-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsmc_rtt_create.v
160 lines (153 loc) · 8.74 KB
/
smc_rtt_create.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
Require Import SpecDeps.
Require Import RData.
Require Import EventReplay.
Require Import MoverTypes.
Require Import Constants.
Require Import CommonLib.
Require Import TableAux.Spec.
Require Import AbsAccessor.Spec.
Require Import TableDataOpsIntro.Spec.
Require Import TableDataOpsRef3.Spec.
Require Import TableAux.Specs.granule_fill_table.
Local Open Scope Z_scope.
Section Spec.
Definition create_table (llt_gidx: Z) (idx: Z) (rtt_addr: Z) (rtt_gidx: Z) (rd_gidx: Z) (level: Z) (map_addr: Z) (adt: RData) :=
let gn_llt := (gs (share adt)) @ llt_gidx in
let gn_rtt := (gs (share adt)) @ rtt_gidx in
rely (g_tag (ginfo gn_llt) =? GRANULE_STATE_TABLE);
rely (gtype gn_llt =? GRANULE_STATE_TABLE);
rely (gtype gn_rtt =? GRANULE_STATE_DELEGATED);
rely prop_dec (glock gn_rtt = Some CPU_ID);
rely (tbl_level (gaux gn_rtt) =? 0);
let llt_pte := (g_data (gnorm gn_llt)) @ idx in
rely is_int64 llt_pte;
if __entry_is_table llt_pte then
Some (adt {log: EVT CPU_ID (REL llt_gidx gn_llt {glock: Some CPU_ID}) :: log adt}, VZ64 1)
else
let ipa_state := PTE_TO_IPA_STATE llt_pte in
if (ipa_state =? IPA_STATE_VACANT) || (ipa_state =? IPA_STATE_DESTROYED) then
let pte_val := IPA_STATE_TO_PTE ipa_state in
match fill_table (Z.to_nat PGTES_PER_TABLE) (g_data (gnorm gn_rtt)) 0 pte_val 0 with
| (tbl', _, _) =>
let llt' := (g_data (gnorm gn_llt)) # idx == (Z.lor rtt_addr PGTE_S2_TABLE) in
let grtt' := gn_rtt {ginfo: (ginfo gn_rtt) {g_tag: GRANULE_STATE_TABLE} {g_rd: rd_gidx} {g_refcount: (g_refcount (ginfo (gn_rtt))) + 1}}
{gnorm : (gnorm gn_rtt) {g_data : tbl'}} {gaux: mkAuxillaryVars level idx llt_gidx} in
let gllt' := gn_llt {ginfo : (ginfo gn_llt) {g_refcount : g_refcount (ginfo gn_llt) + 1}}
{gnorm: (gnorm gn_llt) {g_data: llt'}} in
Some (adt {log: EVT CPU_ID (REL llt_gidx gllt' {glock: Some CPU_ID}) :: log adt}
{share : (share adt) {gs : ((gs (share adt)) # rtt_gidx == grtt') # llt_gidx == gllt'}},
VZ64 0)
end
else
if ipa_state =? IPA_STATE_ABSENT then
rely (level =? RTT_PAGE_LEVEL);
let pa := __entry_to_phys llt_pte 2 in
let pte_val := Z.lor (IPA_STATE_TO_PTE IPA_STATE_ABSENT) pa in
match fill_table (Z.to_nat PGTES_PER_TABLE) (g_data (gnorm gn_rtt)) 0 pte_val GRANULE_SIZE with
| (tbl', _, _) =>
let llt' := (g_data (gnorm gn_llt)) # idx == (Z.lor rtt_addr PGTE_S2_TABLE) in
let grtt' := gn_rtt {ginfo: (ginfo gn_rtt) {g_tag: GRANULE_STATE_TABLE} {g_rd: rd_gidx}
{g_refcount: (g_refcount (ginfo (gn_rtt))) + PGTES_PER_TABLE + 1}}
{gnorm : (gnorm gn_rtt) {g_data : tbl'}} {gaux: mkAuxillaryVars level idx llt_gidx} in
let gllt' := gn_llt {gnorm: (gnorm gn_llt) {g_data: llt'}} in
Some (adt {log: EVT CPU_ID (REL llt_gidx gllt' {glock: Some CPU_ID}) :: log adt}
{share : (share adt) {gs : ((gs (share adt)) # rtt_gidx == grtt') # llt_gidx == gllt'}},
VZ64 0)
end
else if ipa_state =? IPA_STATE_PRESENT then
rely (level =? RTT_PAGE_LEVEL);
let pa := __entry_to_phys llt_pte 2 in
let pte_val := Z.lor (Z.lor (IPA_STATE_TO_PTE IPA_STATE_PRESENT) pa) PGTE_S2_PAGE in
match fill_table (Z.to_nat PGTES_PER_TABLE) (g_data (gnorm gn_rtt)) 0 pte_val GRANULE_SIZE with
| (tbl', _, _) =>
let llt' := (g_data (gnorm gn_llt)) # idx == (Z.lor rtt_addr PGTE_S2_TABLE) in
let grtt' := gn_rtt {ginfo: (ginfo gn_rtt) {g_tag: GRANULE_STATE_TABLE} {g_rd: rd_gidx}
{g_refcount: (g_refcount (ginfo (gn_rtt))) + PGTES_PER_TABLE + 1}}
{gnorm : (gnorm gn_rtt) {g_data : tbl'}} {gaux: mkAuxillaryVars level idx llt_gidx} in
let gllt' := gn_llt {gnorm: (gnorm gn_llt) {g_data: llt'}} in
let ipa_gidx := __addr_to_gidx map_addr in
let tlbs' := fun cpu gidx => if gidx =? ipa_gidx then 0 else tlbs (share adt) cpu gidx in
Some (adt {log: EVT CPU_ID (REL llt_gidx gllt' {glock: Some CPU_ID}) :: log adt}
{share : (share adt) {gs : ((gs (share adt)) # rtt_gidx == grtt') # llt_gidx == gllt'} {tlbs: tlbs'}},
VZ64 0)
end
else None.
Definition smc_rtt_create_spec (rtt_addr: Z64) (rd_addr: Z64) (map_addr: Z64) (level: Z64) (adt: RData) : option (RData * Z64) :=
match rtt_addr, rd_addr, map_addr, level with
| VZ64 rtt_addr, VZ64 rd_addr, VZ64 map_addr, VZ64 level =>
rely is_int64 rtt_addr; rely is_int64 rd_addr; rely is_int64 map_addr; rely is_int64 level;
if (level >=? 1) && (level <=? 3) && __addr_is_level_aligned map_addr 3 then
let rtt_gidx := __addr_to_gidx rtt_addr in
let rd_gidx := __addr_to_gidx rd_addr in
rely GRANULE_ALIGNED rtt_addr; rely GRANULE_ALIGNED rd_addr;
rely is_gidx rtt_gidx; rely is_gidx rd_gidx;
when adt == query_oracle adt;
let gn_rtt := (gs (share adt)) @ rtt_gidx in
let gn_rd := (gs (share adt)) @ rd_gidx in
rely prop_dec (glock gn_rtt = None);
rely prop_dec (glock gn_rd = None);
rely (g_tag (ginfo gn_rtt) =? GRANULE_STATE_DELEGATED);
rely (g_tag (ginfo gn_rd) =? GRANULE_STATE_RD);
rely (gtype gn_rd =? GRANULE_STATE_RD);
let adt := adt {log: EVT CPU_ID (ACQ rd_gidx) :: EVT CPU_ID (ACQ rtt_gidx) :: log adt} in
rely prop_dec ((buffer (priv adt)) @ SLOT_RD = None);
rely prop_dec ((buffer (priv adt)) @ SLOT_TABLE = None);
rely prop_dec ((buffer (priv adt)) @ SLOT_DELEGATED = None);
let root_gidx := (g_rtt (gnorm gn_rd)) in
rely is_gidx root_gidx;
let idx0 := __addr_to_idx map_addr 0 in
let idx1 := __addr_to_idx map_addr 1 in
let idx2 := __addr_to_idx map_addr 2 in
let idx3 := __addr_to_idx map_addr 3 in
let ret_idx := (if level =? 1 then idx0 else if level =? 2 then idx1 else if level =? 3 then idx2 else idx3) in
(* hold root lock *)
let groot := (gs (share adt)) @ root_gidx in
rely (tbl_level (gaux groot) =? 0);
rely prop_dec (glock groot = None);
if level =? 1 then
(* walk until root *)
let adt := adt {log: EVT CPU_ID (RTT_WALK root_gidx map_addr 0) :: log adt} in
let adt := adt {priv: (priv adt) {wi_llt: root_gidx} {wi_index: idx0}} in
create_table root_gidx idx0 rtt_addr rtt_gidx rd_gidx 1 map_addr adt
else
(* walk deeper root *)
rely (level >? 1);
rely (g_tag (ginfo groot) =? GRANULE_STATE_TABLE);
rely (gtype groot =? GRANULE_STATE_TABLE);
let entry0 := (g_data (gnorm groot)) @ idx0 in
rely is_int64 entry0;
let phys0 := __entry_to_phys entry0 3 in
let lv1_gidx := __addr_to_gidx phys0 in
rely (__entry_is_table entry0) && (GRANULE_ALIGNED phys0) && (is_gidx lv1_gidx);
(* level 1 valid, hold level 1 lock *)
let glv1 := (gs (share adt)) @ lv1_gidx in
rely prop_dec (glock glv1 = None);
rely (tbl_level (gaux glv1) =? 1);
if level =? 2 then
(* walk until level 1 *)
let adt := adt {log: EVT CPU_ID (RTT_WALK root_gidx map_addr 1) :: log adt} in
let adt := adt {priv: (priv adt) {wi_llt: lv1_gidx} {wi_index: idx1}} in
create_table lv1_gidx idx1 rtt_addr rtt_gidx rd_gidx 2 map_addr adt
else
(* walk deeper level 1 *)
rely (level >? 2);
rely (g_tag (ginfo glv1) =? GRANULE_STATE_TABLE);
rely (gtype glv1 =? GRANULE_STATE_TABLE);
let entry1 := (g_data (gnorm glv1)) @ idx1 in
rely is_int64 entry1;
let phys1 := __entry_to_phys entry1 3 in
let lv2_gidx := __addr_to_gidx phys1 in
rely (__entry_is_table entry1) && (GRANULE_ALIGNED phys1) && (is_gidx lv2_gidx);
(* level 2 valid, hold level 2 lock *)
let glv2 := (gs (share adt)) @ lv2_gidx in
rely (tbl_level (gaux glv2) =? 2);
rely prop_dec (glock glv2 = None);
if level =? 3 then
(* walk until level 2 *)
let adt := adt {log: EVT CPU_ID (RTT_WALK root_gidx map_addr 2) :: log adt} in
let adt := adt {priv: (priv adt) {wi_llt: lv2_gidx} {wi_index: idx2}} in
create_table lv2_gidx idx2 rtt_addr rtt_gidx rd_gidx 3 map_addr adt
else None
else Some (adt, VZ64 0)
end.
End Spec.