-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_clip_fsar_decison_now_only_meta.py
508 lines (433 loc) · 26.7 KB
/
run_clip_fsar_decison_now_only_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import os
#os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
import torch
import numpy as np
import argparse
import pickle
from utils import print_and_log, get_log_files, TestAccuracies, loss, aggregate_accuracy#, send_email
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from torch.optim.lr_scheduler import MultiStepLR
import video_reader_cross_res as video_reader
import random
import logging
import torch.nn.functional as F
from models.base.cross_domain_fsar_resnet_multi2 import CROSS_DOMAIN_FSAR
from util.config import Config
def setup_logger(name, log_file, level=logging.INFO):
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
handler = logging.FileHandler(log_file)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
# logger for training accuracies
train_logger = setup_logger('Training_accuracy', 'runs_trms/train_output.log')
# logger for evaluation accuracies
eval_logger = setup_logger('Evaluation_accuracy', 'runs_trms/eval_output.log')
###############################################3#
# 增加随机数种子
# setting up seeds
manualSeed = random.randint(1, 10000)
#manualSeed = 1888
manualSeed = 1888
print("Random Seed: ", manualSeed)
np.random.seed(manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
################################################3
"""
Command line parser
"""
def parse_command_line():
parser = argparse.ArgumentParser()
# 经常需要修改
parser.add_argument("--learning_rate", "-lr", type=float, default=0.001, help="Learning rate.")
parser.add_argument("--tasks_per_batch", type=int, default=16, help="Number of tasks between parameter optimizations.")
# 经常需要修改
parser.add_argument("--training_iterations", "-i", type=int, default=24020, help="Number of meta-training iterations.")
# 经常需要修改
parser.add_argument("--num_test_tasks", type=int, default=1000, help="number of random tasks to test on.")
parser.add_argument('--test_iters', nargs='+', type=int, default=[20000], help='iterations to test at. Default is for ssv2 otam split.')
#元训练阶段一个episode中抽样多少个未标记的target doamin的样本
parser.add_argument("--target_unlabeled_num", type=int, default=25, help="Way of each task.")
parser.add_argument("--way", type=int, default=5, help="Way of each task.")
parser.add_argument("--shot", type=int, default=1, help="Shots per class.")
parser.add_argument("--query_per_class", type=int, default=5, help="Target samples (i.e. queries) per class used for training.")
parser.add_argument("--query_per_class_test", type=int, default=1, help="Target samples (i.e. queries) per class used for testing.")
parser.add_argument("--print_freq", type=int, default=100, help="print and log every n iterations.") # 1000
parser.add_argument("--num_workers", type=int, default=4, help="Num dataloader workers.")
parser.add_argument("--method", choices=["resnet18", "resnet34", "resnet50"], default="resnet18", help="method")
parser.add_argument("--opt", choices=["adam", "sgd"], default="adam", help="Optimizer")
parser.add_argument("--trans_dropout", type=int, default=0.1, help="Transformer dropout")
# 可能需要修改
parser.add_argument("--save_freq", type=int, default=500, help="Number of iterations between checkpoint saves.")
parser.add_argument("--img_size", type=int, default=224, help="Input image size to the CNN after cropping.")
parser.add_argument("--scratch", choices=["bc", "bp", "new"], default="bp", help="directory containing dataset, splits, and checkpoint saves.")
# 经常需要修改
parser.add_argument("--gpus_use", default=[0, 1, 2, 3], help="GPUs No. to split the ResNet over")
parser.add_argument("--num_gpus", type=int, default=4, help="Number of GPUs to split the ResNet over")
parser.add_argument("--debug_loader", default=False, action="store_true", help="Load 1 vid per class for debugging")
# 可能需要修改 不同的split这里的编号不一样
parser.add_argument("--split", type=int, default=3, help="Dataset split.")
parser.add_argument('--sch', nargs='+', type=int, help='iters to drop learning rate', default=[1600000])
#####################数据集和pt保存路径#############~
#parser.add_argument("--dataset", choices=["ssv2", "ssv2_cmn", "kinetics", "hmdb", "ucf"], default="hmdb", help="Dataset to use.")
parser.add_argument("--source_dataset", choices=["ssv2", "ssv2_cmn", "kinetics", "hmdb", "ucf", "diving48"], default="kinetics", help="Dataset to use.")
parser.add_argument("--target_dataset", choices=["ssv2", "ssv2_cmn", "kinetics", "hmdb", "ucf", "diving48"], default="hmdb", help="Dataset to use.")
parser.add_argument("--checkpoint_dir", "-c", default="./checkpoint_hmdb_8_only_meta/", help="Directory to save checkpoint to.")
parser.add_argument("--test_model_path", "-m", default="./checkpoint_hmdb_8_only_meta/", help="Path to model to load and test.")
parser.add_argument("--resume_checkpoint_iter", type=int, default=15500, help="Path to model to resume.")
parser.add_argument("--resume_from_checkpoint", "-r", dest="resume_from_checkpoint", default=True, action="store_true", help="Restart from latest checkpoint.")
parser.add_argument("--test_checkpoint_iter", type=int, default=20000 , help="Path to model to load and test.")
parser.add_argument("--test_model_only", type=bool, default=True, help="Only testing the model from the given checkpoint")
#####################下面的是消融参数##############
parser.add_argument("--lambdas", type=int, default=[1, 0.5, 0, 0, 0, 0], help="temporal_set") #1是监督分类loss 2是蒸馏loss
parser.add_argument("--seq_len", type=int, default=8, help="Frames per video.")
parser.add_argument('--sub_seq_len', type=int, default=4, help='the length of sub sequence')
parser.add_argument('--sub_seq_num', type=int, default=10, help='the length of sub sequence')
parser.add_argument('--start_cross', type=int, default=0, help='the time to start meta-learning step2') #10000
parser.add_argument('--class_num', type=int, default=64, help='the number of class catetories in the training stage')
parser.add_argument('--aa', nargs='+', type=int, default=[1, 0], help='1,1->l2g+g2l, 1,0->l2g, 0,1->g2l')
args = parser.parse_args()
# 数据集存储在不同的地方 移动硬盘,服务器,本地PC
if args.scratch == "bc":
args.num_gpus = 2
args.scratch = "./"
args.scratch_data = "/mnt/mydata/video-mini-frames/"
elif args.scratch == "bp":
args.num_gpus = 3
# this is low becuase of RAM constraints for the data loader
args.num_workers = 3
args.scratch = "./"
args.scratch_data = "/home/guofei/mydata/video-mini-frames/"
#args.scratch_data = "/local/wangq/data/video-mini-frames/"
args.unlabel_scratch = "./"
#args.unlabel_scratch_data = "/home/guofei/mydata/video-mini-frames/"
args.unlabel_scratch_data = "/local/wangq/data/video-mini-frames/"
elif args.scratch == "new":
args.num_workers = 2
args.num_gpus = 1
args.scratch = "./"
args.scratch_data = "E:/mydata/video-mini-frames/"
if args.checkpoint_dir == None:
print("need to specify a checkpoint dir")
exit(1)
if (args.method == "resnet50") or (args.method == "resnet34"):
args.img_size = 224
if args.method == "resnet50":
args.trans_linear_in_dim = 2048
else:
args.trans_linear_in_dim = 512
#############################################################################################
#源域
if args.source_dataset == "kinetics":
args.trainlist = os.path.join(args.scratch, "splits/kinetics_CMN")
args.scratch_data = "/home/guofei/mydata/video-mini-frames/"
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.path = os.path.join(args.scratch_data, "kinetics-mini-frames/")
elif args.source_dataset == "kinetics_100":
args.trainlist = os.path.join(args.scratch, "splits/kinetics_100")
args.scratch_data = "/data1/mydata/video-origin-frames/"
args.path = os.path.join(args.scratch_data, "kinetics-frames/train_400/")
elif args.source_dataset == "kinetics_400":
args.trainlist = os.path.join(args.scratch, "splits/kinetics_400")
args.scratch_data = "/data1/mydata/video-origin-frames/"
args.path = os.path.join(args.scratch_data, "kinetics-frames/train_400/")
#############################################################################################
#############################################################################################
#目标域
if args.target_dataset == "ssv2":
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.target_traintestlist = os.path.join(args.scratch, "splits/ssv2_OTAM")
args.target_path = os.path.join(args.scratch_data, "mini-ssv2-frames-number/")
elif args.target_dataset == "kinetics":
args.target_traintestlist = os.path.join(args.scratch, "splits/kinetics_CMN")
args.target_path = os.path.join(args.scratch_data, "kinetics-mini-frames/")
elif args.target_dataset == "ucf":
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.target_traintestlist = os.path.join(args.scratch, "splits/ucf_ARN")
args.target_path = os.path.join(args.scratch_data, "UCF101_frames/")
elif args.target_dataset == "hmdb":
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.target_traintestlist = os.path.join(args.scratch, "splits/hmdb_ARN")
args.target_path = os.path.join(args.scratch_data, "HMDB_51/")
elif args.target_dataset == "ssv2_cmn":
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.target_traintestlist = os.path.join(args.scratch, "splits/ssv2_CMN")
args.target_path = os.path.join(args.scratch_data, "mini-ssv2-frames/")
elif args.target_dataset == "diving48":
args.scratch_data = "/data1/mydata/video-mini-frames/"
args.target_traintestlist = os.path.join(args.scratch, "splits/diving48")
args.target_path = os.path.join(args.scratch_data, "diving48-frames-v1/")
if args.target_dataset == "ssv2_mimi":
args.target_traintestlist = os.path.join(args.scratch, "splits/ssv2_mini")
args.target_path = os.path.join(args.scratch_data, "mini-ssv2-frames-number/")
if args.target_dataset == "rareAct":
args.scratch_data = "/data1/guofei/dataset_download/"
args.target_traintestlist = os.path.join(args.scratch, "splits/rareAction")
args.target_path = os.path.join(args.scratch_data, "RareAct_cut_frames/")
#############################################################################################
with open("args.pkl", "wb") as f:
pickle.dump(args, f, pickle.HIGHEST_PROTOCOL)
return args
##################################################
def main():
learner = Learner()
learner.run()
class Learner:
def __init__(self):
self.args = parse_command_line()
self.cfg = Config(load=True)
self.checkpoint_dir, self.logfile, self.checkpoint_path_validation, self.checkpoint_path_final = get_log_files(self.args.checkpoint_dir, self.args.resume_from_checkpoint, False)
print_and_log(self.logfile, "Options: %s\n" % self.args)
print_and_log(self.logfile, "Checkpoint Directory: %s\n" % self.checkpoint_dir)
##############################做试验,抢资源时候需要修改的的地方###############################
# 初始化主模型
self.model = self.init_model()
################################################################################
self.train_set, self.validation_set, self.test_set = self.init_data()
################################################################################
self.vd = video_reader.VideoDataset(self.args)
self.video_loader = torch.utils.data.DataLoader(self.vd, batch_size=1, num_workers=self.args.num_workers)
# 进行loss function 以及accurary_fn的定义,这两个方法定义在untils.py中
self.loss = loss
self.accuracy_fn = aggregate_accuracy
# 根据参数定义优化器
if self.args.opt == "adam":
# self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
# frozen
'''
for p in self.model.parameters():
p.requires_grad = True
for p in self.model.backbone.parameters():
p.requires_grad = True
feature_params = filter(lambda p: p.requires_grad, self.model.parameters())
'''
#self.optimizer = torch.optim.Adam(feature_params, lr=self.args.learning_rate)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
elif self.args.opt == "sgd":
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.args.learning_rate)
#
self.test_accuracies = TestAccuracies(self.test_set)
# 其作用在于对optimizer中的学习率进行更新、调整,更新的方法是scheduler.step()。
self.scheduler = MultiStepLR(self.optimizer, milestones=self.args.sch, gamma=1)
self.start_iteration = 0
# 根据参数,如何不是测试模式且,需要加载模型,则加载模型
if self.args.resume_from_checkpoint and not self.args.test_model_only:
self.load_checkpoint(self.args.resume_checkpoint_iter)
self.optimizer.step()
# 用0梯度,初始化优化器
self.optimizer.zero_grad()
def init_model(self):
model = CROSS_DOMAIN_FSAR(self.args, self.cfg)
model = model.cuda()
if self.args.num_gpus > 1:
model.distribute_model()
return model
def init_data(self):
train_set = [self.args.source_dataset]
validation_set = [self.args.target_dataset]
test_set = [self.args.target_dataset]
return train_set, validation_set, test_set
def run(self):
###########################################
if self.args.test_model_only:
print("Model being tested at path: " + self.args.test_model_path + " " + str(self.args.test_checkpoint_iter))
self.load_checkpoint(self.args.test_checkpoint_iter)
accuracy_dict = self.test(1)
print(accuracy_dict)
return
##########################################
##########################################
total_iterations = self.args.training_iterations
iteration = self.start_iteration
self.train(iteration, total_iterations)
##########################################
##########################################
# save the final model
torch.save(self.model.state_dict(), self.checkpoint_path_final)
self.logfile.close()
##########################################
def train(self, iteration, total_iterations):
# 训练精确度,损失
train_accuracies = []
losses = []
# 总的迭代次数
# 训练每次循环就是一个episode
for task_dict in self.video_loader:
if iteration >= total_iterations:
break
iteration += 1
torch.set_grad_enabled(True)
print("start to train iteration: " + str(iteration))
task_loss, task_accuracy = self.train_task(task_dict, iteration)
print("finish to train iteration: " + str(iteration))
train_accuracies.append(task_accuracy)
losses.append(task_loss)
#optimize 每tasks_per_batch次iteration进行一次网络参数更新, 模型开始新一轮的迭代
if ((iteration + 1) % self.args.tasks_per_batch == 0) or (iteration == (total_iterations - 1)):
self.optimizer.step()
self.optimizer.zero_grad() #每tasks_per_batch 次 梯度值归零
self.scheduler.step()
# 每print_freq个iteration 会打印一次日志, 计算一次平均loss和平均的training accuracy
if (iteration + 1) % self.args.print_freq == 0:
# console log log file
print_and_log(self.logfile, 'Task [{}/{}], Train Loss: {:.7f}, Train Accuracy: {:.7f}'.format(iteration + 1, total_iterations, torch.Tensor(losses).mean().item(), torch.Tensor(train_accuracies).mean().item()))
train_logger.info("For Task: {0}, the training loss is {1} and Training Accuracy is {2}".format(iteration + 1, torch.Tensor(losses).mean().item(), torch.Tensor(train_accuracies).mean().item()))
avg_train_acc = torch.Tensor(train_accuracies).mean().item()
avg_train_loss = torch.Tensor(losses).mean().item()
train_accuracies = []
losses = []
# 每save_freq个episode保存一次模型,最有一个episode不进行保存,而直接在后面使用torch.save进行保存
if ((iteration + 1) % self.args.save_freq == 0) and (iteration + 1) != total_iterations:
self.save_checkpoint(iteration + 1)
# 这个是说test_iters个episode之后进行一次测试,有就是用正在训练的模型进行一次测试
if ((iteration + 1) in self.args.test_iters) and (iteration + 1) != total_iterations:
accuracy_dict = self.test(iteration + 1)
print(accuracy_dict)
self.test_accuracies.print(self.logfile, accuracy_dict)
def train_task(self, task_dict, iteration):
# 输入是task_dict 由video_reader读取得到的对象, 输出 support样本, query样本, support labels, query labels, real_target_labels
context_images, target_images, context_labels, target_labels, real_support_labels, real_target_labels, batch_class_list = self.prepare_task(task_dict)
# 跑模型
for k in task_dict.keys():
task_dict[k] = task_dict[k][0].cuda()
model_dict = self.model(task_dict, iteration)
class_logits = model_dict['class_logits'] #监督学习
meta_logits = model_dict['meta_logits'] #meta学习
self_loss = model_dict['self_logits']
cross_loss = model_dict['cross_logits']
reconstruct_distance_loss = model_dict['reconstruct_distance']
target_self_s_loss= model_dict['target_self_s_loss']
task_accuracy = self.accuracy_fn(meta_logits, target_labels)
print("-> meta task_accuracy:{}".format(task_accuracy))
# 每个eipsode中监督学习准确度
pre_task_accuracy = self.accuracy_fn(class_logits, torch.cat([task_dict["real_support_labels"], task_dict["real_target_labels"]]))
print("-> pre train_accuracy:{}".format(pre_task_accuracy))
class_logits = class_logits.unsqueeze(0)
superviesed_class_loss = self.loss(class_logits, torch.cat([task_dict["real_support_labels"], task_dict["real_target_labels"]], 0).long(), "cuda") / self.args.tasks_per_batch
meta_target_logits = meta_logits.unsqueeze(0)
meta_target_loss = self.loss(meta_target_logits, task_dict["target_labels"].long(), "cuda") / self.args.tasks_per_batch
lambdas = self.args.lambdas
# lambdas=[2, 1, 0.5, 0.3, 0.3, 0.5, 0.5,0]
if iteration <= self.args.start_cross:
lambdas = [1, 0, 0.1, 0, 0, 0]
else:
lambdas = [1, 1, 0.1, 0, 0.05, 0.05]
lambdas = [0, 1, 0.1, 0, 0.05, 0.05]
task_loss_total = lambdas[0] * superviesed_class_loss + \
lambdas[1] * meta_target_loss + \
lambdas[2] * reconstruct_distance_loss + \
lambdas[3] * target_self_s_loss +\
lambdas[3] * self_loss + \
lambdas[4] * cross_loss
task_loss_total.backward(retain_graph=False)
return task_loss_total, task_accuracy
def test(self, num_episode):
self.model.eval() # 在评估模式下,batchNorm层,dropout层等用于优化训练而添加的网络层会被关闭,从而使得评估时不会发生偏移。
self.video_loader.dataset.train = False # 此参数为False,则video_loader加载的是测试数据集
####################################################
with torch.no_grad():
accuracy_dict = {}
accuracies = []
losses = []
iteration = 0
tmp_accuracies = []
tmp_losses = []
# 数据集的名称
item = self.args.target_dataset
for task_dict in self.video_loader:
if iteration >= self.args.num_test_tasks: #num_test_tasks为测试中总的episode数量
break
iteration += 1
task_accuracy, task_loss_total = self.test_task(task_dict)
eval_logger.info("For Task: {0}, the testing loss is {1} and Testing Accuracy is {2}".format(iteration + 1,task_loss_total, task_accuracy.item()))
print("For Task: {0}, the testing loss is {1} and Testing Accuracy is {2}".format(iteration + 1, task_loss_total, task_accuracy.item()))
losses.append(task_loss_total.item())
accuracies.append(task_accuracy.item())
###########################################################################################################
'''以下代码块的内容是为了进行一个较小集合的计算 作为参考'''
tmp_losses.append(task_loss_total.item())
tmp_accuracies.append(task_accuracy.item())
if (iteration - 1) % 100 == 0 and iteration > 1:
tmp_accuracy = np.array(tmp_accuracies).mean() * 100.0
# 总体标准差 等于 样本标准差除以根号下样本数量n
tmp_confidence = (196.0 * np.array(tmp_accuracies).std()) / np.sqrt(len(tmp_accuracies))
tmp_loss = np.array(losses).mean() # loss取均值
accuracy_dict[item] = {"accuracy": tmp_accuracy, "confidence": tmp_confidence, "loss": tmp_loss}
print("##################### The databse is {}, and the iteration is {} ######################".format(item, num_episode))
print(accuracy_dict)
print("##############################################################################################")
tmp_accuracies = []
tmp_losses = []
#############################################################################################################
accuracy = np.array(accuracies).mean() * 100.0
# 总体标准差 等于 样本标准差除以根号下样本数量n
confidence = (196.0 * np.array(accuracies).std()) / np.sqrt(len(accuracies))
loss = np.array(losses).mean() # loss取均值
accuracy_dict[item] = {"accuracy": accuracy, "confidence": confidence, "loss": loss}
eval_logger.info("##################### The databse is {}, and the iteration is {} ######################".format(item, num_episode))
eval_logger.info(accuracy_dict)
eval_logger.info("##############################################################################################")
eval_logger.info("----------------------------------------------------------------------------------------------")
# send_email("hhhizsdjpwqnbaif", "accuracy " + str(accuracy), "[email protected]")
####################################################
self.video_loader.dataset.train = True
self.model.train()
return accuracy_dict
def test_task(self, task_dict):
context_images, target_images, context_labels, target_labels, real_support_labels, real_target_labels, batch_class_list = self.prepare_task(task_dict)
for k in task_dict.keys():
if len(task_dict[k]) > 0:
task_dict[k] = task_dict[k][0].cuda()
model_dict = self.model.forward_test(task_dict)
target_logits = model_dict['dis_logits']
target_logits_total = target_logits
task_accuracy = self.accuracy_fn(target_logits_total, target_labels)
print("--> task_accuracy:{}".format(task_accuracy))
target_logits = target_logits.unsqueeze(0)
target_loss = self.loss(target_logits, task_dict["target_labels"].long(), "cuda") / self.args.tasks_per_batch
lambdas = self.args.lambdas
task_loss_total = lambdas[0] * target_loss
return task_accuracy, task_loss_total
def prepare_task(self, task_dict, images_to_device=True):
context_images, context_labels = task_dict['support_set'][0], task_dict['support_labels'][0]
target_images, target_labels = task_dict['target_set'][0], task_dict['target_labels'][0]
real_support_labels = task_dict['real_support_labels'][0]
real_target_labels = task_dict['real_target_labels'][0]
batch_class_list = task_dict['batch_class_list'][0]
if images_to_device:
context_images = context_images.cuda()
target_images = target_images.cuda()
context_labels = context_labels.cuda()
target_labels = target_labels.type(torch.LongTensor).cuda()
return context_images, target_images, context_labels, target_labels, real_support_labels, real_target_labels, batch_class_list
# 此函數無用。
def shuffle(self, images, labels):
"""
Return shuffled data.
"""
permutation = np.random.permutation(images.shape[0])
return images[permutation], labels[permutation]
def save_checkpoint(self, iteration):
d = {'iteration': iteration,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict()}
torch.save(d, os.path.join(self.checkpoint_dir, 'checkpoint{}.pt'.format(iteration)))
torch.save(d, os.path.join(self.checkpoint_dir, 'checkpoint.pt'))
def load_checkpoint(self, test_checkpoint_iter):
if test_checkpoint_iter:
checkpoint = torch.load(os.path.join(self.checkpoint_dir, 'checkpoint{}.pt'.format(test_checkpoint_iter)))
else:
checkpoint = torch.load(os.path.join(self.checkpoint_dir, 'checkpoint.pt'))
self.start_iteration = checkpoint['iteration']
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
if __name__ == "__main__":
main()