-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtemperature_env.py
214 lines (190 loc) · 8.98 KB
/
temperature_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
class NormalDropletFunctionEnv():
def __init__(self, function, budget = 100, max_batch_size = 10):
'''
Environment inspired by micro-reactors. A single query is submitted at every time-step, and the environment evaluates up to
max_batch_size queries at any time. This means there is a max_batch_size iteration delay between asking for a query, and obtaining
an evaluation. To define the environment we require an objective function.
Input:
function - Function to optimise (see function class on functions.py)
budget - integer, budget of optimization
max_batch_size - integer, value of t_delay (called batch size because it is the 'batch size' of the micro-reactor)
'''
# takes a function class which takes a temperature path as first input, and possibly second argument x
self.function = function
# check if we are taking x-arguments
self.x_dim = self.function.x_dim
# set optim budget and batch size
self.budget = budget
self.max_batch_size = max_batch_size
self.t_dim = function.t_dim
# initialise other variables
self.initialise_optim()
def initialise_optim(self):
# initialise query / observation lists
self.X = []
self.Y = []
# initialise optimisation time and batch size
self.t = 0
self.batch_size = 0
# initialise eval batch
self.temperature_list = []
if self.x_dim is not None:
self.batch = []
# draw new function
self.function.draw_new_function()
def step(self, T_i, x = None):
'''
Advances the optimization process forward. Takes as input a new temperature and possibly a new x-values
Recall: temperature are all variables that incur input cost, x-values are variables we can change freely
'''
# initialise new query and observation variable
obs, query_return = None, None
# add action / query to batch of evaluations
self.temperature_list.append(T_i)
if self.x_dim is not None:
self.batch.append(x)
# add one to how many queries are being evaluated
self.batch_size = self.batch_size + 1
# once reactor is full, we can begin to output queries, this is equivalent to t >= t_delay, before this we would not have
# any observations
if self.batch_size == self.max_batch_size:
# obtain query and observation
temp_query = self.temperature_list[0].reshape(1, -1)
# update temperature list by removing queries that are finished evaluating
self.temperature_list = self.temperature_list[1:]
# reduce batch size
self.batch_size = self.batch_size - 1
query = [temp_query]
query_return = temp_query
# same for x-query
if self.x_dim is not None:
x_query = self.batch[0].reshape(1, -1)
self.batch = self.batch[1:]
query_return = np.concatenate((temp_query, x_query), axis = 1)
query = [query_return]
# obtain observation
obs = self.function.query_function(*query)
# keep track of data
self.X.append(query_return)
self.Y.append(obs)
# increase time-step
self.t += 1
return query_return, obs
def finished_with_optim(self):
'''
This function returns all evaluations once the optimization procedure is finished
'''
# add all queries not finished being evaluated to X and Y
for i, t in enumerate(self.temperature_list):
# different format of queries required due to inefficient coding
query_t = t
query = [t]
query_out = t
# add x-variables if requiried
if self.x_dim is not None:
query_x = self.batch[i]
query = np.concatenate((query_t.reshape(1, -1), query_x.reshape(1, -1)), axis = 1).reshape(1, -1)
query_out = np.concatenate((query_t.reshape(1, -1), query_x.reshape(1, -1)), axis = 1)
# get observations
obs = self.function.query_function(*query)
# append to X and Y list
self.X.append(query_out)
self.Y.append(obs)
return self.X, self.Y
class MultiObjectiveNormalDropletFunctionEnv():
def __init__(self, function, budget = 100, max_batch_size = 10):
'''
Environment inspired by micro-reactors. A single query is submitted at every time-step, and the environment evaluates up to
max_batch_size queries at any time. This means there is a max_batch_size iteration delay between asking for a query, and obtaining
an evaluation. To define the environment we require an objective function.
Input:
function - Function to optimise (see function class on functions.py)
budget - integer, budget of optimization
max_batch_size - integer, value of t_delay (called batch size because it is the 'batch size' of the micro-reactor)
'''
# takes a function class which takes a temperature path as first input, and possibly second argument x
self.function = function
self.num_of_objectives = self.function.num_of_objectives
# check if we are taking x-arguments
self.x_dim = self.function.x_dim
# set optim budget and batch size
self.budget = budget
self.max_batch_size = max_batch_size
self.t_dim = function.t_dim
# initialise other variables
self.initialise_optim()
def initialise_optim(self):
# initialise query / observation lists
self.X = []
self.Y = [[] for _ in range(self.num_of_objectives)]
# initialise optimisation time and batch size
self.t = 0
self.batch_size = 0
# initialise eval batch
self.temperature_list = []
if self.x_dim is not None:
self.batch = []
# draw new function
self.function.draw_new_function()
def step(self, T_i, x = None):
'''
Advances the optimization process forward. Takes as input a new temperature and possibly a new x-values
Recall: temperature are all variables that incur input cost, x-values are variables we can change freely
'''
# initialise new query and observation variable
obs, query_return = None, None
# add action / query to batch of evaluations
self.temperature_list.append(T_i)
if self.x_dim is not None:
self.batch.append(x)
# add one to how many queries are being evaluated
self.batch_size = self.batch_size + 1
# once reactor is full, we can begin to output queries, this is equivalent to t >= t_delay, before this we would not have
# any observations
if self.batch_size == self.max_batch_size:
# obtain query and observation
temp_query = self.temperature_list[0].reshape(1, -1)
# update temperature list by removing queries that are finished evaluating
self.temperature_list = self.temperature_list[1:]
# reduce batch size
self.batch_size = self.batch_size - 1
query = [temp_query]
query_return = temp_query
# same for x-query
if self.x_dim is not None:
x_query = self.batch[0].reshape(1, -1)
self.batch = self.batch[1:]
query_return = np.concatenate((temp_query, x_query), axis = 1)
query = [query_return]
# obtain observations
obs = self.function.query_function(*query)
# keep track of data
self.X.append(query_return)
for obj in range(self.num_of_objectives):
self.Y[obj].append(obs[obj])
# increase time-step
self.t += 1
return query_return, obs
def finished_with_optim(self):
'''
This function returns all evaluations once the optimization procedure is finished
'''
# add all queries not finished being evaluated to X and Y
for i, t in enumerate(self.temperature_list):
# different format of queries required due to inefficient coding
query_t = t
query = [t]
query_out = t
# add x-variables if requiried
if self.x_dim is not None:
query_x = self.batch[i]
query = np.concatenate((query_t.reshape(1, -1), query_x.reshape(1, -1)), axis = 1).reshape(1, -1)
query_out = np.concatenate((query_t.reshape(1, -1), query_x.reshape(1, -1)), axis = 1)
# get observations
obs = self.function.query_function(*query)
# append to X and Y list
self.X.append(query_out)
for obj in range(self.num_of_objectives):
self.Y[obj].append(obs)
return self.X, self.Y