_low = data.x.detach().cpu().numpy().squeeze().reshape(len(x_values_low), len(y_values_low))
temp_grid_low = data.x[:, 0].detach().cpu().numpy().squeeze().reshape(len(x_values), len(y_values))
fig = plt.figure(figsize=(12, 6))
# plt.contourf(x_values_low, y_values_low, temp_grid_low, levels=np.linspace(0, 1, 100), cmap="RdBu_r")
plt.contourf(x_values, y_values, temp_grid_low, levels=np.linspace(0, 1, 100))
# plt.contourf(x_values, y_values, temp_grid_low)
plt.colorbar(label='Velocity Magnitude')
plt.title('Velocity Contour Map')
plt.xlabel('x')
plt.ylabel('y')
if mode == 'writer':
wandb.log({"low_resolution": wandb.Image(plt)})
plt.close(fig)
def steady_state_heat_equation(order__sf, random_heat_source, mesh):
# Define domain and mesh
# xmin, xmax = 0, 1
# ymin, ymax = 0, 1
# mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), mesh_resolution, mesh_resolution)
# Define function space
V = FunctionSpace(mesh, "CG", order__sf)
# Define boundary conditions
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, Constant(0), boundary)
x = SpatialCoordinate(mesh)
heat_source = Expression(random_heat_source, sigma=0.1, degree=2)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
kappa = Constant(0.1) # Thermal diffusivity
F = kappa * inner(grad(u), grad(v)) * dx - heat_source * v * dx
a, L = lhs(F), rhs(F)
u = Function(V)
# Solve the steady-state problem
solve(a == L, u, bc)
return project(u, V)
def generate_random_heat_source():
source_x = np.random.uniform(0, 1)
source_y = np.random.uniform(0, 1)
return f"exp(-(pow((x[0] - {source_x}), 2) + pow((x[1] - {source_y}), 2))/(2*sigma*sigma))"
def train(model, dataset, model_dir):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = initialize_model(type='NeuralOperator', in_channel=1, out_channel=1, width=64, ker_width=512, depth=6).to(device)
model = model.to(device)
print('The model has {} parameters'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
optimizer = optim.Adam(model.parameters(), lr=1e-5, weight_decay=5e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
train_dataset, test_dataset = train_test_split(dataset, 0.8)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)
os.makedirs(model_dir, exist_ok=True)
t1 = time.time()
for epoch in range(200):
model.train()
loss_all = 0
accuracy_all = 0
# i_sample = 0
for data in train_loader:
# model.train()
# i_sample += 1
# if i_sample > 200:
# break
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = x.to(device)
edge_index = edge_index.to(device)
edge_attr = edge_attr.to(device)
optimizer.zero_grad()
out = model(x, edge_index, edge_attr)
# out = model(x, edge_index) # for GCN
# torch.onnx.export(model, (x, edge_index, edge_attr), '{}/model.onnx'.format(model_dir), input_names=['temperature', 'edge_index', 'discretization length'], output_names=['temperature'])
loss = torch.nn.functional.mse_loss(out, data.y.to(device))
r2_accuracy = r2_score(data.y.cpu().detach().numpy(), out.cpu().detach().numpy())
loss.backward()
loss_all += loss.item()
accuracy_all += r2_accuracy
optimizer.step()
# delete x, edge_index, edge_attr, out, loss to save gpu memory
del x, edge_index, edge_attr, out, loss
scheduler.step()
wandb.log({"loss": loss_all / len(train_loader), "accuracy": accuracy_all / len(train_loader)})
if epoch % 10 == 0:
visualize_prediction(data[0], model, epoch, mode='writer', device=device)
# print('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_all / len(train_loader)))
if epoch % 10 == 0:
model.eval()
loss_all = 0
for data in test_loader:
data = data.to(device)
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
out = model(x, edge_index, edge_attr)
# out = model(x, edge_index) # for GCN
if data.y.dim() == 1:
data.y = data.y.unsqueeze(-1)
loss = torch.nn.functional.mse_loss(out, data.y)
loss_all += loss.item()
wandb.log({"loss_test": loss_all / len(test_loader)})
torch.save(model.state_dict(), '{}/model_{}.pt'.format(model_dir, epoch))
cur_model = wandb.Artifact("model_{}".format(epoch), type="model")
cur_model.add_file('{}/model_{}.pt'.format(model_dir, epoch))
wandb.log_artifact(cur_model)
# wandb.link_artifact(cur_model, "model_{}".format(epoch))
# torch.save(model.state_dict(), 'test_cases/burger/CFDError/{}/model_{}.pt'.format(sim_start_time, epoch))
# print('Epoch: {:02d}, Loss: {:.4f}'.format(epoch, loss_all / len(test_loader)))
t2 = time.time()
print('Training time: {:.4f} s'.format(t2 - t1))
torch.save(model.state_dict(), '{}/model.pt'.format(model_dir))
# save onnx model for visualization
# torch.onnx.export(model, (x, edge_index, edge_attr), '{}/model.onnx'.format(model_dir), input_names=['temperature', 'edge_index', 'discretization length'], output_names=['temperature'])
if __name__ == '__main__':
# from args get model type, dataset type and testing configs
args = parse_args()
config_file = args.config
# load config
config = load_yaml(config_file)
# initialize wandb
wandb.init(project="teecnet_exp_0_concept", config=config)
# create a txt file to record test results
os.makedirs(os.path.join(config["log_dir"], config["model_type"], config["dataset_type"]), exist_ok=True)
sf_orders = [1, 2, 3, 4]
for order in sf_orders:
# delete processed data
shutil.rmtree(os.path.join(config["dataset_root"], "processed"), ignore_errors=True)
# log current order of shape functions
wandb.log({"order_sf": order})
# initialize dataset
dataset = HeatEquationDataset(root=config["dataset_root"], res_low=config["res_low"], res_high=config["res_high"], order_sf=order)
# initialize model
model = initialize_model(type=config["model_type"], in_channel=config["in_channel"], width=config["width"], out_channel=config["out_channel"], num_layers=config["num_layers"], retrieve_weight=False, num_powers=config["num_powers"])
# train model
train(model, dataset, os.path.join(config["log_dir"], config["model_type"], config["dataset_type"], "res_{}_{}".format(config["res_low"], config["res_high"]), "order_{}".format(order)))
# extract coefficients in model
coefficient = model.kernel.kernel.conv_out.root_param.detach().cpu().numpy()
# log mean coefficient
wandb.log({"mean_coefficient": np.mean(coefficient, axis=1)})