diff --git a/comet_for_mlflow/cli.py b/comet_for_mlflow/cli.py index 75c7b32..9dac54c 100644 --- a/comet_for_mlflow/cli.py +++ b/comet_for_mlflow/cli.py @@ -65,10 +65,10 @@ def main(): help="set the directory to store prepared runs; only relevant with --no-upload", ) parser.add_argument( - "--force-reupload", + "--force-upload", action="store_true", default=False, - help="Force reupload of prepared experiments that were previously uploaded", + help="Force the upload of prepared experiments even if they were previously uploaded", ) command_group = parser.add_mutually_exclusive_group() command_group.add_argument( @@ -98,7 +98,7 @@ def main(): args.upload, args.api_key, args.output_dir, - args.force_reupload, + args.force_upload, args.mlflow_store_uri, args.answer, args.email, diff --git a/comet_for_mlflow/comet_for_mlflow.py b/comet_for_mlflow/comet_for_mlflow.py index 52c656b..0d903e3 100644 --- a/comet_for_mlflow/comet_for_mlflow.py +++ b/comet_for_mlflow/comet_for_mlflow.py @@ -97,7 +97,7 @@ def __init__( upload_experiment, api_key, output_dir, - force_reupload, + force_upload, mlflow_store_uri, answer, email, @@ -146,7 +146,7 @@ def __init__( self.upload_experiment = upload_experiment self.output_dir = output_dir - self.force_reupload = force_reupload + self.force_upload = force_upload self.mlflow_store_uri = mlflow_store_uri def prepare(self): @@ -486,7 +486,7 @@ def upload(self, prepared_data): upload_single_offline_experiment( archive_path, self.api_key, - force_reupload=self.force_reupload, + force_upload=self.force_upload, display_level="debug", ) diff --git a/examples/keras-example/run.py b/examples/keras-example/run.py index 4fc0b73..23d6ae1 100644 --- a/examples/keras-example/run.py +++ b/examples/keras-example/run.py @@ -3,17 +3,15 @@ """Trains and evaluate a simple MLP on the Reuters newswire topic classification task. """ -from __future__ import print_function - -import keras -import mlflow.keras +import mlflow import numpy as np -from keras.datasets import reuters -from keras.layers import Activation, Dense, Dropout -from keras.models import Sequential -from keras.preprocessing.text import Tokenizer +from tensorflow import keras +from tensorflow.keras.datasets import reuters +from tensorflow.keras.layers import Activation, Dense, Dropout +from tensorflow.keras.models import Sequential +from tensorflow.keras.preprocessing.text import Tokenizer -mlflow.keras.autolog() +mlflow.tensorflow.autolog() max_words = 1000 batch_size = 32 @@ -38,8 +36,7 @@ print("x_test shape:", x_test.shape) print( - "Convert class vector to binary class matrix " - "(for use with categorical_crossentropy)" + "Convert class vector to binary class matrix (for use with categorical_crossentropy)" ) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) @@ -67,5 +64,3 @@ score = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=1) print("Test score:", score[0]) print("Test accuracy:", score[1]) - -mlflow.keras.log_model(model, "models") diff --git a/examples/model-registry-example/run.py b/examples/model-registry-example/run.py index 2301dea..8eb3b54 100644 --- a/examples/model-registry-example/run.py +++ b/examples/model-registry-example/run.py @@ -1,24 +1,20 @@ #!/usr/bin/env python # -*- coding: utf-8 -*- + """Trains and evaluate a simple MLP on the Reuters newswire topic classification task. """ -from __future__ import print_function - -import keras -import mlflow.keras +import mlflow import numpy as np -from keras.datasets import reuters -from keras.layers import Activation, Dense, Dropout -from keras.models import Sequential -from keras.preprocessing.text import Tokenizer +from tensorflow import keras +from tensorflow.keras.datasets import reuters +from tensorflow.keras.layers import Activation, Dense, Dropout +from tensorflow.keras.models import Sequential +from tensorflow.keras.preprocessing.text import Tokenizer mlflow.set_tracking_uri("sqlite:///db.sqlite") - -mlflow.keras.autolog() - -mlflow.log_param("Test", "FOO") +mlflow.tensorflow.autolog() max_words = 1000 batch_size = 32 @@ -43,8 +39,7 @@ print("x_test shape:", x_test.shape) print( - "Convert class vector to binary class matrix " - "(for use with categorical_crossentropy)" + "Convert class vector to binary class matrix (for use with categorical_crossentropy)" ) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) diff --git a/setup.py b/setup.py index e7df3b8..16892b7 100644 --- a/setup.py +++ b/setup.py @@ -11,7 +11,7 @@ with open("HISTORY.md") as history_file: history = history_file.read() -requirements = ["mlflow", "comet_ml>=3.1.1", "tabulate", "tqdm", "typing"] +requirements = ["mlflow", "comet_ml>=3.39.0", "tabulate", "tqdm", "typing"] setup(