From 89f42bb55168c736787af8df6588e92caec7b194 Mon Sep 17 00:00:00 2001 From: Marcus Date: Thu, 16 Jan 2025 12:16:47 +0000 Subject: [PATCH] Revisions to paper text --- paper/paper.bib | 10 +- paper/paper.md | 2 +- paper/sections/discussion.md | 6 +- paper/sections/intro.md | 8 +- paper/sections/meta_science.md | 9 +- paper/sections/science.md | 2 +- ...rojectTemplate_SoundLocalization_SNN.ipynb | 1716 ++++++ ...ting_notebook_annotated_for_teaching.ipynb | 4720 ++++++++++++++++- 8 files changed, 6454 insertions(+), 19 deletions(-) create mode 100644 teaching/ProjectTemplate_SoundLocalization_SNN.ipynb diff --git a/paper/paper.bib b/paper/paper.bib index e14471f..e6ea930 100644 --- a/paper/paper.bib +++ b/paper/paper.bib @@ -345,7 +345,7 @@ @misc{beniaguev_dendro_plexing_2024 @inproceedings{ hassani2023dilated, title={Dilated convolution with learnable spacings}, -author={Ismail Khalfaoui Hassani and Thomas Pellegrini and Timoth{\'e}e Masquelier}, +author={Ismail Khalfaoui-Hassani and Thomas Pellegrini and Timoth{\'e}e Masquelier}, booktitle={The Eleventh International Conference on Learning Representations }, year={2023}, url={https://openreview.net/forum?id=Q3-1vRh3HOA} @@ -530,3 +530,11 @@ @misc{kingma2017adammethodstochasticoptimization primaryClass={cs.LG}, url={https://arxiv.org/abs/1412.6980}, } + +@inproceedings{PeiYe2021, + title={Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity}, + author={Felix Pei and Joel Ye and David M. Zoltowski and Anqi Wu and Raeed H. Chowdhury and Hansem Sohn and Joseph E. O’Doherty and Krishna V. Shenoy and Matthew T. Kaufman and Mark Churchland and Mehrdad Jazayeri and Lee E. Miller and Jonathan Pillow and Il Memming Park and Eva L. Dyer and Chethan Pandarinath}, + booktitle={Advances in Neural Information Processing Systems (NeurIPS), Track on Datasets and Benchmarks}, + year={2021}, + url={https://arxiv.org/abs/2109.04463} +} \ No newline at end of file diff --git a/paper/paper.md b/paper/paper.md index d393482..0e755bb 100644 --- a/paper/paper.md +++ b/paper/paper.md @@ -113,7 +113,7 @@ downloads: +++ {"part": "abstract"} -Neuroscientists are increasingly initiating large-scale collaborations which bring together tens to hundreds of researchers. However, while these projects represent a step-change in scale, they retain a traditional structure with centralised funding, participating laboratories and data sharing on publication. Inspired by an open-source project in pure mathematics, we set out to test the feasibility of an alternative structure by running a grassroots, massively collaborative project in computational neuroscience. To do so, we launched a public Git repository, with code for training spiking neural networks to solve a sound localisation task via surrogate gradient descent. We then invited anyone, anywhere to use this code as a springboard for exploring questions of interest to them, and encouraged participants to share their work both asynchronously through Git and synchronously at monthly online workshops. At a scientific level, our work investigated how a range of biologically-relevant parameters, from time delays to membrane time constants and levels of inhibition, could impact sound localisation in networks of spiking units. At a more macro-level, our project brought together 31 researchers from multiple countries, provided hands-on research experience to early career participants, and opportunities for supervision and teaching to later career participants. Looking ahead, our project provides a glimpse of what open, collaborative science could look like and provides a necessary, tentative step towards it. +Neuroscientists are increasingly initiating large-scale collaborations which bring together tens to hundreds of researchers. However, while these projects represent a step-change in scale, their workflow resembles many scientific endeavours. That is, there are participating laboratories who collaborate together and then make their data, methods and results available. Inspired by open-source projects in pure mathematics, we set out to test the feasibility of an alternative structure by running a grassroots, massively collaborative project in computational neuroscience. To do so, we launched a public Git repository, with code for training spiking neural networks to solve a sound localisation task via surrogate gradient descent. We then invited anyone, anywhere to use this code as a springboard for exploring questions of interest to them, and encouraged participants to share their work both asynchronously through Git and synchronously at monthly online workshops. At a scientific level, our work investigated how a range of biologically-relevant parameters, from time delays to membrane time constants and levels of inhibition, could impact sound localisation in networks of spiking units. At a more macro-level, our project brought together 31 researchers from multiple countries, provided hands-on research experience to early career participants, and opportunities for supervision and teaching to later career participants. Looking ahead, our project provides a glimpse of what open, collaborative science could look like and provides a necessary, tentative step towards it. +++ # Introduction diff --git a/paper/sections/discussion.md b/paper/sections/discussion.md index 2afea41..c7db135 100644 --- a/paper/sections/discussion.md +++ b/paper/sections/discussion.md @@ -1,6 +1,6 @@ ## What went well -The decision to start from the code base of the [Cosyne tutorial](https://neural-reckoning.github.io/cosyne-tutorial-2022/) {cite:p}`10.5281/zenodo.7044500` was very helpful. It meant that users had a clear entry path for the project without needing prior expertise, and a code base that was designed to be easy to understand. In addition, the popularity of the tutorial (over 30k views on YouTube at the time of writing) meant that many people heard about this project and were interested in participating. In addition, the GitHub-based infrastructure allowed for asynchronous work and a website that was automatically updated each time anyone made a change to their code or to the text of the paper. +The decision to start from the code base of the [Cosyne tutorial](https://neural-reckoning.github.io/cosyne-tutorial-2022/) {cite:p}`10.5281/zenodo.7044500` was very helpful. It meant that users had a clear entry path for the project without needing prior expertise, and a code base that was designed to be easy to understand. In addition, the popularity of the tutorial (over 30k views on YouTube at the time of writing) meant that many people heard about this project and were interested in participating. In addition, the GitHub-based infrastructure allowed for asynchronous work our website, that was automatically updated each time anyone made a change to their code or to the text of the paper, allowed for easy sharing of results. By providing models which used spiking neurons to transform sensory inputs into behavioural outputs, participants were free to explore in virtually any direction they wished, much like an open-world or sandbox video game. Indeed over the course of the project we explored the full sensory-motor transformation from manipulating the nature of the input signals to perturbing unit activity and assessing network behaviour. Consequently, our code forms an excellent basis for teaching, as concepts from across neuroscience can be introduced and then implemented in class. In this direction, we integrated our project into two university courses and provide slides and a highly annotated python notebook, for those interested in teaching with these models. @@ -13,8 +13,8 @@ Our second challenge, was the project's exploratory nature. While this appealed A third challenge, which arose towards the end of the project, was how to fairly assign credit. We had initially - and perhaps somewhat idealistically - stated that anyone who contributed to the project, either by writing code or participating in one of the workshops, would be included on the author list. To the extent that it was possible, we have followed through with this, though we were simply unable to contact several of the participants and so could not include them as authors. Another issue with this system is that participants with unequal contributions, e.g. attending a workshop vs contributing an entire section of the paper, would be assigned similar credit, i.e. authorship. To resolve this, we experimented with using the number or size of GitHub commits to order authors, however we found that these metrics did not accurately reflect contributions. For example, it may be quicker to commit a large-amount of low quality text than a concise well written section, and similarly there is no good reason to distinguish between two authors who submit the same amount of work through a different number of commits. We attempted to address this challenge by providing a contributions table ([](#contributors)) and agreeing an author order. This order was agreed on unanimously, though could easily cause issues in other projects. Consequently, we recommend that a strategy for credit assignment be determined collaboratively at the start of the project, and made explicit so that participants can clearly understand how their contribution will translate to credit. Alternatively, such projects could publish under a pseudonym, e.g. COMOB. -Ultimately, while the project explored many interesting directions, which will form the basis for future work, we did not reach a point where we could draw strong scientific conclusions about sound localization. From group discussions we concluded that this is likely due to the free-form nature of our project, which would have benefited from a more coordinated approach. The question is, how to do this without compromising the ideals of a grass-roots project? Extending the voting idea above, one approach would be to make the proposer of the, democratically selected, project responsible for making sure that results are comparable and generally keeping the project on the right track. A role similar to a traditional supervisor, but with the critical difference that they are elected by their peers and only on a project by project basis. +Ultimately, while the project explored many interesting directions, which will form the basis for future work, we did not reach a point where we could draw strong scientific conclusions about sound localization. From group discussions we concluded that this is likely due to the free-form nature of our project, which would have benefited from a more coordinated approach. The question is, how to do this without compromising the ideals of a grass-roots project? Extending the voting idea above, one approach would be to make the proposer of the democratically selected project responsible for making sure that results are comparable and generally keeping the project on the right track. A role similar to a traditional supervisor, but with the critical difference that they are elected by their peers and only on a project by project basis. ## Conclusions -This paper does not present a scientific breakthrough. However, it does demonstrate the feasibility of open research projects which bring together large number of participants across countries and career stages to work together collaboratively on scientific projects. Moreover, several follow-up research projects are planned based on pilot data from our work and, building on our experience, we plan to launch a second COMOB project soon. \ No newline at end of file +This paper does not present a scientific breakthrough. However, it does demonstrate the feasibility of open research projects which bring together large number of participants across countries and career stages to work together collaboratively on scientific projects. Looking ahead, we hope that the diversity of expertise and perspectives, such projects support, will allow for discoveries beyond what any single group could realise. \ No newline at end of file diff --git a/paper/sections/intro.md b/paper/sections/intro.md index 80fd13b..21a2261 100644 --- a/paper/sections/intro.md +++ b/paper/sections/intro.md @@ -1,7 +1,7 @@ -Inspired by the success of endeavours like the [Human Genome Project](https://www.genome.gov/human-genome-project) and [CERN](https://home.cern/), neuroscientists are increasingly initiating large-scale collaborations. Though, how to best structure these projects remains an open-question {cite:p}`doi.org/10.1038/539159a`. The largest efforts, e.g. the [International Brain Laboratory](https://www.internationalbrainlab.com/) [@doi.org/10.1016/j.neuron.2017.12.013;@doi.org/10.1016/j.conb.2020.10.020], [The Blue Brain Project](https://www.epfl.ch/research/domains/bluebrain/) and [Human Brain Project](https://www.humanbrainproject.eu) bring together tens to hundreds of researchers across multiple laboratories. However, while these projects represent a step-change in scale, they retain a legacy structure which resembles a consortia grant. I.e. there are participating laboratories who collaborate together and then make their data, methods and results available upon publication. As such, interested participants face a high barrier to entry: joining a participating laboratory, initiating a collaboration with the project, or awaiting publications. So how could these projects be structured differently? +Inspired by the success of endeavours like the [Human Genome Project](https://www.genome.gov/human-genome-project) and [CERN](https://home.cern/), neuroscientists are increasingly initiating large-scale collaborations. The largest efforts, such as the [International Brain Laboratory](https://www.internationalbrainlab.com/) [@doi.org/10.1016/j.neuron.2017.12.013;@doi.org/10.1016/j.conb.2020.10.020], [The Blue Brain Project](https://www.epfl.ch/research/domains/bluebrain/) and [Human Brain Project](https://www.humanbrainproject.eu) bring together tens to hundreds of researchers across multiple laboratories. These projects have generated scientific insights, large-scale datasets, tools and educational materials. However, while they represent a step-change in scale, their workflow resembles many scientific endeavours. That is, there are participating laboratories who collaborate together and then make their data, methods and results available. As such, to participate, individuals must join a participating laboratory, initiate a collaboration with the project, or wait for the publication of data and resources. So how could these projects be structured differently{cite:p}`doi.org/10.1038/539159a`? -One alternative is a bench marking contest, in which participants compete to obtain the best score on a specific task. Such contests have driven progress in fields from machine learning {cite:p}`10.1109/CVPR.2009.5206848` to [protein folding](https://predictioncenter.org/), and have begun to enter neuroscience. For example, in [Brain-Score](https://www.brain-score.org/) [@10.1101/407007;@10.1016/j.neuron.2020.07.040] participants submit models, capable of completing a visual processing task, which are then ranked according to a quantitative metric. As participants can compete both remotely and independently, these contests offer a significantly lower barrier to entry. Though, they emphasise competition over collaboration, and critically they require a well defined, quantifiable endpoint. In [Brain-Score](https://www.brain-score.org/), this endpoint is a composite metric which describes the model's similarity to experimental data in terms of both behaviour and unit activity. However, this metric's relevance is debatable {cite:p}`doi:10.1017/S0140525X22002813` and more broadly, defining clear endpoints for neuroscientific questions remains challenging. +One alternative are bench marking contests, in which participants compete to obtain the best score on a specific task. Bench marking contests have driven progress in fields from computer vision {cite:p}`10.1109/CVPR.2009.5206848` to [protein folding](https://predictioncenter.org/), and have begun to enter neuroscience. For example, in [Brain-Score](https://www.brain-score.org/) [@10.1101/407007;@10.1016/j.neuron.2020.07.040] participants submit models, capable of completing a visual processing task, which are then ranked according to a quantitative metric. As participants can compete both remotely and independently, these contests offer a low barrier to entry. However, defining quantifiable endpoints for neuroscientific questions remains challenging {cite:p}`doi:10.1017/S0140525X22002813`. -Another alternative is massively collaborative projects in which participants work together to solve a common goal. For example, in the [Polymath Project](https://polymathprojects.org/) unsolved mathematical problems are posed, and then participants share comments, ideas and equations online as they collectively work towards solutions. Similarly, the [Busy Beaver Challenge](https://bbchallenge.org/) recently [announced](https://discuss.bbchallenge.org/t/july-2nd-2024-we-have-proved-bb-5-47-176-870/237) a formal proof of a conjecture that was open for decades, [based mainly on contributions from amateur mathematicians, organised purely online](https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702/). Inspired by this approach, we founded [COMOB (Collaborative Modelling of the Brain)](https://comob-project.github.io/) - an open-source movement, which aims to tackle neuroscientific questions. Here, we share our experiences and results from our first project, in which we explored spiking neural network models of sound localization. +Another alternative are massively collaborative projects, in which a problem is openly stated and contributions are welcomed from anyone willing to participate. For example, in the [Polymath Project](https://polymathprojects.org/) unsolved mathematical problems are posed, and then participants share comments, ideas and equations online as they collectively work towards solutions. Similarly, the [Busy Beaver Challenge](https://bbchallenge.org/) recently [announced](https://discuss.bbchallenge.org/t/july-2nd-2024-we-have-proved-bb-5-47-176-870/237) a formal proof of a conjecture that was open for decades, [based mainly on online contributions from amateur mathematicians](https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702/). Inspired by this approach, we founded [COMOB (Collaborative Modelling of the Brain)](https://comob-project.github.io/) - to explore if and how this collaborative model could be leveraged in neuroscience. -We start by detailing how we ran the project in terms of organisation and infrastructure in [](#metascience). We then briefly summarise our scientific results in [](#science). We conclude the main text with a [](#discussion) of what went well, what went wrong, and how we think future projects of this sort could learn from our experiences. Finally, in the [](#appendices) we provide longer, detailed write-ups of some of our scientific results. \ No newline at end of file + Here, we share our experiences and results. We start by detailing how we ran the project in terms of organisation and infrastructure in [](#metascience). We then briefly summarise our scientific results in [](#science). We conclude the main text with a [](#discussion) of what went well, what went wrong, and how future projects like this could learn from our experiences. Finally, in the [](#appendices) we provide detailed write-ups of our scientific results. \ No newline at end of file diff --git a/paper/sections/meta_science.md b/paper/sections/meta_science.md index c33e74c..8f2a7b0 100644 --- a/paper/sections/meta_science.md +++ b/paper/sections/meta_science.md @@ -27,11 +27,4 @@ For those interested in pursuing a similar project our repository can easily be (teaching-section)= ## Teaching with this framework -This project emerged from a tutorial, and the code remains well suited for teaching several concepts from across neuroscience. As such, we integrated our project into a Physics MSc course on Biophysics and Neural Circuits. Working individually or in pairs, students actively engaged by adjusting network parameters and modifying the provided code to test their own hypotheses. Later, brief progress report presentations stimulated dynamic discussions in class, as all students, while working on the same project and code, pursued different hypotheses. We found that this setup naturally piqued interest in their peers’ presentations, enhanced their understanding of various project applications, and facilitated collaborative learning. Moreover, it allowed for engagement from students at a range of skill levels, and helped bridge the gap between teaching and research. For those interested in teaching with this framework, introductory slides and a dedicated Python notebook are available on our [GitHub repository](https://github.com/comob-project/snn-sound-localization). - -% The project’s stochastic outcomes necessitated substantial statistical analysis, adding an experimental dimension that made the project outcome less deterministic and, thus, more engaging than standard step-wise exercises. However, the project does not demand complex programming nor deep mathematical understandings of neural networks, and so allows practical exploration of neural network applications appropriate for various student levels. This adaptability allowed students of varying skill levels to progress at their own pace. Moreover, the open-ended nature of the project allowed the use of generative AI tools, enabling students to overcome coding challenges and deepen their understanding of the provided code and underlying machine learning concepts, thereby enhancing their learning curve and engagement. - -% Working on a real research project not only sustained interest and demonstrated real-world impact but also provided additional inspiration through the accessible contributions of all project participants. This educational initiative thus successfully bridged the gap between teaching and research, with student feedback highlighting its effectiveness in enhancing both theoretical and practical knowledge. The desire for more time to delve deeper into the projects indicated its strength in engaging students and sparking their interest. - -% In sum, this framework's multidisciplinary nature makes it versatile in various teaching contexts, and suited to discussing both machine learning concepts and open challenges in neuroscience, such as how to decipher brain circuits with recording tools and experimental manipulations like optogenetics. -% For those interested in teaching with this framework, we have provided slides and a highly annotated introductory Python notebook [here](). \ No newline at end of file +This project emerged from a tutorial, and the code remains well suited for teaching several concepts from across neuroscience. As such, we integrated our project into a Physics MSc course on Biophysics and Neural Circuits. Working individually or in pairs, students actively engaged by adjusting network parameters and modifying the provided code to test their own hypotheses. Later, brief progress report presentations stimulated dynamic discussions in class, as all students, while working on the same project and code, pursued different hypotheses. We found that this setup naturally piqued interest in their peers’ presentations, enhanced their understanding of various project applications, and facilitated collaborative learning. Moreover, it allowed for engagement from students at a range of skill levels, and helped bridge the gap between teaching and research. For those interested in teaching with this framework, introductory slides and a dedicated Python notebook are available on our [GitHub repository](https://github.com/comob-project/snn-sound-localization). \ No newline at end of file diff --git a/paper/sections/science.md b/paper/sections/science.md index a50dd04..5d9f36c 100644 --- a/paper/sections/science.md +++ b/paper/sections/science.md @@ -6,7 +6,7 @@ Animals localise sounds by detecting location- or direction-specific cues in the The classic model of ITD sensitivity is the delay line model of {cite:t}`Jeffress1948` in which an array of binaural coincidence detector neurons receive inputs from the two ears with different delays. When a neurons' delays exactly match the acoustic delays induced by the sound location, it will be maximally active. Therefore, the identity of the most active neuron indicates the direction of the sound. This model is widely accepted, though was shown to be inefficient with respect to neural noise by {cite:t}`McAlpine2003`, who proposed an alternative model based on the two binaural hemispheres average firing rates - which is optimally robust to neural noise. However, {cite:t}`goodman_decoding_2013` showed that these models perform too poorly to account for behavioural data, especially in situations where sounds had complex and unknown spectral properties, or in the presence of background noise, and proposed an alternative based on a perceptron-like neural network - which is both robust to neural noise and performed well across a range of conditions. -Building on this literature, and our Cosyne tutorial, the starting point of this project was to ask: what solutions would you find if you directly optimised a spiking neural network to localise sounds? How would those solutions depend on the available neural mechanisms and statistics of the sound? Could we understand the solutions found in a simple way? What properties would the solution have in terms of robustness to noise, generalisation, and so forth? And could the solutions found by optimisation throw light on features found in the auditory systems of different animals? +Building on this literature, and our Cosyne tutorial, the starting point of our project was to ask: what solutions would you find if you directly optimised a spiking neural network to localise sounds? How would those solutions depend on the available neural mechanisms and statistics of the sound? Could we understand the solutions found? What properties would the solution have in terms of robustness to noise, generalisation, and so forth? And could the solutions found by optimisation throw light on features found in the auditory systems of different animals? ## A simple spiking neural network model diff --git a/teaching/ProjectTemplate_SoundLocalization_SNN.ipynb b/teaching/ProjectTemplate_SoundLocalization_SNN.ipynb new file mode 100644 index 0000000..01971d2 --- /dev/null +++ b/teaching/ProjectTemplate_SoundLocalization_SNN.ipynb @@ -0,0 +1,1716 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "dfb23669", + "metadata": { + "id": "dfb23669" + }, + "source": [ + "# Sound localisation with surrogate gradient descent\n", + "\n", + "This is a concise version of the SNN implementation of the sound localization task. Detailed explanations from the tutorial are removed to make it an accessible code to develop you project." + ] + }, + { + "cell_type": "markdown", + "source": [ + "## To setup before you start\n", + "First, download a copy of this notebook to your personal google drive:\n", + "1. mount your google drive" + ], + "metadata": { + "id": "Dg9b4XdMDjPl" + }, + "id": "Dg9b4XdMDjPl" + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9hL7mQSV_tCi", + "outputId": "db1f0d6a-ccca-487b-d262-1ca0503c47cb" + }, + "id": "9hL7mQSV_tCi", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "2. Save a copy of the notebook to your drive: \"Files\" => \"Save a copy in Drive\"\n", + "3. Locate where this copy was saved in your dirve: \"Files\" => \"Locate in Drive\"\n", + "4. Now you can rename the located file and move it to a location of your choice in your google drive\n" + ], + "metadata": { + "id": "mdi_e2fvE1FW" + }, + "id": "mdi_e2fvE1FW" + }, + { + "cell_type": "markdown", + "source": [ + "## Data Generation" + ], + "metadata": { + "id": "Zq-l_P7uFEY_" + }, + "id": "Zq-l_P7uFEY_" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee3c91b7", + "metadata": { + "id": "ee3c91b7" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "\n", + "dtype = torch.float\n", + "\n", + "# Check whether a GPU is available\n", + "if torch.cuda.is_available():\n", + " device = torch.device(\"cuda\")\n", + "else:\n", + " device = torch.device(\"cpu\")\n", + "\n", + "my_computer_is_slow = True # set this to True if using Colab\n", + "\n", + "import pdb\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Input signal parameter configuration\n", + "\n", + "Here's a picture of the architecture for the stimuli:\n", + "\n", + "\n", + "\"Stimuli" + ], + "metadata": { + "id": "EIBg54r7OySj" + }, + "id": "EIBg54r7OySj" + }, + { + "cell_type": "code", + "source": [ + "# We use the following constants to make equations look nicer below\n", + "second = 1\n", + "ms = 1e-3\n", + "Hz = 1\n", + "\n", + "# Stimulus and simulation parameters\n", + "dt = 1*ms # large time step to make simulations run faster for tutorial\n", + "anf_per_ear = 100 # number of auditory nerve fibers connected to each ear with independent noise\n", + "envelope_power = 2 # higher values make sharper envelopes. Easier by eye => But does the network perform better ?\n", + "rate_max = 600*Hz # maximum Poisson firing rate\n", + "f = 20*Hz # stimulus frequency\n", + "duration = .1*second # stimulus duration\n", + "duration_steps = int(np.round(duration/dt)) # number of simulation steps\n", + "input_size = 2*anf_per_ear" + ], + "metadata": { + "id": "9DL57fuXOxMP" + }, + "id": "9DL57fuXOxMP", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "id": "345a4686", + "metadata": { + "id": "345a4686" + }, + "source": [ + "### Input signal generation function\n" + ] + }, + { + "cell_type": "markdown", + "id": "bd312e52", + "metadata": { + "id": "bd312e52" + }, + "source": [ + "The functions below return two arrays ``ipd`` and ``spikes``.\n", + "\n", + "- ``ipd`` is an array of length ``num_samples`` that gives the true IPD,\n", + "- ``spikes`` is an array of 0 (no spike) and 1 (spike) of shape ``(num_samples, duration_steps, 2*anf_per_ear)``, where - ``duration_steps`` is the number of time steps there are in the stimulus." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5bb26693", + "metadata": { + "id": "5bb26693" + }, + "outputs": [], + "source": [ + "# Generate an input signal (spike array) from array of true IPDs\n", + "def input_signal(ipd, envelope_power=envelope_power):\n", + " \"\"\"\n", + " Generate a Poisson spike train based on an input Interaural Phase Difference (IPD) array\n", + " and the delays imposed by the individual auditory nerve fibers.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd : array-like\n", + " An array of true Interaural Phase Differences (IPD). Shape: (num_samples, )\n", + " envelope_power : float, optional\n", + " A parameter controlling the strength of the signal envelope, which modulates\n", + " the spike train generation. Default value is the globally defined `envelope_power`.\n", + "\n", + " Returns\n", + " -------\n", + " spikes : ndarray\n", + " A binary array indicating spike occurrences, shaped (num_samples, duration_steps, 2*anf_per_ear).\n", + " `spikes[i, j, k]` is 1 if a spike occurred at the jth time step for the ith IPD in the kth auditory nerve fiber,\n", + " and 0 otherwise.\n", + "\n", + " Notes\n", + " -----\n", + " - The function first calculates an array of phases (`phi`) to define the sinudoidal auditory stimulus and adds a random\n", + " phase offset because we want that the system learns to infer the angular location of the sound source indepent of its distance\n", + " to the source.\n", + " - An array of theta values is initialized that will hold the transformed phi values according to the phase delay imposed by the\n", + " individual auditory nerve fibers and the ipd between the two ears.\n", + " - Different phase delays, ranging from 0 to pi/2, are calculated and added with the ipd value to generate theta.\n", + " - Poisson spikes are generated based on the theta values and a sinusoidal modulation of the firing rate.\n", + " - The spikes are returned as a binary array, indicating the occurrence of spikes across auditory nerve fibers and time.\n", + " \"\"\"\n", + " num_samples = len(ipd) # corresponds to the number of different locations of the source in the data set\n", + "\n", + " T = np.arange(duration_steps)*dt # array of times over which the auditory signal is constructed\n", + " phi = 2*np.pi*(f*T) + 2*np.pi*np.random.rand() # array of phases corresponding to those times with random offset\n", + " # because we want that the system learns to infer the angular location of the sound source indepent of its distance\n", + " # to the source. The phase in this array increases linearly.\n", + "\n", + " phase_delays = np.linspace(0, np.pi/2, anf_per_ear) # array of phase delays introduced by the auditory nerve fibers.\n", + " # For each ear, we have anf_per_ear different phase delays from 0 to pi/2 so\n", + " # that the differences between the two ears can cover the full range from -pi/2 to pi/2\n", + "\n", + " theta = np.zeros((num_samples, duration_steps, 2*anf_per_ear)) # 3D array that holds the spike pattern of all auditory nerve fibers for all the interaural phase difference in the data set.\n", + " # num_samples = number of different IPD values in our data set\n", + " # duration_step = number of time points in our auditory signal\n", + " # 2*anf_per_ear = total number of auditory nerve fibers\n", + "\n", + " # Now we set up these theta values. Some numpy vectorisation logic using broadcasting to implements the idea in the text above.\n", + " theta[:, :, :anf_per_ear] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]\n", + " theta[:, :, anf_per_ear:] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]+ipd[:, np.newaxis, np.newaxis]\n", + "\n", + " # now generate Poisson spikes at the given firing rate as in the previous notebook\n", + " spikes = rate_max*dt*(0.5*(1+np.sin(theta)))**envelope_power > np.random.rand(num_samples, duration_steps, 2*anf_per_ear)\n", + " return spikes, theta\n", + "\n", + "# Generate some true IPDs from (-pi/2, pi/2) and corresponding spike arrays\n", + "def random_ipd_input_signal(num_samples, envelope_power=envelope_power, tensor=True):\n", + " \"\"\"\n", + " Generate random Interaural Phase Differences (IPDs) and then corresponding spike arrays using\n", + " the function input_signal(idp).\n", + "\n", + " The function generates `num_samples` IPDs, uniformly distributed in the range (-pi/2, pi/2).\n", + " It then generates corresponding spike arrays using the `input_signal` function.\n", + " Optionally, IPDs and spike arrays can be converted to PyTorch tensors.\n", + "\n", + " Parameters\n", + " ----------\n", + " num_samples : int\n", + " The number of IPD samples to generate.\n", + " envelope_power : float, optional\n", + " A parameter controlling the strength of the signal envelope, which modulates\n", + " the spike train generation. Default value is the globally defined `envelope_power`.\n", + "\n", + " tensor : bool, optional\n", + " If True, converts the IPDs and spike arrays to PyTorch tensors before returning them.\n", + " If False, they are returned as NumPy arrays. Default is True.\n", + "\n", + " Returns\n", + " -------\n", + " ipd : ndarray or Tensor\n", + " An array of randomly generated IPDs. Shape: (num_samples, ).\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " spikes : ndarray or Tensor\n", + " A binary array indicating spike occurrences along time, generated by `input_signal` based on `ipd`.\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " Shaped: (num_samples, duration_steps, 2*anf_per_ear)\n", + "\n", + " Notes\n", + " -----\n", + " - Ensure that the `input_signal` function is defined in your environment as it is called within this function.\n", + " - If `tensor` is True, ensure that PyTorch is installed and configured in your environment.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipd, spikes = random_ipd_input_signal(50, tensor=False)\n", + " >>> print(ipd.shape, spikes.shape)\n", + " (50,) (50, duration_steps, 2*anf_per_ear)\n", + " \"\"\"\n", + " ipd = np.random.rand(num_samples)*np.pi-np.pi/2 # uniformly random in (-pi/2, pi/2)\n", + " spikes, theta = input_signal(ipd)\n", + " if tensor:\n", + " ipd = torch.tensor(ipd, device=device, dtype=dtype)\n", + " spikes = torch.tensor(spikes, device=device, dtype=dtype)\n", + " return ipd, spikes, theta\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Test the input data generation fuction" + ], + "metadata": { + "id": "90RackY1Ljz_" + }, + "id": "90RackY1Ljz_" + }, + { + "cell_type": "code", + "source": [ + "# Plot for a few true IPDs the generated spike trains of the auditory nerve fibers to show how it looks.\n", + "# The first 100 lines are auditory nerve fiber responses of the righ ear and the others are from the left ear.\n", + "# You note that the IPDs was applied to the left ear's fibers.\n", + "ipd, spikes, _ = random_ipd_input_signal(8)\n", + "plt.figure(figsize=(10, 4), dpi=100)\n", + "for i in range(8):\n", + " plt.subplot(2, 4, i+1)\n", + " plt.imshow(spikes[i, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n", + " plt.title(f'True IPD = {int(ipd[i]*180/np.pi)} deg')\n", + " if i>=4:\n", + " plt.xlabel('Time (steps)')\n", + " if i%4==0:\n", + " plt.ylabel('Input neuron index')\n", + "plt.tight_layout()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 341 + }, + "id": "Q2i6kOPZLiu3", + "outputId": "25a35939-2256-4986-df72-b0e9a318130d" + }, + "id": "Q2i6kOPZLiu3", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9CklEQVR4nOy9d5wVRdb//5kZYEjOwJBmUDIo0bCoiAlFdEBXF0URVARU1BUT6qroIqAouoZ1TbCGFQVdWQN+fVYxIWB40FVAVwwIKIISBRlynPr94a/v07enwqnqvvd29dT79ZoX3O6q6urT59Q5dapu3zzGGIPD4XA4HA6Hw+FwOByOyMnPdQccDofD4XA4HA6Hw+FIKm7S7XA4HA6Hw+FwOBwOR4Zwk26Hw+FwOBwOh8PhcDgyhJt0OxwOh8PhcDgcDofDkSHcpNvhcDgcDofD4XA4HI4M4SbdDofD4XA4HA6Hw+FwZAg36XY4HA6Hw+FwOBwOhyNDuEm3w+FwOBwOh8PhcDgcGcJNuh0Oh8PhcDgcDofD4cgQbtLtcGSIcePGIS8vL9fdcDgcGkyZMgV5eXlYvnx5rrvicDgMcDbscNjPnDlzkJeXhzlz5uS6K5HhJt0RkpeXR/rLtQKdcMIJ6Nq1a9qx1q1bp/WxadOmOO644zBjxowqdb0y+fn5KCoqwkEHHYQhQ4bgnXfeyeZtkJk+fTp69uyJevXqoUGDBjj66KPx3nvvpZWpqKjAjTfeiA4dOqBOnTpo1aoVLr74YqxYsSJHvXbkGmfPubFnL2Dm/a1ZsyZVznPIor8777wzJ/13xAdnw/HwySNGjEBeXh5+//vfc8+/9tpr+N3vfofatWujZcuWGDt2LPbu3ZvlXjriirPj3Njx6tWrcfPNN+PEE0/EfvvtJ5Wxv//+v759+2a30zGnRq47kCSmTp2a9vnZZ5/FO++8U+V4p06dstktMoceeiiuv/56AMCqVavw97//HWeddRYmTZqEyy+/PFXugAMOwMSJEwEA27Ztw9KlS/HKK69g2rRpGDhwIKZNm4aaNWvm5B6CjBs3DrfffjvOPvtsDBs2DHv27MGiRYvw888/p8pUVlbi5JNPxtdff40rrrgCBx54IJYuXYrHHnsMb731Fr755hvst99+ObwLRy5w9pxbe7799tvRpk2btGMNGjRI/b9Tp05VngXw23N7++23ccopp2S6i46Y42w49z75s88+w5QpU1C7dm3u+ZkzZ6J///444YQT8PDDD+PLL7/EhAkTsG7dOkyaNCnLvXXEEWfHubHjxYsX45577kGHDh3QrVs3zJs3T1re33+P5s2bZ7KL9sEcGWPkyJGMIuJt27ZloTf/R69evViXLl3SjrVq1YqddtppacdWr17N6tWrxw488EBpXcYY27t3L7viiisYAHbjjTdmpuOazJs3j+Xl5bEHHnhAWu6jjz5iANgjjzySdvwf//gHA8BeeeUVo+uPHTuW9PwdduDsOTs8/fTTDAD79NNPjeq3b9+edejQIfT1f/jhB+M2HPHE2XB2qaysZD179mQXXXQR934YY6xz587skEMOYXv27Ekdu/XWW1leXh775ptvjK7rbDjZODvODps3b2YbNmxgjDH24osvMgBs9uzZ3LKi/odh9uzZ0mvaiNtenmW87Sfz58/H8ccfj7p16+KWW24B8NsWmnHjxlWp07p1awwbNizt2KZNm3DttdeiRYsWKCwsRPv27XHPPfegsrIysr6WlpaiU6dO+OGHH5RlCwoK8NBDD6Fz58545JFHUFFREVk/THnwwQdRWlqKa665BowxbN26lVtu8+bNAIBmzZqlHS8rKwMA1KlTR3mtDz/8EEcccQRq166Ndu3a4e9//7uw7LRp09C9e3fUqVMHJSUlGDRoEFauXFml3KOPPoq2bduiTp06OPLII/HBBx/ghBNOwAknnKDsjyM7OHvOLFu2bMG+ffvI5f/zn/9g6dKlOP/880nlv/rqK/Tu3Rt16tTBAQccgAkTJghlPnPmTBx33HGoV68e9ttvP5x22mn46quvqpR78cUX0blzZ9SuXRtdu3bFjBkzMGzYMLRu3Zp8H47s4Ww4c0ydOhWLFi0SftXj66+/xtdff41LL70UNWr838bLK664AowxvPTSS8prOBt2AM6OM8F+++2HkpISrTp79+4VxtoyfvrpJ/Tv3x/16tVD06ZNMWrUKOzatYtb9pNPPkHfvn1RXFyMunXrolevXvjoo4+qlJszZw4OP/zwtLg81+9actvLc8CGDRvQr18/DBo0CBdccEGVyZ6K7du3o1evXvj5559x2WWXoWXLlvjf//1fjB49GqtXr8aDDz4YST/37NmDlStXolGjRqTyBQUFGDx4MMaMGYMPP/wQp512mvQetm/fTmqzYcOG5D77mTVrFo4++mg89NBDmDBhAjZs2IDS0lLceuutuPLKK1PlDj/8cNSrVw9jxoxBSUkJDjroICxduhQ33ngjjjjiCPTp00d6nS+//BKnnHIKmjRpgnHjxmHv3r0YO3Ys97neeeedGDNmDAYOHIhLLrkE69evx8MPP4zjjz8eCxcuTG2fnTRpEq688kocd9xxGDVqFJYvX47+/fujYcOGOOCAA4zk4cgMzp4zY88nnngitm7dilq1aqG8vBz3338/OnToIK3z3HPPAQBp0r1mzRqceOKJ2Lt3L26++WbUq1cPjz/+ODfJNnXqVAwdOhTl5eW45557sH37dkyaNAnHHnssFi5cmArGX3/9dZx77rno1q0bJk6ciF9//RUXX3wx9t9/f9I9O3KDs+HobXjLli246aabcMstt6C0tJRbZuHChQB+88F+mjdvjgMOOCB1XoSzYYcfZ8fZia1FfPfdd6hXrx52796NZs2aYcSIEbjtttuUW+J37NiBk046CStWrMDVV1+N5s2bY+rUqVXevQQA7733Hvr164fu3btj7NixyM/Px9NPP43evXvjgw8+wJFHHgngt7Glb9++KCsrw/jx47Fv3z7cfvvtaNKkSaT3rE2ul9qTDG8LTK9evRgANnny5CrlAbCxY8dWOd6qVSs2dOjQ1Oc77riD1atXj3333Xdp5W6++WZWUFDAVqxYIe2XaAvMKaecwtavX8/Wr1/PvvjiCzZo0CAGgF111VXSun5mzJjBALC//e1v0j54W69Vf61atZK2I2Ljxo0MAGvUqBGrX78+u/fee9n06dNZ3759ufL/97//zcrKytKuXV5ezrZs2aK8Vv/+/Vnt2rXZjz/+mDr29ddfs4KCgrTnv3z5clZQUMDuvPPOtPpffvklq1GjRur4rl27WKNGjdgRRxyRtuVuypQpDADr1auXiUgcIXH2LCZKe54+fTobNmwYe+aZZ9iMGTPYn//8Z1a3bl3WuHFjqSz27t3LmjVrxo488kjlNRhj7Nprr2UA2CeffJI6tm7dOlZcXJy2NXXLli2sQYMGbMSIEWn116xZw4qLi9OOd+vWjR1wwAFp48acOXNCjWWO6HA2LCZqn3zDDTewNm3asJ07d6buJ7jN9t5772UAuPI54ogj2FFHHSW9hrPh6omzYzGZiq1V28svuugiNm7cOPbyyy+zZ599lp1xxhkMABs4cKCy7QcffJABYP/6179Sx7Zt28bat2+fds3KykrWoUMHVl5eziorK1Nlt2/fztq0acNOPvnk1LHTTz+d1a1bl/3888+pY0uWLGE1atTI6dc+3Up3DigsLMTw4cON67/44os47rjj0LBhQ/zyyy+p43369MHdd9+N999/n7y90s/bb7+dlgUqKCjAkCFDcM8995DbqF+/PoDfstwyLrzwQhx77LHK9ihbu3l421s2bNiAF154Aeeeey4A4Oyzz0a3bt0wYcIEXHbZZanyTZo0wWGHHYYrr7wSXbp0weeff46//OUvGD58OF588UXhdfbt24e33noL/fv3R8uWLVPHO3XqhPLycrzxxhupY6+88goqKysxcODAtOdWWlqKDh06YPbs2bjlllvw2WefYcOGDZg4cWLalrvzzz8fo0aNMpKHI3M4e47WngcOHIiBAwemPvfv3x/l5eU4/vjjceedd2Ly5MncerNmzcLatWtTWwpVvPHGGzjqqKNSmXHgt3Hg/PPPx2OPPZY69s4772DTpk0YPHhw2vMpKChAjx49MHv2bAC/vSDnyy+/xC233JKSGwD06tUL3bp1S32NxRE/nA1Ha8Pfffcd/va3v+Gf//wnCgsLheV27NgBANwytWvXVtqMs2GHH2fHmY+tRTz11FNpn4cMGYJLL70UTzzxBEaNGoWjjjpKWPeNN95AWVkZzj777NSxunXr4tJLL8WNN96YOvb5559jyZIl+POf/4wNGzaktXHSSSdh6tSpqKysBGMM7777Ls4888y0F7m1b98e/fr1w//8z/+EvV1j3KQ7B+y///6oVauWcf0lS5bgv//9r3CbxLp164za7dGjByZMmIC8vDzUrVsXnTp1SntbMAVvsqt623fbtm3Rtm1bo3762bFjR5XvuJSWlqYGlJo1a6YZcn5+Ps4991yMHTsWK1asQMuWLfH999/jxBNPxLPPPosBAwYAAP7whz+kvu8zc+ZM9OvXj3v99evXY8eOHdxtrwcddFDapHvJkiVgjAm3yHpbcH788UcAvw0QfmrUqOG+UxZDnD1HZ88ijj32WPTo0QPvvvuusMxzzz2HgoKCVIJNxY8//ogePXpUOX7QQQelfV6yZAkAoHfv3tx2ioqKUu0BVe3WO7ZgwQJSvxzZx9lwtDZ8zTXX4Oijj075UxGen+Z9d3Pnzp3KiYGzYYcfZ8eZ98U6XH/99XjiiSfw7rvvSifdP/74I9q3b1/lu9YiOx46dKiwrYqKCuzcuRM7duwQ2nEucZPuHKCbYQq+SMj7iSt/BsjPgQceaNSvxo0bK7+/rGLRokUA1Iq9detW0ssWCgoKpN/BmD59epXMJmMMJSUlqF27Nho0aICCgoK0802bNgUA/Prrr2jZsiWmTJmCnTt3VvkN0TPOOAMA8NFHHwkn3TpUVlYiLy8PM2fOrNInAGmZdYc9OHuOzp5ltGjRAosXL+ae27FjB2bMmIE+ffpof49PhfcCnalTp3K/m+rfjeKwE2fD0dnwe++9hzfffBOvvPIKli9fnjq+d+9e7NixA8uXL0dJSQmKiopSLytdvXo1WrRokdbO6tWr01aww+BsuHrg7Dg7vpiKZ9MbN26MpD3Pju+9914ceuih3DL169fHzp07I7leJnAjTYxo2LAhNm3alHZs9+7dWL16ddqxdu3aYevWraGNOGr27duH559/HnXr1lVub7nvvvswfvx4ZZutWrVKc9xBysvL8c4771Q5np+fj0MPPRSffvopdu/enZb9XLVqFQCkBpy1a9eCMVZlAN6zZw+A34IFEU2aNEGdOnVSGTg/wQlCu3btwBhDmzZtpIN3q1atAABLly7FiSeemDq+d+9eLF++HAcffLCwriM+OHuuisqeZXz//ffCIOG1117Dli1btLb+tWrVimy3wG/JOtkz8tttEN4xR/xxNlwVlQ2vWLECAHDWWWdVOffzzz+jTZs2+Otf/4prr702FTh/9tlnaRPsVatW4aeffsKll16q7IuzYYcKZ8dVCeOLqXz//fcAoJzct2rVCosWLQJjLG21W2THRUVF0mfUtGlT1K5dO5Z27CbdMaJdu3Z4//330449/vjjVSaDAwcOxLhx4/DWW2+hvLw87dymTZtQv379rGdu9+3bh6uvvhrffPMNbr755tR2LRFRfe+krKwslS0Pcu655+Ljjz/GM888gxEjRgD4bcvac889h86dO6e+63HggQeCMYZ//etfaT8f8c9//hMAcNhhhwmvX1BQgPLycrz66qup7eoA8M033+Ctt95KK3vWWWdh9OjRGD9+PKZNm5Y2uDDGsHHjRjRq1AiHH344GjVqhCeeeALDhw9PPcvnnnsOv/76q1Qejvjg7LkqlJWI9evXV3HSb7zxBubPn4+rr76aW8cLSM4880xl+x6nnnoqHnzwQfznP/9JBfzr169PvQHdo7y8HEVFRbjrrrtw4oknVnkTq9ff5s2bo2vXrnj22WcxevTo1M6VuXPn4ssvv0wF9A57cDZcFZUN9+7dGzNmzKhy/NJLL0WrVq1w6623olu3bgCALl26oGPHjnj88cdx2WWXpXaATZo0CXl5eWlfDePhbNhBwdlxVaL8TvfmzZtRWFiY9m4GxhgmTJgAAFVkGeTUU0/F22+/jZdeegnnnHMOgN/ewv7444+nlevevTvatWuH++67D+edd16V3aGeHRcUFKBPnz549dVXsWrVqlSsv3TpUsycOTP0/YbBTbpjxCWXXILLL78cAwYMwMknn4wvvvgCb731Fho3bpxW7k9/+hNee+01/P73v8ewYcPQvXt3bNu2DV9++SVeeuklLF++vEqdKKmoqMC0adMA/GYYS5cuxSuvvIJly5Zh0KBBuOOOO5RtZON7J5dddhmefPJJjBw5Et999x1atmyJqVOn4scff0x7kcKwYcNw33334bLLLsPChQvRpUsXLFiwAE8++SS6dOmiDOTHjx+PN998E8cddxyuuOIK7N27Fw8//DC6dOmC//73v6ly7dq1w4QJEzB69OjUT4Dtt99++OGHHzBjxgxceumluOGGG1CrVi2MGzcOV111FXr37o2BAwdi+fLlmDJlCtq1a5fT3xh00HH2bMbRRx+Nww47DIcffjiKi4uxYMEC/OMf/0CLFi24L0nbuHEjZs6ciQEDBmh9RePGG2/E1KlT0bdvX1xzzTWpnxtq1apVmt0WFRVh0qRJGDJkCH73u99h0KBBaNKkCVasWIHXX38dxxxzDB555BEAwF133YU//OEPOOaYYzB8+HD8+uuveOSRR9C1a1ej3y515BZnw/q0bNky7aWiHtdeey2aNWuG/v37px2/9957ccYZZ+CUU07BoEGDsGjRIjzyyCO45JJL0KlTJ+m1nA07KDg7NsebOHu/Zz916lR8+OGHAIA///nPAIAFCxZg8ODBGDx4MNq3b5/6utdHH32ESy+9FL/73e+k1xgxYgQeeeQRXHjhhZg/fz7KysowdepU1K1bN61cfn4+nnzySfTr1w9dunTB8OHDsf/+++Pnn3/G7NmzUVRUlIrtx40bh7fffhvHHHMM/vjHP2Lfvn0pO/78888jk482OXtvejVA9LMGop8F2LdvH7vppptY48aNWd26dVl5eTlbunRplZ81YOy3n8AYPXo0a9++PatVqxZr3LgxO/roo9l9993Hdu/eLe2X6GcNgj/nIaoL388O1K9fn3Xo0IFdcMEF7O2331bWzzZr165lQ4cOZSUlJaywsJD16NGDvfnmm1XK/fTTT+yiiy5ibdq0YbVq1WJlZWVsxIgRbP369aTrzJ07l3Xv3p3VqlWLtW3blk2ePDn10w1BXn75ZXbssceyevXqsXr16rGOHTuykSNHssWLF6eVe+ihh1irVq1YYWEhO/LII9lHH33Eunfvzvr27WsmDEconD1nh1tvvZUdeuihrLi4mNWsWZO1bNmS/fGPf2Rr1qzhlp88eTIDwF577TXta/33v/9lvXr1YrVr12b7778/u+OOO9hTTz2V9nNDHrNnz2bl5eWsuLiY1a5dm7Vr144NGzaMffbZZ2nlXnjhBdaxY0dWWFjIunbtyl577TU2YMAA1rFjR+3+OaLF2XDukN3PjBkz2KGHHsoKCwvZAQccwP785z8rZebhbLj64ew4e/j7FPzz+P7779k555zDWrduzWrXrs3q1q3LunfvziZPnpz2014yfvzxR3bGGWekfh70mmuuYW+++Sb3Z8oWLlzIzjrrLNaoUSNWWFjIWrVqxQYOHMhmzZqVVm7WrFnssMMOY7Vq1WLt2rVjTz75JLv++utZ7dq1Q8vFlDzGGMvO9N7hcIShsrISTZo0wVlnnYUnnngi191xOBxEDj30UDRp0oT7/gmHwxF/nA07HPbTv39/fPXVV9x3QWSD/Jxc1eFwSNm5cyeC+bBnn30WGzduxAknnJCbTjkcDil79uyp8uLFOXPm4IsvvnB263BYgLNhhyMZ7NixI+3zkiVL8MYbb+TUjt1Kt8MRQ+bMmYNRo0bhnHPOQaNGjbBgwQI89dRT6NSpE+bPnx/qtygdDkdmWL58Ofr06YMLLrgAzZs3x7fffovJkyejuLgYixYtQqNGjXLdRYfDIcHZsMORDMrKyjBs2DC0bdsWP/74IyZNmoRdu3Zh4cKF6NChQ0765F6k5nDEkNatW6NFixZ46KGHsHHjRpSUlODCCy/E3Xff7SbcDkdMadiwIbp3744nn3wS69evR7169XDaaafh7rvvdsG6w2EBzoYdjmTQt29f/POf/8SaNWtQWFiInj174q677srZhBtI0Er3o48+invvvRdr1qzBIYccgocffjjtdx8dDke8cTbscNiPs2OHw26cDTscmUH7O91TpkzhHt+7dy9Gjx4dtj9GTJ8+Hddddx3Gjh2LBQsW4JBDDkF5eTnWrVuXk/44HA49nA07HPbj7NjhsBtnww5H5tBe6S4qKkJ5eTkef/xxNGzYEACwePFinHfeediwYQOWL1+eiX5K6dGjB4444ojU7yxWVlaiRYsWuOqqq3DzzTdnvT8Oh0MPZ8MOh/04O3Y47MbZsMORObS/071w4UJccMEF6NatG55++ml89913uPHGG9G/f3889thjmeijlN27d2P+/Plpq+z5+fno06cP5s2bR2qjsrISq1atwn777Ye8vLxMddXhiBWMMWzZsgXNmzdHfn7ufsjA2bDDYUZcbBgIb8fOhh3VlbjYsfPFDocZVBvWnnS3a9cOH330Ea699lr07dsXBQUFeOaZZzB48OBQHTbll19+wb59+9CsWbO0482aNcO3337LrbNr1y7s2rUr9fnnn39G586dM9pPhyOurFy5EgcccEDOru9s2OEIR65tGNC3Y2fDDkc6ubZj54sdjnCobNjo7eWvv/46XnjhBfTs2RPfffcdnnrqKfTq1QvNmzc37mg2mThxIsaPH1/l+MqVK1FUVMStU1xcDACoqKgQngsSLBssx2tLhOz6NsG7D9W9Bc+rPlOvyzsfxFZ5FxcXK/vu3fN+++2XjS5FisyGW7Rood2erl6o6iUZig2LxjrqGOgvpzuOimzdf9zW8VQk56TZsOeHKWM9VddEUHRA5R9s1ScPmb0Fy6jsjfc8onwWScMvmyTZMaB+njy9M43VdK5rG7oxMu+cCJO4mjoWiI7bPl7y2Lx5M1q0aKG0Ye1J92WXXYZnnnkGd955J6677jqsXbsWF110Ebp164ZJkyZh4MCBxp02oXHjxigoKMDatWvTjq9duxalpaXcOqNHj8Z1112X+uwJq6ioKKUMwa+6e59522WC56hfk/dfS1XXtpfMi+5HJitRwkMke6+87NkE2wj2T3Tedij34wVDud4CFrUNi561/7hIl4KI9NX77K8n0nndcSHXmIxFqjFQpGPBgMCr528vOCar5Evpty3PwkMk17jYMKBvxzIbDtpjUE+Ki4vJz1slG5HP99el6otoHMk2uv32xyDBe6COa1QbD17XXzcu8ssVubbjKH1xRUWFUpdkeifyDSL8upQUPaLasc7YFdSxoJyDcbWsTVEcLdLj4HMpKiqyLj7y0I11PLS/PPLRRx/hk08+wfXXX4+8vDyUlpbijTfewO23346LLrpIt7nQ1KpVC927d8esWbNSxyorKzFr1iz07NmTW6ewsDDl2HkOnkdeXh5XwWSK4tUJ1vXq+et7/+ddR9aWqHyuUd0P795126Ye9+P1h/cMkopId+JCpmw4G7bib1Ok87bpmMm4JpK1yN5MZBJsM9i2rH+itmxBdI9xQteOKTasozci/VC1KWuDqqdxs3Fqf3gyovoLqo8PJrtkxyn9sx2ef4jLil+UvpiXbAnqjN/GqDYXN1sLQ1gbk9lv2LiaNw5Q7VbnWrY+T9N+a690z58/H4WFhVWOjxw5En369NHuQBRcd911GDp0KA4//HAceeSRePDBB7Ft2zYMHz5cqx3eICFbJaNmOoLZH162SGeVhnLc32bcEclLdD54PChfXraN6rhtybqp7l10zA91y182iMqGeciyr5Qkjaxc3PUkE4gSXn4o+ilqi3pdkU1TJ0k2oJLb5s2bs94nGVHbsUyPqGO1yv/y/LDo+rai0qPgJFBWRxXf8BCVobZtKzydivs9RWXDvERCFAkUWZznPy67blyeAbUfOvEHVS7UcdOPajyknqf2wQa8e6ImzrQn3YWFhVi2bBmefvppLFu2DH/729/QtGlTzJw5Ey1bttRtLhLOPfdcrF+/HrfddhvWrFmDQw89FG+++WaVl0FQoCiTSqlVwWDQ+Ztgy2TARJ5Uw1QNIpTB16S/cYByr6rgSee7dpkmShvWeVa6z5U6mUwC1HvzB5Yq+6KOmbwkpGiyRCXuz8pEb+OyQuYRlR3r6BF1IkfVUVlbojbjjk4iihpb6C4uUPtB6Ystiwqy8SuuOhSVDet8rUBGFPIKK+O46JtO0koVV1PjbNEqNw/V2BsHGcqQ6ZjOIp/0GkxTCnPnzkW/fv1wzDHH4P3338c333yDtm3b4u6778Znn32Gl156Sae5WLB582bl90dMHHWYlZi4DsgeOgG5rJxsdcFDd0LEq6eb4Iir3KMgKAved69sw7Nh/72YrLzolpetkgWJu02bQtlBoArQwzgy3dXJuARQJvBsN6j3tsKzYQ/Z7jBqkjvpq6o8TMYc3ckhVf68Nqgxkq1jJ3UHgUz3bcN/L8H3JUSR8PLQmSBR6sSJMIsB1HsPWy6KftsCz9+I5KayYe3vdN98882YMGEC3nnnHdSqVSt1vHfv3vj44491m4sVFRUVqWxOXp74uxaqjE+wbrB88Hzw/94DltXJNZSsF68cTzbeMeo98uTnlxmvb8FjwbLU+8k1YfRApFtJwnupFM/+/PdNlWNwPAgjO1vkrqtjPLsS2bRofJV9FslN1JZqDFeN73FB1HcbdCgM/gR40O78n1V2LnrGMn1JGip79KPyqyqbDV7T/1l0Lar/tVnvKfoYlx1nUUK5J53YS6TDvOMqnxF3dGXi1zFRzC1qU8dHU+smjahiQMBge/mXX36J559/vsrxpk2b4pdffjHuSByQvRGVF6yLsndhMuq2ZuY8qP2VlaPKQBY8qNrU6U+cCNO/oL7GaXt5VPCy60Eo2WDVZ57ty5J0NmBqA/4scJCgnERjoSy7bjoZ0hln4wilj0mzXw+VLvp1jqpblGuF9QNx9SMqnyqz4SCqcc5kjFS1kQRk8SJvt2USUMXIwQmb/1hQB1T2LJpQis5Rzuca3bmGTl1ReREm11LJXdWuTVDjae1Jd4MGDbB69Wq0adMm7fjChQux//776zYXW0TKHcwg+Y+JnL8K24NDP6r+yibZOhMcyjV1AnadwcK2ZyLS5bi9hClqZI4+TGKMWs62lTNTvaZMVnRtWBaUeagSJ7baKaXffhtOWrAuC154yW8RumN/8P8m8HQxjnrIs7cwQTcP2YRKVFa06GErOvFO0qC8b4IXTwfP6crJb3Mq3xBXPRP5Ap3+hl0UlMXfokSIabwdV1Q7J/xlMvYitUGDBuGmm27Ciy++iLy8PFRWVuKjjz7CDTfcgAsvvFC3udgiUyZV5i2MIduemRMh67fuZJs6SZddQ1THJGkQd8ImhWzCH6xnYkJs+2p2pqBMmmXHg1Ay4brH4w5lwhYcr5I24fbQ8a1hg0iKTzX1u3HTRUogTSnrRyeAptpsmBW+uJJkv8tDtnNUZwJHWS2llFedixOmCS5ZEoN6TUqME1UclOvnQV0skNXRTSBof6f7rrvuQseOHdGiRQts3boVnTt3xvHHH4+jjz4af/7zn3Wbiy1eJt3LcPgzHZQsu6xN0XGq08q1oprg9dt/r6IsUrCs6LioHE+WvOfIu7atUPQnKIO4vfk4CmTvZdCRkaqObFwI6mdSoK4u6oxjqvJJkp8uogmmX25JtGFZIoHnl4OIxnpKOZW9247M//F8s/841U8Hz/PGU9Uftf+O+FJRUaEVK8tibv/5IFR7twmV3ESxsf+c7jgo+uy/lui6tsqe2m/ZPETXF2uvdNeqVQtPPPEExowZg0WLFmHr1q047LDD0KFDB92mYoko8yHLJFEz7TpZW9PMelwQ9T/M/ajaFA3IUV4rbNlMoXNtr79JDNj9mOieSeZTp32bkd0fVW7UFW5e+aTLN4gXOPHwjifxKyL+cUk3IPLXMUmM6/homwgzrgVXHoPHKdfUlWeS5E+NE5MINTbWKWOywm0L1HuRzU+oNi7ytbK4KViW2oZtiFaz/QTvmbrrTHvS7dGyZcuc/S53pqD8XIMq++RHR/mjnJzmAoqSysr7/0915tQ+8drWHdRk7cfxWckmK0kO2P3orKCKypqWsxmVXlP0XhUYqQJ4WcBOHWfjbJ+mVIdAHdAL5lR+Q6VzlES6qn/ZRjfYpQbcMkTXonzWlVPcbVZHTyjPJInvZvBvL5fpG9VudSaNUU0Gs23nlMU+3nn/Z5NEh6rNsP3ULZdrTOJ/qg2TJt3XXXcdpRgA4IEHHiCXjRsygfEciOnkkDcJsj1jRA18ZYFOsC3VcUqwpTtB15F3lM8q6uctCySTvtJN0aeoJi+yTL0tthvEJMtOtVlRWyId5T0zVZu2y9+D5xd4Npy0YJ0HRed0/UOU/ck2USfpebqmIkwC2/bkJbWfttxPtpHZJtWuZfFXVPaR6+dHndzK4mlq25TJumiFO6n2IEvkmMbTpEn3woUL0z4vWLAAe/fuxUEHHQQA+O6771BQUIDu3buTLhpX/CvdOo5aZxLIOy/L3tuGyhhNJrXBtkWfZYGZ6vph5B3Fs8rk8xbJIOkr3R4y50HNIPvr8srJHH7SoKwQqmyTuvooy9yrgrEkoBqvqtvKt4dOQlXVVrBdfxlbdEm3v1H4O50APMk26sdkUSGpsvCjiuV456gLOdVJnlSZ6JTVTWbLsPUZUBYHVXEINZ4mTbpnz56d+v8DDzyA/fbbD8888wwaNmwIAPj1118xfPhwHHfccaSLxhX/dhgZKuUzmXzbpqQiwk5i/GWpgaWsnO4Arns+rlC2GSV1pdtD5lRUjjpp+hAGSiJNFICbrjrK5Bz1Kp8NiAL3pK50q56pbKwXfaYElbbqkm6/ZXapa8MUn2+rXIOoxn/KeFVdEmWy+IIS91HqiOpRJlFJgjI5DGLiq1Xys1W+FD1R+ZOMvUjt/vvvx9tvv52acANAw4YNMWHCBJxyyim4/vrrdZuMFaptjlFs46Cs5ojKxh3dgVM2OaROtkWfTdrQPR9XZKu51W2lWwfdFVpb9QMQ34Nqkk1JYqiuRV39MXH8qmvbjKmjtxWZPeruRtHx7bbrCjXhoBNkmk4WZb7INqLov0j/koxJ8pU6ceadr46JWQ/dZKMInlyTnsyQ3YfKb0S60u1n8+bNWL9+fZXj69evx5YtW3SbixX+VQOTbDg1AxxElqGzVZmpK8jB/0dxLd7ga/psbIWymptUdJIxpjLJRJuZRGdiEWUiSjfAlOlsmKDfRigrr0lc5QbUE2QTqlMgTk1ueVD8hWlCTbaKrjpuG7IkoSy2S+qL1IJQErZUfZLpStL0SWcRi9oGVd4UGSY1vubt1hHJKWNvLz/zzDMxfPhw3H///TjyyCMBAJ988gn+9Kc/4ayzztJtLlbwhKYzcdFd7fEft32S7aFruLLsmarNMP2iBha2Pw9AfA9Jc/IeOvqjkxzitSmrEyfdiaIvOmOg6LjKvii7gOIo30wgS5D4s+tJtGOTMZ/qf0X1kgg1gcYLLj2ou1Jk10j6ZNtDJruk3KMJlEkjNf4zTRbbBHXco+wEE8W8qoSmTJdNdi7w2srVM9PdReEvI2qL+lUv7Un35MmTccMNN+C8887Dnj17fmukRg1cfPHFuPfee3WbixW8F6lRVlxMB4UkbCsyNR6ZsYZtS7ZzQHWNpAzcUawQJgWKDVNlZDLhjCtU29UJmHUTZtSVb1k/c+3AM4XOrqrqSHXdxSRDJ3AOflYForpxjyxxJuqf7chWs6mBflLQfTFx2PGdt8PRdlQ+l2eb1OSi7o6CMAuOsvK5eFbU+YBMp7K20l23bl089thjuPfee7Fs2TIAQLt27VCvXj3dpmKJ7tYq3rmkD6Z+dBMJFKcUbFvX2csMxfSZ2PhMdYOoJOAf+FTOxE/Y55or56GLzq4ak21nuhOhKOzKBrlTiGJsTAo6iR7V+BZ2Bc0mqEG66Lz/mOqzLPCnkiTZA8lKyoaF4ov9uyCCZUWfPXQmhbZhmqTiydODKmeZ/UedBI77M+P1TyTHSH+nm0e9evVw8MEHm1a3BlmAHlUgFFfFM3GI1LI6hizaBqMamHjXCLsybzNJD9SB9Oy6RyYDIZ4skxJImjj+sIkeymQ9qStGOnqqu6XNJmTfBfV/pq60qsj1qgsVmZ6brvZTfCW1XybYYsM6SSDdtpLqjynvSPKjWqGlJntkuwtshRrzyqAuQugmzinX13kOYZ9ZpsfxsG1rT7q3bduGu+++G7NmzcK6detQWVmZdv77778P1aFco6MUYdoQlYtTNt7EQHR3CkRxPzpBl6pfSRqcVfeS1ICdsvKlygZTgyuKjsWJKJ1elGNSrhy8bZhuabMJSrBu8mxFydswbWYTE5sw8cO6k0KKT41TXGNClBOAuN9rVFB3nan0J4qkju2o4hGT1WjVopasfiYXrcI+syifeZh7FqE96b7kkkswd+5cDBkyBGVlZYnK0skCGMrqjug4xWBUW2TiOniotqhQVqNV907dLsM7HyYBkkuiWJEXBTpJzrBXVFQoZafj6HWy6rZCvSdZMsN0BYg6KdDpry3PhCIj1b0m/UVqMqgrNiZtJxXTHSi8sir/IqtLxZZJeRBev2WJ26TbMWWXBtVXJNEHq9BZ6dbdMaCzO83Uz9tKJu5Le9I9c+ZMvP766zjmmGMi70wcoGzBUDkQ3cwwZWDOJSZ90ln5pq6OUx03b0XTtgBMlYCgrvbJ6iZxpRvQn+j5j0W5jTBIHG0boOuazO50d7hQ6/MIaxtxhdd/0UTH1nukQEl+8/TKxD/wjvPOxR1KolEGbzVa13dSJkOqBJko2RkXqP2LMvFgKxUVFcJzlPhEtbtMFn/HTW9M0dlh55UX2VQmF3Js90th+u/Vlem7H+1Jd8OGDVFSUqJbzQpkQqNkkqII2OOotLLsZLBMFDKgOiWKw8uEPHM5wFAnHJRnlnRkMqE69CiDvzjatg6ylQaVY9ddYdNZKVJdI65Qgsmg/gXllcSkGQXeJNF/DtBbiZUd97cVV52iTrYpwbppokynbduS4B5R9q86TMJ1EzmmdfzEXYd0MEmIq2xetYtPJj/V2GorYRL5unacr9k33HHHHbjtttuwfft23arajBs3Dnl5eWl/HTt2TJ3fuXMnRo4ciUaNGqF+/foYMGAA1q5da3y94uLi1HUY438nlnfO+yyqIzoedzxZ8BDds+peg/KlJiK8IMtfV9Q/v75Q7kWXOD7PYJ949x6UW7YC9mzaMc+GZc8+2K9M6k0uMOm/Sn6846oxUHUN1XH/NXTbjCuiZ0Ppv1eXml0PS7Z9sQ4qPZX5cp0Erw06FSQoA9H4RolbVPKS6bNttulB1RFZLKLbVibJlR2LbFEmH12fYhuy2FUFJbYJtimyfZ14KXh9W8iE7Zm2qb3Sff/992PZsmVo1qwZWrdujZo1a6adX7BggXYnZHTp0gXvvvtu6nONGv/X5VGjRuH111/Hiy++iOLiYlx55ZU466yz8NFHH0XaB4C29S94nNKGzvWyjSyDY5p15GUxw2bBZYkB3f7agkhWOpm5bH6PLFt2zPttUJkOinSPp6e8tuJOFGONSsdkNqyybdW1oxgf4gp1BUJGNle6s+mLVasHweCRV8fED9tq5yKoOiWbMPKSX/7zYXyRKHaKy3MwjXN06jOW3e905yKmFj1nb5LnP0ZtK9e6ERZRoksGxQeq4mFKXMT7TOlfXNHttyzGEUH9uqb2pLt///66VUJRo0YNlJaWVjleUVGBp556Cs8//zx69+4NAHj66afRqVMnfPzxxzjqqKO0r0UN2FUBgQidBx8n5aY4TV2Z8IIm0zZFgwfFUGyF4uRVAWu2VsmA7NqxSn9kzo6aQAtei1LWdlSrXIDeZIlSP0mJM+rkRKZTqkApk+TChmWIJn+qNmWJNlt1jDpBVp3nlaFeSzYhUPkr3XE3W4Sd4FF0Ktur39myY/8viQShJHlcMq0q1EUC3jndhQSefYdJsOUS3f6p/K7/mG48rT3pHjt2rG6VUCxZsgTNmzdH7dq10bNnT0ycOBEtW7bE/PnzsWfPHvTp0ydVtmPHjmjZsiXmzZsnHSB27dqFXbt2pT5v3rw59X9KFiipK9tREIUsMtGHpMg3iE7AHjzu1/tME7Udy2zYZOInWglSOX7TBFy2oQTEJpNCVZuifpj0U9SGLTZNDW4o41cu9C2bNiyC4ocpKzY8bNEjGbIVRVl52QqZSPdUq+i8ZIZq8h83wsYzOuNYtsimHeuMWzoTSl45mazjql9UqHEHJcmje56i63GXb5RJgrAxoPZ3urNJjx49MGXKFLz55puYNGkSfvjhBxx33HHYsmUL1qxZg1q1aqFBgwZpdZo1a4Y1a9ZI2504cSKKi4tTfy1atABA36rHGP97Uv5MkL9ckGA5Wdm4E+x38N68z0FZ+QnKj1fGf63gnwjesxC1bRuq+6DoXba2s2XCjmU2HIVsgnqrIu62S7kPij2JbFkkP92xMYp+xhXq2EMpl20ZZNOG/SsGUdynStds9Akie1L5xqA9+mUgKiuSE1V+/n7YartBqPehkov3l61dZ9m0Y6CqjgTlpqMLvLpJ0CUK1LkGr4xovuKh65dkMbotUGMdWd2gLCJd6S4pKcF3332Hxo0bo2HDhlJhb9y4kXRhCv369Uv9/+CDD0aPHj3QqlUr/Otf/0KdOnWM2x09ejSuu+661OfNmzenBgpRRsRDZ1VHpw1RnbgPKqqsj05Gm5oxErVNyXzGXZ4qotCLbA+WmbBjkQ3Lvlcj0y/VioaqnI2odEllZ7zPVN1SrV54+CcEOmNJHDHJtsclsMmmDfvRWRmj+gVROzZB7bNo/JKNgaKVRmqcY6M8o0IWg4hkn00bz5Ude/DuXSUXXf+kW8YGwtyHagygxtH+Z5V0eDJR+Q/qzlHSpPuvf/0r9ttvPwDAgw8+SGo4EzRo0AAHHnggli5dipNPPhm7d+/Gpk2b0jJza9eu5X5fxU9hYSEKCwu556gTPoBuACaKaotyiwxYNJCGWTXUdU5JHCQoq4AATU9z9TvdUdixyIZl98OTCWVFMSqyGQBQrmVqZzybp07QVYG9Tj9tJ8xY6JFUG1bphWy1TDfxY5t+6fg1Ez+sO7mmJj+ShE4ikJpgzAWZtOOKigpS0kdl4ypZy/TNVh2kxtNBopiUq/qQBFTxByXGMZUHadI9dOhQ7v+zzdatW7Fs2TIMGTIE3bt3R82aNTFr1iwMGDAAALB48WKsWLECPXv2NGqf8iI1/zkR1AcqqxN3qP3V2QUQlRMykaUt8g+T/Q3qY65+4zfTdmyCbnLIRF+yqVthrqUbRMtWK0RtqoJV/7XjbpMeUY0h/vqqZEY2X4boJ5M2HNxeDshXyIJEkQyPsz8I02+ZfeosOPA+UycGSYC6C0CW/PbXzebby/1k0o5598OTFzUBa7LjKc52zBvDdG1H5Kt5ZVTXoMQ8cZRjFFB2R6nunWq/2i9SyyY33HADTj/9dLRq1QqrVq3C2LFjUVBQgMGDB6O4uBgXX3wxrrvuOpSUlKCoqAhXXXUVevbsafS2VBOogwVlgmSDMvuNTpV1DB7ntaWqK2pDNBnQGXxtzeJRBocguXY82bRjf+IsiGwg1U1m2KIvFKgrCZQgWzZJolxbZwU8bpjqBHWXgOhYNsimDfOCFx19UOmUrJ6tdk3dKiqqJ6sbPG+y2mbqg3Ltu4L9CBJFsJ5Nsh1T6yR/TBarTK8fB6JIjMvaovoKqrzjLEtdqONkmCSGiFhPun/66ScMHjwYGzZsQJMmTXDsscfi448/RpMmTQD8tu09Pz8fAwYMwK5du1BeXo7HHnvM+HqUTAVvVUc1WIiUOe5KbDLRMJm0qJy76eBLSRLEFaqTp9wXNUGSKbJtx0EoDt5k50CwXCZWx6NCZweESl909CdsIO9fgYu7zepCmbzIVjCA7O1WybUNBwkzsaOsmCVN1zxUyS9APSZS5esvbyrPuDwH02RsmMlQJsimHft3rMhiOGqCNng+zgsNpqj6S/G9OokO//Go4m4bUdmtbFeCd5y6WyWPJVmSRHS29vCCQNuzuCZQV6hUimqy4h2m7aRg4nhEn2Wrw7bAs2FZBlc1+UuavvjRvUedLLCH7rhAuWZSn43svlT37Ol90m3YQ2dMT2rQKPOZup91UK2I6cg7qhgqW4QZMynJtSTasf99E1FMFuOqG2Ew8a3+8pTYRgU17q7O6MhUZcOxXunOBSrDl2030N3iZZsy81aOw2ZtdVbeTAZfW5w6FZ2Eg2rFMlcvYcokum8vp2aFbdcbP7r3Qlnx0l2dMLFt25+BSWJSd9UiaYQZt+O88yQMlERUmBUz0TnqmEgZZ22LhcIkKHUnVEkiiqQP1UfE3Z6j2AGik7zQndBTnlVcZRuWKHSHGk+7SbcP3ktpdIJvqhOyVXFN7l3nnsPKhzdIUAfqYBtxhTIBElEdnL1/0DPJ3FbnAClIFLsBgnWoz8Rk1TfuUCcaskmV6ZY2W6EEmaZ6aqse+aH6XZVMdBJoomuJ+ladxlCenKkJyeqAbHFAd9FKpONxJRMxME8m1IUxU7lH0e+4oDM/UMkr0p8M87Nt2zbcfffdmDVrFtatW4fKysq0899//71uk7GB8lMllEHCX9Z/3jaFpCDb5kItT1m1lbUpCzBMB6+4YTIwquSW5GAdoCdaZHXirhe68GxCZLsmTphqy6o2bXXiJsjGTpE+Jj1Qp6y6qHwOVc+TiOreefZFtTldOcrOJ8XOk26PJsheiMjDNDlmiw7J7Ia6EyxYVzbHMPW9JiTlGXnw5B3VPWhPui+55BLMnTsXQ4YMQVlZWbUZbEyck+0r3JQtyx6UZIWoXtTBkMlKXC6RyTXMao3qmSRxezmgFwSarurEQW9M4PU7SqcbVUCeqX7GAVUyVkcnk2rDJttPg3WTnEDT3cEVROYbqHVVfaJM7G1/JmESkUmH+ksiJjvSKOfjhkwPVMnV4GfRBFp2Hep8JIxcbR97VYkKXlldtCfdM2fOxOuvv45jjjnG6IK2wVPUMNknFXEK6nUMR7VipWpbVkc3sIiD7HQwyf4GkemcSC+p22FsI4rtz5lwSLahGt/8x6PeAhincTAsplsGKVvbkhjAy17AlAR9iBLTXSo8vaH6bmoQH9fEWSZX+GSJhuqGf+coBd3VUtvHBFnCQXdHGKWsCN2dpDKoCdC4oJPYUZXN2He6GzZsiJKSEt1q1kAZIHW3tekQV+VUQZ2kiDJ1Om2KysXdwDMB5Z6rk9OnZNf9BIPU6iQr6gROlYWXbflVXVMEZXdNXFElGnRWZikrG0mDF6zrjPG2BX6ZQKSDskQadfJMXWyIq9wz0Z8w98oYS/y7GUTwxve46k0miGo1X+YvTXeSRuFjkvIM/XIVyZO6iJWve/E77rgDt912G7Zv365b1Sr8K9qic7IyMvwOLg6Y9EdVx6TNoDyDbQQ/B8vznkfcZG2K6D68e/bO+8uJ6njHk+jki4uLyXqjuwMlKN9coHt9Wb+DuhMc10T2GCyvg4mNq/Q4bojkojtmUp4J7+WfSUKmvyrdieK6cYSnF0FkfiHYVjBQV9l3sO3gcVXf4ypXCio/zCNsvGgzUcSBYcvZhMj2qHasOka5todMb221Y1W/w8TTVLRXuu+//34sW7YMzZo1Q+vWrVGzZs208wsWLNBtMpZQhGiaQUrSQKHKjqtkFAyaeHVVGXRZZtQ2WZuuFshWK0Xnkvp9UA+Z7qn0Nkhc9MhkkqsLVed41xHJXKTXlD7E/ZlQEclCNt7ZGNhECWVFW6WvpquPcYUyjqnskNdWEFVZHVsO6npS0IlvqG0kEdWYp1PHdnTiVVVMrKqvg84KeVKehQfFh6jKUO1Ye9Ldv39/3SrW4N+aKhOwblBqEsRmE90VP9O6vHZ0AkvdiZKNhNUpmb4GyyT1O90eFFkmzZZNUAXTqqCHEjzoTpBEGWVZ3biiK0dZYBUsk9SkGSXAiToYD6742gw1cc1Lbun6Y9G1k4jJuCWqWx0m2x6yyaQoPom7Hpn6I0rSjFdWdtxvzyr5URN1qj7YgG7ihpLkEJXJ2He6x44dq1vFGmQvfghuu5CVSeqk0G/QKmfuoePIdQeYpMhVhunqDS+ADD6DJAbsvO9083RUpccibNM5neShyEZNMryqQIq6Ip4kqAlL2bOqDrtVZPdE0WcP3QArruj0U3dFUWeyqGq7OtkwVQayMrpJDhuhxG668TT1fKaJ4roU/ZFdS2cnRSbj6GxcwwTqdVUJb16ixNRutSfdHvPnz8c333wDAOjSpQsOO+ww06ZiA+X7cbIslc72DBvhDZSm2THZBEinH0mAssISRXIjaXJTQQkGkyYTncyuKjmomoTz6lIn8qJ6wWvY+Kyoz4Cy4qDaMZC0CbeHSfAWZsXJpH62odgENYEm+ixri/pMZHLMdRCeKdxKd1UqKipIiQbd3QNJ0h2qDemWk5WhzlN419S1+Ww+qzDJSQ9ZPBLVvWhPutetW4dBgwZhzpw5aNCgAQBg06ZNOPHEE/HCCy+gSZMmkXQsV6gCdZ1tbbYODjqrY9SgWeaUqNtdku6wdcpQnHwStwtR0BlQdYP7uOsgJXljOjmR2SlVLqpycZWrCplfCBNYqZIYSVzp5sGTla02qkuY+1Alw3R0LYpFBlufie5OKL8skj65FiHbOaoTDyZ18h1mDKOsxKr8Nq+uijjLXCfZp+uj/TFOWLTfXn7VVVdhy5Yt+Oqrr7Bx40Zs3LgRixYtwubNm3H11VdH0qk4E1Tu4OCahAGWMf7bSSl1ggTbEJUz6ZeofzY+B+o9qeTpfeYdC7aV9Dcfe4hkxpOJSo/D6G9cMLUbnXsPykskP9VxWwijEzLdUo3FSZxw836BwMN/XFSGqqe26ZgOKrvz4PkUUR2q/+VdwzaocQslBhTV9fuh6uKLPXh2LJJlUuyUdz/BY6oxTSeeFvlgXXnbJn8dn6Ajb5UdU9Fe6X7zzTfx7rvvolOnTqljnTt3xqOPPopTTjlFt7nYEnwQfsGrMkdJQZXJptQVyVF0DR66dWx8LkF5qTJzKlSTJyD5L1IT2anniMK0QT2fLYL9UH3mQV2JFZ2XQc0s847HRcYygoGQDpQMvYgkrnTzXmjq4ddnlW6r9CbO+qSCahMqGclWHKltiMaaYH2bUPVZR/4qedg0odFFdW8mumGDP/Cj019VvKzTtq49JsV+RZNr/zmZX/F/poyPuvarPemurKys8jNhAFCzZk1UVlbqNhdbZI5G14nbNkgE0em/KnDnTS6pEwNb5edhMvHRbZOXHBKRtGAdoN+TanClJjviopMqO9Nx+FTnazKuhbHxOI+jFEevOh48X13RtWERcdQTE2T6optsk02+TW3TZKyxHd2JC69OdbZzXvLMQ6WztumXid+kTPZ4bcquI2orjHxtsXnKPIR3nNKmV5aaANfeXt67d29cc801WLVqVerYzz//jFGjRuGkk07SbS52BLcKBD9Ttl3obAGJI6L+69w7dYuK165si4f/+rw/W6Doga78ROc9ZyaTbxK3tPHuiafPojK22SoViq2o7j2om/7ysnP+8yJblvU3OA7YgkgGos/BerI/jyQmzvyIfIBMJklDNo6L5CKyQ1FbPL3U9bNJfg4i29X107wyjCVze3lFRYVw/PLrp4dt8ZwI1X3w4mlVWdVx2Xio0lHRNSj2H3ebp947xb+I2vLOU32x9kr3I488gjPOOAOtW7dGixYtAAArV65E165dMW3aNN3mYgVFaLyMMM8R2owsM0fNbKkyS6rg3qSfSUCVQddBpKdJcGwieDYsclqAPZlaFar74CUORWUpk3NKOdm1RGOM6LzJNXKN6J5Edsn7LAt2gN++IpLEibfKPoMBu6ysbaj0g4KOjYrqBvsTBtufjUqesvtTxYlJ9sc6zz3K2CcbUH2bqLxMV1TXELXNa181X4livIkrYe9JtVjjL5Ox3+lu0aIFFixYgHfffRfffvstAKBTp07o06ePblOxRqWglLJJhDqgqIJFihypk4IkDRJBTO+NF7BXFz2NIji1TZeo/fVPVkT3HCZIpNqsSRJOVMf2ZyVLUKrklMQJN48kj/EqdJKGqnFMJ1GmOq4zQbA1oBeNNboJNd4xf9nqmjxTnYszOj5XdY6SZNTtk25MroNt8RJVniYxsm4drUn3nj17UKdOHXz++ec4+eSTcfLJJ+tUtwLdFVyduiJ4Wfu4Ql2l8ZA5mmB5U2cvMyhb5CpCVx/9cq6OGXbeb4PyPlOz0yLiEijorHAHP5uudMuuowpSTVYFwj6rXGFqZ7KV7rjoXSaR2TDv/pMmkzBJQ6q/kO160vUbSfQjHqrEQhS+NanyM00i6Npz3CaA1ESNLA7R1SvKqjk1SUZJ4OVaxmHRXTzk+WJTtL7TXbNmTbRs2RL79u2L5OLvv/8+Tj/9dDRv3hx5eXl49dVX084zxnDbbbehrKwMderUQZ8+fbBkyZK0Mhs3bsT555+PoqIiNGjQABdffDG2bt1q3Ke8PPmef16ZsMRdgb179waJoPHxPvvr8GTlHafcO+8Z+NuQlbeV4L15n0V/Hrx7z6Qs4mjDIt3j6ZypLWdbv1S6rqpHuU+/fGT2xrtm8Fzwurryst1+/VDvRSYr0bga1XdB42bHlDFMpVtU3Y/an+cCqm+U1RfVVflyHVu13a5VviVYjjp+RkHcbJiHTC9FPkSFyF/lClE/ZGNY2LZNxjCVvHTkmssx1OTaOnGRh+q5Un2x9ovUbr31Vtxyyy3YuHGjbtUqbNu2DYcccggeffRR7vm//OUveOihhzB58mR88sknqFevHsrLy7Fz585UmfPPPx9fffUV3nnnHfz73//G+++/j0svvdSoP36hyR5KWAcXN1QOxEMncBQ5GF7wGDxGHTyT9hz8mE6ceTIQObMoAva42bDoO90ivYqLo1Zh2k+KTVESY6prU5Ns1LHGNnTuQWcSmK3APW52rEoqBv/Pg+pP4jYGhLGJMAkG3YBe9mxshCJzUWJSd6IIRC+vuNkwBdlYZrs+BaFM9FQ2pUp8mSQZdXSWMi5nG5Nri+xWZscq30ve2cE0OfTQQ1n9+vVZYWEhO/DAA9lhhx2W9mcKADZjxozU58rKSlZaWsruvffe1LFNmzaxwsJC9s9//pMxxtjXX3/NALBPP/00VWbmzJksLy+P/fzzz+RrV1RUMABpf7J+8o4ZiNI6qPLROR+Uu44cdcrH8RmZ3Duvjqieqox3vKKiIvS9eO3FwYYp/TTVubgjsi//Z9E5atuUekmTqwrKmEcdG2X6KfoclQ17bebCjmV+WCZD23VNd9yinKPKUUfWpuOrjZjGObx7p5ZNmi/WiauDfbdVb2RQfLHqT1Re1qbos+p4konSF+vasPaL1Pr3769bxYgffvgBa9asSXtBW3FxMXr06IF58+Zh0KBBmDdvHho0aIDDDz88VaZPnz7Iz8/HJ598gjPPPJPb9q5du7Br167U582bNwv74V9x8P/rh3eMQrDtuCPrJy8rJCOKe/fqUtqKo4xN+hS85yCyHQrZXlHMhQ1TvtPtl7ttq6xUuzGxL9kKmKwtL/vLa0PVD94uIpsIrhgAVe8h+Fm3HK9MNvU2U3Ys88MUPVDZuS2Y6oesrEk5kS3q2rSsv7aiigNl/liln4xl/kVqufDFxcXFRnacJL3RReUnqbsx/G2p7FelyzY/D5WP0PEZojLecaoNa0+6x44dq1vFiDVr1gAAmjVrlna8WbNmqXNr1qxB06ZN087XqFEDJSUlqTI8Jk6ciPHjx1c5XlFRgaKiorRjYRRO9EBVWz/8dVSBcCYDjSgUMsrrUAN42aRKV67B47J+mD4Lv2OmohoAKOcy7ehzYcN+KAMsVe5xCejDBrqMqX/2T6XXoq2mOv1QEdy6JiuTy2diMhEyCXJ0x7EoyZQdy/wwZXzOZOIpbjqlKkuduOjoi26AqhPXxB3T+Ipn29RJUCbJVTztIbNnakwmQibfOOmbLIkW1q/7ZaAb2/LakJWj1IlLIlSVuDSJo4N495ix73QngdGjR6OioiL1t3Llyoxcxz+gAOLva/i/IxGsI2rT5HsZqjK5+p5G2Ot49Xnt6LYdfA68Z6iqIzovkn+cHIMtiGzYn0SQ2YoI0bNS6ZGuLeYSkVx44xHvvoKyCP6f13awDap8KWNh3NDtV3Cs8ctZRVQvUssFFBsO4tcblQ6pdJFHXHVKhanO+T+LzqlsWdW2TWNjEKosZOOXSC+Tgiyepsa1PKh1RPLVtX2bkI19qnun+mhePCC6Pq8fvM9xRXeMA+TzDhnaK935+flSJY7qzealpaUAgLVr16KsrCx1fO3atTj00ENTZdatW5dWb+/evdi4cWOqPo/CwkIUFhZG0k8/1KwOb2Ioyn6GyQJSs9+UtuIAL4vsP86TPzXzppK3LCtJzerFJfuXLXJlw5RnLTpn+kz8Nhz350rVU2p9nYy46BqyPunK1ZbnIEKWfPBPOIHsTLozZcciG66oqKgy8ebpS3UbT3lQ753iB0XnRLFJEFWCTNaGLc8yzBgk8zmZ3nWWC1/s314u0hlqcpHXBnVCnkRktqqKT1VtiK4lQ9WGrXatE49Q7Vd7pXvGjBl45ZVXUn/Tp0/HzTffjLKyMjz++OO6zQlp06YNSktLMWvWrNSxzZs345NPPkHPnj0BAD179sSmTZswf/78VJn33nsPlZWV6NGjR6jrm2TIdDPEvPOmGSVeeVuyTFRUK3OUuqI6wePBLJbO6lMQW7N/YcmFDXtbU2XZdUp2MkzmMw5Q+hkch2TjkuwavDGPmk0XPSte5p5KXJ6D6SqLzhieyUDdI9t2zNut4uHXF5GvVOmWrfD0iRIHUMpRfGEQ0bOh6H3Qv6r6GTdU45r/PihjXKbJdTztEXzuFB9MtWNKPB0nwvSLIhOV3Yp8tYn92mK3ulDGXK8MNQGuvdL9hz/8ocqxs88+G126dMH06dNx8cUXk9vaunUrli5dmvr8ww8/4PPPP0dJSQlatmyJa6+9FhMmTECHDh3Qpk0bjBkzBs2bN0+9zK1Tp07o27cvRowYgcmTJ2PPnj248sorMWjQIDRv3lz31tIQZWY95eSVpSgqpZwMURbaH6BWN8Jk2FXy03lW1MyhLAsu6ndciaMNq+TOK0u1o7g+F2r/g8G1rA3qZ1mb1GvIbEZlT3GFOh6IkOmrrIwJcbJj3rtVeOO2yJ/qjLuy4zptZAPVhMNfJop7FNWVJfNUx6N4BnFAxz9k657iZMNA+i4cyrilkpOO7tigT2H6JtM/XZ+gsm8dPxRneZtAuR/teR2LiGXLlrF69epp1Zk9ezYDqr5yfejQoYyx337mYMyYMaxZs2assLCQnXTSSWzx4sVpbWzYsIENHjyY1a9fnxUVFbHhw4ezLVu2aPXD/xMHJnj9Vh3n3WuwnuyczrVkZW1FdT+y86pnITpOeVaZup9ME1bvGYunDaueoey5Jx2Te6SOSVS70WkzieiMRaK63l8UNsxYPOyYYrsiOej62aRgapOytnT/VH2pjlD0zn8+ib7YxA9Q9MnpWVX8MqHKR9cH64yl1fEZUW04j7HwqYkdO3Zg9OjRmDlzJhYvXhy2uazjfZ/Gn2GnZM9VmbdgXVlGiVLGtE1Vf23F5H5MdykEyycBnt7biuw7cRTbTZpteFDuy2RnRvA4tQ0P3WtR+hk3dPvL00nVGF5dbDiITOd0V2KTgO54RvF3YWMQmR6L+p1LZP3UaQNIvx+dlcek2jFFL03iZh5x0KVcEWZnZvA4r00b7DjTqPyOyoa1t5c3bNiwykPYsmUL6tati2nTpuk2F1soBm6itP7PlMk3FYrS224QJlvBRfescgJRbvemBETVadDKJJSghRdc6co9188rE9c3DW545agTH52vx9hmG2GTsbyJZbCMzW8vl6Hjf6nHc22zIkyTXn5E8qJOmGVtBM+rMEmYxeHZRHFtmQxl/j/TL1LLNbIYWKRvmUgk5YIodFvHfkzlYBIDR5Vstxm/L87I73Q/+OCDaZ/z8/PRpEkT9OjRAw0bNtRtLhGYrhBRsqLUAYd3DZWCx8HR6UAN2CmDDnWgp9TVff688rY8g7jDe2MqJasehLqKkyt0A+AwSTnVtXiOXjcw0lm1zLXsTaHKlzeOxTWgzDS6k0leXROyaecU+4qqLQ+evVLHOqou6iSXbbNpqn7IfH11sGmK/zFd0Ra144f6nDJp75lM5vCS1dTFQFV5VT0Kttk1hbD6qj3pHjp0qG4VqzDJzFAMwV/OZIKs2z9Ke7YahCoYMBm0dYI63ZVAUf8cmYGSoKIGmKoJUVyepW5STqctlV2FSWqo4D0rW6GOWx6yZEZ1CNgBeRJax7/qHBcdizO6kwsPnjxV9k9NMlMm27ZCXQDglaku8F6kFiaJSo33eBNQ3bbjhk6iizr/0N2NxitjW4wbZf+CcszYSjcAfPDBB/j73/+O77//Hi+++CL2339/TJ06FW3atMGxxx5r0mRsCDPJVpWnTALC9Ku6oLNipLO9Lkw5GXEfiJIKZaXG9NnE7VmaTKqDdVWJhzA7SHT7ZhI4ydqIA9Rxyy9DVQCUxC2psi3zMtuN2/POJtRkYLCczg4YU19JaTsumK6MUhKUlMlMkuCNTTy5qBY8qItaYVa6c43JTlZePcqCgm5MLJOdySJlLoli0SRsIlz7d7pffvlllJeXo06dOliwYAF27doF4DdHedddd+k2ZyWM8X+bLi+P/7uhonL+P1GborYpx1Vl4o5pv3ly9RDJN3je++O1EzzGe55BZxv3wSgpBLPrvOejY2dUHbTJvlRjjYdKj/3yDbYpKqsaM6OwlbjYm0p3KP5C108kgeLiYpJehPW/vDZt85WquCCTPknlK23UUZVOicoFj/tloboWYyzR72aQyUl2LpPXjwMm9iiyY56eiuJUVewjOy8qG2c586DauR/RPXvHqTasPemeMGECJk+ejCeeeAI1a9ZMHT/mmGOwYMEC3eZii4nzlRkArxzvwekE+TIDoZZJEjoDj8qARPUAvmOVPVNHPPA/l+Ax0WedtuOETPdUAbnqM0//VcGpqS2YJEByhWpiIxpbZFCTFUmHJ9vgOV1b5um/Lb5SZW+qwFp0nKKXtsgoCnTtjidDFw/8HzzfIiKMb7ZB1rpjk1dHluiS2bZID1U67v9sg1xNCKNbXl3qrjPt7eWLFy/G8ccfX+V4cXExNm3apNtcbAk+AL9T1iVYN6i0wYGF0p9gW7zzSTEOkfxUMuEhKiN6JrxrqXQhjK44wuEf+KJ4DrY+Q1XQDES3Ok8NonjndWxIZf+5hjKB9kORRVLGcFNUMouiTZuh2oQqnlFNJGXXovjnpMhcJUfeedUYV53hxVWyMn5kOm+7vqn6T7Ffqs2rYl9qn5KO6v4z9p3u0tJSLF26FK1bt047/uGHH6Jt27a6zcUK/5uPZUQ1WJo4PNVxG1FNooOYDAqyVT8ZvEAiCTJPKryBTxUYVQf8MqDqfLCuLCgyDZiofaCeiyNhxuowkyVboQQv/smMauKZJF/pQU04U49TJj/Ua+tMBFTE9dmp4gmZPKuDDXtQkrCyhAXvuIfMt8RNX0yhLjDxdEk35qWMozqJNtnxuCPrd9h70p50jxgxAtdccw3+8Y9/IC8vD6tWrcK8efNwww03YMyYMUadiAuyPfl+5dKd9OkMqjrOUYUNim4yQFJ3Dug4fZVjpJyzdYBJEpRMY3BrkP9YUp+dbPyirt5QnLjuTpLqAHWc4sldJXNqdt0mZMlvv8yoEx/dQDEuUPqnutcwk0OqXDIp17g8G6qcebaeid0aSYE3xoV95v4246I/pqj6z7M5lTx1J+OUnSu6iZG4Q4n7TXVMe9J98803o7KyEieddBK2b9+O448/HoWFhbjhhhtw1VVX6TZnHbKtLLqDB89QqBM51eRRZ8U+l4ZhMqmNsm1q1s9fn7oCb+uAYzOUSYjJjoi4PMuwuhVF5laWAdepIzsu669tUOWrs7IQbDtpqPSA4jODqHxo3FbIKH1R2ZXK35lM7FV9iJMMw6I7NuqsPPrLbt68OXHJMz+UZJBqNVd0PO52TCEqfyi7d93VaV552+SaDfwJcArak+68vDzceuut+NOf/oSlS5di69at6Ny5M+rXr6/blBXIBl2dSbWsXpiV8GCbSVgJpwYSovI8TFfedCZoJs8gk1THyb8/cJHpkWjlIu6Y9tNkHFONS7yA0jRoCLOdy1Y9p8hMVSaJK93+e5JNHkXnokxIxZEogl9KDEJdCEhiosxDd8yRjZmqyU2SkU34VLsFqAlbDxv1Lyq/ztsBpBoXVfMUW/1r1ER1/0a/0w0AtWrVQufOnSPpRJygZNWoq6M6WWjdNk0y1nGHugotqheEJ1dq25Rr6zoD0TVsfmZxhPKMq4tDkU1WqBNklS3426G2obM6prtCHDd0g0PKKlmS4b0MUfQZqD627CGzN9FxajnedUx3aiSBKHSquuhlEF7yzCPMzookortAF/ThfjvW3f0SRDf+lrVp27OkJP89gmU2b95Muob2pHvbtm24++67MWvWLKxbtw6VlZVp57///nvdJmMFZUsL1flQDIT3mXeOOqG3BZ2Eg+g4ZZKu+6x06oddYcn0QGTLQJcpKPdvu5Pw0EnaRbUDhzJR1nX4tmAy1gTrUsYm00SIzchW73krOqokku26xkNlV7qfeW17JM12dQi7m4KSIEkylAmg7bFsFOjqE8UWVfMMasxLmfskZdeBTF9VvjdjPxl2ySWXYO7cuRgyZAjKysoSayAyJaIGo9RVHt5WOVHZJCq3brBKrUcJjE1X1ynXd2SfiooKkr2Jztn2TE12V0RlAybZddN+5xrKBM/0nnQSqcFjSdtaDvDvqTqOz7KJsiwwlrWhupYMaozCa9v2ZyHqf1JW+DKB/4WIsgmf7hwiSTKlJseCyGyRKk+RziY1UR4VYeWiPemeOXMmXn/9dRxzzDG6Va1CJlDTVWeZIakeoK4hxN3R6WTqdBMPlJ0DqrZ0+mkb3j1RX/xgE7I3H8smibaiG0zr3Dc1kNeZfNuKyaq0zu4DWfnqBuVn/3iJatt1jArP3nR1TWa7quA7WF7UP91VYRvQ3XlCHRuT+CK1qOIL3dg4boTpn2qMo8xPoupfEuMnD5V8KXZMRXvS3bBhQ5SUlOhWsw6ZsutuuxQ5MV6Z4GfVqjmlD9kclKjXovSFOtk2CSioyHYliK4fd7x+Ur+DYhu2PY9MIAsOTeUi03vq7oKkPBPe/ZiuPlKelahOEl+kBuj5D9sm36Y+UubDdHa6iK5FmTiq+qHTl1wRhZ7oxCY6iY8kYbpjhbqoZUtSR9a/TCQSqAk425MZUaKaSMvGR388TfHF+bqdu+OOO3Dbbbdh+/btulUTQZgBkrH0bWHelsTgVhvqVi9eW8G+eoN+tgwnm9cK3p9MdqJzweNeW8E2/ddS9ccRD3jPjqqftj5LlZ6LdDo4iZF95h0XjUdBe6L2N+5Q9EglX9F5v0xslU8YiouLte5bxw/EgbA+Msw4JqsXtFWVzerYdpyeSRj5q+IuE71NMqJ4SlZWl7jJMUx/VDZFuYaJ//a3GWY8jduzMIWntyq/nbHvdN9///1YtmwZmjVrhtatW6NmzZpp5xcsWKDbZKxQZdFEzoWHKKNpkvkSnZe1mZQMlegeKSsBlMA4WMdfj5cd1HmeccCWfkaB7I2pPDkkTTaUVQLqGKJynrIxh5cApPZP1Hac4clVJAteXVF53vhTHRA9f7+sdHWFqoPZxmTFidp3lU1TfCZVj2XXzrWMqeg+C5VsbJRBlKhit2DCggIlJs8lYfojss8w5cPorArVfClJiGIaD+quM+1Jd//+/XWrWAXFIasGZqqT8pcLk3m1naiDJ/9x6rOi9oniROMSzHnEpR9xRFcvbEFmG6JxieqcdSYt1ISZ6rgNZPJeRTJP4ldE/C9DFN23TvLII67BepSJJ1kCh9oP02A8LvIMg+pZmMgozDOxGd4khJJYDB6vzqj0jKJbukl22XNIyiSbOsbqyJO60q29vXzs2LHSPx3ef/99nH766WjevDny8vLw6quvpp0fNmxYlS0Pffv2TSuzceNGnH/++SgqKkKDBg1w8cUXY+vWrbq3VQXGxFumVGVFWyy8crzzUW3LsHF7R1Auonug3pt/+0fwGLVtnecvup/qQJxtOIhfzzyCz91G+wGi6bdIb030uTrZAFA1MJGNMTrPSjQuRa2ncbPj4H0G9Ykn76ToHO9eeQkDmc8MykTmz/zBtkyOomuE0ee4o9KpoHxN7o8xFslLx+Jmw95LTWVyUek5BRM9jAPBfsv6TrV3f1nRdVR+XjZmJHWMDVsOoL84UHvSHSXbtm3DIYccgkcffVRYpm/fvli9enXq75///Gfa+fPPPx9fffUV3nnnHfz73//G+++/j0svvdS4T5RJmcoAdJ2WrE2VMcqubdsgJDJ2XXn6ZalrXJTBT4Rt8o6CONqwh4mjt9WphJkw6449PDsLnhNdP8k2YhqgU2QiKhPVS9TiZMeye9LxjUlGNKnOxPgl0lsTfY7j+MpLPIjKiCYuOrEdr+0o7DhONhxEpDs8e1ZNGlXXsAWR7er4EF78IvLBOhN33ucoifvYzZOhqIwn14x9pztK+vXrh379+knLFBYWorS0lHvum2++wZtvvolPP/0Uhx9+OADg4Ycfxqmnnor77rsPzZs31+6TSOH9E1kVVGVSGVeYNjxlsBGZw/afD95fsJ5oEkK5hqyeqA3b5B2Fo4+jDXuYZs1N69qCSn+DMlCV49VRXTsp8O5bV77Btvzlg8cyFajE2Y4B+TY/kYxs17UoJq5UH8WzZVU/gnK2Vd482xWVUekaT/dUZaKy6TjasGqs48lJN66yVe9kqO6JMsZR5ZaL8TLXz0w3xqGMudTvdOd0pZvCnDlz0LRpUxx00EH44x//iA0bNqTOzZs3Dw0aNEgNEADQp08f5Ofn45NPPonk+pSsrW6GTZX5jIJcK7WHyT1S5arKkPrL6Mpcp9/ZeJ6ZIFu/051NG5ZtaaM8H9uy5VR0VnOCqOxRZwzUtZFs2ZOp7cruW7TCILqmTM68FQ3GotmWSiUXvlh037xjos+2IlrV4umQji6J6lHsW9QfXduJg6+U9UHVP1HMoSOTXMgg2zZMieGoZVXEQad0oOiX6C+KMU/kj0TX0I2l4oyJ/ERjrK4scrrSraJv374466yz0KZNGyxbtgy33HIL+vXrh3nz5qGgoABr1qxB06ZN0+rUqFEDJSUlWLNmjbDdXbt2YdeuXanPspfR6E6mAXWgyMuy2J4tFkENxGVleQGov16wHco1TDJdwb5Q+xW3Z+r1LxsBey5s2GZnYAp1RcE/1qh0XpZsDF7DNGuua/uZwiRgCdZTjTGia1BWy0Rk6ze6M2HHIhv2v0jNw0Q2uVjBiQITPaL6NVF5XtlMyi0OzyRMH6j6SPFFjDHyb/yGIZfxNNWXUM6J9DQOOqWDSX+pvtv/f5VvlSWeVP2IE1GM97KYXhRb6aI96b799ttxww03oG7dumnHd+zYgXvvvRe33XabUUd4DBo0KPX/bt264eCDD0a7du0wZ84cnHTSScbtTpw4EePHjzeq6880UwLcYF3/cVngxrtuVMQtGFE5MGowwGtHNDEXGZfompQ2RP2IG17/svHm42zbcEVFBYqKigDI7S8uum+KKhCnBt9RtGWSmDSpGwdkstC9N51nFGzTnzjLxsQ7E3ZM8cNh9CUpumWSYKAE5UFUyWzdZFISoSbadepkK07IhS9WwfPFKn2Km76FiaejiiV5MS81pqX6e14f4zSXiCIRqxPbBOWTsbeXjx8/nvs2w+3btxtPZKm0bdsWjRs3xtKlSwEApaWlWLduXVqZvXv3YuPGjcLvrQDA6NGjUVFRkfpbuXKlsCxva4cI0XaD4HHvs6wN0WdR/3RQtZkrVPJTyYa3XYZaVtWnMPcTF+KwJSjTNuwf+ETy9+tYHGRigshWVOdldVQyEY1fsrEu6fjHJZH8eD7EL8fgZ8q4keuxJQo7pthwddEjPyL94CHya0FdEtmu/7NKL0X9FH1OMiJb9uDJNVjXXzabXxPxyEU8TRm3qOOoqF62iSJGpPoGik2q/JGqvzq6nGs/pAs1bvLwlzOVZxDtlW5/JsXPF198gZKSEt3mtPjpp5+wYcMGlJWVAQB69uyJTZs2Yf78+ejevTsA4L333kNlZSV69OghbKewsBCFhYXcc6JMBy+TpKobPC7LeKqyoTYpdlio9yrKyPnbUWX3RM9blf2zkTj0PdM2bJpdtxWTbLapbuuMSaKyIntLAqb3aFLPK5uLYB2Ixo5lfthDpnMi3bJVp8L4HJEOqexPB5V+2ip3P7o6pHPPorZzlajItC8OJsD9UHwH9Tj1fK6Q6RTVPqO0Y2o/RZPSJBCFLpk+A/Kku2HDhqkZ/oEHHph2wX379mHr1q24/PLLtS6+devWVJYNAH744Qd8/vnnKCkpQUlJCcaPH48BAwagtLQUy5Ytw4033oj27dujvLwcANCpUyf07dsXI0aMwOTJk7Fnzx5ceeWVGDRokPHbUlUGH8y8UeoECdaTBRKqgCKKQT8bUAJKXadkIgvdwY3XdlIGniiIow2LqA6rMDrOQhXk6ySsqG1Rx8S4Qem/7qSJOq7xykYdfMXNjilje1ImfSa+XeVPVfbnX71R9SesbdqU5NRNFuoswMjaiuI73XGzYR5JnsiJCJOsDkJpQ3ehSVXfludDScyatiWTmVeGbMOMyJQpU9jTTz/N8vLy2N/+9jc2ZcqU1N/zzz/P/vd//5faVIrZs2czAFX+hg4dyrZv385OOeUU1qRJE1azZk3WqlUrNmLECLZmzZq0NjZs2MAGDx7M6tevz4qKitjw4cPZli1btPpRUVHBALCKiooq57w+BT/z/kRQyqvaUPVLds24I+onVb6qdnWejahPtshSB++eeHpPJW42bJPeZwOd8SuKP9F1RP1JErp+gVqfIt8wNsxYPOzY74cp+mOqW0nUQZXOmdgjtc0o+p1LMtEHnp7KriOLQanEwYb990Idx/z/z7UuZJMofQOvnG7bJv217ZlFGY8E61JtOO//r0xm7ty5OProo1GzZk2darHGy1DwXkoTFI9sRSNYh7qSQcn+xT37lI2VKmoGnrICFzwf95W2TODXe+/lY7bCuxdbnqlOPzNxT6ZfwZC1YatdhVmRp+4gUF3bgzHx12M8PJ+VJBvmYYv+ZJuwOx38ctXVfdtsm4JujKGSFQ9enST6YkBPV3THySTpXRBdvdOJeYPlTM7bKntT+/bP+0RtUH2x9ne627Rpg9WrVwvPt2zZUrfJWKFSJt55VXCq+p6VjgLHVdmj6Bc1gNDZBms64JgMbo7c4/1ON6A3acwlssAteI7ad9k9606QKY4/bjI1RVe+OjJQjUUU30INqJKCyQTP1qBcZ1Kru/2ZGovwzgXbFH1W9dEGqPeoih/85aqr7QJ6+iaqa+oDc4XOhFnnK0b+4zJ7V80vRF8tsSVe0kF3DBPpq///IjlRvx6iPelu3bq1dLDYt2+fbpOxJIwzEil9mAHIZsX3QzFo09XpbOwYSMpzSDJhklpxIswqVLAN//ngMdW4pLPSTbm+zcjG8rAr3CZBebZ+MixXmOiNrTqmM7kwTRqL6uuuzFKuFdfnoLPq6iEaxyiT7+o42fZQxb68sqLPQeLqU1Q2xzumuwJLuT4lIcRrO27yDEPY+D4TMtGedC9cuDDt8549e7Bw4UI88MADuPPOOyPrWFwwGSCpgaa/XNKCUxWUybbovG5AwYO6Wl5dnkdSoExCZBMkj7g8b93JNnXyy4MaiFNW0U1Wy22Cd386Kxy8tkx8TZIn3I7fkPmqKO1Hd8xIiu3qlNGNUXixHa9OFC9SiyNhVrZNdgbZAEUmuqvOvBVZVVuia8rQ9XHZ8PM6STRV/3R2F5miPek+5JBDqhw7/PDD0bx5c9x7770466yzQnUoLugoD3WwENWT1dFRChvQuY9c3Cslu5qUZ5F0dFZg4voMqUFe8LPI8fonh6I6OjtJVNcNkmSb0U00UJ6DSl5JX+n2SLLeeIRJmFFXxsKsRptORONKFDEIZQVXZedJXfn2j00y30L1O0nTM17yX1RHR0dU+hVm4qm6JvV4lOgk0VS7IE1iH120J90iDjroIHz66adRNZczZMGqd970QVEm8lQnaftAFMZQPHQyhkGCAxLVqVLajgOy5EBSnbyHrtOxCd3VAF59atBHnUTK+pWU8UqFTjJOJ+mhaiNXv9OdaarLWEVBZ/xS2TLFLpM0XsqI4r4oPlY3+ZYU/O9X0dGppMW8FFsLO/mTtUld0OO1FSwXp2cRJjmgqitLDoVFe9K9efPmtM+MMaxevRrjxo1Dhw4dIulULlFlimXndFc6/Md1J5QURYuDYVAI20+TFQBdhxd3GQbx91d070nd0uYRJwdhCjUzq9sOD+oqGW91R9UP22Svm0Dl2Zvo2Zkk+kTjVBLtt6KiIrY7oTKJiQ1RE/smflDVH9vlL+u/aqLiIRqX/eerSxJDRpgFANv1zIPXf12fEEaOuklgSr9zSSbnQLIYRyR76q4z7Ul3gwYNuA+pRYsWeOGFF3Sbiz1RDg5RKLOOEsXBMETwsmfBcx66kydedko1SOlmHB32YPMz010lMUnSmU6Y/X0wnWDGFZPgRuUjqIG8vw+q55v0xFkQmd/QqRsndHdy+QNAlT8TXctDlpwV9SOuctRFJ4mhG5PoJIsYq37f6ZbtBLAd3ThVVlZnEdArr5vkUfk2G+2dei9hFjeD18jY28tnz56d9jk/Px9NmjRB+/btUaNGZLvVcwYlo6QaSKjZZ9F5GTYpvh/Vip0flbxMMnOqa0Rd3hE/bHQeKqgOk1dHVEb3vIkt2/IMqEk4SiacmkCRrZoH6yZxe7k/eIlylTBXOmeq8yK94AXWum3xzoddbbMNmQ3Lyvj/DZbzkLUpqpNkKHYcVp/ioo9U+6HIQHf8k/khVT9t99V+TCbRMii2mrGV7l69eulWsRqeAqsm19TVEb8ChN0GYZthyJSYOuBQVqt1BxJb5en4Df/3yIIk4ZnqrIaJjqvGLd0VW51xzPZnoLMqTVmV4JXjrYCIfEvw615JwXY98UNdafII44N064aZ+Nn+jHQmftS4gfeZkrRM4kp3RUUFioqKANB3FvKg6llc9NFk90OwDNUH8/yDStZhYuCkxMe6u84A+rNRYbQ0vXjxYjz88MP45ptvAACdOnXClVdeiY4dO4bqTJyQKTUlWOJBeWi6BhFX5Vf1kycLauZNBKVNan8ddpKElT8dp2cSXJvuvNHZKhi2zbgiSlDorE6L2pSVE9VNWqAO0GxYZ0Unm1D6EsUKlG4ALYKXMBOVSfrKrGwHAXUSTnnulLJJQDcBbtuCU5jJtaoN3fIUH0y1X5mux1Fnw9iVamzjHRfVofrifHLv/n9efvlldO3aFfPnz8chhxyCQw45BAsWLEC3bt3w8ssv6zYXWzwF42WOgmWCf6Jyos+iY7Jrxo2gnHTuR9WWqm3vvCjLx6srq2NKlG1FSVz7lW1skYPMdkTnVDbi/6xrT96fzHYoY5zuvWaSqHTBL5OgfHTvLViPUjcJSSYeovHZLyNTOWcSSl/C9pdnZyKbDZZTxSqUfqv8cxKg3pNIFv7jSZQPBf/YZKJ3Krnl2u7DXp/nM6jXFPlmr12K3KgxcK7lrIKnW7oy0BkfTec6Htor3TfeeCNGjx6N22+/Pe342LFjceONN2LAgAG6TcYKVcbYnw3NRLZZl1xn+zzCZup0UGW2eM9KdP0o+5PrZ+DHvxoi6lcSV8mSur1cd3UsWM9fTpUBp9qGaPLvP0cZT3NB2OvykqaqsYWySiE6HmyjuhKccMYd/zhMKQvQ9MX03iltUm0z1zYcFln/g7IQ2Z3ILilt2iq3MFDkRDlnM7K5hIdIryi+2tQPJRGqvqnKyWSl65O1V7pXr16NCy+8sMrxCy64AKtXr9ZtLlZQJiFhVjSC5XgZJ11ynYUy7bdsBU2ESH6ivvDaol5L575y/Qx4xK0/juygysLqZH9VbcvaUBFHm5FhMs7pjle88qKy1XX1jEecZSFKTPGepcgmZPdH0SHdWEXVD8pqkA3oyCKKe65uNlxcXCxckfXrpQrb5BRm5Vi1+syTH2/CqEpm2Gy3FER2qzteUq6hi/ZK9wknnIAPPvgA7du3Tzv+4Ycf4rjjjtPuQJzwb4eRZYd0V4B0Mk42DS6AfjacsspjmnHX6Z8qk52EQUl3ZS0pJCmzG/ZZUcYYUVY9CCX7TpWxbc/EZAyiypmapBBdJ4mIxiyerHTKxgHVKopq3BYlZvxlVOjISNVm3OUdhLLar0IV0/HarC6268F7kZqJrtjmx6n9jUI3VHEs7/q2yFFFFGOYyn55x0XXy9jby8844wzcdNNNmD9/Po466igAwMcff4wXX3wR48ePx2uvvZZW1lZ0HiTV8VGML+4GojuhCTO4Uq9tguo+4iL3MP0Q3Yv3bxLfmMojTHCVa6J2yn5MJ9nB+mF00xYo45zpM5I5euoELUnwviJi4kfiis6kWnSc6gtFCTKZfFWJclVbcYUSYKsSYiLZUJ4HJWmZJPyxhWhySFnECrYRd6h2zEuemS40VcfEThQ+gboo50cke+ovieQxTU3Oz6ftSM/Ly8O+fft0ms4Z3uTDn6mQBTfUgZbqrEwmAbl2eFFe33QyrSrPG9B1BzVbBnoZIhl4+u7PSNuK34ZtvxcP2bhAyaL7z8vGryCqNmXt2GYvuhOgKNoMQvEnojJJ0vsk3YsJ1CSYblleeUp8Y4qtvpM33lLHB51JkEz2SdB9WTKfMibqxtO2omNzVN/BOydqK8kxsMoeqfZsksxQ2bD2SndlZaVuFasIkzEKo+S6Cp5rQ4gqE8cY05a5zuq06WqdrE0bBiPZ7onqmBW1EYp+mawS6E7+ROcp/Yy7reg63yC8wEk3qUFJGsoSZ0mDt0IWN3T0WjdBJjrPw1Q+1NVsSl3V8bhgskiislXd4J5XpzpA0ZWkTLKp475JEo26c0VWxpY5RhioK9sm/p13Tgej3+mujviV3kTxeW2JPvvb5F1f51q5gjoJ4E0OTQffMNl70TUpjjiO2NDHOBJX+1Jta9RxrKYr3dTzpmVzSdhEhKxu8BoqZ03ZleBf6U4aNqz2mdiAiQ6JzlOvb7rTi9KWaZ9yBXW1i1cnTBuUWC6JX/WS2bFsESNKnc0FJgksURvUxStZrJvkFW0/lAUy3QSETmKEitGke9asWZg1axbWrVtXZeX7H//4RyQdyxWqFVHALCMtK6/jVG0xDJ0AgzrJNtm2KQp0TTL8tqEaTKkvfqhOxFUfdJJYqvqmzoOyemO6mpdrVGOKKiAUHZNdSye4jKvcHHJkO46i2OapsndKkE7pA7WMDVBiK9UOkyCicv7nT+1HUuC9m8Fkd0HS5QSYr6Ly9FI3iZEU+UahS6pxkteGf9dZRl6kNn78eNx+++04/PDDUVZWlqitMv5BQjY4qCZwUW6TiXuwKoIafPsnxiLCBLG2TgIyQXW556Tcp0x/PXTHHJkTCbPCEHY1L26oAuUotqYGj0exQpIEZC9gSoIeZTJBRU2+6ayUJR2dwDp4XjUp58U3phMs26ioqCDpumkyKq6Y+FHVTrYgsrap8bKKuD8HE7mqzlPmErrPKoj2pHvy5MmYMmUKhgwZols19vAGCYpz0n2wJsGsqs24osqqyQZd02vwsn5h24q7nHkk4R5MiNt9msqf4kxEdSgr3jrnqP2Jm+x1MZ0Q8VY0qVsDdQKo4DWSui01eE86thBXHdTdqSWKPSiJapOgPRM7YGyCZ3emSU9/O6pYkrFkbi/3kxQdoSBKOFMmcqZykvkOU5nHPX40mT+FSXBRVsEpaE+6d+/ejaOPPtroYjZBcXgmWSjeZ0o/4rpypDJInVU03a1cKigDkCopEBc5h6G6ZNaDxMVZZPL6ukGhbEXLdPLCS3LlWuammEy2g8epK9qUybdKjkkN1HVWv+Kuazq64z8ehBesi+pQbdlkJZ7SRjbR7a/OLhXdGCTuE5VsQ0k4iOokDVlsqatvsom97Qt1pkSReJDNt0wXOoLQfv/LxyWXXILnn39et5oV8AKYYOAjE2xeXl7an1c3eJxXXtQWJfDKBdT+ie6PVy/svcrkLmo7rvJVIZKr/7yojnfPSXzzsR9bn62HaKwIMy7oJvxkeuRvM/iXFETy5skmWFb0p7pW8LPMTySR4uLiRN2vqe8R6Y3ftwXLio57yOQq6k/cnwXVrkT2KSpHjVt415Id431OavLMg6fDSfITYRH5mUzapK5/jzuUOYXKF8vuVeTPPXlR42ntle6dO3fi8ccfx7vvvouDDz4YNWvWTDv/wAMP6DaZczwhr1y5ssrbFj3l4wk0OFB6Zbzj3ptlg3WDb5ytqKhIHfPqenXi+nZaav9U984jKIPgcRX+ASPucjQleF9Bmfl1Kkiwjg0DqgrvHmx4ziL9DuL/ukuQ4H2K2gyOQZs3bxbqjghqH3j98YhbgkfnGQBV/QBPzqKyVPkGy/uv4R0Lll25ciVatGiRKBv2+2Ge/uYCqr7otOUheu4U+1QF3qL4RSbH4PVzLfuwiOIyUTk/QdnzYjdeOQ9eLBJ8zjb8RJ4O3j0UFxcLY7i4+QMKYfvOs3uqzat0x6+XKv0OjgkinbbV3v2I7FI1HsqetSrWUtlwHtO08hNPPFHcWF4e3nvvPZ3mYsFPP/2EFi1a5LobDkdOWLlyJQ444IBcdyMUzoYd1Rlnww6H/Tg7djjsRmXD2pPuJFJZWYnFixejc+fO3NXuuLN582a0aNHCyr4Ddvff5r4zxrBlyxY0b94c+fna3zSJFbbbMGC3Ltncd8De/jsbjhe26hFgd98Bu/vv7Dg+2KxHgN39t7nvVBs2+p3upJGfn4/9998fAFBUVGTdw/awue+A3f23te9J+S5ZUmwYsLv/NvcdsLP/zobjh839t7nvgL39d3YcL2zuO2B3/23te6S/033WWWeRyr3yyivUJh0Oh8PhcDgcDofD4Ug05El3UrJwDofD4XA4HA6Hw+FwZAvypPvpp5/OZD9yTmFhIcaOHYvCwsJcd0Ubm/sO2N1/m/ueNGx/Fjb33+a+A/b3PynY/hxs7r/NfQfs73+SsPlZ2Nx3wO7+29x3Ku5Fag6Hw+FwOBwOh8PhcGQIu1+T6HA4HA6Hw+FwOBwOR4xxk26Hw+FwOBwOh8PhcDgyhJt0OxwOh8PhcDgcDofDkSHcpNvhcDgcDofD4XA4HI4M4SbdAB599FG0bt0atWvXRo8ePfCf//wn112qwsSJE3HEEUdgv/32Q9OmTdG/f38sXrw4rcwJJ5yAvLy8tL/LL788Rz1OZ9y4cVX61rFjx9T5nTt3YuTIkWjUqBHq16+PAQMGYO3atTnscTqtW7eu0v+8vDyMHDkSQLxlXx2wwYYBu+3Y2bAj09hgxzbbMGC3HTsbjj822DBgtx3bbMNA9bbjaj/pnj59Oq677jqMHTsWCxYswCGHHILy8nKsW7cu111LY+7cuRg5ciQ+/vhjvPPOO9izZw9OOeUUbNu2La3ciBEjsHr16tTfX/7ylxz1uCpdunRJ69uHH36YOjdq1Cj8z//8D1588UXMnTsXq1atwllnnZXD3qbz6aefpvX9nXfeAQCcc845qTJxln2SscWGAfvt2NmwI1PYYse22zBgrx07G443ttgwYL8d22rDQDW3Y1bNOfLII9nIkSNTn/ft28eaN2/OJk6cmMNeqVm3bh0DwObOnZs61qtXL3bNNdfkrlMSxo4dyw455BDuuU2bNrGaNWuyF198MXXsm2++YQDYvHnzstRDPa655hrWrl07VllZyRiLt+yTjq02zJhdduxs2JFJbLVjm2yYsWTZsbPheGGrDTNmlx0nyYYZq152XK1Xunfv3o358+ejT58+qWP5+fno06cP5s2bl8OeqamoqAAAlJSUpB1/7rnn0LhxY3Tt2hWjR4/G9u3bc9E9LkuWLEHz5s3Rtm1bnH/++VixYgUAYP78+dizZ0/ac+jYsSNatmwZy+ewe/duTJs2DRdddBHy8vJSx+Ms+6Risw0D9tmxs2FHJrDZjm2zYSAZduxsOF7YbMOAfXacBBsGqp8d18h1B3LJL7/8gn379qFZs2Zpx5s1a4Zvv/02R71SU1lZiWuvvRbHHHMMunbtmjp+3nnnoVWrVmjevDn++9//4qabbsLixYvxyiuv5LC3v9GjRw9MmTIFBx10EFavXo3x48fjuOOOw6JFi7BmzRrUqlULDRo0SKvTrFkzrFmzJjcdlvDqq69i06ZNGDZsWOpYnGWfZGy1YcA+O3Y27MgUttqxbTYMJMeOnQ3HC1ttGLDPjpNiw0D1s+NqPem2lZEjR2LRokVp3+EAgEsvvTT1/27duqGsrAwnnXQSli1bhnbt2mW7m2n069cv9f+DDz4YPXr0QKtWrfCvf/0LderUyWHP9HnqqafQr18/NG/ePHUszrJ3xBPb7NjZsMORjm02DCTHjp0NO6LCNjtOig0D1c+Oq/X28saNG6OgoKDKW/3Wrl2L0tLSHPVKzpVXXol///vfmD17Ng444ABp2R49egAAli5dmo2uadGgQQMceOCBWLp0KUpLS7F7925s2rQprUwcn8OPP/6Id999F5dccom0XJxlnyRstGEgGXbsbNgRFTbacRJsGLDTjp0Nxw8bbRhIhh3baMNA9bTjaj3prlWrFrp3745Zs2aljlVWVmLWrFno2bNnDntWFcYYrrzySsyYMQPvvfce2rRpo6zz+eefAwDKysoy3Dt9tm7dimXLlqGsrAzdu3dHzZo1057D4sWLsWLFitg9h6effhpNmzbFaaedJi0XZ9knCZtsGEiWHTsbdkSFTXacJBsG7LRjZ8PxwyYbBpJlxzbaMFBN7Ti373HLPS+88AIrLCxkU6ZMYV9//TW79NJLWYMGDdiaNWty3bU0/vjHP7Li4mI2Z84ctnr16tTf9u3bGWOMLV26lN1+++3ss88+Yz/88AP7f//v/7G2bduy448/Psc9/43rr7+ezZkzh/3www/so48+Yn369GGNGzdm69atY4wxdvnll7OWLVuy9957j3322WesZ8+erGfPnjnudTr79u1jLVu2ZDfddFPa8bjLPunYYsOM2W3HzoYdmcQWO7bZhhmz346dDccXW2yYMbvt2HYbZqz62nG1n3QzxtjDDz/MWrZsyWrVqsWOPPJI9vHHH+e6S1UAwP17+umnGWOMrVixgh1//PGspKSEFRYWsvbt27M//elPrKKiIrcd//8599xzWVlZGatVqxbbf//92bnnnsuWLl2aOr9jxw52xRVXsIYNG7K6deuyM888k61evTqHPa7KW2+9xQCwxYsXpx2Pu+yrAzbYMGN227GzYUemscGObbZhxuy3Y2fD8cYGG2bMbju23YYZq752nMcYY9lZU3c4HA6Hw+FwOBwOh6N6Ua2/0+1wOBwOh8PhcDgcDkcmcZNuh8PhcDgcDofD4XA4MoSbdDscDofD4XA4HA6Hw5Eh3KTb4XA4HA6Hw+FwOByODOEm3Q6Hw+FwOBwOh8PhcGQIN+l2OBwOh8PhcDgcDocjQ7hJt8PhcDgcDofD4XA4HBnCTbodDofD4XA4HA6Hw+HIEG7S7XA4HA6Hw+FwOBwOR4Zwk26Hw+FwOBwOh8PhcDgyhJt0OxwOh8PhcDgcDofDkSHcpNvhcDgcDofD4XA4HI4M4SbdDofD4XA4HA6Hw+FwZAg36XY4HA6Hw+FwOBwOhyNDuEm3w+FwOBwOh8PhcDgcGcJNuh0Oh8PhcDgcDofD4cgQbtLtcDgcDofD4XA4HA5HhnCTbocjQ4wbNw55eXm57obD4dBgzpw5yMvLw5w5c3LdFYfDYcCUKVOQl5eH5cuX57orDofDkCT6YjfpjpC8vDzSX64V6IQTTkDXrl3TjrVu3Tqtj02bNsVxxx2HGTNmVKnrlcnPz0dRUREOOuggDBkyBO+88042b4PM9OnT0bNnT9SrVw8NGjTA0Ucfjffee69KuaeeegqdOnVC7dq10aFDBzz88MM56K0jLjh7zo09z5o1CxdddBEOPPBA1K1bF23btsUll1yC1atXVym7Z88ejB8/Hm3btkVhYSHatm2LCRMmYO/evTnouSNuOBvOjQ37+xT8q1mzZlrZrVu34tprr8UBBxyAwsJCdOrUCZMmTcpJvx3xxNlxbuz4/fffxxlnnIEWLVqgdu3aKC0tRd++ffHRRx9VKSuy+b59++ag5/GlRq47kCSmTp2a9vnZZ5/FO++8U+V4p06dstktMoceeiiuv/56AMCqVavw97//HWeddRYmTZqEyy+/PFXugAMOwMSJEwEA27Ztw9KlS/HKK69g2rRpGDhwIKZNm1bFseaKcePG4fbbb8fZZ5+NYcOGYc+ePVi0aBF+/vnntHJ///vfcfnll2PAgAG47rrr8MEHH+Dqq6/G9u3bcdNNN+Wo945c4uw5N/Z80003YePGjTjnnHPQoUMHfP/993jkkUfw73//G59//jlKS0tTZS+44AK8+OKLuOiii3D44Yfj448/xpgxY7BixQo8/vjjWeuzI544G86NDd9666245JJL0o5t27YNl19+OU455ZTUsX379qG8vByfffYZRo4ciQ4dOuCtt97CFVdcgV9//RW33HJL1vrsiC/OjnNjx9999x3y8/Nx+eWXo7S0FL/++iumTZuG448/Hq+//nqVCbW//x7NmzfPWn+tgDkyxsiRIxlFxNu2bctCb/6PXr16sS5duqQda9WqFTvttNPSjq1evZrVq1ePHXjggdK6jDG2d+9edsUVVzAA7MYbb8xMxzWZN28ey8vLYw888IC03Pbt21mjRo2q3P/555/P6tWrxzZu3Gh0/bFjx5Kev8MOnD1nh7lz57J9+/ZVOQaA3Xrrralj//nPfxgANmbMmLSy119/PcvLy2NffPGF0fVnz57NALDZs2cb1XfEF2fDuWPq1KkMAHvuuedSx/71r38xAOypp55KKztgwABWu3ZttnbtWqNrPf300wwA++GHH8J02RFTnB3njm3btrFmzZqx8vLytOOi/ochib7YbS/PMt72k/nz5+P4449H3bp1U9ncvLw8jBs3rkqd1q1bY9iwYWnHNm3ahGuvvRYtWrRAYWEh2rdvj3vuuQeVlZWR9bW0tBSdOnXCDz/8oCxbUFCAhx56CJ07d8YjjzyCioqKyPphyoMPPojS0lJcc801YIxh69at3HKzZ8/Ghg0bcMUVV6QdHzlyJLZt24bXX39dea0PP/wQRxxxBGrXro127drh73//u7DstGnT0L17d9SpUwclJSUYNGgQVq5cWaXco48+irZt26JOnTo48sgj8cEHH+CEE07ACSecoOyPIzs4e46e448/Hvn5+VWOlZSU4Jtvvkkd++CDDwAAgwYNSis7aNAgMMYwffp05bV++ukn9O/fH/Xq1UPTpk0xatQo7Nq1i1v2k08+Qd++fVFcXIy6deuiV69e3G12c+bMweGHH542Frj3O8QXZ8PZ4fnnn0e9evXwhz/8IXVMZsM7d+7E//t//0/Z7ldffYXevXujTp06OOCAAzBhwgShzGfOnInjjjsO9erVw3777YfTTjsNX331VZVyL774Ijp37ozatWuja9eumDFjBoYNG4bWrVtr3LEjmzg7zg5169ZFkyZNsGnTJu75vXv3CmNtGdXFF7vt5Tlgw4YN6NevHwYNGoQLLrgAzZo106q/fft29OrVCz///DMuu+wytGzZEv/7v/+L0aNHY/Xq1XjwwQcj6eeePXuwcuVKNGrUiFS+oKAAgwcPxpgxY/Dhhx/itNNOk97D9u3bSW02bNiQ3Gc/s2bNwtFHH42HHnoIEyZMwIYNG1BaWopbb70VV155ZarcwoULAQCHH354Wv3u3bsjPz8fCxcuxAUXXCC8zpdffolTTjkFTZo0wbhx47B3716MHTuW+1zvvPNOjBkzBgMHDsQll1yC9evX4+GHH8bxxx+PhQsXokGDBgCASZMm4corr8Rxxx2HUaNGYfny5ejfvz8aNmyIAw44wEgejszg7Dnz9rx161Zs3boVjRs3Th3zHHKdOnXSytatWxcAMH/+fGmbO3bswEknnYQVK1bg6quvRvPmzTF16lTu+x7ee+899OvXD927d8fYsWORn5+Pp59+Gr1798YHH3yAI488EsBvY0nfvn1RVlaG8ePHY9++fbj99tvRpEkT7Xt2ZA9nw5m14fXr1+Odd97Bueeei3r16qWO79q1CwUFBahVq1Zaeb8NjxgxQtjumjVrcOKJJ2Lv3r24+eabUa9ePTz++ONVxgTgty3KQ4cORXl5Oe655x5s374dkyZNwrHHHouFCxemJtSvv/46zj33XHTr1g0TJ07Er7/+iosvvhj777+/1j07so+z48zY8ebNm7F792788ssvePbZZ7Fo0SLuVz++++471KtXD7t370azZs0wYsQI3Hbbbcot8dXKF+d6qT3J8LbA9OrViwFgkydPrlIeABs7dmyV461atWJDhw5Nfb7jjjtYvXr12HfffZdW7uabb2YFBQVsxYoV0n6JtsCccsopbP369Wz9+vXsiy++YIMGDWIA2FVXXSWt62fGjBkMAPvb3/4m7YO39Vr116pVK2k7IjZu3MgAsEaNGrH69euze++9l02fPp317du3ivxHjhzJCgoKuO00adKEDRo0SHqt/v37s9q1a7Mff/wxdezrr79mBQUFac9/+fLlrKCggN15551p9b/88ktWo0aN1PFdu3axRo0asSOOOILt2bMnVW7KlCkMAOvVqxdZDo7ocPYsJtP2fMcddzAAbNasWaljL7/8MgPApk6dmlZ28uTJDADr2rWrtM0HH3yQAWD/+te/Use2bdvG2rdvn7alrbKyknXo0IGVl5ezysrKVNnt27ezNm3asJNPPjl17PTTT2d169ZlP//8c+rYkiVLWI0aNdxXTWKAs2ExmbThhx9+mAFgb7zxRtrx+++/nwFgH3zwQdrxm2++mQFgv//976XtXnvttQwA++STT1LH1q1bx4qLi9O2l2/ZsoU1aNCAjRgxIq3+mjVrWHFxcdrxbt26sQMOOIBt2bIldWzOnDmhxi9HtDg7FpMJOy4vL0/Vq1WrFrvsssvYjh070spcdNFFbNy4cezll19mzz77LDvjjDMYADZw4EBl+9XJF7uV7hxQWFiI4cOHG9d/8cUXcdxxx6Fhw4b45ZdfUsf79OmDu+++G++//z7OP/987XbffvvttCxQQUEBhgwZgnvuuYfcRv369QEAW7ZskZa78MILceyxxyrb42WsKXjbWzZs2IAXXngB5557LgDg7LPPRrdu3TBhwgRcdtllAH7LsgUz7R61a9fGjh07hNfZt28f3nrrLfTv3x8tW7ZMHe/UqRPKy8vxxhtvpI698sorqKysxMCBA9OeW2lpKTp06IDZs2fjlltuwWeffYYNGzZg4sSJqFHj/0z0/PPPx6hRowyk4cgkzp4za8/vv/8+xo8fj4EDB6J3796p46eeeipatWqFG264AXXr1kX37t3xySef4NZbb0WNGjWkdgsAb7zxBsrKynD22WenjtWtWxeXXnopbrzxxtSxzz//HEuWLMGf//xnbNiwIa2Nk046CVOnTkVlZSUYY3j33Xdx5plnpr08pn379ujXrx/+53/+R/veHdnB2XBmbfj5559HkyZNcPLJJ6cdP++883D77bfjoosuwqOPPooOHTrg7bffxmOPPQYAJBs+6qijUqtbANCkSROcf/75qTYA4J133sGmTZswePDgtOdTUFCAHj16YPbs2QB+e8nVl19+iVtuuSUlNwDo1asXunXrhs2bN2vfuyN7ODvOjB3ffffduP7667Fy5Uo888wz2L17d5VfCHnqqafSPg8ZMgSXXnopnnjiCYwaNQpHHXWUsP3q5IvdpDsH7L///sJJHoUlS5bgv//9r3CbxLp164za7dGjByZMmIC8vDzUrVsXnTp1Sm13puJNdvfbbz9pubZt26Jt27ZG/fSzY8eOKt9xKS0tTQ0oNWvWTDPk/Px8nHvuuRg7dixWrFiBli1bok6dOti9eze3/Z07d0oHp/Xr12PHjh3o0KFDlXMHHXRQ2qR7yZIlYIxxy3p9BYAff/wRwG8DhJ8aNWq475TFEGfP0dlzkG+//RZnnnkmunbtiieffDLtXO3atfH6669j4MCBGDBgAIDfgq6//OUvuPPOO9OCZh4//vgj2rdvX+X7XQcddFDa5yVLlgAAhg4dKmyroqICO3fuxI4dO6rYLVDVlh3xwtlw5mz4+++/x7x583DllVemJZGB33z1a6+9hiFDhqTeal5UVISHH34YQ4cOJdlwjx49qhwX2bA/aeenqKgo1R7At9f27dtjwYIF0v44couz48zY8aGHHpr6/wUXXIDf/e53GDZsGF566SVpveuvvx5PPPEE3n33Xemkuzr5YjfpzgG6meJ9+/alfa6srMTJJ5+clgHyc+CBBxr1q3HjxujTp49RXY9FixYBUCu29x1NFQUFBdLvYEyfPr1KZpMxhpKSEtSuXRsNGjRAQUFB2vmmTZsCAH799Ve0bNkSZWVl2LdvH9atW5c6BwC7d+/Ghg0bIvvJg8rKSuTl5WHmzJlV+gRAGWA44omz5+js2c/KlStxyimnoLi4GG+88QY32OjSpQsWLVqEr7/+Gr/++is6d+6MOnXqYNSoUejVqxfpOiq8F+jce++9acGHn/r162Pnzp2RXM+RfZwNZ8aGgd9WuQEIVwiPP/54fP/99/jyyy+xbds2HHLIIVi1ahUAc7kF8Wx46tSpaT856BFMBjjsxNlx5uzYo1atWjjjjDNw9913Y8eOHVKZt2jRAgCwceNG7evwSIIvdiNNjGjYsGGVNwLu3r0bq1evTjvWrl07bN26NbQRR82+ffvw/PPPo27dusrtLffddx/Gjx+vbLNVq1ZYvny58Hx5eTneeeedKsfz8/Nx6KGH4tNPP8Xu3bvTsp+eQ/cGHM94P/vsM5x66qmpcp999hkqKyuFxu21UadOnVQGzs/ixYvTPrdr1w6MMbRp00Y6eLdq1QoAsHTpUpx44omp43v37sXy5ctx8MEHC+s64oOz56qo7Nljw4YNOOWUU7Br1y7MmjULZWVlwrJ5eXno0qVL6vMbb7yByspKpTxbtWqFRYsWgTGWlmHn2S3w22qYrM2mTZuidu3aWLp0aZVzvGOO+ONsuCpUG/Z4/vnn0a5dO+lKV0FBQZqffffddwGAZMNU3wv8ZqOyNv2+N4izYXtxdlwVXTv2s2PHDjDGsGXLFumk+/vvvwcA5eS+OvliN+mOEe3atcP777+fduzxxx+vko0bOHAgxo0bh7feegvl5eVp5zZt2oT69etnPXO7b98+XH311fjmm29w8803p7ZriYjqeydlZWXCgPzcc8/Fxx9/jGeeeSb1BtSdO3fiueeeQ+fOnVMr2L1790ZJSQkmTZqUNumeNGkS6tatK31TZEFBAcrLy/Hqq6+mtqsDwDfffIO33norrexZZ52F0aNHY/z48Zg2bVra4MIYw8aNG9GoUSMcfvjhaNSoEZ544gkMHz489Syfe+45/Prrr1J5OOKDs+eqUFYitm3bhlNPPRU///wzZs+eLfw6Bo8dO3ZgzJgxKCsrw+DBg6VlTz31VLz99tt46aWXcM455wD47c2vjz/+eFq57t27o127drjvvvtw3nnnVdmRsn79ejRp0gQFBQXo06cPXn31VaxatSo1vixduhQzZ84k34MjPjgbrorOauLChQvxzTffYMyYMeQ669evxz333IODDz5YOfk59dRT8eCDD+I///lP6nvd69evx3PPPZdWrry8HEVFRbjrrrtw4oknVnmbsmfDzZs3R9euXfHss89i9OjRKVufO3cuvvzyy9Sk3GEXzo6rQrHj4O5P4Dc5vPzyy2jRokXq3ObNm1FYWIjCwsJUOcYYJkyYAABVZBmkOvliN+mOEZdccgkuv/xyDBgwACeffDK++OILvPXWW2k/kwMAf/rTn/Daa6/h97//PYYNG4bu3btj27Zt+PLLL/HSSy9h+fLlVepESUVFBaZNmwbgN8NYunQpXnnlFSxbtgyDBg3CHXfcoWwjU98f83PZZZfhySefxMiRI/Hdd9+hZcuWmDp1Kn788ce0FynUqVMHd9xxB0aOHIlzzjkH5eXl+OCDDzBt2jTceeedKCkpkV5n/PjxePPNN3HcccfhiiuuwN69e/Hwww+jS5cu+O9//5sq165dO0yYMAGjR49O/QTYfvvthx9++AEzZszApZdeihtuuAG1atXCuHHjcNVVV6F3794YOHAgli9fjilTpqBdu3bu934twdmzGeeffz7+85//4KKLLsI333yT9tvc9evXR//+/VOfBw4ciObNm6Nz587YvHkz/vGPf+D777/H66+/rvzu24gRI/DII4/gwgsvxPz581FWVoapU6emfq7IIz8/H08++ST69euHLl26YPjw4dh///1TSYGioqLUeDJu3Di8/fbbOOaYY/DHP/4R+/btwyOPPIKuXbvi888/j0Q+juzhbDgc3uRX9vKpXr16oWfPnmjfvj3WrFmDxx9/HFu3bsW///1v5OfnS9u/8cYbMXXqVPTt2xfXXHNN6ifDWrVqleZ7i4qKMGnSJAwZMgS/+93vMGjQIDRp0gQrVqzA66+/jmOOOQaPPPIIAOCuu+7CH/7wBxxzzDEYPnw4fv3115QNm/z+sCP3ODs2o1+/fjjggAPQo0cPNG3aFCtWrMDTTz+NVatWYfr06alyCxYswODBgzF48GC0b98eO3bswIwZM/DRRx/h0ksvxe9+9zvpdaqVL87Va9OrA6KfNRD9LMC+ffvYTTfdxBo3bszq1q3LysvL2dKlS6v8rAFjv/0ExujRo1n79u1ZrVq1WOPGjdnRRx/N7rvvPrZ7925pv0Q/a3Daaacp78n7WQbvr379+qxDhw7sggsuYG+//bayfrZZu3YtGzp0KCspKWGFhYWsR48e7M033+SWffzxx9lBBx3EatWqxdq1a8f++te/pv0sgYy5c+ey7t27s1q1arG2bduyyZMnp366IcjLL7/Mjj32WFavXj1Wr1491rFjRzZy5Ei2ePHitHIPPfQQa9WqFSssLGRHHnkk++ijj1j37t1Z37599QXhCI2z5+zQqlUr8s+c3HPPPaxjx46sdu3arGHDhuyMM85gCxcuJF/rxx9/ZGeccQarW7cua9y4MbvmmmvYm2++mfYzJR4LFy5kZ511FmvUqBErLCxkrVq1YgMHDkz7GTPGGJs1axY77LDDUuPIk08+ya6//npWu3ZtQ4k4osLZcPbYt28f23///dnvfvc7ablRo0axtm3bssLCQtakSRN23nnnsWXLlpGv89///pf16tWL1a5dm+2///7sjjvuYE899VTaT4Z5zJ49m5WXl7Pi4mJWu3Zt1q5dOzZs2DD22WefpZV74YUXWMeOHVlhYSHr2rUre+2119iAAQNYx44dyf1yZA5nx9nhkUceYcceeyxr3Lgxq1GjBmvSpAk7/fTT2fvvv59W7vvvv2fnnHMOa926NatduzarW7cu6969O5s8eTI5hq4uvjiPMcayNcF3OBzmVFZWokmTJjjrrLPwxBNP5Lo7DoeDSP/+/fHVV19xv3/qcDjiz6GHHoomTZpw3yHjcDjsINe+WL53x+Fw5ISdO3cimA979tlnsXHjRpxwwgm56ZTD4VAS/G3hJUuW4I033nB263BYwJ49e6r8BvGcOXPwxRdfOBt2OCwijr7YrXQ7HDFkzpw5GDVqFM455xw0atQICxYswFNPPYVOnTph/vz5oX6L0uFwZI6ysjIMGzYMbdu2xY8//ohJkyZh165dWLhwodZL4RwOR/ZZvnw5+vTpgwsuuADNmzfHt99+i8mTJ6O4uBiLFi1Co0aNct1Fh8NBII6+2L1IzeGIIa1bt0aLFi3w0EMPYePGjSgpKcGFF16Iu+++2024HY4Y07dvX/zzn//EmjVrUFhYiJ49e+Kuu+5yE26HwwIaNmyI7t2748knn8T69etRr149nHbaabj77rvdhNvhsIg4+uLErHQ/+uijuPfee7FmzRoccsghePjhh1M/IeFwOOKPs2GHw36cHTscduNs2OHIDNrf6Z4yZQr3+N69ezF69Oiw/TFi+vTpuO666zB27FgsWLAAhxxyCMrLy7Fu3bqc9MfhcOjhbNjhsB9nxw6H3Tgbdjgyh/ZKd1FREcrLy/H444+jYcOGAIDFixfjvPPOw4YNG7B8+fJM9FNKjx49cMQRR6R+Z7GyshItWrTAVVddhZtvvjnr/XE4HHo4G3Y47MfZscNhN86GHY7Mof2d7oULF+KCCy5At27d8PTTT+O7777DjTfeiP79++Oxxx7LRB+l7N69G/Pnz09bZc/Pz0efPn0wb948bp1du3Zh165dqc+VlZXYuHEjGjVqhLy8vIz32eGIA4wxbNmyBc2bN0d+fu5+yMDZsMNhRlxsGNC3Y2fDDsdvxMWOnS92OMyg2rD2pLtdu3b46KOPcO2116Jv374oKCjAM888g8GDB4fqsCm//PIL9u3bh2bNmqUdb9asGb799ltunYkTJ2L8+PHZ6J7DEXtWrlyJAw44IGfXdzbscIQj1zYM6Nuxs2GHI51c27HzxQ5HOFQ2bPT28tdffx0vvPACevbsie+++w5PPfUUevXqhebNmxt3NJuMHj0a1113XepzRUUFWrZsiZUrV6KoqCitbHFxcdrniooK4TkV/rr++rI2g3VsRyYz1b2q5C2Sr841VBQXFyfmmWzevBktWrTAfvvtl+uuaCOyYRnec/PrRfCY6LOHyD4peiFqM4mI5OmhI2fdNmyXM6X/QVkkzYapduc/R9UpkVyTNLaboGtHOjZO8c0615ZdL67I5JtUX0zVHf+xICr94rUdlS7kypeYXpdia6pxUfUcKHVUvlnUF5uh2rD2pPuyyy7DM888gzvvvBPXXXcd1q5di4suugjdunXDpEmTMHDgQONOm9C4cWMUFBRg7dq1acfXrl2L0tJSbp3CwkIUFhZWOV5UVCRUOP9X36lbZrw6Xnmvbe948HzwOmHIy8uLrK1gu4B5P4P3zBhL/T+Y8FDVDRKs729bVEYXnfsOK6uoEfUn11vAorThioqKKjYcvF+eLYvKBM+LniVP14JtxUUPMoHKJoPyVCU3PWRyDdYJXstWKPrp4el7rm0Y0LdjkQ0DYl/p4fdvIr8QbCN43MN/Pqx/sBVevCAaA4ME5RyMd4L/l7Vl4jPjaO+8+5D5oWC9XBGlLwaq2hPPRlXPT1d3/HXC6kaudEt1XVWsITum66v956n2KfLFcbTVqPB0TmXD2l8e+eijj/DJJ5/g+uuvR15eHkpLS/HGG2/g9ttvx0UXXWTW2xDUqlUL3bt3x6xZs1LHKisrMWvWLPTs2VOrLW8A4P3l5eWl/lR4dYKfg8d554NQr8lrMxOI+iki2H/e/VDb9OpSnlGwrGl/Vcdl6F4708StPx5R23AQng6qynioZOavJ9LLpCGzYZFNiqDITDSeij5HacNxJY66FZUdV1RUCJ+pf1xXjfVBHVTpjf86tkO9D79sZOdkuqaSs7+MalzQ0es42oBHnPsmI0pfzFvFlPkIkS+gyjLJPjeISDa8WFt3LAheQ1Y2KeOlCtkcxvtMXbXXXumeP38+N6s1cuRI9OnTR7e5SLjuuuswdOhQHH744TjyyCPx4IMPYtu2bRg+fLh2W8FMDu+zKtPGC0ip19WpYwOirBlvoNC9Z1W2TzYYiPoj6kMU/XWIicqGKyoqUllWmS2rnqFIP6gr30lEtlOCd4xXVnSesgtDNib7P1Ns2BZs63NUdqyzkiOqI/qsoze2jvVUW+GhG0TrXINi5zxkbcf5GcnixbgSZTztYaJ3VN/Aa1PXH9mOzhyDKgNeeZ1xJEnwZGCK9qS7sLAQy5Ytw9NPP41ly5bhb3/7G5o2bYqZM2cqv1OZKc4991ysX78et912G9asWYNDDz0Ub775ZpWXQajwb01VOWzZOZOAvjoqrwhd+cnqmwQdKmx5VipnFafv00RlwzxEKyr+c7yVGV4blIQOtQ3bkAXKqqShSF6UJKeqHybE8VlQfIxHnPrtJyo7piZrZHVNbFZEHPWFgonfo45bujauc00d4vxMZMmBuOpUVDZM2TrOS6oGz4WZfIvaTjJUX6FKcvDK647LcdVxXSjJ/82bN9PaYprSmDt3Lvr164djjjkG77//Pr755hu0bdsWd999Nz777DO89NJLOs3Fgs2bN6deQKD6/kgYxx1GIZOmvDo7B6hBFO942JW2JOKfdHt6b/t3GXk2TFkd8aDsyPBTHfUlEytZlEArrI2a9DdKMnkNvy0nxYb9yPSDOqk2kbvuTo24Q7HhqAJnnVVNXdu2Te4U/HqbdDumjO8idJ55dZkEymLesHYrex5RjYs27gQRxYj+GFRmw9rf6b755psxYcIEvPPOO6hVq1bqeO/evfHxxx/rNmcNeXlVv3fiIfoc/PPaCLalc11b8PqtgppwCK6qUdsOyjwoT9FnR/LgPduonrtft2TXsxHR+Ma7Z1UbojFR1DavDeo1KWNnNsbVKK4h0q047VaJCt498Z6laAxXIdMfXX22BVXMwvOBKrmKZCVqh2fnos/U+7ABke0mxT+IkH2n23/vvNiaEj978D6r9MQ22ZvYD8/GZXqn8q+ytkznKbbZMlA1ltFFe3v5l19+ieeff77K8aZNm+KXX37R7kDcCGZ5gsrHy8zoZIhM+5MUeLITyVNWR3ZcVld1Pmny5uHPzCUR2QQL0Muui3SNdw3bdCls1l8V1FDqqLLyQUcvu27wvKxc3J9NEJFckm7Dsmcu8rsq25a1bZteiKDaNqUc1ZZlfpsXR/nLhB2LMkUm+kWJW5KA6KWmfih6FxzPRbE5r02qT4grunYiuz/qvYvGT8rcR4Qt9i4jqnvQnnQ3aNAAq1evRps2bdKOL1y4EPvvv79uc9bhZYJ06/iR1VdNKG1RUlVg7C9HnWRTr+kflKOWo00Bu+pedX9n3jZkQbhKp0QOnjJZt8VWdfunE1TrOiYdR69qI6pyccIWncolKttM6uTGDzUx5SGboFDHPN1rUs/FgSjsTSVPxhh3S7btUF5qykuAU+M/yrOJIumUS6iJ/OAquP+Y7mIgRRaqtlX91pF3XJ5RVNfXnnQPGjQIN910E1588UXk5eWhsrISH330EW644QZceOGFkXQql+g4nqhWtv0Dj0kGKylQ5UldyfCX0Q1CdFY4c4ns/lR95b3DwHb8L29RrapS0NkpERfnkCkoCSzTAJ0iu6iy7Dp1c41KV5NmvwDfhnWSXKpAMMqdUrZgou9RrkpRJp4U4m63ssmHLLGYdHR8LzX+C5a3cSIngjoP4Y15ppNtEZS2VbsQohg7cgkv+W/aL+1J91133YWRI0eiRYsW2LdvHzp37ox9+/bhvPPOw5///GejTsQR1XYoXhkP3ZVa/2qvzdsvgHDbX1TyVK068j5T5Rn3ybUIk6ykRxIDdh46k0PdLDtP13JJlONGGFsOlgkTSOmudFAcfhyeFQVVoJ7ExJnse+oyfQqz4urVs9Xvepj2m7fiGGzTNHgPI1fR5EJWJpeYrL4mddLNG5coz083FjZ57nHQFRlhVqt1FqX8iCbMPF8cNjESJ5ulQNFbqh/WnnTXqlULTzzxBMaMGYNFixZh69atOOyww9ChQwfdpmKJjkLqOnfKKo7tA7BKJiYrWaJyqsQIZcuNySqZbYj6Xt0Cdh7UDC0loI+DjkTZB+rKIGVSS7Uz3nHdMSXMGJQNbA9AcomJf4xyZ4utz0onVlHdm+6EgJf8VvWD6p+pZeKE7TGeCZSxznRXYpIR+TbKxJhqpybJDN1x0tZFLRnBe6DG09qTbo+WLVvm7He5MwXvdwVlCqq70h3lCkyunD/1urrlZHUpuw545XiZOV15JWFw8AjKJ4lvPqbAWz3VzQ7bGnyboHLKvImx6RY3mU3LttTJ+ilqO1foJgn8ZYL3mtQXqXlQEhS6z9/EJ9hi71H7Z0pdqj+WEXe5miKTgf+ek/idbsBs14mpD6YsiNmKySRWN7mjY7+6STJbxs8wRLrSfd1115Ev/MADD5DLxhmTbGQUgXkUWahMojuJpqySqbas6A7cJtl7EUkaLIL3UF0DdtEx3TaC5ZKgIzpQxkjdybfuThRqmTgQxVhiy71GBXWlx49I50x2bNg2/kfRz0wk1k1W7GyEN35FkZSwkYqKCuVuJFmspkruVKedQibJC92ylIUI3X7o+PFcEoUORbrSvXDhwrTPCxYswN69e3HQQQcBAL777jsUFBSge/fuBl2NF9RVVlldD2qg6X/QcVdOEdStQTLHY3rvYVYqVP22/XkA9t5DVMhWx0SfPVQZZcpODVuhrmhRduyYrnzz2rRVviZJWdvuMSqimKiY7q6oTvD8hKmNyiZF1LGD+iziluQMu2siiSvd1PvRfY6qyTevTepilm1Q4umwCwuydqhyjbvPDrPjx4O6c5Q06Z49e3bq/w888AD2228/PPPMM2jYsCEA4Ndff8Xw4cNx3HHHUfsbe8JkIalZvbgqoAk6zjJYT5Xt1h00eNdK2qRahey+PLkkfXu5aKWLUjaT2zPjiskWtmDdYFnd3SuUfqmO24Kq31FsGbQRf7BusvpiOlGXrcgmDdl4F3ayLRtHorLZuD2XKFYiqwM8+9VN7pr4lLjpS6bgxdNUv6lzXLeNJMjfVC+DaH+n+/7778fbb7+dmnADQMOGDTFhwgSccsopuP7663WbTDyUybbpSrEtiIzTH+hQB99gG6LPlLq2ylMHkf4lfXu5h842qSi2AMZ9cmjqGCkrDEF0HbusL7pylF0rLs9Chmxs9EjiCpkfWeKMGuyI2uDJNm62agr1PsJMtk0S2dQxhlo+7sh2ASVF12ToTOBUdYLnkyS/sPeiI9cokpJRxThx9cU8H6HqZ8ZepLZ582asX7++yvH169djy5Ytus3FCqrQdJVWpaCUBxo3xQwbAFNWzagTZkoQ5UG5fnUhicG6rv2qsuY6zsWWLK9pfyjjnqkzptTTTc6ZTAriAG8VSFQmibtVKioqUFRUBEBun9TVFpUO8nTMVlT6IvOpurYbxWRIJy6IA6Zxj06dpCD7TrdMLiqdMNHxuE7Qw0xW/VCSO6o6lPHRdGHMNl9M6VdQBpFuL/dz5plnYvjw4bj//vtx5JFHAgA++eQT/OlPf8JZZ52l21zsoBi4TmaIcg2bBgkP08m26DOvTZWcTbYZUftpK7L7CB5L6k+GiQJ22cqYatWMoh+2644KmTyp8gt+FtWTTYSoK5y2QknGeseTuFuF8vu+vMREMEhPqn7IMPWhskQk1c9Sxkjdley4+eUwk4243Uumkdmxjt5FkUyNq8wzOdkOfqbKV2fcpCbTbdd9yhyN6ou1J92TJ0/GDTfcgPPOOw979uz5rZEaNXDxxRfj3nvv1W0udqgcjGzLX5Rbo2xVTg/VgMlbjTbd3iarT3WKtsmbsiWrugehMruk2LnsuG36ooNuRjyTsuAl5ZLyDCirAKqkZdKSZkFMVhyo457JjjPbdE8VcPs/U+9JN8FG2ZUQbFt0rbjInTrZAOLX92zhT+q7xFg06EygKTEir1wU2B5fB9EZH1VoT7rr1q2Lxx57DPfeey+WLVsGAGjXrh3q1asXSYdyiSyAoWz5E51XZYSjfKBxQWclXNcRU7fLUFZDROd1+psLdPoQRUYzCYTZfkbZVpWU4Eq1kkDZTUHd4ULRwbATIVuei8luiqTuVgneU5jdKaLPJsmjuOtQENXCgIeJP6G2IbNx3Ym+jWRiUcY2ZL6jusclFFTxq2yyLWqDCqXtsNeIO1Hej/ak26NevXo4+OCDI+tIXKA4DlXgqOt8ZJngpBDm3qmr5mFIivPXGSCTGLD770eWVacGoTq6GddVGRE6iSY/YSbfKigTIVXbtmTZTfpVHVa6ZW8vj4K46oMKk3GFmlig7ChRjQNh+plkVHKsDpNM2T3rLmIFSWIiXDdBY5KwFZ2ntCXqn+lilo2Y3pP2pHvbtm24++67MWvWLKxbtw6VlZVp57///nujjsQB/4sfgvgVMuxKN6+8rUpJNSrKanXYLJos2LZVvipMHLZXJ4kvYfJjsooahW3bMvmOMsmlm3iMImGmWpGPO9TxrLrhfy+DB2XLMnVSaCsUvdbdxh1mIm/i+6vbai8vtuN9TuKvEOi+m4FKmKSTLYTZtUWJtSnXkpU1TXhnKybKRexFtV/tSfcll1yCuXPnYsiQISgrK0uMQ1Mh294mK+M/busAIEN3cIgy6Kb2JcnorFxUB2Sr9zw56Doi0S4X2eTbdiiTb93Vciqya9i+rVxnVV9WJomoJmf+yYxqpbW6yAwQB8Uqf0vZvq+7Uuuvl/TJts5YE/dxKROoEmN+dMd1nZVZ22VuIkdRGdW4KRsTqHLM1Visex2Kzqnkl7GfDJs5cyZef/11HHPMMbpVrUKm3KrMkagN1QqSjURxT2ENhDL4UpMASYGyulBdEmY696sqa6IntukYtZ9RypWCrgO3Rd4iqsNkhYps66iHyN8Gz1cHVJPvYDk/Ua6MifqTNMKsFlYHorjXMPpoavtx891hxjTd+QrlGibjSxyhxBIqXaCudOfrdQ1o2LAhSkpKdKsZMW7cuNR2bu+vY8eOqfM7d+7EyJEj0ahRI9SvXx8DBgzA2rVrQ12TMUZSMn9ZUR2vz6pyNhF8HhR56ZT31xF9FsFrW+e6cYB6rzqI9C9b28uzace8gU8mU5FeiGRmok+51D0TfQo+K9VxmfxU/QjKmXcNalu2QbmPuPiObPtiqv3xdCfYRrBuUvSHgsyugKoykclPVEeETpvBOkmBJ/tc3mMuYmoeIr3023ZYvYxCxrked4OoxjxAPkbq2DPl3uMmH110xkWqn1GhPem+4447cNttt2H79u26VY3o0qULVq9enfr78MMPU+dGjRqF//mf/8GLL76IuXPnYtWqVaF/K1xltDLltV0BKegGgaryFAcsG2D85WQBe5iBJZtQ+6OTmNApmymyaccmz1RVR6THcdOfIGFkIbpX3mRGVz4qneTVi8sENCpM7iMop2y+lyFbNlxcXKwcrynjl8qHVyeoNs0L6EWfPUT+N8zYk6TJN3Xyky2yHVMD4gQYTxdN9Ufkm5KgRzr3IUto6MgiKbKToTMuipIZHlRfrL29/P7778eyZcvQrFkztG7dGjVr1kw7v2DBAt0mpdSoUQOlpaVVjldUVOCpp57C888/j969ewMAnn76aXTq1Akff/wxjjrqKO1r8d58zMsiBeEFh7w61ONxxrTPwXoyOQbLyCaTpv21TfbB/qp0jlcnSDZf3JItO/a/DFGV0PH/K8J2vQkSDHS8Y4D6nkSykukepT+Ua2e6jTjCe1a5vMds+mIPkS8IBta8ssE2VPDkLbqGrcjsUnXvqjYo4y1VfnGTs0jHRJ8pbXgwlt0XqWXTjnWeIyVG5JULe91so2MLur5ZRyaqcVI25ur2zzZ4uqi6x4y9SK1///66VUKxZMkSNG/eHLVr10bPnj0xceJEtGzZEvPnz8eePXvQp0+fVNmOHTuiZcuWmDdvntEAwXtrqkxRVQMudWCmPNC4QDVc0SRRNrDqZPJk1+ahmrTGHZNBVyWnbGYxs2nHHpQAUzeA1Amy4oiXsfX+z0MlE2oQTqmrEwjIglabodyXaNzM5kp3tmyY90Iaih8OojuBtjWIB9QxSBAd/xvWdv1jjq3ojjn+56HSt2zLJpu+WBV7yGJf03hadS7XUPor8rEqHYpyIYryrOKYpDSZT4VZ1PLI2IvUxo4dq1vFmB49emDKlCk46KCDsHr1aowfPx7HHXccFi1ahDVr1qBWrVpo0KBBWp1mzZphzZo10nZ37dqFXbt2pT5v3rw59X/KJJKagVMNDnEcEHTRHTBFn/11qJMCitNKgowpxDlgzIQdi2y4uLiYNKGmJiKSaLvUezG5R1W2XFWOR5wDqCiQjXtxCdjjbMO6O6FkCeA461gmVsh0iDLpZnvyMohMXylxTLZWurNpx7Kf/vPLi7pwE0Q2aVRNKOMGdQFPltgKlqWiu2hIaSOXco4ibvHQ0ZuMrXRnk379+qX+f/DBB6NHjx5o1aoV/vWvf6FOnTrG7U6cOBHjx4+PootGxH0A0IEaTOs4Wd1kheya1AElrpj2kxdA5uqeM2HHMhvW0TnTRI/qeK4J0y+VDILldJJe1KSG7Ppxk7VH1P3z27BOAJQJcm3DweP+c1R7V8ksrnrlIUsOmCaoKcG6bkDNu5bOCpLNyOwzDqv92bZjD4qPUCXRwkyMbNEzlZ1S4hDqhJ3aF95n00RJ3NGRkakvJr1IraSkBL/88guA/3t7uegvkzRo0AAHHnggli5ditLSUuzevRubNm1KK7N27Vru91X8jB49GhUVFam/lStXps4FlVaUifOXUdVRlU8ingy8exV9FjknVVaNV5/3WSRrynOOA6L+i2TgryfSw1zfaxR2LLLhiooK4X3y7juol6rj1PO5Jkr9VumR91nneia2H1dZe4S1L56fCBIXvcukDfsJjnMy/6GSTVL8cPD+ReM/zy6DyNpQoaOLlLHYRnTug/pMskkm7dj/QkSZf+D5ER05xUmepoh8LHXM8o+LwTapclWNKbzrJWVM9RDdDyVWifRFan/961+x3377AQAefPBBUsOZYOvWrVi2bBmGDBmC7t27o2bNmpg1axYGDBgAAFi8eDFWrFiBnj17StspLCxEYWEh6ZqyLJxpdsf2bJAfkXyo2fCwZVT1ouxPnKBk2UT6aZqhi4oo7FjHhnmIZFAd9EV33BKdp7RJXbWQPQfbZG2Kjl/wylK/RxY1mbRh/7ZUkV4A4Xep2IzIfnRtWTRh551TXUNUTzRJSAKq5+AfG4NlRJ+zSbZ8scwvUO1W9TmuUPpJvUeqP5VdX7eNKORMGRPijspOI91ePnToUO7/M80NN9yA008/Ha1atcKqVaswduxYFBQUYPDgwSguLsbFF1+M6667DiUlJSgqKsJVV12Fnj17RvLyJZVjUR2jtOUvF2cl1Bk0gnUobYoMkjpYyPqXtAGaOoH2y1VUJlsBe7btWCRDf2KIEiz5P5sGuXGGMi75y6lWrmV1w/TNtqSmaT/jrEu5suEgPL1QtZFE2w2i6+dk/kLUpuiawTZ5x3Um5JR+x+3ZhekXY9n7Tnc27Zj3nW4eItmpdDpuOiBCJ9ElOk61TcrkW9QGxd/rji9xWehRQfEVUfU91t/p/umnnzB48GBs2LABTZo0wbHHHouPP/4YTZo0AfDbCnx+fj4GDBiAXbt2oby8HI899lgk16YouWmGzraJoIkhiz5TMp4q49cxeFtk7BHFJEVVxpNJtlbIsmnHui9h0kmuqc7boGsmfTNxSFGuQupOmuIsfz86MlGVzTTZ9sUUX6DSC2oCzWZ0k4Oiz365UidBQXTkmkk/l0tkz0O1aJANsu2LPXTGd93zthHG14kmyMHyvDpBwsbZsn7Y7ps9eD5YJDfqIlYes00KGcCfZTRRtCRsnaCiu8XHdLuMH91Awl8uyc9ChWoi5A0S1Ix0nPFs2D/wUeyTuhpmw4SaAmWVn1cnKlTjgO3y5WE6SZGNX0m2YUBvgqfyv7boVpj70F3V59kfZUWOh44NJ333QZiJC0BfHY4zslV7mV3b/uwzie4uFF6ZpNpcJqGMuUFUNhzrle5coBNghnX2uVZ6k+tTM1rU8ibbNqiBe5IGE5Pkhio76v+pvKTgX+kOIgswReTaRqOGdx9UG6ZMlKlBp05AYHvQEGZVT7WSkEQb9iObCOquAonqxYUwK36mE2ad65kuLvjH26SsgIkwSYhUZ3jxXxSLWHG1cRHUJLTO7hOVXEXXVvVRVjaXC5Bhkn6icrJjpivdbtIdgKJMosFTd6tXrgeETF7fxPhEA4ioLZ3VctvRXcGQlUkyvDdIUhJFcbPNTKIbBIpkwrM/0QRIRJiVbqrjzNazjHrXBC9xVh3GvIqKCq0xn7rzLInjYdh7DyNHUT3Vcd0ycYAqC568VTbLWPa+051NZL/TLfoM6CfReMRRn2RJaupkm2qjvHOmbenIP5dyj7J/vLFMFdsk4ne6cwElmNEN0G1zLDr9pGbkdFbJqJMByopG3GWui+qeq0NQroJy7yrbtcVmqfCCwCDUFW2KbHRXdWTjR5iV4mwSdhVPJtfqZNeU9zIA+pO8JNmyaXIwzORbd0JAmWzHnSh1KsnJHx48O6YkailJchuRjeuizyaLAdQEkegaOhP5pDwbFYypd+RmbKV727ZtuPvuuzFr1iysW7cOlZWVaee///573SatwiRra4timky2dcvxDDyKzCYPW+QeRXJApnPVaZUM0F+pkbWhIq4BlMhZ6+iaalUiE4FTXOVpgu69mExScvWTYZmEt9LNu3/T3Sm26xiv39SENWWCrPLDuoE3b8yxRfZh+8mLb3hlkorKjv2TGZPVXFHbtuiXCN2FJp14mjr+8crZIlfdhQPKbp2o4mftSfcll1yCuXPnYsiQISgrK0vcgEFZodVdxbEVne0woroesoHANDNH6bcNAVYm+lad9NSPbAIiu3/TQTmueiVbmTENakTIgp0wK9yi68RV5kGoq2Mm8vfKJP073SJ0VnxssVkVOn5NN7DmlaUmL8OsBtti02EmKtVxsg2kby+n7Fih+mDb7TpMfEpJOOjao45u2yBjWZLPdLzh6W+wDaov1p50z5w5E6+//jqOOeYY3apWoVqh5ZUxVci4Zuh0nKVKFrLzokFVdF7UF1nbSSHM4FwdJ+GA3iQm+NmWoFAH3WBFZduylTfVtUX1KPobN3R1hbIKqRpnk7bK7UFdgZCVjSqpFBdkPlP3nnR0TeV/dVaAbJ0o6Y6ROrJIsh9W2a9sIpdUHyyzYxUmNkbd7RImGR+nZ6TTB2qCQraI5R3P2He6GzZsiJKSEt1qViB7gQsl06HCtgydbHsJNaimTJRNA4YoidOg4SdMv6hBU1IJE3THVR+yCWXC46E7LlCvlUSoKziUnRnVDcrKbLBs2NXgOEOdsKjwB5VUudgSx2SSMPFi0m3YPwmh+OCkTrJF+G0ubOJbtiio0rso5iW2PCuqLxAlcCltqcjXrXDHHXfgtttuw/bt240uaDt5eXmpP2pZD8bELzGKI8H++u89eE50b6pyMnl4ZanyDkNcn42oX0GZyGQk0kPem75tx39PQV0N6pPMluOqD2EJY0c6OiY6r5I773w27D8KdHWG4h9EY2BS9RP4LVgXjW9+O1ahKpcEGarsyEPkh3njoqptal949W2xZSpBGZq2kXRfHETmC4L6mAQ75aFaOZbF27LzumNCUuUrQxQbisr5/y/6o9qw9kr3/fffj2XLlqFZs2Zo3bo1atasmXZ+wYIFuk3GCtHqQ/C8CbZn8FSDhL+MLDgPftbNPqmyUrbLGaBvexF95p0T6XSS4L0xVbbqoLJzVbbYNh0TORZqWdPrqMbRJK0CUW1XtOIgayuor0l9kZp3T7pJDD+22aYJ1HFJpWvBoJ1yLd2+mbQRd0Tylo2z1NXNJKDST1n8pysfW30yD5EtiuQZnEyLzvFQxe5JkGcQ1T3JZCiqm7HvdPfv31+3SqLwDxJRToxsJ8pJiq7xJ1HOqnugBFeqNpIYsAPqoFE2CQ97PNuYBBrUQDGMzaquoTsJtwFq4pEadPMC0mDbSbRfPzKZmiZZkxSciyZyquMydBNmNifIdAkzca5ucqP+ZFhU9mizPUdlY94OAZ1rUn10kjGRhal8tCfdY8eONbqQrfCUP2mrX0HC3Aclsxn8LHJgJm3J6scZlcx1n4m/nEguSXzzsWyVzC9D23dHRKEvotUvaqDO0zFqlp2aVOK1GddnRB2/VLsq/MdtHtNM8QfrHjI56Pph22WoszsseDwIxYZN+hdsxxYb9tBNTAaR3Tuv7ObNmxOdQHMTu/+DEoeYjvuysUHUDxFxt1EK1DhPNafQSWao0J50e8yfPx/ffPMNAKBLly447LDDIulQLvEPepRVsagCIh1DyQY6DpIqA8pWSuo1RPAGrjjJVUYY3eHV5yUzggN6Er9HxgtceDKyfVUszGRb5WCok0JZ9pfixKj9DfbDVnQdf5TZ9epEVInLuMLrv26igaJjKn2lTvBNxt1co5vclslfJaek2jTvxcQePJ0wTdDahsweqEmdTEwOVX7flucgW8iT1ZF99rdFjY9EaE+6161bh0GDBmHOnDlo0KABAGDTpk048cQT8cILL6BJkya6TcYKimAzuSqZDaj9k03kdB2uTrBtOskW9TuJqIIrip4mMbPu/23QILIMM0WesnJxQad/VGcRxsmEDajiLm8TwviFpAboImS6p6sbtupSFIm0YDlZG1RsGxszASWuoSRCkrrSrZOwzaT+xFFHeWOYzi4o3nEZOs/CfzxOMqNgMsZR7lElD+rXNbXfXn7VVVdhy5Yt+Oqrr7Bx40Zs3LgRixYtwubNm3H11VfrNhcrvMycZww84XrHRQGRrG6wXK5Q9U9WT9QGVW6yPqjk4tUJlvM/E9sGCA/qvQfLi+pR5JDElW5ALEu//oh0SVU3zPUzQZhrBW02E3ZkOib6n09SoTy7KPTRRkS6ySsjqqsqZys8OxF95tUV2aPKp4jQ7UOSUN2r38fI/pI44QbE47r/czbsMxc6SYnpZOdkcbSJvxTZPjVmTzIiu9Spm7Hf6X7zzTfx7rvvolOnTqljnTt3xqOPPopTTjlFt7lYwfsuGc8x6WZLqKtq2Ya6Wu0hW3mhyE10nLrKqMriy/oZd8KuMvBko2oziY6e99ugJitEYcim/uley68XqtUxnWy6agxRyVd0bX8gEXe71u0npZzqGST1ZYhU3fRji57oYrIKQ13hlumXjuyrG1RZ+MfbKFYrbUL2bobgpE+GrXpHjYFldYLHKXauKqPyzUnUR+pcR3Y+KvloT7orKyur/EwYANSsWROVlZWhOhNnTAStG3hmG2rygOKQRWVVAb5Ov0TlkhCIZaOfQXklMWCnvkgtSNz1QxeVHcrq6AbZvAy7KgGpKucvbxK85ALdJIbORIiaGE0KOs9Y5Yvipidh4QXW1IkdxedTdl/w2qIk1uP8TCiJag9ZkpDXLq9OdUBnvE9aksdksU21kKSaSMtWp3WTGzz52/pMwsx1ROdMfbL29vLevXvjmmuuwapVq1LHfv75Z4waNQonnXSSbnOxQ7StwFNmz+FRV394f7bB67fqXoLngzLzfw5uexFt8RC1KXsutsjctJ8y3eJtl/HLK4l42XWePsjuW2TTMr2NM1GOORQ9Ul0vWEdULnicUiauiOxNJSOdNpP4FZGKigql//AfM7F3UZtJQaRzovGM4h+otstrT9Qv2xDFJrIxMlhG9DlpUO1YhCretk1+UfRXNMb5ZaW6HjW+rg5QZUAZw6i+WHul+5FHHsEZZ5yB1q1bo0WLFgCAlStXomvXrpg2bZpuc7FFlTFOArpZK14m2DSz7i/vn3zr9IeXCIgjYbKDutnf4AAiI2mr3EEoMhKd08lO24Qoocg7p5KfrC3dfujIOZfZdsq1VXLTHSN5bSfJD8mQ6UnY8d9W2/b7YdF4pdI1yjgg8vXUGMA2wtghxS5N/JHtiOQTxneYlo8a1fhtuojCu0bwvEyOUc1dVJPPOEMdk1RjnmoBwE/GvtPdokULLFiwAO+++y6+/fZbAECnTp3Qp08f3aZiCUWpqM4oKYQJDinnRQMJdTIQd/mH6ZduAO+vJxpkvTpJ3F4OqJ1LJp6HLfj1QvdeoggoTQL0ONl3JnWHZ8vVbZINhH+3SpA46Y8OMlsR6YPK3nQSP7oJSNkYYJvsRajskRfL2BavRAklMZZJf51JwiYJKItYQXQTYrLrJwUde9JZtBKVF42h1Hhaa9K9Z88e1KlTB59//jlOPvlknHzyyTrVY4/sdwU9eEErdWIUN6j9pjhkirLyyvMmh7pZ5LjKNwooGTjeccpqblK3pgYHviTqB3Vs4ZXLhDx09dQ0uJC1mUsoEwuq36A4+KSjmjzqkDT/nImJC09/w65oUwJW21EtDPiPy+KXpP5kGGXBpLokJUx20VHiZ95xSpvUxSzR+bigEyOYJL6p16fW0fpOd82aNdGyZUvs27dPp5qQ999/H6effjqaN2+OvLw8vPrqq2nnGWO47bbbUFZWhjp16qBPnz5YsmRJWpmNGzfi/PPPR1FRERo0aICLL74YW7duNeqPf9BjzPz7DXl56u8axxnRvQdXYPz3JqsTdDzB8sG6IvmFeSaqfsUNkdyo9YKTLN7nKJx8HG1YpSdxfu5UorAFkU6Z2EbQVoN/wbZVY6NsfIgj1ABKJiOezET3HrVM4mbH/uuK/oKIdE7VdrbJhO+hykanXyJ5Uv2yv1zwmG2IZCD6zJN38BlFrQdxtWEevDjFtA1bkOl+0JZE+iTyn7z6IlS6TOl3LmSfjWuqYiLeeKfbL+0Xqd1666245ZZbsHHjRt2qVdi2bRsOOeQQPProo9zzf/nLX/DQQw9h8uTJ+OSTT1CvXj2Ul5dj586dqTLnn38+vvrqK7zzzjv497//jffffx+XXnpp6L558IxAV0lz7WjCKqtf2VSBDdWgZX0ylZ/Ofeb6mQShOnWRw+bdj6is9zmKle642TDvnniOSXQuacgmeqKyHqqg24+qzaTJl3c/YSd7PPmL2o7ShoH42bGHyZgeNijKNLq+h2eHuv5XFaRT+qmyZdkYYBtUOVHGVN7YG5w4RZEAj5sNUxLgPES6KipnG7LxSDTOe6jiP9k4p5so0hkbskE2rymLpz2C8iL7YqbJoYceyurXr88KCwvZgQceyA477LC0P1MAsBkzZqQ+V1ZWstLSUnbvvfemjm3atIkVFhayf/7zn4wxxr7++msGgH366aepMjNnzmR5eXns559/Jl+7oqKCAWA8cfCOi8rGHa/fmey/6Bqya2ejX7aho4+88xTZe58rKioi63McbZjad5t0j9rf4LOn2qSorqgdVf90bdy258GY+p6pf/76omsE/6KyYe8aubBjXT8cPFdd/AjlHqk2T5Gbrjxti5n8fQs7TlHiG14ZT/eT5Iv99iy7d5Wu2grFnig+ICo/n03i/ux0xzzKOEm1Ye0XqfXv31+3ihE//PAD1qxZk/aCtuLiYvTo0QPz5s3DoEGDMG/ePDRo0ACHH354qkyfPn2Qn5+PTz75BGeeeSa37V27dmHXrl2pz5s3bwaQnqnwMhhMsCJBQdZGLtDtB6//wWPBz8HjovL+46JzwX6rjsdFzlEguhede1bJPtPE1YaDq928MnGH2l+ZvlDtzkNH50SfVW3GaUVSF5FOqcZMExlkU16ZsmOZDcts1zuuO+4nxU/4711kX6p71JGByv/qtBFHeGOih0pnqDYtazsb5MIX+xHpEM8Xi+rEWYd4qGLk4P912lCVC/7fD0VXwxL3Z6Wyc5lswtqt9qR77NixoS5IZc2aNQCAZs2apR1v1qxZ6tyaNWvQtGnTtPM1atRASUlJqgyPiRMnYvz48dLr60xmRMfDBFmi66sMxMSAdBw3dbKie1x1zrRN06Bex+iifBZUopBvpl/eEhcbFm2FpNShBkq2ORlKGVmwEKxHlafpRIlSJ67BmW6Ch3c+l8mITNmxyIb9Y5Is0aoz4eF9jgsmeiuyVZUdUvygqkyUE/q4Yjr+y+RKXUzIBLn2xTIdN42ndJLquSSKvpjEmLqLLTrjUDYm7tmEkiAJEpQndXu59ne6k8Do0aNRUVGR+lu5cqVWfcbU36vw/4nK+z97ZYLngn+ZwLu2qJ9xRyRXmeyD8la1yUPURvDaYa7h4COy4WDArivfpD4T3n1R9VTVlirQ9F8jaI+iz7w/6jVsQzT2y8p42PwLBBQ/TNGB4Dlb/VgQSv9Ffk3Xp/P0TyRX3f7a+AxUcYNKLyljke366aETT4tiY5NxW/aMgtezBdkcgVdOJjuVT/UQjRUyP6+KfeMGtV8UXRTJMWO/052fny/tfFRvNi8tLQUArF27FmVlZanja9euxaGHHpoqs27durR6e/fuxcaNG1P1eRQWFqKwsNCoX/4sGjXjS3nYupnVTGaWchW4Uu9JVU6W9RO1oZO5U5Whys/GCYIOubJhyrNUrTok7RlGoceUciLZU+XNK2di7zYj09Mg2fiZoUzZscyGKfphqhciXcwVVDvTqSsqpxNn6MYeomuoJuqqMrlEV748PaWOdZkkF75YNjZRZED1GTLdiateeajGIqrdmtgYdawQ9Y16LltQYnbTNnltmNqz9kr3jBkz8Morr6T+pk+fjptvvhllZWV4/PHHdZsT0qZNG5SWlmLWrFmpY5s3b8Ynn3yCnj17AgB69uyJTZs2Yf78+aky7733HiorK9GjR4/I+uKH6ghlWVJZm6JMYLANVVbKRqgZT1UGPigT3l9QfiaZO906SXhGOuTahikrLyqdU610JOGZmtqd7N5FWXZRXZkdUvuXNGTy88jGSne27dj7TrdsnNbRqSAqmeYalV/R8ffUtmR1qL5Sdc2wZeMAT/9kOsjzEbnwGbnwxZSxyUSPbNMZGdSxSDUPiKIPHhS/Ljqey3goE3oha9M0BtRe6f7DH/5Q5djZZ5+NLl26YPr06bj44ovJbW3duhVLly5Nff7hhx/w+eefo6SkBC1btsS1116LCRMmoEOHDmjTpg3GjBmD5s2bp17m1qlTJ/Tt2xcjRozA5MmTsWfPHlx55ZUYNGgQmjdvrntroVFl4FSZO+o5k3I2YpoF98tElWVWZfWCK3Wekcnakhlp0oizDYueof9cWHi6Zgsq+6LquWz80r1WsC1K26p+xwXdfvnHmkwTJzvWXb1X6altqFagZGVFNkmREXXVTYWt8peN4TrPxH+cmhiJ4v0qcbJhETz9U+ms6LOuj4kbUcYjvPhUdj1RXd5xSj9tkbkpqoQIoDEHYxGxbNkyVq9ePa06s2fPZkDVV7EPHTqUMfbbzxyMGTOGNWvWjBUWFrKTTjqJLV68OK2NDRs2sMGDB7P69euzoqIiNnz4cLZlyxatfkT1cw1e/1Xng+V4dURlda8ZVzLZb55O8WRucp7yTET9iRtR6H3cbDjMs5fZoeh4XJ+tRxT9pMqIInPda+qeiyOmYzhFH73PYX1XHOw47M/+xZ2o7k1Hl3TGOZ3rJ/UZiTAZ+1TjF+8vSb6Y55N5suAd04m/eG3bqqOmcQjvWJQ6q9vfpOC/P9XYSo2n8/7/yqHYsWMHRo8ejZkzZ2Lx4sVhm8s6XpaxoqICRUVF3DI6K52iuiJ4bapQZf1sxDRTqVq15hG8BnUlXNY3ap24ZGQpem8LOisFPLnrrmTYjKleUlbVdO2HupOnOiAbx1TPJGk2THnucRlH4wR1B1ewvOoc77zq2kmG6i94u+14ZZPoi/33IvMHuvGbbfqlYxdh5wE8VHKljhWU69v2bETw7kulpxUVFSQb1t5e3rBhwyoD9ZYtW1C3bl1MmzZNtzlr8As6qFiqwNIk8KQGrZTA2RZnSHX6Jtu5o5poyLa7qtqIu/yThuhZy7YRhk34xB3evZtuYeYFTtS2onTWtj0DEaqx3U8Sv07k4f8uqCxQ1EmIxpGwSWZ/3bBJQ56vlF2Xd+24yz/M5Ef11RqduCLucooSisxN9Ugm+zjJWGehRjc+lSUxqIh0nTLxjJOcdaDOxXjzPlFd3u/T89CedD/44INpn/Pz89GkSRP06NEDDRs21G0udlCVXFZHd4JMqavqH2WQN20701DlpduOTnBCWcULoupfVBM7Bx1ellHHeejucLDtWfKcMnUFS1beNJsevAZlJUTUdlLQuXcvu54k/Pdj28ROB9OV40xMkP1BpWnyO+6rXjr9MV04kU1GKDFFkgj+fKcfmSxM42nVcVlb2USnD7pjhGxnRbBN6g4Dfx/iZtMiTGMG2XHKAhwF7Un30KFDjS5kCzpKZZpRCl6LNzkM1qFkoUTXo2alcmVQutfVyfp56E6qdSbbcU1mVEeimoDo7oCw6dma9pUSzFCPq9q00dGHhadzqglQ0ibcHpTxmbrqaBuUscd0pYniI00nN7bIPYyeqCbjsmvIrhvFi9TiBuXrmgB9cm2y4BQkDjpK8W26ftNfXnfXi85Cgy1jbNT9k610684DtX8yDAA++OADXHDBBTj66KPx888/AwCmTp2KDz/80KQ5a2Esup8b8v4f/AteI9gGry1q/+IK71506gVlwnsG1GvIZC16RqI2HJnHvzVVJHeejgTrUJ+pjc9WNNaICN4jxXZ0xy1Km7rjguk4km0o41YQG/WOiv8nwzwo96s7tscVytiTDYJytF2uHjL5mt6jaLzjtakz5tkML4nAi5l0YzHb0fGfojhDFrdQrytqW3at6vQMguVEfloX7Un3yy+/jPLyctSpUwcLFizArl27APzmKO+66y7tDiSB4ENQGYhsskY1MpOgxBZE9y5Scpl8RWVVAw1l4LFd5knLrAO/3RPl2YoQTUiTFChRE3eie+XZBtUmVPKLUr5xsU/dCbRMjnG5p0yj0k1K3bhgEuDJzvPGId3PvDZFcQw1uWwLMjmrxkKq/GXwxs8k+mKgqtx4OuVhkty1EZ4d6cYXOhNjiu1Tx5SkIBrLKPIPO/fSnnRPmDABkydPxhNPPIGaNWumjh9zzDFYsGCBbnPWoBOABwcY1UDOKyN6sKLBK9imjajkSs32+c8Hz+lOtlXHef2wBf+qcFLwr5JRBkdqYJmUgJOH6N6pAajomKyNILJkY7CMbUQRTIrkm0QbLi4uDjWmxm08puqtqhwlGR+EEnN47elOtuMmZyoUGar8ADX+osSBjLFE2jFv15nOpCYqu8kVOhNpatJalqClykDl72V9C0vcxwzR2EeRAdWGtb/TvXjxYhx//PFVjhcXF2PTpk26zcUWf9bIj8j5iM7xzgeVLjgA88rIrq9zPs6I+s7LClLqyc6p5EvNNkaNSpcccmQvYfIfF8lZZKui49XhOVHs0lQ+OvJLisxV/RclHEXnkgjF73oE9cJ2G6X0W+UTg+VUbYoSXab9s4koxiCZfVLlmTS8XWd+RJM6IFq90okRM0UYvdKNTyjXp+qZ7DmEfUZxHzMoz0Ek14xNuktLS7F06VK0bt067fiHH36Itm3b6jYXK/yDBEU5VAYgaov3QEV1qUaWSUPJNaKgKnie0oYI1TPktaWbbKH0z9ZnFBf8b3OW2YpOUM87b3tgr4NqzAHoQagqiJAdp9a1Fd79qMatJG5L9XarAGaJM38ZG9FJMutOAmVxRtTySpp9AnS56rQFJPNFaoB6EkNJUpjoj206p5PEoaKaU+heO6rV7mwSdrGE4ot1n5X2pHvEiBG45ppr8I9//AN5eXlYtWoV5s2bhxtuuAFjxozRbS5WyDIVsgydCFPl9h/TVRZKsGobJtl6f/ko2jZJaujI3fZnFBd4gUuYCXKUK7VxRSfI55WTTQJUdSkkMXjnYeJjkojMhj2imCTmWq9ME1K8OrqxhizxH1Vyyxbdpfh2VVlZOdXuqepMEheJRJgkE6jJijCT9KQmL4FwMTmQLpuoEm7ak+6bb74ZlZWVOOmkk7B9+3Ycf/zxKCws/P/aO/Mgq4rrj38HGCYqwojDMqMsAsoiMEYJiEYgShCyGinjilsBpRkMalTKJAWClZjSaGkoK5aVBLRUNJZiEpJolC1qQDbRuGRKCApWBolYDCIoONO/P8yb332XXk73u3du933nUzVV8/r27Xtud3+7T5/uN4ObbroJ1113nW1xucJ1d5qS1yUyEwIuzlMpO8g2x3NUzwqtjsuNJKLE5YBtsEjncFIX10nuWuRdh7L5oVz6tmnhp2t76vyQdf+xDUjpTpaYykjDGQ+NUne9ZHmTCB7mVcvRU2cFbBaapeBD37UZs0xQ5+hokMdkT54X2yps3zmNOrBedFdUVOAnP/kJbr75ZmzZsgX79u3DsGHD0KVLl8SNa29k30HRHWuLplE+t+dRkTSOi6WBy4RnU4+m6JQq+lxK3fkw4Jcz1FMLujxpPDdLXI5r2ziJ1KNX1EW4j3XY3lB23mSObejITpzZLJR86DuUHWQVacxJtot0mR1JLB6ygHoEX3fSpJSjpbzD/f+49OU0Tqi1B6WsJainYGT3uQZ1KBtSpQSsfMB1g093byGd+hUR60V3gc6dO2PYsGGut3uJ7LtkNrs60TxRXCLupUZiQhMDBWr0PppuGtQoZVDtCtUpyRPNzc3o2rWr9Bpldyyel7qAjx4/8hHZpEydOE1akC0sbB3LUCfxtCnF2c8jofSPJE5G6YJitifibHa5kjid4hMu9lP8QFm6TJeUtsrrd7rj6PpfKcERn6EEdUzpSZyooK4dKP019DYxQemfrnOv9aL7k08+wS9+8QssX74cu3btQmtra9H1f//7306GhIKsEUzYRK1KEZuPJClK0yChi8xR0+NlUtOj13wfgAp25vHflEShOJamQIlLwMxndIsB2zqQ6Y46MeXNsUoD2bwQr/M87nRTcAke6coq5X5T2a67K7r3U/kJKl/DZr6jLjCp17PCxe6kg4WU8kL38XSU0idcAx++UUrQJ16GyS912VhQfab0S+q7+d5WFH9f1Qa2+rVedE+fPh2rV6/GtGnTUFtbm7sBg9IpTI6l7eIwGrmmLgbyFo2WUeo72hzfUT1D99n3gURF9DhMOWCz+KbcEzK6RUApY4/rYjuJk0WhQZ0/ZPNCnLwvuG2OPLqSZv+y8SdKKcPkELoED6m741np0/RuLu+sCm652kQZb/MMpQ/ZzrWhz80U+6kLYFl/dd2JTVPfWY8RJjts/JZ23+n+61//ij//+c8488wznR7oM7L/8VvAZrCwOXpkuubbRGeLbWBCd69pANdFoEyOg0sEMbTIfznguggpBwfIhElXuvGMeq+pnvPUDq6LFkp0vUBed7pt5j0fx1sbm0xzkYsmqD4JZY70sX6B5Bdp0XHM1V+Q6dUmb17R9SmTj6gKzPraL024BByoi8KKigprX5uq9xAD4KY1RIFSgkO2OrZedB9zzDHo3r277W1BIHNgXI5t2F6X5aE6ry4iyGKwokz21DJsdtVMi2lVeik7n6ENTHkiqmHdgOvilMquh4xN0Er2uYAsCqz6HE83TYamaz5DXVxTxrVyctBtgwg+9gsbm2wXdrrnmXZoKX6Eyam0re+snXUb/4I6/1P1SPEbhRC5/E435X0oY1wpGze+4xo40umcuhlkGwxyCRb4AjWoQc1PzSOjg+0Nt99+O+bOnYv9+/c7PdB34g65zEEvpMmuRa8Xok6qfAXiA0+8c6uERclHeccs0NVf/F1s7Y3Wf7wtVHlVyO4rpMWv2bQBkw6F/0Aga/NoegGVRqna9QVqX9RpQZaXolObH5V9unoOpQ3imOqZMteYyJujDhT/rQlV/4leCx1TP4jrUNdHXPuUTqOljoUhajeOq79Fqc+Kiopc6jiKzg+z9QNDmQ9UfSSarhvfdGXodG66R+cXUes7lDagYvJPdFov5KX+jSTrne67774bW7duRa9evdC/f39UVlYWXd+0aZNtkd5APV5uisRRI0qyMlRlUiOvecAUqVN9Vg3cOkxtKat33eLAF7LeXcgSm6iw6t44vtclNVIb7RemerGNhNtgE+E3jX2+Ymu3bkxXjVN53SFT1V0U39u/VKjzoCyNWjc6LdvqPBRdqpA52ZR+qMsvu2YzH4VM9NSZzbtSx0ffoYz/1DmCuh5I0t5QcfEZKGOdqX6o87D1ovu8886zvSUYXI+XFzAtvnVl2jr7eRZI9Brg/q66AAnlXpt03wjFzqTRTfSyOgm9nUvBNJEXsAl2UcsytY2uHB/bJr5DILtmW98y5yxef3n8DwTxne68QZ2TKP3G1gnXlaW6Vuqc6SuydrDtb5T5w+QPAvkMnunQ9RXTwjNUXNYQLnVAncep81Fo6HwG05hKWXyXXF8iQ1avXi2+9a1vidraWgFALF26tOj6FVdcIQAU/Zx77rlFeXbv3i0uueQScfTRR4tu3bqJq6++Wnz88cdWdjQ3N7eVHyeeHrVFldf2uqx8yj0ZN1/iuL57PB/lx9aWPFF4t0K/b25udi7LRw2b2tymXfPSD3TvYasVGz0lpUfTO/iE6xgjqxNqG5SiYSH80LFuHvaNNOykjFtJ+x429uQdyjhmU1Zcw5SfvM/FOmzvCaVfljLHmeaIPNZXmtj4NKaxV6Zdioatv9OdJJ988gnq6+tx//33K/NMnjwZTU1NbT9Lliwpun7ppZfizTffxPPPP49ly5bh73//O2bOnOlkj+y7ZLLPQui/31O4rkqX3Wf6TkG8TNUzQkb1jqp3jeeLlxP9XVX31DJt6jmLNrF5ZuHdkois+6xhVdsD5vpKoh+0Jya7ZHVgymtzD7VeTHqUlRu/19c2KECtN8r7mOopqZ1un3Tc3NxM0meW2GjDhGkek/kCpnupdlP6XtwO3/UXx+RbFdDVn6kO4unR/PEy4p+FEIno2CcNm5D5vvH+Zhofk9RgmlDGeZNfT/F1C5/jfZHa//OCyo/Q+XOmvkfxh1I7Xp4kU6ZMwZQpU7R5qqqq0Lt3b+m1t99+G88++yzWr1+PUaNGAQAWLlyIb3zjG/jlL3+Juro6Z9sKlSs7SmB7dMt0XKvQqPE03TNUn0PEVD8FqPUbH2AoZbraZFNmmtg8s/BuSfy7Id80LHsfSlva9kHfcGl/0z06XZnutwkAUa9T7Q4Fyvuo+mUhPakjqb7p2KZfhI5KX0mQZJmh1blKXxTfTpdHRjw/peyk8U3DMnTBDlN7hY4pqCP7HK8vmz5kmrdd+7rvyOxPck2haivqV0Qy3emmsGrVKvTs2RODBw/Gtddei927d7ddW7NmDaqrq9sGCACYOHEiOnTogFdeecXpebKocnzgNEWbqGVTnusazQsxkqXb7dK1STyf7LppR0AV8ZJFCal2+057fYesPTWcx++4Jo2qb1Mi8lFsdslU99hoJ5SdjTiqHQfTroaujCzqor3n4rxB7euqXZZoOdS8VB3a2Oeav72hzvWU91D5By5kWW9ZzcW6+jLtQoaKyX7dmG/Ss2o+oMytprKp9ucJylysGmsLn4PY6TYxefJknH/++TjhhBOwdetW/PjHP8aUKVOwZs0adOzYETt37kTPnj2L7unUqRO6d++OnTt3Ksv97LPP8Nlnn7V93rt3LwD5X00tQBGPapdMFQWNXzdds8FX51QXTaPabKojW8dBl06JAvpa1ypsI3Ol0N4aBmhR4rxNJjaaUO2amiLiurJNu3XUsvKI7ZxisyPSXqShY908XKAc+kcB6g5fdPwq1T+Iat80j+ZlR0znn1F9N5e6KMVPSQIf/GmXXUjfUfUBVXvL1gmme011YdOXqH03lPovBarfJGsrV/1aL7oXLFiAm266CUceeWRR+oEDB3DXXXdh7ty5TobIuOiii9p+HzFiBEaOHImBAwdi1apVOOecc5zLveOOOzB//nzpNaqAKNdsHFBqA4Y64enez/QuJoddNZjJJlFT2ab2p5TJ/D/trWHdRC9beOYFaj+nXFMtwuPXZcFCSsCD8jl6X17ayhScjeeT5ckqWJSGjlUalv0Hgjz0AdfAk03AnzpHUuo1L4Ey3dgSTdcFY111qAtmRNPbIwCehT9dQNcvS+mjPpDEgtjUR6k2yOYOUz0mWc+htFkBqv8fRdWXUztePn/+fOzbt++w9P379xuFVyoDBgxATU0NtmzZAgDo3bs3du3aVZTn888/x0cffaT83goA3HrrrWhubm772bFjB4AvJvv4EQsZuiMIss8FKGUX8sSPLoSO7t1d649ynyqPqn5Nz5DdE1obZWlv2hoG6Ee1otdCa0Nbou+neud4Pak0G0836UVWlmksjNoSOqYxJ94esvFfVa9ZfZ0iCR3rNEyZK+P4pGHdXGTSl0lDsjJU764b+2zfwaf6tYE6jkXTKH6AzRgpKyOansW/C2sPfzpOvL/Gf5d9jhNaP1RpVTbmq9LjZak+R9NMY4ItlHtcxpn2hOrz6NpFVWZqx8tV0cDXXnsN3bt3ty3Oivfffx+7d+9GbW0tAGDs2LHYs2cPNm7ciNNOOw0AsGLFCrS2tmLMmDHKcqqqqlBVVeVkg8wRVEVJVJ1UNhmb7skLqgkKoEfJqNHAaF+llh0vU2abbJDzGdt3T5O0NRzdJdNpylQnPtWZC3H7bSK38c8mvSWp6ZDrXVUvqn5omi90c0HW80QSOlZpOHpaxaYf+NRn4gu2eFo0XXev6n6KBk1lxNNVZYasSVtU46bJl1Plp9RrVrSnP63rS7b+VOj9kGK/qr5Mc4ZqfeZqh+wZIWPqa7r6tcmrg7zoPuaYY9pW9CeddFLRA1paWrBv3z5cc8011OIAAPv27WuLsgHAtm3bsHnzZnTv3h3du3fH/PnzMXXqVPTu3Rtbt27FLbfcgkGDBuHcc88FAAwdOhSTJ0/GjBkz8MADD+DQoUOYNWsWLrroIqe/tCj7LplsUHV1JG2I35uXiY/yHtQFkel+WRmuiy1VxFVXli+o3iX6PWhXfNNwFJsBNI7vDqfJ6daNPa6TByXdVG++1mcSUBfPqnfX9VPXCZ6KTzou/MswIB/9xFUDuiANxfmmfNb1NdW9vkNdqOiChfGyVM9QfbZZWAHJHC/3ScOA3J92mYvzjGugS3efaY5IwvfNkjTHJ5t1ifNzBZHFixeLRYsWiYqKCnHfffeJxYsXt/089thj4h//+Ae1qDZWrlwpgMP/IfkVV1wh9u/fLyZNmiR69OghKisrRb9+/cSMGTPEzp07i8rYvXu3uPjii0WXLl1E165dxVVXXSU+/vhjKzuo/9RcCCG1V/UTv0f1WVa+6nmhUYrdpncvpS1M6aHWtw2Fd6T0exU+apjatro+lTdcNEEpg1pXtjoNGer4TxnXqGWUomEh/NCxTMN57B8qXPSnute2vsqhjin1q7qHOl/IPqvKiua18UFV+KDh+LtQx/0Q52KqfS7jvO1c7TKvh1rvaWAzJ5vymDRc8b/MZFavXo0zzjgDlZWVNrd5TSHK2NzcjK5duxZd00WcTLsN8Xt0+Qt58xTh10E5fqW7R5fuUs82ZYfaNvF30fX70JC9S+g7NmnhejRVh0l7tjorB2yOCqryFL5OkVcN+0YS/ZT69Q3dPEj1F8pRVypsTwdQyoqj8xNNvgcAr/s+leiufTmO81R/VDe+U/qKLp/OHqrdsushtBvlFEUSJ8XidU+di62/033CCSegqalJeb1v3762RXqJzdFUlSBcHFDqIGVzZMoHdEczXN+NUt/UCVZVb9R8vmHjmOUJ3VdECsgmj7zVEeUIZfyrK6p8JijOA6WMvKMaA3Xjm8n5yuIPMIVCGppOoizT2GPqF7JAtc1XrnS22BDKmOlybNZUX6o2pHydR3a9Pf56uQ/oxri8QO1nuqPgrl9BoeD6VSVf2slUN7LxUZbH5Zk6O6j1aL3o7t+/v7bwlpYW2yK9gtL5KY0uy0f5HoaqLFO6L4JQYWMfNYhBWTiZvpOV5g5clk6JLqiRZ2Q73TqnVeXoRvNGCcXR1Nlt29dtxi/XqHoai4I8YJqPkojY+0gSOsui7yQ5PrjsyFJ3vOOLRBv/hmKHT9gsXEyLatVn1TPzqk8Kuv+sQPHVQulfrrjsdOvKol6jzu9xKDvI7QHl2VT7XMZrVX1F/4ivDutF96uvvlr0+dChQ3j11Vdxzz334Gc/+5ltcd5B6fxJ7TpHGy2JYyQhIHtPqvNvGw3UlW2yr4Cs7Lw4JXmPrOs0Yxvkol5vb2z7IkVvSYxfJkILGlIw1SM1SBtPLzdCHpds2ozqcNuUTQ0aUuzJG5SgIsWnkN0bvy4bG01l5Y3ofyGgEHq/s9WPy043ZU527bvUgF1IUDdI4/nj13W757Y6tl5019fXH5Y2atQo1NXV4a677sL5559vW6RXmCY+yqSlKsuUHsV2sRgKOqHbHgmhiIDq+KqeISsztMFH1d+okbmQ0P3F1AIugR5f25y6UNZpixpldyk7nselHn1vA0BeB7a7jrI5Jy/jvg2ycSmEPqDC1YGmlkO5h/LMEOuWAnVsp9RNEpsjsnvyfrzcJdgTmuZL2V2lBG90z5KdZIvntV1Uh1b/Mmw2DmT3yfx+Vf1SNWy96FYxePBgrF+/PqniMkFXYbLFIXUg1pWlKpNyTx6wCWKUsqAwPSO0HU4b8nJKolRkExN1FzJrkorY6vKonmWzE051EmzwpQ102IzpNqcSTM/J46I8ukMW6piVxLFFl35AnSOTqNfQ2oYy5ie1ANFtJlD9xNCRHS+X1Z/vc2+cNBapLrvkKhvi/cvWj7bZrPCBNMYh2Rhs8pd0X6eIYr3ojv9vXyEEmpqacNttt+HEE0+0Lc4rZH91zsbJoTqxsnTqc0JzRmwWC67OfimTWGj1aYPNLkce0Tk7oUR1TWNHgSTsNmlUp0fb8Yq6SPCtPVTIIuKuC+SQT9UkQdR5CfX9dbtYcai7pVEnmjoHUnZxTXb5uCiyWQBQAxFRP8x2d9wl8B9q36ZC+aOm0Wuh4Nqesne32WmVpev8ANu+bCK0dpJhc7olnt/UVvG1sQrrRXd1dbW0ofv06YPHH3/ctjjvoHREV+dU1+C2O0S+CMDkTJsGD10Z1GfGy9TtaFIJzemXEbLtpWDqRzbR9qxJU/9UZ9R03eYIlunZ1Otpk8TOlu072zwzz7tktt8FzQuueozmMTnWNn3M5zZIcvyTLWBcFlCy65RxIa9Q/qhpKCSxy2taMKvSSqWUTakQsGkXqn8SR3aCIA716yHWi+6VK1cWfe7QoQN69OiBQYMGoVOnxE6rZ4JssnfZ2aZ2AtlON3WS9GUQs3UsKWXE06lBDN1iwDZqH8oOuIuj7uu7JE0e39N1MUiZcG12b6j5TBr1tY1KWSBTx27Ts2QTfbyN8vhdUOoxvbxgeyJCtuviukgM+VSF7WkZim+l8i1KsVE1ruZ9MSQj1J3urG20eX4pgba84XryhzK+xtNS++vl48ePt70lGKKTvc5hMh35iJPEbpXtsQjfKCWqTC3TlK5Kk9lgMxFmOai5RPkK5M1ZL5DnScZl5zX+2TSh2O6aUZ6fN0fTZqeQeoRQd1KnQJ77doEQvtOdpF22WpAFY5I6LRYSLpsb1DKTCmpQn5nH4JmOPJ8AoJ7ysjkhRp1DdM9LEp/bTBfoct3E1LVV4XNqO90A0NjYiIULF+Ltt98GAAwdOhSzZs3CkCFDXIrzEl2j2DpRsjJU+dpDMFliE8SIf05ywWzaHS9lMZvGgJSlkxcS0WhjmqcAfJ10XOxSBfRMDoAsHzWy7Fu9tQe2jjvFKcujox7Cd7pd7DJpw2VcdnXW4zb5Ws8UXMduWXqpZRSQlUM9+ZIX8vadbmo/o/qWlN1TU5+RzcXUkx+lkGWb2Z5ajaaZ2sRGi/F7qDvdHchP+B9PPfUUhg8fjo0bN6K+vh719fXYtGkTRowYgaeeesq2OO+QLQKBLyo4vuAupFHLiuePfo7nVdkROoX3KvzI6iOeR1WPpnxRCvfE743bZWpTCkmUkUaZSb6jz8Tb2uYe22cUyFqrNm2rqh+TjuLPiOYz1XlexzMK1DFHNj9Qy8o7obyvTkMqvcWv6/qDyl9QlanCZYz0FdU7qOZ8XbrJD6P4h5RARwh9OQ1C7m+utqvmTZu51sYWUx815fO9f9q0g80aLPrZZny07RfWO9233HILbr31VixYsKAofd68ebjlllswdepU2yK9opQoJDWSpIpKm9Jkz8hDpLoAta6pEWPKoihej3mqzzjxd8rj/+kGSjsG7UrW/UWlBZfxjBr11b1zUuOTze5T1pjq3HZeiDv75YJsTPK1D5jmcln/dfUPXMYxm3qj+CU+QtWXqh5txrEkkPWHPB4vl/03oDz5V6Z3sfEtXTSvu5+Cix58QjffFtJUfoipvin17zomWO90NzU14fLLLz8s/bLLLkNTU5OTEb7QrVs3Y5RHFiGl7jLpdjaokVJTpMY3TNH8aJoK1Tub6l8XSTRFuPKA7xHLtKBGL/PSzoBaZzY7b6qyKM8sta/pdBoa1HEp3kYuY2Me/+hYc3OzUqftNabZ7nCq2kk3p6u0aXpniiZMO2mysm3HRuoz0obqd6nuK8V+lYajz6bamTdUwbO81AH1XUxjGaWPuDyL2q9D9Yl086osTadTyrOSwnqne8KECXjxxRcxaNCgovSXXnoJZ511VmKGZQFl5083+VF3OnSRJVXEJVRU9uvezxRlcq1nnT0qZGWG0iaU/pZHVP0mxDak4qIF135h46BSxzPf2sNl/FW1gWkcUz3TFIjUlZ1X2qufxJ/jMo+p7qXqTtXGOi1T7dZdp/b9UDSrGoOogUUZpne3Kdu3ekwDXT1S/bnQoMx51HnRZg2hSgu9Pk1Q6oA6jpsCldS8MqwX3d/5zncwZ84cbNy4EaeffjoAYO3atXjyyScxf/58/PGPfyzKGzqyjlvqYobSWKELQ1U3ug5r42TYQl2UhOZoFKAEMeJ580opDrJLXh8xOZ6yPKZ31i0eTWWFVo9Up5qyaHENEkbrNbT6yxuui9rovXFsHer2mitDxXbujtehrn6p9S3rJ+UW9C7Q3NxMGgtDCcSWisvCzpRu47/mrT4LyOrENA5SfRzZRk18vLBdfFcIy5bo0IF2Ir2iogItLS02RWdG4fs00e+gUI9lyPKaBuy87WYnhck5VaHLX251HX1P0zvL+n2oUN6lXPqADFm/KGCaNFx2imx3zfPYJqVGxGXEyyqczioXDYeCzTgcvyeOS8Asz7qKY1u/Or+tVI3qbKCMB3no+9Hvp9v0v3Lps5T3tF1c68YGm+eGDMXHkeWVfaY8R4VJw9Y73a2trba3BEP0/4OWshtGPZJUyoDkq4Bc7LKN1rvs3NpGtnwjyZ34qMOeN6IaLuCrVpLE5h11OzyyMmz0mZeTI0lge7RNd79toIRJFtsxRHcCQpWHupuqW8ibdl7zOBaWOt7Ldl2pGyYqdDu6smt5/UNqKvJ86qyUBVx8/WHaVVXld7UnJCi+e6nzpOw+1zGhgNP/6c4r1EUI9TiY6X5qflkeXwXk4li2h0NgKtvX+ixgax9l8M2rw66akCh5Vem+Tlwuzh/1ngJpvnPW9Zrk801lucwTqj4c3+lm0sV2FzWe7nKvyoZomdTFYdY6SxPXXS1dOaaAiM1uYl7n2VLQLZCo6b5j6nfR8V0VADeVaUp3KSsUdHanEew3jR/Uudhp0b18+XIsX74cu3btOmzn+3e/+51Lkd5hs/tAFQ4lKhUKroK1EYprcEPXRjb26GzJGkrk0+Rw5dVhd1nMmBbqvrS7Cpf+TZ24XXZZS9kRbE9cF1M2ZdnWX/Q6dSckT8hOq4QCJeBHdbB12PoclN3zULFZAJvuowZNbALYedaqjqhv4RL4DhXXeTWax/b0mW6cMdkZav3rxjzb+rMp0yWwGsV60T1//nwsWLAAo0aNQm1tbdkMJNEO6upQ2uzAqe7xBdfFNuV9klhsm8q0xff6t4kcF8jjglv2x1vi2ARlfMclaOQ6sauebTMmhgZ1IU0pQ7VAclnQ53neDfFrL6XMPaZdasqzbANloeuVMuYkGVCjllHOJ8ziUP9Pd+h90YRO96pgmGtQLc/1Sl0/6U6sxDGNvTLNlrqJZb3ofuCBB7B48WJMmzbN9tag0HV66mCdxOCaN+HooEbjXRzeeJnU9JAxOfd53em2IZT2pvZbm8mDOrHH88vS86gfHTYBU9U9qpMolCOqhWt5/C6ozzvdLgsoVYCU2v6yfFS92dSjzxq22bCw3eGm6E2FKfjt4jfmBdlOd7m8O0ALrpqCYaYAua5PJbFZ5RPUAHh0fLQNcOvq0+QvUedh60X3wYMHccYZZ9jeFhyUowSuTmqS9viKi/NvEpXtIlwXDXc5dRAqqnfLm7NOJcSdWdfTNZQdGFNZFP25BrFCG9cK2Njt+o7Reg2tfkrB551uygmjKBUVh39FQFWmiz9BddZD70c2dlNPhdjUJyUQospPCarlEQ7qf0ESJylc8rk+19f+aRrrovmoY4CpfnX1GreHGgCn/f+vCNOnT8djjz1me1sQdOvWTTlJFtKFEG0/caLX4lHT6E88nYLqmVlhsj1ur+5zvH5UZavqV9ce1DLyiOkdfXZu08BGb6FC1Q51sRgd8+JlRT+rnmciVB0W7JbVdzxNNR/E20OWbhob2alNF+qYQdGdLE3W7qoyZKj6iepe3fv4qEWXMZvqR8Q/y3wzqp9jqvdomT7Wc1qUw7va9lFKftPcazPe2NoXaptF68y05jL5NLJ88TJNbaHCeqf7008/xYMPPogXXngBI0eORGVlZdH1e+65x7bIzIlWdnwhEq/MvXv3GvMW0uMOUSG9UEb8s45CWb4slOK2q96VWk6UQlmqulc5mvGyCv/z1eaevBB9dxWF+gxxgI0TjTYW3juux2h9UDSXNipN22hdNYYk+X7xeox/puDb+JUU0TqJ97P4OBa/Hm+jeP1G0wrEy9yxYwf69OmTKw1Txq72QjXPxdtYp414HtU8pvM1ZPll98TTVXb6MP5RSMNeXb2afDfTWCizM96XZXnyOBfL/C+dv+eL5lWo7DSN56q+K9sZNfWnuN5lcw3VvlCgjl2y+TN+rQDVX9ItplVlmDRcISxV/rWvfU1dWEUFVqxYYVOcF7z//vvo06dP1mYwTCbs2LEDxx9/fNZmlARrmClnWMMMEz6sY4YJG5OGrRfdeaS1tRWNjY0YNmwYduzYcdhfXPSdvXv3ok+fPkHaDoRtf8i2CyHw8ccfo66uDh06WH/TxCtC1zAQdl8K2XYgXPtZw34Raj8CwrYdCNt+1rE/hNyPgLDtD9l2qoad/k933ujQoQOOO+44AEDXrl2Da+wCIdsOhG1/qLbn5TuhedEwELb9IdsOhGk/a9g/QrY/ZNuBcO1nHftFyLYDYdsfqu2J/suw888/n5Tv6aefphbJMAzDMAzDMAzDMLmGvOjOSxSOYRiGYRiGYRiGYdoL8qJ70aJFadqROVVVVZg3bx6qqqqyNsWakG0HwrY/ZNvzRuhtEbL9IdsOhG9/Xgi9HUK2P2TbgfDtzxMht0XItgNh2x+y7VT4D6kxDMMwDMMwDMMwTEqE/WcSGYZhGIZhGIZhGMZjeNHNMAzDMAzDMAzDMCnBi26GYRiGYRiGYRiGSQledAO4//770b9/f3zpS1/CmDFjsG7duqxNOow77rgDX/nKV3D00UejZ8+eOO+889DY2FiUZ8KECaioqCj6ueaaazKyuJjbbrvtMNuGDBnSdv3TTz9FQ0MDjj32WHTp0gVTp07FBx98kKHFxfTv3/8w+ysqKtDQ0ADA77ovB0LQMBC2jlnDTNqEoOOQNQyErWPWsP+EoGEgbB2HrGGgvHVc9ovuJ554AjfeeCPmzZuHTZs2ob6+Hueeey527dqVtWlFrF69Gg0NDVi7di2ef/55HDp0CJMmTcInn3xSlG/GjBloampq+7nzzjszsvhwTj755CLbXnrppbZrN9xwA/70pz/hySefxOrVq/Gf//yH/L/h24P169cX2f78888DAC644IK2PD7XfZ4JRcNA+DpmDTNpEYqOQ9cwEK6OWcN+E4qGgfB1HKqGgTLXsShzRo8eLRoaGto+t7S0iLq6OnHHHXdkaJWZXbt2CQBi9erVbWnjx48Xs2fPzs4oDfPmzRP19fXSa3v27BGVlZXiySefbEt7++23BQCxZs2adrLQjtmzZ4uBAweK1tZWIYTfdZ93QtWwEGHpmDXMpEmoOg5Jw0LkS8esYb8IVcNChKXjPGlYiPLScVnvdB88eBAbN27ExIkT29I6dOiAiRMnYs2aNRlaZqa5uRkA0L1796L0Rx99FDU1NRg+fDhuvfVW7N+/PwvzpLzzzjuoq6vDgAEDcOmll2L79u0AgI0bN+LQoUNF7TBkyBD07dvXy3Y4ePAgHnnkEVx99dWoqKhoS/e57vNKyBoGwtMxa5hJg5B1HJqGgXzomDXsFyFrGAhPx3nQMFB+Ou6UtQFZ8uGHH6KlpQW9evUqSu/Vqxf+9a9/ZWSVmdbWVlx//fU488wzMXz48Lb0Sy65BP369UNdXR1ef/11zJkzB42NjXj66acztPYLxowZg8WLF2Pw4MFoamrC/PnzcdZZZ+GNN97Azp070blzZ1RXVxfd06tXL+zcuTMbgzU888wz2LNnD6688sq2NJ/rPs+EqmEgPB2zhpm0CFXHoWkYyI+OWcN+EaqGgfB0nBcNA+Wn47JedIdKQ0MD3njjjaLvcADAzJkz234fMWIEamtrcc4552Dr1q0YOHBge5tZxJQpU9p+HzlyJMaMGYN+/frh97//PY444ogMLbPnt7/9LaZMmYK6urq2NJ/rnvGT0HTMGmaYYkLTMJAfHbOGmaQITcd50TBQfjou6+PlNTU16Nix42F/1e+DDz5A7969M7JKz6xZs7Bs2TKsXLkSxx9/vDbvmDFjAABbtmxpD9OsqK6uxkknnYQtW7agd+/eOHjwIPbs2VOUx8d2eO+99/DCCy9g+vTp2nw+132eCFHDQD50zBpmkiJEHedBw0CYOmYN+0eIGgbyoeMQNQyUp47LetHduXNnnHbaaVi+fHlbWmtrK5YvX46xY8dmaNnhCCEwa9YsLF26FCtWrMAJJ5xgvGfz5s0AgNra2pSts2ffvn3YunUramtrcdppp6GysrKoHRobG7F9+3bv2mHRokXo2bMnvvnNb2rz+Vz3eSIkDQP50jFrmEmKkHScJw0DYeqYNewfIWkYyJeOQ9QwUKY6zvbvuGXP448/LqqqqsTixYvFW2+9JWbOnCmqq6vFzp07szatiGuvvVZ069ZNrFq1SjQ1NbX97N+/XwghxJYtW8SCBQvEhg0bxLZt28Qf/vAHMWDAADFu3LiMLf+CH/3oR2LVqlVi27Zt4uWXXxYTJ04UNTU1YteuXUIIIa655hrRt29fsWLFCrFhwwYxduxYMXbs2IytLqalpUX07dtXzJkzpyjd97rPO6FoWIiwdcwaZtIkFB2HrGEhwtcxa9hfQtGwEGHrOHQNC1G+Oi77RbcQQixcuFD07dtXdO7cWYwePVqsXbs2a5MOA4D0Z9GiRUIIIbZv3y7GjRsnunfvLqqqqsSgQYPEzTffLJqbm7M1/H9ceOGFora2VnTu3Fkcd9xx4sILLxRbtmxpu37gwAHxgx/8QBxzzDHiyCOPFN/73vdEU1NThhYfznPPPScAiMbGxqJ03+u+HAhBw0KErWPWMJM2Ieg4ZA0LEb6OWcN+E4KGhQhbx6FrWIjy1XGFEEK0z546wzAMwzAMwzAMw5QXZf2dboZhGIZhGIZhGIZJE150MwzDMAzDMAzDMExK8KKbYRiGYRiGYRiGYVKCF90MwzAMwzAMwzAMkxK86GYYhmEYhmEYhmGYlOBFN8MwDMMwDMMwDMOkBC+6GYZhGIZhGIZhGCYleNHNMAzDMAzDMAzDMCnBi+4y5sorr8R5552X2fOnTZuGn//855k9n8JFF12Eu+++O2szGEYKa9gMa5jxGdawGdYw4zusYzOsY6BCCCGyNoJJnoqKCu31efPm4YYbboAQAtXV1e1jVITXXnsNZ599Nt577z106dLFmH/ChAk45ZRTcO+996ZvXIQ33ngD48aNw7Zt29CtW7d2fTZT3rCGk4E1zGQFazgZWMNMlrCOk4F1DHTK2gAmHZqamtp+f+KJJzB37lw0Nja2pXXp0oUkzrRYuHAhLrjggkxtoDB8+HAMHDgQjzzyCBoaGrI2hykjWMPJwBpmsoI1nAysYSZLWMfJwDoGIJjcs2jRItGtW7fD0q+44grx3e9+t+3z+PHjxaxZs8Ts2bNFdXW16Nmzp3jwwQfFvn37xJVXXim6dOkiBg4cKP7yl78UlfPPf/5TTJ48WRx11FGiZ8+e4rLLLhP//e9/lfZ8/vnnolu3bmLZsmVF6ffff78YNGiQqKqqEj179hRTp05tsxNA0c+2bdtIzx4/frxoaGgQDQ0NomvXruLYY48VP/3pT0Vra6vxuQXmz58vvvrVr2rrmGHShDXMGmbChjXMGmbCh3XMOi4F/k43U8RDDz2EmpoarFu3Dtdddx2uvfZaXHDBBTjjjDOwadMmTJo0CdOmTcP+/fsBAHv27MHZZ5+NL3/5y9iwYQOeffZZfPDBB/j+97+vfMbrr7+O5uZmjBo1qi1tw4YN+OEPf4gFCxagsbERzz77LMaNGwcAuO+++zB27FjMmDEDTU1NaGpqQp8+fcjPfuihh9CpUyesW7cO9913H+655x785je/MT63wOjRo7Fu3Tp89tlnidQxw6QJa5g1zIQNa5g1zIQP65h1fBhZr/qZ9LGJzEUjUJ9//rk46qijxLRp09rSmpqaBACxZs0aIYQQt99+u5g0aVJRuTt27BAARGNjo9SepUuXio4dOxZFx5566inRtWtXsXfvXuk948ePF7Nnzy5Kozx7/PjxYujQoUXPmjNnjhg6dCjpuUII8dprrwkA4t1331XmYZg0YQ2zhpmwYQ2zhpnwYR2zjkuBd7qZIkaOHNn2e8eOHXHsscdixIgRbWm9evUCAOzatQvAF3/AYeXKlW3faenSpQuGDBkCANi6dav0GQcOHEBVVVXRH6f4+te/jn79+mHAgAGYNm0aHn300bbonwrqs08//fSiZ40dOxbvvPMOWlpaSM894ogjAMBoD8P4AGuYNcyEDWuYNcyED+uYdRyHF91MEZWVlUWfKyoqitIKYmttbQUA7Nu3D9/+9rexefPmop933nnnsGMlBWpqarB//34cPHiwLe3oo4/Gpk2bsGTJEtTW1mLu3Lmor6/Hnj17lLa6PDsO5bkfffQRAKBHjx6kMhkmS1jDrGEmbFjDrGEmfFjHrOM4vOhmSuLUU0/Fm2++if79+2PQoEFFP0cddZT0nlNOOQUA8NZbbxWld+rUCRMnTsSdd96J119/He+++y5WrFgBAOjcuTNaWlqcnv3KK68U3bd27VqceOKJ6Nixo/G5wBf/5uD4449HTU2NWyUxjMewhhkmbFjDDBM+rOP8w4tupiQaGhrw0Ucf4eKLL8b69euxdetWPPfcc7jqqqsOE3WBHj164NRTT8VLL73UlrZs2TL86le/wubNm/Hee+/h4YcfRmtrKwYPHgwA6N+/P1555RW8++67+PDDD9Ha2kp+9vbt23HjjTeisbERS5YswcKFCzF79mzScwHgxRdfxKRJk9KoPobJHNYww4QNa5hhwod1nH940c2URF1dHV5++WW0tLRg0qRJGDFiBK6//npUV1ejQwd195o+fToeffTRts/V1dV4+umncfbZZ2Po0KF44IEHsGTJEpx88skAgJtuugkdO3bEsGHD0KNHD2zfvp387MsvvxwHDhzA6NGj0dDQgNmzZ2PmzJmk53766ad45plnMGPGjDSqj2EyhzXMMGHDGmaY8GEd558KIYTI2gim/Dhw4AAGDx6MJ554AmPHjk3tORMmTMApp5yCe++91+n+X//611i6dCn+9re/JWsYwwQOa5hhwoY1zDDhwzoOB97pZjLhiCOOwMMPP4wPP/wwa1O0VFZWYuHChVmbwTDewRpmmLBhDTNM+LCOw6FT1gYw5cuECROyNsHI9OnTszaBYbyFNcwwYcMaZpjwYR2HAR8vZxiGYRiGYRiGYZiU4OPlDMMwDMMwDMMwDJMSvOhmGIZhGIZhGIZhmJTgRTfDMAzDMAzDMAzDpAQvuhmGYRiGYRiGYRgmJXjRzTAMwzAMwzAMwzApwYtuhmEYhmEYhmEYhkkJXnQzDMMwDMMwDMMwTErwopthGIZhGIZhGIZhUoIX3QzDMAzDMAzDMAyTEv8H8fzdL4nPOT4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "id": "177a735f", + "metadata": { + "id": "177a735f" + }, + "source": [ + "### Classification helper functions\n", + "\n", + "The objective is to take the input spike data and infer the **Interaural Phase Difference (IPD)** using a neural network. To achieve this, we will:\n", + "\n", + "- **Discretize the IPD range** into categories (segments). \n", + "- **Train a neural network** to predict the category (segment) to which the input belongs.\n", + "\n", + " This classification approach simplifies the continuous IPD estimation problem by transforming it into a discrete class prediction task, making it computationally efficient and suitable for neural network-based learning.\n", + "\n", + "\n", + "\n", + "\n", + "#### We define two helper functions:\n", + "\n", + "Function 1: discretise(ipds)\n", + " - This function discretises the IPD range into $N_c$ classes.\n", + "\n", + "Function 2: continuise(ipd_indices)\n", + " - This function maps IPD indices back to continuous IPD values.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f817078", + "metadata": { + "id": "3f817078", + "outputId": "a91cfbc7-c14a-43ba-86f6-9f41ef30077a", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Number of classes = 12\n" + ] + } + ], + "source": [ + "# classes at 15 degree increments\n", + "num_classes = 180//15\n", + "print(f'Number of classes = {num_classes}')\n", + "\n", + "def discretise(ipds):\n", + " \"\"\"\n", + " Discretize Interaural Phase Differences (IPDs) to generate class labels.\n", + "\n", + " The function maps IPDs, which are continuous values in the range (-pi/2, pi/2),\n", + " to discrete classes in the range [0, num_classes-1]. The resulting discrete values\n", + " are suitable for classification tasks.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A tensor containing continuous IPD values. The values should be in the range (-pi/2, pi/2).\n", + "\n", + " Returns\n", + " -------\n", + " Tensor\n", + " A tensor containing the classification of IPD values, in the range [0, num_classes-1].\n", + "\n", + " Notes\n", + " -----\n", + " - Assumes the input `ipds` is a PyTorch tensor.\n", + " - `num_classes` should be defined in the surrounding scope.\n", + " - The output tensor will have the same shape as the input `ipds`.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipds = torch.tensor([-np.pi/2, 0, np.pi/2])\n", + " >>> ipd_indices = discretise(ipds)\n", + " \"\"\"\n", + " return ((ipds+np.pi/2)*num_classes/np.pi).long() # assumes input is tensor\n", + "\n", + "def continuise(ipd_indices): # convert indices back to IPD midpoints\n", + " \"\"\"\n", + " This function maps IPD indices, which are discrete values in the range [0, num_classes-1],\n", + " back to continuous IPD values. The resulting continuous values are suitable for\n", + " representing the midpoints of the original IPD ranges in the continuous domain.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd_indices : array-like\n", + " An array or tensor of IPD indices, which are discrete values obtained from\n", + " discretizing continuous IPDs into `num_classes` bins by the function discretise(ipds).\n", + "\n", + " Returns\n", + " -------\n", + " array-like\n", + " An array or tensor of continuous IPD midpoints, corresponding to the provided\n", + " `ipd_indices`. The midpoints are computed based on the assumed discretization\n", + " strategy, and are in the range (-pi/2, pi/2).\n", + "\n", + " Notes\n", + " -----\n", + " - `num_classes` should be defined in the surrounding scope and should be the same\n", + " value that was used for discretization.\n", + " - The input `ipd_indices` and the output will have the same shape.\n", + " - The output type (e.g., NumPy array, PyTorch tensor) will match the input type.\n", + " \"\"\"\n", + " return (ipd_indices+0.5)/num_classes*np.pi-np.pi/2" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Batch and sample size configuration\n", + "\n", + "sample size = batch_size * n_training_batches" + ], + "metadata": { + "id": "zvdDe_9rizLj" + }, + "id": "zvdDe_9rizLj" + }, + { + "cell_type": "code", + "source": [ + "# Parameters for training. These aren't optimal, but instead designed\n", + "# to give a reasonable result in a small amount of time for the tutorial!\n", + "if my_computer_is_slow:\n", + " batch_size = 64\n", + " n_training_batches = 64\n", + "else:\n", + " batch_size = 128\n", + " n_training_batches = 128\n", + "n_testing_batches = 32\n", + "num_samples = batch_size*n_training_batches\n", + "\n", + "# NOTE 1:A batch is a subset of the training dataset used for a single update of the model parameters.\n", + "# Rather than updating model parameters after processing each individual data point (stochastic gradient descent),\n", + "# batches allow the network to update parameters after processing a group of data points.\n", + "# This approach is called mini-batch gradient descent and is more computationally efficient than stochastic gradient descent.\n", + "# The size of a batch, known as the batch size, is an important hyperparameter and can affect\n", + "# the model's training dynamics and performance.\n", + "\n", + "# NOTE2 : Small batch sizes improve generalization through noisier gradients and\n", + "# require less memory, making them ideal for limited resources, but they may\n", + "# lead to slower computation and less stable convergence due to noisier gradient\n", + "# updates. Conversely, large batch sizes enhance computational efficiency and stability\n", + "# of gradient estimates due to better GPU utilization, but they demand more memory and\n", + "# might result in poorer generalization due to the risk of converging to sharp minima\n", + "# that don't generalize well on unseen data." + ], + "metadata": { + "id": "uykR63jhP3b1" + }, + "id": "uykR63jhP3b1", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Data generator function (iterating over the data in batches)" + ], + "metadata": { + "id": "faW6ygTkP8T9" + }, + "id": "faW6ygTkP8T9" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc5fdc4f", + "metadata": { + "id": "fc5fdc4f" + }, + "outputs": [], + "source": [ + "# Generator function iterates over the data in batches\n", + "# We randomly permute the order of the data to improve learning\n", + "def data_generator(ipds, spikes):\n", + " \"\"\"\n", + " Generate batches of data, iterating over IPDs and spikes in a randomized order.\n", + "\n", + " This generator function yields shuffled batches of interaural phase differences (IPDs) and spikes,\n", + " facilitating mini-batch gradient descent training of a model. The order of the data is randomized\n", + " to improve learning, mitigating the risk of the model memorizing the order of the training data\n", + " (overfitting) and helping the model generalize better to unseen data.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A 1D tensor of IPD values.\n", + " Shape: (n_samples, )\n", + " spikes : Tensor\n", + " A 3D tensor representing a batch of input spike trains.\n", + " Shape: (n_samples, duration_steps, input_size)\n", + "\n", + " Yields\n", + " ------\n", + " spike_batch : Tensor\n", + " A 3D tensor containing a batch of input spike trains.\n", + " Shape: (batch_size, duration_steps, input_size)\n", + " ipd_batch : Tensor\n", + " A 1D tensor containing a batch of IPD values.\n", + " Shape: (batch_size, )\n", + "\n", + " Notes\n", + " -----\n", + " - `batch_size` should be defined in the surrounding scope or passed as an argument.\n", + " - Ensure that `ipds` and the first dimension of `spikes` have the same size.\n", + " - The generator yields `spike_batch` and `ipd_batch` which are randomly shuffled batches of `spikes` and `ipds` respectively.\n", + " \"\"\"\n", + " perm = torch.randperm(spikes.shape[0])\n", + " spikes = spikes[perm, :, :]\n", + " ipds = ipds[perm]\n", + " n, _, _ = spikes.shape\n", + " n_batch = n//batch_size\n", + " for i in range(n_batch):\n", + " spike_batch = spikes[i*batch_size:(i+1)*batch_size, :, :] # spike_batch\n", + " ipd_batch = ipds[i*batch_size:(i+1)*batch_size] # ipd_batch\n", + " yield spike_batch, ipd_batch # yield means that at each function call the function returns the next result of the loop interation" + ] + }, + { + "cell_type": "markdown", + "id": "3bb91016", + "metadata": { + "id": "3bb91016" + }, + "source": [ + "## Construct the Spiking Model\n", + "\n", + "Next we'll implement a version of the model with spikes to see how that changes performance. We'll just add a single hidden feed-forward layer of spiking neurons between the input and the output layers. This layer will be spiking, so we need to use the surrogate gradient descent approach.\n", + "\n", + "\n", + "\n", + "\"Full" + ] + }, + { + "cell_type": "markdown", + "id": "03f5456e", + "metadata": { + "id": "03f5456e" + }, + "source": [ + "#### Surrogate gradient descent setup\n", + "\n", + "First, this is the key part of surrogate gradient descent, a function where we override the computation of the gradient to replace it with a smoothed gradient. You can see that in the forward pass (method ``forward``) it returns the Heaviside function of the input (takes value 1 if the input is ``>0``) or value 0 otherwise. In the backwards pass, it returns the gradient of a sigmoid function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5fabc7b", + "metadata": { + "id": "e5fabc7b" + }, + "outputs": [], + "source": [ + "beta = 5\n", + "\n", + "class SurrGradSpike(torch.autograd.Function):\n", + " \"\"\"\n", + " This class allows for the approximation of gradients for non-differentiable spiking functions, enabling\n", + " the backpropagation of errors in networks that incorporate spiking neurons. The forward method applies\n", + " a thresholding logic, mimicking the firing of a neuron, while the backward method implements the surrogate\n", + " gradient calculation.\n", + "\n", + " Methods\n", + " -------\n", + " @staticmethod\n", + " forward(ctx, input):\n", + " Computes the forward propagation step in the neural network. This method applies a specific logic to\n", + " mimic the all-or-none spiking nature of biological neurons. It generates a binary output corresponding\n", + " to whether each neuron in the input tensor has fired or not.\n", + " Parameters:\n", + " ctx : torch.autograd.function._ContextMethodMixin\n", + " A context object for storing information necessary for the backward computation.\n", + " input : torch.Tensor\n", + " A tensor containing the input data, typically the neuronal activations in form of the membrane potential,\n", + " for which the output firing response will be computed.\n", + " Returns:\n", + " torch.Tensor: A tensor with the same shape as input, filled with binary values indicating whether\n", + " each neuron has fired (1.0) or not (0.0).\n", + "\n", + " @staticmethod\n", + " backward(ctx, grad_output):\n", + " Computes the backward propagation step in the neural network. This method calculates the surrogate\n", + " gradients of the loss function with respect to the input activations. It is designed to work with\n", + " the non-differentiable nature of spiking neurons by approximating the gradients.\n", + " Parameters:\n", + " ctx : torch.autograd.function._ContextMethodMixin\n", + " A context object that has the information stashed during the forward pass.\n", + " grad_output : torch.Tensor\n", + " A tensor containing the gradient of the loss function with respect to the outputs of the forward method.\n", + " Returns:\n", + " torch.Tensor: A tensor containing the surrogate gradients of the loss function with respect to\n", + " the input activations, which can be backpropagated through the rest of the network.\n", + " \"\"\"\n", + " @staticmethod\n", + " def forward(ctx, input):\n", + " ctx.save_for_backward(input)\n", + " out = torch.zeros_like(input)\n", + " out[input > 0] = 1.0\n", + " return out\n", + " @staticmethod\n", + " def backward(ctx, grad_output):\n", + " input, = ctx.saved_tensors\n", + " # Original SPyTorch/SuperSpike gradient\n", + " # This seems to be a typo or error? But it works well\n", + " # grad = grad_output/(100*torch.abs(input)+1.0)**2\n", + " # Sigmoid\n", + " grad = grad_output*beta*torch.sigmoid(beta*input)*(1-torch.sigmoid(beta*input))\n", + " return grad\n", + "\n", + "spike_fn = SurrGradSpike.apply # allows the defined class to be used as a function." + ] + }, + { + "cell_type": "markdown", + "id": "911318ee", + "metadata": { + "id": "911318ee" + }, + "source": [ + "#### Network creation function: init_weight_matrices()\n", + "\n" + ] + }, + { + "cell_type": "code", + "source": [ + "num_hidden = 30\n", + "\n", + "# Weights and uniform weight initialisation\n", + "def init_weight_matrices():\n", + " # Input to hidden layer\n", + " W1 = nn.Parameter(torch.empty((input_size, num_hidden), device=device, dtype=dtype, requires_grad=True))\n", + " fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W1)\n", + " bound = 1 / np.sqrt(fan_in)\n", + " nn.init.uniform_(W1, -bound, bound)\n", + " # Hidden layer to output\n", + " W2 = nn.Parameter(torch.empty((num_hidden, num_classes), device=device, dtype=dtype, requires_grad=True))\n", + " fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W2)\n", + " bound = 1 / np.sqrt(fan_in)\n", + " nn.init.uniform_(W2, -bound, bound)\n", + " return W1, W2" + ], + "metadata": { + "id": "6wt4agZbMldc" + }, + "id": "6wt4agZbMldc", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "#### Forward path calculation function: snn()" + ], + "metadata": { + "id": "s5LKfcTBMQKJ" + }, + "id": "s5LKfcTBMQKJ" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7b072bb5", + "metadata": { + "id": "7b072bb5" + }, + "outputs": [], + "source": [ + "\n", + "\n", + "# Run the simulation\n", + "def snn(input_spikes, W1, W2, tau=20*ms):\n", + " # First layer: input to hidden\n", + " v = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n", + " s = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n", + " s_rec = [s]\n", + " h = torch.einsum(\"abc,cd->abd\", (input_spikes, W1))\n", + " alpha = np.exp(-dt/tau)\n", + " for t in range(duration_steps - 1):\n", + " new_v = (alpha*v + h[:, t, :])*(1-s) # multiply by 0 after a spike\n", + " s = spike_fn(v-1) # threshold of 1\n", + " v = new_v\n", + " s_rec.append(s)\n", + " s_rec = torch.stack(s_rec, dim=1)\n", + " # Second layer: hidden to output\n", + " v = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n", + " s = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n", + " v_rec = [v]\n", + " h = torch.einsum(\"abc,cd->abd\", (s_rec, W2))\n", + " alpha = np.exp(-dt/tau)\n", + " for t in range(duration_steps - 1):\n", + " # v = alpha * v + torch.where(h[:, t, :] > 0, h[:, t, :], torch.zeros_like(h[:, t, :])) # VB allow only positive inputs to change the membrane pot.\n", + " v = alpha*v + h[:, t, :]\n", + " v_rec.append(v)\n", + " v_rec = torch.stack(v_rec, dim=1)\n", + " # Return recorded membrane potential of output\n", + " return v_rec" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8b4fce85" + }, + "source": [ + "## Analysis Function\n", + "\n", + "This function computes the training and test accuracy, and plots histograms and confusion matrices to understand the errors it's making." + ], + "id": "8b4fce85" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9cc91c87" + }, + "outputs": [], + "source": [ + "def analyse(ipds, spikes, label, run, plot_analysis=1):\n", + " \"\"\"\n", + " Analyse the performance of a classifier on interaural phase difference (IPD) data.\n", + "\n", + " This function evaluates the accuracy and error of a classifier by comparing its\n", + " output with true IPD values. It computes the mean and standard deviation of the\n", + " classifier's accuracy and the absolute error in degrees. Additionally, it can\n", + " generate histograms and a confusion matrix to visualize the results.\n", + "\n", + " Parameters:\n", + " ipds (array): Array of true IPD values.\n", + " spikes (array): Array of spike data corresponding to the IPDs.\n", + " label (str): Label for the data, used in plot titles.\n", + " run (callable): Function that runs the classifier on a batch of spike data.\n", + " plot_analysis (bool, optional): If True, plot histograms and confusion matrix.\n", + "\n", + " Returns:\n", + " tuple: Tuple containing mean and standard deviation of classifier accuracy,\n", + " and mean and standard deviation of absolute error in degrees.\n", + " \"\"\"\n", + " # Initialize lists to store batch-wise accuracies, true IPD values, and estimated IPD values.\n", + " accs = [] # Stores accuracy for each batch\n", + " ipd_true = [] # Stores the true IPD values\n", + " ipd_estimated = [] # Stores the estimated IPD values\n", + "\n", + " # Initialize the confusion matrix for classifier evaluation\n", + " confusion = np.zeros((num_classes, num_classes))\n", + "\n", + " # Iterate over batches of data (spikes and corresponding IPDs) generated randomly\n", + " for spike_batch, ipd_batch in data_generator(ipds, spikes): #Generate batches of data, iterating over IPDs and spikes in a randomized order.\n", + " # Discretize the IPD values in the batch by mapping them to their respective classes\n", + " ipd_class_batch = discretise(ipd_batch)\n", + "\n", + " # Run the neural network classifier on the spike batch\n", + " output = run(spike_batch)\n", + "\n", + " # Aggregate the network's output over the time dimension\n", + " m = torch.sum(output, 1)\n", + "\n", + " # Use argmax to select the class with the highest score\n", + " _, ipd_class_batch_estimated = torch.max(m, 1)\n", + " # Note: We don’t use softmax(m) in the forward path but only torch.max(m) because:\n", + " # - The task only requires class estimated, not probabilities.\n", + " # - torch.max is sufficient to identify the estimated class index.\n", + " # - Softmax would add unnecessary computational cost without affecting the correctness of the predictions.\n", + "\n", + "\n", + " # Update the confusion matrix with true and estimated class values\n", + " for i, j in zip(ipd_class_batch.detach().cpu().numpy(), ipd_class_batch_estimated.detach().cpu().numpy()): # update the confusion matrix\n", + " confusion[j, i] += 1\n", + " # This code updates a confusion matrix by counting occurrences of true and predicted class pairs for a batch of data:\n", + " # confusion[j, i] += 1:\n", + " # - Increments the matrix cell at (j, i):\n", + " # - j: Predicted class.\n", + " # - i: True class.\n", + " # - Tracks how often class i is predicted as class j.\n", + "\n", + "\n", + " # Append the original IPD values to the true IPD list\n", + " ipd_true.append(ipd_batch) # creates a list of arrays\n", + "\n", + " # Convert the argmax predictions back to continuous values and append to estimated IPDs\n", + " ipd_estimated.append(continuise(ipd_class_batch_estimated.detach().cpu().numpy()))\n", + "\n", + " # Calculate batch accuracy by comparing predictions to labels\n", + " tmp = np.mean((ipd_class_batch == ipd_class_batch_estimated).detach().cpu().numpy()) # compare to labels\n", + " accs.append(tmp) # Append batch accuracy to the list\n", + "\n", + " # Flatten the lists of true and estimated IPDs into single arrays\n", + " ipd_true = np.hstack(ipd_true) # connetecates the arrays in the list horizontally to create a single flattened array\n", + " ipd_estimated = np.hstack(ipd_estimated)\n", + "\n", + " # Compute absolute errors in degrees between true and estimated IPDs\n", + " abs_errors_deg = abs(ipd_true-ipd_estimated)*180/np.pi\n", + "\n", + " # Calculate mean and standard deviation of the classifier accuracy in percentage\n", + " classifier_accuracy_mean = 100*np.mean(accs) # in percent\n", + " classifier_accuracy_std = 100*np.std(accs) # in percent\n", + "\n", + " # Calculate mean and standard deviation of the absolute error in degrees\n", + " absolute_error_mean = np.mean(abs_errors_deg) # in degree\n", + " absolute_error_std = np.std(abs_errors_deg) # in degree\n", + "\n", + " # Print results for the classifier's accuracy and absolute error\n", + " print(f\"{label} classifier accuracy: {100*np.mean(accs):.1f}%\")\n", + " print(f\"{label} absolute error: {np.mean(abs_errors_deg):.1f} deg \\n\")\n", + "\n", + " # If visualization is requested, plot the results\n", + " if plot_analysis:\n", + " plt.figure(figsize=(10, 4), dpi=100)\n", + "\n", + " # Plot histograms of true and estimated IPDs\n", + " plt.subplot(121)\n", + " plt.hist(ipd_true*180/np.pi, bins=num_classes, label='True')\n", + " plt.hist(ipd_estimated*180/np.pi, bins=num_classes, label='Estimated')\n", + " plt.xlabel(\"IPD\")\n", + " plt.yticks([])\n", + " plt.legend(loc='best')\n", + " plt.title(label)\n", + "\n", + " # Normalize the confusion matrix and plot it\n", + " plt.subplot(122)\n", + " confusion /= np.sum(confusion, axis=0)[np.newaxis, :]\n", + " ConfusionMatrix = plt.imshow(confusion, interpolation='nearest', aspect='auto', origin='lower', extent=(-90, 90, -90, 90))\n", + " plt.xlabel('True IPD')\n", + " plt.ylabel('Estimated IPD')\n", + " plt.title('Confusion matrix')\n", + " plt.tight_layout()\n", + "\n", + " # Add a color bar with the label \"Probability\"\n", + " cbar = plt.colorbar(ConfusionMatrix) # Add color bar\n", + " cbar.set_label('Probability') # Set the label for the color bar\n", + " plt.tight_layout()\n", + "\n", + " # Return the computed metrics\n", + " return classifier_accuracy_mean, classifier_accuracy_std, absolute_error_mean, absolute_error_std\n" + ], + "id": "9cc91c87" + }, + { + "cell_type": "markdown", + "id": "0a1662e0", + "metadata": { + "id": "0a1662e0" + }, + "source": [ + "## Test: Training and Analyses\n", + "\n", + "We train it as before, except that we modify the functions to take the two weight matrices into account." + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "R6YKK_5EdBB9" + }, + "id": "R6YKK_5EdBB9" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a5d558df", + "metadata": { + "id": "a5d558df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 683 + }, + "outputId": "900a7496-7334-469c-b9e6-bd0c84cb649e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n", + "Epoch 1: loss=2.23891\n", + "Epoch 2: loss=1.25036\n", + "Epoch 3: loss=0.91745\n", + "Epoch 4: loss=0.80256\n", + "Epoch 5: loss=0.71790\n", + "Epoch 6: loss=0.65367\n", + "Epoch 7: loss=0.64448\n", + "Epoch 8: loss=0.61247\n", + "Epoch 9: loss=0.54778\n", + "Epoch 10: loss=0.54693\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABH10lEQVR4nO3deXxU1f3/8ffMJJkkkEw2shJIAhUUWcIWgntFkVoVdykt6NflUQV/Umr9SltR64JatdRCwR2tG1gr9euCIgqIBCNLFFRQkgABkkASMlnIOjO/P0IGhrAkZLkzk9fz8bgPmHvPvfO55gG8Pffcc0wul8slAAAA+Dyz0QUAAACgYxDsAAAA/ATBDgAAwE8Q7AAAAPwEwQ4AAMBPEOwAAAD8BMEOAADATxDsAAAA/ESA0QV4I6fTqb179yosLEwmk8nocgAAQDfmcrlUWVmpxMREmc0n7pMj2B3D3r17lZycbHQZAAAAbgUFBerdu/cJ2xDsjiEsLExS03/A8PBwg6sBAADdWUVFhZKTk9355EQIdsfQ/Pg1PDycYAcAALxCa4aH8fIEAACAnyDYAQAA+AmCHQAAgJ8g2AEAAPgJgh0AAICfINgBAAD4CYIdAACAnyDYAQAA+AmCHQAAgJ8wNNjNmTNHo0aNUlhYmGJjYzVx4kRt27bthOc8//zzOueccxQZGanIyEiNGzdO2dnZHm1uvPFGmUwmj+2SSy7pzFsBAAAwnKHBbtWqVZo2bZrWrVun5cuXq6GhQRdffLGqq6uPe87KlSs1adIkff7558rKylJycrIuvvhi7dmzx6PdJZdcosLCQvf25ptvdvbtAAAAGMrkcrlcRhfRbP/+/YqNjdWqVat07rnntuoch8OhyMhIzZs3T1OmTJHU1GNXXl6upUuXnlIdFRUVstlsstvtrBULAAAM1ZZc4lVj7Ox2uyQpKiqq1eccPHhQDQ0NLc5ZuXKlYmNjNWDAAN1+++0qLS097jXq6upUUVHhsQEAAPgar+mxczqduvzyy1VeXq41a9a0+rw77rhDH3/8sb777jsFBwdLkt566y2FhoYqNTVVubm5+uMf/6iePXsqKytLFoulxTUeeOABPfjggy3202MHAACM1pYeO68Jdrfffrs++ugjrVmzRr17927VOY899pieeOIJrVy5UkOGDDluu7y8PPXr10+ffvqpLrzwwhbH6+rqVFdX5/5cUVGh5OTkTgt29poGLf56l3L3Vevxa45fNwAAgM89ip0+fbref/99ff75560OdU8++aQee+wxffLJJycMdZKUlpammJgYbd++/ZjHrVarwsPDPbbO9thHW7V4fYEK7TWd/l0AAKB7MDTYuVwuTZ8+Xe+++64+++wzpaamtuq8J554Qg899JCWLVumkSNHnrT97t27VVpaqoSEhPaW3CFsIYE6M8kmScrKPf7YPwAAgLYwNNhNmzZNr732mt544w2FhYWpqKhIRUVFqqk53Is1ZcoUzZo1y/358ccf13333aeXXnpJKSkp7nOqqqokSVVVVfrDH/6gdevWaceOHVqxYoWuuOIK9e/fX+PHj+/yezyezH7RkqS1BDsAANBBDA12CxYskN1u1/nnn6+EhAT3tnjxYnebXbt2qbCw0OOc+vp6XXPNNR7nPPnkk5Iki8Wib7/9VpdffrlOO+003XzzzRoxYoS++OILWa3WLr/H4xnbL0ZSU4+dlwxzBAAAPi7AyC9vTaBZuXKlx+cdO3acsH1ISIg+/vjjdlTVNUalRCrAbNKe8hoVlNWoT3So0SUBAAAf5xUvT3RHoUEBSu8TIUlam1tibDEAAMAvEOwMlHnocSzj7AAAQEcg2BkoM+3wCxSMswMAAO1FsDNQep8IWQPMKqmq0/Z9VUaXAwAAfBzBzkDBgRaNTImUJGXl8TgWAAC0D8HOYM3TnqzdTrADAADtQ7AzWPNExVl5pXI6GWcHAABOHcHOYEOSbOppDZC9pkHfF1YYXQ4AAPBhBDuDBVjMGtU8zo5pTwAAQDsQ7LyAe5wdExUDAIB2INh5geZxdtn5ZWpwOA2uBgAA+CqCnRc4IyFctpBAVdc7tHmP3ehyAACAjyLYeQGz2eRehYJxdgAA4FQR7LzE2P7Ny4sxzg4AAJwagp2XaO6xW7/jgGobHAZXAwAAfBHBzkv0j+2pmJ5W1TU6tWlXudHlAAAAH0Sw8xImk0ljj1iFAgAAoK0Idl7EHewYZwcAAE4Bwc6LNE9UvGlXuQ7WNxpcDQAA8DUEOy+SHBWipIgQNTpd+nrHAaPLAQAAPoZg50VMJpN7FQqmPQEAAG1FsPMyh8fZ8QIFAABoG4Kdl2nusduyxy57TYPB1QAAAF9CsPMyCbYQpcX0kNMlZeeXGV0OAADwIQQ7L8Q4OwAAcCoIdl6oedoTxtkBAIC2INh5oTFpUZKkrUWVKq2qM7gaAADgKwh2Xii6p1UD48MkSevyGGcHAABah2DnpRhnBwAA2opg56UYZwcAANqKYOelRqdGyWyS8kqqVWivMbocAADgAwh2XsoWEqjBSTZJ9NoBAIDWIdh5sTHucXYEOwAAcHIEOy925Dg7l8tlcDUAAMDbEey82KiUSAWYTdpTXqOCMsbZAQCAEyPYebHQoACl94mQxLQnAADg5Ah2Xi7z0ONYxtkBAICTIdh5ubFHvEDBODsAAHAiBDsvl94nQtYAs0qq6rR9X5XR5QAAAC9GsPNy1gCLRqZESpKy8ngcCwAAjo9g5wOapz1Zu51gBwAAjo9g5wMyD42zy8orldPJODsAAHBsBDsfMCTJpp7WANlrGvR9YYXR5QAAAC9laLCbM2eORo0apbCwMMXGxmrixInatm3bSc97++23NXDgQAUHB2vw4MH68MMPPY67XC7Nnj1bCQkJCgkJ0bhx4/TTTz911m10ugCLWaNToySxbiwAADg+Q4PdqlWrNG3aNK1bt07Lly9XQ0ODLr74YlVXVx/3nLVr12rSpEm6+eabtWnTJk2cOFETJ07Uli1b3G2eeOIJPfPMM1q4cKG++uor9ejRQ+PHj1dtbW1X3FanyExrnvaEiYoBAMCxmVxeNDna/v37FRsbq1WrVuncc889Zpvrr79e1dXVev/99937xowZo2HDhmnhwoVyuVxKTEzU73//e919992SJLvdrri4OC1atEg33HDDSeuoqKiQzWaT3W5XeHh4x9xcO23ZY9cv/7FGPYIsyrn/YgVaeIoOAEB30JZc4lXpwG63S5KioqKO2yYrK0vjxo3z2Dd+/HhlZWVJkvLz81VUVOTRxmazKSMjw93GF52REC5bSKCq6x3avMdudDkAAMALeU2wczqdmjFjhs466yydeeaZx21XVFSkuLg4j31xcXEqKipyH2/ed7w2R6urq1NFRYXH5m3MZpP7cSzj7AAAwLF4TbCbNm2atmzZorfeeqvLv3vOnDmy2WzuLTk5uctraI2x/RlnBwAAjs8rgt306dP1/vvv6/PPP1fv3r1P2DY+Pl7FxcUe+4qLixUfH+8+3rzveG2ONmvWLNntdvdWUFBwqrfSqZrXjV2/44BqGxwGVwMAALyNocHO5XJp+vTpevfdd/XZZ58pNTX1pOdkZmZqxYoVHvuWL1+uzMxMSVJqaqri4+M92lRUVOirr75ytzma1WpVeHi4x+aN+vXqqV5hVtU1OrVpV7nR5QAAAC9jaLCbNm2aXnvtNb3xxhsKCwtTUVGRioqKVFNT424zZcoUzZo1y/35rrvu0rJly/TUU09p69ateuCBB7R+/XpNnz5dkmQymTRjxgw9/PDDeu+997R582ZNmTJFiYmJmjhxYlffYocymY4YZ8e6sQAA4CiGBrsFCxbIbrfr/PPPV0JCgntbvHixu82uXbtUWFjo/jx27Fi98cYbeu655zR06FD9+9//1tKlSz1euLjnnnt055136rbbbtOoUaNUVVWlZcuWKTg4uEvvrzM0P47NYpwdAAA4ilfNY+ctvHEeu2a7Sg/q3L9+rgCzSd8+cLFCgwKMLgkAAHQin53HDieXHBWipIgQNTpd+nrHAaPLAQAAXoRg52NMJpP7cSzTngAAgCMR7HxQZj8mKgYAAC0R7HxQc7Dbsscue02DwdUAAABvQbDzQQm2EKXF9JDTJWXnlxldDgAA8BIEOx+VyTg7AABwFIKdjxrbL0YS4+wAAMBhBDsfNSYtSpK0tahSJVV1BlcDAAC8AcHOR0X3tGpgfJgkaR3LiwEAABHsfBrTngAAgCMR7HwY4+wAAMCRCHY+bHRqlMwmKa+kWoX2GqPLAQAABiPY+TBbSKAGJ9kk0WsHAAAIdj4v89Dj2LUEOwAAuj2CnY878gUKl8tlcDUAAMBIBDsfNyolUgFmk/aU16igjHF2AAB0ZwQ7HxcaFKD0PhGSWF4MAIDujmDnBxhnBwAAJIKdXxh7aJzdWsbZAQDQrRHs/EB6nwhZA8wqqarT9n1VRpcDAAAMQrDzA9YAi0amREqSslg3FgCAbotg5yealxdbu51gBwBAd0Ww8xPu+ezySuV0Ms4OAIDuiGDnJ4Yk2dTTGiB7TYO+L6wwuhwAAGAAgp2fCLCYNTo1ShLrxgIA0F0R7PzI4WlPmKgYAIDuiGDnR8akNQW77PwyNTicBlcDAAC6GsHOj5yREC5bSKCq6x3avMdudDkAAKCLEez8iNlsUuahXjvG2QEA0P0Q7PzM2P6MswMAoLsi2PmZ5hco1u84oNoGh8HVAACArkSw8zP9evVUrzCr6hqd2rSr3OhyAABAFyLY+RmT6YhxdqwbCwBAt0Kw80PNj2OzGGcHAEC3QrDzQ2P7xUiSNu0q18H6RoOrAQAAXYVg54eSo0KUFBGiRqdLX+84YHQ5AACgixDs/JDJZGJ5MQAAuiGCnZ/K7MdExQAAdDcEOz/VHOy27LHLXtNgcDUAAKArEOz8VIItRGkxPeR0Sdn5ZUaXAwAAugDBzo9lMs4OAIBuhWDnx5qnPWGcHQAA3QPBzo+NSYuSJG0tqlRJVZ3B1QAAgM5GsPNj0T2tGhgfJklax/JiAAD4PUOD3erVq3XZZZcpMTFRJpNJS5cuPWH7G2+8USaTqcU2aNAgd5sHHnigxfGBAwd28p14L6Y9AQCg+zA02FVXV2vo0KGaP39+q9r//e9/V2FhoXsrKChQVFSUrr32Wo92gwYN8mi3Zs2azijfJzDODgCA7iPAyC+fMGGCJkyY0Or2NptNNpvN/Xnp0qU6cOCAbrrpJo92AQEBio+P77A6fdno1CiZTVJeSbUK7TVKsIUYXRIAAOgkPj3G7sUXX9S4cePUt29fj/0//fSTEhMTlZaWpsmTJ2vXrl0nvE5dXZ0qKio8Nn9hCwnU4KSmMEyvHQAA/s1ng93evXv10Ucf6ZZbbvHYn5GRoUWLFmnZsmVasGCB8vPzdc4556iysvK415ozZ467N9Bmsyk5Obmzy+9SmYcex64l2AEA4Nd8Nti98sorioiI0MSJEz32T5gwQddee62GDBmi8ePH68MPP1R5ebmWLFly3GvNmjVLdrvdvRUUFHRy9V3ryBcoXC6XwdUAAIDOYugYu1Plcrn00ksv6Te/+Y2CgoJO2DYiIkKnnXaatm/fftw2VqtVVqu1o8v0GqNSIhVgNmlPeY0KymrUJzrU6JIAAEAn8Mkeu1WrVmn79u26+eabT9q2qqpKubm5SkhI6ILKvFNoUIDS+0RIYnkxAAD8maHBrqqqSjk5OcrJyZEk5efnKycnx/2yw6xZszRlypQW57344ovKyMjQmWee2eLY3XffrVWrVmnHjh1au3atrrzySlksFk2aNKlT78XbMc4OAAD/Z2iwW79+vdLT05Weni5JmjlzptLT0zV79mxJUmFhYYs3Wu12u955553j9tbt3r1bkyZN0oABA3TdddcpOjpa69atU69evTr3Zrzc2EPj7NYyzg4AAL9lcvGvfAsVFRWy2Wyy2+0KDw83upwOUdfo0JAHPlFdo1PLf3eufhYXZnRJAACgFdqSS3xyjB3azhpg0ciUSEk8jgUAwF8R7LoRlhcDAMC/Eey6Efd8dnmlcjp5Ag8AgL8h2HUjQ5Js6mkNkL2mQd8X+s+yaQAAoAnBrhsJsJg1OjVKEo9jAQDwRwS7bubwtCdMVAwAgL8h2HUzY9Kagl12fpkaHE6DqwEAAB2JYNfNnJEQLltIoKrrHdq8x250OQAAoAMR7LoZs9mkzEO9doyzAwDAvxDsuqGx/RlnBwCAPyLYdUPNL1Cs33FAtQ0Og6sBAAAdhWDXDfXr1VO9wqyqa3Rq065yo8sBAAAdhGDXDZlMR4yzy2OcHQAA/oJg1001P47NYpwdAAB+g2DXTY3tFyNJ2rSrXAfrGw2uBgAAdASCXTeVHBWipIgQNTpd+nrHAaPLAQAAHYBg102ZTCaWFwMAwM8Q7Lqx5vnsmKgYAAD/QLDrxjLTmsbZbdljl72mweBqAABAexHsurF4W7DSYnrI6ZKy88uMLgcAALQTwa6by2ScHQAAfoNg1801T3vCODsAAHwfwa6bG5MWJUnaWlSpkqo6g6sBAADtQbDr5qJ7WjUwPkyStI7lxQAA8GkEO7jH2fE4FgAA30awA+PsAADwEwQ7aHRqlMwmKa+kWoX2GqPLAQAAp4hgB9lCAjU4ySaJXjsAAHwZwQ6SpMxDj2PXEuwAAPBZBDtIksYe8QKFy+UyuBoAAHAqCHaQJI1MiVSgxaQ95TUqKGOcHQAAvohgB0lSaFCAhiVHSGJ5MQAAfBXBDm6MswMAwLcR7ODWPM5uLePsAADwSQQ7uKX3iZA1wKySqjpt31dldDkAAKCNCHZwswZYNColShKPYwEA8EUEO3hg3VgAAHwXwQ4e3MEur1ROJ+PsAADwJQQ7eBiSZFNPa4DsNQ36vrDC6HIAAEAbEOzgIcBi1ujUpnF2PI4FAMC3EOzQwuFpT5ioGAAAX0KwQwvN4+yy88vU4HAaXA0AAGgtgh1aOD0+XBGhgaqud2jzHrvR5QAAgFYyNNitXr1al112mRITE2UymbR06dITtl+5cqVMJlOLraioyKPd/PnzlZKSouDgYGVkZCg7O7sT78L/mM0mjUll2hMAAHyNocGuurpaQ4cO1fz589t03rZt21RYWOjeYmNj3ccWL16smTNn6v7779fGjRs1dOhQjR8/Xvv27evo8v3a2P6MswMAwNcEGPnlEyZM0IQJE9p8XmxsrCIiIo557Omnn9att96qm266SZK0cOFCffDBB3rppZd07733tqfcbqX5BYr1Ow6otsGh4ECLwRUBAICT8ckxdsOGDVNCQoIuuugiffnll+799fX12rBhg8aNG+feZzabNW7cOGVlZRlRqs/q16uneoVZVdfo1KZd5UaXAwAAWsGngl1CQoIWLlyod955R++8846Sk5N1/vnna+PGjZKkkpISORwOxcXFeZwXFxfXYhzekerq6lRRUeGxdXcmk8nda5fF41gAAHyCoY9i22rAgAEaMGCA+/PYsWOVm5urv/3tb/rXv/51ytedM2eOHnzwwY4o0a9kpkXrvzl7lZXHCxQAAPgCn+qxO5bRo0dr+/btkqSYmBhZLBYVFxd7tCkuLlZ8fPxxrzFr1izZ7Xb3VlBQ0Kk1+4qx/WIkSZt2letgfaPB1QAAgJPx+WCXk5OjhIQESVJQUJBGjBihFStWuI87nU6tWLFCmZmZx72G1WpVeHi4xwYpOSpESREhanS69PWOA0aXAwAATsLQR7FVVVXu3jZJys/PV05OjqKiotSnTx/NmjVLe/bs0auvvipJmjt3rlJTUzVo0CDV1tbqhRde0GeffaZPPvnEfY2ZM2dq6tSpGjlypEaPHq25c+equrra/ZYsWq95nN3bG3ZrbW6Jzjutl9ElAQCAEzA02K1fv14XXHCB+/PMmTMlSVOnTtWiRYtUWFioXbt2uY/X19fr97//vfbs2aPQ0FANGTJEn376qcc1rr/+eu3fv1+zZ89WUVGRhg0bpmXLlrV4oQKtM7Z/U7BjomIAALyfyeVyuYwuwttUVFTIZrPJbrd3+8eyRfZajZmzQmaTtGn2xbKFBBpdEgAA3UpbconPj7FD54q3BSstpoecLik7v8zocgAAwAkQ7HBSmf1YXgwAAF9AsMNJNU97wjg7AAC8G8EOJzUmLUqStLWoUiVVdQZXAwAAjodgh5OK7mnVwPgwSdI6VqEAAMBrnVKwKygo0O7du92fs7OzNWPGDD333HMdVhi8C49jAQDwfqcU7H71q1/p888/lyQVFRXpoosuUnZ2tv70pz/pL3/5S4cWCO/Q/AIFwQ4AAO91SsFuy5YtGj16tCRpyZIlOvPMM7V27Vq9/vrrWrRoUUfWBy8xOjVKZpOUV1KtQnuN0eUAAIBjOKVg19DQIKvVKkn69NNPdfnll0uSBg4cqMLCwo6rDl7DFhKowUk2SfTaAQDgrU4p2A0aNEgLFy7UF198oeXLl+uSSy6RJO3du1fR0dEdWiC8R+ahcXZrCXYAAHilUwp2jz/+uJ599lmdf/75mjRpkoYOHSpJeu+999yPaOF/xh4xzo6V6AAA8D4Bp3LS+eefr5KSElVUVCgyMtK9/7bbblNoaGiHFQfvMjIlUoEWk/aU16igrEZ9ovlZAwDgTU6px66mpkZ1dXXuULdz507NnTtX27ZtU2xsbIcWCO8RGhSgYckRklheDAAAb3RKwe6KK67Qq6++KkkqLy9XRkaGnnrqKU2cOFELFizo0ALhXRhnBwCA9zqlYLdx40adc845kqR///vfiouL086dO/Xqq6/qmWee6dAC4V2ax9mtZZwdAABe55SC3cGDBxUW1rTE1CeffKKrrrpKZrNZY8aM0c6dOzu0QHiX9D4RsgaYVVJVp+37qowuBwAAHOGUgl3//v21dOlSFRQU6OOPP9bFF18sSdq3b5/Cw8M7tEB4F2uARaNSoiTxOBYAAG9zSsFu9uzZuvvuu5WSkqLRo0crMzNTUlPvXXp6eocWCO/D8mIAAHinU5ru5JprrtHZZ5+twsJC9xx2knThhRfqyiuv7LDi4J3cwS6vVE6nS2azyeCKAACAdIrBTpLi4+MVHx+v3bt3S5J69+7N5MTdxJAkm3paA2SvadD3hRU689BSYwAAwFin9CjW6XTqL3/5i2w2m/r27au+ffsqIiJCDz30kJxOZ0fXCC8TYDFrdGrTODsexwIA4D1OKdj96U9/0rx58/TYY49p06ZN2rRpkx599FH94x//0H333dfRNcILHZ72hImKAQDwFqf0KPaVV17RCy+8oMsvv9y9b8iQIUpKStIdd9yhRx55pMMKhHdqHmeXnV+mBodTgZZT+n8EAADQgU7pX+OysjINHDiwxf6BAweqrKys3UXB+50eH66I0EBV1zu0eY/d6HIAAIBOMdgNHTpU8+bNa7F/3rx5GjJkSLuLgvczm00ak8q0JwAAeJNTehT7xBNP6NJLL9Wnn37qnsMuKytLBQUF+vDDDzu0QHivsf2jtey7Iq3NLdG0C/obXQ4AAN3eKfXYnXfeefrxxx915ZVXqry8XOXl5brqqqv03Xff6V//+ldH1wgv1fwCxfodB1Tb4DC4GgAAYHJ14Eru33zzjYYPHy6Hw7f/ka+oqJDNZpPdbmeJtBNwuVwa/egK7a+s05u3jnG/UAEAADpOW3IJrzLilJlMJnevXRbTngAAYDiCHdpl7BHLiwEAAGMR7NAumWkxkqRNu8p1sL7R4GoAAOje2vRW7FVXXXXC4+Xl5e2pBT4oOSpESREh2lNeo693HNB5p/UyuiQAALqtNgU7m+3Ei73bbDZNmTKlXQXBtzSPs3t7w26tzS0h2AEAYKA2BbuXX365s+qADxvbvynYMVExAADGYowd2q15nN2WPXbZaxoMrgYAgO6LYId2i7cFK61XDzldUnY+awUDAGAUgh06RGZa07Qna5nPDgAAwxDs0CHG9mt6HMs4OwAAjEOwQ4cYkxYlSdpaVKmSqjqDqwEAoHsi2KFDRPe0amB8mCRpHatQAABgCIIdOkzz49i1PI4FAMAQBDt0mOZ1Y9cR7AAAMATBDh1mdFqUzCYpr6RahfYao8sBAKDbIdihw4QHB2pwUtOyc7wdCwBA1zM02K1evVqXXXaZEhMTZTKZtHTp0hO2/89//qOLLrpIvXr1Unh4uDIzM/Xxxx97tHnggQdkMpk8toEDB3biXeBImYyzAwDAMIYGu+rqag0dOlTz589vVfvVq1froosu0ocffqgNGzboggsu0GWXXaZNmzZ5tBs0aJAKCwvd25o1azqjfBxD8zi7rNxSuVwug6sBAKB7CTDyyydMmKAJEya0uv3cuXM9Pj/66KP673//q//7v/9Tenq6e39AQIDi4+M7qky0wciUSAVaTNpTXqOCshr1iQ41uiQAALoNnx5j53Q6VVlZqaioKI/9P/30kxITE5WWlqbJkydr165dBlXY/YQGBSg9OVISy4sBANDVfDrYPfnkk6qqqtJ1113n3peRkaFFixZp2bJlWrBggfLz83XOOeeosrLyuNepq6tTRUWFx4ZTN7Z/0+PYF9bkq7qu0eBqAADoPnw22L3xxht68MEHtWTJEsXGxrr3T5gwQddee62GDBmi8ePH68MPP1R5ebmWLFly3GvNmTNHNpvNvSUnJ3fFLfit34zpq7hwq7bvq9Kf3t3MWDsAALqITwa7t956S7fccouWLFmicePGnbBtRESETjvtNG3fvv24bWbNmiW73e7eCgoKOrrkbiW6p1XzfjVcFrNJS3P26vWveBQOAEBX8Llg9+abb+qmm27Sm2++qUsvvfSk7auqqpSbm6uEhITjtrFarQoPD/fY0D6jUqL0v5cMkCT95f++1+bddoMrAgDA/xka7KqqqpSTk6OcnBxJUn5+vnJyctwvO8yaNUtTpkxxt3/jjTc0ZcoUPfXUU8rIyFBRUZGKiopktx8ODXfffbdWrVqlHTt2aO3atbryyitlsVg0adKkLr03SLeek6aLzohTvcOp21/fIPvBBqNLAgDArxka7NavX6/09HT3VCUzZ85Uenq6Zs+eLUkqLCz0eKP1ueeeU2Njo6ZNm6aEhAT3dtddd7nb7N69W5MmTdKAAQN03XXXKTo6WuvWrVOvXr269uYgk8mkJ68dquSoEO0+UKPfv50jp5PxdgAAdBaTi5HtLVRUVMhms8lut/NYtgNs2WPXVQvWqr7RqXsnDNRvz+tndEkAAPiMtuQSnxtjB99zZpJND1w2SJL014+36as8lhsDAKAzEOzQJSaNTtaV6UlyOF26881N2l9ZZ3RJAAD4HYIduoTJZNIjV56p0+J6al9lne56a5McjLcDAKBDEezQZUKDAvTPycMVGmTR2txSzf30R6NLAgDArxDs0KX6x4bpsauHSJL+8dl2fb5tn8EVAQDgPwh26HKXD03Ub8b0lST9bnGO9pTXGFwRAAD+gWAHQ/z5l6drSG+byg82aNrrG1Xf6DS6JAAAfB7BDoawBlg0/1fDZQsJVE5BuR798AejSwIAwOcR7GCY5KhQPX3dUEnSorU79MG3hQZXBACAbyPYwVAXnh6n289vWoninn9/o9z9VQZXBACA7yLYwXC/v+g0ZaRGqbreoTte26iaeofRJQEA4JMIdjBcgMWsf0xKV0xPq7YVV+rPS7eIJYwBAGg7gh28Qmx4sP4xKV1mk/TOxt1asr7A6JIAAPA5BDt4jcx+0fr9xQMkSbP/+52+22s3uCIAAHwLwQ5e5fbz+umCAb1U1+jUHa9vVEVtg9ElAQDgMwh28Cpms0l/u36YkiJCtLP0oO55+1vG2wEA0EoEO3idiNAgzZ88XIEWk5Z9V6QX1+QbXRIAAD6BYAevNCw5Qvf98gxJ0mMfbdWGnWUGVwQAgPcj2MFr/WZMX102NFGNTpemvb5JpVV1RpcEAIBXI9jBa5lMJs25arDSevVQUUWtZizOkcPJeDsAAI6HYAev1tMaoAWTRyg40KwvfirRPz77yeiSAADwWgQ7eL0B8WF69MrBkqS/r/hJX/y03+CKAADwTgQ7+ISrhvfWpNHJcrmku97KUaG9xuiSAADwOgQ7+Iz7LxukQYnhKquu1/Q3NqnB4TS6JAAAvArBDj4jONCif04errDgAG3YeUCPf7TV6JIAAPAqBDv4lL7RPfTktUMlSS+sydeyLYUGVwQAgPcg2MHnjB8Ur1vPSZUk/eHtb7WjpNrgigAA8A4EO/ikey4ZqJF9I1VZ16g7Xt+o2gaH0SUBAGA4gh18UqDFrHm/Gq7oHkH6vrBCD7z3ndElAQBgOIIdfFa8LVh/vyFdJpP01tcF+veG3UaXBACAoQh28Gln/yxGMy48TZL056WbtbWowuCKAAAwDsEOPu/On/fXuaf1Um2DU3e8tlFVdY1GlwQAgCEIdvB5ZrNJc68fpgRbsPJKqvW/73wrl8tldFkAAHQ5gh38QlSPIM371XAFmE364NtCvZq10+iSAADocgQ7+I0RfSM16xenS5Ie/uB7bdp1wOCKAADoWgQ7+JX/OStFE86MV4PDpelvbNKB6nqjSwIAoMsQ7OBXTCaTHr9miFKiQ7WnvEa/W5Ijp5PxdgCA7oFgB78THhyof04eIWuAWSu37deCVblGlwQAQJcg2MEvnZEYroeuOFOS9NQn27Q2t8TgigAA6HwEO/it60Yl65oRveV0Sf/vzU0qrqg1uiQAADoVwQ5+7aErztTA+DCVVNXrzjc3qdHhNLokAAA6DcEOfi0kyKJ/Th6untYAZeeX6clPfjS6JAAAOg3BDn4vrVdPPX71EEnSwlW5Wv59scEVAQDQOQh26BYuHZKgG8emSJJ+vyRHBWUHjS0IAIBOYGiwW716tS677DIlJibKZDJp6dKlJz1n5cqVGj58uKxWq/r3769Fixa1aDN//nylpKQoODhYGRkZys7O7vji4XP++IvTNSw5QhW1jbrj9Y2qbXAYXRIAAB3K0GBXXV2toUOHav78+a1qn5+fr0svvVQXXHCBcnJyNGPGDN1yyy36+OOP3W0WL16smTNn6v7779fGjRs1dOhQjR8/Xvv27eus24CPCAowa/7k4YoIDdTmPXY9/MH3RpcEAECHMrlcLq+Ylt9kMundd9/VxIkTj9vmf//3f/XBBx9oy5Yt7n033HCDysvLtWzZMklSRkaGRo0apXnz5kmSnE6nkpOTdeedd+ree+9tVS0VFRWy2Wyy2+0KDw8/9ZuCV1q5bZ9uWvS1XC7p7zcM0xXDkowuCQCA42pLLvGpMXZZWVkaN26cx77x48crKytLklRfX68NGzZ4tDGbzRo3bpy7zbHU1dWpoqLCY4P/On9ArKZf0F+SNOs/m/VTcaXBFQEA0DF8KtgVFRUpLi7OY19cXJwqKipUU1OjkpISORyOY7YpKio67nXnzJkjm83m3pKTkzulfniPGeNO09h+0TpY79Dtr29UdV2j0SUBANBuPhXsOsusWbNkt9vdW0FBgdEloZNZzCb9/YZ0xYZZtX1flf707mZ5yagEAABOmU8Fu/j4eBUXe85BVlxcrPDwcIWEhCgmJkYWi+WYbeLj4497XavVqvDwcI8N/q9XmFXzfjVcFrNJS3P26vWvdhldEgAA7eJTwS4zM1MrVqzw2Ld8+XJlZmZKkoKCgjRixAiPNk6nUytWrHC3AY40OjVK94wfIEn6y/99r8277QZXBADAqTM02FVVVSknJ0c5OTmSmqYzycnJ0a5dTT0ns2bN0pQpU9ztf/vb3yovL0/33HOPtm7dqn/+859asmSJfve737nbzJw5U88//7xeeeUV/fDDD7r99ttVXV2tm266qUvvDb7jtnPTdNEZcap3OHX76xtkP9hgdEkAAJwSQ4Pd+vXrlZ6ervT0dElNoSw9PV2zZ8+WJBUWFrpDniSlpqbqgw8+0PLlyzV06FA99dRTeuGFFzR+/Hh3m+uvv15PPvmkZs+erWHDhiknJ0fLli1r8UIF0MxkMunJa4cqOSpEuw/U6Pdv58jpZLwdAMD3eM08dt6Eeey6py177LpqwVrVNzp174SB+u15/YwuCQAA/53HDuhMZybZdP9lZ0iS/vrxNn2VV2pwRQAAtA3BDjjCr0b30ZXpSXI4XbrzzU3aX1lndEkAALQawQ44gslk0iNXnqmfxfbUvso6/b83N8nBeDsAgI8g2AFHCQ0K0IJfD1dokEVZeaX62/IfjS4JAIBWIdgBx9A/NkxzrhosSZr3+XZ9vm2fwRUBAHByBDvgOK4YlqRfj+kjSfrd4hztKa8xuCIAAE6MYAecwH2/PENDettUfrBBd7y+UfWNTqNLAgDguAh2wAlYAyya/6vhCg8O0DcF5Xr0wx+MLgkAgOMi2AEnkRwVqqevGyZJWrR2h97/dq+xBQEAcBwEO6AVxp0R516J4n///a1y91cZXBEAAC0R7IBWuvvi0zQ6NUrV9Q7d9up6rfmpRKzIBwDwJgQ7oJUCLGbNm5SuXmFW5e6v1q9f/Eq/eGaN3t20Ww0OXqoAABjP5KLLoYW2LLaL7mdveY2eXZWrJet3q6bBIUlKsAXrxrEpmpTRR+HBgQZXCADwJ23JJQS7YyDYoTUOVNfr9a92atHanSqpalpTtqc1QDeMStZNZ6cqKSLE4AoBAP6AYNdOBDu0RV2jQ//dtFfPf5Gnn/Y1vVRhMZt06eAE3XpOmgb3thlcIQDAlxHs2olgh1PhdLq06qf9en51ntbmlrr3j0mL0m3npun802JlNpsMrBAA4IsIdu1EsEN7bdlj1wtf5On/vi2Uw9n0R6x/bE/dcnaqJqYnKTjQYnCFAABfQbBrJ4IdOsqe8hot+jJfb2YXqKquUZIU0zNIUzNT9OsxfRXZI8jgCgEA3o5g104EO3S0itoGLc4u0Etf5qvQXitJCg4069oRybr57FSlxPQwuEIAgLci2LUTwQ6dpcHh1AffFuq51Xn6vrBCkmQySePPiNet56ZqRN8ogysEAHgbgl07EezQ2Vwul7JyS/XcF3lauW2/e//wPhG67dw0XXRGvCy8aAEAEMGu3Qh26Eo/FlfqhS/ytHTTXtUfWsGib3Sobj47VdeM6K3QoACDKwQAGIlg104EOxhhX2WtXl27U/9at1P2mgZJUkRooH4zpq+mZKaoV5jV4AoBAEYg2LUTwQ5GOljfqLfX79aLa/K1q+ygJCnIYtaV6Um65ZxU/SwuzOAKAQBdiWDXTgQ7eAOH06VPvivSc1/kadOucvf+Cwb00q3npikzLVomE+PwAMDfEezaiWAHb7NhZ5meW52nT74vVvOf2DOTwnXrOWn6xeAEBVrMxhYIAOg0BLt2ItjBW+WXVOvFNXn694bdqm1oetEi0Ras/zk7VdePSlZYcKDBFQIAOhrBrp0IdvB2ZdX1em3dTr2ydodKq+slSWHWAE3K6KMbx6YoMSLE4AoBAB2FYNdOBDv4itoGh5Zu2qPnv8hT7v5qSVKA2aTLhibqlnNSNSjRZnCFAID2Iti1E8EOvsbpdOnzbfv03Oo8fZVf5t5/Vv9o3XpOms47rRcvWgCAjyLYtRPBDr7s293lev6LfH24uVAOZ9Mf79PieuqWc9J0xbBEWQMsBlcIAGgLgl07EezgD3YfOKiXv9yht7J3qbreIUnqFWbVjWNTNDmjjyJCgwyuEADQGgS7diLYwZ/Yaxr0ZvYuLfpyh4oqaiVJIYEWXT8qWf9zVqr6RIcaXCEA4EQIdu1EsIM/qm906v1v9+q51XnaWlQpSTKbpEvOjNet56QpvU+kwRUCAI6FYNdOBDv4M5fLpS+3l+q5L/K0+sf97v2jUiJ1yzlpGnd6nCxmXrQAAG9BsGsngh26ix8KK/TCF/l675s9anA0/VWQGtND149K1qWDE5QcxWNaADAawa6dCHboboorarVo7Q69vm6nKmob3fuH9LbpF4MTCHkAYCCCXTsR7NBdVdc1amnOHr3/TaG+yi+V84i/HQh5AGAMgl07EewAaX9lnT7+rkgfbi7UujzPkDc4yaZLhxDyAKArEOzaiWAHeCqpqtOyLYQ8ADACwa6dCHbA8Z0s5DU/rmV+PADoGAS7diLYAa1TUtX0uPaDbwl5ANBZCHbtRLAD2q455H24uVBZuYQ8AOgobckl5i6q6YTmz5+vlJQUBQcHKyMjQ9nZ2cdte/7558tkMrXYLr30UnebG2+8scXxSy65pCtuBei2YnpaNTmjr16/ZYyy/zROj1x5ps7qHy2zSdq8x67Hl23VuX/9XL/8xxdasDJXu0oPGl0yAPgdw3vsFi9erClTpmjhwoXKyMjQ3Llz9fbbb2vbtm2KjY1t0b6srEz19fXuz6WlpRo6dKheeOEF3XjjjZKagl1xcbFefvlldzur1arIyNYtmUSPHdBxTtSTd2ZSuLsnr290D+OKBAAv5lOPYjMyMjRq1CjNmzdPkuR0OpWcnKw777xT995770nPnzt3rmbPnq3CwkL16NH0D8ONN96o8vJyLV269JRqItgBnaO0qk4ff1esDzbvJeQBQCu1JZcEdFFNx1RfX68NGzZo1qxZ7n1ms1njxo1TVlZWq67x4osv6oYbbnCHumYrV65UbGysIiMj9fOf/1wPP/ywoqOjO7R+AG0T3dOqX2X00a8y+rhD3oebC7U2t0Rb9lRoy54KPbFsGyEPAE6RocGupKREDodDcXFxHvvj4uK0devWk56fnZ2tLVu26MUXX/TYf8kll+iqq65SamqqcnNz9cc//lETJkxQVlaWLBZLi+vU1dWprq7O/bmiouIU7whAax0v5GXllXqEvEGJ4e558gh5AHBihga79nrxxRc1ePBgjR492mP/DTfc4P794MGDNWTIEPXr108rV67UhRde2OI6c+bM0YMPPtjp9QI4thOFvO/2Vui7vYQ8AGgNQ9+KjYmJkcViUXFxscf+4uJixcfHn/Dc6upqvfXWW7r55ptP+j1paWmKiYnR9u3bj3l81qxZstvt7q2goKD1NwGgQzWHvNduyVD2Hy/UnKsG6+z+MbKYTe6Ad95fV+rSZ77Q/M+3a0dJtdElA4DXMLTHLigoSCNGjNCKFSs0ceJESU0vT6xYsULTp08/4blvv/226urq9Otf//qk37N7926VlpYqISHhmMetVqusVmub6wfQuaJ7WjVpdB9NGt1HZdX17rdr1+Ye7sn768dNPXnNY/JSYujJA9B9Gf5W7OLFizV16lQ9++yzGj16tObOnaslS5Zo69atiouL05QpU5SUlKQ5c+Z4nHfOOecoKSlJb731lsf+qqoqPfjgg7r66qsVHx+v3Nxc3XPPPaqsrNTmzZtbFeB4KxbwbkeHPMcRr9cS8gD4G595K1aSrr/+eu3fv1+zZ89WUVGRhg0bpmXLlrlfqNi1a5fMZs8nxtu2bdOaNWv0ySeftLiexWLRt99+q1deeUXl5eVKTEzUxRdfrIceeoheOcBPRPUIalVP3hkJh8fkEfIAdAeG99h5I3rsAN9UVl2vT74r0gfH6MlrDnmXnBmvtJgeMplMBlYKAK3nUxMUeyOCHeD7ThTyEmzBykyL1pi0aGX2i1ZyFOvXAvBeBLt2ItgB/uXIkLcur1QNDs+/9pIiQtwhL7NftJIiQgyqFABaIti1E8EO8F819Q5t2HlA6/JKlZVXqm8KytXo9PxrsE9UqMakRSmzX1OvXoKNoAfAOAS7diLYAd1HdV2jNuw8oKy8UmXllmrzHrvHY1tJSokOdYe8zLRoxYYHG1QtgO6IYNdOBDug+6qqa9TXO8q0Lrf00PJmdh2V85TWq4d7jN6YtGj1CuONewCdh2DXTgQ7AM0qahv0dX6Z+9Htd3srdPTfmj+L7ekeo5eRGqXongQ9AB2HYNdOBDsAx2M/2KDsHWXKOtSj90NhRYs2A+LC3I9uM1KjFNkjyIBKAfgLgl07EewAtNaB6np91dyjl1uqbcWVHsdNJmlgfLgyD/XojU6Jki000KBqAfgigl07EewAnKrSqjp9ld/Uo7cur1Q/7avyOG4yNS171jxGb1RqlMKDCXoAjo9g104EOwAdZX9lndbllbrH6OXtr/Y4bjZJg5NsTS9i9IvWqJQo9bQavtojAC9CsGsngh2AzlJcUXs46OWWakfpQY/jFrNJg5NsTZMlp0VrZEqkQoMIekB3RrBrJ4IdgK5SaK9xh7ysvFIVlNV4HA8wmzQ0OcL96HZE30iFBFkMqhaAEQh27USwA2CU3QcOal3e4TF6e8o9g16QxaxhyREa0y9aY9KiNLxPpIIDCXqAPyPYtRPBDoA3cLlc2n2gxt2bl5VbqqKKWo82QQFmDe8T4V4VIzkqVCGBFgUHWmQNMMtsNhlUPYCOQrBrJ4IdAG/kcrm0s/Sgso4Yo7evsu6E5wQFmA8FPbOCAy0KDrAoOMii4IBDnwPN7iAYHGiR9cjPh9qEBFlkDTh8jcPtze7zggPNCrKYZTIRJIGO1pZcwohcAPARJpNJKTE9lBLTQ5NG95HL5VJeSbU75H29o0xl1fVqcBz+//X6RqfqG52y15zgwh1WnxQc0BQEm0OhNdCikKMCoPv3AUcHS/Oh9p5tm4NpD2uAYsOCZaEXEjgueuyOgR47AL7M4XSptsGhmgaHahscqm1wHvr1iN83OlRT71Bto1N1h47VeLQ94pzmtg1O1TY6VNfgPOLajhZr6XamALNJiREh6h3ZvIUqOarp196RIQQ/+CV67ACgG7OYTephDVCPLpgPz+VyqcHhUk2D41BAdB4RBJuCY+0RIbA5MNa0CJxHnXuMwFld16hGp0u7yg5qV9nBY9YTaDEpKeJw0Ds6/PXqaWXcIfwawQ4AcMpMJpOCAkwKCjBLIZ27gobD6VJxRa12H6jR7gMHtftAjQrKmn7dXX5Qe8tr1eBwaUfpwRbzAzYLspiVdETgOzr89eppZZwgfBrBDgDgEyyHHsMmRoRodGpUi+ONDqeK3MGvZfgrtNeo3uFUfkm18kuqj/ENkjWgOfg1hb7ko8JfTM8ggh+8GsEOAOAXAizmQ4Es9JjHGxxOFdlrVXAo8LnDX1nTr4UVtaprdCpvf3WLpd+aBQeaW/b0HfE5qgfBD8Yi2AEAuoVAi1nJUaFKjjp28KtvbAp+uw8cbBH+CspqVFxZq9oGp7bvq9L2fVXHvEZokOXYj3kPfY4IDST4oVMR7AAAUNOcf32iQ9Un+tjBr67RocLypke9TcHPM/wVV9TpYL1DPxZX6cfiYwe/HkGWFm/yNoe/fr16slwc2o1gBwBAK1gDLO55BI+ltsGhveU17rB3uNev6df9lXWqrndoW3GlthVXtjg/0GJSenKkxvRrWkUkvU8Ey8WhzZjH7hiYxw4A0NFqGxweQe/I8FdQdlBl1fUe7a0BZo3oG6nMtGhl9ovWkN4RTW8fo9thSbF2ItgBALrSkcvFNa8NvP+o5eJCAi0amRKpzEM9eoOTbAqwEPS6A4JdOxHsAABGcrlcyt1f5Q556/LKWvTo9bQGaHRqlLtH7/SEcFbd8FMEu3Yi2AEAvInT6dKP+yqVlVuqtbml+iqvVBW1jR5twoMDlJHW1Js3tn+0TosNY5UNP0GwayeCHQDAmzmcLv1QWOHu0cvOL1NVnWfQi+oRpDFph3v0+vXqyVQrPopg104EOwCAL2l0OLVlb4XW5pYoK7dU63ccUE2Dw6NNrzCrxqRFa+yhMXp9o0MJej6CYNdOBDsAgC+rb3Tq293l7h69DTsPqK7R6dEmwRaszLRo9/Qqx5u4GcYj2LUTwQ4A4E9qGxzatKu86UWM3FJtKjigBofnP/+9I0OaevP6RSszLUbxtmCDqsXRCHbtRLADAPizmnqHNuw8oKy8pke33+y2y+H0jAOpMT00Ji3aPb1KrzCrQdWCYNdOBDsAQHdSVdeor3eUad2hR7db9th1VM7Tz2J7ukNeRlq0onoEGVNsN0SwayeCHQCgO7PXNOjr/DJl5TVNr/JDYUWLNgPjwzyCni0k0IBKuweCXTsR7AAAOOxAdb2+yj+8KsaPxVUex80maVCizR30RqVGqaeV5eg7CsGunQh2AAAcX0lVndYd6s1bl1uqvJJqj+MWs0mDk5qC3th+0RrZN0ohQRaDqvV9BLt2ItgBANB6RfZarTtindtdZQdbtDGZJJPknjvP5N7XdKD5c9Mxk0d792x7R+47zvXkce6xr+dRk+nYx01Hf98xrqcjjr1z+9hOC69tySX0kwIAgHaJtwVrYnqSJqYnSZJ2Hzh4eJ3b3FLttdfK5ZJcktSiP8k/+pdcXnIfBDsAANChekeG6tqRobp2ZLJcLpcOHGxQo9MpuQ7HuKag53IHPpfL5ZH5jnn8iGPyOHY4WLlcnufqWMePuF7ztTyPeR53f/NR3+cOq5KsAd7xqJlgBwAAOo3JZGJqlC5kNroAAAAAdAyCHQAAgJ8g2AEAAPgJrwh28+fPV0pKioKDg5WRkaHs7Ozjtl20aNGh15wPb8HBngsVu1wuzZ49WwkJCQoJCdG4ceP0008/dfZtAAAAGMrwYLd48WLNnDlT999/vzZu3KihQ4dq/Pjx2rdv33HPCQ8PV2FhoXvbuXOnx/EnnnhCzzzzjBYuXKivvvpKPXr00Pjx41VbW9vZtwMAAGAYw4Pd008/rVtvvVU33XSTzjjjDC1cuFChoaF66aWXjnuOyWRSfHy8e4uLi3Mfc7lcmjt3rv785z/riiuu0JAhQ/Tqq69q7969Wrp0aRfcEQAAgDEMDXb19fXasGGDxo0b595nNps1btw4ZWVlHfe8qqoq9e3bV8nJybriiiv03XffuY/l5+erqKjI45o2m00ZGRnHvWZdXZ0qKio8NgAAAF9jaLArKSmRw+Hw6HGTpLi4OBUVFR3znAEDBuill17Sf//7X7322mtyOp0aO3asdu/eLUnu89pyzTlz5shms7m35OTk9t4aAABAlzP8UWxbZWZmasqUKRo2bJjOO+88/ec//1GvXr307LPPnvI1Z82aJbvd7t4KCgo6sGIAAICuYWiwi4mJkcViUXFxscf+4uJixcfHt+oagYGBSk9P1/bt2yXJfV5brmm1WhUeHu6xAQAA+BpDg11QUJBGjBihFStWuPc5nU6tWLFCmZmZrbqGw+HQ5s2blZCQIElKTU1VfHy8xzUrKir01VdftfqaAAAAvsjwtWJnzpypqVOnauTIkRo9erTmzp2r6upq3XTTTZKkKVOmKCkpSXPmzJEk/eUvf9GYMWPUv39/lZeX669//at27typW265RVLTG7MzZszQww8/rJ/97GdKTU3Vfffdp8TERE2cONGo2wQAAOh0hge766+/Xvv379fs2bNVVFSkYcOGadmyZe6XH3bt2iWz+XDH4oEDB3TrrbeqqKhIkZGRGjFihNauXaszzjjD3eaee+5RdXW1brvtNpWXl+vss8/WsmXLWkxkDAAA4E9MLpfLZXQR3qaiokI2m012u53xdgAAwFBtySU+91YsAAAAjs3wR7HeqLkTk4mKAQCA0ZrzSGseshLsjqGyslKSmKgYAAB4jcrKStlsthO2YYzdMTidTu3du1dhYWEymUyd8h0VFRVKTk5WQUEB4/h8DD8738XPznfxs/Nd/Ozaz+VyqbKyUomJiR4vlB4LPXbHYDab1bt37y75LiZE9l387HwXPzvfxc/Od/Gza5+T9dQ14+UJAAAAP0GwAwAA8BMEO4NYrVbdf//9slqtRpeCNuJn57v42fkufna+i59d1+LlCQAAAD9Bjx0AAICfINgBAAD4CYIdAACAnyDYGWT+/PlKSUlRcHCwMjIylJ2dbXRJOIk5c+Zo1KhRCgsLU2xsrCZOnKht27YZXRZOwWOPPSaTyaQZM2YYXQpaYc+ePfr1r3+t6OhohYSEaPDgwVq/fr3RZeEkHA6H7rvvPqWmpiokJET9+vXTQw891KplsXDqCHYGWLx4sWbOnKn7779fGzdu1NChQzV+/Hjt27fP6NJwAqtWrdK0adO0bt06LV++XA0NDbr44otVXV1tdGlog6+//lrPPvushgwZYnQpaIUDBw7orLPOUmBgoD766CN9//33euqppxQZGWl0aTiJxx9/XAsWLNC8efP0ww8/6PHHH9cTTzyhf/zjH0aX5td4K9YAGRkZGjVqlObNmyepaQmz5ORk3Xnnnbr33nsNrg6ttX//fsXGxmrVqlU699xzjS4HrVBVVaXhw4frn//8px5++GENGzZMc+fONbosnMC9996rL7/8Ul988YXRpaCNfvnLXyouLk4vvviie9/VV1+tkJAQvfbaawZW5t/oseti9fX12rBhg8aNG+feZzabNW7cOGVlZRlYGdrKbrdLkqKiogyuBK01bdo0XXrppR5//uDd3nvvPY0cOVLXXnutYmNjlZ6erueff97ostAKY8eO1YoVK/Tjjz9Kkr755hutWbNGEyZMMLgy/8ZasV2spKREDodDcXFxHvvj4uK0detWg6pCWzmdTs2YMUNnnXWWzjzzTKPLQSu89dZb2rhxo77++mujS0Eb5OXlacGCBZo5c6b++Mc/6uuvv9b/+3//T0FBQZo6darR5eEE7r33XlVUVGjgwIGyWCxyOBx65JFHNHnyZKNL82sEO+AUTJs2TVu2bNGaNWuMLgWtUFBQoLvuukvLly9XcHCw0eWgDZxOp0aOHKlHH31UkpSenq4tW7Zo4cKFBDsvt2TJEr3++ut64403NGjQIOXk5GjGjBlKTEzkZ9eJCHZdLCYmRhaLRcXFxR77i4uLFR8fb1BVaIvp06fr/fff1+rVq9W7d2+jy0ErbNiwQfv27dPw4cPd+xwOh1avXq158+aprq5OFovFwApxPAkJCTrjjDM89p1++ul65513DKoIrfWHP/xB9957r2644QZJ0uDBg7Vz507NmTOHYNeJGGPXxYKCgjRixAitWLHCvc/pdGrFihXKzMw0sDKcjMvl0vTp0/Xuu+/qs88+U2pqqtEloZUuvPBCbd68WTk5Oe5t5MiRmjx5snJycgh1Xuyss85qMa3Qjz/+qL59+xpUEVrr4MGDMps9Y4bFYpHT6TSoou6BHjsDzJw5U1OnTtXIkSM1evRozZ07V9XV1brpppuMLg0nMG3aNL3xxhv673//q7CwMBUVFUmSbDabQkJCDK4OJxIWFtZiLGSPHj0UHR3NGEkv97vf/U5jx47Vo48+quuuu07Z2dl67rnn9NxzzxldGk7isssu0yOPPKI+ffpo0KBB2rRpk55++mn9z//8j9Gl+TWmOzHIvHnz9Ne//lVFRUUaNmyYnnnmGWVkZBhdFk7AZDIdc//LL7+sG2+8sWuLQbudf/75THfiI95//33NmjVLP/30k1JTUzVz5kzdeuutRpeFk6isrNR9992nd999V/v27VNiYqImTZqk2bNnKygoyOjy/BbBDgAAwE8wxg4AAMBPEOwAAAD8BMEOAADATxDsAAAA/ATBDgAAwE8Q7AAAAPwEwQ4AAMBPEOwAAAD8BMEOALyMyWTS0qVLjS4DgA8i2AHAEW688UaZTKYW2yWXXGJ0aQBwUgFGFwAA3uaSSy7Ryy+/7LHParUaVA0AtB49dgBwFKvVqvj4eI8tMjJSUtNj0gULFmjChAkKCQlRWlqa/v3vf3ucv3nzZv385z9XSEiIoqOjddttt6mqqsqjzUsvvaRBgwbJarUqISFB06dP9zheUlKiK6+8UqGhofrZz36m9957r3NvGoBfINgBQBvdd999uvrqq/XNN99o8uTJuuGGG/TDDz9IkqqrqzV+/HhFRkbq66+/1ttvv61PP/3UI7gtWLBA06ZN02233abNmzfrvffeU//+/T2+48EHH9R1112nb7/9Vr/4xS80efJklZWVdel9AvBBLgCA29SpU10Wi8XVo0cPj+2RRx5xuVwulyTXb3/7W49zMjIyXLfffrvL5XK5nnvuOVdkZKSrqqrKffyDDz5wmc1mV1FRkcvlcrkSExNdf/rTn45bgyTXn//8Z/fnqqoqlyTXRx991GH3CcA/McYOAI5ywQUXaMGCBR77oqKi3L/PzMz0OJaZmamcnBxJ0g8//KChQ4eqR48e7uNnnXWWnE6ntm3bJpPJpL179+rCCy88YQ1Dhgxx/75Hjx4KDw/Xvn37TvWWAHQTBDsAOEqPHj1aPBrtKCEhIa1qFxgY6PHZZDLJ6XR2RkkA/Ahj7ACgjdatW9fi8+mnny5JOv300/XNN9+ourraffzLL7+U2WzWgAEDFBYWppSUFK1YsaJLawbQPdBjBwBHqaurU1FRkce+gIAAxcTESJLefvttjRw5UmeffbZef/11ZWdn68UXX5QkTZ48Wffff7+mTp2qBx54QPv379edd96p3/zmN4qLi5MkPfDAA/rtb3+r2NhYTZgwQZWVlfryyy915513du2NAvA7BDsAOMqyZcuUkJDgsW/AgAHaunWrpKY3Vt966y3dcccdSkhI0JtvvqkzzjhDkhQaGqqPP/5Yd911l0aNGqXQ0FBdffXVevrpp93Xmjp1qmpra/W3v/1Nd999t2JiYnTNNdd03Q0C8Fsml8vlMroIAPAVJpNJ7777riZOnGh0KQDQAmPsAAAA/ATBDgAAwE8wxg4A2oDRKwC8GT12AAAAfoJgBwAA4CcIdgAAAH6CYAcAAOAnCHYAAAB+gmAHAADgJwh2AAAAfoJgBwAA4CcIdgAAAH7i/wP5FsHg5+2uUwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# TRAINING\n", + "\n", + "# Training parameters\n", + "nb_epochs = 10 # is quick, it won't have converged.\n", + "# Note: An epoch is one complete pass through the entire training dataset.\n", + "# During an epoch, the neural network processes every example in the dataset once.\n", + "# Completing an epoch means that every data point has been used for calculating the loss and updating the model parameters.\n", + "# Multiple epochs are usually required for the network to converge to an optimal set of parameters.\n", + "lr = 0.01 # learning rate\n", + "\n", + "# Generate the training data\n", + "ipds, spikes, _ = random_ipd_input_signal(num_samples) # num_samples = batch_size * num_training\n", + "\n", + "# Initialise a weight matrices\n", + "W1, W2 = init_weight_matrices()\n", + "\n", + "# Optimiser and loss function\n", + "optimizer = torch.optim.Adam([W1, W2], lr=lr)\n", + "log_softmax_fn = nn.LogSoftmax(dim=1)\n", + "loss_fn = nn.NLLLoss()\n", + "\n", + "print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + "loss_hist = []\n", + "for e in range(nb_epochs):\n", + " local_loss = []\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n", + " # Run network\n", + " output = snn(spike_batch, W1, W2)\n", + "\n", + " # Compute cross entropy loss\n", + " m = torch.sum(output, 1)*0.01 # Agregation fuction: Sum across time dimension. Note: We want loss for epoch 1 to be about -np.log(1/num_classes), multiply m by a constant to get this\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # The softmax function transforms the output of a neural network's final layer into a probability\n", + " # distribution over multiple classes in such a way that increasing the score of one class\n", + " # decreases the probabilities of the other classes. It does this by exponentiating each logit\n", + " # and then normalizing these values so that they sum to 1. This is important because it ensures that\n", + " # the predicted values for each class sum up to 1.0. This probability distribution allows us to\n", + " # interpret the network's output as the likelihood of each class being the correct class.\n", + " # Training Objective: The training process aims to increase the probability of the correct class.\n", + " # As the model updates its weights to increase the probability (and hence the log probability) of the\n", + " # correct class, the softmax function inherently decreases the probabilities of the other classes due\n", + " # to the normalization step.\n", + " # Using it with the negative log likelihood loss encourages the model to increase the log probability\n", + " # of the correct class.\n", + " # Interpretability: The softmax function's output can be interpreted as class probabilities, which is\n", + " # valuable not only for making predictions but also for understanding the model's confidence in those\n", + " # predictions. This can be useful for post-processing or decision-making based on the network's output\n", + " # probabilities.\n", + "\n", + " # Update gradients\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n", + "\n", + "# Plot the loss function over time\n", + "plt.plot(loss_hist)\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.tight_layout()\n" + ] + }, + { + "cell_type": "code", + "source": [ + "# ANALYSIS\n", + "\n", + "print(f\"Chance accuracy level: {100*1/num_classes:.1f}%\")\n", + "run_func = lambda x: snn(x, W1, W2)\n", + "results_Train = analyse(ipds, spikes, 'Train', run=run_func, plot_analysis=1)\n", + "ipds_test, spikes_test, _ = random_ipd_input_signal(batch_size*n_testing_batches)\n", + "results_Train = analyse(ipds_test, spikes_test, 'Test', run=run_func, plot_analysis=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 790 + }, + "id": "YYmxcDagJkcw", + "outputId": "92581f74-5c57-43f6-faf4-060c50b99b01" + }, + "id": "YYmxcDagJkcw", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Chance accuracy level: 8.3%\n", + "Train classifier accuracy: 81.9%\n", + "Train absolute error: 4.8 deg \n", + "\n", + "Test classifier accuracy: 59.8%\n", + "Test absolute error: 7.3 deg \n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkUklEQVR4nO3dfXzN9f/H8efZbGcbNsMuXMw2lIuEIvvOtVpNUenqSymbpBS5GLko2ahMSEMilUnxrW+lS0UM+YouvvoSuSghvrEJMRfZOOfz+8N359ex4XxmZ2c7e9xvt8/tts/7vD+f9+vjfL+999r74mMxDMMQAAAAAAAocT6eDgAAAAAAAG9F0g0AAAAAgJuQdAMAAAAA4CYk3QAAAAAAuAlJNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk3AAAAAABuQtINlGPJycmKiYnxdBgAABTLzz//rJtuukkhISGyWCz68MMPS/T+e/bskcVi0fz580v0vt4gJiZGycnJng4DqBBIugE3sFgsLh2rV6/2dKgAgArul19+0SOPPKL69esrICBAwcHBateunaZPn64///zTrW0nJSVp8+bNeu655/Tmm2+qdevWbm3PG23dulVpaWnas2ePp0MBcAEWwzAMTwcBeJu33nrL6XzBggVavny53nzzTafyG2+8UREREcVu58yZM7Lb7bJarcW+BwCg4lqyZInuueceWa1W9enTR82aNVN+fr7Wrl2r999/X8nJyZo7d65b2v7zzz8VFBSkp556Ss8++6xb2jAMQ3l5efLz85Ovr69b2vC09957T/fcc49WrVqlzp07u3xdXl6efHx85Ofn577gAEiSKnk6AMAb3X///U7nX3/9tZYvX16o/HynTp1SUFCQy+3QUQIAimv37t3q1auXoqOjtXLlStWqVcvx2cCBA7Vz504tWbLEbe3//vvvkqRq1aq5rQ2LxaKAgAC33b+8MQxDp0+fVmBgIH+wB0oR08sBD+ncubOaNWumDRs2qGPHjgoKCtKTTz4pSfroo4/UrVs31a5dW1arVQ0aNNAzzzwjm83mdI/z13QXrF2bOnWq5s6dqwYNGshqteq6667Td999V5qPBwAo4yZPnqwTJ07o9ddfd0q4CzRs2FBDhgxxnJ89e1bPPPOMo2+JiYnRk08+qby8PKfrYmJi1L17d61du1Zt2rRRQECA6tevrwULFjjqpKWlKTo6WpL0xBNPyGKxOPqzC+1XkpaWJovF4lS2fPlytW/fXtWqVVOVKlXUqFEjR18qXXhN98qVK9WhQwdVrlxZ1apV0+23365t27YV2d7OnTuVnJysatWqKSQkRH379tWpU6cu/A/7PwX9/A8//KBOnTopKChIDRs21HvvvSdJ+vLLLxUXF6fAwEA1atRIK1ascLr+119/1WOPPaZGjRopMDBQNWrU0D333OM0jXz+/Pm65557JEldunQptHyt4LtYtmyZWrdurcDAQL3yyiuOzwrWdBuGoS5duigsLEwHDx503D8/P19XX321GjRooJMnT17ymQEUjaQb8KDDhw/r5ptvVsuWLZWRkaEuXbpIOteJVqlSRSkpKZo+fbpatWqlcePGafTo0S7dd9GiRZoyZYoeeeQRPfvss9qzZ4/uvPNOnTlzxp2PAwAoRz755BPVr19fbdu2dan+Qw89pHHjxunaa6/Viy++qE6dOik9PV29evUqVHfnzp26++67deONN+qFF15QaGiokpOT9eOPP0qS7rzzTr344ouSpHvvvVdvvvmmMjIyTMX/448/qnv37srLy9OECRP0wgsv6LbbbtNXX3110etWrFihxMREHTx4UGlpaUpJSdG6devUrl27ItdF//3vf9fx48eVnp6uv//975o/f77Gjx/vUox//PGHunfvrri4OE2ePFlWq1W9evXSO++8o169eumWW27RpEmTdPLkSd199906fvy449rvvvtO69atU69evTRjxgwNGDBAWVlZ6ty5syPp79ixowYPHixJevLJJ/Xmm2/qzTffVJMmTRz32bFjh+69917deOONmj59ulq2bFkoTovFonnz5un06dMaMGCAozw1NVU//vijMjMzVblyZZeeGUARDABuN3DgQOP8/7t16tTJkGTMmTOnUP1Tp04VKnvkkUeMoKAg4/Tp046ypKQkIzo62nG+e/duQ5JRo0YN48iRI47yjz76yJBkfPLJJyXwNACA8u7YsWOGJOP22293qf7GjRsNScZDDz3kVD5ixAhDkrFy5UpHWXR0tCHJWLNmjaPs4MGDhtVqNYYPH+4oK+izpkyZ4nTP8/u2AqmpqU596YsvvmhIMn7//fcLxl3QRmZmpqOsZcuWRnh4uHH48GFH2aZNmwwfHx+jT58+hdp78MEHne55xx13GDVq1LhgmwUK+vlFixY5yrZv325IMnx8fIyvv/7aUb5s2bJCcRb1u8D69esNScaCBQscZe+++64hyVi1alWh+gXfxdKlS4v8LCkpyanslVdeMSQZb731lvH1118bvr6+xtChQy/5rAAujpFuwIOsVqv69u1bqDwwMNDx8/Hjx3Xo0CF16NBBp06d0vbt2y953549eyo0NNRx3qFDB0nSrl27SiBqAEB5l5ubK0mqWrWqS/U/++wzSVJKSopT+fDhwyWp0Nrvpk2bOvoeSQoLC1OjRo1KtB8qWAv+0UcfyW63u3TNgQMHtHHjRiUnJ6t69eqO8ubNm+vGG290POdf/XXkVzrXpx4+fNjxb3gxVapUcZoJ0KhRI1WrVk1NmjRRXFyco7zg57/++/z1d4EzZ87o8OHDatiwoapVq6bvv//ehac9JzY2VomJiS7Vffjhh5WYmKjHH39cDzzwgBo0aKCJEye63BaAopF0Ax5Up04d+fv7Fyr/8ccfdccddygkJETBwcEKCwtzbMJ27NixS963Xr16TucFCfgff/xRAlEDAMq74OBgSXKaznwxv/76q3x8fNSwYUOn8sjISFWrVk2//vqrU/n5/ZB0ri8qyX6oZ8+eateunR566CFFRESoV69e+uc//3nRBLwgzkaNGhX6rEmTJjp06FChtcuX06fWrVu30Dr0kJAQRUVFFSo7/55//vmnxo0bp6ioKFmtVtWsWVNhYWE6evSoS78LFIiNjXW5riS9/vrrOnXqlH7++WfNnz/fKfkHUDzsXg54UFEd2dGjR9WpUycFBwdrwoQJatCggQICAvT9999r1KhRLv01/0KvRTF4QyAAQOeS7tq1a2vLli2mrjs/gbyQy+mHLtTG+ZuJBgYGas2aNVq1apWWLFmipUuX6p133tH111+vL774osReEXY5z3Kha1255+OPP67MzEwNHTpU8fHxCgkJkcViUa9evVwe2ZeK/l3jYlavXu3YHG/z5s2Kj483dT2Awki6gTJm9erVOnz4sBYvXqyOHTs6ynfv3u3BqAAA3qZ79+6aO3eu1q9ff8nEKjo6Wna7XT///LPTJl05OTk6evSoYyfykhAaGqqjR48WKj9/NF2SfHx8dMMNN+iGG27QtGnTNHHiRD311FNatWqVEhISinwO6dzmYufbvn27atasWWY2DHvvvfeUlJSkF154wVF2+vTpQv82rv4hxBUHDhzQ448/rptuukn+/v4aMWKEEhMTS/T7BSoippcDZUzBX7//+tfu/Px8vfzyy54KCQDghUaOHKnKlSvroYceUk5OTqHPf/nlF02fPl2SdMstt0hSoR3Gp02bJknq1q1bicXVoEEDHTt2TD/88IOj7MCBA/rggw+c6h05cqTQtQU7c5//GrMCtWrVUsuWLfXGG284Ja9btmzRF1984XjOssDX17fQaPrMmTMLjfgX/JGgqD9UmNW/f3/Z7Xa9/vrrmjt3ripVqqR+/foxUw64TIx0A2VM27ZtFRoaqqSkJA0ePFgWi0VvvvkmHR4AoEQ1aNBAixYtUs+ePdWkSRP16dNHzZo1U35+vtatW6d3333X8R7nFi1aKCkpSXPnznUsg/r222/1xhtvqEePHo5XXpaEXr16adSoUbrjjjs0ePBgnTp1SrNnz9aVV17ptIHYhAkTtGbNGnXr1k3R0dE6ePCgXn75ZdWtW1ft27e/4P2nTJmim2++WfHx8erXr5/+/PNPzZw5UyEhIUpLSyux57hc3bt315tvvqmQkBA1bdpU69ev14oVK1SjRg2nei1btpSvr6+ef/55HTt2TFarVddff73Cw8NNtZeZmaklS5Zo/vz5qlu3rqRzSf7999+v2bNn67HHHiuxZwMqGpJuoIypUaOGPv30Uw0fPlxjx45VaGio7r//ft1www0u7z4KAIArbrvtNv3www+aMmWKPvroI82ePVtWq1XNmzfXCy+8oP79+zvqvvbaa6pfv77mz5+vDz74QJGRkRozZoxSU1NLNKYaNWrogw8+UEpKikaOHKnY2Filp6fr559/dkq6b7vtNu3Zs0fz5s3ToUOHVLNmTXXq1Enjx493bExWlISEBC1dulSpqakaN26c/Pz81KlTJz3//POmNx1zp+nTp8vX11cLFy7U6dOn1a5dO8c7xv8qMjJSc+bMUXp6uvr16yebzaZVq1aZSrr/+9//atiwYbr11luVlJTkKO/du7fef/99jRw5UjfffHOZ+vcByhOLwfAZAAAAAABuwZpuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADdx6T3ddrtd+/fvV9WqVWWxWNwdEwAAZYJhGDp+/Lhq164tHx/+Tn0h/J4AAGWLu/uv06dPKz8/v1jX+vv7KyAgoIQjKttcSrr379+vqKgod8cCAECZtG/fPtWtW9fTYZRZ/J4AAGWTO/qv06dPKza6irIP2op1fWRkpHbv3l2hEm+Xku6qVatKOvelBQcHuzUgAADKitzcXEVFRTn6QRSt4N+nvW5RJfl5OBoAuDB72+Yeafej+QtLtb3cE3ZFX7vHLf1Xfn6+sg/a9OuGGAVXNTeKnnvcruhWe5Sfn0/Sfb6CqWLBwcEk3QCACocp0xdX8O9TSX6qZCHpBlB22St5JtEzm5yWFHf2X1WqWlSlqrn721Ux+1OXkm4AAAAAAArYDLtshvlrKiKSbgAAAACAKXYZsstc1m22vrcg6QYAAAAAmGKXXWbHrc1f4R1IugHABJvNpjNnzng6DJQgf39/XgcGAIBJNsOQzTA3cm22vrcg6QYAFxiGoezsbB09etTToaCE+fj4KDY2Vv7+/p4OBQCAcoPp5a4j6QYAFxQk3OHh4QoKCmI3ay9ht9u1f/9+HThwQPXq1eN7BQAAJY6kGwAuwWazORLuGjVqeDoclLCwsDDt379fZ8+elZ8fr7sCAMAVdhmyMdLtEpJuALiEgjXcQUFBHo4E7lAwrdxms5F0AwDgIqaXu46kGwBcxNRj78T3CgCAeWyk5jqSbgAAAACAKfb/HWavqYh4RwoAAF7KZrPp6aefVmxsrAIDA9WgQQM988wzMv4y0mAYhsaNG6datWopMDBQCQkJ+vnnnz0YNQCgPLD9b0232aMiYqQbAC5DzOglpdbWnkndXK57qSnTqampSktLu8yIUNY9//zzmj17tt544w1dddVV+ve//62+ffsqJCREgwcPliRNnjxZM2bM0BtvvKHY2Fg9/fTTSkxM1NatWxUQEODhJwAAoPwj6Ub5khbiwbaPea5twKQDBw44fn7nnXc0btw47dixw1FWpUoVx8+GYchms6lSJboEb7Nu3Trdfvvt6tbt3B9sYmJi9I9//EPffvutpHPffUZGhsaOHavbb79dkrRgwQJFREToww8/VK9evTwWOwCgbLMZ5w6z11RETC8HAC8UGRnpOEJCQmSxWBzn27dvV9WqVfX555+rVatWslqtWrt2rZKTk9WjRw+n+wwdOlSdO3d2nNvtdqWnpzumK7do0ULvvfde6T4cXNa2bVtlZWXpp59+kiRt2rRJa9eu1c033yxJ2r17t7Kzs5WQkOC4JiQkRHFxcVq/fv0F75uXl6fc3FynAwBQsdiLeVREDGsAQAU1evRoTZ06VfXr11doaKhL16Snp+utt97SnDlzdMUVV2jNmjW6//77FRYWpk6dOrk5Ypg1evRo5ebmqnHjxvL19ZXNZtNzzz2n3r17S5Kys7MlSREREU7XRUREOD4rSnp6usaPH+++wAEAZZ5dFtlk7g0gdpP1vQVJNwBUUBMmTNCNN97ocv28vDxNnDhRK1asUHx8vCSpfv36Wrt2rV555RWS7jLon//8pxYuXKhFixbpqquu0saNGzV06FDVrl1bSUlJxb7vmDFjlJKS4jjPzc1VVFRUSYQMACgn7Ma5w+w1FRFJNwBUUK1btzZVf+fOnTp16lShRD0/P1/XXHNNSYaGEvLEE09o9OjRjrXZV199tX799Velp6crKSlJkZGRkqScnBzVqlXLcV1OTo5atmx5wftarVZZrVa3xg4AKNtsxRjpNlvfW5B0A0AFVblyZadzHx8fp1dJSdKZM2ccP584cUKStGTJEtWpU8epHglY2XTq1Cn5+Dhv3+Lr6yu7/dyqutjYWEVGRiorK8uRZOfm5uqbb77Ro48+WtrhAgDglUi6AQCSpLCwMG3ZssWpbOPGjfLz85MkNW3aVFarVXv37mUqeTlx66236rnnnlO9evV01VVX6T//+Y+mTZumBx98UNK5V8sNHTpUzz77rK644grHK8Nq165daFM9AAD+ipFu15F0AwAkSddff72mTJmiBQsWKD4+Xm+99Za2bNnimDpetWpVjRgxQsOGDZPdblf79u117NgxffXVVwoODr6sNcJwj5kzZ+rpp5/WY489poMHD6p27dp65JFHNG7cOEedkSNH6uTJk3r44Yd19OhRtW/fXkuXLuUd3QCAi7IbFtkNkxupmazvLUi6AQCSpMTERD399NMaOXKkTp8+rQcffFB9+vTR5s2bHXWeeeYZhYWFKT09Xbt27VK1atV07bXX6sknn/Rg5LiQqlWrKiMjQxkZGResY7FYNGHCBE2YMKH0AgMAlHuMdLuOpBsALsOeSd08HcIlJScnKzk52XHeuXPnQmu3C4wfP/6ir4KyWCwaMmSIhgwZUtJhAgCAcsQmH9nkc+mKTtdUTCTdAAAAAEqVT8umHmn3upn/9ki7XWPjSrW9s8YZSbvc2oZRjOnlBtPLAQAAAAC4NKaXu87cfAAAAAAAAOAyRroBAAAAAKbYDB/ZDJNruoveUsbrkXQDAAAAAEyxyyK7yYnTdlXMrJukGwAAAABgCmu6XUfSDQAAAAAwpXjTyxnpBgAAAADgks5NLzc3cm22vrdg93IAAAAAANyEpBsA4LL58+erWrVqng7DlPIYMwAAZZ1dPrKZPMxuvOYtmF4OAJcjLaQU2zpm+pLk5GS98cYbhcoTExO1dOnSi14bExOjoUOHaujQoY6ynj176pZbbjEdh1nz58/X0KFDdfToUbe3BQAAzGNNt+tIugHAy3Xt2lWZmZlOZVartVj3CgwMVGBgYEmEBQAAyjF7MUauK+orwyrm+D4AVCBWq1WRkZFOR2hoqAzDUFpamurVqyer1aratWtr8ODBkqTOnTvr119/1bBhw2SxWGSxnNv45Pyp2mlpaWrZsqXmzZunevXqqUqVKnrsscdks9k0efJkRUZGKjw8XM8995xTTNOmTdPVV1+typUrKyoqSo899phOnDghSVq9erX69u2rY8eOOdpOS0uTJOXl5WnEiBGqU6eOKleurLi4OK1evdrp3vPnz1e9evUUFBSkO+64Q4cPH3bPPywAABWYzbAU66iIGOkGgArq/fff14svvqi3335bV111lbKzs7Vp0yZJ0uLFi9WiRQs9/PDD6t+//0Xv88svv+jzzz/X0qVL9csvv+juu+/Wrl27dOWVV+rLL7/UunXr9OCDDyohIUFxcXGSJB8fH82YMUOxsbHatWuXHnvsMY0cOVIvv/yy2rZtq4yMDI0bN047duyQJFWpUkWSNGjQIG3dulVvv/22ateurQ8++EBdu3bV5s2bdcUVV+ibb75Rv379lJ6erh49emjp0qVKTU11478iAAAVU8E6bXPXVMyRbpJuAPByn376qSNpLfDkk08qICBAkZGRSkhIkJ+fn+rVq6c2bdpIkqpXry5fX19VrVpVkZGRF72/3W7XvHnzVLVqVTVt2lRdunTRjh079Nlnn8nHx0eNGjXS888/r1WrVjmS7r+uE4+JidGzzz6rAQMG6OWXX5a/v79CQkJksVic2t67d68yMzO1d+9e1a5dW5I0YsQILV26VJmZmZo4caKmT5+url27auTIkZKkK6+8UuvWrbvk+nUAAAB3IekGAC/XpUsXzZ4926msevXqOnnypDIyMlS/fn117dpVt9xyi2699VZVqmSua4iJiVHVqlUd5xEREfL19ZWPj49T2cGDBx3nK1asUHp6urZv367c3FydPXtWp0+f1qlTpxQUFFRkO5s3b5bNZtOVV17pVJ6Xl6caNWpIkrZt26Y77rjD6fP4+HiSbgAASpjd8JHd5EZqdjZSA4AypjR3Bi+yffO7hZdFlStXVsOGDQuVV69eXTt27NCKFSu0fPlyPfbYY5oyZYq+/PJL+fn5uXz/8+taLJYiy+x2uyRpz5496t69ux599FE999xzql69utauXat+/fopPz//gkn3iRMn5Ovrqw0bNsjX19fps/NH8gEAgHsxvdx1JN0AUIEFBgbq1ltv1a233qqBAweqcePG2rx5s6699lr5+/vLZrOVeJsbNmyQ3W7XCy+84BgN/+c//+lUp6i2r7nmGtlsNh08eFAdOnQo8t5NmjTRN99841T29ddfl2D0AABAkuyS6Y3R7O4Jpcwj6QYAL5eXl6fs7GynskqVKunTTz+VzWZTXFycgoKC9NZbbykwMFDR0dGSzk0bX7NmjXr16iWr1aqaNWuWSDwNGzbUmTNnNHPmTN1666366quvNGfOHKc6MTExOnHihLKystSiRQsFBQXpyiuvVO/evdWnTx+98MILuuaaa/T7778rKytLzZs3V7du3TR48GC1a9dOU6dO1e23365ly5YxtRwAADco3ivDKubLsyrmUwNABbJ06VLVqlXL6Wjfvr2qVaumV199Ve3atVPz5s21YsUKffLJJ4710RMmTNCePXvUoEEDhYWFlVg8LVq00LRp0/T888+rWbNmWrhwodLT053qtG3bVgMGDFDPnj0VFhamyZMnS5IyMzPVp08fDR8+XI0aNVKPHj303XffqV69epKkv/3tb3r11Vc1ffp0tWjRQl988YXGjh1bYrEDAIBzbIZPsY6KyGIYl17Nnpubq5CQEB07dkzBwcGlERdQNE+u8fWS9b3lShlZ03369Gnt3r1bsbGxCggI8GxMKHEX+37p/1xT8O/UWberksX1/QAAVFw+LZt6pN1W8zd7pN1/xxW9X4m7nDXOaFXeP93SfxX8N/+lDXEKrGJu4vSfJ85qUKtvKly/yvRyAAAAAIApdllkl9k13ebqe4uKOb4PAEAF8dtvv+n+++9XjRo1FBgYqKuvvlr//ve/HZ8bhqFx48apVq1aCgwMVEJCgn7++WcPRgwAKA+YXu66ivnUAABUAH/88YfatWsnPz8/ff7559q6dateeOEFhYaGOupMnjxZM2bM0Jw5c/TNN9+ocuXKSkxM1OnTpz0YOQCgrCt4ZZjZoyJiejkAAF7q+eefV1RUlDIzMx1lsbGxjp8Nw1BGRobGjh2r22+/XZK0YMECRURE6MMPP1SvXr1KPWYAQPlgNyyym31lmMn63qJi/qkBAIAK4OOPP1br1q11zz33KDw8XNdcc41effVVx+e7d+9Wdna2EhISHGUhISGKi4vT+vXrL3jfvLw85ebmOh0AgIrFXoxR7or6yjBGugHARXa73dMhwA1ceIlHubVr1y7Nnj1bKSkpevLJJ/Xdd99p8ODB8vf3V1JSkuP97REREU7XRUREFHq3+1+lp6dr/Pjxbo0dQOmoFB3lkXajX93lkXY3dKjmkXaNvOOl255xxu1t2A0f2U2u0TZbv8CsWbM0ZcoUZWdnq0WLFpo5c6batGlzwfoZGRmaPXu29u7dq5o1a+ruu+9Wenq6x95CQ9INAJfg7+8vHx8f7d+/X2FhYfL395fFUjGnR3kbwzD0+++/y2KxyM/P+151Zbfb1bp1a02cOFGSdM0112jLli2aM2eOkpKSin3fMWPGKCUlxXGem5urqCjP/OIOAPBu77zzjlJSUjRnzhzFxcUpIyNDiYmJ2rFjh8LDwwvVX7RokUaPHq158+apbdu2+umnn5ScnCyLxaJp06Z54AlIugHgknx8fBQbG6sDBw5o//79ng4HJcxisahu3bry9fX1dCglrlatWmra1PlduE2aNNH7778vSYqMjJQk5eTkqFatWo46OTk5atmy5QXva7VaZbVaSz5gAEC5YZNFNpOvADNbX5KmTZum/v37q2/fvpKkOXPmaMmSJZo3b55Gjx5dqP66devUrl073XfffZKkmJgY3Xvvvfrmm29Mt11SSLoBwAX+/v6qV6+ezp49K5vN5ulwUIL8/Py8MuGWpHbt2mnHjh1OZT/99JOio6MlndtULTIyUllZWY4kOzc3V998840effTR0g4XAFCOlMb08vz8fG3YsEFjxoxxlPn4+CghIeGCe4+0bdtWb731lr799lu1adNGu3bt0meffaYHHnjAVNsliaQbAFxUMAXZG6chwzsNGzZMbdu21cSJE/X3v/9d3377rebOnau5c+dKOve/6aFDh+rZZ5/VFVdcodjYWD399NOqXbu2evTo4dngAQBlmk3mR64Lhi3O34DzQjOoDh06JJvNVuTeI9u3by+yjfvuu0+HDh1S+/btZRiGzp49qwEDBujJJ580FWtJqpjbxwEAUAFcd911+uCDD/SPf/xDzZo10zPPPKOMjAz17t3bUWfkyJF6/PHH9fDDD+u6667TiRMntHTpUo9tNgMAKB8KRrrNHpIUFRWlkJAQx5Genl5ica1evVoTJ07Uyy+/rO+//16LFy/WkiVL9Mwzz5RYG2Yx0g0AgBfr3r27unfvfsHPLRaLJkyYoAkTJpRiVACA8s5m+Mhmcrp4Qf19+/YpODjYUX6hfUJq1qwpX19f5eTkOJXn5OQ49iU539NPP60HHnhADz30kCTp6quv1smTJ/Xwww/rqaeeko9P6Y87M9INAAAAACg1wcHBTseFkm5/f3+1atVKWVlZjjK73a6srCzFx8cXec2pU6cKJdYFe7d46jWhjHQDAAAAAEwxZJHd5Jpuoxi7l6ekpCgpKUmtW7dWmzZtlJGRoZMnTzp2M+/Tp4/q1KnjmKJ+6623atq0abrmmmsUFxennTt36umnn9att97qsY1TSboBAAAAAKZczvRyM3r27Knff/9d48aNU3Z2tlq2bKmlS5c6Nlfbu3ev08j22LFjZbFYNHbsWP32228KCwvTrbfequeee8502yWFpBsAAAAAYIrdsMhumBu5Nlu/wKBBgzRo0KAiP1u9erXTeaVKlZSamqrU1NRiteUOJN0AAAAAAFNs8pHN5BZhZut7C5JuAAAAAIAppTnSXd5VzD81AAAAAABQChjpBgA4SwvxYNvHPNc2AABwmV0+spscwzVb31uQdAPlAUkQAAAAyhCbYZHN5HRxs/W9BUk3AAAAAMAU1nS7jqS7vGLkEwAAAICHGIaP7Cbfu20U4z3d3oCkGwAAAABgik0W2WRyernJ+t6CpBsAAAAAYIrdMD9d3G64KZgyrmKO7wMAAAAAUAoY6QYAAAAAmGIvxppus/W9BUk3AAAAAMAUuyyym1yjbba+tyDpBgAAAACYwnu6XUfSDQAAAAAwhenlriPpRpkUM3pJkeV7Ako5EAAAgFKQe+/fPNLu7InTPdLuk117e6Rd+/GdHmnXG9llMb97eQWdXl4x/9QAAAAAAEApYKQbAAAAAGCKUYyN1IwKOtJdvpPutBAPtn3Mc20DAAAAgAfZjWJML6+gG6kxvRwAgApi0qRJslgsGjp0qKPs9OnTGjhwoGrUqKEqVarorrvuUk5OjueCBACUCwUbqZk9KqKK+dQAAFQw3333nV555RU1b97cqXzYsGH65JNP9O677+rLL7/U/v37deedd3ooSgBAeVEw0m32qIjK9/RyD7rQ7trFtWdStxK9HwAABU6cOKHevXvr1Vdf1bPPPusoP3bsmF5//XUtWrRI119/vSQpMzNTTZo00ddff62//c0zuykDAMo+ezHWdLN7OQAA8EoDBw5Ut27dlJCQ4FS+YcMGnTlzxqm8cePGqlevntavX1/aYQIA4JUY6QYAwIu9/fbb+v777/Xdd98V+iw7O1v+/v6qVq2aU3lERISys7MveM+8vDzl5eU5znNzc0ssXgBA+cBGaq5jpBsAAC+1b98+DRkyRAsXLlRAQECJ3Tc9PV0hISGOIyoqqsTuDQAoH1jT7TpGugEXlfQ6fjP2lNzvygAqkA0bNujgwYO69tprHWU2m01r1qzRSy+9pGXLlik/P19Hjx51Gu3OyclRZGTkBe87ZswYpaSkOM5zc3NJvAGggmGk23Uk3QAAeKkbbrhBmzdvdirr27evGjdurFGjRikqKkp+fn7KysrSXXfdJUnasWOH9u7dq/j4+Ave12q1ymq1ujV2AEDZRtLtOpJuAAC8VNWqVdWsWTOnssqVK6tGjRqO8n79+iklJUXVq1dXcHCwHn/8ccXHx7NzOQDgogyZ343ccE8oZR5JN4CL+uu0el5tB3ifF198UT4+PrrrrruUl5enxMREvfzyy54OCwAAr0HSDQBABbJ69Wqn84CAAM2aNUuzZs3yTEAAgHKJ6eWuI+kGAAAAAJhC0u06km4AAAAAgCkk3a4j6QaAcq6kX2fHK+oAAMClkHS7jqQbAAAAAGCKYVhkmEyizdb3FiTdAFxW0iOql8KIKwAAQNlkl8X0K8PM1vcWPp4OAAAAAAAAb8VINwAAAADAFNZ0u85jSXdJTFNl6ikAAAAAlD7WdLuOkW4AQJlRIn+QndStBCIBAAAXw0i360i6AQAAAACmMNLtOpJuAAAAAIApRjFGukm6AQBOLjXVmWnMAOB9KkVGeKRd2/2HPdLuqPp/80i7MnZ6pl3AA0i6AQAAAACmGJIMw/w1FRFJNwAAAADAFLssssjkRmom63sLkm6YVhK7CwNARWG32zV//nwtXrxYe/bskcViUWxsrO6++2498MADslgq5i8gAIDyjY3UXEfSDQDFxB+gcCmGYei2227TZ599phYtWujqq6+WYRjatm2bkpOTtXjxYn344YeeDhMAANPshkUWXhnmEpJuACiD9gTc5+kQUALmz5+vNWvWKCsrS126dHH6bOXKlerRo4cWLFigPn36eChCAACKxzCKsaa7gi7q9vF0AAAAeKt//OMfevLJJwsl3JJ0/fXXa/To0Vq4cKEHIgMAAKWFpBsAADf54Ycf1LVr1wt+fvPNN2vTpk2lGBEAACWjYE232aMiYno5AABucuTIEUVEXPidvxEREfrjjz9KMSIAAEoGG6m5jqS7jDC7IdOeADcFAgAoMTabTZUqXbir9fX11dmzZ0sxIgAASgYbqbmOpBsAADcxDEPJycmyWq1Ffp6Xl1fKEQEAUDLYSM11JN0AALhJUlLSJeuwczkAoDw6l3SbnV7upmDKOJJuAADcJDMz09MhKD09XYsXL9b27dsVGBiotm3b6vnnn1ejRo0cdU6fPq3hw4fr7bffVl5enhITE/Xyyy9fdD06AKBiK8013bNmzdKUKVOUnZ2tFi1aaObMmWrTps0F6x89elRPPfWUFi9erCNHjig6OloZGRm65ZZbitX+5WL3cgAA3GjPnj169dVXNWvWLP3444+l3v6XX36pgQMH6uuvv9by5ct15swZ3XTTTTp58qSjzrBhw/TJJ5/o3Xff1Zdffqn9+/frzjvvLPVYAQA43zvvvKOUlBSlpqbq+++/V4sWLZSYmKiDBw8WWT8/P1833nij9uzZo/fee087duzQq6++qjp16pRy5P+Pke5i2hNwn6dDAACUcatWrVL37t31559/SpIqVaqkefPm6f777y+1GJYuXep0Pn/+fIWHh2vDhg3q2LGjjh07ptdff12LFi3S9ddfL+ncCH2TJk309ddf629/+1upxQoAKD+M/x1mrzFr2rRp6t+/v/r27StJmjNnjpYsWaJ58+Zp9OjRherPmzdPR44c0bp16+Tn5ydJiomJKUbLJYeRbgAA3OTpp5/WjTfeqN9++02HDx9W//79NXLkSI/GdOzYMUlS9erVJUkbNmzQmTNnlJCQ4KjTuHFj1atXT+vXr/dIjACAsu9y3tOdm5vrdFxoY9H8/Hxt2LDBqY/y8fFRQkLCBfuojz/+WPHx8Ro4cKAiIiLUrFkzTZw4UTabreT/EVxE0g0AgJts2bJFEydOVK1atRQaGqopU6bo4MGDOnz4sEfisdvtGjp0qNq1a6dmzZpJkrKzs+Xv769q1ao51Y2IiFB2dnaR98nLyyv0CxMAoIIxinlIioqKUkhIiONIT08vsolDhw7JZrMV2mPkYn3Url279N5778lms+mzzz7T008/rRdeeEHPPvusy4+2atUql+u6gunlAAC4SW5urmrWrOk4DwoKUmBgoI4dO6YaNWqUejwDBw7Uli1btHbt2su6T3p6usaPH19CUQEAyqVibKSm/9Xft2+fgoODHcUXerVmcdjtdoWHh2vu3Lny9fVVq1at9Ntvv2nKlClKTU116R5du3ZV3bp11bdvXyUlJSkqKuqyYiLpBgDAjZYtW6aQkBDHud1uV1ZWlrZs2eIou+2229wex6BBg/Tpp59qzZo1qlu3rqM8MjJS+fn5Onr0qNNod05OjiIjI4u815gxY5SSkuI4z83NvexfSAAA5cvlvKc7ODjYKem+kJo1a8rX11c5OTlO5Rfro2rVqiU/Pz/5+vo6ypo0aaLs7Gzl5+fL39//ku3+9ttvevPNN/XGG29o/Pjxuv7669WvXz/16NHDpevPx/RyAADcKCkpST169HAcf/75px555BHH+R133OHW9g3D0KBBg/TBBx9o5cqVio2Ndfq8VatW8vPzU1ZWlqNsx44d2rt3r+Lj44u8p9VqdfzC5OovTgAAmOXv769WrVo59VEFf7y+UB/Vrl077dy5U3a73VH2008/qVatWi4nzDVr1tSwYcO0ceNGffPNN7ryyiv12GOPqXbt2ho8eLA2bdpk6jlIugEAcBO73X7Jw90buwwcOFBvvfWWFi1apKpVqyo7O1vZ2dmOHdVDQkLUr18/paSkaNWqVdqwYYP69u2r+Ph4di4HAFzQ5WykZkZKSopeffVVvfHGG9q2bZseffRRnTx50rGbeZ8+fTRmzBhH/UcffVRHjhzRkCFD9NNPP2nJkiWaOHGiBg4cWKznvPbaazVmzBgNGjRIJ06c0Lx589SqVSt16NDB5VeBknQDAODFZs+erWPHjqlz586qVauW43jnnXccdV588UV1795dd911lzp27KjIyEgtXrzYg1EDAMo8w1K8w6SePXtq6tSpGjdunFq2bKmNGzdq6dKljs3V9u7dqwMHDjjqR0VFadmyZfruu+/UvHlzDR48WEOGDCny9WIXc+bMGb333nu65ZZbFB0drWXLlumll15STk6Odu7cqejoaN1zzz0u3Ys13QAAuMnHH3/sUj13ruk2XFhwFxAQoFmzZmnWrFluiwMA4F0uZ023WYMGDdKgQYOK/Gz16tWFyuLj4/X1118XrzFJjz/+uP7xj3/IMAw98MADmjx5suOtH5JUuXJlTZ06VbVr13bpfiTdAAC4SY8ePS5Zx2KxePTdoQAAFMtfXgFm6ppyYOvWrZo5c6buvPPOC+6sXrNmTZdfLUbSDQCAm/x1ExcAALxJcdZoF2dNtyekpqaqbdu2qlTJOV0+e/as1q1bp44dO6pSpUrq1KmTS/cj6QYAAECZ5NvkilJvc+rnb5R6m5I0ot3dHmn3bHHn+wJerEuXLjpw4IDCw8Odyo8dO6YuXbqYnqFG0g0AAAAAMM9L/2ZjGIYslsKj8ocPH1blypVN34+kGwAAAABgijdOL7/zzjslndtvJTk52Wk9t81m0w8//KC2bduavi9JNwBcwJ6A+zwdAgAAQNnkhRuphYSESDo30l21alUFBgY6PvP399ff/vY39e/f3/R9SboBAAAAACZZ/neYvabsyszMlCTFxMRoxIgRxZpKXhSSbgAAAACAOV440l0gNTW1RO9H0g24iKnGAMwIDQ0tchOWohw5csTN0QAAgIu59tprlZWVpdDQUF1zzTUX7cO///57U/cm6QYAwA0yMjIcPx8+fFjPPvusEhMTFR8fL0lav369li1bpqefftpDEQIAcBm8bKT79ttvd2yc1qNHjxK9N0k3AABukJSU5Pj5rrvu0oQJEzRo0CBH2eDBg/XSSy9pxYoVGjZsmCdCBACg+AzLucPsNWXUX6eUl/T0cp8SvRsAAChk2bJl6tq1a6Hyrl27asWKFR6ICACAy2MYxTsqIka6AQBwsxo1auijjz7S8OHDnco/+ugj1ahRw0NRAQBwGbxserk792Ih6QYAwM3Gjx+vhx56SKtXr1ZcXJwk6ZtvvtHSpUv16quvejg6AACKwcuml/91L5aSRtINAICbJScnq0mTJpoxY4YWL14sSWrSpInWrl3rSMIBAChPLMa5w+w1ZdVf92IpaSTdAACUgri4OC1cuNDTYQAAgCLk5uYqODjY8fPFFNRzFUk3AACl4JdfflFmZqZ27dqljIwMhYeH6/PPP1e9evV01VVXeTo8AADM8cI13QcOHFB4eLiqVatW5PpuwzBksVhks9lM3ZukGwAAN/vyyy918803q127dlqzZo2effZZhYeHa9OmTXr99df13nvveTpEAADM8bI13StXrlT16tUlSatWrSrRe5N0AwDgZqNHj9azzz6rlJQUVa1a1VF+/fXX66WXXvJgZAAAFJOXjXR36tSpyJ9LAkk3AAButnnzZi1atKhQeXh4uA4dOuSBiAAAuExelnSf748//tDrr7+ubdu2SZKaNm2qvn37OkbDzfAp6eAAAICzatWq6cCBA4XK//Of/6hOnToeiAgAgMtkFPMoB9asWaOYmBjNmDFDf/zxh/744w/NmDFDsbGxWrNmjen7kXQDAOBmvXr10qhRo5SdnS2LxSK73a6vvvpKI0aMUJ8+fTwdHgAA+IuBAweqZ8+e2r17txYvXqzFixdr165d6tWrlwYOHGj6fiTdAAC42cSJE9W4cWNFRUXpxIkTatq0qTp27Ki2bdtq7Nixng4PAADzCjZSM3uUAzt37tTw4cPl6+vrKPP19VVKSop27txp+n4k3QAAuJm/v79effVV7dq1S59++qneeustbd++XW+++aZTh+5Js2bNUkxMjAICAhQXF6dvv/3W0yEBAMowi1G8ozy49tprHWu5/2rbtm1q0aKF6fuxkRoAAG42YcIEjRgxQlFRUYqKinKU//nnn5oyZYrGjRvnweikd955RykpKZozZ47i4uKUkZGhxMRE7dixQ+Hh4R6NDQBQRnnZRmo//PCD4+fBgwdryJAh2rlzp/72t79Jkr7++mvNmjVLkyZNMn1vkm4AANxs/PjxGjBggIKCgpzKT506pfHjx3s86Z42bZr69++vvn37SpLmzJmjJUuWaN68eRo9erRHYwMAoDS0bNlSFotFhvH/fxkYOXJkoXr33XefevbsaereJN0AALiZYRiyWAqvY9u0aVOxXj1SkvLz87VhwwaNGTPGUebj46OEhAStX7/eg5EBAMoyi8xPFy/LK7p3797ttnuTdAMA4CahoaGyWCyyWCy68sornRJvm82mEydOaMCAAR6MUDp06JBsNpsiIiKcyiMiIrR9+/Yir8nLy1NeXp7jPDc3160xAgDgbtHR0W67N0k3AABukpGRIcMw9OCDD2r8+PEKCQlxfObv76+YmBjFx8d7MMLiSU9P1/jx4z0dBkqRxc/fI+3Wmb+/1Nsc1qhLqbcpSUZe6T8rcFmKsxt5Odm9vMDWrVu1d+9e5efnO5Xfdtttpu5D0g3govYE3OfpEIByKykpSZIUGxurtm3bys/Pz8MRFVazZk35+voqJyfHqTwnJ0eRkZFFXjNmzBilpKQ4znNzc502iAMAVABetpHaX+3atUt33HGHNm/e7LTOu2DGms1mM3U/XhkGAICbderUyZFwnz59Wrm5uU6HJ/n7+6tVq1bKyspylNntdmVlZV1wFN5qtSo4ONjpAABUMEYxj3JgyJAhio2N1cGDBxUUFKQff/xRa9asUevWrbV69WrT92OkGwAANzt16pRGjhypf/7znzp8+HChz83+xbykpaSkKCkpSa1bt1abNm2UkZGhkydPOnYzBwDgfMV573Z5eU/3+vXrtXLlStWsWVM+Pj7y8fFR+/btlZ6ersGDB+s///mPqfsx0g0AgJs98cQTWrlypWbPni2r1arXXntN48ePV+3atbVgwQJPh6eePXtq6tSpGjdunFq2bKmNGzdq6dKlhTZXAwDAwYtHum02m6pWrSrp3DKs/fvP7bkQHR2tHTt2mL4fI90AALjZJ598ogULFqhz587q27evOnTooIYNGyo6OloLFy5U7969PR2iBg0apEGDBnk6DABAeeHFa7qbNWumTZs2KTY2VnFxcZo8ebL8/f01d+5c1a9f3/T9GOkGAMDNjhw54uikg4ODdeTIEUlS+/bttWbNGk+GBgAAzjN27FjZ7XZJ0oQJE7R792516NBBn332mWbMmGH6fox0AwDgZvXr19fu3btVr149NW7cWP/85z/Vpk0bffLJJ6pWrZqnwwMAwDRvXtOdmJjo+Llhw4bavn27jhw5otDQUMcO5maQdAMA4GZ9+/bVpk2b1KlTJ40ePVq33nqrXnrpJZ05c0bTpk3zdHgAAJhXAd7TLUn79u2TpMt6NSZJNwAAbjZs2DDHzwkJCdq+fbs2bNighg0bqnnz5h6MDACAYvLiNd1nz57V+PHjNWPGDJ04cUKSVKVKFT3++ONKTU11vAbUVSTdAACUsujoaEVHR3s6DAAAis2bp5c//vjjWrx4sSZPnqz4+HhJ514jlpaWpsOHD2v27Nmm7kfSDQBAKfjuu++0atUqHTx40LE5SwGmmAMAyh0vHuletGiR3n77bd18882OsubNmysqKkr33nsvSTcAAGXNxIkTNXbsWDVq1EgRERFOm7AUZ0MWAADgPlarVTExMYXKY2Nj5e/vb/p+JN0AALjZ9OnTNW/ePCUnJ3s6FAAASkYxppeXl5HuQYMG6ZlnnlFmZqasVqskKS8vT88995wGDRpk+n4k3TBtT8B9ng4BAMoVHx8ftWvXztNhAABQcrxsevmdd97pdL5ixQrVrVtXLVq0kCRt2rRJ+fn5uuGGG0zfm6QbAAA3GzZsmGbNmqWMjAxPhwIAQMnwsqQ7JCTE6fyuu+5yOueVYQAAlGEjRoxQt27d1KBBAzVt2rTQq0YWL17socgAACgeb9u9PDMz0233JukGAMDNBg8erFWrVqlLly6qUaMGm6cBAFAO/P7779qxY4ckqVGjRgoLCyvWfUi6AQBwszfeeEPvv/++unXr5ulQAADAJZw8eVKPP/64FixY4HjNp6+vr/r06aOZM2cqKCjI1P183BEkAAD4f9WrV1eDBg08HQYAACXHKOZRDqSkpOjLL7/UJ598oqNHj+ro0aP66KOP9OWXX2r48OGm70fSDQCAm6WlpSk1NVWnTp3ydCgAAJSIgjXdZo/y4P3339frr7+um2++WcHBwQoODtYtt9yiV199Ve+9957p+zG9HAAAN5sxY4Z++eUXRUREKCYmptBGat9//72HIgMA4DKUkyTarFOnTikiIqJQeXh4eLH+gE7SDQCAm/Xo0cPTIQAAULK87JVhfxUfH6/U1FQtWLBAAQEBkqQ///xT48ePV3x8vOn7kXQDAOBmqampng4BAIASVZqvDJs1a5amTJmi7OxstWjRQjNnzlSbNm0ued3bb7+te++9V7fffrs+/PBDl9vLyMhQ165dVbduXbVo0UKStGnTJgUEBGjZsmWm4yfpBgAAAACYU0oj3e+8845SUlI0Z84cxcXFKSMjQ4mJidqxY4fCw8MveN2ePXs0YsQIdejQwXSbV199tX7++WctXLhQ27dvlyTde++96t27twIDA03fj6QbAAA3qF69un766SfVrFlToaGhF30395EjR0oxMpRnZ25q7ZF23399hkfave/Wh0q9TSNva6m3CeDCpk2bpv79+6tv376SpDlz5mjJkiWaN2+eRo8eXeQ1NptNvXv31vjx4/Wvf/1LR48edbm9M2fOqHHjxvr000/Vv3//kngEkm4AANzhxRdfVNWqVR0/XyzpBgCgvLmc6eW5ublO5VarVVartVD9/Px8bdiwQWPGjHGU+fj4KCEhQevXr79gOxMmTFB4eLj69eunf/3rX6Zi9PPz0+nTp01dcykk3QAAuEFSUpLj5+TkZM8FAgCAO1zG9PKoqCin4tTUVKWlpRWqfujQIdlstkI7iUdERDimfZ9v7dq1ev3117Vx40aTwf2/gQMH6vnnn9drr72mSpUuP2Um6QYAwM18fX114MCBQmvPDh8+rPDwcNlsNg9FBgBAMV1G0r1v3z4FBwc7iosa5S6O48eP64EHHtCrr76qmjVrFvs+3333nbKysvTFF1/o6quvVuXKlZ0+X7x4san7+RQ7EgAA4BLDKPq3kry8PPn7+7ulzT179qhfv36KjY1VYGCgGjRooNTUVOXn5zvV++GHH9ShQwcFBAQoKipKkydPdks8AADvUjC93OwhScHBwU7HhZLumjVrytfXVzk5OU7lOTk5ioyMLFT/l19+0Z49e3TrrbeqUqVKqlSpkhYsWKCPP/5YlSpV0i+//OLSs1WrVk133XWXEhMTVbt2bYWEhDgdZjHSDQCAm8yYcW7zKYvFotdee01VqlRxfGaz2bRmzRo1btzYLW1v375ddrtdr7zyiho2bKgtW7aof//+OnnypKZOnSrp3Jq6m266SQkJCZozZ442b96sBx98UNWqVdPDDz/slrgAAF6iFHYv9/f3V6tWrZSVlaUePXpIkux2u7KysjRo0KBC9Rs3bqzNmzc7lY0dO1bHjx/X9OnTC01rP5/dbteUKVP0008/KT8/X9dff73S0tKKtWP5X5F0AwDgJi+++KKkcyPdc+bMka+vr+Mzf39/xcTEaM6cOW5pu2vXruratavjvH79+tqxY4dmz57tSLoXLlyo/Px8zZs3T/7+/rrqqqu0ceNGTZs2jaQbAFAmpKSkKCkpSa1bt1abNm2UkZGhkydPOnYz79Onj+rUqaP09HQFBASoWbNmTtdXq1ZNkgqVF+W5555TWlqaEhISFBgYqBkzZuj333/XvHnzLusZSLoBAHCT3bt3S5K6dOmixYsXKzQ01KPxHDt2TNWrV3ecr1+/Xh07dnSa4p6YmKjnn39ef/zxxwXjzcvLU15enuP8/F1oAQAVQCm9p7tnz576/fffNW7cOGVnZ6tly5ZaunSpY3O1vXv3ysenZFZNL1iwQC+//LIeeeQRSdKKFSvUrVs3vfbaa5fVBkk3AAButmrVKqdzm82mzZs3Kzo6utQS8Z07d2rmzJmOUW5Jys7OVmxsrFO9gl9isrOzLxhbenq6xo8f775gAQBl3uW8MsysQYMGFTmdXJJWr1590Wvnz5/vcjt79+7VLbfc4jhPSEiQxWLR/v37VbduXZfvcz42UgMAwM2GDh2q119/XdK5hLtjx4669tprFRUVdclfFs43evRoWSyWix7nv0blt99+U9euXXXPPfeof//+l/08Y8aM0bFjxxzHvn37LvueAIByxijmUYadPXtWAQEBTmV+fn46c+bMZd2XkW4AANzs3Xff1f333y9J+uSTT7Rnzx5t375db775pp566il99dVXLt9r+PDhl3zvd/369R0/79+/X126dFHbtm01d+5cp3qRkZFF7ghb8NmFWK3WEnu9CwCgfCrNke7SYhiGkpOTnfq406dPa8CAAU6vDTP7yjCSbgAA3Ozw4cOOJPazzz7TPffcoyuvvFIPPvigpk+fbupeYWFhCgsLc6nub7/9pi5duqhVq1bKzMwstB4tPj5eTz31lM6cOSM/Pz9J0vLly9WoUSOPrz8HAJRxpbSmuzQlJSUVKiv4o/nlIOkGAMDNIiIitHXrVtWqVUtLly7V7NmzJUmnTp1y2tG8JP3222/q3LmzoqOjNXXqVP3++++Ozwr+AHDfffdp/Pjx6tevn0aNGqUtW7Zo+vTpjl3XAQCoSDIzM91yX5JuAADcrG/fvvr73/+uWrVqyWKxKCEhQZL0zTffuO093cuXL9fOnTu1c+fOQpu/GMa5oYaQkBB98cUXGjhwoFq1aqWaNWtq3LhxvC4MAHBpXjjS7S4k3QAAuFlaWpqaNWumffv26Z577nGsFfP19dXo0aPd0mZycvIl135LUvPmzfWvf/3LLTEAALyX5X+H2WsqIpJuAABKwd13312orKi1YwAAlAuMdLuMV4YBAOAmt9xyi44dO+Y4nzRpko4ePeo4P3z4sJo2beqByAAAuDwFu5ebPSoikm4AANxk2bJlysvLc5xPnDhRR44ccZyfPXtWO3bs8ERoAABcHi98T7e7kHQDAOAmBRuWXegcAAB4P9Z0AwAAAADM42/JLiHpBgDATSwWiywWS6EyAADKu+Ks0a6oa7pJugEAcBPDMJScnOx4Rdjp06c1YMAAVa5cWZKc1nsDAFCusHu5y0i6AQBwk/NfCXb//fcXqtOnT5/SCgcAgBLDSLfrSLoBAHCTzMxMT4cAAIB7MNLtMpJuAAAAAIApjHS7jqQbAADAJIufv0faPTrouEfava/xjR5p135yq0faBYCSRNINAAAAADCH6eUuI+kGAAAAAJhD0u0ykm4AAAAAgCms6XYdSTcAAAAAwBxGul1G0g0AAAAAMMViGLIY5rJos/W9hY+nAwAAAAAAwFsx0g0AAAAAMIfp5S4j6QYAAAAAmMJGaq4j6QYAAAAAmMNIt8tIugEAAAAApjDS7TqSbgAAAACAOYx0u4zdywEAAAAAcBOSbgAAvFxeXp5atmwpi8WijRs3On32ww8/qEOHDgoICFBUVJQmT57smSABAOVKwfRys0dFRNINAICXGzlypGrXrl2oPDc3VzfddJOio6O1YcMGTZkyRWlpaZo7d64HogQAlCtGMY8KiDXdAAB4sc8//1xffPGF3n//fX3++edOny1cuFD5+fmaN2+e/P39ddVVV2njxo2aNm2aHn74YQ9FDAAoLyrqyLVZjHQDAOClcnJy1L9/f7355psKCgoq9Pn69evVsWNH+fv7O8oSExO1Y8cO/fHHHxe8b15ennJzc50OAEAFYxjFOyogkm4AALyQYRhKTk7WgAED1Lp16yLrZGdnKyIiwqms4Dw7O/uC905PT1dISIjjiIqKKrnAAQDlAmu6XUfSDQBAOTJ69GhZLJaLHtu3b9fMmTN1/PhxjRkzpsRjGDNmjI4dO+Y49u3bV+JtAADKONZ0u4w13QAAlCPDhw9XcnLyRevUr19fK1eu1Pr162W1Wp0+a926tXr37q033nhDkZGRysnJcfq84DwyMvKC97darYXuCwAAikbSDQBAORIWFqawsLBL1psxY4aeffZZx/n+/fuVmJiod955R3FxcZKk+Ph4PfXUUzpz5oz8/PwkScuXL1ejRo0UGhrqngcAAHgFi/3cYfaaioikGwAAL1SvXj2n8ypVqkiSGjRooLp160qS7rvvPo0fP179+vXTqFGjtGXLFk2fPl0vvvhiqccLAChnijNdnOnlAACgIgkJCdEXX3yhgQMHqlWrVqpZs6bGjRvH68IAAJdUnI3RKupGaiTdAABUADExMTKKeFVL8+bN9a9//csDEQEAyrXivAKsgr4yjKQbAAAAAGAKI92u45VhAAAAAAC4CSPdAACg3PJp2dQj7T77wXyPtPvU3xt5pF37yZMeaRdAGcZGai4j6QYAAAAAmML0cteRdAMAAAAAzGEjNZeRdAMAAAAATGGk23Uk3QAAAAAAc1jT7TJ2LwcAAAAAwE0Y6QYAAAAAmML0cteRdAMAAAAAzLEb5w6z11RAJN0AAAAAAHNY0+0y1nQDAAAAAEyx6P+nmLt8FLOtWbNmKSYmRgEBAYqLi9O33357wbqvvvqqOnTooNDQUIWGhiohIeGi9UsDSTcAAAAAwJyC93SbPUx65513lJKSotTUVH3//fdq0aKFEhMTdfDgwSLrr169Wvfee69WrVql9evXKyoqSjfddJN+++23y33iYiPpBgAAAACUSdOmTVP//v3Vt29fNW3aVHPmzFFQUJDmzZtXZP2FCxfqscceU8uWLdW4cWO99tprstvtysrKKuXI/x9JNwAAAADAFNNTy4ux23l+fr42bNighIQER5mPj48SEhK0fv16l+5x6tQpnTlzRtWrVzfXeAliIzUAAAAAgDmXsZFabm6uU7HVapXVai1U/dChQ7LZbIqIiHAqj4iI0Pbt211qctSoUapdu7ZT4l7aGOkGAAAAAJhiMYxiHZIUFRWlkJAQx5Genu6WGCdNmqS3335bH3zwgQICAtzShisY6QYAAAAAmGP/32H2Gkn79u1TcHCwo7ioUW5Jqlmzpnx9fZWTk+NUnpOTo8jIyIs2NXXqVE2aNEkrVqxQ8+bNTQZashjpBgAAAACYcjkj3cHBwU7HhZJuf39/tWrVymkTtIJN0eLj4y8Y2+TJk/XMM89o6dKlat26dck+eDEw0g0AAAAAMOcy1nSbkZKSoqSkJLVu3Vpt2rRRRkaGTp48qb59+0qS+vTpozp16jimqD///PMaN26cFi1apJiYGGVnZ0uSqlSpoipVqpgPoASQdAMAAAAAyqSePXvq999/17hx45Sdna2WLVtq6dKljs3V9u7dKx+f/5/APXv2bOXn5+vuu+92uk9qaqrS0tJKM3QHkm4AAAAAgDmGce4we00xDBo0SIMGDSrys9WrVzud79mzp1htuBNrugEA8GJLlixRXFycAgMDFRoaqh49ejh9vnfvXnXr1k1BQUEKDw/XE088obNnz3omWABAuVEa7+n2Fox0AwDgpd5//331799fEydO1PXXX6+zZ89qy5Ytjs9tNpu6deumyMhIrVu3TgcOHFCfPn3k5+eniRMnejByAECZV4oj3eUdSTcAAF7o7NmzGjJkiKZMmaJ+/fo5yps2ber4+YsvvtDWrVu1YsUKRUREqGXLlnrmmWc0atQopaWlyd/f3xOhAwDKAYv93GH2moqI6eUAAHih77//Xr/99pt8fHx0zTXXqFatWrr55pudRrrXr1+vq6++2rEZjSQlJiYqNzdXP/74oyfCBgCUFwUj3WaPCoikGwAAL7Rr1y5JUlpamsaOHatPP/1UoaGh6ty5s44cOSJJys7Odkq4JTnOC16xUpS8vDzl5uY6HQAAoGhMLwcAoBwZPXq0nn/++YvW2bZtm+z2c3P4nnrqKd11112SpMzMTNWtW1fvvvuuHnnkkWLHkJ6ervHjxxcqr1S3tir5WIt93+KwZPxRqu0VGNf5Lo+0a/y62SPtAkAhpfSebm9A0g0AQDkyfPhwJScnX7RO/fr1deDAAUnOa7itVqvq16+vvXv3SpIiIyP17bffOl2bk5Pj+OxCxowZo5SUFMd5bm6uoqKiTD0HAKB8sxiGLCani5ut7y1IugEAKEfCwsIUFhZ2yXqtWrWS1WrVjh071L59e0nSmTNntGfPHkVHR0uS4uPj9dxzz+ngwYMKDw+XJC1fvlzBwcFOyfr5rFarrNbSHdEGAJQx7F7uMpJuAAC8UHBwsAYMGKDU1FRFRUUpOjpaU6ZMkSTdc889kqSbbrpJTZs21QMPPKDJkycrOztbY8eO1cCBA0mqAQAXZ0gyuxt5xcy5SboBAPBWU6ZMUaVKlfTAAw/ozz//VFxcnFauXKnQ0FBJkq+vrz799FM9+uijio+PV+XKlZWUlKQJEyZ4OHIAQFnH9HLXkXQDAOCl/Pz8NHXqVE2dOvWCdaKjo/XZZ5+VYlQAAFQsJN0AAAAAAHMMFWNNt1siKfNIugEAAAAA5rCRmstIugEAAAAA5tglWYpxTQVE0g0AAAAAMIWN1FxH0g0AAAAAMIfp5S4j6QYAAAAAmEPS7TIfTwcAAAAAAIC3YqQbAAAAAGAOI90uI+kGAAAAAJjD7uUuI+kGAAAAAJjC7uWuI+kGAAAAAJjD9HKXkXQDAAAAAMyxG5LFZBJtr5hJN7uXAwAAAADgJox0AwAAAADMYXq5y0i6AQAAAAAmFSPpFkk3AAAAAACXxki3y0i6AQAAAADm2A2ZHrmuoBupkXQDAAAAAMwx7OcOs9dUQOxeDgAAAACAmzDSDQAAAAAwhzXdLiPpBgAAJeLZpR+oStXSnUQ3tNeAUm3P4dcfPNMuAJQVrOl2GUk3AAAAAMAcRrpdRtINAAAAADDHUDGSbrdEUuaxkRoAAF7qp59+0u23366aNWsqODhY7du316pVq5zq7N27V926dVNQUJDCw8P1xBNP6OzZsx6KGABQbhSMdJs9KiCSbgAAvFT37t119uxZrVy5Uhs2bFCLFi3UvXt3ZWdnS5JsNpu6deum/Px8rVu3Tm+88Ybmz5+vcePGeThyAAC8B0k3AABe6NChQ/r55581evRoNW/eXFdccYUmTZqkU6dOacuWLZKkL774Qlu3btVbb72lli1b6uabb9YzzzyjWbNmKT8/38NPAAAo0+z24h0VEEk3AABeqEaNGmrUqJEWLFigkydP6uzZs3rllVcUHh6uVq1aSZLWr1+vq6++WhEREY7rEhMTlZubqx9//NFToQMAygOml7uMjdQAAPBCFotFK1asUI8ePVS1alX5+PgoPDxcS5cuVWhoqCQpOzvbKeGW5DgvmIJelLy8POXl5TnOc3Nz3fAEAIAyjd3LXcZINwAA5cjo0aNlsVguemzfvl2GYWjgwIEKDw/Xv/71L3377bfq0aOHbr31Vh04cOCyYkhPT1dISIjjiIqKKqGnAwCUG3ajeEcFxEg3AADlyPDhw5WcnHzROvXr19fKlSv16aef6o8//lBwcLAk6eWXX9by5cv1xhtvaPTo0YqMjNS3337rdG1OTo4kKTIy8oL3HzNmjFJSUhznubm5JN4AUMEYhl2GYW6Nttn63oKkGwCAciQsLExhYWGXrHfq1ClJko+P86Q2Hx8f2f+3kU18fLyee+45HTx4UOHh4ZKk5cuXKzg4WE2bNr3gva1Wq6xWa3EfAQDgDYxijFwzvRwAAHiL+Ph4hYaGKikpSZs2bdJPP/2kJ554Qrt371a3bt0kSTfddJOaNm2qBx54QJs2bdKyZcs0duxYDRw4kKQaAIASQtINAIAXqlmzppYuXaoTJ07o+uuvV+vWrbV27Vp99NFHatGihSTJ19dXn376qXx9fRUfH6/7779fffr00YQJEzwcPQCgzGP3cpcxvRwAAC/VunVrLVu27KJ1oqOj9dlnn5VSRAAAr2G3SxaTa7RZ0w0AAAAAgAsMQxJrul1B0g0AAAAAMMWw22WYHOlm93IAAAAAAFzBSLfL2EgNAAAAAAA3YaQbAAAAAGCO3ZAsjHS7gqQbAAAAAGCOYUgyu3t5xUy6mV4OAAAAADDFsBvFOopj1qxZiomJUUBAgOLi4vTtt99etP67776rxo0bKyAgQFdffbXHX41J0g0AAAAAMMewF+8w6Z133lFKSopSU1P1/fffq0WLFkpMTNTBgweLrL9u3Trde++96tevn/7zn/+oR48e6tGjh7Zs2XK5T1xsJN0AAAAAAFNKa6R72rRp6t+/v/r27aumTZtqzpw5CgoK0rx584qsP336dHXt2lVPPPGEmjRpomeeeUbXXnutXnrppct95GIj6QYAAAAAlDn5+fnasGGDEhISHGU+Pj5KSEjQ+vXri7xm/fr1TvUlKTEx8YL1S4NLG6kZ/1vwnpubW2IN2/NOXfY9cs3ulgcAKNNKpG8owb6q4F5GBd34xVUF/z4nT5ifNni5zp49XeptSpKMM55pFwBccFbn/hvlzv7rrJFnerp4QVzn99VWq1VWq7VQ/UOHDslmsykiIsKpPCIiQtu3by+yjezs7CLrZ2dnm4q1JLmUdB8/flySFBUV5dZgzArxdAAAgBL298u+Q0jG5UdxvuPHjyskhF7nQgp+T7jhb0Wvr3OviR5oEwDKB3f0X/7+/oqMjNTa7OJtTlalSpVCeWVqaqrS0tJKILqyyaWku3bt2tq3b5+qVq0qi8Xi7phKTW5urqKiorRv3z4FBwd7Ohy38PZn9Pbnk3hGb+Dtzyd57zMahqHjx4+rdu3ang6lTPPU7wne8L87b3gGiecoa3iOssNTz+DO/isgIEC7d+9Wfn5+sa43DKNQX1HUKLck1axZU76+vsrJyXEqz8nJUWRkZJHXREZGmqpfGlxKun18fFS3bl13x+IxwcHB5fb/yK7y9mf09ueTeEZv4O3PJ3nnMzLCfWme/j3BG/535w3PIPEcZQ3PUXZ44hnc2X8FBAQoICDAbfcv4O/vr1atWikrK0s9evSQJNntdmVlZWnQoEFFXhMfH6+srCwNHTrUUbZ8+XLFx8e7Pd4LcSnpBgAAAACgtKWkpCgpKUmtW7dWmzZtlJGRoZMnT6pv376SpD59+qhOnTpKT0+XJA0ZMkSdOnXSCy+8oG7duuntt9/Wv//9b82dO9djz0DSDQAAAAAok3r27Knff/9d48aNU3Z2tlq2bKmlS5c6Nkvbu3evfHz+/6Vcbdu21aJFizR27Fg9+eSTuuKKK/Thhx+qWbNmnnqEip10W61WpaamXnANgTfw9mf09ueTeEZv4O3PJ1WMZ0TZ4w3/u/OGZ5B4jrKG5yg7vOEZyoJBgwZdcDr56tWrC5Xdc889uueee9wclessBu9BAQAAAADALXwuXQUAAAAAABQHSTcAAAAAAG5C0g0AAAAAgJtUyKR79erVslgsRR7fffedJGnPnj1Ffv711197OHrXxcTEFIp/0qRJTnV++OEHdejQQQEBAYqKitLkyZM9FK05e/bsUb9+/RQbG6vAwEA1aNBAqampys/Pd6pT3r9DSZo1a5ZiYmIUEBCguLg4ffvtt54OqVjS09N13XXXqWrVqgoPD1ePHj20Y8cOpzqdO3cu9H0NGDDAQxGbl5aWVij+xo0bOz4/ffq0Bg4cqBo1aqhKlSq66667lJOT48GIzSnqvykWi0UDBw6UVP6/P5Qf3tKPe0M/7W39cXnqc72lX/WWvpM+EhdTIXcvb9u2rQ4cOOBU9vTTTysrK0utW7d2Kl+xYoWuuuoqx3mNGjVKJcaSMmHCBPXv399xXrVqVcfPubm5uummm5SQkKA5c+Zo8+bNevDBB1WtWjU9/PDDngjXZdu3b5fdbtcrr7yihg0basuWLerfv79OnjypqVOnOtUtz9/hO++8o5SUFM2ZM0dxcXHKyMhQYmKiduzYofDwcE+HZ8qXX36pgQMH6rrrrtPZs2f15JNP6qabbtLWrVtVuXJlR73+/ftrwoQJjvOgoCBPhFtsV111lVasWOE4r1Tp//8zO2zYMC1ZskTvvvuuQkJCNGjQIN1555366quvPBGqad99951sNpvjfMuWLbrxxhuddgct798fygdv6sfLez/tTf1xeetzvalf9Ya+kz4SF2XAyM/PN8LCwowJEyY4ynbv3m1IMv7zn/94LrDLFB0dbbz44osX/Pzll182QkNDjby8PEfZqFGjjEaNGpVCdCVv8uTJRmxsrOPcG77DNm3aGAMHDnSc22w2o3bt2kZ6eroHoyoZBw8eNCQZX375paOsU6dOxpAhQzwX1GVKTU01WrRoUeRnR48eNfz8/Ix3333XUbZt2zZDkrF+/fpSirBkDRkyxGjQoIFht9sNwyj/3x/Kr/Laj3trP11e++Py3ueW137VW/tO+kj8VYWcXn6+jz/+WIcPH1bfvn0LfXbbbbcpPDxc7du318cff+yB6C7PpEmTVKNGDV1zzTWaMmWKzp496/hs/fr16tixo/z9/R1lBX/R/eOPPzwR7mU5duyYqlevXqi8vH6H+fn52rBhgxISEhxlPj4+SkhI0Pr16z0YWck4duyYJBX6zhYuXKiaNWuqWbNmGjNmjE6dOuWJ8Irt559/Vu3atVW/fn317t1be/fulSRt2LBBZ86ccfo+GzdurHr16pXL7zM/P19vvfWWHnzwQVksFkd5ef/+UD6V537cG/vp8tgfe0OfW577VW/rO+kjcb4KOb38fK+//roSExNVt25dR1mVKlX0wgsvqF27dvLx8dH777+vHj166MMPP9Rtt93mwWhdN3jwYF177bWqXr261q1bpzFjxujAgQOaNm2aJCk7O1uxsbFO10RERDg+Cw0NLfWYi2vnzp2aOXOm01S28v4dHjp0SDabzfGdFIiIiND27ds9FFXJsNvtGjp0qNq1a6dmzZo5yu+77z5FR0erdu3a+uGHHzRq1Cjt2LFDixcv9mC0rouLi9P8+fPVqFEjHThwQOPHj1eHDh20ZcsWZWdny9/fX9WqVXO6JiIiQtnZ2Z4J+DJ8+OGHOnr0qJKTkx1l5f37Q/lVXvtxb+yny2t/XN773PLcr3pj30kfiUI8PdRekkaNGmVIuuixbds2p2v27dtn+Pj4GO+9994l7//AAw8Y7du3d1f4LinOMxZ4/fXXjUqVKhmnT582DMMwbrzxRuPhhx92qvPjjz8akoytW7e6/VmKUpzn++9//2s0aNDA6Nev3yXvXxa+Q1f99ttvhiRj3bp1TuVPPPGE0aZNGw9FVTIGDBhgREdHG/v27btovaysLEOSsXPnzlKKrGT98ccfRnBwsPHaa68ZCxcuNPz9/QvVue6664yRI0d6ILrLc9NNNxndu3e/aJ3y/v2h9HlDP+4t/XRF64/Le5/rTf2qN/Sd9JE4n1eNdA8fPtzpL0pFqV+/vtN5ZmamatSo4dJfWuPi4rR8+fLLCfGyFecZC8TFxens2bPas2ePGjVqpMjIyEK7PxacR0ZGlki8Zpl9vv3796tLly5q27at5s6de8n7l4Xv0FU1a9aUr69vkd+Rp76fkjBo0CB9+umnWrNmjdOoVFHi4uIknRs5adCgQWmEV6KqVaumK6+8Ujt37tSNN96o/Px8HT161Okv9uXx+/z111+1YsWKS/51vrx/fyh93tCPe0s/XdH64/Lc53pbv1re+076SBTFq5LusLAwhYWFuVzfMAxlZmaqT58+8vPzu2T9jRs3qlatWpcT4mUz+4x/tXHjRvn4+Dh24IyPj9dTTz2lM2fOOJ5/+fLlatSokcemrJl5vt9++01dunRRq1atlJmZKR+fS29RUBa+Q1f5+/urVatWysrKUo8ePSSdmz6WlZWlQYMGeTa4YjAMQ48//rg++OADrV69utCUyaJs3LhRksrNd3a+EydO6JdfftEDDzygVq1ayc/PT1lZWbrrrrskSTt27NDevXsVHx/v4UjNyczMVHh4uLp163bReuX9+0Pp84Z+3Fv66YrWH5fHPtdb+9Xy3nfSR6JInh1o96wVK1ZccJrX/PnzjUWLFhnbtm0ztm3bZjz33HOGj4+PMW/ePA9Eat66deuMF1980di4caPxyy+/GG+99ZYRFhZm9OnTx1Hn6NGjRkREhPHAAw8YW7ZsMd5++20jKCjIeOWVVzwYuWv++9//Gg0bNjRuuOEG47///a9x4MABx1GgvH+HhmEYb7/9tmG1Wo358+cbW7duNR5++GGjWrVqRnZ2tqdDM+3RRx81QkJCjNWrVzt9X6dOnTIMwzB27txpTJgwwfj3v/9t7N692/joo4+M+vXrGx07dvRw5K4bPny4sXr1amP37t3GV199ZSQkJBg1a9Y0Dh48aBjGuel/9erVM1auXGn8+9//NuLj4434+HgPR22OzWYz6tWrZ4waNcqp3Bu+P5Q/5bkf95Z+2pv64/LW53pLv+pNfSd9JC6kQifd9957r9G2bdsiP5s/f77RpEkTIygoyAgODjbatGnj9LqCsm7Dhg1GXFycERISYgQEBBhNmjQxJk6c6FgnVmDTpk1G+/btDavVatSpU8eYNGmShyI2JzMz84JrzAqU9++wwMyZM4169eoZ/v7+Rps2bYyvv/7a0yEVy4W+r8zMTMMwDGPv3r1Gx44djerVqxtWq9Vo2LCh8cQTTxjHjh3zbOAm9OzZ06hVq5bh7+9v1KlTx+jZs6fTWq0///zTeOyxx4zQ0FAjKCjIuOOOO5x+MS0Pli1bZkgyduzY4VTuDd8fyp/y3I97Sz/tbf1xeepzvaVf9aa+kz4SF2IxDMMonTF1AAAAAAAqFt7TDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk3AAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMelJycrB49ejh+tlgsslgs8vf3V8OGDTVhwgSdPXtWkrR69WrH5z4+PgoJCdE111yjkSNH6sCBAx58CgAA3Keg77vQkZaWVmqxdO7cWUOHDnU6L4gjICBATZs21csvv+z4fP78+Y7PfX19FRoaqri4OE2YMEHHjh0rtbgBeBZJN1CGdO3aVQcOHNDPP/+s4cOHKy0tTVOmTHGqs2PHDu3fv1/fffedRo0apRUrVqhZs2bavHmzh6IGAMB9Dhw44DgyMjIUHBzsVDZixAhHXcMwHH+sLi39+/fXgQMHtHXrVv3973/XwIED9Y9//MPxeUG8//3vf7Vu3To9/PDDWrBggVq2bKn9+/eXaqwAPIOkGyhDrFarIiMjFR0drUcffVQJCQn6+OOPneqEh4crMjJSV155pXr16qWvvvpKYWFhevTRRz0UNQAA7hMZGek4QkJCZLFYHOfbt29X1apV9fnnn6tVq1ayWq1au3at00yyAkOHDlXnzp0d53a7Xenp6YqNjVVgYKBatGih9957z3R8QUFBioyMVP369ZWWlqYrrrjCqe8uiLdWrVpq0qSJ+vXrp3Xr1unEiRMaOXJkcf9ZAJQjJN1AGRYYGKj8/PxL1hkwYIC++uorHTx4sJQiAwCg7Bg9erQmTZqkbdu2qXnz5i5dk56ergULFmjOnDn68ccfNWzYMN1///368ssvLysWV/ru8PBw9e7dWx9//LFsNttltQeg7Kvk6QAAFGYYhrKysrRs2TI9/vjjl6zfuHFjSdKePXsUHh7u7vAAAChTJkyYoBtvvNHl+nl5eZo4caJWrFih+Ph4SVL9+vW1du1avfLKK+rUqZPpGGw2m/7xj3/ohx9+0MMPP3zJ+o0bN9bx48d1+PBh+m7Ay5F0A2XIp59+qipVqujMmTOy2+267777XNogxjAMSeemsAEAUNG0bt3aVP2dO3fq1KlThRL1/Px8XXPNNabu9fLLL+u1115Tfn6+fH19NWzYMJeWfNF3AxUHSTdQhnTp0kWzZ8+Wv7+/ateurUqVXPu/6LZt2yRJMTExbowOAICyqXLlyk7nPj4+jqS2wJkzZxw/nzhxQpK0ZMkS1alTx6me1Wo11Xbv3r311FNPKTAwULVq1ZKPj2urN7dt26bg4GDVqFHDVHsAyh+SbqAMqVy5sho2bGjqmj///FNz585Vx44dFRYW5qbIAAAoP8LCwrRlyxanso0bN8rPz0+S1LRpU1mtVu3du7dYU8n/KiQkxHTfffDgQS1atEg9evRwOUkHUH6RdAPlzMGDB3X69GkdP35cGzZs0OTJk3Xo0CEtXrzY06EBAFAmXH/99ZoyZYoWLFig+Ph4vfXWW9qyZYtj6njVqlU1YsQIDRs2THa7Xe3bt9exY8f01VdfKTg4WElJSSUWi2EYys7OlmEYOnr0qNavX6+JEycqJCREkyZNKrF2AJRdJN1AOdOoUSNZLBZVqVJF9evX10033aSUlBRFRkZ6OjQAAMqExMREPf300xo5cqROnz6tBx98UH369NHmzZsddZ555hmFhYUpPT1du3btUrVq1XTttdfqySefLNFYcnNzVatWLVksFgUHB6tRo0ZKSkrSkCFDFBwcXKJtASibLMb5C14AAAAAAECJYBEJAAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CYk3QAAAAAAuAlJNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4yf8BWQCp0rdHEFsAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk9ElEQVR4nO3dfXzN9f/H8efZ2IWLzdiVi9mGcpFQfK2h0HeZotIlpRhSCmHKVbJRmSgNuUhlUnz5VrpUxJDKdKGvIixCfGMTYS6y2Tmf3x++O79OG85ndna2s8f9dvvcbjvv8/583q/Pjnrvdd4XH4thGIYAAAAAAECJ83J3AAAAAAAAeCqSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAC4xa5du9SlSxcFBgbKYrHo/fffL9Hr79u3TxaLRQsXLizR63qCqKgoJSQkuDsMoEIg6QZKgcVicepYv379Zbd15swZJScnl8i1AACe75dfftEjjzyiBg0ayM/PTwEBAWrfvr1mzJihP//806Vt9+3bV1u3btVzzz2nN998U23atHFpe55o+/btSk5O1r59+9wdCoALqOTuAICK4M0333R4vWjRIq1evbpQedOmTS+7rTNnzmjixImSpE6dOl329QAAnmvFihW655575Ovrqz59+qh58+bKy8vTl19+qSeffFI//fST5s+f75K2//zzT2VkZOipp57SkCFDXNJGZGSk/vzzT1WuXNkl1y8Ltm/frokTJ6pTp06Kiopy+rzMzEx5eTH+BpQGkm6gFDzwwAMOrzdt2qTVq1cXKgcAoLTs3btXvXr1UmRkpNauXavatWvb3xs8eLB2796tFStWuKz933//XZJUo0YNl7VhsVjk5+fnsuuXN4Zh6OzZs/L395evr6+7wwEqDL7eAsoIm82m1NRUXXXVVfLz81NYWJgeeeQRHTt2zKHed999p/j4eAUHB8vf31/R0dHq37+/pPNr10JCQiRJEydOtE9bT05OLu3bAQCUcVOnTtWpU6f0+uuvOyTcBRo1aqRhw4bZX+fn5+uZZ55Rw4YN5evrq6ioKI0bN065ubkO50VFRal79+768ssv1bZtW/n5+alBgwZatGiRvU5ycrIiIyMlSU8++aQsFot9lDYhIaHIEdvk5GRZLBaHstWrV6tDhw6qUaOGqlWrpsaNG2vcuHH29y+0pnvt2rW6/vrrVbVqVdWoUUO33367duzYUWR7u3fvVkJCgmrUqKHAwED169dPZ86cufAv9n86deqk5s2b68cff1THjh1VpUoVNWrUSO+8844k6fPPP1dMTIz8/f3VuHFjrVmzxuH8X3/9VY899pgaN24sf39/1apVS/fcc4/DNPKFCxfqnnvukSR17ty50HK1gs9i1apVatOmjfz9/fXKK6/Y3ytY020Yhjp37qyQkBAdPnzYfv28vDxdffXVatiwoU6fPn3JewZQNJJuoIx45JFH9OSTT9rX0fXr10+LFy9WfHy8zp07J0k6fPiwunTpon379mnMmDGaNWuWevfurU2bNkmSQkJCNHfuXEnSHXfcoTfffFNvvvmm7rzzTrfdFwCgbProo4/UoEEDtWvXzqn6Dz30kCZMmKBrr71WL730kjp27KiUlBT16tWrUN3du3fr7rvv1k033aQXX3xRQUFBSkhI0E8//SRJuvPOO/XSSy9Jku677z69+eabSk1NNRX/Tz/9pO7duys3N1eTJk3Siy++qNtuu01fffXVRc9bs2aN4uPjdfjwYSUnJysxMVEbN25U+/bti1wXfe+99+rkyZNKSUnRvffeq4ULF9qXcV3KsWPH1L17d8XExGjq1Kny9fVVr169tGzZMvXq1Uu33HKLpkyZotOnT+vuu+/WyZMn7ed+++232rhxo3r16qWZM2dq0KBBSk9PV6dOnexJ/w033KDHH39ckjRu3Dh7v//X5WqZmZm67777dNNNN2nGjBlq1apVoTgtFosWLFigs2fPatCgQfbypKQk/fTTT0pLS1PVqlWdumcARTAAlLrBgwcbf/3P74svvjAkGYsXL3aot3LlSofy9957z5BkfPvttxe89u+//25IMpKSklwSOwCg/Dtx4oQhybj99tudqr9lyxZDkvHQQw85lD/xxBOGJGPt2rX2ssjISEOSsWHDBnvZ4cOHDV9fX2PkyJH2sr179xqSjGnTpjlcs2/fvkZkZGShGJKSkhz6zpdeesmQZPz+++8XjLugjbS0NHtZq1atjNDQUOPo0aP2sh9++MHw8vIy+vTpU6i9/v37O1zzjjvuMGrVqnXBNgt07NjRkGQsWbLEXrZz505DkuHl5WVs2rTJXr5q1apCcZ45c6bQNTMyMgxJxqJFi+xlb7/9tiHJWLduXaH6BZ/FypUri3yvb9++DmWvvPKKIcl46623jE2bNhne3t7G8OHDL3mvAC6OkW6gDHj77bcVGBiom266SUeOHLEfrVu3VrVq1bRu3TpJ/7/u7eOPP7aPfgMAYFZOTo4kqXr16k7V/+STTyRJiYmJDuUjR46UpEJrv5s1a6brr7/e/jokJESNGzfWnj17ih3z3xX0iR988IFsNptT5xw6dEhbtmxRQkKCatasaS9v0aKFbrrpJvt9/tVfR34l6frrr9fRo0ftv8OLqVatmsNMgMaNG6tGjRpq2rSpYmJi7OUFP//19+Pv72//+dy5czp69KgaNWqkGjVq6Pvvv3fibs+Ljo5WfHy8U3UffvhhxcfHa+jQoXrwwQfVsGFDTZ482em2ABSNpBsoA3bt2qUTJ04oNDRUISEhDsepU6fs66s6duyou+66SxMnTlRwcLBuv/12paWlFVpPBwDAxQQEBEiSw3Tmi/n111/l5eWlRo0aOZSHh4erRo0a+vXXXx3K69evX+gaQUFBhfYpuRw9e/ZU+/bt9dBDDyksLEy9evXSv//974sm4AVxNm7cuNB7TZs21ZEjRwqtXf77vQQFBUmSU/dSr169QuvQAwMDFRERUajs79f8888/NWHCBEVERMjX11fBwcEKCQnR8ePHdeLEiUu2XSA6OtrpupL0+uuv68yZM9q1a5cWLlzokPwDKB52LwfKAJvNptDQUC1evLjI9ws2R7NYLHrnnXe0adMmffTRR1q1apX69++vF198UZs2bVK1atVKM2wAQDkVEBCgOnXqaNu2babO+3sCeSHe3t5FlhuGUew2rFarw2t/f39t2LBB69at04oVK7Ry5UotW7ZMN954oz777LMLxmDW5dzLhc515ppDhw5VWlqahg8frtjYWAUGBspisahXr15Oj+xLMp00r1+/3v5l/tatWxUbG2vqfACFkXQDZUDDhg21Zs0atW/f3qnO8brrrtN1112n5557TkuWLFHv3r21dOlSPfTQQ07/QQQAqNi6d++u+fPnKyMj45KJVWRkpGw2m3bt2uWwSVd2draOHz9u34m8JAQFBen48eOFyv8+mi5JXl5e+uc//6l//vOfmj59uiZPnqynnnpK69atU1xcXJH3IZ3fXOzvdu7cqeDg4DKzYdg777yjvn376sUXX7SXnT17ttDvpiT7/UOHDmno0KHq0qWLfHx89MQTTyg+Pr5EP1+gImJ6OVAG3HvvvbJarXrmmWcKvZefn2/vYI8dO1bom/WCXUgLvpWuUqWKJBX5BwsAAAVGjRqlqlWr6qGHHlJ2dnah93/55RfNmDFDknTLLbdIUqEdxqdPny5J6tatW4nF1bBhQ504cUI//vijvezQoUN67733HOr98ccfhc79e5/4d7Vr11arVq30xhtvOPST27Zt02effWa/z7LA29u7UJ8/a9asQiP+BV8SlES/P3DgQNlsNr3++uuaP3++KlWqpAEDBjg1qg/gwhjpBsqAjh076pFHHlFKSoq2bNmiLl26qHLlytq1a5fefvttzZgxQ3fffbfeeOMNzZkzR3fccYcaNmyokydP6tVXX1VAQID9DwV/f381a9ZMy5Yt05VXXqmaNWuqefPmat68uZvvEgBQljRs2FBLlixRz5491bRpU/Xp00fNmzdXXl6eNm7cqLffftv+HOeWLVuqb9++mj9/vo4fP66OHTvqm2++0RtvvKEePXqoc+fOJRZXr169NHr0aN1xxx16/PHHdebMGc2dO1dXXnmlwwZikyZN0oYNG9StWzdFRkbq8OHDmjNnjurVq6cOHTpc8PrTpk3TzTffrNjYWA0YMEB//vmnZs2apcDAQCUnJ5fYfVyu7t27680331RgYKCaNWumjIwMrVmzRrVq1XKo16pVK3l7e+v555/XiRMn5OvrqxtvvFGhoaGm2ktLS9OKFSu0cOFC1atXT9L5JP+BBx7Q3Llz9dhjj5XYvQEVDUk3UEbMmzdPrVu31iuvvKJx48apUqVKioqK0gMPPKD27dtLkv2PnKVLlyo7O1uBgYFq27atFi9e7LBRymuvvaahQ4dqxIgRysvLU1JSEkk3AKCQ2267TT/++KOmTZumDz74QHPnzpWvr69atGihF198UQMHDrTXfe2119SgQQMtXLhQ7733nsLDwzV27FglJSWVaEy1atXSe++9p8TERI0aNUrR0dFKSUnRrl27HJLu2267Tfv27dOCBQt05MgRBQcHq2PHjpo4caJ9Y7KixMXFaeXKlUpKStKECRNUuXJldezYUc8//7zpTcdcacaMGfL29tbixYt19uxZtW/f3v6M8b8KDw/XvHnzlJKSogEDBshqtWrdunWmku7//ve/GjFihG699Vb17dvXXt67d2+9++67GjVqlG6++eYy9fsByhOLwXwRAAAAAABcgjXdAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC7i1HO6bTabDh48qOrVq8tisbg6JgAAygTDMHTy5EnVqVNHXl58T30h/J0AAGWLq/uvs2fPKi8vr1jn+vj4yM/Pr4QjKtucSroPHjyoiIgIV8cCAECZdODAAdWrV8/dYZRZ/J0AAGWTK/qvs2fPKjqymrIOW4t1fnh4uPbu3VuhEm+nku7q1atLOv+hBQQEuDQgAADKipycHEVERNj7QRSt4PfTQbeokiq7ORoAuLDfB8a4pd0vn3ytVNvLOWVT5LX7XNJ/5eXlKeuwVb9ujlJAdXOj6DknbYpsvU95eXkk3X9XMFUsICCApBsAUOEwZfriCn4/lVRZlSwk3QDKLm8f9yR6ZpPTkuLK/qtadYuqVTd3fZsqZn/qVNINAAAAAEABq2GT1TB/TkVE0g0AAAAAMMUmQzaZy7rN1vcUJN0AAAAAAFNsssnsuLX5MzwDSTcAmGC1WnXu3Dl3h4ES5OPjw+PAAAAwyWoYshrmRq7N1vcUJN0A4ATDMJSVlaXjx4+7OxSUMC8vL0VHR8vHx8fdoQAAUG4wvdx5JN0A4ISChDs0NFRVqlRhN2sPYbPZdPDgQR06dEj169fncwUAACWOpBsALsFqtdoT7lq1ark7HJSwkJAQHTx4UPn5+apcmcddAQDgDJsMWRnpdgpJNwBcQsEa7ipVqrg5ErhCwbRyq9VK0g0AgJOYXu48km4AcBJTjz0TnysAAOaxkZrzSLoBAAAAAKbY/neYPaci4hkpAAB4KKvVqqefflrR0dHy9/dXw4YN9cwzz8j4y0iDYRiaMGGCateuLX9/f8XFxWnXrl1ujBoAUB5Y/7em2+xRETHSDQCXIWrMilJra9+Ubk7XvdSU6aSkJCUnJ19mRCjrnn/+ec2dO1dvvPGGrrrqKn333Xfq16+fAgMD9fjjj0uSpk6dqpkzZ+qNN95QdHS0nn76acXHx2v79u3y8/Nz8x0AAFD+kXQXV3Kgm9s/4d72AZRphw4dsv+8bNkyTZgwQZmZmfayatWq2X82DENWq1WVKtEleJqNGzfq9ttvV7du57+wiYqK0r/+9S998803ks5/9qmpqRo/frxuv/12SdKiRYsUFham999/X7169XJb7ACAss1qnD/MnlMRMb0cADxQeHi4/QgMDJTFYrG/3rlzp6pXr65PP/1UrVu3lq+vr7788kslJCSoR48eDtcZPny4OnXqZH9ts9mUkpJin67csmVLvfPOO6V7c3Bau3btlJ6erp9//lmS9MMPP+jLL7/UzTffLEnau3evsrKyFBcXZz8nMDBQMTExysjIuOB1c3NzlZOT43AAACoWWzGPiohhDQCooMaMGaMXXnhBDRo0UFBQkFPnpKSk6K233tK8efN0xRVXaMOGDXrggQcUEhKijh07ujhimDVmzBjl5OSoSZMm8vb2ltVq1XPPPafevXtLkrKysiRJYWFhDueFhYXZ3ytKSkqKJk6c6LrAAQBlnk0WWWXuCSA2k/U9BUk3AFRQkyZN0k033eR0/dzcXE2ePFlr1qxRbGysJKlBgwb68ssv9corr5B0l0H//ve/tXjxYi1ZskRXXXWVtmzZouHDh6tOnTrq27dvsa87duxYJSYm2l/n5OQoIiKiJEIGAJQTNuP8YfacioikGwAqqDZt2piqv3v3bp05c6ZQop6Xl6drrrmmJENDCXnyySc1ZswY+9rsq6++Wr/++qtSUlLUt29fhYeHS5Kys7NVu3Zt+3nZ2dlq1arVBa/r6+srX19fl8YOACjbrMUY6TZb31OQdKN8cecGdmxeBw9TtWpVh9deXl4Oj5KSpHPnztl/PnXqlCRpxYoVqlu3rkM9ErCy6cyZM/Lycty+xdvbWzbb+VV10dHRCg8PV3p6uj3JzsnJ0ddff61HH320tMMFAMAjkXQDACRJISEh2rZtm0PZli1bVLlyZUlSs2bN5Ovrq/379zOVvJy49dZb9dxzz6l+/fq66qqr9J///EfTp09X//79JZ1/tNzw4cP17LPP6oorrrA/MqxOnTqFNtUDAOCvGOl2Hkk3AECSdOONN2ratGlatGiRYmNj9dZbb2nbtm32qePVq1fXE088oREjRshms6lDhw46ceKEvvrqKwUEBFzWGmG4xqxZs/T000/rscce0+HDh1WnTh098sgjmjBhgr3OqFGjdPr0aT388MM6fvy4OnTooJUrV/KMbgDARdkMi2yGyY3UTNb3FCTdAABJUnx8vJ5++mmNGjVKZ8+eVf/+/dWnTx9t3brVXueZZ55RSEiIUlJStGfPHtWoUUPXXnutxo0b58bIcSHVq1dXamqqUlNTL1jHYrFo0qRJmjRpUukFBgAo9xjpdh5JNwBchn1Turk7hEtKSEhQQkKC/XWnTp0Krd0uMHHixIs+CspisWjYsGEaNmxYSYcJAADKEau8ZJXXpSs6nFMxkXQDAAAAFZXFPSOPR/tf55Z28/7pno1x4+uW7lM+8o1zkva4tA2jGNPLDaaXAwAAAABwaUwvd565+QAAAAAAAMBpjHQDAAAAAEyxGl6yGibXdBe9pYzHI+kGAAAAAJhik0U2kxOnbaqYWTdJNwAAAADAFNZ0O4+kGwAAAABgSvGmlzPSDQAAAADAJZ2fXm5u5NpsfU/B7uUAAAAAALgISTcAwGkLFy5UjRo13B2GKeUxZgAAyjqbvGQ1eZjdeM1TML0cAC5HcmAptnXC9CkJCQl64403CpXHx8dr5cqVFz03KipKw4cP1/Dhw+1lPXv21C233GI6DrMWLlyo4cOH6/jx4y5vCwAAmMeabueRdAOAh+vatavS0tIcynx9fYt1LX9/f/n7+5dEWAAAoByzFWPkuqI+Mqxiju8DQAXi6+ur8PBwhyMoKEiGYSg5OVn169eXr6+v6tSpo8cff1yS1KlTJ/36668aMWKELBaLLJbzG5/8fap2cnKyWrVqpQULFqh+/fqqVq2aHnvsMVmtVk2dOlXh4eEKDQ3Vc8895xDT9OnTdfXVV6tq1aqKiIjQY489plOnTkmS1q9fr379+unEiRP2tpOTkyVJubm5euKJJ1S3bl1VrVpVMTExWr9+vcO1Fy5cqPr166tKlSq64447dPToUdf8YgEAqMCshqVYR0XESDcAVFDvvvuuXnrpJS1dulRXXXWVsrKy9MMPP0iSli9frpYtW+rhhx/WwIEDL3qdX375RZ9++qlWrlypX375RXfffbf27NmjK6+8Up9//rk2btyo/v37Ky4uTjExMZIkLy8vzZw5U9HR0dqzZ48ee+wxjRo1SnPmzFG7du2UmpqqCRMmKDMzU5JUrVo1SdKQIUO0fft2LV26VHXq1NF7772nrl27auvWrbriiiv09ddfa8CAAUpJSVGPHj20cuVKJSUlufC3CABAxVSwTtvcORVzpJukGwA83Mcff2xPWguMGzdOfn5+Cg8PV1xcnCpXrqz69eurbdu2kqSaNWvK29tb1atXV3h4+EWvb7PZtGDBAlWvXl3NmjVT586dlZmZqU8++UReXl5q3Lixnn/+ea1bt86edP91nXhUVJSeffZZDRo0SHPmzJGPj48CAwNlsVgc2t6/f7/S0tK0f/9+1alTR5L0xBNPaOXKlUpLS9PkyZM1Y8YMde3aVaNGjZIkXXnlldq4ceMl168DAAC4Ckk3AHi4zp07a+7cuQ5lNWvW1OnTp5WamqoGDRqoa9euuuWWW3TrrbeqUiVzXUNUVJSqV69ufx0WFiZvb295eXk5lB0+fNj+es2aNUpJSdHOnTuVk5Oj/Px8nT17VmfOnFGVKlWKbGfr1q2yWq268sorHcpzc3NVq1YtSdKOHTt0xx13OLwfGxtL0g0AQAmzGV6ymdxIzcZGagAAT1S1alU1atSoUHnNmjWVmZmpNWvWaPXq1Xrsscc0bdo0ff7556pcubLT1/97XYvFUmSZzWaTJO3bt0/du3fXo48+queee041a9bUl19+qQEDBigvL++CSfepU6fk7e2tzZs3y9vb2+G9v4/kAwAA12J6ufNIugGgAvP399ett96qW2+9VYMHD1aTJk20detWXXvttfLx8ZHVai3xNjdv3iybzaYXX3zRPhr+73//26FOUW1fc801slqtOnz4sK6//voir920aVN9/fXXDmWbNm0qwegBAIAk2STTG6PZXBNKmUfSDQAeLjc3V1lZWQ5llSpV0scffyyr1aqYmBhVqVJFb731lvz9/RUZGSnp/LTxDRs2qFevXvL19VVwcHCJxNOoUSOdO3dOs2bN0q233qqvvvpK8+bNc6gTFRWlU6dOKT09XS1btlSVKlV05ZVXqnfv3urTp49efPFFXXPNNfr999+Vnp6uFi1aqFu3bnr88cfVvn17vfDCC7r99tu1atUqppYDAOACxXtkWMV8eFbFvGsAqEBWrlyp2rVrOxwdOnRQjRo19Oqrr6p9+/Zq0aKF1qxZo48++si+PnrSpEnat2+fGjZsqJCQkBKLp2XLlpo+fbqef/55NW/eXIsXL1ZKSopDnXbt2mnQoEHq2bOnQkJCNHXqVElSWlqa+vTpo5EjR6px48bq0aOHvv32W9WvX1+SdN111+nVV1/VjBkz1LJlS3322WcaP358icUOAADOsxpexToqIothXHo1e05OjgIDA3XixAkFBASURlxlX3Kgm9s/4d723cWdv/eK+juHzp49q7179yo6Olp+fn7uDgcl7GKfL/2fcwp+T510uypZnN8PAEAZYHHPc5OP9r/OLe3+eUuOW9qtd/f2Um0v3zin9cb7Lum/Cv6f//LmGPlXMzdx+s9T+RrS+usK168yvRwAAAAAYIpNFtlkdk23e77kcbeKOb4PAEAF8dtvv+mBBx5QrVq15O/vr6uvvlrfffed/X3DMDRhwgTVrl1b/v7+iouL065du9wYMQCgPGB6ufMq5l0DAFABHDt2TO3bt1flypX16aefavv27XrxxRcVFBRkrzN16lTNnDlT8+bN09dff62qVasqPj5eZ8+edWPkAICyruCRYWaPiojp5QAAeKjnn39eERERSktLs5dFR0fbfzYMQ6mpqRo/frxuv/12SdKiRYsUFham999/X7169Sr1mAEA5YPNsMhm9pFhJut7ior5VQMAABXAhx9+qDZt2uiee+5RaGiorrnmGr366qv29/fu3ausrCzFxcXZywIDAxUTE6OMjIwLXjc3N1c5OTkOBwCgYrEVY5S7oj4yjJFuAHCSzWZzdwhwASce4lFu7dmzR3PnzlViYqLGjRunb7/9Vo8//rh8fHzUt29f+/Pbw8LCHM4LCwsr9Gz3v0pJSdHEiRNdGjuA0uHd9Aq3tHuss3uWsFzZZ59b2rWVdl9TCu3ZDC/ZTK7RNlvfU5B0A8Al+Pj4yMvLSwcPHlRISIh8fHxkcdMjVlCyDMPQ77//LovFosqVPe9RVzabTW3atNHkyZMlSddcc422bdumefPmqW/fvsW+7tixY5WYmGh/nZOTo4iIiMuOFwAAT0TSDQCX4OXlpejoaB06dEgHDx50dzgoYRaLRfXq1ZO3t7e7QylxtWvXVrNmzRzKmjZtqnfffVeSFB4eLknKzs5W7dq17XWys7PVqlWrC17X19dXvr6+JR8wAKDcsMoiq8lHgJmt7ylIugHACT4+Pqpfv77y8/NltVrdHQ5KUOXKlT0y4Zak9u3bKzMz06Hs559/VmRkpKTzm6qFh4crPT3dnmTn5OTo66+/1qOPPlra4QIAyhGmlzuPpBsAnFQwBdkTpyHDM40YMULt2rXT5MmTde+99+qbb77R/PnzNX/+fEnn/00PHz5czz77rK644gpFR0fr6aefVp06ddSjRw/3Bg8AKNOsMj9yXdxhi9mzZ2vatGnKyspSy5YtNWvWLLVt2/aC9VNTUzV37lzt379fwcHBuvvuu5WSkiI/P79iRnB5SLoBAPBQ//jHP/Tee+9p7NixmjRpkqKjo5WamqrevXvb64waNUqnT5/Www8/rOPHj6tDhw5auXKl2/4wAQCUD6U10r1s2TIlJiZq3rx5iomJUWpqquLj45WZmanQ0NBC9ZcsWaIxY8ZowYIFateunX7++WclJCTIYrFo+vTpptsvCSTdAAB4sO7du6t79+4XfN9isWjSpEmaNGlSKUYFACjvrIaXrCaTaLP1JWn69OkaOHCg+vXrJ0maN2+eVqxYoQULFmjMmDGF6m/cuFHt27fX/fffL0mKiorSfffdp6+//tp02yWlYk6qBwAAAACUaXl5edq8ebPi4uLsZV5eXoqLi1NGRkaR57Rr106bN2/WN998I+n84zM/+eQT3XLLLaUSc1EY6QYAAAAAmGLIIpvJNd3G/+rn5OQ4lF/oqRhHjhyR1WpVWFiYQ3lYWJh27txZZBv333+/jhw5og4dOsgwDOXn52vQoEEaN26cqVhLEiPdAAAAAABTCqaXmz0kKSIiQoGBgfYjJSWlxOJav369Jk+erDlz5uj777/X8uXLtWLFCj3zzDMl1oZZjHQDAAAAAEyxGRbZDHMj3QX1Dxw4oICAAHt5UaPckhQcHCxvb29lZ2c7lGdnZys8PLzIc55++mk9+OCDeuihhyRJV199tX3D0KeeekpeXqU/7sxINwAAAADAFKu8inVIUkBAgMNxoaTbx8dHrVu3Vnp6ur3MZrMpPT1dsbGxRZ5z5syZQom1t7e3JMkwjJK4ddMY6QYAAAAAmHI5I91mJCYmqm/fvmrTpo3atm2r1NRUnT592r6beZ8+fVS3bl37FPVbb71V06dP1zXXXKOYmBjt3r1bTz/9tG699VZ78l3aSLoBAAAAAGVSz5499fvvv2vChAnKyspSq1attHLlSvvmavv373cY2R4/frwsFovGjx+v3377TSEhIbr11lv13HPPuesWSLoBAAAAAObY5CWbydXKZusXGDJkiIYMGVLke+vXr3d4XalSJSUlJSkpKalYbbkCSTcAAAAAwBSrYZHV5HRxs/U9BUk3AAAAAMCU0lrT7QlIugEAAAAAphiGl2yGuenihsn6noKkGwAAAABgilUWWWVyernJ+p6CpBsAAAAAYIrNMD9d3Oaex2S7XcUc3wcAAAAAoBQw0g0AAAAAMMVWjDXdZut7CpJuAAAAAIApNllkM7lG22x9T0HSDQAAAAAwhed0O4+kGwAAAABgCtPLnUfSDQBwlBzoxrZPuK9tAHCjU/fEuKXdgc+855Z2376lnVvazT992i3teiKbLOZ3L6+g08sr5lcNAAAAAACUAka6AQAAAACmGMXYSM2ooCPdJN0AAAAAAFNsRjGml1fQjdSYXg4AQAUxZcoUWSwWDR8+3F529uxZDR48WLVq1VK1atV01113KTs7231BAgDKhYKN1MweFREj3QDKNjb1AkrEt99+q1deeUUtWrRwKB8xYoRWrFiht99+W4GBgRoyZIjuvPNOffXVV26KFABQHjDS7byK+VUDAAAVyKlTp9S7d2+9+uqrCgoKspefOHFCr7/+uqZPn64bb7xRrVu3VlpamjZu3KhNmza5MWIAQFln+9+abrNHRUTSDQCAhxs8eLC6deumuLg4h/LNmzfr3LlzDuVNmjRR/fr1lZGRUdphAgDgkZheDgCAB1u6dKm+//57ffvtt4Xey8rKko+Pj2rUqOFQHhYWpqysrAteMzc3V7m5ufbXOTk5JRYvAKB8YHq58xjpBgDAQx04cEDDhg3T4sWL5efnV2LXTUlJUWBgoP2IiIgosWsDAMqHgqTb7FERkXQDAOChNm/erMOHD+vaa69VpUqVVKlSJX3++eeaOXOmKlWqpLCwMOXl5en48eMO52VnZys8PPyC1x07dqxOnDhhPw4cOODiOwEAlDUk3c5jejkAAB7qn//8p7Zu3epQ1q9fPzVp0kSjR49WRESEKleurPT0dN11112SpMzMTO3fv1+xsbEXvK6vr698fX1dGjsAoGxjernzSLoBAPBQ1atXV/PmzR3Kqlatqlq1atnLBwwYoMTERNWsWVMBAQEaOnSoYmNjdd1117kjZABAOWFIpncjN1wTSplH0g0AQAX20ksvycvLS3fddZdyc3MVHx+vOXPmuDssAAA8Bkk3AAAVyPr16x1e+/n5afbs2Zo9e7Z7AgIAlEtML3ceSTcAAAAAwBSSbueRdAMAAAAATCHpdh5JNwAAAADAFJJu55F0AwAAAABMMQyLDJNJtNn6noKkGwAAAABgik0W048MM1vfU3i5OwAAAAAAADwVI90AAAAAAFNY0+08km4AAAAAgCms6XYeSTcAAAAAwBRGup1H0g0AAAAAMIWRbueRdAMAAAAATDGKMdJN0g0AAABUcN5XNXZLuyd757il3WWtGrilXdvZfW5pF3AHkm4AAAAAgCmGJMMwf05FRNINlAfJgW5s+4T72gYAAECZZJNFFpncSM1kfU9B0g0AgAvZbDYtXLhQy5cv1759+2SxWBQdHa27775bDz74oCyWivkHCACgfGMjNeeRdAPOcudoM4ByyTAM3Xbbbfrkk0/UsmVLXX311TIMQzt27FBCQoKWL1+u999/391hAgBgms2wyMIjw5xC0g0AgIssXLhQGzZsUHp6ujp37uzw3tq1a9WjRw8tWrRIffr0cVOEAAAUj2EUY013BV3U7eXuAAAA8FT/+te/NG7cuEIJtyTdeOONGjNmjBYvXuyGyAAAQGlhpBsAiilqzAp3hyBJ2jelm7tDwAX8+OOPmjp16gXfv/nmmzVz5sxSjAgAgJLBmm7nkXQDAOAif/zxh8LCwi74flhYmI4dO1aKEQEAUDJIup1H0g0AgItYrVZVqnThrtbb21v5+fmlGBEAACWDjdScR9INAICLGIahhIQE+fr6Fvl+bm5uKUcEAEDJYCM157kt6WYtJC7mQv8+9vmVciAAcBn69u17yTrsXA4AKI/OJ91mp5e7KJgyjpFuAABcJC0tzd0hKCUlRcuXL9fOnTvl7++vdu3a6fnnn1fjxo3tdc6ePauRI0dq6dKlys3NVXx8vObMmXPR9egAgIqNNd3Oq/BJd3FH3BlxBQA4Y9++fVq9erXy8vLUqVMnXXXVVaXa/ueff67BgwfrH//4h/Lz8zVu3Dh16dJF27dvV9WqVSVJI0aM0IoVK/T2228rMDBQQ4YM0Z133qmvvvqqVGMFAMATVfikGwAupKwsg0H5tW7dOnXv3l1//vmnJKlSpUpasGCBHnjggVKLYeXKlQ6vFy5cqNDQUG3evFk33HCDTpw4oddff11LlizRjTfeKOn8CH3Tpk21adMmXXfddaUWKwCg/DD+d5g9pzhmz56tadOmKSsrSy1bttSsWbPUtm3bC9Y/fvy4nnrqKS1fvlx//PGHIiMjlZqaqltuuaWYEVweL7e0CgBABfD000/rpptu0m+//aajR49q4MCBGjVqlFtjOnHihCSpZs2akqTNmzfr3LlziouLs9dp0qSJ6tevr4yMDLfECAAo+wqml5s9zFq2bJkSExOVlJSk77//Xi1btlR8fLwOHz5cZP28vDzddNNN2rdvn9555x1lZmbq1VdfVd26dS/3louNpBsAABfZtm2bJk+erNq1aysoKEjTpk3T4cOHdfToUbfEY7PZNHz4cLVv317NmzeXJGVlZcnHx0c1atRwqBsWFqasrKwir5Obm6ucnByHAwBQwRjFPEyaPn26Bg4cqH79+qlZs2aaN2+eqlSpogULFhRZf8GCBfrjjz/0/vvvq3379oqKilLHjh3VsmVLp9tct26d+UAvgqQbAAAXycnJUXBwsP11lSpV5O/vbx9tLm2DBw/Wtm3btHTp0su6TkpKigIDA+1HRERECUUIACg3ijPKbXKkOy8vT5s3b3aYjeXl5aW4uLgLzsb68MMPFRsbq8GDByssLEzNmzfX5MmTZbVanW63a9euatiwoZ599lkdOHDAVMxFYU03AAAutGrVKgUGBtpf22w2paena9u2bfay2267zeVxDBkyRB9//LE2bNigevXq2cvDw8OVl5en48ePO4x2Z2dnKzw8vMhrjR07VomJifbXOTk5JN4AUMFcznO6/z5DytfXV76+voXqHzlyRFartdDTNMLCwrRz584i29izZ4/Wrl2r3r1765NPPtHu3bv12GOP6dy5c0pKSnIqzt9++01vvvmm3njjDU2cOFE33nijBgwYoB49esjHx8epa/wVSTcAp7ljYzGeFIDyrqhndT/yyCP2ny0Wi6lv380yDENDhw7Ve++9p/Xr1ys6Otrh/datW6ty5cpKT0/XXXfdJUnKzMzU/v37FRsbW+Q1L/THEQAAzvj7F7VJSUlKTk4ukWvbbDaFhoZq/vz58vb2VuvWrfXbb79p2rRpTifdwcHBGjFihEaMGKHvv/9eaWlpeuyxx/TYY4/p/vvv14ABA0xNVyfpBgDARWw2m7tD0ODBg7VkyRJ98MEHql69un2ddmBgoPz9/RUYGKgBAwYoMTFRNWvWVEBAgIYOHarY2Fh2LgcAXNDlPKf7wIEDCggIsJdf6Ivc4OBgeXt7Kzs726H8YrOxateurcqVK8vb29te1rRpU2VlZSkvL8/0SPW1116r8PBw1apVS1OmTNGCBQs0Z84cxcbGat68eU49CpQ13QAAeLC5c+fqxIkT6tSpk2rXrm0/li1bZq/z0ksvqXv37rrrrrt0ww03KDw8XMuXL3dj1ACAMq9gjbbZQ1JAQIDDcaGk28fHR61bt1Z6erq9rGCZ1oVmY7Vv3167d+92+OL7559/Vu3atU0l3OfOndM777yjW265RZGRkVq1apVefvllZWdna/fu3YqMjNQ999zj1LUY6QYAwEU+/PBDp+q5ck234cSCOz8/P82ePVuzZ892WRwAAM9yOWu6zUhMTFTfvn3Vpk0btW3bVqmpqTp9+rT69esnSerTp4/q1q2rlJQUSdKjjz6ql19+WcOGDdPQoUO1a9cuTZ48WY8//rjTbQ4dOlT/+te/ZBiGHnzwQU2dOtX+1A9Jqlq1ql544QXVqVPHqeuRdJdXyYGXruOytt2z6y4AlDc9evS4ZB1Xr+kGAMAlivMIsGIk3T179tTvv/+uCRMmKCsrS61atdLKlSvtm6vt379fXl7/P4E7IiJCq1at0ogRI9SiRQvVrVtXw4YN0+jRo51uc/v27Zo1a5buvPPOi059d/bRYiTdAAC4SFlY0w0AgCtczppus4YMGaIhQ4YU+d769esLlcXGxmrTpk3Faks6v7Fbu3btVKmSY7qcn5+vjRs36oYbblClSpXUsWNHp65H0g0AAIAy6Wz3tqXeZu9pH5d6m5L0wS3/cEu7+WfPuqVdoCzr3LmzDh06pNDQUIfyEydOqHPnzqZnqJF0AwAAAADMK8Z08fLAMAxZLIVH5Y8ePaqqVauavh5JNwAAAADAlNKcXl5a7rzzTknn91tJSEhwWM9ttVr1448/ql27dqavS9INAAAAADCnlDZSK02Bgec3qzYMQ9WrV5e/v7/9PR8fH1133XUaOHCg6euSdAMAAAAATLL87zB7TtmVlpYmSYqKitITTzxRrKnkRSHpBgAAAACY44Ej3QWSkpJK9Hok3QBQBu3zu9/5yskuC6PURY1ZcdnX2DelWwlEcvmCgoKK3ISlKH/88YeLowEAABdz7bXXKj09XUFBQbrmmmsu2od///33pq5N0g0AgAukpqbafz569KieffZZxcfHKzY2VpKUkZGhVatW6emnn3ZThAAAXAYPG+m+/fbb7Run9ejRo0SvTdINAIAL9O3b1/7zXXfdpUmTJmnIkCH2sscff1wvv/yy1qxZoxEjRrgjRAAAis+wnD/MnlNG/XVKeUlPL/cq0asBAIBCVq1apa5duxYq79q1q9asWeOGiAAAuDyGUbyjImKkGwAAF6tVq5Y++OADjRw50qH8gw8+UK1atdwUFQAAl8HDppe7ci8Wkm4AAFxs4sSJeuihh7R+/XrFxMRIkr7++mutXLlSr776qpujAwCgGDxsevlf92IpaSTdAAC4WEJCgpo2baqZM2dq+fLlkqSmTZvqyy+/tCfhAACUJxbj/GH2nLLqr3uxlDSSbgAASkFMTIwWL17s7jAAAEARcnJyFBAQYP/5YgrqOYukGwCAUvDLL78oLS1Ne/bsUWpqqkJDQ/Xpp5+qfv36uuqqq9wdHgAA5njgmu5Dhw4pNDRUNWrUKHJ9t2EYslgsslqtpq5N0g3TosascHcIAFCufP7557r55pvVvn17bdiwQc8++6xCQ0P1ww8/6PXXX9c777zj7hABADDHw9Z0r127VjVr1pQkrVu3rkSvTdINAICLjRkzRs8++6wSExNVvXp1e/mNN96ol19+2Y2RAQBQTB420t2xY8cify4JJN0AALjY1q1btWTJkkLloaGhOnLkiBsiAgDgMnlY0v13x44d0+uvv64dO3ZIkpo1a6Z+/frZR8PN8Crp4AB4lqgxK+wHgOKpUaOGDh06VKj8P//5j+rWreuGiAAAuExGMY9yYMOGDYqKitLMmTN17NgxHTt2TDNnzlR0dLQ2bNhg+nok3QAAuFivXr00evRoZWVlyWKxyGaz6auvvtITTzyhPn36uDs8AADwF4MHD1bPnj21d+9eLV++XMuXL9eePXvUq1cvDR482PT1SLoBAHCxyZMnq0mTJoqIiNCpU6fUrFkz3XDDDWrXrp3Gjx/v7vAAADCvYCM1s0c5sHv3bo0cOVLe3t72Mm9vbyUmJmr37t2mr0fSDQCAi/n4+OjVV1/Vnj179PHHH+utt97Szp079eabbzp06O40e/ZsRUVFyc/PTzExMfrmm2/cHRIAoAyzGMU7yoNrr73Wvpb7r3bs2KGWLVuavh4bqQEA4GKTJk3SE088oYiICEVERNjL//zzT02bNk0TJkxwY3TSsmXLlJiYqHnz5ikmJkapqamKj49XZmamQkND3RobAKCM8rCN1H788Uf7z48//riGDRum3bt367rrrpMkbdq0SbNnz9aUKVNMX5ukGwAAF5s4caIGDRqkKlWqOJSfOXNGEydOdHvSPX36dA0cOFD9+vWTJM2bN08rVqzQggULNGbMGLfGBgBAaWjVqpUsFosM4/+/GRg1alShevfff7969uxp6tok3QAAuJhhGLJYCq9j++GHH4r16JGSlJeXp82bN2vs2LH2Mi8vL8XFxSkjI8ONkQEAyjKLzE8XL8sruvfu3euya5N0AwDgIkFBQbJYLLJYLLryyisdEm+r1apTp05p0KBBboxQOnLkiKxWq8LCwhzKw8LCtHPnziLPyc3NVW5urv11Tk6OS2MEAMDVIiMjXXZtkm4AAFwkNTVVhmGof//+mjhxogIDA+3v+fj4KCoqSrGxsW6MsHhSUlI0ceJEd4eBUvRnj7ZuabfhmMIbGbnae22iS71NSbKd/tUt7QLFVpzdyMvJ7uUFtm/frv379ysvL8+h/LbbbjN1HZJuAABcpG/fvpKk6OhotWvXTpUrV3ZzRIUFBwfL29tb2dnZDuXZ2dkKDw8v8pyxY8cqMTHR/jonJ8dhgzgAQAXgYRup/dWePXt0xx13aOvWrQ7rvAtmrFmtVlPX45FhAAC4WMeOHe0J99mzZ5WTk+NwuJOPj49at26t9PR0e5nNZlN6evoFR+F9fX0VEBDgcAAAKhijmEc5MGzYMEVHR+vw4cOqUqWKfvrpJ23YsEFt2rTR+vXrTV+PkW4AAFzszJkzGjVqlP7973/r6NGjhd43+415SUtMTFTfvn3Vpk0btW3bVqmpqTp9+rR9N3MAAP6uOM/dLi/P6c7IyNDatWsVHBwsLy8veXl5qUOHDkpJSdHjjz+u//znP6aux0g3AAAu9uSTT2rt2rWaO3eufH199dprr2nixImqU6eOFi1a5O7w1LNnT73wwguaMGGCWrVqpS1btmjlypWFNlcDAMDOg0e6rVarqlevLun8MqyDBw9KOr/ZWmZmpunrMdINAICLffTRR1q0aJE6deqkfv366frrr1ejRo0UGRmpxYsXq3fv3u4OUUOGDNGQIUPcHQYAoLzw4DXdzZs31w8//KDo6GjFxMRo6tSp8vHx0fz589WgQQPT12OkGwAAF/vjjz/snXRAQID++OMPSVKHDh20YcMGd4YGAAD+Zvz48bLZbJKkSZMmae/evbr++uv1ySefaObMmaavx0g3AAAu1qBBA+3du1f169dXkyZN9O9//1tt27bVRx99pBo1arg7PAAATPPkNd3x8fH2nxs1aqSdO3fqjz/+UFBQkH0HczNIugFc1D6/+90dAlDu9evXTz/88IM6duyoMWPG6NZbb9XLL7+sc+fOafr06e4ODwAA8yrAc7ol6cCBA5J0WY/GJOkGgAvgCweUlBEjRth/jouL086dO7V582Y1atRILVq0cGNkAAAUkwev6c7Pz9fEiRM1c+ZMnTp1SpJUrVo1DR06VElJSfbHgDqLpBsAgFIWGRmpyMhId4cBAECxefL08qFDh2r58uWaOnWqYmNjJZ1/jFhycrKOHj2quXPnmroeSTcAAKXg22+/1bp163T48GH75iwFmGIOACh3PHike8mSJVq6dKluvvlme1mLFi0UERGh++67j6QbAICyZvLkyRo/frwaN26ssLAwh01YirMhCwAAcB1fX19FRUUVKo+OjpaPj4/p65F0AwDgYjNmzNCCBQuUkJDg7lAAACgZxZheXl5GuocMGaJnnnlGaWlp8vX1lSTl5ubqueee05AhQ0xfj6QbAAAX8/LyUvv27d0dBgAAJcfDppffeeedDq/XrFmjevXqqWXLlpKkH374QXl5efrnP/9p+tok3QAAuNiIESM0e/ZspaamujsUAABKhocl3YGBgQ6v77rrLofXPDIMAIAy7IknnlC3bt3UsGFDNWvWrNCjRpYvX+6myAAAKB5P2708LS3NZdcm6QYAwMUef/xxrVu3Tp07d1atWrXYPA0AgHLg999/V2ZmpiSpcePGCgkJKdZ1SLoBAHCxN954Q++++666devm7lAAAMAlnD59WkOHDtWiRYvsj/n09vZWnz59NGvWLFWpUsXU9bxcESQAAPh/NWvWVMOGDd0dBgAAJcco5lEOJCYm6vPPP9dHH32k48eP6/jx4/rggw/0+eefa+TIkaavR9INAICLJScnKykpSWfOnHF3KAAAlIiCNd1mj/Lg3Xff1euvv66bb75ZAQEBCggI0C233KJXX31V77zzjunrMb0cAAAXmzlzpn755ReFhYUpKiqq0EZq33//vZsiAwDgMpSTJNqsM2fOKCwsrFB5aGhosb5AJ+kGAMDFevTo4e4QAAAoWR72yLC/io2NVVJSkhYtWiQ/Pz9J0p9//qmJEycqNjbW9PVIugEAcLGkpCR3hwAAQInytEeG/VVqaqq6du2qevXqqWXLlpKkH374QX5+flq1apXp65F0AwAAAADM8eCR7quvvlq7du3S4sWLtXPnTknSfffdp969e8vf39/09Ui6AQBwgZo1a+rnn39WcHCwgoKCLvps7j/++KMUI0NJ8PrfdMPS1unbo25p9+fT293S7m/X55V6m8a50m8TwMXNnj1b06ZNU1ZWllq2bKlZs2apbdu2lzxv6dKluu+++3T77bfr/fffd6qtc+fOqUmTJvr44481cODAy4z8PJJuAABc4KWXXlL16tXtP18s6QYAoLwprenly5YtU2JioubNm6eYmBilpqYqPj5emZmZCg0NveB5+/bt0xNPPKHrr7/eVHuVK1fW2bNnzQd6ESTdAAC4QN++fe0/JyQkuC8QAABcoZSml0+fPl0DBw5Uv379JEnz5s3TihUrtGDBAo0ZM6bIc6xWq3r37q2JEyfqiy++0PHjx021OXjwYD3//PN67bXXVKnS5afMJN0AALiYt7e3Dh06VOgb+aNHjyo0NFRWq9VNkQEAUEyXkXTn5OQ4FPv6+srX17dQ9by8PG3evFljx461l3l5eSkuLk4ZGRkXbGbSpEkKDQ3VgAED9MUXX5gMUvr222+Vnp6uzz77TFdffbWqVq3q8P7y5ctNXc/LdAQAAMAUwyj6r5Lc3Fz5+Pi4pM19+/ZpwIABio6Olr+/vxo2bKikpCTl5TmuV/3xxx91/fXXy8/PTxEREZo6dapL4gEAeJaC6eVmD0mKiIhQYGCg/UhJSSmyjSNHjshqtRZ6ZnZYWJiysrKKPOfLL7/U66+/rldffbXY91ajRg3dddddio+PV506dRxiDQwMNH09RroBAHCRmTNnSpIsFotee+01VatWzf6e1WrVhg0b1KRJE5e0vXPnTtlsNr3yyitq1KiRtm3bpoEDB+r06dN64YUXJJ0faejSpYvi4uI0b948bd26Vf3791eNGjX08MMPuyQuAICHuIyR7gMHDiggIMBeXNQod3GcPHlSDz74oF599VUFBwebPt9ms2natGn6+eeflZeXpxtvvFHJycnF2rH8r0i6AQBwkZdeeknS+ZHuefPmydvb2/6ej4+PoqKiNG/ePJe03bVrV3Xt2tX+ukGDBsrMzNTcuXPtSffixYuVl5enBQsWyMfHR1dddZW2bNmi6dOnk3QDAFwmICDAIem+kODgYHl7eys7O9uhPDs7W+Hh4YXq//LLL9q3b59uvfVWe5nNZpMkVapUSZmZmWrYsOEF23vuueeUnJysuLg4+fv7a+bMmfr999+1YMECZ2+tSCTdAAC4yN69eyVJnTt31vLlyxUUFOTWeE6cOKGaNWvaX2dkZOiGG25wmOIeHx+v559/XseOHbtgvLm5ucrNzbW//vvaPABABVAKG6n5+PiodevWSk9PV48ePSSdT6LT09M1ZMiQQvWbNGmirVu3OpSNHz9eJ0+e1IwZMxQREXHR9hYtWqQ5c+bokUcekSStWbNG3bp102uvvSYvr+KvzCbpBgDAxdatW+fw2mq1auvWrYqMjCy1RHz37t2aNWuWfZRbkrKyshQdHe1Qr2DdXFZW1gVjS0lJ0cSJE10XLACgzCutR4YlJiaqb9++atOmjdq2bavU1FSdPn3avpt5nz59VLduXaWkpMjPz0/Nmzd3OL9GjRqSVKi8KPv379ctt9xifx0XFyeLxaKDBw+qXr165oP/HzZSAwDAxYYPH67XX39d0vmE+4YbbtC1116riIgIrV+/3tS1xowZI4vFctFj586dDuf89ttv6tq1q+655x4NHDjwsu9n7NixOnHihP04cODAZV8TAFDOGMU8TOrZs6deeOEFTZgwQa1atdKWLVu0cuVK+5fE+/fv16FDhy7/fiTl5+fLz8/Poaxy5co6d+7cZV2XkW4AAFzs7bff1gMPPCBJ+uijj7Rv3z7t3LlTb775pp566il99dVXTl9r5MiRl3zud4MGDew/Hzx4UJ07d1a7du00f/58h3rh4eFFrpMreO9CLvRoFwBAxVFaI92SNGTIkCKnk0u65JfXCxcudLodwzCUkJDg0MedPXtWgwYNcnhsmNlHhpF0AwDgYkePHrUnsZ988onuueceXXnllerfv79mzJhh6lohISEKCQlxqu5vv/2mzp07q3Xr1kpLSyu0Hi02NlZPPfWUzp07p8qVK0uSVq9ercaNG7t9/TkAoIwrhTXdpa1v376Fygq+NL8cJN0wbZ/f/e4OAQDKlbCwMG3fvl21a9fWypUrNXfuXEnSmTNnHHY0L0m//fabOnXqpMjISL3wwgv6/fff7e8VfAFw//33a+LEiRowYIBGjx6tbdu2acaMGfZd1wEAqEjS0tJccl2SbgAAXKxfv3669957Vbt2bVksFsXFxUmSvv76a5c9p3v16tXavXu3du/eXWjzF8M4P9QQGBiozz77TIMHD1br1q0VHBysCRMm8LgwAMCleeBIt6uQdAMA4GLJyclq3ry5Dhw4oHvuuce+Vszb21tjxoxxSZsJCQmXXPstSS1atNAXX3zhkhgAAJ7L8r/D7DkVEUk3AACl4O677y5UVtTaMQAAygVGup3GI8MAAHCRW265RSdOnLC/njJlio4fP25/ffToUTVr1swNkQEAcHkKdi83e1REJN0AALjIqlWrlJuba389efJk/fHHH/bX+fn5yszMdEdoAABcnlJ6TrcnIOkGAMBFCjYsu9BrAADg+VjTDQAAAAAwj++SnULSDQCAi1gsFlkslkJlAACUd8VZo11R13STdAMA4CKGYSghIcH+iLCzZ89q0KBBqlq1qiQ5rPcGAKBcYfdyp5F0AwDgIn9/JNgDDzxQqE6fPn1KKxwAAEoMI93OI+kGAMBF0tLS3B0CAACuwUi300i6AQAAAACmMNLtPJJuAABQfnl5u6XZPU9f45Z284ecdUu7Xp//xy3tAoAnIOkGAAAAAJjD9HKnkXQDAAAAAMwh6XYaSTcAAAAAwBTWdDuPpBsAAAAAYA4j3U4j6QYAAAAAmGIxDFkMc1m02fqewsvdAQAAAAAA4KkY6QYAAAAAmMP0cqeRdAMAAAAATGEjNeeRdAMAAAAAzGGk22kk3QAAAAAAUxjpdh5JNwAAAADAHEa6ncbu5QAAAAAAuAhJNwAAHi43N1etWrWSxWLRli1bHN778ccfdf3118vPz08RERGaOnWqe4IEAJQrBdPLzR4VEUk3AAAebtSoUapTp06h8pycHHXp0kWRkZHavHmzpk2bpuTkZM2fP98NUQIAyhWjmEcFxJpuAAA82KeffqrPPvtM7777rj799FOH9xYvXqy8vDwtWLBAPj4+uuqqq7RlyxZNnz5dDz/8sJsiBgCUFxV15NosRroBAPBQ2dnZGjhwoN58801VqVKl0PsZGRm64YYb5OPjYy+Lj49XZmamjh07dsHr5ubmKicnx+EAAFQwhlG8owIi6QYAwAMZhqGEhAQNGjRIbdq0KbJOVlaWwsLCHMoKXmdlZV3w2ikpKQoMDLQfERERJRc4AKBcYE2380i6AQAoR8aMGSOLxXLRY+fOnZo1a5ZOnjypsWPHlngMY8eO1YkTJ+zHgQMHSrwNAEAZx5pup7GmGwCAcmTkyJFKSEi4aJ0GDRpo7dq1ysjIkK+vr8N7bdq0Ue/evfXGG28oPDxc2dnZDu8XvA4PD7/g9X19fQtdFwAAFI2kGwCAciQkJEQhISGXrDdz5kw9++yz9tcHDx5UfHy8li1bppiYGElSbGysnnrqKZ07d06VK1eWJK1evVqNGzdWUFCQa24AAOARLLbzh9lzKiKSbgAAPFD9+vUdXlerVk2S1LBhQ9WrV0+SdP/992vixIkaMGCARo8erW3btmnGjBl66aWXSj1eAEA5U5zp4kwvBwAAFUlgYKA+++wzDR48WK1bt1ZwcLAmTJjA48IAAJdUnI3RKupGaiTdAABUAFFRUTKKeFRLixYt9MUXX7ghIgBAuVacR4BV0EeGkXQDAAAAAExhpNt5PDIMAAAAAAAXYaQbAACUCK/mV8rLu3QfJfbr7TVLtb0ClU65pVl5ff4f9zQMAH/HRmpOI+kGAAAAAJjC9HLnkXQDAAAAAMxhIzWnkXQDAAAAAExhpNt5JN0AAAAAAHNY0+00di8HAAAAAMBFGOkGAAAAAJjC9HLnkXQDAAAAAMyxGecPs+dUQCTdAAAAAABzWNPtNJJuAAAAAIApFhVjerlLIin72EgNAAAAAGBOwXO6zR7FMHv2bEVFRcnPz08xMTH65ptvLlj31Vdf1fXXX6+goCAFBQUpLi7uovVLA0k3AAAAAKBMWrZsmRITE5WUlKTvv/9eLVu2VHx8vA4fPlxk/fXr1+u+++7TunXrlJGRoYiICHXp0kW//fZbKUf+/0i6AQAAAACmFOxebvYwa/r06Ro4cKD69eunZs2aad68eapSpYoWLFhQZP3FixfrscceU6tWrdSkSRO99tprstlsSk9Pv8w7Lj6SbgAAAACAOUYxD0k5OTkOR25ubpFN5OXlafPmzYqLi7OXeXl5KS4uThkZGU6FeebMGZ07d041a9Yszl2WCJJuAAAAAIApFsMo1iFJERERCgwMtB8pKSlFtnHkyBFZrVaFhYU5lIeFhSkrK8upOEePHq06deo4JO6ljd3LAQAAAADm2P53mD1H0oEDBxQQEGAv9vX1LbGw/mrKlClaunSp1q9fLz8/P5e04QySbgAAAACAKX8duTZzjiQFBAQ4JN0XEhwcLG9vb2VnZzuUZ2dnKzw8/KLnvvDCC5oyZYrWrFmjFi1amIqzpDG9HAAAAABgzmWs6XaWj4+PWrdu7bAJWsGmaLGxsRc8b+rUqXrmmWe0cuVKtWnTxlyjLsBINwAAAACgTEpMTFTfvn3Vpk0btW3bVqmpqTp9+rT69esnSerTp4/q1q1rXxf+/PPPa8KECVqyZImioqLsa7+rVaumatWqueUeSLoBAAAAAOYYxvnD7Dkm9ezZU7///rsmTJigrKwstWrVSitXrrRvrrZ//355ef3/BO65c+cqLy9Pd999t8N1kpKSlJycbLr9ksD0cgAAPNiKFSsUExMjf39/BQUFqUePHg7v79+/X926dVOVKlUUGhqqJ598Uvn5+e4JFgBQbpTWc7olaciQIfr111+Vm5urr7/+WjExMfb31q9fr4ULF9pf79u3T4ZhFDrclXBLjHQDAOCx3n33XQ0cOFCTJ0/WjTfeqPz8fG3bts3+vtVqVbdu3RQeHq6NGzfq0KFD6tOnjypXrqzJkye7MXIAQJlXSiPdnoCkGwAAD5Sfn69hw4Zp2rRpGjBggL28WbNm9p8/++wzbd++XWvWrFFYWJhatWqlZ555RqNHj1ZycrJ8fHzcEToAoByw2M4fZs+piJheDgCAB/r+++/122+/ycvLS9dcc41q166tm2++2WGkOyMjQ1dffbV9XZwkxcfHKycnRz/99JM7wgYAlBcFI91mjwqIpBsAAA+0Z88eSVJycrLGjx+vjz/+WEFBQerUqZP++OMPSVJWVpZDwi3J/rpgt9ei5ObmKicnx+EAAABFY3o5AADlyJgxY/T8889ftM6OHTtks52fw/fUU0/prrvukiSlpaWpXr16evvtt/XII48UO4aUlBRNnDixUPmdb3wu/2ql+6fFxIxbS7W9Ak1TjrulXatbWgWAIhTjudum63sIkm4AAMqRkSNHKiEh4aJ1GjRooEOHDklyXMPt6+urBg0aaP/+/ZKk8PBwffPNNw7nZmdn29+7kLFjxyoxMdH+OicnRxEREabuAwBQvlkMQxaT08XN1vcUJN0AAJQjISEhCgkJuWS91q1by9fXV5mZmerQoYMk6dy5c9q3b58iIyMlSbGxsXruued0+PBhhYaGSpJWr16tgIAAh2T973x9feXr61sCdwMAKLfYvdxpJN0AAHiggIAADRo0SElJSYqIiFBkZKSmTZsmSbrnnnskSV26dFGzZs304IMPaurUqcrKytL48eM1ePBgkmoAwMUZkszuRl4xc26SbgAAPNW0adNUqVIlPfjgg/rzzz8VExOjtWvXKigoSJLk7e2tjz/+WI8++qhiY2NVtWpV9e3bV5MmTXJz5ACAso7p5c4j6QYAwENVrlxZL7zwgl544YUL1omMjNQnn3xSilEBAFCxkHQDAAAAAMwxVIw13S6JpMwj6QYAAAAAmMNGak4j6QYAAAAAmGOTZCnGORUQSTcAAAAAwBQ2UnMeSTcAAAAAwBymlzuNpBsAAAAAYA5Jt9O83B0AAAAAAACeipFuAAAAAIA5jHQ7jaQbAAAAAGAOu5c7jaQbAAAAAGAKu5c7j6QbAAAAAGAO08udRtINAAAAADDHZkgWk0m0rWIm3exeDgAAAACAizDSDQAAAAAwh+nlTiPpBgAAAACYVIykWyTdAAAAAABcGiPdTiPpBgAAAACYYzNkeuS6gm6kRtINAAAAADDHsJ0/zJ5TAbF7OQAAAAAALsJINwAAAADAHNZ0O42kGwAAlIh3r4tUJUvlUm3zynObS7W9Ala3tAoAZQhrup1G0g0AAAAAMIeRbqeRdAMAAAAAzDFUjKTbJZGUeWykBgCAh/r55591++23Kzg4WAEBAerQoYPWrVvnUGf//v3q1q2bqlSpotDQUD355JPKz893U8QAgHKjYKTb7FEBkXQDAOChunfvrvz8fK1du1abN29Wy5Yt1b17d2VlZUmSrFarunXrpry8PG3cuFFvvPGGFi5cqAkTJrg5cgAAPAdJNwAAHujIkSPatWuXxowZoxYtWuiKK67QlClTdObMGW3btk2S9Nlnn2n79u1666231KpVK91888165plnNHv2bOXl5bn5DgAAZZrNVryjAiLpBgDAA9WqVUuNGzfWokWLdPr0aeXn5+uVV15RaGioWrduLUnKyMjQ1VdfrbCwMPt58fHxysnJ0U8//eSu0AEA5QHTy53GRmoAAHggi8WiNWvWqEePHqpevbq8vLwUGhqqlStXKigoSJKUlZXlkHBLsr8umIJelNzcXOXm5tpf5+TkuOAOAABlGruXO42RbgAAypExY8bIYrFc9Ni5c6cMw9DgwYMVGhqqL774Qt9884169OihW2+9VYcOHbqsGFJSUhQYGGg/IiIiSujuAADlhs0o3lEBMdINAEA5MnLkSCUkJFy0ToMGDbR27Vp9/PHHOnbsmAICAiRJc+bM0erVq/XGG29ozJgxCg8P1zfffONwbnZ2tiQpPDz8gtcfO3asEhMT7a9zcnJIvAGggjEMmwzD3Bpts/U9BUk3AADlSEhIiEJCQi5Z78yZM5IkLy/HSW1eXl6y/W8jm9jYWD333HM6fPiwQkNDJUmrV69WQECAmjVrdsFr+/r6ytfXt7i3AADwBEYxRq6ZXg4AADxFbGysgoKC1LdvX/3www/6+eef9eSTT2rv3r3q1q2bJKlLly5q1qyZHnzwQf3www9atWqVxo8fr8GDB5NUAwBQQki6AQDwQMHBwVq5cqVOnTqlG2+8UW3atNGXX36pDz74QC1btpQkeXt76+OPP5a3t7diY2P1wAMPqE+fPpo0aZKbowcAlHnsXu40ppcDAOCh2rRpo1WrVl20TmRkpD755JNSiggA4DFsNslico02a7oBAAAAAHCCYUhiTbczSLoBAAAAAKYYNpsMkyPd7F4OAAAAAIAzGOl2GhupAQAAAADgIox0AwAAAADMsRmShZFuZ5B0AwAAAADMMQxJZncvr5hJN9PLAQAAAACmGDajWEdxzJ49W1FRUfLz81NMTIy++eabi9Z/++231aRJE/n5+enqq692+6MxSboBAAAAAOYYtuIdJi1btkyJiYlKSkrS999/r5YtWyo+Pl6HDx8usv7GjRt13333acCAAfrPf/6jHj16qEePHtq2bdvl3nGxlevp5fv87nd3CAAAAABQ4Rg2Q4bJNd1GMaaXT58+XQMHDlS/fv0kSfPmzdOKFSu0YMECjRkzplD9GTNmqGvXrnryySclSc8884xWr16tl19+WfPmzTPdfklgpBsAAAAAUObk5eVp8+bNiouLs5d5eXkpLi5OGRkZRZ6TkZHhUF+S4uPjL1i/NDg10l3wjUROTk6JNWzLPXPZ18gxu1seAKBMK5G+oQT7qoJrFeeb+Yqk4PeTb5xzQ9ul3yYAlHX5Ov//Rlf2X/lGrunp4gVx/b2v9vX1la+vb6H6R44ckdVqVVhYmEN5WFiYdu7cWWQbWVlZRdbPysoyFWtJcirpPnnypCQpIiLCpcGYFejuAAAAJezey75CYOrlR/F3J0+eVGAgvc6FFPyd8EX+++4NBADgwBX9l4+Pj8LDw/VlVvE2J6tWrVqhvDIpKUnJycklEF3Z5FTSXadOHR04cEDVq1eXxWJxdUylJicnRxERETpw4IACAgLcHY5LcI/ln6ffn8Q9egJPvT/DMHTy5EnVqVPH3aGUae76O8ET/t15wj1I3EdZw32UHe66B1f2X35+ftq7d6/y8vKKdb5hGIX6iqJGuSUpODhY3t7eys7OdijPzs5WeHh4keeEh4ebql8anEq6vby8VK9ePVfH4jYBAQHl9j9kZ3GP5Z+n35/EPXoCT7w/Rrgvzd1/J3jCvztPuAeJ+yhruI+ywx334Mr+y8/PT35+fi67fgEfHx+1bt1a6enp6tGjhyTJZrMpPT1dQ4YMKfKc2NhYpaena/jw4fay1atXKzY21uXxXki53r0cAAAAAOC5EhMT1bdvX7Vp00Zt27ZVamqqTp8+bd/NvE+fPqpbt65SUlIkScOGDVPHjh314osvqlu3blq6dKm+++47zZ8/3233QNINAAAAACiTevbsqd9//10TJkxQVlaWWrVqpZUrV9o3S9u/f7+8vP7/oVzt2rXTkiVLNH78eI0bN05XXHGF3n//fTVv3txdt1Cxk25fX18lJSVdcA2BJ+Aeyz9Pvz+Je/QEnn5/KJs84d+dJ9yDxH2UNdxH2eEJ91AWDBky5ILTydevX1+o7J577tE999zj4qicZzF4DgoAAAAAAC7hdekqAAAAAACgOEi6AQAAAABwEZJuAAAAAABcpEIm3evXr5fFYiny+PbbbyVJ+/btK/L9TZs2uTl650VFRRWKf8qUKQ51fvzxR11//fXy8/NTRESEpk6d6qZozdu3b58GDBig6Oho+fv7q2HDhkpKSlJeXp5DnfL+Oc6ePVtRUVHy8/NTTEyMvvnmG3eHVCwpKSn6xz/+oerVqys0NFQ9evRQZmamQ51OnToV+qwGDRrkpojNS05OLhR/kyZN7O+fPXtWgwcPVq1atVStWjXdddddys7OdmPE5hX1/xWLxaLBgwdLKv+fIcoHT+nHPaGf9rS+uDz1uZ7Sr3pK30n/iIupkLuXt2vXTocOHXIoe/rpp5Wenq42bdo4lK9Zs0ZXXXWV/XWtWrVKJcaSMmnSJA0cOND+unr16vafc3Jy1KVLF8XFxWnevHnaunWr+vfvrxo1aujhhx92R7im7Ny5UzabTa+88ooaNWqkbdu2aeDAgTp9+rReeOEFh7rl9XNctmyZEhMTNW/ePMXExCg1NVXx8fHKzMxUaGiou8Mz5fPPP9fgwYP1j3/8Q/n5+Ro3bpy6dOmi7du3q2rVqvZ6AwcO1KRJk+yvq1Sp4o5wi+2qq67SmjVr7K8rVfr//82OGDFCK1as0Ntvv63AwEANGTJEd955p7766it3hFos3377raxWq/31tm3bdNNNNznsEFreP0OUfZ7Uj5f3ftqT+uLy1ud6Ur/qCX0n/SMuyoCRl5dnhISEGJMmTbKX7d2715Bk/Oc//3FfYJcpMjLSeOmlly74/pw5c4ygoCAjNzfXXjZ69GijcePGpRCda0ydOtWIjo62vy7vn2Pbtm2NwYMH219brVajTp06RkpKihujKhmHDx82JBmff/65vaxjx47GsGHD3BfUZUpKSjJatmxZ5HvHjx83KleubLz99tv2sh07dhiSjIyMjFKKsOQNGzbMaNiwoWGz2QzDKP+fIcqn8tqPe2o/XV774vLe55bXftVT+076R/xVhZxe/ncffvihjh49qn79+hV677bbblNoaKg6dOigDz/80A3RXZ4pU6aoVq1auuaaazRt2jTl5+fb38vIyNANN9wgHx8fe1nBN7rHjh1zR7iX7cSJE6pZs2ah8vL4Oebl5Wnz5s2Ki4uzl3l5eSkuLk4ZGRlujKxknDhxQpIKfV6LFy9WcHCwmjdvrrFjx+rMmTPuCK/Ydu3apTp16qhBgwbq3bu39u/fL0navHmzzp075/B5NmnSRPXr1y+3n2deXp7eeust9e/fXxaLxV5e3j9DlD/luR/3xH66PPbFntDnlud+1dP6TvpH/F2FnF7+d6+//rri4+NVr149e1m1atX04osvqn379vLy8tK7776rHj166P3339dtt93mxmid9/jjj+vaa69VzZo1tXHjRo0dO1aHDh3S9OnTJUlZWVmKjo52OCcsLMz+XlBQUKnHfDl2796tWbNmOUxnK8+f45EjR2S1Wu2fSYGwsDDt3LnTTVGVDJvNpuHDh6t9+/Zq3ry5vfz+++9XZGSk6tSpox9//FGjR49WZmamli9f7sZonRcTE6OFCxeqcePGOnTokCZOnKjrr79e27ZtU1ZWlnx8fFSjRg2Hc8LCwpSVleWegC/T+++/r+PHjyshIcFeVt4/Q5RP5bUf98R+urz2xeW9zy3P/aon9p30jyjE3UPtJWn06NGGpIseO3bscDjnwIEDhpeXl/HOO+9c8voPPvig0aFDB1eF75Ti3GOB119/3ahUqZJx9uxZwzAM46abbjIefvhhhzo//fSTIcnYvn27y+/lQopzj//973+Nhg0bGgMGDLjk9cvC5+iM3377zZBkbNy40aH8ySefNNq2beumqErGoEGDjMjISOPAgQMXrZeenm5IMnbv3l1KkZWsY8eOGQEBAcZrr71mLF682PDx8SlU5x//+IcxatQoN0R3+bp06WJ07979onXK+2eI0uUJ/bin9NMVrS8u732uJ/WrntB30j/i7zxqpHvkyJEO3ygVpUGDBg6v09LSVKtWLae+aY2JidHq1asvJ8TLVpx7LBATE6P8/Hzt27dPjRs3Vnh4eKHdHwteh4eHl0i8xWH2Hg8ePKjOnTurXbt2mj9//iWvXxY+R2cEBwfL29u7yM/InZ/P5RoyZIg+/vhjbdiwwWFUqigxMTGSzo+cNGzYsDTCK1E1atTQlVdeqd27d+umm25SXl6ejh8/7vCNfXn9PH/99VetWbPmkt/Ql/fPEKXLE/pxT+mnK1pfXJ77XE/rV8t730n/iKJ4VNIdEhKikJAQp+sbhqG0tDT16dNHlStXvmT9LVu2qHbt2pcT4mUze49/tWXLFnl5edl34IyNjdVTTz2lc+fO2e9/9erVaty4sVunrJm5x99++02dO3dW69atlZaWJi+vS29TUBY+R2f4+PiodevWSk9PV48ePSSdnz6Wnp6uIUOGuDe4YjAMQ0OHDtV7772n9evXF5oyWZQtW7ZIUrn4vIpy6tQp/fLLL3rwwQfVunVrVa5cWenp6brrrrskSZmZmdq/f79iY2PdHKl5aWlpCg0NVbdu3S5ar7x/hihdntCPe0o/XdH64vLY53pqv1re+076RxTJvQPt7rVmzZoLTvNauHChsWTJEmPHjh3Gjh07jOeee87w8vIyFixY4IZIzdu4caPx0ksvGVu2bDF++eUX46233jJCQkKMPn362OscP37cCAsLMx588EFj27ZtxtKlS40qVaoYr7zyihsjd95///tfo1GjRsY///lP47///a9x6NAh+1GgvH+OS5cuNXx9fY2FCxca27dvNx5++GGjRo0aRlZWlrtDM+3RRx81AgMDjfXr1zt8VmfOnDEMwzB2795tTJo0yfjuu++MvXv3Gh988IHRoEED44YbbnBz5M4bOXKksX79emPv3r3GV199ZcTFxRnBwcHG4cOHDcM4P/2vfv36xtq1a43vvvvOiI2NNWJjY90ctXlWq9WoX7++MXr0aIdyT/gMUb6U537cU/ppT+qLy1uf6yn9qif1nfSPuJAKnXTfd999Rrt27Yp8b+HChUbTpk2NKlWqGAEBAUbbtm0dHldQ1m3evNmIiYkxAgMDDT8/P6Np06bG5MmT7evECvzwww9Ghw4dDF9fX6Nu3brGlClT3BSxeWlpaRdcZ1agvH+OhmEYs2bNMurXr2/4+PgYbdu2NTZt2uTukIrlQp9VWlqaYRiGsX//fuOGG24watasafj6+hqNGjUynnzySePEiRPuDdyEnj17GrVr1zZ8fHyMunXrGj179nRYq/Xnn38ajz32mBEUFGRUqVLFuOOOOxz+MC0vVq1aZUgyMjMzHco94TNE+VKe+3FP6ac9rS8uT32up/SrntR30j/iQiyGYRilM6YOAAAAAEDFwnO6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbsCNEhIS1KNHD/vPFotFFotFPj4+atSokSZNmqT8/HxJ0vr16+3ve3l5KTAwUNdcc41GjRqlQ4cOufEuAABwnYK+70JHcnJyqcXSqVMnDR8+3OF1QRx+fn5q1qyZ5syZY39/4cKF9ve9vb0VFBSkmJgYTZo0SSdOnCi1uAG4F0k3UIZ07dpVhw4d0q5duzRy5EglJydr2rRpDnUyMzN18OBBffvttxo9erTWrFmj5s2ba+vWrW6KGgAA1zl06JD9SE1NVUBAgEPZE088Ya9rGIb9y+rSMnDgQB06dEjbt2/Xvffeq8GDB+tf//qX/f2CeP/73/9q48aNevjhh7Vo0SK1atVKBw8eLNVYAbgHSTdQhvj6+io8PFyRkZF69NFHFRcXpw8//NChTmhoqMLDw3XllVeqV69e+uqrrxQSEqJHH33UTVEDAOA64eHh9iMwMFAWi8X+eufOnapevbo+/fRTtW7dWr6+vvryyy8dZpIVGD58uDp16mR/bbPZlJKSoujoaPn7+6tly5Z65513TMdXpUoVhYeHq0GDBkpOTtYVV1zh0HcXxFu7dm01bdpUAwYM0MaNG3Xq1CmNGjWquL8WAOUISTdQhvn7+ysvL++SdQYNGqSvvvpKhw8fLqXIAAAoO8aMGaMpU6Zox44datGihVPnpKSkaNGiRZo3b55++uknjRgxQg888IA+//zzy4rFmb47NDRUvXv31ocffiir1XpZ7QEo+yq5OwAAhRmGofT0dK1atUpDhw69ZP0mTZpIkvbt26fQ0FBXhwcAQJkyadIk3XTTTU7Xz83N1eTJk7VmzRrFxsZKkho0aKAvv/xSr7zyijp27Gg6BqvVqn/961/68ccf9fDDD1+yfpMmTXTy5EkdPXqUvhvwcCTdQBny8ccfq1q1ajp37pxsNpvuv/9+pzaIMQxD0vkpbAAAVDRt2rQxVX/37t06c+ZMoUQ9Ly9P11xzjalrzZkzR6+99pry8vLk7e2tESNGOLXki74bqDhIuoEypHPnzpo7d658fHxUp04dVark3H+iO3bskCRFRUW5MDoAAMqmqlWrOrz28vKyJ7UFzp07Z//51KlTkqQVK1aobt26DvV8fX1Ntd27d2899dRT8vf3V+3ateXl5dzqzR07diggIEC1atUy1R6A8oekGyhDqlatqkaNGpk6588//9T8+fN1ww03KCQkxEWRAQBQfoSEhGjbtm0OZVu2bFHlypUlSc2aNZOvr6/2799frKnkfxUYGGi67z58+LCWLFmiHj16OJ2kAyi/SLqBcubw4cM6e/asTp48qc2bN2vq1Kk6cuSIli9f7u7QAAAoE2688UZNmzZNixYtUmxsrN566y1t27bNPnW8evXqeuKJJzRixAjZbDZ16NBBJ06c0FdffaWAgAD17du3xGIxDENZWVkyDEPHjx9XRkaGJk+erMDAQE2ZMqXE2gFQdpF0A+VM48aNZbFYVK1aNTVo0EBdunRRYmKiwsPD3R0aAABlQnx8vJ5++mmNGjVKZ8+eVf/+/dWnTx9t3brVXueZZ55RSEiIUlJStGfPHtWoUUPXXnutxo0bV6Kx5OTkqHbt2rJYLAoICFDjxo3Vt29fDRs2TAEBASXaFoCyyWL8fcELAAAAAAAoESwiAQAAAADARUi6AQAAAABwEZJuAAAAAABchKQbAAAAAAAXIekGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAF/k/xeOyzrUGhA0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "id": "26e19d66", + "metadata": { + "id": "26e19d66" + }, + "source": [ + "## Project\n", + "Change systematically some of the parameters and record the performance. You can do this for example by running the following code in a loop:" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Example project: Envelope power\n" + ], + "metadata": { + "id": "Ne6AXxucb3oQ" + }, + "id": "Ne6AXxucb3oQ" + }, + { + "cell_type": "markdown", + "source": [ + "This code performs an analysis of the performance of a spiking neural network (SNN) classifier across a range of envelope power values.\n", + "\n", + "Please note that the current code only plots the result of a single training session.\n", + "\n", + "\n", + "##### Suggestion for improvement:\n", + " \n", + "* Run the example code from the EnvelopePower project multiple times.\n", + "\n", + "* You will notice that the results vary significantly between consecutive training sessions.\n", + "\n", + "* To draw robust conclusions, calculate the average across all training sessions.\n", + "\n", + "* Then, plot a graph with the average and the corresponding standard deviation.\n", + "\n", + "* Apply this same approach to your other projects to obtain reliable results." + ], + "metadata": { + "id": "Dfl7Tyy-mJY0" + }, + "id": "Dfl7Tyy-mJY0" + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm # Import the tqdm library for displaying a progress bar\n", + "\n", + "# Set training parameters\n", + "nb_epochs = 10 # Number of epochs (quick training for demonstration)\n", + "lr = 0.01 # Learning rate\n", + "\n", + "# Flag for whether to plot analysis results\n", + "plot_analysis = 0\n", + "\n", + "# Define a range of envelope powers to test\n", + "Envelop_powers = [0, 1, 2, 3, 4, 5, 10, 30, 40, 50, 100]\n", + "\n", + "# Initialize lists to store results for training and testing accuracy and absolute error.\n", + "# Mean and std are calulated over the different batches\n", + "Train_accuracy_mean = [] # Mean training accuracy\n", + "Train_accuracy_std = [] # Standard deviation of training accuracy\n", + "Train_abs_error_mean = [] # Mean training absolute error\n", + "Train_abs_error_std = [] # Standard deviation of training absolute error\n", + "\n", + "Test_accuracy_mean = [] # Mean testing accuracy\n", + "Test_accuracy_std = [] # Standard deviation of testing accuracy\n", + "Test_abs_error_mean = [] # Mean testing absolute error\n", + "Test_abs_error_std = [] # Standard deviation of testing absolute error\n", + "\n", + "results_Train = [] # Stores results from training data\n", + "results_Test = [] # Stores results from test data\n", + "\n", + "# Loop through each envelope power, showing progress with tqdm\n", + "for i, envelope_power in enumerate(tqdm(Envelop_powers, desc=\"Processing Envelope Powers\")):\n", + "\n", + " # Generate training data: interaural phase differences (IPDs) and spike data\n", + " ipds, spikes, _ = random_ipd_input_signal(num_samples)\n", + " plt.imshow(spikes[0, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n", + "\n", + " # Initialize weight matrices for the neural network classifier\n", + " W1, W2 = init_weight_matrices()\n", + "\n", + " # Define the optimizer and loss functions\n", + " optimizer = torch.optim.Adam([W1, W2], lr=lr)\n", + " log_softmax_fn = nn.LogSoftmax(dim=1)\n", + " loss_fn = nn.NLLLoss()\n", + "\n", + " # Print the expected initial loss\n", + " print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + " loss_hist = [] # Track loss over epochs\n", + " for e in range(nb_epochs): # Loop through each epoch\n", + " local_loss = [] # Track batch losses for the current epoch\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes): # Generate data batches\n", + " # Run the classifier on the batch\n", + " output = snn(spike_batch, W1, W2)\n", + "\n", + " # Compute cross-entropy loss\n", + " m = torch.sum(output, 1) * 0.01 # Aggregate output over the time dimension\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # Update weights\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Append the mean loss for the epoch\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\" % (e + 1, np.mean(local_loss)))\n", + "\n", + " # Optionally plot the loss curve over epochs\n", + " if plot_analysis:\n", + " # Plot the loss function over time\n", + " plt.plot(loss_hist)\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Loss')\n", + " plt.tight_layout()\n", + "\n", + "\n", + " # Analyse training data\n", + " print(f\"Chance accuracy level: {100*1/num_classes:.1f}%\")\n", + "\n", + " run_func = lambda x: snn(x, W1, W2) # Define the classifier function\n", + " results_Train = analyse(ipds, spikes, 'Train', run=run_func, plot_analysis=0)\n", + "\n", + " # Generate and analyse test data\n", + " ipds_test, spikes_test, _ = random_ipd_input_signal(batch_size*n_testing_batches)\n", + " results_Test = analyse(ipds_test, spikes_test, 'Test', run=run_func, plot_analysis=0)\n", + "\n", + " # Append training results\n", + " Train_accuracy_mean.append(results_Train[0])\n", + " Train_accuracy_std.append(results_Train[1])\n", + " Train_abs_error_mean.append(results_Train[2])\n", + " Train_abs_error_std.append(results_Train[3])\n", + "\n", + " # Append testing results\n", + " Test_accuracy_mean.append(results_Test[0])\n", + " Test_accuracy_std.append(results_Test[1])\n", + " Test_abs_error_mean.append(results_Test[2])\n", + " Test_abs_error_std.append(results_Test[3])\n", + "\n", + "# Plot training and testing accuracy with error bars\n", + "plt.figure(figsize=(8, 6))\n", + "plt.errorbar(Envelop_powers,Train_accuracy_mean, yerr=Train_accuracy_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n", + "plt.errorbar(Envelop_powers,Test_accuracy_mean, yerr=Test_accuracy_std, label='Test', fmt='o', ecolor='red', capsize=5)\n", + "plt.ylim([0,100])\n", + "plt.xlim([-1,50])\n", + "plt.xlabel('Envelop Power')\n", + "plt.ylabel('Accurancy (mean+/-std (%))')\n", + "plt.legend()\n", + "\n", + "# Plot training and testing absolute error with error bars\n", + "plt.figure(figsize=(8, 6))\n", + "plt.errorbar(Envelop_powers,Train_abs_error_mean, yerr=Train_abs_error_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n", + "plt.errorbar(Envelop_powers,Test_abs_error_mean, yerr=Test_abs_error_std, label='Test', fmt='o', ecolor='red', capsize=5)\n", + "plt.ylim([0,100])\n", + "plt.xlim([-1,50])\n", + "plt.xlabel('Envelop Power')\n", + "plt.ylabel('Abs_error (mean+/-std (deg))')\n", + "plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "yf14Jn81LBu3", + "outputId": "eabc8114-8fc2-47a0-d332-0293f39dfff0" + }, + "id": "yf14Jn81LBu3", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\rProcessing Envelope Powers: 0%| | 0/11 [00:00" + ] + }, + "metadata": {}, + "execution_count": 27 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnSklEQVR4nO3df3BU1f3/8dcGzAKabEwwCVs3EKkVFaEKEqN+VEoUgoNFU1sUbawUf4EKqRXT1h9obai01qpUx45CO4KoM4KVjnQwCJQxID8aKVaRKApKEqoMWRJ0+ZH7/aPf7uezZtG7ubvZc+8+HzN3ht17s5xwOXff53XPvddnWZYlAAAAg2SluwEAAABfRoECAACMQ4ECAACMQ4ECAACMQ4ECAACMQ4ECAACMQ4ECAACMQ4ECAACMQ4ECAACMQ4ECAACMk9YCZd68eRo0aJD69OmjsrIyvfnmm+lsDgAAMETaCpTnn39eNTU1uvfee7V582YNHz5cY8eO1Z49e9LVJAAAYAhfuh4WWFZWprPPPluPP/64JKmzs1OhUEi33nqr7rrrrq/82c7OTu3evVs5OTny+Xw90VwAAOCQZVnav3+/gsGgsrK+OiPp3UNtinHw4EFt2rRJtbW10feysrJUUVGhhoaGLttHIhFFIpHo608++USnnXZaj7QVAAAk165du3TiiSd+5TZpKVA+/fRTHTlyREVFRTHvFxUV6d133+2yfV1dnWbPnt3l/V27dik3Nzdl7YQ3BAKBbv9sW1tbElsCIF3iHQfo3z0vHA4rFAopJyfna7dNS4GSqNraWtXU1ERf//cXzM3NpUBBSvH/C/Au+nf62JmekZYCpX///urVq5daW1tj3m9tbVVxcXGX7f1+v/x+f081Dy4W7z+93WlWzGcCEI+T4wq6Ly1X8WRnZ2vEiBGqr6+PvtfZ2an6+nqVl5eno0kAAMAgaTvFU1NTo+rqao0cOVKjRo3SI488oo6ODv3oRz9KV5PgAU7SEkZEgPv0RF/m2JAeaStQfvCDH+jf//637rnnHrW0tOjb3/62li9f3mXiLJAITtMAYADiDWm7D4oT4XBYgUBAbW1tTHJCDCcFigu7ApDx7PZ5+rcZEvn+dsVVPIAT8Q5MJC2AN1B4eBcPCwQAAMYhQYGnOBlNcd4acB/6rXeRoAAAAOOQoMDzGGEB7uNk8it93htIUAAAgHFIUOApdkddjLAAs9lNRrgiz7tIUAAAgHFIUOApnI8GAG+gQIHnUbQAmYW+7A2c4gEAAMYhQYGn8FwOwLt4bEVmIUEBAADGIUGBp9hNRpiDApiNZAQkKAAAwDgkKPAU5qAA3uAkDYU3kKAAAADjkKDAU0hGgMzCfY68iwQFAAAYhwQFnsIcFMC77CYj9G9vIEEBAADGIUEBAKQVySfioUCBa3FQA7zB7kRXJr9mFk7xAAAA45CgwLV4cBgAUhXvIkEBAADGIUGBp3DTJsC7SE0zCwkKAAAwDgkKXMvJVTykKoDZeqLfchwwGwkKAAAwDgkKXMvJ+WhGSQA4DpiNBAUAABiHBAWuZTctIVUBzMZcEMRDggIAAIxDggLX4uocwLvoy0h6glJXV6ezzz5bOTk5Kiws1MSJE7Vt27aYbS666CL5fL6Y5aabbkp2U5CBLMvqsgAwW7x+G2/58vcGN2nztqQXKKtXr9a0adO0bt06rVixQocOHdIll1yijo6OmO2mTp2q5ubm6PLQQw8luykAAMClkn6KZ/ny5TGvFyxYoMLCQm3atEkXXHBB9P1+/fqpuLg42X89MhyxMOA+9FvEk/JJsm1tbZKk/Pz8mPcXLlyo/v37a+jQoaqtrdWBAweO+hmRSEThcDhmAQAA3pXSSbKdnZ2aMWOGzjvvPA0dOjT6/tVXX62BAwcqGAxqy5YtmjVrlrZt26aXXnop7ufU1dVp9uzZqWwqDMcIC/AuHgKIeHxWCo/yN998s1599VWtXbtWJ5544lG3W7lypcaMGaOmpiYNHjy4y/pIJKJIJBJ9HQ6HFQqF1NbWptzc3JS0HWaxW6BQyADewP2LvCkcDisQCNj6/k5ZgjJ9+nQtW7ZMa9as+criRJLKysok6agFit/vl9/vT0k74V4UI4A3OBmAwLuSXqBYlqVbb71VS5Ys0apVq1RaWvq1P9PY2ChJGjBgQLKbAwAAXCjpBcq0adO0aNEivfzyy8rJyVFLS4skKRAIqG/fvnr//fe1aNEijR8/XgUFBdqyZYtmzpypCy64QMOGDUt2c+ARjKYA77KbfJKQZpakz0E52pfG/Pnzdd1112nXrl265pprtHXrVnV0dCgUCunyyy/XL37xC9vzSRI5hwXv4hQPALhLWuegfN0XRCgU0urVq5P918JDSEYAMDEePIsHxrF7cKGQAUAx4l08zRgAABiHBAWuQNwLeBdpKOIhQQEAAMYhQYFx7I6mSEsA9+GmbLCLBAUAABiHBAXGYW4J4F30b9hFggIAAIxDggLXYtQFuA/9FnaRoAAAAOOQoAAAHLObjCT7TtGkL95FggIAAIxDggLjcP8DwH2cJCNOkhZ4FwUKjMOBCfAGBhtwglM8AADAOCQoMA6T4wDv4kZtsIsEBQAAGIcEBT3GySiJ0RTgXfRvxEOCAgAAjEOCgh7DKAkAYBcJCgAAMA4JClyLmf+A2exesWP3Z5FZSFAAAIBxSFDgCqQlgPtwJ1k4QYICAACMQ4KCtCIZAZDsBw3CGyhQkFYcXADvcjJJ1u7nwbs4xQMAAIxDgoIe4+TyQqJdwH3s9lv6N+IhQQEAAMYhQYFxGE0BmYX+jXhIUAAAgHFIUJBWyZ7lDwDwBhIUAABgHBIU9BjOMwMA7Ep6gnLffffJ5/PFLEOGDImu/+KLLzRt2jQVFBTouOOOU1VVlVpbW5PdDAAA4GIpOcVz+umnq7m5ObqsXbs2um7mzJl65ZVX9OKLL2r16tXavXu3rrjiilQ0AwDQQ748MGUuGZxKySme3r17q7i4uMv7bW1tevrpp7Vo0SJ95zvfkSTNnz9fp556qtatW6dzzjknFc2By3AqCPAG+jKcSEmCsn37dgWDQZ100kmaPHmydu7cKUnatGmTDh06pIqKiui2Q4YMUUlJiRoaGo76eZFIROFwOGYBAADelfQCpaysTAsWLNDy5cv1xBNPaMeOHfqf//kf7d+/Xy0tLcrOzlZeXl7MzxQVFamlpeWon1lXV6dAIBBdQqFQspuNNIkXCxMVA2aL10cty+qyAE4k/RRPZWVl9M/Dhg1TWVmZBg4cqBdeeEF9+/bt1mfW1taqpqYm+jocDlOkAADgYSm/zDgvL0/f+ta31NTUpIsvvlgHDx7Uvn37YlKU1tbWuHNW/svv98vv96e6qUgxJw8LBGAOHviHnpDyG7W1t7fr/fff14ABAzRixAgdc8wxqq+vj67ftm2bdu7cqfLy8lQ3BQAAuETSE5Q77rhDEyZM0MCBA7V7927de++96tWrl6666ioFAgFNmTJFNTU1ys/PV25urm699VaVl5dzBU8G4Lb2gHc56d8kLYgn6QXKxx9/rKuuukqfffaZTjjhBJ1//vlat26dTjjhBEnS7373O2VlZamqqkqRSERjx47VH/7wh2Q3AwAAuJjPcmHpGg6HFQgE1NbWptzc3HQ3BzYxmgK8izkosCOR728eFggAAIzDwwIBAI5xZQ+SjQQFAAAYhwQFAHBUTq60Iy2BExQoSAkmxAKwe4qHU0GIh1M8AADAOCQoSAluygZ4Q0/0ZdISxEOCAgAAjEOCgpRwcu7ZLkZdQHowjwQ9gQQFAAAYhwQFKWF35MQICwAQDwkKAAAwDgkKUoL7HwAAnCBBAQAAxiFBQUqQlgDeRUKKnkCCAgAAjEOCAse4QyyQWbhKDz2BAgUpwYEJAOAEp3gAAIBxSFDgmN20xO6pINIXAAAJCgAAMA4JChLChFgAQE8gQQEAAMYhQUFCnMwPIX0BvIubsiHZSFAAAIBxSFCQEoymAPdx0m/p30g2EhQAAGAcEhQ4RloCeIOTexrR55FsFChIKw50gDmYyA6TcIoHAAAYhwQFACCJ9BJmIUEBAADGIUGBY05GXYzYAHM4mYNCX0aykaAAAADjkKDAMbujLkZYgNmcXGYMJBsJCgAAME7SC5RBgwbJ5/N1WaZNmyZJuuiii7qsu+mmm5LdDABAguIdu+MtlmV1WYBkS/opng0bNujIkSPR11u3btXFF1+sK6+8Mvre1KlTdf/990df9+vXL9nNAAAALpb0AuWEE06IeT1nzhwNHjxYF154YfS9fv36qbi42PZnRiIRRSKR6OtwOOy8oUgaRk+A+9i9i3O87bgDNHpCSuegHDx4UM8++6yuv/76mP/QCxcuVP/+/TV06FDV1tbqwIEDX/k5dXV1CgQC0SUUCqWy2QAAIM18VgrL3hdeeEFXX321du7cqWAwKEl66qmnNHDgQAWDQW3ZskWzZs3SqFGj9NJLLx31c+IlKKFQSG1tbcrNzU1V8wEgo3BFHlItHA4rEAjY+v5OaYEyduxYZWdn65VXXjnqNitXrtSYMWPU1NSkwYMH2/rcRH5BJJeTWJiDGuA+FC1IpkS+v1N2iuejjz7Sa6+9ph//+MdfuV1ZWZkkqampKVVNAQAALpOyG7XNnz9fhYWFuvTSS79yu8bGRknSgAEDUtUUJJHdURKjKQCAEykpUDo7OzV//nxVV1erd+///Svef/99LVq0SOPHj1dBQYG2bNmimTNn6oILLtCwYcNS0RQAAOBCKSlQXnvtNe3cuVPXX399zPvZ2dl67bXX9Mgjj6ijo0OhUEhVVVX6xS9+kYpmwCEeHAZkFuaOwSQpnSSbKkyS7RkUKEBmoUBBqiXy/c3DAnFUTq7O4UAHeANX8SBdeFggAAAwDgkKjsruyIlHrwPeQAoCk5CgAAAA45CgICUYiQHuw3wTmIQEBQAAGIcEBUfFKAnwLtISmI4CBUfFAQzILMm+ZQC3G4ATnOIBAADGIUGBJGeXCjNKArzLSV/mOAAnSFAAAIBxSFAgiXPKQKaxO9/E7s8CyUaCAgAAjEOCAkkkI4CXOenfHAeQLiQoAADAOCQokMQoCfAyJ/NNSFeRLiQoAADAOCQokMTsfcAr7CYe9GWYjgIFkuxHwMS9gNm4fBhewSkeAABgHBIUSGKEBXiZk1QFSBcSFAAAYBwSFCSEOSiA+5CWwI1IUAAAgHFIUCDJ/jlq0hIgPZLdH+nLMB0JCgAAMA4JSgbifDTgPnYTD7tJC1fuwXQkKAAAwDgkKBnIyUgMgNlIS+AVJCgAAMA4JCg4KkZTgNmcJCMkpDAdBUoGcnJgomgBzOHkIZ+A6TjFAwAAjEOC4nHJjoC5eRvgPvRvuBEJCgAAME7CBcqaNWs0YcIEBYNB+Xw+LV26NGa9ZVm65557NGDAAPXt21cVFRXavn17zDZ79+7V5MmTlZubq7y8PE2ZMkXt7e2OfhHYZ1lWl8Xn83VZ4m0XbwFgNvo33CjhAqWjo0PDhw/XvHnz4q5/6KGH9Oijj+rJJ5/U+vXrdeyxx2rs2LH64osvottMnjxZb7/9tlasWKFly5ZpzZo1uuGGG7r/WwAAAE/xWQ5KZJ/PpyVLlmjixImS/jMyDwaD+slPfqI77rhDktTW1qaioiItWLBAkyZN0jvvvKPTTjtNGzZs0MiRIyVJy5cv1/jx4/Xxxx8rGAx2+XsikYgikUj0dTgcVigUUltbm3Jzc7vbfABANzBXBd0VDocVCARsfX8ndQ7Kjh071NLSooqKiuh7gUBAZWVlamhokCQ1NDQoLy8vWpxIUkVFhbKysrR+/fq4n1tXV6dAIBBdQqFQMpsNAAAMk9QCpaWlRZJUVFQU835RUVF0XUtLiwoLC2PW9+7dW/n5+dFtvqy2tlZtbW3RZdeuXclsNlIg3jlvJ9sBADKLKy4z9vv98vv96W4GAADoIUlNUIqLiyVJra2tMe+3trZG1xUXF2vPnj0x6w8fPqy9e/dGt4H7OblSCIA3kJDCiaQWKKWlpSouLlZ9fX30vXA4rPXr16u8vFySVF5ern379mnTpk3RbVauXKnOzk6VlZUlszkAAMClEj7F097erqampujrHTt2qLGxUfn5+SopKdGMGTP0y1/+UieffLJKS0t19913KxgMRq/0OfXUUzVu3DhNnTpVTz75pA4dOqTp06dr0qRJca/ggXfYvZslKQpgNrt91O52HAcQT8IFysaNGzV69Ojo65qaGklSdXW1FixYoDvvvFMdHR264YYbtG/fPp1//vlavny5+vTpE/2ZhQsXavr06RozZoyysrJUVVWlRx99NAm/DkzGQQjwLif9m+MA4nF0H5R0SeQ6apiDAgXwLvo37Ejk+9sVV/HAHE4ePsgpHsAbmOyKnsDDAgEAgHFIUJAQuymIk88DYA4nqSkJKZwgQQEAAMYhQYFjjIiAzEJagp5AggIAAIxDgoKEMN8EyCykJUgXEhQAAGAcEhQkJNlX8QAAEA8FChyjaAHAaR8kG6d4AACAcUhQ4BhpCeANTIKHSUhQAACAcUhQkBC755njbcc5asBsdvsjqSl6AgkKAAAwDgkKHCMZAbyL/o10IUEBAADGIUGBJPujJOabAN5Fv4VJSFAAAIBxSFAgibvBAnB2HCBpQbKRoAAAAOOQoOConIyISF8A7yItQU+gQEFCiHuBzEJfRrpwigcAABiHBAWOMcICvItLj5EuJCgAAMA4JChICCMnwLtIS2ASEhQAAGAcEhQ4xqgLMBt9FG5EggIAAIxDgoKjcnLPE0ZsgDns9j36KExCggIAAIxDggJJyU88GIkBZuOu0DAdCQoAADAOCQocY74J4D70UZgu4QRlzZo1mjBhgoLBoHw+n5YuXRpdd+jQIc2aNUtnnHGGjj32WAWDQf3whz/U7t27Yz5j0KBB8vl8McucOXMc/zLoPsuyuizxfHm/+Xw+2z8LwGzx+ne8BegJCRcoHR0dGj58uObNm9dl3YEDB7R582bdfffd2rx5s1566SVt27ZNl112WZdt77//fjU3N0eXW2+9tXu/AQAA8JyET/FUVlaqsrIy7rpAIKAVK1bEvPf4449r1KhR2rlzp0pKSqLv5+TkqLi4ONG/HgDQg0hEkS4pnyTb1tYmn8+nvLy8mPfnzJmjgoICnXnmmZo7d64OHz581M+IRCIKh8MxCwAA8K6UTpL94osvNGvWLF111VXKzc2Nvn/bbbfprLPOUn5+vt544w3V1taqublZDz/8cNzPqaur0+zZs1PZVMTB5FfAu5hLAtP5LAffOD6fT0uWLNHEiRO7rDt06JCqqqr08ccfa9WqVTEFypc988wzuvHGG9Xe3i6/399lfSQSUSQSib4Oh8MKhUJqa2v7ys+FMxQogHdxHxSkQzgcViAQsPX9nZIE5dChQ/r+97+vjz76SCtXrvzaRpSVlenw4cP68MMPdcopp3RZ7/f74xYuSC1uYQ+4j5M+Sp+HSZJeoPy3ONm+fbtef/11FRQUfO3PNDY2KisrS4WFhcluDgAAcKGEC5T29nY1NTVFX+/YsUONjY3Kz8/XgAED9L3vfU+bN2/WsmXLdOTIEbW0tEiS8vPzlZ2drYaGBq1fv16jR49WTk6OGhoaNHPmTF1zzTU6/vjjk/ebwTFGToD72E1BANMlPAdl1apVGj16dJf3q6urdd9996m0tDTuz73++uu66KKLtHnzZt1yyy169913FYlEVFpaqmuvvVY1NTW2T+Mkcg4L3UeBAngDTyaHKRL5/nY0STZdKFB6hpMDEwc1wBz0R5gi7ZNk4T52D2B2t+PgB7gPhQxMwtOMAQCAcUhQMhCjJCCzOJk4y/EC6UKCAgAAjEOCkoGcjKYYOQHeRf+GSUhQAACAcUhQAACSmG8Cs5CgAAAA45CgQBK3xwa8jDlmcCMSFAAAYBwSFBwVoynAu+jfMB0JCgAAMA4JCgBkIOalwHQUKBmIAxOAeOjzMAmneAAAgHFIUDIQoyQAgOlIUAAAgHFIUDIQc1AAb6Avw8tIUAAAgHFIUDyOERbgXTyiAl5GggIAAIxDguJxdkdYPGYdMFuy+yh9HqYjQQEAAMYhQfE45qAA3pDsPkqfh+lIUAAAgHFIUDyOWf6AN9idM2K3z5OgwHQUKADgAk4KCooRuBGneAAAgHFIUDIQlyYC7uPk1Cx9FG5EggIAAIxDgoKEMBID0sPJhHeST7gRCQoAADAOCYrHcaM2wLvot/AyEhQAAGAcEhQP4TwzAI4D8IqEE5Q1a9ZowoQJCgaD8vl8Wrp0acz66667Tj6fL2YZN25czDZ79+7V5MmTlZubq7y8PE2ZMkXt7e2OfhEAAOAdCRcoHR0dGj58uObNm3fUbcaNG6fm5ubo8txzz8Wsnzx5st5++22tWLFCy5Yt05o1a3TDDTck3nrEsCyrywLAG7488DvaYvc4EO9nAZMkfIqnsrJSlZWVX7mN3+9XcXFx3HXvvPOOli9frg0bNmjkyJGSpMcee0zjx4/Xb37zGwWDwUSbhP+PCbFAZnHy3B2OAzBdSibJrlq1SoWFhTrllFN0880367PPPouua2hoUF5eXrQ4kaSKigplZWVp/fr1cT8vEokoHA7HLAAAwLuSXqCMGzdOf/7zn1VfX69f//rXWr16tSorK3XkyBFJUktLiwoLC2N+pnfv3srPz1dLS0vcz6yrq1MgEIguoVAo2c0GAKPFO3XDaRp4WdKv4pk0aVL0z2eccYaGDRumwYMHa9WqVRozZky3PrO2tlY1NTXR1+FwmCIFAAAPS/l9UE466ST1799fTU1NkqTi4mLt2bMnZpvDhw9r7969R5234vf7lZubG7MAAADvSnmB8vHHH+uzzz7TgAEDJEnl5eXat2+fNm3aFN1m5cqV6uzsVFlZWaqbAwAAXCDhUzzt7e3RNESSduzYocbGRuXn5ys/P1+zZ89WVVWViouL9f777+vOO+/UN7/5TY0dO1aSdOqpp2rcuHGaOnWqnnzySR06dEjTp0/XpEmTuILHIbuz8rmRE+A+dvst81DgFT4rwW+mVatWafTo0V3er66u1hNPPKGJEyfqH//4h/bt26dgMKhLLrlEDzzwgIqKiqLb7t27V9OnT9crr7yirKwsVVVV6dFHH9Vxxx1nqw3hcFiBQEBtbW2c7ukGChTAfZwUKPRvmCKR7++ECxQTUKDEx31QAO9yUnhQtMAUiXx/87BAAABgHB4W6CGMpgDQv+EVJCgAAMA4JCgex4x+wLtIS+BlFCgu8eUDkd2DEAcrwH0YWACc4gEAAAYiQXEJO0kIlxkDmYW+DC8jQQEAAMYhQclATKwD3Ie7xiLTkKAAAADjkKC4FM/lAEBfhpeRoAAAAOOQoLgUIyfAO7p7nyMSUngZCQoAADAOCYpLcadJwDu+nHqQjAAkKAAAwEAkKC7FFTuAd9G/AQoU1+juJDoAmYVCBl7BKR4AAGAcEhSXYAQEwA6OFfAKEhQAAGAcEhSX4lb3AOjf8DISFAAAYBwSFJewc2M2RlOAd9GXkWlIUAAAgHFIUDyEERbgTnYSUuaYIdOQoAAAAOOQoLiEnYeJxcMICzCfnT7JA0KRaShQXMpukUExArgPAwuAUzwAAMBAJCguxQgLyCz0eWQaEhQAAGAcEhQASDMmwAJdkaAAAADjkKAAQA9iLglgT8IJypo1azRhwgQFg0H5fD4tXbo0Zr3P54u7zJ07N7rNoEGDuqyfM2eO418GAAB4Q8IJSkdHh4YPH67rr79eV1xxRZf1zc3NMa9fffVVTZkyRVVVVTHv33///Zo6dWr0dU5OTqJNyWiMuAB3snPLevo30I0CpbKyUpWVlUddX1xcHPP65Zdf1ujRo3XSSSfFvJ+Tk9NlWwAAACnFk2RbW1v117/+VVOmTOmybs6cOSooKNCZZ56puXPn6vDhw0f9nEgkonA4HLNkmi+fEuvuz3G1AGAey7JiFvotkOJJsn/605+Uk5PT5VTQbbfdprPOOkv5+fl64403VFtbq+bmZj388MNxP6eurk6zZ89OZVMBAIBBfJaDk50+n09LlizRxIkT464fMmSILr74Yj322GNf+TnPPPOMbrzxRrW3t8vv93dZH4lEFIlEoq/D4bBCoZDa2tqUm5vb3eYbwe6M/u4+jh2AWez0ea70gVeFw2EFAgFb398pS1D+/ve/a9u2bXr++ee/dtuysjIdPnxYH374oU455ZQu6/1+f9zCxQuSWYxwUAPMxyRZwJ6UzUF5+umnNWLECA0fPvxrt21sbFRWVpYKCwtT1RwAAOAiCSco7e3tampqir7esWOHGhsblZ+fr5KSEkn/iXBefPFF/fa3v+3y8w0NDVq/fr1Gjx6tnJwcNTQ0aObMmbrmmmt0/PHHO/hVvM3OiIpRFwDAKxIuUDZu3KjRo0dHX9fU1EiSqqurtWDBAknS4sWLZVmWrrrqqi4/7/f7tXjxYt13332KRCIqLS3VzJkzo58DAADgaJJsuiQyycYrOEcNeAMT3pHJEvn+5mGBAADAODwssAcl8yobrtgBvIO+C3RFggIAAIxDgtKD7I6SSEcA76IvA/aQoAAAAOOQoABAinT3IX+kLAAJCgAAMBAJSg/ikelAZnEy7wzIdBQoLsGN2gBvoBgB7OEUDwAAMA4JSg8i9QC8y8ntATg2AF2RoAAAAOOQoKSZ3fPRjLAAsznpo8wxA7oiQQEAAMYhQUkzRkqAd/HYCqD7SFAAAIBxSFAMZGdeCqMwwHz0U6D7SFAAAIBxSFDSzO45au4+CbgPc1CA7iNBAQAAxqFAAQAAxuEUj4GIhQHvon8D9pCgAAAA45Cg9CBGTgAA2EOCAgAAjEOCAgAJcnLZP6kpYA8JCgAAMA4JSg+yewM2RliA2ez2UW6wCHQfCQoAADAOBQoAADAOBQoAADAOc1AAIAmYbwIkFwVKEiT7icRMnAW8gYnxQPdxigcAABiHBCUJnIx+GDkB3mC3L9PnAXtIUAAAgHFIUFziy+etGYUBZrE7x4y+C9jjygLlvx08HA6nuSXOdfd38MLvDmQi+i4y2X///9sp1F1ZoOzfv1+SFAqF0twS5wKBQI/+HID0ou8C//ke/7q+4LNcmDd2dnZq9+7dysnJ0f79+xUKhbRr1y7l5uamu2kZLRwOsy8Mwb4wB/vCHOyL9LMsS/v371cwGFRW1ldPg3VlgpKVlaUTTzxR0v+e983NzeU/nCHYF+ZgX5iDfWEO9kV62U0RuYoHAAAYhwIFAAAYx/UFit/v17333iu/35/upmQ89oU52BfmYF+Yg33hLq6cJAsAALzN9QkKAADwHgoUAABgHAoUAABgHAoUAABgHAoUAABgHFcXKPPmzdOgQYPUp08flZWV6c0330x3kzyvrq5OZ599tnJyclRYWKiJEydq27ZtMdt88cUXmjZtmgoKCnTcccepqqpKra2taWpx5pgzZ458Pp9mzJgRfY990XM++eQTXXPNNSooKFDfvn11xhlnaOPGjdH1lmXpnnvu0YABA9S3b19VVFRo+/btaWyxdx05ckR33323SktL1bdvXw0ePFgPPPBAzAPq2B8uYLnU4sWLrezsbOuZZ56x3n77bWvq1KlWXl6e1dramu6medrYsWOt+fPnW1u3brUaGxut8ePHWyUlJVZ7e3t0m5tuuskKhUJWfX29tXHjRuucc86xzj333DS22vvefPNNa9CgQdawYcOs22+/Pfo++6Jn7N271xo4cKB13XXXWevXr7c++OAD629/+5vV1NQU3WbOnDlWIBCwli5dar311lvWZZddZpWWllqff/55GlvuTQ8++KBVUFBgLVu2zNqxY4f14osvWscdd5z1+9//ProN+8N8ri1QRo0aZU2bNi36+siRI1YwGLTq6urS2KrMs2fPHkuStXr1asuyLGvfvn3WMcccY7344ovRbd555x1LktXQ0JCuZnra/v37rZNPPtlasWKFdeGFF0YLFPZFz5k1a5Z1/vnnH3V9Z2enVVxcbM2dOzf63r59+yy/328999xzPdHEjHLppZda119/fcx7V1xxhTV58mTLstgfbuHKUzwHDx7Upk2bVFFREX0vKytLFRUVamhoSGPLMk9bW5skKT8/X5K0adMmHTp0KGbfDBkyRCUlJeybFJk2bZouvfTSmH9ziX3Rk/7yl79o5MiRuvLKK1VYWKgzzzxTf/zjH6Prd+zYoZaWlph9EQgEVFZWxr5IgXPPPVf19fV67733JElvvfWW1q5dq8rKSknsD7dw5dOMP/30Ux05ckRFRUUx7xcVFendd99NU6syT2dnp2bMmKHzzjtPQ4cOlSS1tLQoOztbeXl5MdsWFRWppaUlDa30tsWLF2vz5s3asGFDl3Xsi57zwQcf6IknnlBNTY1+9rOfacOGDbrtttuUnZ2t6urq6L93vGMW+yL57rrrLoXDYQ0ZMkS9evXSkSNH9OCDD2ry5MmSxP5wCVcWKDDDtGnTtHXrVq1duzbdTclIu3bt0u23364VK1aoT58+6W5ORuvs7NTIkSP1q1/9SpJ05plnauvWrXryySdVXV2d5tZlnhdeeEELFy7UokWLdPrpp6uxsVEzZsxQMBhkf7iIK0/x9O/fX7169epyNUJra6uKi4vT1KrMMn36dC1btkyvv/66TjzxxOj7xcXFOnjwoPbt2xezPfsm+TZt2qQ9e/borLPOUu/evdW7d2+tXr1ajz76qHr37q2ioiL2RQ8ZMGCATjvttJj3Tj31VO3cuVOSov/eHLN6xk9/+lPdddddmjRpks444wxde+21mjlzpurq6iSxP9zClQVKdna2RowYofr6+uh7nZ2dqq+vV3l5eRpb5n2WZWn69OlasmSJVq5cqdLS0pj1I0aM0DHHHBOzb7Zt26adO3eyb5JszJgx+uc//6nGxsboMnLkSE2ePDn6Z/ZFzzjvvPO6XG7/3nvvaeDAgZKk0tJSFRcXx+yLcDis9evXsy9S4MCBA8rKiv1669Wrlzo7OyWxP1wj3bN0u2vx4sWW3++3FixYYP3rX/+ybrjhBisvL89qaWlJd9M87eabb7YCgYC1atUqq7m5ObocOHAgus1NN91klZSUWCtXrrQ2btxolZeXW+Xl5Wlsdeb4v1fxWBb7oqe8+eabVu/eva0HH3zQ2r59u7Vw4UKrX79+1rPPPhvdZs6cOVZeXp718ssvW1u2bLG++93vcllrilRXV1vf+MY3opcZv/TSS1b//v2tO++8M7oN+8N8ri1QLMuyHnvsMaukpMTKzs62Ro0aZa1bty7dTfI8SXGX+fPnR7f5/PPPrVtuucU6/vjjrX79+lmXX3651dzcnL5GZ5AvFyjsi57zyiuvWEOHDrX8fr81ZMgQ66mnnopZ39nZad19991WUVGR5ff7rTFjxljbtm1LU2u9LRwOW7fffrtVUlJi9enTxzrppJOsn//851YkEoluw/4wn8+y/s+t9QAAAAzgyjkoAADA2yhQAACAcShQAACAcShQAACAcShQAACAcShQAACAcShQAACAcShQAACAcShQAACAcShQAACAcShQAACAcf4fJ0PUOqgFAWwAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVj0lEQVR4nO3dd3hUZf7+8XsS0kiZEEqKBgiCQqQJCFJWLChRF0RRLPEHKqssgoDoKqwrARviWrAi6C7sKijgflV0AUVcQZAmRcUgggaCkqIGMiQkATLn98fIyJAEMsmZTHu/rmsuZ55z5swnHCF3njzFYhiGIQAAACBIhHi7AAAAAKAhEYABAAAQVAjAAAAACCoEYAAAAAQVAjAAAACCCgEYAAAAQYUADAAAgKBCAAYAAEBQIQADAAAgqBCAAQAAEFS8GoBXr16tQYMGKSUlRRaLRe+++67LccMwNGXKFCUnJysqKkoDBgzQrl27XM4pKipSZmam4uLiFB8fr5EjR6qkpKQBvwoAAAD4E68G4NLSUnXp0kUvvfRStceffPJJPf/883rllVe0YcMGRUdHa+DAgSovL3eek5mZqW+++UYrVqzQBx98oNWrV+vOO+9sqC8BAAAAfsZiGIbh7SIkyWKx6J133tGQIUMkOXp/U1JSdO+99+q+++6TJBUXFysxMVHz5s3TjTfeqB07dig9PV2bNm1Sjx49JEnLly/XlVdeqR9//FEpKSne+nIAAADgoxp5u4Ca5OTkKD8/XwMGDHC2Wa1W9erVS+vWrdONN96odevWKT4+3hl+JWnAgAEKCQnRhg0bdM0111R77YqKClVUVDhf2+12FRUVqWnTprJYLJ77ogAAAFAnhmHo0KFDSklJUUhI/QYx+GwAzs/PlyQlJia6tCcmJjqP5efnq0WLFi7HGzVqpISEBOc51Zk+fbqmTZtmcsUAAADwtH379unMM8+s1zV8NgB70uTJkzVx4kTn6+LiYrVs2VL79u1TXFycFysDAABAdWw2m1JTUxUbG1vva/lsAE5KSpIkFRQUKDk52dleUFCgrl27Os8pLCx0ed+xY8dUVFTkfH91IiIiFBERUaU9Li6OAAwAAODDzBiu6rPrAKelpSkpKUkrV650ttlsNm3YsEG9e/eWJPXu3VsHDx7U5s2bned88sknstvt6tWrV4PXDAAAAN/n1R7gkpIS7d692/k6JydH27ZtU0JCglq2bKkJEybo0UcfVbt27ZSWlqaHHnpIKSkpzpUiOnTooIyMDN1xxx165ZVXdPToUY0dO1Y33ngjK0AAAACgWl4NwF988YUuvvhi5+vj43JHjBihefPm6f7771dpaanuvPNOHTx4UP369dPy5csVGRnpfM/8+fM1duxYXXrppQoJCdHQoUP1/PPPN/jXAgAAAP/gM+sAe5PNZpPValVxcTFjgAEAAHyQmXnNZ8cAAwAAAJ5AAAYAAEBQIQADAAAgqBCAAQAAEFQIwAAAAAgqBGAAAAAEFQIwAAAAggoBGAAAAEGFAAwAAICgQgAGAABAUCEAAwAAIKg08nYBAAAAwHF5eY7HyUpKzPsMAjAAAAB8xuzZ0rRpnv0MAjAAAAB8xqhR0uDBrm1lZVK/fuZ9BgEYABAQavq16ekkJzseAHxDdX8nS0vN/QwCMAAgINT116ZZWdLUqaaXAw/ghxyYhQAMAAgIp/u16Zo1UlRU1fcRjPwHP+TALBbDMAxvF+FtNptNVqtVxcXFiouL83Y5AACTlJZKMTGO5yUlUnS0d+tB/VTXA1zbH3L4Qce/Of4u2ySZk9foAQYAAH7hdGNDu3blhxzUDhthAAAAIKgQgAEAABBUCMAAAAAIKgRgAAAABBUCMAAA8FuVdkMRqb+qcYeftHHPr6q0B/3iVgGp0m4o/Iwi067HKhAAgIDlCEdFCo0p18Y9kbqwQ4JCQyzeLgsmWb49T1nvZSvp5nJJ0m2vS8nWSGUNSldGR9Y9CxTH73Pi9UXaN9Oca7IOsFgHGAAC0fFvmgWHyp1thKPAsXx7nka/sUUnh5jjP97MuqUb9zkAnHif7RWHtW/mMFPyGkMgAAAB5/g3zRPDryTlF5dr9BtbtHx7HfbThc+otBua9n52lfArydk27f1shkP4uVPd5/oiAAMAAgrhKPBtzClSXnF5jccNSXnF5dqYY96YUTS8093n+iAAAwACCuEo8BUeql0oqu158E2evH8EYABAQCEcBb4WsZGmngff5Mn7RwAGAAQUwlHg65mWoGRrpGpaz8Mix4THnmkJDVkWTHa6+1wfBGAAQEAhHAW+0BCLsgalS1KV+3z8ddagdJa883Onus/1RQAGAAQUwlFwyOiYrFm3dKvSk59kjWQJtABS032uL9YBFusAA0AgYh3g4GA7ZKjFuY7NTj5YzGYngcp2yFDzDnt15Kc0U/IaAVgEYAAIVISjwFdaKsXEOJ6XlEjR0d6tB57huM82SebkNbZCBgAErNAQiyr2NZUk9WwthTLwD4AYAwwAAIAgQwAGAABAUGEIhB/Jy3M83JWc7HgAAACAAOxXZs+Wpk1z/31ZWdLUqaaXAwAA4JcIwH5k1Chp8GDXtrIyqV8/x/M1a6SoqKrvo/cXABAIqvtNaFnZ78+3bav5+yDfC3EiArAfqe4vcGnp78+7dmX5F3cxrAQA/MfpfhN6vEPoZPwmFCcjACOoMawECBz0Dga+6n4TWhvcX5yMAIygxrASIHDQOxj4+GEFZiEAI6gxrAQIHPQOAoGhYFueir5x/XVORYXUWSX6yqTPIAADAAICvYNAYNgxYbYuWlX11zmfSbKa9BkEYAAAAPiMDjNHacc3rr/OCakoU/LIGsYx1QEBGAAAAD4jsWuyErtWHZ9oG2neZ7AVMgAAAIIKARgAAABBhQAMAACAoMIYYC9iFzIAAICGRwD2Ik/vQlaXgP3zz47/Nm/u3vsI5QAAwF8QgL3IjF3IKu2GIlKLFBpTro17InVhhwSFhlgk1T1g1wU7KQEAAH9hMQzD8HYR3maz2WS1WlVcXKy4uDiv1lJaKsXEOJ6XlJx6F7Ll2/OU9V62Cg6VO9uSrZHKGpSujI7J1fYAny5gV9cDXNtQHig9wO7cAwAA0ABKS2WLiZFVMiWv0QPsp5Zvz9PoN7bo5J9e8ovLNfqNLZp1SzdldEw2ZZtftgYGAACBhFUg/FCl3dC097OrhF9JzrZp72er0h70nfsAAABVEID90MacIuUVl9d43JCUV1yujTlFDVcUAACAnyAA+6HCQzWH37qcBwAAEEwIwH6oRWykqecBAAAEEwKwH+qZlqBka6QsNRy3yLEaRM+0hIYsK2A4lpb7VY07/KSNe35lLDUAAN5mr5RSzYutBGA/FBpiUdagdEmqEoKPv84alO5cDxi1t3x7ni57/hMl3bxezQdv022vr1e/GZ9o+fY6bNkHAADqL3uJNLunlGneMlQEYD+V0TFZs27pVmWYQ5I10rkEGtxzfGm5gpPGTh9fWo4QDABAA8teIi0aLpWY+z2YdYD9WEbHZPVplaQW5zp2gvtgsetOcKi90y0tZ5FjabnL0pP48wUAoCHYK6XlD0jVfneuH3qA/VxoiEUV+5rq8I4z1LN1U8JZHbG0HAAAPmbv55Jtv0cuTQAGxNJyAAD4nJICj12aAAyIpeUAAPA5MYkeuzQBGBBLywEA4HNa9ZHiUlR1zav6IwADYmk5AAB8TkiolDHjtxfmfv8lAAO/YWk5AAB8TPpgadi/pZgkUy/LMmg+xrELmWNZs417zF/WrC7X93RNvoSl5QAA8DHpg6XUi6Rzm5h2SYthGEG/z6vNZpPValVxcbHi4uK8Vsfy7XnKei/bZSOGZGuksgal19j7WFoqxcQ4npeUSNGn2CSlLtevy3v8nTt/pgAAoAGUlsoWEyOrZEpeYwiEj/D0LmR1uT47owEAgEBEAPYBp9uFTHLsQlZpr1tnfV2u7+maAAAAvIUA7AM8vQtZXa7PzmgAACBQEYB9gKd3IavL9dkZDQAABCpWgfABtd1drNHRSG3Z4tpWVvb7823bpKioat5X6f4uZ+yMBgAAAhUB2Acc34Usv7i82jG3FjnWot3wQYIeebjm6/TrV337Q1Nqd/0TdzmrbU3sjAYAAPwNAdgHHN+FbPQbW2SRXALnibuQdWlq0ZCr3b9+crJFfX49/fVPXOu2tjWxPi4AAPA3rAMs/14H2NPXZx1g1gEGAMDrTF4HmAAs3wnAkmQ7ZHh0F7K6XN/TNfkaAjAAAD4mmDbCqKys1EMPPaS0tDRFRUXprLPO0iOPPKITM7thGJoyZYqSk5MVFRWlAQMGaNeuXV6sun5CQyyq2NdUh3ecoZ6tm5oeNOtyfU/XBAAA0JB8OgDPmDFDs2bN0osvvqgdO3ZoxowZevLJJ/XCCy84z3nyySf1/PPP65VXXtGGDRsUHR2tgQMHqryc5bkAAABQlU9Pgvv888919dVX66qrrpIktW7dWm+++aY2btwoydH7O3PmTP3tb3/T1Vc7Zof9+9//VmJiot59913deOONDVpvXp7j4a7kZMcDAAAg6FUXqE5c99UEPh2A+/Tpozlz5ui7777T2WefrS+//FJr1qzRM888I0nKyclRfn6+BgwY4HyP1WpVr169tG7duhoDcEVFhSoqKpyvbTabKfXOni1Nm+b++7KypKlTTSkBAADAv9U1ULnBpwPwpEmTZLPZ1L59e4WGhqqyslKPPfaYMjMzJUn5+fmSpMTERJf3JSYmOo9VZ/r06ZrmgT/YUaOkwYNd28rKfl+fd82a6jeqoPcXAADgN9UFKskxM71/f1M+wqcD8KJFizR//nwtWLBA5557rrZt26YJEyYoJSVFI0aMqPN1J0+erIkTJzpf22w2paam1rve6oYylJb+/rxrV1YUAAAAOKWaxoaa9Bt7yccD8F/+8hdNmjTJOZShU6dO2rt3r6ZPn64RI0YoKSlJklRQUKDkE/6gCgoK1LVr1xqvGxERoYiICI/WDgAAAN/k0wH48OHDCglxXagiNDRUdrtdkpSWlqakpCStXLnSGXhtNps2bNig0aNHN3S58EOnG2e/bVvNw1YYugIAgH/y6QA8aNAgPfbYY2rZsqXOPfdcbd26Vc8884xuv/12SZLFYtGECRP06KOPql27dkpLS9NDDz2klJQUDRkyxLvFwy+cbpz98fHbJ2PiIgAA/sunA/ALL7yghx56SHfddZcKCwuVkpKiUaNGacqUKc5z7r//fpWWlurOO+/UwYMH1a9fPy1fvlyRkZFerLyWqul+DCmTzjv+fJukanof6X40T03j7E+HP34AAPwXWyHLs1shn3Jb3alTG3zdtLps88vWwAAAwNvMzGs+3QMc8KrpfiwrKlPUZY7fu5etWKOoBNZNAwAAMBMB2JuqGcpgL/x93TR7565SC7pbAQAAzBRy+lMAAACAwEEPsD+pbs2u2nBj0hzLggEAgEBHAPYnddwbO+/OLOWNmirp9GF29mxpzpyar8WyYAAAwN8RgL2out7WiiKp92/Pv/pKikj4/Vij3qMU9sZgNWsmNW/+W2NZ2e+pdM0al0Q7e7Y0e46UNydZ+dWE2prC7J13OubnuYPeXwAA4C8IwF5UXYduY0nHp8ENuEw67HI0WVKya29r6e+T5tS1q8saZYOnSue7GWQlhjMAAIDARgD2ouo2YQgpk/Rbz+zaNZK9HqugEWQBAACqIgB7UbUB9aQOXbEKGgAAgKlYBg0AAABBhQDsYZV2QxGpv6pxh5+0cc+vqrQH/c7TAAAAXsUQCA9avj1PWe9lK+nmcknSba9LydZIZQ1KV0ZHBucCAAB4Az3AHrJ8e55Gv7FFBYfKXdrzi8s1+o0tWr69DhtaAAAAoN4IwB5QaTc07f1sVTfY4XjbtPezGQ4BAADgBQRgD9iYU6S84vIajxuS8orLtTGnqOGKAgAAgCQCsEcUHqo5/NblPAAAAJiHAOwBLWIjTT0PAAAA5iEAe0DPtAQlWyNlqeG4RY7VIHqmJTRkWQAAABAB2CNCQyzKGpQuSVVC8PHXWYPSFRpSU0QGAACApxCAPSSjY7Jm3dKtyjCHJGukZt3SjXWAAQAAvISNMDwoo2Oy+rRKUotzixQaU64PFkfqwg4Jp+75tVdKrUKlWIuU+7l0ziVSSGjDFQ0AABDgCMAeFhpiUcW+ppKknq2l0FP1uWcvkZbeL90a7Xi98DopLkXKmCGlD/Z4rQAAAMGAIRC+InuJtGi4VHLSDnG2PEd79hLv1AUAABBgCMC+wF4pLX9AOtXeccsnOc4DAABAvRCAfcHezyXb/lOcYEi2nxznAQAAoF4IwL6gpKDu5x2fNNexkWPSHL3EAAAAp0QA9gUxiXU7L3uJNLunY9Lc0MaOSXMzOzJeGAAA4BQIwL6gVR/Hag+n2jsu7gzHeccxaQ4AAKBOCMC+ICTUsdSZpBr3jst44vf1gJk0BwAAUGcEYF+RPlga9m8pJsm1PS7F0X7iOsBMmgMAAKgzNsLwJemDpdSLpE4Jjp3gFi2tfie4+kyaAwAACHIEYF8TEirt/W3oQss+1W+DXNdJcwAAAGAIhF+qy6Q5AAAASKIH2D8dnzS3aLgcIfjEyXDVTJpzR16e4+Gu5GTHAwAAwMcRgP3V8UlzS+93XQotLsURfk+cNOeO2bOladPcf19WljR1at0+EwAAoAG5FYDtdrtWrVqlzz77THv37tXhw4fVvHlznXfeeRowYIBSU1M9VSeqU9tJc+4YNUoafFJ4LiuT+vVzPF+zRoqKqvo+en8BAICfsBiGUd1isi7Kysr09NNPa9asWSoqKlLXrl2VkpKiqKgoFRUVafv27dq/f78uv/xyTZkyRRdccEFD1G4am80mq9Wq4uJixcXFmXrt0lIpJsbxvKREio42+Q1uf0AdNMRnAAAAnIKZea1WPcBnn322evfurVdffVWXXXaZwsLCqpyzd+9eLViwQDfeeKMefPBB3XHHHfUqzB9VN3y2rOz359u21dx5SgcqANQTcxgA1FKteoB37NihDh061OqCR48eVW5urs4666x6F9dQzPqJYupUE4bP0gMMAHVjyj/CAHyVmT3AtQrAgc6sP1BTOh8IwABQNzX9Gq42cxjoAQZ8XoMPgThZbm6uyyS4c889VxEREfUqJBDwbygAeFF1/wiXlv7+vGtXfoAHIMmNALxnzx7NmjVLb731ln788Ued2HEcHh6uP/zhD7rzzjs1dOhQhYSwvwYAAAB8U62S6rhx49SlSxfl5OTo0UcfVXZ2toqLi3XkyBHl5+dr6dKl6tevn6ZMmaLOnTtr06ZNnq4bAAAAqJNa9QBHR0frhx9+UNOmTasca9GihS655BJdcsklysrK0vLly7Vv3z6df/75phcLAAAA1FetAvD06dNrfcGMjIw6FwMAAAB4Wr22Qv7ll1+0YcMGVVZW6vzzz1cyM8AAAADg4+ocgP/zn/9o5MiROvvss3X06FHt3LlTL730km677TYz6wMAAABMVevlGkpKSlxeT5s2TRs3btTGjRu1detWLV68WA8++KDpBQIAAABmqnUA7t69u9577z3n60aNGqmwsND5uqCgQOHh4eZWBwAAAJis1kMgPvzwQ40ZM0bz5s3TSy+9pOeee0433HCDKisrdezYMYWEhGjevHkeLDUA1bRr0XHbtrFrEQAAgMlqHYBbt26t//73v3rzzTfVv39/jRs3Trt379bu3btVWVmp9u3bKzIy0pO1Bp7Zs0+9b/3x7TtPxr71AAAAdWYxTtzSrZYOHjyo++67T19//bXmzJmjLl26eKK2BmPm3tJuqa4HuDZO7AEuLZViYhzPS0o8s81nQ3wGAHgC/34BAcPMvObWKhBLly7Vjh071KVLF7322mtatWqVMjMzdcUVV+jhhx9WVHW/rkfN/GUog71SahUqxVqk3M+lcy6RQkK9XRUAAECd1HoS3L333qvbbrtNmzZt0qhRo/TII4+of//+2rJliyIjI3Xeeedp2bJlnqwV3pC9RJrdU7o1WhraWFp4nTSzo6MdAADAD9V6CETTpk310UcfqXv37ioqKtIFF1yg7777znk8Oztbo0aN0meffeaxYj3Fa0MgzODJX+9lL5EWDZd08v8iFsd/hv1bSh9s3ucBgNkYAgEEDDPzWq17gKOjo5WTkyNJ2rdvX5UJb+np6X4ZflEDe6W0/AFVDb/6vW35JMd5AAAAfqTWY4CnT5+u4cOHa9y4cTp8+LD+9a9/ebIuVKchl03b+7lk23+KEwzJ9pPjvLQ/uHdtAGgozGEAUI1aB+DMzExlZGTohx9+ULt27RQfH+/BslCthlw2raTA3PMAoKFlL5GW3u+YwyA55jDEpUgZMxi+BQQ5t1aBaNq0qZo2beqpWnA6o0ZJg+vwj3ZdVpqISTT3PABoSDXNYbDlOdqZwwAEtVoF4D//+c/629/+pjPPPPO05y5cuFDHjh1TZmZmvYvDSRpy2bRWfRw9JbY8VT8O2OI43qpPw9QDALV12jkMFscchvZXMRwCCFK1CsDNmzfXueeeq759+2rQoEHq0aOHUlJSFBkZqQMHDig7O1tr1qzRW2+9pZSUFM2ZM8fTdcPTQkIdvyZcNFyOVR9O/Eby2yoQGU/wzQOA72EOA4DTqFUAfuSRRzR27Fi99tprevnll5Wdne1yPDY2VgMGDNCcOXOUkZHhkULhBemDHb8mXHq/VHLC5Lu4FEf4DYRfH5qxGx8A38IcBgCnUaetkA8cOKDc3FyVlZWpWbNmOuuss2SxWDxRX4Pw63WAG8Ihm9QpwTGLetHSwJpFPXXqqScW1qQuEwsBNIycz6R//fH05434gB5gwI94bSvk45o0aaImTZrU64PhR0JCpb2/rffbsk/ghF+p+omFZWW/r6ixZk3NS8sB8E3MYQBwGnUKwEDAqG4oQ2np78+7dmXnKMDfMIcBwGnUeic4AAD8xvE5DDFJru1xKSyBBoAeYABAgEofLKVeFLhzGADUGQEYABC4AnkOA4A6YwgEAAAAgkqteoDPO++8Wi9ztmXLlnoVBAAAAHhSrQLwkCFDnM/Ly8v18ssvKz09Xb1795YkrV+/Xt98843uuusujxQJAAAAmKVWATgrK8v5/E9/+pPGjRunRx55pMo5+/btM7c6AAAAwGRujwFevHixhg8fXqX9lltu0X/+8x9TigIAAAA8xe0AHBUVpbVr11ZpX7t2rSIjI00pCgAAAPAUt5dBmzBhgkaPHq0tW7aoZ8+ekqQNGzbon//8px566CHTCwQAAADM5HYAnjRpktq0aaPnnntOb7zxhiSpQ4cOmjt3roYNG2Z6gQAAAICZ6rQRxrBhwwi7AAAA8EtujwFu06aNfv311yrtBw8eVJs2bUwpCgAAAPAUtwPwnj17VFlZWaW9oqJCP/30kylFAQAAAJ5S6yEQS5YscT7/8MMPZbVana8rKyu1cuVKtW7d2tTi4AV5eY7HicrKfn++bZsUFVX1fcnJjgcAAICPq3UAPr4bnMVi0YgRI1yOhYWFqXXr1nr66adNLQ5eMHu2NG1azcf79au+PStLmjrVIyUBAACYqdYB2G63S5LS0tK0adMmNWvWzGNFwYtGjZIGD3b/ffT+AgAAP+H2KhA5OTlV2g4ePKj4+Hgz6qnip59+0gMPPKBly5bp8OHDatu2rebOnasePXpIkgzDUFZWll599VUdPHhQffv21axZs9SuXTuP1BPwGMoAAAACnNsBeMaMGWrdurVuuOEGSdL111+v//znP0pOTtbSpUvVpUsX04o7cOCA+vbtq4svvljLli1T8+bNtWvXLjVp0sR5zpNPPqnnn39e//rXv5SWlqaHHnpIAwcOVHZ2NjvTAUAwYQ4DgFqyGIZhuPOGtLQ0zZ8/X3369NGKFSs0bNgwLVy4UIsWLVJubq4++ugj04qbNGmS1q5dq88++6za44ZhKCUlRffee6/uu+8+SVJxcbESExM1b9483XjjjbX6HJvNJqvVquLiYsXFxZlWP/zUIZvUKUGKtUiLlkrnXCKFhHq7KgCnM3Xqqecw1IQ5DIBfMDOvuR2Ao6Ki9N133yk1NVXjx49XeXm5Zs+ere+++069evXSgQMH6lXQidLT0zVw4ED9+OOPWrVqlc444wzddddduuOOOyRJP/zwg8466yxt3bpVXbt2db6vf//+6tq1q5577rlqr1tRUaGKigrna5vNptTUVAIwpOwl0tL7pZITepHiUqSMGVJ6HcZGA2g41fUA1wY9wIBfMDMAuz0EokmTJtq3b59SU1O1fPlyPfroo5IcvbHVrQ9cHz/88INmzZqliRMn6q9//as2bdqkcePGKTw8XCNGjFB+fr4kKTEx0eV9iYmJzmPVmT59uqbVpZcAgS17ibRouKSTfia05Tnah/2bEAz4MoIsgFpyeyOMa6+9VjfffLMuu+wy/frrr7riiiskSVu3blXbtm1NLc5ut6tbt256/PHHdd555+nOO+/UHXfcoVdeeaVe1508ebKKi4udj3379plUMfyWvVJa/oCqhF/p97blkxznAQAAv+Z2AH722Wc1duxYpaena8WKFYqJiZEk5eXl6a677jK1uOTkZKWnp7u0dejQQbm5uZKkpKQkSVJBQYHLOQUFBc5j1YmIiFBcXJzLA0Fu7+eSbf8pTjAk20+O8wAAgF9zewhEWFiYc8LZie655x5TCjpR3759tXPnTpe27777Tq1atZLkmJCXlJSklStXOscA22w2bdiwQaNHjza9HgSwkoLTn+POeQAAwGe53QN8ori4OP3www9m1VLFPffco/Xr1+vxxx/X7t27tWDBAs2ZM0djxoyR5NiVbsKECXr00Ue1ZMkSff311xo+fLhSUlKcO9cBtRKTePpz3DkPAAD4LLd7gE/k5gISbjv//PP1zjvvaPLkyXr44YeVlpammTNnKjMz03nO/fffr9LSUt155506ePCg+vXrp+XLl7MGMNzTqo9jtQdbnqofB2xxHG/Vp6ErAwAAJnN7GbQTxcbG6ssvv1SbNm3MrKnBsQ4wJJ2wCoTkGoItjv+wCgQAAF5jZl6r1xCIW265hcCIwJE+2BFyY06aQBmXQvgFACCA1LoHePjw4br66qs1cOBA58oPgYIeYLhgJzgAAHyOV3qA27Ztq8cff1zNmzfXFVdcoVmzZmn//lMtGwX4qZBQaW+ltP2Y1LIP4RcAgABT6wA8ZcoUbd68Wbt27dKgQYP07rvvqk2bNurevbsefvhhbdu2zYNlAgAAAOao1yS4Q4cOadmyZXrvvfe0bNkyxcbGatCgQRo9erTOPfdcM+v0KIZAwEVpqXR8mE9JiRQd7d16AACA70yCi42N1bBhwzR//nz9/PPP+uc//6nQ0FCtW7euXkUBAAAAnlKvdYBPFBoaqksvvVSXXnqpWZcEAAAATFevHuC77rpLv/zyi1m1AAAAAB5XrwD8xhtvyGazmVULAAAA4HH1CsCe3goZAAAAMFu9ArAkWSwWM+oAAAAAGoRbk+DS0tJcAm9ZWZn69++vRo1+v8wPP/xgXnUAAACAydwKwPPmzXM+NwxDV155pZ544gmdccYZZtcFAAAAeIRbAbh///4ur0NDQ3XBBReoTZs2phYFAAAAeEq9xgAz/hcAAAD+hlUgAAAAEFTqtRPcoUOHzKoDAAAAaBD1XgYNAAAA8Cd16gE+ePCgNm7cqMLCQtntdpdjw4cPN6UwAAAAwBPcDsDvv/++MjMzVVJSori4OJeJcBaLhQAMAAAAn+b2EIh7771Xt99+u0pKSnTw4EEdOHDA+SgqKvJEjQAAAIBp3A7AP/30k8aNG6fGjRt7oh4AAADAo9weAjFw4EB98cUXbH6BwJCX53icqKzs9+fbtklRUVXfl5zseAAAAL/jdgC+6qqr9Je//EXZ2dnq1KmTwsLCXI4PHjzYtOIAj5s9W5o2rebj/fpV356VJU2d6pGSAACAZ1kMN3ezCAmpedSExWJRZWVlvYtqaDabTVarVcXFxYqLi/N2OWhI1fUA1wY9wAAANCgz85rbPcAnL3sG+DWCLAAAQYeNMAAAABBU6rQRRmlpqVatWqXc3FwdOXLE5di4ceNMKQwAAADwBLcD8NatW3XllVfq8OHDKi0tVUJCgn755Rc1btxYLVq0IAADAADAp7k9BOKee+7RoEGDdODAAUVFRWn9+vXau3evunfvrqeeesoTNQIAAACmcTsAb9u2Tffee69CQkIUGhqqiooKpaam6sknn9Rf//pXT9QIAAAAmMbtABwWFuZcCq1FixbKzc2VJFmtVu3bt8/c6gAAAACTuT0G+LzzztOmTZvUrl079e/fX1OmTNEvv/yi119/XR07dvREjQAAAIBp3O4Bfvzxx5X827qpjz32mJo0aaLRo0fr559/1pw5c0wvEAAAADCT2zvBBSJ2ggMAAPBtZua1Om2EcezYMX388ceaPXu2Dh06JEnav3+/SkpK6lUMAAAA4GlujwHeu3evMjIylJubq4qKCl122WWKjY3VjBkzVFFRoVdeecUTdQIAAACmcLsHePz48erRo4dzHeDjrrnmGq1cudLU4gAAAACzud0D/Nlnn+nzzz9XeHi4S3vr1q31008/mVYYAAAA4Alu9wDb7XZVVlZWaf/xxx8VGxtrSlEAAACAp7gdgC+//HLNnDnT+dpisaikpERZWVm68sorzawNAAAAMJ3by6D9+OOPGjhwoAzD0K5du9SjRw/t2rVLzZo10+rVq9WiRQtP1eoxLIMGAADg28zMa3VaB/jYsWN666239NVXX6mkpETdunVTZmamy6Q4f0IABgAA8G1m5jW3J8FJUqNGjXTLLbfU64MBAAAAb6hTAN6/f7/WrFmjwsJC2e12l2Pjxo0zpTAAAADAE9wOwPPmzdOoUaMUHh6upk2bymKxOI9ZLBYCMAAAAHya22OAU1NT9ec//1mTJ09WSEiddlL2OYwBBgAA8G1eHQN8+PBh3XjjjQETfgEAgJ/Iy3M83JWc7HgAv3E7AI8cOVKLFy/WpEmTPFEPAABA9WbPlqZNc/99WVnS1KmmlwP/5fYQiMrKSv3xj39UWVmZOnXqpLCwMJfjzzzzjKkFNoSAHQLBT8oAgEBS3fe1sjKpXz/H8zVrpOqWZOX7WkDw6hCI6dOn68MPP9Q555wjSVUmwcGH8JMyACCQVBdkS0t/f961qxQd3aAlwT+53QPcpEkTPfvss7r11ls9VFLDC6oeYH5SBgAEktJSKSbG8bykhAAcwLzaAxwREaG+ffvW60PRQPhJGQAAoAq3l3IYP368XnjhBU/UAgAAAHic2z3AGzdu1CeffKIPPvhA5557bpVJcP/3f/9nWnEAAACA2dwOwPHx8br22ms9UQsAAADgcW4H4Llz53qiDgAAAKBBsJ0bAAAAgkqtAnBGRobWr19/2vMOHTqkGTNm6KWXXqp3YQAAAIAn1GoIxPXXX6+hQ4fKarVq0KBB6tGjh1JSUhQZGakDBw4oOztba9as0dKlS3XVVVfp73//u6frBgAAAOqk1hthVFRUaPHixVq4cKHWrFmj4uJixwUsFqWnp2vgwIEaOXKkOnTo4NGCPSFgN8KoDguGAwACCd/XgoaZec3tneCOKy4uVllZmZo2bVplKTR/QwAGAMBP8X0taHh1J7jjrFarrFZrvT4cAAAAaGisAgEAAICgQgAGAABAUCEAAwAAIKgQgAEAABBU3A7AI0aM0OrVqz1RCwAAAOBxbgfg4uJiDRgwQO3atdPjjz+un376yRN1AQAAAB7hdgB+99139dNPP2n06NFauHChWrdurSuuuEJvv/22jh496okaAQAAANPUaQxw8+bNNXHiRH355ZfasGGD2rZtq//3//6fUlJSdM8992jXrl1m1wmz2CulVqFSx0ZS7ueO1wAAAEGkXpPg8vLytGLFCq1YsUKhoaG68sor9fXXXys9PV3PPvusWTXCLNlLpNk9pVujpaGNpYXXSTM7OtoBAPBHdOygDtzeCvno0aNasmSJ5s6dq48++kidO3fWn/70J918883Obeneeecd3X777Tpw4IBHijZbUGyFnL1EWjRc0sm32+L4z7B/S+mDG7oqAADqLnuJtPR+qSTv97a4FCljBt/TApBXt0JOTk6W3W7XTTfdpI0bN6pr165Vzrn44osVHx9fr8JgInultPwBVQ2/+q3NIi2fJLW/SgoJbeDiAACog5o6dmx5jnY6dnAKbgfgZ599Vtdff70iIyNrPCc+Pl45OTn1Kswv5eU5Hu5KTnY8PGXv55Jt/ylOMCTbT47z0v7guToAADADHTuoJ7cD8ODBg3X48OEqAbioqEiNGjUK3CEEtTF7tjRtmvvvy8qSpk41vRynkgJzzwMAwJvo2EE9uR2Ab7zxRg0aNEh33XWXS/uiRYu0ZMkSLV261LTi/M6oUdLgk37dUlYm9evneL5mjRQVVfV9nuz9laSYRHPPAwDAm+jYQT25HYA3bNigZ555pkr7RRddpAcffNCUovxWdUMZSkt/f961qxQd3aAlSZJa9XFMCrDlqfpfF1kcx1v1aejKAABwHx07qCe3l0GrqKjQsWPHqrQfPXpUZWVlphQFk4WEOmbESnKu+uD02+uMJxgnBQDwD8c7dqp8TzvOIsWdQccOauR2AO7Zs6fmzJlTpf2VV15R9+7dTSkKHpA+2DEjNibJtT0uhZmyAAD/QscO6sntIRCPPvqoBgwYoC+//FKXXnqpJGnlypXatGmTPvroI9MLhInSB0upF0mdEqRYi7RoqXTOJfwDAQDwP8c7dqpdB/gJOnZwSm73APft21fr1q1TamqqFi1apPfff19t27bVV199pT/8wbMzLZ944glZLBZNmDDB2VZeXq4xY8aoadOmiomJ0dChQ1VQwKD3GoWESnsrpe3HpJZ9CL8AAP+VPlgatVGaVyr957B0w9vShK8Jvzgtt3uAJalr166aP3++2bWc0qZNmzR79mx17tzZpf2ee+7Rf//7Xy1evFhWq1Vjx47Vtddeq7Vr1zZofQAAwAuOd+xIdOyg1uoUgO12u3bv3q3CwkLZ7XaXYxdeeKEphZ2opKREmZmZevXVV/Xoo48624uLi/WPf/xDCxYs0CWXXCJJmjt3rjp06KD169frggsuML0WAAAA+De3A/D69et18803a+/evTIM1yW1LBaLKisrTSvuuDFjxuiqq67SgAEDXALw5s2bdfToUQ0YMMDZ1r59e7Vs2VLr1q2rMQBXVFSooqLC+dpms5leMwAAAHyT2wH4z3/+s3r06KH//ve/Sk5OlsVS0xIk5njrrbe0ZcsWbdq0qcqx/Px8hYeHKz4+3qU9MTFR+fn5NV5z+vTpmlaXHdsAAADg99wOwLt27dLbb7+ttm3beqIeF/v27dP48eO1YsWKKlsv18fkyZM1ceJE52ubzabU1FTTrg8AAADf5fYqEL169dLu3bs9UUsVmzdvVmFhobp166ZGjRqpUaNGWrVqlZ5//nk1atRIiYmJOnLkiA4ePOjyvoKCAiUlJVV/UUkRERGKi4tzeQAAACA4uN0DfPfdd+vee+9Vfn6+OnXqpLCwMJfjJ6/SUB+XXnqpvv76a5e22267Te3bt9cDDzyg1NRUhYWFaeXKlRo6dKgkaefOncrNzVXv3r1NqwMAAACBw+0AfDxo3n777c42i8UiwzBMnwQXGxurjh07urRFR0eradOmzvaRI0dq4sSJSkhIUFxcnO6++2717t2bFSAAAABQLbcDcE5OjifqqLNnn31WISEhGjp0qCoqKjRw4EC9/PLL3i4LAAAAPspinLyWWRCy2WyyWq0qLi42fzzwIZtvbT1cWirFxDiel5RI0dHeqwUAgPri+1rQMDOv1WkjDEnKzs5Wbm6ujhw54tI+eDDbDzplL3HsUX7rb38ZF1732x7lM9imEQAAwEvcDsA//PCDrrnmGn399dfOsb+SnOsBe2IjDL+UvURaNFzSSR3stjxH+7B/E4IBAAC8wO1l0MaPH6+0tDQVFhaqcePG+uabb7R69Wr16NFDn376qQdK9EP2Smn5A6oSfqXf25ZPcpwHAACABuV2AF63bp0efvhhNWvWTCEhIQoJCVG/fv00ffp0jRs3zhM1+p+9n0u2/ac4wZBsPznOAwAAQINyOwBXVlYqNjZWktSsWTPt3+8Ieq1atdLOnTvNrc5flRSYex4AAABM4/YY4I4dO+rLL79UWlqaevXqpSeffFLh4eGaM2eO2rRp44ka/U9MornnAQAAwDRuB+C//e1vKi0tlSQ9/PDD+uMf/6g//OEPatq0qRYuXGh6gX6pVR/Hag+2PFU/DtjiON6qT0NXBgAAEPTcDsADBw50Pm/btq2+/fZbFRUVqUmTJs6VIIJeSKhjqbNFwyVZ5BqCf/szynjC8+sB5+U5HicqK/v9+bZtUlRU1fclJzseAAAAAcitAHz06FFFRUVp27ZtLlsUJyQkmF6Y30sf7FjqbOn9UskJITQuxRF+G2IJtNmzpWnTaj7er1/17VlZ0tSpHikJAADA29wKwGFhYWrZsiVr/dZW+mAp9SLv7QQ3apRUl41J6P0FAAABzO0hEA8++KD++te/6vXXX6fntzZCQqW9v/3A0LJPw26DzFAGAACAKtwOwC+++KJ2796tlJQUtWrVStEn7bm9ZcsW04oDAABwYm4LTOJ2AB4yZIgHygAAADgN5rbAJBbDMKpbpyuo2Gw2Wa1WFRcXKy4uztyLl5ZKMTGO5yUl0kk95gAAoJaq6wGuDXqAA4KZec3tHmAAAACvIMjCJG4H4JCQkFOu98sKEQAAAPBlbgfgd955x+X10aNHtXXrVv3rX//StFONywEAAAB8gNsB+Oqrr67Sdt111+ncc8/VwoULNXLkSFMKAwAAADwhxKwLXXDBBVq5cqVZlwMAAAA8wpQAXFZWpueff15nnHGGGZcDAAAAPMbtIRBNmjRxmQRnGIYOHTqkxo0b64033jC1OAAAAMBsbgfgZ5991iUAh4SEqHnz5urVq5eaNGlianEAAACA2dwOwLfeeqsHygAAAAAahtsBeO7cuYqJidH111/v0r548WIdPnxYI0aMMK04v8Me5QAAAD7P7QA8ffp0zZ49u0p7ixYtdOeddwZ3AGaPcgAAAJ/ndgDOzc1VWlpalfZWrVopNzfXlKL81qhR0uDB7r+P3l8AAIAG43YAbtGihb766iu1bt3apf3LL79U06ZNzarLPzGUAQAAwOe5vQ7wTTfdpHHjxul///ufKisrVVlZqU8++UTjx4/XjTfe6IkaAQAAANO43QP8yCOPaM+ePbr00kvVqJHj7Xa7XcOHD9fjjz9ueoEAAACAmSyGYRh1eeOuXbu0bds2RUVFqVOnTmrVqpXZtTUYm80mq9Wq4uJixcXFebscAAAAnMTMvOZ2D/Bx7dq1U7t27er14QAAAEBDc3sM8NChQzVjxowq7U8++WSVtYEBAAAAX+N2AF69erWuvPLKKu1XXHGFVq9ebUpRAAAAgKe4HYBLSkoUHh5epT0sLEw2m82UogAAAABPcTsAd+rUSQsXLqzS/tZbbyk9Pd2UogAAAABPcXsS3EMPPaRrr71W33//vS655BJJ0sqVK/Xmm29q8eLFphcIAAAAmMntADxo0CC9++67evzxx/X2228rKipKnTt31scff6z+/ft7okYAAADANHVeB7g627dvV8eOHc26XINhHWAAAADfZmZec3sM8MkOHTqkOXPmqGfPnurSpUt9LwcAAAB4VJ0D8OrVqzV8+HAlJyfrqaee0iWXXKL169ebWRsAAABgOrfGAOfn52vevHn6xz/+IZvNpmHDhqmiokLvvvsuK0AAAADAL9S6B3jQoEE655xz9NVXX2nmzJnav3+/XnjhBU/WBgAAAJiu1j3Ay5Yt07hx4zR69Gi1a9fOkzUBAAAAHlPrHuA1a9bo0KFD6t69u3r16qUXX3xRv/zyiydrAwAAAExX6wB8wQUX6NVXX1VeXp5GjRqlt956SykpKbLb7VqxYoUOHTrkyToBAAAAU9RrHeCdO3fqH//4h15//XUdPHhQl112mZYsWWJmfQ2CdYABAAB8m8+sA3zOOefoySef1I8//qg333yzXoUAAAAADcHUneD8FT3AAAAAvs1neoABAAAAf0MABgAAQFAhAAMAACCoEIABAAAQVAjAAAAACCoEYAAAAAQVAjAAAACCCgEYAAAAQYUADAAAgKBCAAYAAEBQIQADAAAgqBCAAQAAEFQIwAAAAAgqBGAAAAAEFQIwAAAAggoBGAAAAEGFAAwAAICgQgAGAABAUCEAAwAAIKgQgAEAABBUCMAAAAAIKgRgAAAABBUCMAAAAIIKARgAAABBhQAMAACAoEIABgAAQFAhAAMAACCoEIABAAAQVAjAAAAACCoEYAAAAAQVAjAAAACCCgEYAAAAQYUADAAAgKBCAAYAAEBQ8ekAPH36dJ1//vmKjY1VixYtNGTIEO3cudPlnPLyco0ZM0ZNmzZVTEyMhg4dqoKCAi9VDAAAAF/n0wF41apVGjNmjNavX68VK1bo6NGjuvzyy1VaWuo855577tH777+vxYsXa9WqVdq/f7+uvfZaL1YNAAAAX2YxDMPwdhG19fPPP6tFixZatWqVLrzwQhUXF6t58+ZasGCBrrvuOknSt99+qw4dOmjdunW64IILqr1ORUWFKioqnK9tNptSU1NVXFysuLi4BvlaAAAAUHs2m01Wq9WUvObTPcAnKy4uliQlJCRIkjZv3qyjR49qwIABznPat2+vli1bat26dTVeZ/r06bJarc5HamqqZwsHAACAz/CbAGy32zVhwgT17dtXHTt2lCTl5+crPDxc8fHxLucmJiYqPz+/xmtNnjxZxcXFzse+ffs8WToAAAB8SCNvF1BbY8aM0fbt27VmzZp6XysiIkIREREmVAUAAAB/4xc9wGPHjtUHH3yg//3vfzrzzDOd7UlJSTpy5IgOHjzocn5BQYGSkpIauEoAAAD4A58OwIZhaOzYsXrnnXf0ySefKC0tzeV49+7dFRYWppUrVzrbdu7cqdzcXPXu3buhywUAAIAf8OkhEGPGjNGCBQv03nvvKTY21jmu12q1KioqSlarVSNHjtTEiROVkJCguLg43X333erdu3eNK0AAAAAguPn0MmgWi6Xa9rlz5+rWW2+V5NgI495779Wbb76piooKDRw4UC+//LJbQyDMXFYDAAAA5jMzr/l0AG4oBGAAAADfFrTrAAMAAAD1RQAGAABAUCEAAwAAIKgQgAEAABBUCMAAAAAIKgRgAAAABBUCMAAAAIIKARgAAABBhQAMAACAoEIABgAAQFAhAAMAACCoEIABAAAQVAjAAAAACCoEYAAAAAQVAjAAAACCCgEYAAAAQYUADAAAgKBCAAYAAEBQIQADAAAgqBCAAQAAEFQIwAAAAAgqBGAAAAAEFQIwAAAAggoBGAAAAEGFAAwAAICgQgAGAABAUCEAAwAAIKg08nYBviwvz/FwV3Ky4wEAAADfQwA+hflP5WnBM+4n4JsnJuu+p0nAAAAAvogAfAqjNFv3aZrb7zukLElTTa8HAAAA9UcAPoXY+0ZJmYNd2sqKyhR1WT/H8xVrFJUQVfV9jH8AAADwWQTgU6lmMK+9sPT35527Si2iG7goAABQH3a7XUeOHPF2GThJWFiYQkNDG+SzCMAAACBoHDlyRDk5ObLb7d4uBdWIj49XUlKSLBaLRz+HAAwAAIKCYRjKy8tTaGioUlNTFRLCarC+wjAMHT58WIWFhZKkZA8PJyUAAwCAoHDs2DEdPnxYKSkpaty4sbfLwUmiohzzqgoLC9WiRQuPDocgAAMAgKBQWVkpSQoPD6/1e9gToGEd/8Hk6NGjBGAAAACzuDO+dPZsaZr7K6IqK0uaOtX99wU7T4/9PY4ADAAAUINRo6TBriuiqqxM6udYEVVr1khRVVdEpffXxxGA3WWvlFqFSrEWhfz0udTsEimkYZbsAAAADau6oQy2Q4YiUosUGlOuI/GRuqBDgkJDGqbn0iytW7fWhAkTNGHChFqd/+mnn+riiy/WgQMHFB8f79HaGgIB2B3ZSxT13/ulWx1r/0a9d530vxQpY4aUPvg0bwYAAP5u+fY8Zb2XraSbyyVJt70uJVsjlTUoXRkdze/2Pd2QgKysLE2tw1iLTZs2KTq69nsZ9OnTR3l5ebJarW5/li9i/Y/ayl4iLRouS6nrSHjDlictGu44DgAAAtby7Xka/cYWFRwqd2nPLy7X6De2aPn2OsyWO428vDznY+bMmYqLi3Npu++++5znGoahY8eO1eq6zZs3d2sljPDw8AZZn7ehEIBrw14pLX9AhgydfNstMmRI0vJJjvMAAEDAqbQbmvZ+tuN7/kmOt017P1uV9urOqLukpCTnw2q1ymKxOF9/++23io2N1bJly9S9e3dFRERozZo1+v7773X11VcrMTFRMTExOv/88/Xxxx+7XLd169aaOXOm87XFYtFrr72ma665Ro0bN1a7du20ZMnvnXuffvqpLBaLDh48KEmaN2+e4uPj9eGHH6pDhw6KiYlRRkaG8k5YMuPYsWMaN26c4uPj1bRpUz3wwAMaMWKEhgwZYuqfUV0QgGtj7+eSbX+V8HucRYZk+8lxHgAACDgbc4qUV1xe43FDUl5xuTbmFDVcUb+ZNGmSnnjiCe3YsUOdO3dWSUmJrrzySq1cuVJbt25VRkaGBg0apNzc3FNeZ9q0aRo2bJi++uorXXnllcrMzFRRUc1fz+HDh/XUU0/p9ddf1+rVq5Wbm+vSIz1jxgzNnz9fc+fO1dq1a2Wz2fTuu++a9WXXCwG4FuyH8k09DwAA+JfCQzWH37qcZ6aHH35Yl112mc466ywlJCSoS5cuGjVqlDp27Kh27drpkUce0VlnneXSo1udW2+9VTfddJPatm2rxx9/XCUlJdq4cWON5x89elSvvPKKevTooW7dumns2LFauXKl8/gLL7ygyZMn65prrlH79u314osv+swEOgJwLew4VLsxMrU9DwAA+JcWsZGmnmemHj16uLwuKSnRfffdpw4dOig+Pl4xMTHasWPHaXuAO3fu7HweHR2tuLg459bE1WncuLHOOuss5+vk5GTn+cXFxSooKFDPnj2dx0NDQ9W9e3e3vjZPYRWIWtjduJOaGAlKUpGqW+XEbkj5aqrdjTvp3IYvDwAAeFjPtAQlWyOVX1xe7Thgi6Qka6R6piU0dGlVVnO47777tGLFCj311FNq27atoqKidN111+nIkSOnvE5YWJjLa4vFIrvd7tb5hmHuGGhPoQe4FlrERWva0eGSHGH3RMdfTzv6/9QirvbLiQAAAP8RGmJR1qB0SapmQrxD1qB0n1gPeO3atbr11lt1zTXXqFOnTkpKStKePXsatAar1arExERt2rTJ2VZZWaktW7Y0aB01IQDXQs+0BH0Ve6HuOjpB+XL9yS5fTXXX0Qn6KvZCr/zUBwAAGkZGx2TNuqVblWEOSdZIzbqlm0fWAa6Ldu3a6f/+7/+0bds2ffnll7r55ptP2ZPrKXfffbemT5+u9957Tzt37tT48eN14MABn1hKjSEQtXD8p77Rb5RrRUUPnR/yrVrooAoVr0329rIrRLN85Kc+AADgORkdk9WnVZJanOvYCe6DxZG60Md2gnvmmWd0++23q0+fPmrWrJkeeOAB2Wy2Bq/jgQceUH5+voYPH67Q0FDdeeedGjhwoEJDvb+DrsXwl8EaHmSz2WS1WlVcXKy4uLgaz1u+PU9Z736jgpIKZ5snd38BAADmKS8vV05OjtLS0hQZWbvJanl5jseJysqkfv0cz9eskaKiqr6vui2Ug53dbleHDh00bNgwPfLII9Wec6p7VNu8Vhv0ALsho2Oy+jSL1Tc9+6gwponiXp+vC887w6d+6gMAAOaZPVuaNq3m48eD8MmysqQ67FAcUPbu3auPPvpI/fv3V0VFhV588UXl5OTo5ptv9nZpBGB3hYZY1Hvf15Kk0tQmhF8AAALYqFHS4MHuv4/eXykkJETz5s3TfffdJ8Mw1LFjR3388cfq0KGDt0sjAAMAANSEoQx1l5qaqrVr13q7jGqxCgQAAACCCgEYAAAAQYUADAAAgKDCGOBTqWbtk5Cist+ff7VNSmDtEwAAAlZ166DVBlnApxGAT6WatU9OjLtRl7H2CQAAAe1066DVhCzg0wjAp1LN2idlZVLf33Lv2hoWv+YnPgAAAkR166DVdicM+CwC8KlU8+sLe6m09fjzrpKiG7ooAADQYKobynDIJrUKlWItUsJh6ZwLpBDvb++L2mMSHAAAQG1lL5Fm95RujZaGNpYWXifN7Oho9wCLxXLKx9R6DLOwWCx69913TavVn9ADDAAAUBvZS6RFwyUZru22PEf7sH9L6XXYNu4U8k6YgLdw4UJNmTJFO3fudLbFxMSY+nnBgh7gU8jLk7ZscX1s2/b78W3bqh7fsqVuk0UBAIAPs1dKyx9QlfAr/d62fJLjPBMlJSU5H1arVRaLxaXtrbfeUocOHRQZGan27dvr5Zdfdr73yJEjGjt2rJKTkxUZGalWrVpp+vTpkqTWrVtLkq655hpZLBbn62BBD/ApnG7iZz8WgQAAIDjs/Vyy7T/FCYZk+8lxXtofGqSk+fPna8qUKXrxxRd13nnnaevWrbrjjjsUHR2tESNG6Pnnn9eSJUu0aNEitWzZUvv27dO+ffskSZs2bVKLFi00d+5cZWRkKDQ0uMYwE4BPobqJn7XBxE8AAAJMSYG555kgKytLTz/9tK699lpJUlpamrKzszV79myNGDFCubm5ateunfr16yeLxaJWrVo539u8eXNJUnx8vJKSkhqsZl9BAD4F1rAGAACSpJhEc8+rp9LSUn3//fcaOXKk7rjjDmf7sWPHZLVaJUm33nqrLrvsMp1zzjnKyMjQH//4R11++eUNUp+vIwADAACcTqs+UlyKY8JbteOALY7jrfo0SDklJSWSpFdffVW9evVyOXZ8OEO3bt2Uk5OjZcuW6eOPP9awYcM0YMAAvf322w1Soy8jAAMAAJxOSKiUMeO3VSAscg3BFsd/Mp5osPWAExMTlZKSoh9++EGZmZk1nhcXF6cbbrhBN9xwg6677jplZGSoqKhICQkJCgsLU2WluZP2/AUBGAAAoDbSBzuWOlt6v1RywpJPcSmO8GvyEminM23aNI0bN05Wq1UZGRmqqKjQF198oQMHDmjixIl65plnlJycrPPOO08hISFavHixkpKSFB8fL8mxEsTKlSvVt29fRUREqEmTJg1avzcRgAEAAGorfbCUepHUKcGxE9yipdI5l3hlJ7g//elPaty4sf7+97/rL3/5i6Kjo9WpUydNmDBBkhQbG6snn3xSu3btUmhoqM4//3wtXbpUISGOVXCffvppTZw4Ua+++qrOOOMM7dmzp8G/Bm+xGIZR3UCWoGKz2WS1WlVcXKy4uDhvlwMAADygvLxcOTk5SktLU2RkZO3elJdXdYH/srLf10Jds0aKiqr6PmbS18mp7pGZeY0eYAAAgJqwKUBAIgADAADUhE0BAhIBGAAAoCYMZQhIId4uAAAAAGhIBGAAABBUmP/vuxrq3hCAAQBAUDi+Q9qRI0e8XAlqcvjwYUlSWFiYRz+HMcAAACAoNGrUSI0bN9bPP/+ssLAw53q48D7DMHT48GEVFhYqPj7e+cOKpxCAAQBAULBYLEpOTlZOTo727t3r7XJQjfj4eCUlJXn8cwjAAAAgaISHh6tdu3YMg/BBYWFhHu/5PY4ADAAAgkpISEjtd4JDQAqYwS8vvfSSWrdurcjISPXq1UsbN270dkkAAADwQQERgBcuXKiJEycqKytLW7ZsUZcuXTRw4EAVFhZ6uzQAAAD4mIAIwM8884zuuOMO3XbbbUpPT9crr7yixo0b65///Ke3SwMAAICP8fsxwEeOHNHmzZs1efJkZ1tISIgGDBigdevWVfueiooKVVRUOF8XFxdLkmw2m2eLBQAAQJ0cz2lmbJbh9wH4l19+UWVlpRITE13aExMT9e2331b7nunTp2vatGlV2lNTUz1SIwAAAMzx66+/ymq11usafh+A62Ly5MmaOHGi87XdbldRUZGaNm0qi8Vy2vfbbDalpqZq3759iouL82Sp8BLucXDgPgcH7nPg4x4Hh+LiYrVs2VIJCQn1vpbfB+BmzZopNDRUBQUFLu0FBQU1LqQcERGhiIgIl7b4+Hi3PzsuLo6/aAGOexwcuM/Bgfsc+LjHwcGMHfz8fhJceHi4unfvrpUrVzrb7Ha7Vq5cqd69e3uxMgAAAPgiv+8BlqSJEydqxIgR6tGjh3r27KmZM2eqtLRUt912m7dLAwAAgI8JiAB8ww036Oeff9aUKVOUn5+vrl27avny5VUmxpklIiJCWVlZVYZRIHBwj4MD9zk4cJ8DH/c4OJh5ny2GGWtJAAAAAH7C78cAAwAAAO4gAAMAACCoEIABAAAQVAjAAAAACCoEYDe99NJLat26tSIjI9WrVy9t3LjR2yWhHlavXq1BgwYpJSVFFotF7777rstxwzA0ZcoUJScnKyoqSgMGDNCuXbu8UyzqZPr06Tr//PMVGxurFi1aaMiQIdq5c6fLOeXl5RozZoyaNm2qmJgYDR06tMrmOvBts2bNUufOnZ0bIfTu3VvLli1zHuceB54nnnhCFotFEyZMcLZxn/3f1KlTZbFYXB7t27d3HjfrHhOA3bBw4UJNnDhRWVlZ2rJli7p06aKBAweqsLDQ26WhjkpLS9WlSxe99NJL1R5/8skn9fzzz+uVV17Rhg0bFB0drYEDB6q8vLyBK0VdrVq1SmPGjNH69eu1YsUKHT16VJdffrlKS0ud59xzzz16//33tXjxYq1atUr79+/Xtdde68Wq4a4zzzxTTzzxhDZv3qwvvvhCl1xyia6++mp98803krjHgWbTpk2aPXu2Onfu7NLOfQ4M5557rvLy8pyPNWvWOI+Zdo8N1FrPnj2NMWPGOF9XVlYaKSkpxvTp071YFcwiyXjnnXecr+12u5GUlGT8/e9/d7YdPHjQiIiIMN58800vVAgzFBYWGpKMVatWGYbhuKdhYWHG4sWLnefs2LHDkGSsW7fOW2XCBE2aNDFee+017nGAOXTokNGuXTtjxYoVRv/+/Y3x48cbhsHf5UCRlZVldOnSpdpjZt5jeoBr6ciRI9q8ebMGDBjgbAsJCdGAAQO0bt06L1YGT8nJyVF+fr7LPbdarerVqxf33I8VFxdLkhISEiRJmzdv1tGjR13uc/v27dWyZUvus5+qrKzUW2+9pdLSUvXu3Zt7HGDGjBmjq666yuV+SvxdDiS7du1SSkqK2rRpo8zMTOXm5koy9x4HxE5wDeGXX35RZWVlld3lEhMT9e2333qpKnhSfn6+JFV7z48fg3+x2+2aMGGC+vbtq44dO0py3Ofw8HDFx8e7nMt99j9ff/21evfurfLycsXExOidd95Renq6tm3bxj0OEG+99Za2bNmiTZs2VTnG3+XA0KtXL82bN0/nnHOO8vLyNG3aNP3hD3/Q9u3bTb3HBGAAQWPMmDHavn27y3gyBI5zzjlH27ZtU3Fxsd5++22NGDFCq1at8nZZMMm+ffs0fvx4rVixQpGRkd4uBx5yxRVXOJ937txZvXr1UqtWrbRo0SJFRUWZ9jkMgailZs2aKTQ0tMpMw4KCAiUlJXmpKnjS8fvKPQ8MY8eO1QcffKD//e9/OvPMM53tSUlJOnLkiA4ePOhyPvfZ/4SHh6tt27bq3r27pk+fri5duui5557jHgeIzZs3q7CwUN26dVOjRo3UqFEjrVq1Ss8//7waNWqkxMRE7nMAio+P19lnn63du3eb+neZAFxL4eHh6t69u1auXOlss9vtWrlypXr37u3FyuApaWlpSkpKcrnnNptNGzZs4J77EcMwNHbsWL3zzjv65JNPlJaW5nK8e/fuCgsLc7nPO3fuVG5uLvfZz9ntdlVUVHCPA8Sll16qr7/+Wtu2bXM+evTooczMTOdz7nPgKSkp0ffff6/k5GRT/y4zBMINEydO1IgRI9SjRw/17NlTM2fOVGlpqW677TZvl4Y6Kikp0e7du52vc3JytG3bNiUkJKhly5aaMGGCHn30UbVr105paWl66KGHlJKSoiFDhnivaLhlzJgxWrBggd577z3FxsY6x4lZrVZFRUXJarVq5MiRmjhxohISEhQXF6e7775bvXv31gUXXODl6lFbkydP1hVXXKGWLVvq0KFDWrBggT799FN9+OGH3OMAERsb6xy7f1x0dLSaNm3qbOc++7/77rtPgwYNUqtWrbR//35lZWUpNDRUN910k7l/l+uxUkVQeuGFF4yWLVsa4eHhRs+ePY3169d7uyTUw//+9z9DUpXHiBEjDMNwLIX20EMPGYmJiUZERIRx6aWXGjt37vRu0XBLdfdXkjF37lznOWVlZcZdd91lNGnSxGjcuLFxzTXXGHl5ed4rGm67/fbbjVatWhnh4eFG8+bNjUsvvdT46KOPnMe5x4HpxGXQDIP7HAhuuOEGIzk52QgPDzfOOOMM44YbbjB2797tPG7WPbYYhmGYGNwBAAAAn8YYYAAAAAQVAjAAAACCCgEYAAAAQYUADAAAgKBCAAYAAEBQIQADAAAgqBCAAQAAEFQIwAAAAAgqBGAA8FFTp05V165dvV0GAAQcAjAAnOTWW2+VxWKp8sjIyPB2aR5x0UUXOb/GyMhIpaen6+WXX/Z2WQDgMQRgAKhGRkaG8vLyXB5vvvmmt8vymDvuuEN5eXnKzs7WsGHDNGbMGJ/5eo8cOeLtEgAEGAIwAFQjIiJCSUlJLo8mTZo4j1ssFr322mu65ppr1LhxY7Vr105LliyRJNntdp155pmaNWuWyzW3bt2qkJAQ7d27V5J08OBB/elPf1Lz5s0VFxenSy65RF9++WWNNdntdj388MM688wzFRERoa5du2r58uXO43v27JHFYtFbb72lPn36KDIyUh07dtSqVatO+/U2btxYSUlJatOmjaZOnery9eTm5urqq69WTEyM4uLiNGzYMBUUFEiSiouLFRoaqi+++MJZY0JCgi644ALntd944w2lpqY6X+/bt0/Dhg1TfHy8EhISdPXVV2vPnj3O47feequGDBmixx57TCkpKTrnnHNOWz8AuIMADAB1NG3aNA0bNkxfffWVrrzySmVmZqqoqEghISG66aabtGDBApfz58+fr759+6pVq1aSpOuvv16FhYVatmyZNm/erG7duunSSy9VUVFRtZ/33HPP6emnn9ZTTz2lr776SgMHDtTgwYO1a9cul/P+8pe/6N5779XWrVvVu3dvDRo0SL/++qtbX1tUVJSOHDkiu92uq6++WkVFRVq1apVWrFihH374QTfccIMkyWq1qmvXrvr0008lSV9//bUsFou2bt2qkpISSdKqVavUv39/SdLRo0c1cOBAxcbG6rPPPtPatWsVExOjjIwMl57elStXaufOnVqxYoU++OADt2oHgNMyAAAuRowYYYSGhhrR0dEuj8cee8x5jiTjb3/7m/N1SUmJIclYtmyZYRiGsXXrVsNisRh79+41DMMwKisrjTPOOMOYNWuWYRiG8dlnnxlxcXFGeXm5y2efddZZxuzZsw3DMIysrCyjS5cuzmMpKSkuNRiGYZx//vnGXXfdZRiGYeTk5BiSjCeeeMJ5/OjRo8aZZ55pzJgxo8avt3///sb48eMNwzCMY8eOGa+//rohyXjxxReNjz76yAgNDTVyc3Od53/zzTeGJGPjxo2GYRjGxIkTjauuusowDMOYOXOmccMNNxhdunRx/lm0bdvWmDNnjmEYhvH6668b55xzjmG3253Xq6ioMKKioowPP/zQ+eefmJhoVFRU1FgzANRHI6+mbwDwURdffHGVIQwJCQkurzt37ux8Hh0drbi4OBUWFkqSunbtqg4dOmjBggWaNGmSVq1apcLCQl1//fWSpC+//FIlJSVq2rSpyzXLysr0/fffV6nHZrNp//796tu3r0t73759qwyb6N27t/N5o0aN1KNHD+3YseOUX+/LL7+s1157TUeOHFFoaKjuuecejR49Wi+++KJSU1NdhjCkp6crPj5eO3bs0Pnnn6/+/fvrH//4hyorK7Vq1SpdfvnlSkpK0qeffqrOnTtr9+7duuiii5xf9+7duxUbG+vy+eXl5S5fd6dOnRQeHn7KmgGgrgjAAFCN6OhotW3b9pTnhIWFuby2WCyy2+3O15mZmc4AvGDBAmVkZDgDb0lJiZKTk51DB04UHx9f7/rdlZmZqQcffFBRUVFKTk5WSEjtR8hdeOGFOnTokLZs2aLVq1fr8ccfV1JSkp544gl16dJFKSkpateunSTH1929e3fNnz+/ynWaN2/ufB4dHV3/LwoAasAYYADwkJtvvlnbt2/X5s2b9fbbbyszM9N5rFu3bsrPz1ejRo3Utm1bl0ezZs2qXCsuLk4pKSlau3atS/vatWuVnp7u0rZ+/Xrn82PHjmnz5s3q0KHDKWu1Wq1q27atzjjjDJfw26FDB+3bt0/79u1ztmVnZ+vgwYPOz42Pj1fnzp314osvKiwsTO3bt9eFF16orVu36oMPPnCO/z3+de/atUstWrSo8nVbrdZT1ggAZiEAA0A1KioqlJ+f7/L45Zdf3LpG69at1adPH40cOVKVlZUaPHiw89iAAQPUu3dvDRkyRB999JH27Nmjzz//XA8++KBzRYWT/eUvf9GMGTO0cOFC7dy5U5MmTdK2bds0fvx4l/NeeuklvfPOO/r22281ZswYHThwQLfffrv7fwi/1dmpUydlZmZqy5Yt2rhxo4YPH67+/furR48ezvMuuugizZ8/3xl2ExIS1KFDBy1cuNAlAGdmZqpZs2a6+uqr9dlnnyknJ0effvqpxo0bpx9//LFONQKAuwjAAFCN5cuXKzk52eXRr18/t6+TmZmpL7/8Utdcc42ioqKc7RaLRUuXLtWFF16o2267TWeffbZuvPFG7d27V4mJidVea9y4cZo4caLuvfdederUScuXL9eSJUucwwuOe+KJJ5zDD9asWaMlS5ZU26tcGxaLRe+9956aNGmiCy+8UAMGDFCbNm20cOFCl/P69++vyspK51hfyRGKT25r3LixVq9erZYtW+raa69Vhw4dNHLkSJWXlysuLq5ONQKAuyyGYRjeLgIAUH979uxRWlqatm7dyhbKAHAK9AADAAAgqBCAAQAAEFQYAgEAAICgQg8wAAAAggoBGAAAAEGFAAwAAICgQgAGAABAUCEAAwAAIKgQgAEAABBUCMAAAAAIKgRgAAAABJX/DyUuxJX3DjyIAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSAklEQVR4nO3deXQUVf7+8acTQhKydAiQjTUsApF9NcCIIygRBwQdgQF+gKIyLAICLsxXCDgoi8owiAKuzCgIOo6KjILIKAjDvqgIIipClCwqkJAAAdL1+6OlpUlC0kl10km9X+f0sfrW7epPU6fh6eutWzbDMAwBAAAAFuFX3gUAAAAAZYkADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEsp1wC8adMm9enTR3FxcbLZbHrnnXfc9huGoenTpys2NlbBwcHq2bOnDh8+7NbnxIkTGjJkiMLDwxUREaGRI0cqOzu7DD8FAAAAKpJyDcA5OTlq3bq1nn322QL3z5s3TwsXLtSSJUu0fft2hYSEqFevXjp37pyrz5AhQ/Tll19q/fr1WrNmjTZt2qT77ruvrD4CAAAAKhibYRhGeRchSTabTW+//bb69esnyTn6GxcXp8mTJ2vKlCmSpMzMTEVHR2vZsmUaNGiQDh48qISEBO3cuVMdOnSQJK1du1a9e/fWDz/8oLi4uPL6OAAAAPBRVcq7gMIcOXJEaWlp6tmzp6vNbrerc+fO2rp1qwYNGqStW7cqIiLCFX4lqWfPnvLz89P27dvVv3//Ao+dm5ur3Nxc13OHw6ETJ06oRo0astls3vtQAAAAKBHDMHT69GnFxcXJz690kxh8NgCnpaVJkqKjo93ao6OjXfvS0tIUFRXltr9KlSqKjIx09SnI7NmzNXPmTJMrBgAAgLelpKSoTp06pTqGzwZgb5o6daomTZrkep6Zmal69eopJSVF4eHhV31tzk85CmnsnFqR881xhdQK8WqtAAAAkLKyslS3bl2FhYWV+lg+G4BjYmIkSenp6YqNjXW1p6enq02bNq4+GRkZbq+7ePGiTpw44Xp9QQIDAxUYGJivPTw8vMgA7H/OX5cir39YuELCCcAAAABlxYzpqj67DnB8fLxiYmK0YcMGV1tWVpa2b9+uxMRESVJiYqJOnTql3bt3u/r897//lcPhUOfOncu8ZgAAAPi+ch0Bzs7O1jfffON6fuTIEe3bt0+RkZGqV6+eJk6cqFmzZqlJkyaKj4/XtGnTFBcX51oponnz5kpKStK9996rJUuW6MKFCxo3bpwGDRrEChAAAAAoULkG4F27dun3v/+96/mlebnDhw/XsmXL9NBDDyknJ0f33XefTp06pW7dumnt2rUKCgpyvWb58uUaN26cevToIT8/P91xxx1auHBhmX8WAAAAVAw+sw5wecrKypLdbldmZmbRF8Fl5CgkOtS5nZ6tkCjmAAMAUJEYhqGLFy8qLy+vvEvBZfz9/VWlSpVC5/h6kteK4rMXwQEAAJjt/PnzSk1N1ZkzZ8q7FBSgWrVqio2NVdWqVb36PgRgAABgCQ6HQ0eOHJG/v7/i4uJUtWpVboDlIwzD0Pnz5/XTTz/pyJEjatKkSalvdnE1BGAAAGAJ58+fl8PhUN26dVWtWrXyLgdXCA4OVkBAgI4eParz58+7XfNlNgIwAACwFE9GFlNTnQ9PxcY6H/CMN0d9L0cABgAAKMTSpdLMmZ6/LjlZmjHD9HJgEgIwAABAIUaNkvr2dW87e1bq1s25vXmzFByc/3WM/vo2AjAAAEAhCprKkHXaUGDdE/IPPafzEUG6rnmk/P0q1sV0DRo00MSJEzVx4sRi9f/kk0/0+9//XidPnlRERIRXaysLBGAAAIBiWrs/VcnvHlDM4HOSpLtelWLtQUruk6CkFuYP+xa1SkVycrJmlGCuxc6dOxUSUvx7GXTp0kWpqamy2+0ev5cvIgADAAAUw9r9qRr92h5deQextMxzGv3aHi0e2s70EJx62RV4q1at0vTp03Xo0CFXW2hoqGvbMAzl5eWpSpWi412tWrU8qqNq1aqKiYnx6DW+rGwutQMAAKjA8hyGZr53IF/4leRqm/neAeU5zL3BbkxMjOtht9tls9lcz7/66iuFhYXpgw8+UPv27RUYGKjNmzfr22+/1W233abo6GiFhoaqY8eO+uijj9yO26BBAy1YsMD13Gaz6cUXX1T//v1VrVo1NWnSRKtXr3bt/+STT2Sz2XTq1ClJ0rJlyxQREaF169apefPmCg0NVVJSkltgv3jxosaPH6+IiAjVqFFDDz/8sIYPH65+/fqZ+mdUEgRgAACAIuw4ckKpmecK3W9ISs08px1HTpRdUb965JFHNGfOHB08eFCtWrVSdna2evfurQ0bNmjv3r1KSkpSnz59dOzYsaseZ+bMmRowYIA+//xz9e7dW0OGDNGJE4V/njNnzuipp57Sq6++qk2bNunYsWOaMmWKa//cuXO1fPlyvfLKK9qyZYuysrL0zjvvmPWxS4UADAAAUISM04WH35L0M9Njjz2mm266SY0aNVJkZKRat26tUaNGqUWLFmrSpIn++te/qlGjRm4jugUZMWKE/vSnP6lx48Z64oknlJ2drR07dhTa/8KFC1qyZIk6dOigdu3aady4cdqwYYNr/zPPPKOpU6eqf//+atasmRYtWuQzF9ARgAEAAIoQFVa8u5IVt5+ZOnTo4PY8OztbU6ZMUfPmzRUREaHQ0FAdPHiwyBHgVq1aubZDQkIUHh6ujIyMQvtXq1ZNjRo1cj2PjY119c/MzFR6ero6derk2u/v76/27dt79Nm8hYvgAAAAitApPlKx9iClZZ4rcB6wTVKMPUid4iPLurR8qzlMmTJF69ev11NPPaXGjRsrODhYf/zjH3X+/PmrHicgIMDtuc1mk8Ph8Ki/YZg7B9pbGAEGAAAogr+fTcl9EiQ5w+7lLj1P7pPgE+sBb9myRSNGjFD//v3VsmVLxcTE6Pvvvy/TGux2u6Kjo7Vz505XW15envbs2VOmdRSGAAwAAFAMSS1itXhou3zTHGLsQV5ZAq2kmjRpon//+9/at2+fPvvsMw0ePPiqI7necv/992v27Nl69913dejQIU2YMEEnT54scm3jssAUCAAAgGJKahGrLvVjFHWt805wa94M0vU+die4+fPn6+6771aXLl1Us2ZNPfzww8rKyirzOh5++GGlpaVp2LBh8vf313333adevXrJ39+/zGu5ks2oKJM1vCgrK0t2u12ZmZkKDw+/at+cjByFRDsXnc5Jz1ZIVPHvogIAAMrPuXPndOTIEcXHxysoqHgXq6WmOh+XO3tW6tbNub15sxQcnP91Bd1C2eocDoeaN2+uAQMG6K9//WuBfa52jjzJa0VhBBgAAKAQS5dKM2cWvv9SEL5ScrJUgjsUVypHjx7Vhx9+qO7duys3N1eLFi3SkSNHNHjw4PIujQAMAABQmFGjpL59PX8do7+Sn5+fli1bpilTpsgwDLVo0UIfffSRmjdvXt6lEYABAAAKw1SGkqtbt662bNlS3mUUiFUgAAAAYCkEYAAAAFgKARgAAACWwhxgAACAwhS0DlpxMHnYpxGAAQAAClPUOmiFYR00n0YABgAAKExB66AV904Y8FkEYAAAgMIUNJXhdJZU318Ks0mRZ6Sm10l+5X97XxQfF8EBAAAU14HV0tJO0ogQ6Y5q0qo/SgtaONu9wGazXfUxoxTTLGw2m9555x3Taq1IGAEGAAAojgOrpTeGSTLc27NSne0D/ikllOC2cVeRetkFeKtWrdL06dN16NAhV1toaKip72cVjAADAAAUxZEnrX1Y+cKv9Fvb2kec/UwUExPjetjtdtlsNre2lStXqnnz5goKClKzZs303HPPuV57/vx5jRs3TrGxsQoKClL9+vU1e/ZsSVKDBg0kSf3795fNZnM9twpGgAEAAIpy9H9S1vGrdDCkrB+d/eJ/VyYlLV++XNOnT9eiRYvUtm1b7d27V/fee69CQkI0fPhwLVy4UKtXr9Ybb7yhevXqKSUlRSkpKZKknTt3KioqSq+88oqSkpLk72+tOcwEYAAAgKJkp5vbzwTJycl6+umndfvtt0uS4uPjdeDAAS1dulTDhw/XsWPH1KRJE3Xr1k02m03169d3vbZWrVqSpIiICMXExJRZzb6CAAwAAFCU0Ghz+5VSTk6Ovv32W40cOVL33nuvq/3ixYuy2+2SpBEjRuimm25S06ZNlZSUpD/84Q+6+eaby6Q+X0cABgAAKEr9LlJ4nPOCtwLnAduc++t3KZNysrOzJUkvvPCCOnfu7Lbv0nSGdu3a6ciRI/rggw/00UcfacCAAerZs6f+9a9/lUmNvowADAAAUBQ/fylp7q+rQNjkHoJtzv8kzSmz9YCjo6MVFxen7777TkOGDCm0X3h4uAYOHKiBAwfqj3/8o5KSknTixAlFRkYqICBAeXnmXrRXURCAAQAAiiOhr3Ops/cfkrJ/W55M4XHO8GvyEmhFmTlzpsaPHy+73a6kpCTl5uZq165dOnnypCZNmqT58+crNjZWbdu2lZ+fn958803FxMQoIiJCknMliA0bNqhr164KDAxU9erVy7T+8kQABgAAKK6EvlLdG6SWkc47wb3xvtT0xnK5E9w999yjatWq6cknn9SDDz6okJAQtWzZUhMnTpQkhYWFad68eTp8+LD8/f3VsWNHvf/++/Lzc66C+/TTT2vSpEl64YUXVLt2bX3//fdl/hnKi80wjIImslhKVlaW7Ha7MjMzFR4eftW+ORk5Col2Ljqdk56tkKiQsigRAACU0rlz53TkyBHFx8crKCioeC9KTXU+Lnf2rNStm3N782YpODj/6wq6hTKKdLVz5EleKwojwAAAAIVZulSaObPw/ZeC8JWSk6VS3KYY3kUABgAAKMyoUVLfEsztZfTXpxGAAQAACsNUhkrJr7wLAAAAAMoSARgAAFgK1//7rrI6NwRgAABgCQEBAZKkM2fOlHMlKMylc3PpXHkLc4ABAIAl+Pv7KyIiQhkZGZKkatWqyWazlXNVkJwjv2fOnFFGRoYiIiJct3P2FgIwAACwjJiYGElyhWD4loiICNc58iYCMAAAsAybzabY2FhFRUXpwoUL5V0OLhMQEOD1kd9LCMAAAMBy/P39yyxswfdwERwAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAe8qRJ9X3l1pUkd+P/3M+BwAAQIVBAPbEgdUKfrWTNCJEuqOagt/9o7SghXRgdXlXBgAAgGIiABfXgdXSG8Nky0l1azayUqU3hhGCAQAAKggCcHE48qS1D8uQIdsVu2wyZEjS2keYDgEAAFABEICL4+j/pKzj+cLvJTYZUtaPzn4AAADwaQTgYnCcTjO1HwAAAMoPAbgYDp6uZmo/AAAAlB8CcDF8U62ljhuRchgF73cY0nGjhr6p1rJsCwMAAIDHCMDFEBUeopkXhklSvhB86fnMC/9PUeEhZVwZAAAAPEUALoZO8ZH6POx6jbkwUWmKdNuXphoac2GiPg+7Xp3iIws5AgAAAHyFTwfgvLw8TZs2TfHx8QoODlajRo3017/+VYbx2zCsYRiaPn26YmNjFRwcrJ49e+rw4cOm1uHvZ1NynwStc3TS73IXatD5RzX+/DgNOv+ofpf7d61zdFJynwT5+xW2TgQAAAB8hU8H4Llz52rx4sVatGiRDh48qLlz52revHl65plnXH3mzZunhQsXasmSJdq+fbtCQkLUq1cvnTt3ztRaklrEavHQdqoZGqxtjgStdnTRNkeCouzVtHhoOyW1iDX1/QAAAOAdNuPy4VQf84c//EHR0dF66aWXXG133HGHgoOD9dprr8kwDMXFxWny5MmaMmWKJCkzM1PR0dFatmyZBg0aVKz3ycrKkt1uV2ZmpsLDw6/eNy1bX3bqoozQ6gp/dbmub1ubkV8AAAAv8ySvFcWnR4C7dOmiDRs26Ouvv5YkffbZZ9q8ebNuueUWSdKRI0eUlpamnj17ul5jt9vVuXNnbd26tdDj5ubmKisry+1RXP5+NiWmfKHbDm5Sp7rVCb8AAAAVTJXyLuBqHnnkEWVlZalZs2by9/dXXl6eHn/8cQ0ZMkSSlJbmvPFEdHS02+uio6Nd+woye/ZszZw503uFAwAAwGf59AjwG2+8oeXLl2vFihXas2eP/vGPf+ipp57SP/7xj1Idd+rUqcrMzHQ9UlJSTKoYAAAAvs6nR4AffPBBPfLII665vC1bttTRo0c1e/ZsDR8+XDExMZKk9PR0xcb+dhFaenq62rRpU+hxAwMDFRgY6NXaAQAA4Jt8egT4zJkz8vNzL9Hf318Oh0OSFB8fr5iYGG3YsMG1PysrS9u3b1diYmKZ1goAAICKwadHgPv06aPHH39c9erV07XXXqu9e/dq/vz5uvvuuyVJNptNEydO1KxZs9SkSRPFx8dr2rRpiouLU79+/cq3eAAAAPgknw7AzzzzjKZNm6YxY8YoIyNDcXFxGjVqlKZPn+7q89BDDyknJ0f33XefTp06pW7dumnt2rUKCgoqx8oBAADgq3x6HeCy4sm6cjkZOQqJDnVup2crJCqkLEoEAACwNMusAwwAAACYjQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALCUKp50PnXqlN5++219+umnOnr0qM6cOaNatWqpbdu26tWrl7p06eKtOgEAAABTFGsE+Pjx47rnnnsUGxurWbNm6ezZs2rTpo169OihOnXq6OOPP9ZNN92khIQErVq1yts1AwAAACVWrBHgtm3bavjw4dq9e7cSEhIK7HP27Fm98847WrBggVJSUjRlyhRTCwUAAADMYDMMwyiq0y+//KIaNWoU+6Ce9i9vWVlZstvtyszMVHh4+FX75mTkKCQ61Lmdnq2QqJCyKBEAAMDSPMlrRSnWFAhPw2xFCr8AAACwFo8ugpOk3Nxcbd++Pd9FcPHx8d6oDwAAADBVsQPwli1b9Pe//13vvfeeLly4ILvdruDgYJ04cUK5ublq2LCh7rvvPv35z39WWFiYN2sGAAAASqxYUyD69u2rgQMHqkGDBvrwww91+vRp/fLLL/rhhx905swZHT58WI8++qg2bNiga665RuvXr/d23QAAAECJFGsE+NZbb9Vbb72lgICAAvc3bNhQDRs21PDhw3XgwAGlpqaaWiQAAABglmKtAlHZsQoEAACAbyvzVSAAAACAysLjVSCqV68um82Wr91msykoKEiNGzfWiBEjdNddd5lSIAAAAGAmjwPw9OnT9fjjj+uWW25Rp06dJEk7duzQ2rVrNXbsWB05ckSjR4/WxYsXde+995peMAAAAFAaHgfgzZs3a9asWfrzn//s1r506VJ9+OGHeuutt9SqVSstXLiQAAwAAACf4/Ec4HXr1qlnz5752nv06KF169ZJknr37q3vvvuu9NUBAAAAJvM4AEdGRuq9997L1/7ee+8pMjJSkpSTk8PNMAAAAOCTPJ4CMW3aNI0ePVoff/yxaw7wzp079f7772vJkiWSpPXr16t79+7mVgoAAACYoETrAG/ZskWLFi3SoUOHJElNmzbV/fffry5dupheYFlgHWAAAADfZuY6wB6PAEtS165d1bVr11K9MQAAAFAeSnQjjG+//VaPPvqoBg8erIyMDEnSBx98oC+//NLU4gAAAACzeRyAN27cqJYtW2r79u166623lJ2dLUn67LPPlJycbHqBAAAAgJk8DsCPPPKIZs2apfXr16tq1aqu9htvvFHbtm0ztTgAAADAbB4H4C+++EL9+/fP1x4VFaWff/7ZlKIAAAAAb/E4AEdERCg1NTVf+969e1W7dm1TigIAAAC8xeMAPGjQID388MNKS0uTzWaTw+HQli1bNGXKFA0bNswbNQIAAACm8TgAP/HEE2rWrJnq1q2r7OxsJSQk6Prrr1eXLl306KOPeqNGAAAAwDQluhGGJB07dkz79+9Xdna22rZtqyZNmphdW5nhRhgAAAC+rdxvhCFJ9erVU7169Ur15gAAAEBZK1YAnjRpUrEPOH/+/BIXAwAAAHhbsQLw3r173Z7v2bNHFy9eVNOmTSVJX3/9tfz9/dW+fXvzKwQAAABMVKwA/PHHH7u258+fr7CwMP3jH/9Q9erVJUknT57UXXfdpd/97nfeqRIAAAAwiccXwdWuXVsffvihrr32Wrf2/fv36+abb9bx48dNLbAscBEcAACAbzPzIjiPl0HLysrSTz/9lK/9p59+0unTp0tVDAAAAOBtHgfg/v3766677tK///1v/fDDD/rhhx/01ltvaeTIkbr99tu9USMAAABgGo+XQVuyZImmTJmiwYMH68KFC86DVKmikSNH6sknnzS9QAAAAMBMJb4RRk5Ojr799ltJUqNGjRQSUnHnwjIHGAAAwLf5xI0wQkJC1KpVq1K9OQAAAFDWijUH+M9//rN++OGHYh1w1apVWr58eamKAgAAALylWCPAtWrV0rXXXquuXbuqT58+6tChg+Li4hQUFKSTJ0/qwIED2rx5s1auXKm4uDg9//zz3q4bAAAAKJFizwFOT0/Xiy++qJUrV+rAgQNu+8LCwtSzZ0/dc889SkpK8kqh3sQcYAAAAN9m5hzgEl0Ed/LkSR07dkxnz55VzZo11ahRI9lstlIVUp4IwAAAAL6t3C+Cq169uus2yAAAAEBF4vGNMAAAAICKjAAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAspVirQLRt27bYy5zt2bOnVAUBAAAA3lSsANyvXz/X9rlz5/Tcc88pISFBiYmJkqRt27bpyy+/1JgxY7xSJAAAAGCWYgXg5ORk1/Y999yj8ePH669//Wu+PikpKeZWBwAAAJjM4znAb775poYNG5avfejQoXrrrbdMKepyP/74o4YOHaoaNWooODhYLVu21K5du1z7DcPQ9OnTFRsbq+DgYPXs2VOHDx82vQ4AAABUDh4H4ODgYG3ZsiVf+5YtWxQUFGRKUZecPHlSXbt2VUBAgD744AMdOHBATz/9tNtd6ObNm6eFCxdqyZIl2r59u0JCQtSrVy+dO3fO1FoAAABQOXh8K+SJEydq9OjR2rNnjzp16iRJ2r59u15++WVNmzbN1OLmzp2runXr6pVXXnG1xcfHu7YNw9CCBQv06KOP6rbbbpMk/fOf/1R0dLTeeecdDRo0yNR6AAAAUPF5PAL8yCOP6B//+Id2796t8ePHa/z48dqzZ49eeeUVPfLII6YWt3r1anXo0EF33nmnoqKi1LZtW73wwguu/UeOHFFaWpp69uzparPb7ercubO2bt1a6HFzc3OVlZXl9gAAAIA1eDwCLEkDBgzQgAEDzK4ln++++06LFy/WpEmT9Je//EU7d+7U+PHjVbVqVQ0fPlxpaWmSpOjoaLfXRUdHu/YVZPbs2Zo5c6ZXawcAAIBv8ngEuGHDhvrll1/ytZ86dUoNGzY0pahLHA6H2rVrpyeeeEJt27bVfffdp3vvvVdLliwp1XGnTp2qzMxM14PVKwAAAKzD4wD8/fffKy8vL197bm6ufvzxR1OKuiQ2NlYJCQlubc2bN9exY8ckSTExMZKk9PR0tz7p6emufQUJDAxUeHi42wMAAADWUOwpEKtXr3Ztr1u3Tna73fU8Ly9PGzZsUIMGDUwtrmvXrjp06JBb29dff6369etLcl4QFxMTow0bNqhNmzaSpKysLG3fvl2jR482tRYAAABUDsUOwJfuBmez2TR8+HC3fQEBAWrQoIGefvppU4t74IEH1KVLFz3xxBMaMGCAduzYoeeff17PP/+8q5aJEydq1qxZatKkieLj4zVt2jTFxcW53b0OAAAAuKTYAdjhcEhyjrru3LlTNWvW9FpRl3Ts2FFvv/22pk6dqscee0zx8fFasGCBhgwZ4urz0EMPKScnR/fdd59OnTqlbt26ae3ataavSQwAAIDKwWYYhlHag5w6dUoREREmlFM+srKyZLfblZmZWeR84JyMHIVEhzq307MVEhVSFiUCAABYmid5rSgeXwQ3d+5crVq1yvX8zjvvVGRkpGrXrq3PPvusVMUAAAAA3uZxAF6yZInq1q0rSVq/fr0++ugjrV27VrfccosefPBB0wsEAAAAzOTxjTDS0tJcAXjNmjUaMGCAbr75ZjVo0ECdO3c2vUAAAADATB6PAFevXt1144i1a9e6bkNsGEaB6wMDAAAAvsTjEeDbb79dgwcPVpMmTfTLL7/olltukSTt3btXjRs3Nr1AAAAAwEweB+C//e1vatCggVJSUjRv3jyFhjpXREhNTdWYMWNMLxAAAAAwkynLoFV0LIMGAADg28p1GbTLhYeH67vvvitVAQAAAEBZKlUAZvAYAAAAFU2pAjAAAABQ0ZQqAA8dOrTUczAAAACAslTsADxs2DC99dZbys7OdrUtXrxYNWvW9EphAAAAgDcUOwA3btxYTzzxhGrVqqVbbrlFixcv1vHjx71ZGwAAAGC6Ygfg6dOna/fu3Tp8+LD69Omjd955Rw0bNlT79u312GOPad++fV4sEwAAADCHx3OA69SpozFjxmjdunX66aef9PDDD+vQoUO68cYbVb9+fY0bN05ffvmlN2oFAAAASq1UF8GFhYVpwIABWr58uX766Se9/PLL8vf319atW82qDwAAADCVx7dCLoy/v7969OihHj16mHVIAAAAwHSlGgEeM2aMfv75Z7NqAQAAALyuVAH4tddeU1ZWllm1AAAAAF7HrZABAABgKaW+FbLNZjOjDgAAAKBMeHQRXHx8vFvgPXv2rLp3764qVX47zHfffWdedQAAAIDJPArAy5Ytc20bhqHevXtrzpw5ql27ttl1AQAAAF7hUQDu3r2723N/f39dd911atiwoalFAQAAAN5SqjnAzP8FAABARcMqEAAAALCUUt0J7vTp02bVAQAAAJSJUi+DBgAAAFQkJRoBPnXqlHbs2KGMjAw5HA63fcOGDTOlMAAAAMAbPA7A7733noYMGaLs7GyFh4e7XQhns9kIwAAAAPBpHk+BmDx5su6++25lZ2fr1KlTOnnypOtx4sQJb9QIAAAAmMbjAPzjjz9q/PjxqlatmjfqAQAAALzK4wDcq1cv7dq1yxu1AAAAAF7n8RzgW2+9VQ8++KAOHDigli1bKiAgwG1/3759TSsOAAAAMJvN8PBuFn5+hQ8a22w25eXllbqospaVlSW73a7MzEyFh4dftW9ORo5CokOd2+nZCokKKYsSAQAALM2TvFYUj0eAr1z2DAAAAKhIuBEGAAAALKVEN8LIycnRxo0bdezYMZ0/f95t3/jx400pDAAAAPAGjwPw3r171bt3b505c0Y5OTmKjIzUzz//rGrVqikqKooADAAAAJ/m8RSIBx54QH369NHJkycVHBysbdu26ejRo2rfvr2eeuopb9QIAAAAmMbjALxv3z5NnjxZfn5+8vf3V25ururWrat58+bpL3/5izdqBAAAAEzjcQAOCAhwLYUWFRWlY8eOSZLsdrtSUlLMrQ4AAAAwmcdzgNu2baudO3eqSZMm6t69u6ZPn66ff/5Zr776qlq0aOGNGgEAAADTeDwC/MQTTyg2NlaS9Pjjj6t69eoaPXq0fvrpJz3//POmFwgAAACYyeMR4A4dOri2o6KitHbtWlMLAgAAALypRDfCuHjxoj766CMtXbpUp0+fliQdP35c2dnZphYHAAAAmM3jEeCjR48qKSlJx44dU25urm666SaFhYVp7ty5ys3N1ZIlS7xRJwAAAGAKj0eAJ0yYoA4dOrjWAb6kf//+2rBhg6nFAQAAAGbzeAT4008/1f/+9z9VrVrVrb1Bgwb68ccfTSsMAAAA8AaPR4AdDofy8vLytf/www8KCwszpSgAAADAWzwOwDfffLMWLFjgem6z2ZSdna3k5GT17t3bzNoAAAAA03k8BeLpp59Wr169lJCQoHPnzmnw4ME6fPiwatasqddff90bNQIAAACm8TgA16lTR5999plWrlypzz//XNnZ2Ro5cqSGDBnidlEcAAAA4Is8DsCSVKVKFQ0dOtTsWgAAAACvK1EAPn78uDZv3qyMjAw5HA63fePHjzelMAAAAMAbPA7Ay5Yt06hRo1S1alXVqFFDNpvNtc9msxGAAQAA4NM8DsDTpk3T9OnTNXXqVPn5lehOygAAAEC58TjBnjlzRoMGDSL8AgAAoELyOMWOHDlSb775pjdqAQAAALzOZhiG4ckL8vLy9Ic//EFnz55Vy5YtFRAQ4LZ//vz5phZYFrKysmS325WZmanw8PCr9s3JyFFIdKhzOz1bIVEhZVEiAACApXmS14ri8Rzg2bNna926dWratKkk5bsIDgAAAPBlJboT3Msvv6wRI0Z4oRwAAADAuzwOwIGBgeratas3agEAAChcaqrz4anYWOcD+JXHAXjChAl65plntHDhQm/UAwAAULClS6WZMz1/XXKyNGOG6eWg4vI4AO/YsUP//e9/tWbNGl177bX5LoL797//bVpxAAAALqNGSX37uredPSt16+bc3rxZCg7O/zpGf3EFjwNwRESEbr/9dm/UAgAAULiCpjLk5Py23aaNFMLqTCiaxwH4lVde8UYdAAAAQJngdm4AAACwlGIF4KSkJG3btq3IfqdPn9bcuXP17LPPlrowAAAAwBuKNQXizjvv1B133CG73a4+ffqoQ4cOiouLU1BQkE6ePKkDBw5o8+bNev/993XrrbfqySef9HbdAAAAQIkUKwCPHDlSQ4cO1ZtvvqlVq1bp+eefV2ZmpiTn3d8SEhLUq1cv7dy5U82bN/dqwQAAAEBpFPsiuMDAQA0dOlRDhw6VJGVmZurs2bOqUaNGvqXQAAAAAF/l8SoQl9jtdtntdjNrAQAAALyOVSAAAABgKQRgAAAAWAoBGAAAAJbiUQDOy8vTpk2bdOrUKS+VAwAAAHiXRwHY399fN998s06ePOmtegAAAACv8ngKRIsWLfTdd995oxYAAADA6zwOwLNmzdKUKVO0Zs0apaamKisry+0BAAAA+DKP1wHu3bu3JKlv376y2WyudsMwZLPZlJeXZ151AAAAgMk8DsAff/yxN+ooljlz5mjq1KmaMGGCFixYIEk6d+6cJk+erJUrVyo3N1e9evXSc889p+jo6HKrEwAAAL7L4wDcvXt3b9RRpJ07d2rp0qVq1aqVW/sDDzyg//znP3rzzTdlt9s1btw43X777dqyZUu51AkAAADfVqJbIZ86dUovvfSSDh48KEm69tprdffdd3vt1sjZ2dkaMmSIXnjhBc2aNcvVnpmZqZdeekkrVqzQjTfeKEl65ZVX1Lx5c23btk3XXXedV+oBAABAxeXxRXC7du1So0aN9Le//U0nTpzQiRMnNH/+fDVq1Eh79uzxRo0aO3asbr31VvXs2dOtfffu3bpw4YJbe7NmzVSvXj1t3bq10OPl5uZy8R4AAIBFeTwC/MADD6hv37564YUXVKWK8+UXL17UPffco4kTJ2rTpk2mFrhy5Urt2bNHO3fuzLcvLS1NVatWVUREhFt7dHS00tLSCj3m7NmzNXPmTFPrBAAAQMVQohHghx9+2BV+JalKlSp66KGHtGvXLlOLS0lJ0YQJE7R8+XIFBQWZdtypU6cqMzPT9UhJSTHt2AAAAPBtHgfg8PBwHTt2LF97SkqKwsLCTCnqkt27dysjI0Pt2rVTlSpVVKVKFW3cuFELFy5UlSpVFB0drfPnz+e7NXN6erpiYmIKPW5gYKDCw8PdHgAAALAGj6dADBw4UCNHjtRTTz2lLl26SJK2bNmiBx98UH/6059MLa5Hjx764osv3NruuusuNWvWTA8//LDq1q2rgIAAbdiwQXfccYck6dChQzp27JgSExNNrQUAAACVg8cB+KmnnpLNZtOwYcN08eJFSVJAQIBGjx6tOXPmmFpcWFiYWrRo4dYWEhKiGjVquNpHjhypSZMmKTIyUuHh4br//vuVmJjIChAAAAAokEcBOC8vT9u2bdOMGTM0e/Zsffvtt5KkRo0aqVq1al4psCh/+9vf5OfnpzvuuMPtRhgAAABAQWyGYRievCAoKEgHDx5UfHy8t2oqc1lZWbLb7crMzCxyPnBORo5CokOd2+nZCokKKYsSAQBAQXJypFDnv8vKzpZC+He5svIkrxXF44vgWrRooe+++65UbwoAAACUF48D8KxZszRlyhStWbNGqamp3FACAAAAFYrHF8H17t1bktS3b1/ZbDZXu2EYstlsysvLM686AAAAwGQeB+CPP/7YG3UAAAAAZcKjAHzhwgU99thjWrJkiZo0aeKtmgAAAACv8WgOcEBAgD7//HNv1QIAAAB4nccXwQ0dOlQvvfSSN2oBAAAAvM7jOcAXL17Uyy+/rI8++kjt27dXyBXr7c2fP9+04gAAAACzeRyA9+/fr3bt2kmSvv76a7d9l68KAQAAAPgiVoEAAACApXg8B/iSb775RuvWrdPZs2clOdcBBgAAAHydxwH4l19+UY8ePXTNNdeod+/eSk1NlSSNHDlSkydPNr1AAAAAwEweB+AHHnhAAQEBOnbsmKpVq+ZqHzhwoNauXWtqcQAAAIDZPJ4D/OGHH2rdunWqU6eOW3uTJk109OhR0woDAAAAvMHjEeCcnBy3kd9LTpw4ocDAQFOKAgAAALzF4wD8u9/9Tv/85z9dz202mxwOh+bNm6ff//73phYHAAAAmM3jKRDz5s1Tjx49tGvXLp0/f14PPfSQvvzyS504cUJbtmzxRo0VR2qq8+Gp2FjnAwAAAF7ncQBu0aKFvv76ay1atEhhYWHKzs7W7bffrrFjxyrW6iFu6VJp5kzPX5ecLM2YYXo5AAAAyM9meGkB3zFjxuixxx5TzZo1vXF4U2VlZclutyszM1Ph4eFX7ZuTkaOQ6FDndnq2QqIuuxV0QSPAZ89K3bo5tzdvloKD8x+UEWAAAEomJ0cKdf67rOxsKSTk6v1RYXmS14ri8Qhwcb322muaMmVKhQjApikoyObk/Lbdpg1fTAAAgHJW4jvBFYU7wwEAAMAXeS0AAwAAAL6IAAwAAABLIQADAADAUgjAAAAAsBSvBeChQ4eWeokKAAAAwGweB+C1a9dq8+bNrufPPvus2rRpo8GDB+vkyZOu9sWLF1trCTQAAABUCB4H4AcffFBZWVmSpC+++EKTJ09W7969deTIEU2aNMn0AgEAAAAzeXwjjCNHjighIUGS9NZbb+kPf/iDnnjiCe3Zs0e9e/c2vUAAAADATB6PAFetWlVnzpyRJH300Ue6+eabJUmRkZGukWEAAADAV3k8AtytWzdNmjRJXbt21Y4dO7Rq1SpJ0tdff606deqYXiAAAABgJo9HgBctWqQqVaroX//6lxYvXqzatWtLkj744AMlJSWZXiAAAABgJo9HgOvVq6c1a9bka//b3/5mSkEAAACAN3kcgCUpLy9Pb7/9tg4ePChJat68ufr166cqVUp0OAAAAKDMeJxYv/zyS/Xp00fp6elq2rSpJGnu3LmqVauW3nvvPbVo0cL0IgEAAACzeDwH+J577lGLFi30ww8/aM+ePdqzZ49SUlLUqlUr3Xfffd6oEQAAADCNxyPA+/bt065du1S9enVXW/Xq1fX444+rY8eOphYHAAAAmM3jAHzNNdcoPT1d1157rVt7RkaGGjdubFphPiE11fm4jN+Js79tf75PigzO/7rYWOcDAAAAPqdYAfjyG1zMnj1b48eP14wZM3TddddJkrZt26bHHntMc+fO9U6V5eT0U0sVNn+mW9vlcTf4pm4Fv25SssKenuG9wgAAAFBixQrAERERstlsrueGYWjAgAGuNsMwJEl9+vRRXl6eF8osH0s1SivU1+PXDVaspnihHgAAAJResQLwxx9/7O06fNKQKbG6cYjnUxmY/QAAAOC7ihWAu3fvXqyD7d+/v1TF+Bqm8gIAAFQ+Hi+DdqXTp0/r+eefV6dOndS6dWszagIAAAC8psQBeNOmTRo+fLhiY2P11FNP6cYbb9S2bdvMrA0AAAAwnUfLoKWlpWnZsmV66aWXlJWVpQEDBig3N1fvvPOOEhISvFUjAAAAYJpijwD36dNHTZs21eeff64FCxbo+PHjeuaZZ7xZGwAAAGC6Yo8Af/DBBxo/frxGjx6tJk2aeLMmAAAAwGuKPQK8efNmnT59Wu3bt1fnzp21aNEi/fzzz96sDQAAADBdsQPwddddpxdeeEGpqakaNWqUVq5cqbi4ODkcDq1fv16nT5/2Zp0AAACAKTxeBSIkJER33323Nm/erC+++EKTJ0/WnDlzFBUVpb59Pb9rGgAAAFCWSrUOcNOmTTVv3jz98MMPev31182qCQAAAPCaUt8IQ5L8/f3Vr18/rV692ozDAQAAAF5jSgAGAAAAKgoCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsJQq5V0AUO5SU50PT8XGOh8AAKBC8fkR4NmzZ6tjx44KCwtTVFSU+vXrp0OHDrn1OXfunMaOHasaNWooNDRUd9xxh9LT08upYlQ4S5dK7dt7/li6tLwrBwAAJWAzDMMo7yKuJikpSYMGDVLHjh118eJF/eUvf9H+/ft14MABhYSESJJGjx6t//znP1q2bJnsdrvGjRsnPz8/bdmypVjvkZWVJbvdrszMTIWHh5v7AXJypNBQ53Z2tvRrzfAhBY0Anz0rdevm3N68WQoOzv86RoABoPzx76xlmJnXfD4AX+mnn35SVFSUNm7cqOuvv16ZmZmqVauWVqxYoT/+8Y+SpK+++krNmzfX1q1bdd111+U7Rm5urnJzc13Ps7KyVLduXQIwfsN5A4CKgb+vLcPMAOzzUyCulJmZKUmKjIyUJO3evVsXLlxQz549XX2aNWumevXqaevWrQUeY/bs2bLb7a5H3bp1vV84AAAAfEKFCsAOh0MTJ05U165d1aJFC0lSWlqaqlatqoiICLe+0dHRSktLK/A4U6dOVWZmpuuRkpLi7dIBAADgIyrUKhBjx47V/v37tXnz5lIdJzAwUIGBgSZVBQAAgIqkwowAjxs3TmvWrNHHH3+sOnXquNpjYmJ0/vx5nTp1yq1/enq6YmJiyrhKAABQphx5Un1/qUUV6dj/nM+BIvh8ADYMQ+PGjdPbb7+t//73v4qPj3fb3759ewUEBGjDhg2utkOHDunYsWNKTEws63IBAEBZObBaWtpJGhEi3VFNWvVHaUELZztwFT4/BWLs2LFasWKF3n33XYWFhbnm9drtdgUHB8tut2vkyJGaNGmSIiMjFR4ervvvv1+JiYkFrgBR5i79Mg2zOX+ZNr1R8vMv76oAAKjYDqyW3hgm6YrFrLJSne0D/ikl9C2X0uD7fH4ZNJvNVmD7K6+8ohEjRkhy3ghj8uTJev3115Wbm6tevXrpueeeK/YUCK+tA3xgtfT+Q1L2ZWvMhsdJSXP5Uvo6ltUBAN/lyHOO9GYdL6SDzfnv7cQvGHSqRCy9DrA3eCUAF/bLVL8Gen6Z+jYCMAD4riOfSv/4Q9H9hq+R4n/n/XpQJiy9DnCF4MiT1j6s/OFXv7WtfYSJ+gAAlER2urn9YDkEYG84+r+r/G8ZSTKkrB+d/QAAgGdCo83tB8shAHsDv0wBAPCe+l2cc3xV8HVCzjnAtZ39gAIQgL2BX6YAAHiPn7/zgnJJ+UPwr8+T5nABHApFAPYGfpkCAOBdCX2dF5SHXrHiU3gcF5qjSD6/DnCFdOmX6RvD5AzBl18Mxy9TAABMkdBXqnuD1DLSud7+G++z3j6KhQDsLZd+mRa4DvCcsvtlmprqfHgqNtb5AADAl/n5S0d/XVWpXhfCL4qFAOxNvvDLdOlSaeZMz1+XnCzNmGF6OQDgNfzgB1BMBGBvK+9fpqNGSX2vGG0+e1bq1s25vXmzFByc/3X8YwCgouEHP4BiIgBXdgWNbOTk/Lbdpg13OQNQOfCDH0AxEYABAJUDP/gBFBPLoAEAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSqpR3AfAxqanOh6diY50PAAAAH0cAhrulS6WZMz1/XXKyNGOG6eWUG0eeVN9fCrNJx/4nNb1R8vMv76oAAIAJCMBWdLVwN2qU1Leve/+zZ6Vu3ZzbmzdLwcH5j1mZRn8PrJbef0gaEeJ8vuqPUniclDRXSuh79dcCAACfRwC2mqLCXUFTGXJyfttu00YKCSmzcsvcgdXSG8MkGe7tWanO9gH/JAQDAFDBcRGclVwKd9lXzPG9FO4OrC6funyFI09a+7DyhV/pt7a1jzj7AQCACosAbBWEu6Id/Z+UdfwqHQwp60dnPwAAUGERgK2CcFe07HRz+wEAAJ/EHODyVJZLjhHuihYabW4/AADgkwjAJiooz/qdldr8ur1vn+S4bAGF2KVLFft8CZYcu+8+52oNxRUbS7grjvpdnBcEZqWq4KkiNuf++l3KujIAAGAiArCJClpCt5qkS2sodO0mnblsX4xGKVZ9NeryPHu1JceWLpWef/63R3ElJ0vTpxHuiuLn71wN441hkmxy/3OyOf+TNIf1gAEAqOBshmEUlIYsJSsrS3a7XZmZmQoPDy/xcQoaAc49kaPEm0IlSVvXZyswMv8SYm4zGnJypFBnf2Vnuy85VtAbFHeN3tjYy5b4kgoMd4Ut8XW1miqjS0vFXb5aRnhtZ/hlCTSgYjmdJbWMdK57/sb73NSmMrLav1EWZlZekwjAksz9A71STkaOQqKdX8yc9GyFRBXxxfT0i+xp/5KEOyv+5cI/mkDFV+Dfd9zUptKx4r9RFmVmXmMKhNUk9JXq3lBouPN0HvMlJbkuz6f5+UtHf10Srl4Xwi9Q0XBTGwBXQQC2oquEO0/nMV+SnCzNmOGFWgHAU0Wue25zrnve7FZ+3AIWRQAuR2Ux2urpeyQmSq+9JtWsKdWq5WzLPSHpJuf2R+ulwMiCawIAn+DJuufxvyuzsgD4DgJwOSqL0VYz3iMn47f2Vq2kkKjivXdFwbQPoJJh3XMARSAAl6NRo6S+V0xBM3u0tSzeo6Jj2gdQybDuOYAiEIDLUUEjiGaPtpbFe1R0/EgAKhluagOgCATgCqTc/le9I0+q7y+F2eT34/+kmpVrSTB+JACVDDe1ASq2ggKP5FzmziQE4AqkXP5X/YHVCv7PQ9II57qKwe/+UfqYdTQB+LiEvs6lzgpcB5ib2gA+raDAYzICcAVS5v+r/td1NG2sowmgIipi3XNUPFy0bBEFBZ7L73xrAgJwBVKm/6v+snU0bfl2so4mAN9TcDjyV5tf1z3fd6KLHPvy/31FOKo4uGjZGlIVq1S5fyn9lKOGJr4HAdjXeDrf1lvzc1lHE0AFQziq/Lho2RoK+y4XMCu4xAjAXpbnMLS1bktlhFZXeMpJXV+zmvz98o+pSvJ8vq035+eyjiaACoZwVPlx0bI1FPVdNgMB2IvW7k9V8jtfKn3wbGfDm58p9sNDSu6ToKQWV3yDPZ1v6+35uayjCaCCIRwBlUNh3+U8E9/Dz8Rj4TJr96dq9Gt7lJ6d69aelnlOo1/bo7X7LxvIL3K+rZzzbR15JetfEpfW0SzgHZxsUnht1tEEAAAVDgHYC/Ichma+d6DA5dcvtc1874DyHL8+82S+bUn6F1Df1rot9W7z67Uj5eRvdVzu13U0DUmOK3Y5Ln2OSryOZrH+jAAAQIXEFAgv2HHkhFIzzxW635CUmnlOO46cUGKjGp7Pty3F/FxPpmWsdXTUO+cnaHrAPxVnO+FqTzNq6LEL/0/9HB2VVLxKKhSPpq4AAADvc+RJdf2klCuH5UqGAOwFGacLD78F9vN0vm0J5+dempZx5VjmpWkZi4e2cwW8S6PYqY5O+jC3gzr5faUonVKGIrTD0UyG/PTZewd0U0JM4Rf1VUCe/BkBAIAy8OtF/9lDQqQ5p005JFMgvCAqLMijfnl1E5WuGirs/7I7DClNNZRXN9HZ8Ov83IJmAEu/zgy+Yn6up9MyLh/FdshP2xwJWu3oom2OBDnk5zaKXVl4PHUFgM9jOlPlxzmu5C5d9J9j5iJoBGCv6BQfqVh70NUuH1OsPUid4p3r8ew4mqnp5/+fJOULwZeeJ5//f9pxNNP5xM9fe699RIZhFNjfMAztvfZht/m5nkzLkEowil0JePpnBMC3rd2fqpte3KY/DZ6tCX0f0l1vfqZuc//rfhEyKjTOcSX360X/RqFDfiVHAPYCfz+bkvskSMq/hsKl58l9ElxTBzJOn9M6RyeNvjBRaXJfpDJNNTT6wkStc3Ryhc08h6Exe+oU2n/MhYkas6eO269gTwOtp6PYlYEVQz9QWXm0Eg8qJM6xBfx60b83JloyB9hLklrEavHQds6LqS77csbYg/JdTHUpRK5zdNL6AubbOn79nXKp36WRylRdpf/lF9nJ80B7aRQ7LfNcgVMCbL9+lkuj2JWBFUM/UBkVNZ3JJud0psp2DYOVcI6twXE6zWsjtQRgL0pqEasuNcP0ZacuzjvBvbpc17etne/LeHnYvDTf9nJXhs3LRyAL6n/J5f08DbSXRrFHv7ZHNsntNQWNYlcGVgz9QGXk8Uo8qHA4x9Zw8HQ1XeulYzMFwsv8/WxKTPlCtx3cpE51qxcYGD2dMlGSkUpP30P6bRQ7KjTQrX+MPahSroZQkj8jAL6H6UyVH+fYGr6p1lLHjchCFwkoDQKwj/AkbHp6kV1J3uPy16y/5zq9vmKq/r56nl65s7U2P3xjpQu/l1gt9AOVEdOZKj/OsTVEhYdo5oVhkvIvElBaTIHwIcWdMlGa6QnFfY8r3y8x5QtJUk4ho9iVSUn+jAD4DqYzVX6cY2voFB+pSWHXa8xpaXrAPxWqX0w7NgHYxxQ3bBb7IrvUVOfjMgEnzrre4+zJo/Lfl5H/DWJjnQ+LslroByoTK17DYDWcY2v47Tyf0/rcDmpzYZ+k6aYcmwBcgRVrpHLpUmnmTLfXBV++fVO3gg+enCzNmGF6zQBQFjxZiQcVE+fYGi4/zzt/aWbacQnAFVyRI5WjRkl9+7o1nT0rdf01927ZLAUHKz8Lj/4CqByYzlT5cY6t4dJ53tGhs24y6ZgE4MqugKkMjhxp76XtNpJCyrooACgbTGeq/DjH1uDvZ1OnHw+YdjxWgQAAAIClEIABAABgKQRgAAAAWAoBGAAAAJbCRXAVSQFr+vqdOPvb9uf7pMgClnTwZE3fsngPH1PAR1buCSnx1+3PP5cCC1hLvQJ/ZKBS4rsMVA7p+1J14kv3L/OFrLNqYOJ7EIBNVNgJa/Xr9rdv7VNA+G/hMfv7n5T7488KrF1ToQ1qFdk/dPlS1f3gebfjF2dN32+GJCtr0gzX87O/5Vnt2+e+DFr4/KVqvNzzdYNPT0pW2NMzCtzn6wpYKlnVJOX8ut3zJulMAa9jqWTAt/Bdrvz4kWMNBycu1Q0bZ+ZrzzLxPWyGYZh8d+WKJysrS3a7XZmZmQoPDy/xcT65YUaBJ8xsS3WflmpUsfunKlZpKt43P0apilVq0R2vMHhSrKY8XTH/dinoL1S/szlq0y1UkrRvc7YcwfnXiuMvVMC38F2u/GbMKOhHTo5y5DzHIcrWmQLW9uRHTsVS0ICiJGWfyVan+7qXOq9JBGBJ5gXgwk5YYQoaAb6akyelU6ek4Iaxsjcr3t/WP/3k/G+tog/v6v/zz1LNmsV/jVQJ/wHJyZFCnX+hKjtbCmGxZKBC4rtcqfAjx9rMymtSJZoC8eyzz+rJJ59UWlqaWrdurWeeeUadOnUq0xqi28Qqug3fMAAAvKHAIJvz22abNuLmTiiWSrEKxKpVqzRp0iQlJydrz549at26tXr16qWMjIzyLg0AAAA+plIE4Pnz5+vee+/VXXfdpYSEBC1ZskTVqlXTyy+/XN6lAQAAwMdU+CkQ58+f1+7duzV16lRXm5+fn3r27KmtW7cW+Jrc3Fzl5ua6nmdmZkpyzi0BJDnnDV6SlSXl5ZVfLQBKju9y5cc5toxLOc2My9cqfAD++eeflZeXp+joaLf26OhoffXVVwW+Zvbs2Zp55WWkkurWreuVGlHBxcWVdwUAzMB3ufLjHFvCL7/8IrvdXqpjVPgAXBJTp07VpEmTXM8dDodOnDihGjVqyGazFfn6rKws1a1bVykpKaW+ChG+i/Nc+XGOrYHzXPlxjq0hMzNT9erVU2RkAYs9e6jCB+CaNWvK399f6enpbu3p6emKiYkp8DWBgYEKDAx0a4uIiPD4vcPDw/miWQDnufLjHFsD57ny4xxbg59f6S9hq/AXwVWtWlXt27fXhg0bXG0Oh0MbNmxQYmLiVV4JAAAAK6rwI8CSNGnSJA0fPlwdOnRQp06dtGDBAuXk5Oiuu+4q79IAAADgYypFAB44cKB++uknTZ8+XWlpaWrTpo3Wrl2b78I4swQGBio5OTnfNApULpznyo9zbA2c58qPc2wNZp5nboUMAAAAS6nwc4ABAAAATxCAAQAAYCkEYAAAAFgKARgAAACWQgD20LPPPqsGDRooKChInTt31o4dO8q7JJTCpk2b1KdPH8XFxclms+mdd95x228YhqZPn67Y2FgFBwerZ8+eOnz4cPkUixKZPXu2OnbsqLCwMEVFRalfv346dOiQW59z585p7NixqlGjhkJDQ3XHHXfku7kOfNvixYvVqlUr140QEhMT9cEHH7j2c44rnzlz5shms2nixImuNs5zxTdjxgzZbDa3R7NmzVz7zTrHBGAPrFq1SpMmTVJycrL27Nmj1q1bq1evXsrIyCjv0lBCOTk5at26tZ599tkC98+bN08LFy7UkiVLtH37doWEhKhXr146d+5cGVeKktq4caPGjh2rbdu2af369bpw4YJuvvlm5eTkuPo88MADeu+99/Tmm29q48aNOn78uG6//fZyrBqeqlOnjubMmaPdu3dr165duvHGG3Xbbbfpyy+/lMQ5rmx27typpUuXqlWrVm7tnOfK4dprr1VqaqrrsXnzZtc+086xgWLr1KmTMXbsWNfzvLw8Iy4uzpg9e3Y5VgWzSDLefvtt13OHw2HExMQYTz75pKvt1KlTRmBgoPH666+XQ4UwQ0ZGhiHJ2Lhxo2EYznMaEBBgvPnmm64+Bw8eNCQZW7duLa8yYYLq1asbL774Iue4kjl9+rTRpEkTY/369Ub37t2NCRMmGIbBd7mySE5ONlq3bl3gPjPPMSPAxXT+/Hnt3r1bPXv2dLX5+fmpZ8+e2rp1azlWBm85cuSI0tLS3M653W5X586dOecVWGZmpiQpMjJSkrR7925duHDB7Tw3a9ZM9erV4zxXUHl5eVq5cqVycnKUmJjIOa5kxo4dq1tvvdXtfEp8lyuTw4cPKy4uTg0bNtSQIUN07NgxSeae40pxJ7iy8PPPPysvLy/f3eWio6P11VdflVNV8Ka0tDRJKvCcX9qHisXhcGjixInq2rWrWrRoIcl5nqtWraqIiAi3vpzniueLL75QYmKizp07p9DQUL399ttKSEjQvn37OMeVxMqVK7Vnzx7t3Lkz3z6+y5VD586dtWzZMjVt2lSpqamaOXOmfve732n//v2mnmMCMADLGDt2rPbv3+82nwyVR9OmTbVv3z5lZmbqX//6l4YPH66NGzeWd1kwSUpKiiZMmKD169crKCiovMuBl9xyyy2u7VatWqlz586qX7++3njjDQUHB5v2PkyBKKaaNWvK398/35WG6enpiomJKaeq4E2XzivnvHIYN26c1qxZo48//lh16tRxtcfExOj8+fM6deqUW3/Oc8VTtWpVNW7cWO3bt9fs2bPVunVr/f3vf+ccVxK7d+9WRkaG2rVrpypVqqhKlSrauHGjFi5cqCpVqig6OprzXAlFRETommuu0TfffGPqd5kAXExVq1ZV+/bttWHDBlebw+HQhg0blJiYWI6VwVvi4+MVExPjds6zsrK0fft2znkFYhiGxo0bp7ffflv//e9/FR8f77a/ffv2CggIcDvPhw4d0rFjxzjPFZzD4VBubi7nuJLo0aOHvvjiC+3bt8/16NChg4YMGeLa5jxXPtnZ2fr2228VGxtr6neZKRAemDRpkoYPH64OHTqoU6dOWrBggXJycnTXXXeVd2kooezsbH3zzTeu50eOHNG+ffsUGRmpevXqaeLEiZo1a5aaNGmi+Ph4TZs2TXFxcerXr1/5FQ2PjB07VitWrNC7776rsLAw1zwxu92u4OBg2e12jRw5UpMmTVJkZKTCw8N1//33KzExUdddd105V4/imjp1qm655RbVq1dPp0+f1ooVK/TJJ59o3bp1nONKIiwszDV3/5KQkBDVqFHD1c55rvimTJmiPn36qH79+jp+/LiSk5Pl7++vP/3pT+Z+l0uxUoUlPfPMM0a9evWMqlWrGp06dTK2bdtW3iWhFD7++GNDUr7H8OHDDcNwLoU2bdo0Izo62ggMDDR69OhhHDp0qHyLhkcKOr+SjFdeecXV5+zZs8aYMWOM6tWrG9WqVTP69+9vpKamll/R8Njdd99t1K9f36hatapRq1Yto0ePHsaHH37o2s85rpwuXwbNMDjPlcHAgQON2NhYo2rVqkbt2rWNgQMHGt98841rv1nn2GYYhmFicAcAAAB8GnOAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAcBHzZgxQ23atCnvMgCg0iEAA8AVRowYIZvNlu+RlJRU3qV5xQ033OD6jEFBQUpISNBzzz1X3mUBgNcQgAGgAElJSUpNTXV7vP766+Vdltfce++9Sk1N1YEDBzRgwACNHTvWZz7v+fPny7sEAJUMARgAChAYGKiYmBi3R/Xq1V37bTabXnzxRfXv31/VqlVTkyZNtHr1akmSw+FQnTp1tHjxYrdj7t27V35+fjp69Kgk6dSpU7rnnntUq1YthYeH68Ybb9Rnn31WaE0Oh0OPPfaY6tSpo8DAQLVp00Zr16517f/+++9ls9m0cuVKdenSRUFBQWrRooU2btxY5OetVq2aYmJi1LBhQ82YMcPt8xw7dky33XabQkNDFR4ergEDBig9PV2SlJmZKX9/f+3atctVY2RkpK677jrXsV977TXVrVvX9TwlJUUDBgxQRESEIiMjddttt+n777937R8xYoT69eunxx9/XHFxcWratGmR9QOAJwjAAFBCM2fO1IABA/T555+rd+/eGjJkiE6cOCE/Pz/96U9/0ooVK9z6L1++XF27dlX9+vUlSXfeeacyMjL0wQcfaPfu3WrXrp169OihEydOFPh+f//73/X000/rqaee0ueff65evXqpb9++Onz4sFu/Bx98UJMnT9bevXuVmJioPn366JdffvHoswUHB+v8+fNyOBy67bbbdOLECW3cuFHr16/Xd999p4EDB0qS7Ha72rRpo08++USS9MUXX8hms2nv3r3Kzs6WJG3cuFHdu3eXJF24cEG9evVSWFiYPv30U23ZskWhoaFKSkpyG+ndsGGDDh06pPXr12vNmjUe1Q4ARTIAAG6GDx9u+Pv7GyEhIW6Pxx9/3NVHkvHoo4+6nmdnZxuSjA8++MAwDMPYu3evYbPZjKNHjxqGYRh5eXlG7dq1jcWLFxuGYRiffvqpER4ebpw7d87tvRs1amQsXbrUMAzDSE5ONlq3bu3aFxcX51aDYRhGx44djTFjxhiGYRhHjhwxJBlz5sxx7b9w4YJRp04dY+7cuYV+3u7duxsTJkwwDMMwLl68aLz66quGJGPRokXGhx9+aPj7+xvHjh1z9f/yyy8NScaOHTsMwzCMSZMmGbfeeqthGIaxYMECY+DAgUbr1q1dfxaNGzc2nn/+ecMwDOPVV181mjZtajgcDtfxcnNzjeDgYGPdunWuP//o6GgjNze30JoBoDSqlGv6BgAf9fvf/z7fFIbIyEi3561atXJth4SEKDw8XBkZGZKkNm3aqHnz5lqxYoUeeeQRbdy4URkZGbrzzjslSZ999pmys7NVo0YNt2OePXtW3377bb56srKydPz4cXXt2tWtvWvXrvmmTSQmJrq2q1Spog4dOujgwYNX/bzPPfecXnzxRZ0/f17+/v564IEHNHr0aC1atEh169Z1m8KQkJCgiIgIHTx4UB07dlT37t310ksvKS8vTxs3btTNN9+smJgYffLJJ2rVqpW++eYb3XDDDa7P/c033ygsLMzt/c+dO+f2uVu2bKmqVatetWYAKCkCMAAUICQkRI0bN75qn4CAALfnNptNDofD9XzIkCGuALxixQolJSW5Am92drZiY2NdUwcuFxERUer6PTVkyBD93//9n4KDgxUbGys/v+LPkLv++ut1+vRp7dmzR5s2bdITTzyhmJgYzZkzR61bt1ZcXJyaNGkiyfm527dvr+XLl+c7Tq1atVzbISEhpf9QAFAI5gADgJcMHjxY+/fv1+7du/Wvf/1LQ4YMce1r166d0tLSVKVKFTVu3NjtUbNmzXzHCg8PV1xcnLZs2eLWvmXLFiUkJLi1bdu2zbV98eJF7d69W82bN79qrXa7XY0bN1bt2rXdwm/z5s2VkpKilJQUV9uBAwd06tQp1/tGRESoVatWWrRokQICAtSsWTNdf/312rt3r9asWeOa/3vpcx8+fFhRUVH5Prfdbr9qjQBgFgIwABQgNzdXaWlpbo+ff/7Zo2M0aNBAXbp00ciRI5WXl6e+ffu69vXs2VOJiYnq16+fPvzwQ33//ff63//+p//7v/9zrahwpQcffFBz587VqlWrdOjQIT3yyCPat2+fJkyY4Nbv2Wef1dtvv62vvvpKY8eO1cmTJ3X33Xd7/ofwa50tW7bUkCFDtGfPHu3YsUPDhg1T9+7d1aFDB1e/G264QcuXL3eF3cjISDVv3lyrVq1yC8BDhgxRzZo1ddttt+nTTz/VkSNH9Mknn2j8+PH64YcfSlQjAHiKAAwABVi7dq1iY2PdHt26dfP4OEOGDNFnn32m/v37Kzg42NVus9n0/vvv6/rrr9ddd92la665RoMGDdLRo0cVHR1d4LHGjx+vSZMmafLkyWrZsqXWrl2r1atXu6YXXDJnzhzX9IPNmzdr9erVBY4qF4fNZtO7776r6tWr6/rrr1fPnj3VsGFDrVq1yq1f9+7dlZeX55rrKzlD8ZVt1apV06ZNm1SvXj3dfvvtat68uUaOHKlz584pPDy8RDUCgKdshmEY5V0EAKD0vv/+e8XHx2vv3r3cQhkAroIRYAAAAFgKARgAAACWwhQIAAAAWAojwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFL+P07Y5raxGlwaAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.savefig(\"Proj_EnvelopePower.png\") # Save the plot as a PNG file\n", + "\n", + "!cp Proj_EnvelopePower.png \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"\n", + "\n", + "!ls \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "id": "tZ_SqPO-jWLb", + "outputId": "548720e6-ce13-4225-d564-9825a900fb71" + }, + "id": "tZ_SqPO-jWLb", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "example_plot.png Proj_EnvelopePower.png\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {} + } + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "colab": { + "provenance": [] + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/teaching/Starting_notebook_annotated_for_teaching.ipynb b/teaching/Starting_notebook_annotated_for_teaching.ipynb index 7fe69cd..3089be9 100644 --- a/teaching/Starting_notebook_annotated_for_teaching.ipynb +++ b/teaching/Starting_notebook_annotated_for_teaching.ipynb @@ -1 +1,4719 @@ -{"cells":[{"cell_type":"markdown","id":"dfb23669","metadata":{"id":"dfb23669"},"source":["# Sound localisation with surrogate gradient descent\n","\n","In this notebook, we're going to use surrogate gradient descent to find a solution to the sound localisation problem we solved by hand in the previous notebook. The surrogate gradient descent approach and code is heavily inspired by (certainly not stolen) from [Friedemann Zenke's SPyTorch tutorial](https://github.com/fzenke/spytorch), which I recommend for a deeper dive into the maths."]},{"cell_type":"markdown","source":["## To setup before you start\n","First, download a copy of this notebook to your personal google drive:\n","1. mount your google drive"],"metadata":{"id":"Dg9b4XdMDjPl"},"id":"Dg9b4XdMDjPl"},{"cell_type":"code","source":["from google.colab import drive\n","drive.mount('/content/drive')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"9hL7mQSV_tCi","executionInfo":{"status":"ok","timestamp":1706246907486,"user_tz":-60,"elapsed":1648,"user":{"displayName":"Volker Bormuth","userId":"12240905297707951679"}},"outputId":"1386e755-d447-42da-a386-18e3b3d1cc26"},"id":"9hL7mQSV_tCi","execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}]},{"cell_type":"markdown","source":["2. Save a copy of the notebook to your drive: \"Files\" => \"Save a copy in Drive\"\n","3. Locate where this copy was saved in your dirve: \"Files\" => \"Locate in Drive\"\n","4. Now you can rename the located file and move it to a location of your choice in your google drive\n"],"metadata":{"id":"mdi_e2fvE1FW"},"id":"mdi_e2fvE1FW"},{"cell_type":"markdown","source":["Optional setup: \n","The commands `load_ext autoreload` and `autoreload 2` are used in Jupyter notebooks to set up an automatic reloading of modules before executing a new line of code. This is particularly useful when you are editing external Python files and want those changes to be reflected in the notebook without restarting the kernel."],"metadata":{"id":"Om5jAA54HtET"},"id":"Om5jAA54HtET"},{"cell_type":"code","source":["%load_ext autoreload\n","%autoreload 2"],"metadata":{"id":"bNF1kW30I7Mf"},"execution_count":null,"outputs":[],"id":"bNF1kW30I7Mf"},{"cell_type":"markdown","source":["## Let's start to run the notebook step-by-step"],"metadata":{"id":"Zq-l_P7uFEY_"},"id":"Zq-l_P7uFEY_"},{"cell_type":"code","execution_count":null,"id":"ee3c91b7","metadata":{"id":"ee3c91b7"},"outputs":[],"source":["import os\n","\n","import numpy as np\n","import matplotlib.pyplot as plt\n","from matplotlib.gridspec import GridSpec\n","\n","import torch\n","import torch.nn as nn\n","\n","dtype = torch.float\n","\n","# Check whether a GPU is available\n","if torch.cuda.is_available():\n"," device = torch.device(\"cuda\")\n","else:\n"," device = torch.device(\"cpu\")\n","\n","my_computer_is_slow = True # set this to True if using Colab\n","\n","import pdb\n","import pandas as pd"]},{"cell_type":"markdown","source":["NOTE: PyTorch is an open-source machine learning library primarily developed by Facebook's AI Research lab (FAIR).\n","PyTorch offers a high-level neural network module called torch.nn for building and training neural networks. It includes various layers, loss functions, and optimization algorithms."],"metadata":{"id":"wVU9vnaNBHor"},"id":"wVU9vnaNBHor"},{"cell_type":"markdown","id":"345a4686","metadata":{"id":"345a4686"},"source":["### Creating sound stimulus and encoding spikes in auditory nerve fibers (= input data)"]},{"cell_type":"markdown","id":"bd312e52","metadata":{"id":"bd312e52"},"source":["The following function creates a set of stimuli that can be used for training or testing. We have two ears (0 and 1), and ear 1 will get a version of the signal delayed by an IPD we can write as $\\alpha$ in equations (``ipd`` in code). The basic signal is a sine wave as in the previous notebook, made positive, so $(1/2)(1+\\sin(\\theta)$. In addition, for each ear there will be $N_a$ neurons per ear (``anf_per_ear`` because these are auditory nerve fibres). Each neuron generates Poisson spikes at a certain firing rate, and these Poisson spike trains are independent. In addition, since it is hard to train delays, we seed it with uniformly distributed delays from a minimum of 0 to a maximum of $\\pi/2$ in each ear, so that the differences between the two ears can cover the range of possible IPDs ($-\\pi/2$ to $\\pi/2$). We do this directly by adding a phase delay to each neuron. So for ear $i\\in\\{0,1\\}$ and neuron $j$ at time $t$ the angle $\\theta=2\\pi f t+i\\alpha+j\\pi/2N_a$. Finally, we generate Poisson spike trains with a rate $R_\\mathrm{max}((1/2)(1+\\sin(\\theta)))^k$. $R_\\mathrm{max}$ (``rate_max``) is the maximum instantaneous firing rate, and $k$ (``envelope_power``) is a constant that sharpens the envelope. The higher $R_\\mathrm{max}$ and $k$ the easier the problem (try it out on the cell below to see why).\n","\n","Here's a picture of the architecture for the stimuli:\n","\n","![Stimuli architecture](https://github.com/neural-reckoning/cosyne-tutorial-2022/blob/main/arch-stimuli.png?raw=1)\n","\n","The functions below return two arrays ``ipd`` and ``spikes``. ``ipd`` is an array of length ``num_samples`` that gives the true IPD, and ``spikes`` is an array of 0 (no spike) and 1 (spike) of shape ``(num_samples, duration_steps, 2*anf_per_ear)``, where ``duration_steps`` is the number of time steps there are in the stimulus."]},{"cell_type":"code","execution_count":null,"id":"5bb26693","metadata":{"id":"5bb26693","outputId":"5bb0af54-b9ea-4d9f-8ccd-d2c418ca8601","colab":{"base_uri":"https://localhost:8080/","height":265}},"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD420lEQVR4nOy9eZwVxdX//xkGGNYZhn1fxAVQBB9URIIoomh8TAgogopocHuCiigumCiiKCRE4w6aGIii0RjFn4lBg4gYDZoIJnFFQRGUVZAZNllm+veH377p21PLOd19763qqffrNS+43dXV1afOOXXqVN2+RZ7neXA4HA6Hw+FwOBwOh8OROHUK3QCHw+FwOBwOh8PhcDjSipt0OxwOh8PhcDgcDofDkSPcpNvhcDgcDofD4XA4HI4c4SbdDofD4XA4HA6Hw+Fw5Ag36XY4HA6Hw+FwOBwOhyNHuEm3w+FwOBwOh8PhcDgcOcJNuh0Oh8PhcDgcDofD4cgRbtLtcDgcDofD4XA4HA5HjnCTbofD4XA4HA6Hw+FwOHKEm3Q7HDni1ltvRVFRUaGb4XA4CBQVFeHWW28tdDMcDkdM5s2bh6KiIqxZs6bQTXE4HAmQlnjaTboTpKioiPT32muvFbSdJ554Io444oisY127ds1qY+vWrTFo0CAsWLCgxrV+mTp16qC0tBSHHXYYxo4di0WLFuXzMbSEnyn4d8ghh9Qo/+ijj6Jnz55o0KABDjnkENx///0FaLXDNJxdm2XXPk8//TQGDBiAxo0bo1mzZjj++OPx6quvFrpZDoNwtmuG7V5yySUoKirC//7v/yrLrV69Gg0aNEBRURHeeeedPLXOYSLOds2wXRmnnHIKioqKcMUVVwjPb9q0CZdddhk6dOiABg0aoGvXrhg/fnyeW2kedQvdgDTx+OOPZ31+7LHHsGjRohrHe/bsmc9mkenbty+uvfZaAMD69evx8MMPY8SIEZg9ezYuv/zyTLmOHTtixowZAIBdu3Zh1apVeO655zB//nyMGjUK8+fPR7169QryDEHuuece7Ny5M+vYF198gZ/97Gc49dRTs44//PDDuPzyyzFy5Ehcc801+Nvf/oarrroKu3fvxg033JDPZjsMw9m1WXYNfJf1vu2223DWWWfhwgsvxP79+/H+++/jq6++KnTTHAbhbLfwtvvOO+9g3rx5aNCggbbspEmTULduXezduzcPLXOYjLPdwtuujOeeew7Lli2Tnl+3bh0GDhwIALj88svRoUMHrF+/Hv/4xz/y1URz8Rw5Y8KECR5FxLt27cpDa/7L4MGDvcMPPzzrWJcuXbwzzjgj69iGDRu8xo0be4ceeqjyWs/zvAMHDng/+clPPADe9ddfn5uGJ8Dtt9/uAfDefPPNzLHdu3d7LVq0qPH85513nte4cWNv27Ztke41depUUv877MLZdWFZtmyZV1RU5N19992J1gvAmzp1aqJ1OszC2W5+qa6u9gYMGOD9+Mc/Fj5PkJdeesmrX7++97Of/cwD4P3zn/+MfN+5c+d6ALzPP/88ch0Os3C2awZ79uzxunbt6t12220eAG/ChAk1ypx++ulet27dvK+//jqx+6Ylnnbby/OMvxVl+fLlOOGEE9CoUSPcdNNNAOTfKezatSsuvPDCrGPbt2/H1VdfjU6dOqGkpAQHH3wwfv7zn6O6ujqxtrZt2xY9e/bE559/ri1bXFyM++67D7169cIDDzyAioqKxNqRJE8++SS6deuG448/PnNsyZIl2Lp1K37yk59klZ0wYQJ27dqFF198UVvvG2+8gWOOOQYNGjRA9+7d8fDDD0vLzp8/H/369UPDhg3RvHlzjB49GuvWratR7sEHH8RBBx2Ehg0b4thjj8Xf/vY3nHjiiTjxxBPpD+zIC86u88c999yDtm3bYuLEifA8r8ZuFh179+7FpEmT0KpVKzRt2hQ/+MEP8OWXXwrLfvXVV/jxj3+MNm3aoKSkBIcffjh++9vf1ij3xRdf4Ac/+AEaN26M1q1bY9KkSXj55ZeN2P7oUONsN3c8/vjjeP/993HHHXcoy+3fvx8TJ07ExIkT0b17d9Y9PvjgAwwZMgQNGzZEx44dMX36dKnMFy5ciEGDBqFx48Zo2rQpzjjjDHzwwQc1yj3zzDPo1asXGjRogCOOOAILFizAhRdeiK5du7La5sgtznbzzy9+8QtUV1dj8uTJwvMff/wxFi5ciOuuuw4tWrTAt99+i/3797PukeZ42m0vLwBbt27F6aefjtGjR+P8889HmzZtWNfv3r0bgwcPxldffYXLLrsMnTt3xt///ndMmTIFGzZswD333JNIO/fv349169ahRYsWpPLFxcUYM2YMbr75Zrzxxhs444wzlM+we/duUp3l5eXkNqt499138dFHH+GnP/1pjeMAcPTRR2cd79evH+rUqYN3330X559/vrTe9957D6eeeipatWqFW2+9FQcOHMDUqVOF/XrHHXfg5ptvxqhRo3DxxRdjy5YtuP/++3HCCSfg3XffRbNmzQAAs2fPxhVXXIFBgwZh0qRJWLNmDYYPH47y8nJ07NgxpiQcucDZdX7sevHixTj++ONx3333Yfr06di6dSvatm2Ln/70p9LvlwW5+OKLMX/+fJx77rmZ74GLnmnTpk047rjjMt9ba9WqFRYuXIjx48ejsrISV199NYDvtgQOGTIEGzZswMSJE9G2bVs8+eSTWLJkSaTnc+QfZ7vJ2+6OHTtwww034KabbkLbtm2VZe+55x588803+NnPfobnnntOW7fPxo0bcdJJJ+HAgQO48cYb0bhxYzzyyCNo2LBhjbKPP/44xo0bh2HDhuHnP/85du/ejdmzZ+N73/se3n333cyE+sUXX8Q555yD3r17Y8aMGfjmm28wfvx4dOjQgdwuR/5wtpu/eHrt2rWYOXMmfvvb3wptDABeeeUVAECbNm1w8skn49VXX0VxcTFOOeUUzJ49W5u4Sn08Xeil9jQj2g4zePBgD4A3Z86cGuUh2d7YpUsXb9y4cZnPt99+u9e4cWPvk08+ySp34403esXFxd7atWuV7ZJthzn11FO9LVu2eFu2bPH+/e9/e6NHj/YAeFdeeaXy2iALFizwAHj33nuvsg3+VhHdX5cuXZT1cLj22ms9AN6HH36YdXzChAlecXGx8JpWrVp5o0ePVtY7fPhwr0GDBt4XX3yROfbhhx96xcXFWf2/Zs0ar7i42Lvjjjuyrn/vvfe8unXrZo7v3bvXa9GihXfMMcd4+/fvz5SbN2+eB8AbPHgw6XkducHZtZxc2/W2bds8AF6LFi28Jk2aeLNmzfKefvpp77TTTpPKP8i//vUvD4D3k5/8JOv4ueeeW6Ofxo8f77Vr167GFrnRo0d7ZWVl3u7duz3P87y77rrLA+A9//zzmTJ79uzxevTo4QHwlixZEulZHcnjbFdO0rY7efJkr1u3bt63336beR7R9vINGzZ4TZs29R5++GHP8/67NZyyvfzqq6/2AHhvv/125tjmzZu9srKyrO3lO3bs8Jo1a+ZdcsklWddv3LjRKysryzreu3dvr2PHjt6OHTsyx1577bXE4xEHD2e7cvIVT5911lne8ccfn/kMwfbyq666KjNGn3baad7TTz/tzZo1y2vSpInXvXt37fb/tMfTbqW7AJSUlOCiiy6KfP0zzzyDQYMGoby8HF9//XXm+NChQzFz5ky8/vrrOO+889j1/vWvf0WrVq0yn4uLizF27Fj8/Oc/J9fRpEkTAN9luVVccMEF+N73vqetT5ZN41JdXY2nnnoKRx11VI0Xb+zZswf169cXXtegQQPs2bNHWm9VVRVefvllDB8+HJ07d84c79mzJ4YNG4a//OUvmWPPPfccqqurMWrUqKx+a9u2LQ455BAsWbIEN910E9555x1s3boVM2bMQN26/zXR8847D5MmTWI/uyM/OLvOvV37W8m3bt2Kp556Cueccw4A4KyzzkLv3r0xffp0XHbZZdLrfXu86qqrso5fffXVePLJJzOfPc/Ds88+i1GjRsHzvKz+GDZsGJ566imsWLECAwcOxEsvvYQOHTrgBz/4QaZMgwYNcMkll2RepOMwG2e7ydruJ598gnvvvRe///3vUVJSoix7ww034KCDDsLFF1+srTfMX/7yFxx33HE49thjM8datWqF8847Dw899FDm2KJFi7B9+3aMGTMmq3+Ki4vRv3//zK6U9evX47333sNNN92UkRsADB48GL1790ZlZSW7jY7c4mw3P/H0kiVL8Oyzz+Ltt99WlvPH6LZt2+LFF19EnTrffYu5Y8eOGDNmDJ588kmprdeGeNpNugtAhw4dpJM8Cp9++in+85//ZBl0kM2bN0eqt3///pg+fTqKiorQqFEj9OzZM7M9g4pvcE2bNlWWO+igg3DQQQdFameQPXv21Pi+i2gr29KlS/HVV18Jjaxhw4bYt2+fsP5vv/1W6ai2bNmCPXv2CH+C7LDDDstyEp9++ik8zxOWBZB5Q+UXX3wBADj44IOzztetW9d9p8xgnF3n3q59W6xXrx7OOuuszLk6dergnHPOwdSpU7F27dqsATvIF198gTp16tT43uhhhx2W9XnLli3Yvn07HnnkETzyyCPCuvz++OKLL9C9e/cavyEatl+HuTjbTc52AWDixIk4/vjjMXLkSGW5t956C48//jgWL16cCc45fPHFF+jfv3+N42F7/vTTTwEAQ4YMEdZTWlqaqQ8Q2+7BBx+MFStWsNvoyC3OdnM/7h44cABXXXUVxo4di2OOOUZZhz9Gjxo1Ksumzz77bIwdOxZ///vfpZPu2hBPu0l3AeBmm6qqqrI+V1dX45RTTsH1118vLH/ooYdGalfLli0xdOjQSNf6vP/++wD0AefOnTtJL0AqLi6WOkPgu9/qDWc5Pc+rUe6JJ55AnTp1MGbMmBrn2rVrh6qqKmzevBmtW7fOHN+3bx+2bt2K9u3ba9tJobq6GkVFRVi4cCGKi4trnA9m1h324ew693bdvHlzNGjQAM2aNathQ77tfvPNN9JJNxX/BTrnn38+xo0bJyxz5JFHxrqHwxyc7SZnu6+++ipeeuklPPfcc1izZk3m+IEDB7Bnzx6sWbMGzZs3R2lpKa6//noMGjQI3bp1y5T1V602bNigTKBx8O358ccfFyblgytgDrtwtpv7cfexxx7DypUr8fDDD2fZNPDdKvyaNWvQunVrNGrUKBMvh7+DXVxcjBYtWuCbb77RtpOCrfG08zQGUV5eju3bt2cd27dvHzZs2JB1rHv37ti5c2dsg06aqqoqPPnkk2jUqJF2q8svf/lLTJs2TVtnly5dahh5kGHDhmHRokXKOvbu3Ytnn30WJ554onAC3bdvXwDf/Z7o97///czxd955B9XV1ZnzIlq1aoWGDRtmMulBVq5cmfW5e/fu8DwP3bp1UzryLl26AABWrVqFk046KXP8wIEDWLNmjQv2LcPZdU2i2nWdOnXQt29f/POf/8S+ffuyVjjWr18PAMqgokuXLqiursbq1auzVsPCtuq/2byqqkrbH126dMGHH34Iz/OyVrtXrVqlvM5hPs52a6Kz3bVr1wIARowYUePcV199hW7duuFXv/oVrr76aqxduxZffPEFunXrVqPsD37wA5SVldWQf7gt1LEX+C4xp+qj4NgbxtmzXTjbrUnUcXft2rXYv39/5re3gzz22GN47LHHsGDBAgwfPhz9+vUD8J2tB9m3bx++/vpr5fhcG+JpN+k2iO7du+P111/POvbII4/UyMyNGjUKt956K15++WUMGzYs69z27dvRpEmTvGduq6qqcNVVV+Gjjz7CjTfemNmuJSOp76C0a9cO7dq1U5b5y1/+gu3bt0u/lzNkyBA0b94cs2fPzpp0z549G40aNVK+NbK4uBjDhg3D888/n5WV/+ijj/Dyyy9nlR0xYgSmTJmCadOmYf78+VkBuud52LZtG1q0aIGjjz4aLVq0wK9//WtcdNFFmb584oknEssSOvKHs+uaxLHrc845B2+99RZ+97vf4ZJLLgHw3ddAnnjiCfTq1Uu5M+X000/HTTfdhPvuuw8PPvhg5nj4DbXFxcUYOXIknnzySbz//vs44ogjss5v2bIlEzz4gcoLL7yAH/7wh5n2/PrXv1Y+o8N8nO3WRGe7Q4YMwYIFC2ocv/TSS9GlSxf89Kc/Re/evQF8J8vwW5dfffVV3H///fjlL3+JHj16KO/1/e9/H/fccw/+8Y9/ZL7XvWXLFjzxxBNZ5YYNG4bS0lLceeedOOmkkzJbT318e27fvj2OOOIIPPbYY5gyZUpmtWzp0qV47733MgG8w3yc7dYk6rg7evRo4eLTj370I3z/+9/HJZdckvmax4knnojWrVvjiSeewE033YQGDRoAAObNm4eqqiqccsop0vvXhnjaTboN4uKLL8bll1+OkSNH4pRTTsG///1vvPzyy2jZsmVWueuuuw4vvPAC/vd//xcXXngh+vXrh127duG9997DH//4R6xZs6bGNUlSUVGB+fPnA/jupwpWrVqF5557DqtXr8bo0aNx++23a+tI8vtjOp544gmUlJRIv1/WsGFD3H777ZgwYQLOPvtsDBs2DH/7298wf/583HHHHWjevLmy/mnTpuGll17CoEGD8JOf/AQHDhzA/fffj8MPPxz/+c9/MuW6d++O6dOnY8qUKZmfLGjatCk+//xzLFiwAJdeeikmT56M+vXr49Zbb8WVV16JIUOGYNSoUVizZg3mzZsn/O6ow2ycXSfLZZddht/85jeYMGECPvnkE3Tu3BmPP/44vvjiC/zpT39SXtu3b1+MGTMGDz30ECoqKnD88cdj8eLFwlWsmTNnYsmSJejfvz8uueQS9OrVC9u2bcOKFSvwyiuvYNu2bZn2PPDAAxgzZgwmTpyIdu3a4YknnsgEG85e7cXZLp/OnTsLt4RfffXVaNOmDYYPH545duqpp9Yo569ODh48uMbPeIa5/vrr8fjjj+O0007DxIkTMz8Z1qVLl6yxt7S0FLNnz8bYsWPxP//zPxg9ejRatWqFtWvX4sUXX8TAgQPxwAMPAADuvPNO/PCHP8TAgQNx0UUX4ZtvvsEDDzyAI444grSF12EGznaTo0ePHtIEWLdu3bJsuqSkBLNmzcK4ceNwwgknYOzYsVi7di3uvfdeDBo0SLgDJkjq4+m8viu9liH7iQPZTwRUVVV5N9xwg9eyZUuvUaNG3rBhw7xVq1bV+IkDz/vuJzCmTJniHXzwwV79+vW9li1bescff7z3y1/+0tu3b5+yXbKfOBD9nIfoWgR+gqBJkybeIYcc4p1//vneX//6V+31+aaiosJr0KCBN2LECG3ZRx55xDvssMO8+vXre927d/d+9atfedXV1aT7LF261OvXr59Xv35976CDDvLmzJmT+RmHMM8++6z3ve99z2vcuLHXuHFjr0ePHt6ECRO8lStXZpW77777vC5dunglJSXescce67355ptev379vNNOO4328I6c4Oy68GzatMkbN26c17x5c6+kpMTr37+/99JLL5Gu3bNnj3fVVVd5LVq08Bo3buydeeaZ3rp164Q/MbNp0yZvwoQJXqdOnbx69ep5bdu29U4++WTvkUceySr32WefeWeccYbXsGFDr1WrVt61117rPfvssx4A76233krqsR0xcbZbOKjPw/nJMM/zvP/85z/e4MGDvQYNGngdOnTwbr/9du/RRx/N+skwnyVLlnjDhg3zysrKvAYNGnjdu3f3LrzwQu+dd97JKvfUU095PXr08EpKSrwjjjjCe+GFF7yRI0d6PXr0ID+vI1mc7ZoHBD8Z5vP73//e69Onj1dSUuK1adPGu+KKK7zKykpSvWmOp4s8T/DWKYfDYRzV1dVo1aoVRowY4bauOhyGc88992DSpEn48ssv0aFDh0I3x+FwxKBv375o1aqV9h0yDofDfAoVT/N/o8HhcOScb7/9tsZb2B977DFs27YNJ554YmEa5XA4hOzZsyfr87fffouHH34YhxxyiJtwOxwWsX//fhw4cCDr2GuvvYZ///vfbux1OCzEpHjarXQ7HAby2muvYdKkSTj77LPRokULrFixAo8++ih69uyJ5cuXx/pdSofDkSynn346OnfujL59+2a+o/fBBx/giSeewLnnnlvo5jkcDiJr1qzB0KFDcf7556N9+/b4+OOPMWfOHJSVleH9999HixYtCt1Eh8PBwKR42r1IzeEwkK5du6JTp0647777sG3bNjRv3hwXXHABZs6c6SbcDodhDBs2DL/5zW/wxBNPoKqqCr169cJTTz2Fc845p9BNczgcDMrLy9GvXz/85je/wZYtW9C4cWOcccYZmDlzpptwOxwWYlI8nZqV7gcffBCzZs3Cxo0b0adPH9x///2Zn5BwOBzm42zY4bAfZ8cOh904G3Y4cgP7O93z5s0THj9w4ACmTJkStz2RePrpp3HNNddg6tSpWLFiBfr06YNhw4Zh8+bNBWmPw+Hg4WzY4bAfZ8cOh904G3Y4cgd7pbu0tBTDhg3DI488gvLycgDAypUrce6552Lr1q1Ys2ZNLtqppH///jjmmGMyv7NYXV2NTp064corr8SNN96Y9/Y4HA4ezoYdDvtxduxw2I2zYYcjd7C/0/3uu+/i/PPPR+/evTF37lx88sknuP766zF8+HA89NBDuWijkn379mH58uVZq+x16tTB0KFDsWzZMlId1dXVWL9+PZo2bZr/H0p3OAqE53nYsWMH2rdvjzp1CvdDBs6GHY5omGLDQHw7djbsqK2YYsduLHY4okG1Yfaku3v37njzzTdx9dVX47TTTkNxcTF+97vfYcyYMbEaHJWvv/4aVVVVaNOmTdbxNm3a4OOPPxZes3fvXuzduzfz+auvvkKvXr1y2k6Hw1TWrVuHjh07Fuz+zoYdjngU2oYBvh07G3Y4sim0Hbux2OGIh86GI729/MUXX8RTTz2FAQMG4JNPPsGjjz6KwYMHo3379pEbmk9mzJiBadOmKctUVFQAAMrKyqTndPjXUsubTlAWumcKP3tYjsHjujLUumWfZcdUdZoGtX2iPlLJHgCaNm2aWDvzhcqGVbZLLWOrjSfZHp0NB6Hqmu562b2jtNd0dDIB6PaeNhv2UekFdxywTT9UcMcDikyo8qLacm2Ut+paH5U802TH69atQ6dOnQAkE0+HUelnGnQOoMetQaj2So2BosTTpqPzbaLnovpSnQ2zJ92XXXYZfve73+GOO+7ANddcg02bNuHHP/4xevfujdmzZ2PUqFHcKmPRsmVLFBcXY9OmTVnHN23ahLZt2wqvmTJlCq655prM58rKSnTq1AkVFRUoLS0FAOW2GL+Mj182/PX4lLwYPoPqecIy0D27L0PP82pc638OO4NwneF+8MsHy8n6htveQiFrvwxROZ1cC70FLGkbDutB+PlEOidDV840vQk/c5z2yeQnQmarItmLjodtOVguju6biMzf+QSPywIimT8rJFw7pozDPiKZyfqbMi5w60zCnpJC1E5dDMKJUcLyC8dEOr1V1W2SHDlQ5R2GolO6Y/kkybHYn3AD2fGeDJ1MqTGbbboF0O2TMp5SxwxZHRQ7Nt1PRo3bKLYqG19EZUWwvzzy5ptv4u2338a1116LoqIitG3bFn/5y19w22234cc//jG3utjUr18f/fr1w+LFizPHqqursXjxYgwYMEB4TUlJCUpLS7P+gO+EV1RUlHGUqg4I/vllw8f9P1vQtVd1LiwvmQxE5WT3l9UZPu5/FvUZtQ5T0bVT1WcyeZr27EnbsIzgc4dt1keng7aQRLuT8F+ydlB10UbZy5CNF2FZiI7L6jJppYFrx5RxWOXzo+qnqk4ZtvqBMKoYheoTo4yhto27OqI8u+yzSSQ5FgPy+CuITDdkY7FMfibLVYcufpaNFbJ6VGOG7LjO/imyNcW+k26Hanzmwl7pXr58OUpKSmocnzBhAoYOHcpuQBJcc801GDduHI4++mgce+yxuOeee7Br1y5cdNFFid1Dlt0VlQljSvZHR9JKCsiz46JspUy2uiyz6jM1O2oq1IydatXBBv3LpQ3rssUiZDKzQZa5QuUDdf4xSsZedm1aoOilTlcpW9TzSdJ2rJIRdYUmiUDcJLun+HbqMwdlFB4jqTZKkQlngsopbxqURYuofZUvkrLhiooKra4E9Y6qV9zjNsLVEUocTT2va0tthOIfqbAn3SUlJVi9ejXmzp2L1atX495770Xr1q2xcOFCdO7cOVIj4nLOOedgy5YtuOWWW7Bx40b07dsXL730Uo2XQegQbWvzUQ0GnADSZHROLxfGx5kAUY+LAglb0SUWZOWCx3zCdQS3YheapGw4iMpmw/LSBXu22TIH3aQlXC5K3eE6qXrMsV/TAnZKwCk6LrpeJpfKykpjbBhIxo5V28t9gglVGbrkLAdTdEoGdyIc9nvB/+v8ADWhHqyXOrEyXc46KPGh7nihSWosLisrI42zutgmzVB9EsfmosoxDWMuFWq7KfoaPq69t8eU1tKlS3H66adj4MCBeP311/HRRx/hoIMOwsyZM/HOO+/gj3/8I6c6IxAFLiql5gZTtiomBe6KIEeJw+dlqK5Li8w5q/vha8KEr1Elm2zBt2Hqd7p9ogar1PI2QNWTKMTdKWCjDXMmI6JyQah9kCYbDsLRQepuijQQJQkbPE6pM3xcBneXS22As0gTJE12LBqLfSjjQJrtNww38UCZW0Sdp8jKq661lTiJ7zC+vutsmP2d7htvvBHTp0/HokWLUL9+/czxIUOG4K233uJWZxSi78d5Xs3va4fPya6RfQ7XYxNBOfgBsc44Rc9KkUH4HjK5yuqy3SEE0emUj0pPdX2VBvzsOmXyrNItGbbJkmJn4WcK25XOz4n0UuQ3Ve1Ikw3rbDNcTqaLIt9mi94lBXWcCZa1XWYcm5V9lh0P102xTW6cI7snJ+YxPUbiyKw2j8cUP6az27TISWR7Pkn5e85YSx27Ve2lPmu+ocYduucQ6aksXqLC3l7+3nvv4cknn6xxvHXr1vj666+51RmLLAPiK6OoDDX7Y7MD0WV7ZDJRZdXC8gjXrcvi2yxPKtyspM7pAmZtL0+SKM4+rbok0gudrlB1KYrMZGXTbNMyefrHVedlfjTNqFbIfCj6QZWVaTqXRDtkOhZlNSvuPaNgSl9E1Q3ZQoMIz/OM+5pIEoiepzb4rzCquUS4TPicTv9U8bjO5rl1yxLJonP5tF9RG6j3p8bVqr7iwp50N2vWDBs2bEC3bt2yjr/77rvo0KFDrMYUmuB3UHxEE0BKxh0wZ+DgEqX9uolyGJESU4JQVd2cgMI2dA5Q9ey1baDj6IlONrbbchjZihWlrEr3qInGqIlK06HIwIc6CRfVqdPtNKD7BQIZUf2/7boXRJfsVgWX3AA6iUm26fYf1U+p4hturJQG0ubvOVCenTsGh89TxgWuvdrSV0km91Ty5pRVwd5ePnr0aNxwww3YuHEjioqKUF1djTfffBOTJ0/GBRdcwK3OGijbCKjbDQq99UKH335KO2VbVcJ1hc8H65ad022D0d3LZBknhUxGKvn5pC2zLkNljyKdSbPehBMOlC1YojrC+hU+prNdrm2bTpJtDspGh0k/GZYkqvFCdYxC+DpbbJ4zHuvOxxkrqfegtNcWe4/qp2QrkDY8c1wqKiq0/l6kJ1HHpeD1JqKKMbjPTImndfEf9V6qcibpchR9kcUtPsHnC8szqn6yV7rvvPNOTJgwAZ06dUJVVRV69eqFqqoqnHvuufjZz37GboDpcFZ1qJkhU5RURxLtpGTmdFk+XR0yKKsitvQFNVsuc66ic6YOTnEI/kwJJ7tOXeUxXW907QsHjpw6o5yParumyzkJKHoqs/M0I/qpIR/RyoPON4bR2XihofoiEVHGB9n9ZZ/D9wjXbZo8C0FQJjI5+Xhe7dle7qPydXH1xxT949gxt82qunW2Tx3PTZEjFU57dc8YxV9Sv67JnnTXr18fv/71r3HzzTfj/fffx86dO3HUUUfhkEMO4VZlBbVxQKEonG7gldXJqVvXPl2b4tyj0HD1jjKhrg0Be9DpUbO4AF13TNcbiu3oklncSYsoccYd6FX3sCUIiNtOkQ7q6qqsrIx0L9OhBEO6ccBWOIGezu9z7E9XlpoEUNm+7X1D9Y0cuad5XNaNNaqytiW8w0SZBOrqipJ448TFqraJfK4tfSGLpzljCFU/dbAn3T6dO3cu2O9y5xLdZCdNA4iMKI7ShzppCdbN3SGga1da+yVIlGcMX5PG7DoQLdCUfbYVSpadY+eqe6juJ7sXZ6Xblj7htlMmk+BxXR+l0X653+mOqh+2BfFBouqajyrO0flPbmJSlECTlTUdbuAdnKhETUDaimjXWRhOPJ30ZDJXRGlPlDFXdL1qsSXqwoLIN9hG3EUBVZLXJ9GV7muuuYZSDABw9913k8vaSFD41AHENKcggxKo64w+StAtWwXnbrOzRc4U4gaS3HNpJA16EBVOsjDuCkMuVqVt7ruo4wJnyyV3S5tNiJ6JElSGy+qwRcdUE7kw1OBS9OzcHWQ6uYvuZYvMqXB0r7aNv0BuEg2cRHkhYsIo96LaEvX6YB26XaZxEmG2xtxRkmcyefpQ369CmnS/++67WZ9XrFiBAwcO4LDDDgMAfPLJJyguLka/fv1INzWZOKu8tkMJxqlOlDOAU51DuG7TnW8uoGboKBn2NAbsKtKiAxQ4NhLWi6i2HeX+UYJWU/uP2z6dvxXVHS6b9u3lqoRsbUi+ArQAnLo6HQXdxF3WR2mRvwpu7FKbiPorBDJyuYKcJJz4NelEDGWeQh3fKbKzXc9lPk03wRZBjaVJk+4lS5Zk/n/33XejadOm+N3vfofy8nIAwDfffIOLLroIgwYNIt3UVFQvYfIRDfbc7RqmEmUblE5pdfcQ3UcnL+o2GRvRyYK6SqnamupTmybcQO0K2KOsbHFXvFXBP/WaKL7GVLjjAkXXaqMNi56Jk4wxXU9kUH1PlLFTllhTrULH3XmWZjjJREqiMa1f9ZIhmnimZUzWjXWqOEQ2yeMsdlHtlbrKm2Z0Po4z7lDlxv5O91133YW//vWvmQk3AJSXl2P69Ok49dRTce2113KrNJp8ZeRMgLLywtmuFkSVgacGCnEGe1v6QpXsEZ1XJXqiOgWboW7xqS0BpGhApT4zdeBXBZjhMtyJqc1QZaHLsouOpd2WOSuIaQvWfTjt546VqsWEXMrNtj6J67dECZLaNB7rJqCiMmkZkzm6Efceohg9/JkTO1LKFYpctIsqs+Cx8Lmcvb28srISW7ZsqXF8y5Yt2LFjB7c6oxC9+Zgy8UyLk/BRBYHcgJ2yUsvdKWCqM8glUVe8VXWlcdAvKyvLy2BnOir742a4Obql8426CaZtfaPauUP1Z+HrVOWiDvQ2EUycUYJ2GbbpUhjOM1JtWnVelRhXtYdju7b1CXViorqOKr80IoujOSvdtqOywbh9r9ptFnWBzHSSbD91fBHdMyxP6le92JPuH/3oR7joootw11134dhjjwUAvP3227juuuswYsQIbnXGolJU1UpPuKyNqAJl6nZRTjCgG8C4W+hslz+H2vjMKkS/8cuZJKYFTtKFOwFWBQrUhEdaVr7jrLxSP6vqTNuEW4ZIT9IWTOpQjcO68ZhynDoOp82GVe2NsislTJqT3FQ4Y4Zt+qND1f9Rk2ZxdsGEj3MSS2npkzCyPlL1WbhMoi9SCzJnzhxMnjwZ5557Lvbv3/9dJXXrYvz48Zg1axa3OutQrXinHcqzJ5HVjXptmvpBJ1dd8kMUlIbrqq0EZZPWBA5lBYarYyrdi1qXrC1pgqpLql0J1MlU2ogzXpgO18dQJoW6ulR6pNtiSUWVIDGRKAlKH85Kbm2joqICpaWlwnNxEre2optQR4Gz00qkm6q6bI+BKMTpg6j9yZ50N2rUCA899BBmzZqF1atXAwC6d++Oxo0bc6syjqCT4ChgbVDOMNTsmK5csCz1nmnbWQDwt6QmsZMgjVtTAXkAFD6vOpcGnQJ4/or7zCK7jeoL0xyEJem3asNkm+KT0rB7JWrCT2V31HuKdJG62haui3JPW/qECidBwU2EpBnOJNF24jyXTr8oCypUvYpr36p25pIo9+LKhDLecu2XPen2ady4MY488siolxuJaLBXrSDKSJsTETnIqNtektiykha5Bom6Y0DlFGrTYO7DTSJQdck2m1bpUxxbFR0XreZEnWDaIt8wqnGBOoCL+kM3AUpr4swnTmLCVih6RB1/KTuidHXIznN8oi19Qk1IcpLetZWgX5Ilsym7J2sTOr3hjB3cRFwS5LPvVDEO1YdxEuJJJbzZk+5du3Zh5syZWLx4MTZv3ozq6uqs85999lmsBplClM6QXZsWJxIMLHVBtu44ZbUxLSvaHD2IuhVVdF4nv9oSGIieO22JHs4EOu6zUAJ3LqbLV4dq5UYXwMeRZ5on3CIogZWorE1QdtlRx0jOZFy3ukbdlmorIt/IXVyg7IisTaTNNpOAkujSxc2q8pxVWko7bekjVbJaVVZ0nJPE4MqZPem++OKLsXTpUowdOxbt2rVLnSOhrEbYooQ++TAe7mBFqSMtq5CcdkV95lxsg7ER0ffI0pK8UUENblSTlbjZYVWZJIJV0/uNukqhk2/weG2wWREyfVElj3Q+0Rb9oYyDcVdYKbKhrmibLlcZURZUwsc54zB3gmU7wRdLqWRte/KMG1+I+p062dbVKWoXdaEsavxtMlzdUclfN6fJ2U+GLVy4EC+++CIGDhzIvdR4VG8+pmztMpWk2pfEsycx0OhWkijX2EKcSUxtG+RlhJ9blTizPQAIowokoyTGguc5iTSd3qrkacvkSacz4c+656DoaVq3l0fpa9snhZwJNHUyGCZNiwlxSTLBp/Kl1CRb2hD5JU5iwxairJqqrhNdSx2TRfVyJ/IUGzB9LPahjLGiciq5y/oxZz8ZVl5ejubNm3Mvsw5Vdoi7QmQbqgBZ5wyogWeU9ujuoaKQfUGdKIvgTpyD53WZzbQG7GGiTBJl1xZKjzgTNVE5yuChQ2b7quBVRxRbMAlVsKM7LqpDd11YXtSB3lZsS3Anicr3U5NYlEWEcDmur9G133RE8U34nI9OrpT7iK6prKxM5VicRILBFj2SESXu48pLtHNAdI5bV5wy+Ua0MBpl1wH3fj7Unwyrw73R7bffjltuuQW7d+/mXsrm1ltvzQww/l+PHj0y57/99ltMmDABLVq0QJMmTTBy5Ehs2rQp8v3KysqEjldHlGtMIDwxE03UgJqTbT/xEHxmnQwo5cN9Hb5XHDnLni0f6Nqt6gNdn/h/4XLh86K/fJFvO5YR1CcqhbZtmb3JoJQLlwn3ja4touO69nL9hS2obNBHZtMy/xasT1dHvgL1fNtwWvSDMubo7C6sXyIfLrNp3TjBaYfMT6j0t1BjLgdVLKIbM2VyD56X+cRCyCffdqzzfapxxxb9oUKJeWVlZZ9F8tWV4RK83uQ+CcpIZq+6+FomZ8pYRB2L2Svdd911F1avXo02bdqga9euqFevXtb5FStWcKtUcvjhh+OVV17JfK5b979NnjRpEl588UU888wzKCsrwxVXXIERI0bgzTffjHSv4PZyWcY4DYGAT/hZZFmfsFLqyqjKceQZ1bhFdZvUbzK5B/9PlaesTkqf5ZN82rFMdqqyJulHkKTaFU6aceqW2WzwM1UvuedtQme7svI+outkMi8EhbBhrkxF15qGLMbQEZQFVx8o5WT6KGunrk5T5U+B67dUiYyo1+aKfNmx6id4KdisPypUskjCz+tidKpcTY+jOahil+DnKHMfbp+xJ93Dhw/nXhKLunXrom3btjWOV1RU4NFHH8WTTz6JIUOGAADmzp2Lnj174q233sJxxx3Hvpe/0h0kboYIsE9Rc9Fe1aBEDUrDdXGvMwWKXugCoPBx0fW6QDWfW9ryacc+lIDddF3x0fV/FFuhDh66CbVslYJzDeW5TPSnnACKGsiLAgATVhfyZcOiYN1HFASZjEovfKLYMNd2o/gH7iScek/ToPhISoIseFyUkOQkjnJJPsdiyliik4Nt+sSBO2Hj2Dl1/JGdt03eIpvTzRF0k3FR/eE6fHL2IrWpU6dyL4nFp59+ivbt26NBgwYYMGAAZsyYgc6dO2P58uXYv38/hg4dminbo0cPdO7cGcuWLVM6iL1792Lv3r2Zz/734kR78kXOlpuZtpUoAaVugKEEELJrwsc57TWJOO3TZdRFMpPJL5/fIUvajmU2TH15S5g4wWk+iLNaGj4edYU7DMeWZXVzzpto11FWKzgDfpSER67Ilw2L4CQwuMmOQsO1BcrzUP0CRY+irsibQpQkPXUVXxbvBOuh2Hs+E+D5tGNd4ka188oW+9URZ0zmPrtqFwxngmkTouei+kzqQoMqmeGTs+9055P+/ftj3rx5eOmllzB79mx8/vnnGDRoEHbs2IGNGzeifv36aNasWdY1bdq0wcaNG5X1zpgxA2VlZZm/Tp06AfguYPedQNAZBPGzKKoytiN7rvBETvTZ88TfgZKVD17j43+WnZdBLWcyOp2SPWNYZpRrqU4iLrmwY5kNV1RUkGThQ9UxU3SLqh8ymxLVwfVnIpnpbNkU+SUFRVbhZ5fJWfdZVVe+yKcNqwg+f1RsG7dV9hk+pxt3Zah8BtU/RJFrPvoiiu+h+q1wOdGfKpbMt0/Mtx1zxivZOdvRjcmcZ48S0+juTx2XTEX0XEmjsl+unpJWups3b45PPvkELVu2RHl5ubIjtm3bRr65jtNPPz3z/yOPPBL9+/dHly5d8Ic//AENGzaMXO+UKVNwzTXXZD5XVlZmHAV1ckfBlkxSuJ2yLC4l2OEaabBOatZJ1m7TUWXPVMei1J1EnUmRCzuW2bBqtSCOvpiia7L769qnsmHdNbI2iDL1UW3VFPnmkvCzJeFL8/ULBPm24fBYFCbOOF1oHeOu7InK6eSju4fos2z819l2+HqOLRe6L2RQ+0jnI0VlCzmRyacdJ42tY4RqvKWOsVTbjJKQNNVPRiXoH1VlVKh8roxEX6T2q1/9Ck2bNgUA3HPPPaSKc0GzZs1w6KGHYtWqVTjllFOwb98+bN++PSszt2nTJuH3VYKUlJSgpKSkxnHRi9REqBQ+SCGUNgnHpAucKXCCAYoj4dzDVKhBFuVaSgAvCwwKLbck7Fhlw+HvgyZhE1ECSpOIkwmmBJ5UWzXJV8aB016dX6MkzEzTu1zbsI/Md4kmi7YQdzyTrYAFz3H1RpT8po45tttyEJ1tUuWqSmaIKNRPhuXSjkXvSPKJ4s9MT9hyJ3LBY5TkTbBc1MRYGsjFvICSGEsqjiZNuseNGyf8f77ZuXMnVq9ejbFjx6Jfv36oV68eFi9ejJEjRwIAVq5cibVr12LAgAGR75FEtraQToByz7hZXNH94hi7KU4zKTiBDrWuJK41Rb65tmPdc4tWipLss1zAtRHKZEV3Lsqz6uowdRJJJUpSNhfP6NdZqN/pzqUNi1a6TfVl+SDKs+t2i4nGeq6sbbdlEbpn4i5IiJIZumvyST5iahEivYtbV6HIZzwdZ7KdFjuNknyhxkNREuFc2C9SyyeTJ0/GmWeeiS5dumD9+vWYOnUqiouLMWbMGJSVlWH8+PG45ppr0Lx5c5SWluLKK6/EgAEDIr/xmDrYm55x86FmoqmDQbAcVVnjrFSYIsdCwMmki8pRMnX5+k53vu3Yh6NXpgeQ3GSALHMrCgKpAzhlJ4rpyYu4qAIr3SCs88cqm5XJK1+rY/m0YdULTU21zzhwd4mIJio6W6YEilTZ1oYECHUhhRN4Rwnwk6ZQdszZFcHd8VhoklyN5i6yqOqmxpAmLRrGgbNAGucZZXZM3a1i9KT7yy+/xJgxY7B161a0atUK3/ve9/DWW2+hVatWAL7b9l6nTh2MHDkSe/fuxbBhw/DQQw/FuidnlcL0wSdqezgDCzXzywk0dZjuFHLZLuqEKPj/QmfU823HceRvqk5FRZVg0BFnu5ysrjTLN0pgFDwuCghESRNRHbkm3zbMCdJtgZvc8hHpB7X/o6zo6Mra3Ac6krKzJFdykySfdhycgHB2Udhu89T2U1ZkdfcQyTOundombxXcxSsZScg1c08vTRKOiJ+hCH4ftDbDybZRt8Go4E4C0qyy3ICHsq1NdC54bRr0XmXDqq2UsjKmE3U1QLTDhDq5jrM9zlS5FiLbT52Ei64Jl6ktNuyj2llgqo7p4OqaapdYlHFCV2fUdtpCkqtePqKxhuI/a4sdi7Bdv6gJG9XOMO54xJFZ2la2w1Cegxs3ccYb6lhs9Ep3IajNWV4fmdNQDRrhaziBPFW2aZY9NeNGDZ5UGfagcyjEy1tyjW63iiq7TnWshdJFnZ5Q/Bd3m2MUn2hL4M5ZhQgS5zl09+RMgGobpuhNksSZbHNtUzUZ1/m6NMo+CGdVOs4KWaF3rRQCymTHdv2KMpboYm3ZLigV3Bgml2NdPhC1L04iM8p5Dm7SHUI2eTRV4ZKAurItKhdl+1r4eNzERhr6SCZrziRbVl8a5MMhzoSvEImfKP1DHeDjZH+pUIJV23RQ117VarSuD6h1BxOSsjKFeutxLhFtSxWRFl2iXu9DSZxxdrxEbU+UXTUmoJrQcCfInDhHVXca7TgIZ/yxHc5uk6jjOCXhndROoHz3C1cfkoibZOVU85RwO6mLWOxJ965duzBz5kwsXrwYmzdvRnV1ddb5zz77jFulkcTZrmELXKOkZG2pdasynVGDVFtRBSdRJ5CUpEah3nycS0Q/U2K6nVL0POqEjrIKHXcFhpLg4WacC91XUZIIVL2LkxSqLaRJRklNiCm6JquLYvPUnS5UTO0jjr/l1im6PulJUBpIwwo31bbCxyl16K6NmiBX3dMUkmhX1LFYt9glwi9LfTExe9J98cUXY+nSpRg7dizatWtXK7bGyDBVaalwA0vRilbUDDBnBYMbtNiGauXChzPJDpeTXZvGzLrqzcemw7GJOLbAnVzrAgLVSncus9aFhBNAhc/rEE2EZH2Qr18gKBRp8vncyXaciRx1xZaSlEtrjMdZJZRB8Z3chEia4Tyz6fLR2RJFl6ixrczOKckzSiLeZKLogWo3i6guivx1PpS6iMWedC9cuBAvvvgiBg4cyL3UkQeSdFScbHi4bNQMHqU9YUx3zj5JbAmKuhpZm6Dog4k6w2mTrAxl1Zo60OvaEUd2Jso/CsHn4AZMOtsVna8Nu1WCiYSoOyZsIopPj7pqTh2Xg9TGSTh3PNZdJzqXRl0OIkrqJxHvmQZ1nBT1OzWeDqOaSHNXb02Xc5TEoU8u4um4/o896S4vL0fz5s1j3dQmVIZiorJy2sld4VLBdQ4qR0A1DNsyd1EGHOqWP5HMZDL3SeOL1ILby1Uyogar+dStJCaxsuOclQVde6Ik46jHbUPlb3XBT5wkYm1b6fZR7TBQlTEZXWIhShIxSnCZVDLOdJLYJeRDGadr22TbJw1vYk9ilVUFdbFKVl52b1Edti/UUBOwFJuTJSM57YgqR/ak+/bbb8ctt9yC3/3ud2jUqFGkm5qK6Pugos5LcvU2l3BXqiiBc5RtGZRyqjprw2pHGK5Bq3RQdi6Nq2QAL1C3NbDUbWmjQB2U3e6KeFATZ6LzUYOvtEB5TtNt1SdqElw1TnPrUrWBqku6iWeh+yOqb1fZm+xaXfAeTEjqVuzShiieto1gH1FjX+ouCVEdulVpne6I7lEb42cf6kIdRa66uQx1AYs96b7rrruwevVqtGnTBl27dkW9evWyzq9YsYJbpdGIOsM2JeaurHCytuE6fHSrrKKysrpsJcngJEqiJy1y5JKmQJ0K9XkogWWwrOgzZWDX1Zk2+Yt0jRogqfRUt1MojbtVAHt3M4mg6jxnpTmub4/jG01PVEZth2rXCje+ER1XTb7T+PZy0S4ckW7bMCZQxjydDnAW5+Ik5qJMzE0kyR1hVHly5j7hunP29vLhw4dzL7GGoJNIYiXJFKIqrSrbI6ub6mCirD7aRhynl8RuCl2ZtA3yYUxbgUkSatZdNRkM1xVn1wo3SNW12zZEmXAfqi+k+NvaQNr8Enf8pdijbtWUuqoqsmFZO3XPYzuURAQ1SA9ep5sopdnGKckzW/UpbjJNlZCRHY8S99kqX27yj2NHXJsL3kt235y9vXzq1KncS6whuB3GVkXlwMmsi/4vupY6+OvuIyJKnSbACbpkz6bLmqruK5NTWlfJaiOcAUoXOHIz5aIsMNUmTbNdavs5tkudzHDO+3Wn8Ssiqu+CBmVri/8Pw03KRFnRoayIUeumyteW/uDs2ImaiAiep8RMaVzpVmGLrgTRxWQ+lDja/8z1BbI6k9xBYGPfAGrfFzXByYmzc/b2cp/ly5fjo48+AgAcfvjhOOqoo6JWZRS2KlwUKFla3TVUB0NpBzezZXsfRVnt1w3gquvDfZfGlzBRdqukEU7grgsWVCvaIlRJOS6F7rMkkgVRB3JVMsPxHUnqWqHQJWHD5Si7VbjHRROHuMlsU/qDa3eiRI6OOH4izgqdbURJ8phK1JVX7uScUpfqOHXHWhKxu4lQxghqUj34OSm5sCfdmzdvxujRo/Haa6+hWbNmAIDt27fjpJNOwlNPPYVWrVol0rBCEFz5s3VVlUOU1ZwkygbLJ4GtfRNnBSPOwK1bDbGdtD6XCJl+RNkSSq1LVGdSNmiLDUfxjT6cSZfuPmlcHVO9gMmWlW7VSmcSdVKJ4+vjBu+Fgjs58hHJiCs/1cqlavKV1pXuKNujTSfuwpNID2S6oYv/KEkd7vlCwfU3qliYurAgg1IuapxZh3vBlVdeiR07duCDDz7Atm3bsG3bNrz//vuorKzEVVddFakRpuAP9jJFNlVZ41JUVFTDAYQDav/PP+f/hY+H6wp/lt1DVVaHaX1DfY6wzERyTEKu4T6rLcj0OE3I9EXW5yJdCyM7r9Kj2qZbPkGdCspW1Rc6PQyWC98nfG3ad6uECeqZyTrH8bc6Xy+yO5lu6Xw9VQeDZaOeNw2ZL6TIT+dPVeV0PjrNpPEZdf0n89UcZPFekvLUtc+0eIn67HFsTTWG6/o1Z9/pfumll/DKK6+gZ8+emWO9evXCgw8+iFNPPZVbnbHY5ig4q6ZhZNf4x0XXybJOMnT3CNYRNYNuaubdR9U+0SRG9Vkmb10wHyyT1u90h58zGPykFdkzq3SOai8yG+fIM861JqKbjAB8fxv1fmmDutJtO7pVLdVx7vira0N4ghm3DhPQ2Z9IzhTZi+qi+FlZnSZNbEzCVL3SoRsvVfE0F46MuPFQvuXOvZ8qJo5qW5Q4Wxdr6WBPuqurq2v8TBgA1KtXD9XV1dzqjMLmVQORIkSddMgMOVinrGx44qyrU/UMXArtnDlBU/i4Tj7cwV92LHg8jS9hCiYRuAGUKagcfbiMrI85yRduwoyS2ONcYwM6Gw6eo9qyjqBfsEV3k0D1Xgabn1/2LJxEmQyqf1DpcVTZFqJPKBNkbrwjQtcnnL5Tjd1p3V4eB9NtPa5PFsV9ukRRLifZpkFN1KtkyJ1TcOYeURex2NvLhwwZgokTJ2L9+vWZY1999RUmTZqEk08+mVudUaTB6QW3UYS3VMi2RVCPU7aiBLdj6ILzfGyhySd+u7nbcqIkGTgyCrfL/0uDvnOwRa/CNiTSKdmzUO1Pdd8wYbsU6TdX521DJ2+AJidVXZz7pl3ePipZmSwD0fhGvSYMxe7Cf9x7UnTMJHnrbJGCyKfqysjkLLN9lQ83SZ4OPtz4WtXfsviZOpaI6rcl3pFBHfvC5VTPTBnHZeVkcbR/nBpPs1e6H3jgAfzgBz9A165d0alTJwDAunXrcMQRR2D+/Pnc6ozC5pVuH0qmlbJqIyof9/6iujnX2ApFFuGVCNm1ceQbPpfG7Hrw54Zs1StRu7m2Gs5uU5JnOr9AWRHS1WUrFJ8pGqRVdej8q25CAKQjURwXk3WNs5oVvCYIZSVHRpxJHVefTUXWTk67qX3H6aso8ZVNqL4mYiqy/ovyHBzb5I7vqjhR529M6hNRwo87TorqpCKrWyQzXZ9QV7rZk+5OnTphxYoVeOWVV/Dxxx8DAHr27ImhQ4dyq3IkiMg5RJmgBa9LYrCnGHgSDs4EuO2nOBNZH1AGB9vlGQXV9nJTidJPUQdUziRA1y5Kgi/tBGVITWbKjqv6ozYlzqiYPGlRJcx09kQJOrmTbd34obpWdk9bbJzaTso4rLtHlLHc89K5vdzGRSyOjuv8PXUc0J1TtUc0CbfJTnMVO0SZ06iOJznGsCbd+/fvR8OGDfGvf/0Lp5xyCk455ZTEGmIatk1YOMorm6hRJ3jBY7p7cTKH3MHRtL6J0x6dg6YG7pRgyjS5JYmNL4eLM9BTB3zRJIA7YaeUT5uOUf2XKBOu86fBa3WYPMF0REM3ueYkZbhQdmykzZbjwNmVEv6s61eHHej8di59tC4RluQ9Tbd7yq6AODtSZMeTkgfrO9316tVD586dUVVVlcjNX3/9dZx55plo3749ioqK8Pzzz2ed9zwPt9xyC9q1a4eGDRti6NCh+PTTT7PKbNu2Deeddx5KS0vRrFkzjB8/Hjt37ozdNs+z+/sQQYKrMEH8Z5SdpxCWU5y6ZHWEP5vSN7p2Uq9Tyc9/Vt0zi86HjyXR32FMs2HVz/4l+dz5gNNW/9l0euKXC5bl2pNKj3KhYyYgex6RPGVluPYYpW+iYpodc/THlPFAhEpnZGMnxdeHr6HWIdM5ka6ZLNckCcrMR+YbdT4zfD4o66j+loppNpw2qLGuzsbi3DOMSLeijr1U/2MKMrtKIm7K5fjDfpHaT3/6U9x0003Ytm0b99Ia7Nq1C3369MGDDz4oPP+LX/wC9913H+bMmYO3334bjRs3xrBhw/Dtt99mypx33nn44IMPsGjRIvz5z3/G66+/jksvvTR229KEzBiTGAyCQWeUwDJYR/ga2WdT4LaTIgNq4E4J2MJ9kwtMs2HKb/zaMhmMEjRzkPkDajChuqepNsuFGmQDfHvT+WNRXbmSq0l2HEyc2Z68odgqJekSroeqO2Go5UwnyTaLbIrqG2V9WQi5mmTDAP19E4WQle6eqvO6GEzlx5Oa1KrixKj1mz5mc9onSn5RkmecPgrrCHmHpcekb9++XpMmTbySkhLv0EMP9Y466qisv6gA8BYsWJD5XF1d7bVt29abNWtW5tj27du9kpIS7/e//73neZ734YcfegC8f/7zn5kyCxcu9IqKiryvvvqKfO+KigoPgFdRURG5/UkDwIvQPYnU7Z9XlZOVCR/XnVe1K5cyKCQUGejkSKmL2o6k9N5UG6bomi3o7Ep3Hacujg7WNlQyk5XlypnSv7kYuwplx8FnsdU+RVD7kjuWUuri6FOcscQEuO3nPGec2ITqm9M2FtusQ6Lj3Gt05ag6kUS5OO22GaqvlZ1XlQufo47F7BepDR8+nHtJJD7//HNs3Lgx6wVtZWVl6N+/P5YtW4bRo0dj2bJlaNasGY4++uhMmaFDh6JOnTp4++238aMf/UhY9969e7F3797MZxN/r9hLIOPkZ2HCdYU/U8upyqqygqrrVPdLQgb5gPJsQTgy4GxxkZWX3S/X3382xYZFz2+ibqn0iGp3VDvk3F+n38HjXFuwFcrzxV298byaL70rBLmyY5UNc3XQBqh2FNYbzjNT5SQal22WLRDPb4XR2W6UviqkDhdiLE7Di9Q411B1IbyDQlRWN17L7uWv0nLabRs6OatkoLNBSh+G6/A/U/WdPemeOnUq95JIbNy4EQDQpk2brONt2rTJnNu4cSNat26ddb5u3bpo3rx5poyIGTNmYNq0acr7q4QvE7qorKpuVYeG4UxeZe2gTq45k0LKNZTzqvZFvS5ofHECGd19cwlXrpznyvULxwplw6oBKUxU58wtRyEXdkcpzw1ORf4vahJOdjxK8JoLG6cSJbFD1S3uuaTJlR1TbNiXkUo/TJ+Qc30MJeCWySVct6wtSdhZlJjENnTypcRY4TpEup3rt5cXYiwWPQ8l+RuVKEmUJCeoScTAumsoY3XU+QinPVR5cnwDN2FIOc+Njzk6FG4vdfGW/Z3uNDBlyhRUVFRk/tatW1ejjJ/59f9U39NRlRX9hbPKKqUPl42TkTYhm035rozumrA8ZeWCfSGSOaUOFeF+tw0bM9E+MhsOfh80bI/BfpLZqg+1T4PlOLqTK6K0gfqsMltS2ZnM7nRtUflbWV2226NP8Llk8vOPp92GfTjjRhyfnk+S0FOq3enKU9rHvVehyWW7dLIRxX2qa237xY0glHhahayfdP2n8vc62Yf7yRZk7RaNGdSYN4n2RO3DqGULQVLxBXulu06dOsoOS+rN5m3btgUAbNq0Ce3atcsc37RpE/r27Zsps3nz5qzrDhw4gG3btmWuF1FSUoKSkhJWe0STZG62JwwlK8rF9KyzSDbhZ6Zmp2THRbKj9hWl70yVrWkUwoZFkxCRfnGzwRRM0AtOG7gyUNlbVL8lszddsGUzUbL/PmE552PSnSs7VtmwaDWQCnX8yAdB2+Cisg2dDoXP61ZpwhMTSnvSjEyHdHIVlafGg7mkUGNxaWkpALUf08XHomtUUHSZet40ZPonS7CJzlFjXoq8TZ9v5APuWMxe6V6wYAGee+65zN/TTz+NG2+8Ee3atcMjjzzCrU5Kt27d0LZtWyxevDhzrLKyEm+//TYGDBgAABgwYAC2b9+O5cuXZ8q8+uqrqK6uRv/+/RNriwxdxiMXWTTqSpHpBDPDuuy7LFspyiZTs/i6dqmy+rr22UKus+uFtmFZv4j61ZbVsaiInoebuZXZm6x+1XGOjaatL3S6pyIJH8cl33Yc92f/TNKXOH2kGou4Nkttqw2xQ5gk+5saX4X7hGLTqpgi18mzQozFZWVl2nEhLAfV57D8crFyaxsim40ay6j0U3WMspqe5j7i+k32SvcPf/jDGsfOOussHH744Xj66acxfvx4cl07d+7EqlWrMp8///xz/Otf/0Lz5s3RuXNnXH311Zg+fToOOeQQdOvWDTfffDPat2+feZlbz549cdppp+GSSy7BnDlzsH//flxxxRUYPXo02rdvz300ALQVUV0WVFZOVacuq0fN+NuSeVKt7uuy87o6RSsCqvvHOa47l3ZMtmFVX0bNotuKauWFW0cY1cqCzKZ1Gfvg57Tbl0oGuhWNpBJnJtmxaALCscu06gvFzsLo/JpsQiSqQ1aOsuqWS5K8X9LxlWisydUYY5INA+IXtVJkoRsTOOO7LfEwFYp+RrF5Ud0qPyCTK3X8t7k/ZM9ETpx5CbF69WqvcePGrGuWLFniATV/1mLcuHGe5333Mwc333yz16ZNG6+kpMQ7+eSTvZUrV2bVsXXrVm/MmDFekyZNvNLSUu+iiy7yduzYwWoH5VXvonZS/3R1BM+Fy8o+y9pnKpzn4T57uJxIrtQ6o97bRvxni/MzJabZMMUORXD1RHS97ej8FbUcx/dRrtO10zR0voXriyh/cX9qyAQ7tvmnhvIN175k13PK6NqQJpKQZ5Rr0zYWi54x6rjCIc61JhA1DlGVjXo8eN52uVKhPJ+sj3Q2XPT/Csdiz549mDJlChYuXIiVK1fGrS7v+G+ODH4HJYwqQ0NdtfGRlYtDmjJIYXTPRFm11PWNrq+C97JBxpR2UvTeFkTPQllRiKpblGts0BMKOhvhILInSjlu2TRAWbXwSZsN+ytkuRgrTYEaF4jKRRm3KPeSHUsTUVbfuDGd6JysLiC9YzHFjrnxcW3e9aLTVVHcF9XPiKDG0WlDFU+H5aazYfb28vLy8hqTmR07dqBRo0aYP38+tzpjUSlqHKXV3Ys6CQiXS4Oy65RaJnfVoBbeZiSrU9cG6nlToLTT5jemUuBMkMPXxBlEbNERKhT/xg2MOIN22gb0KM8eJokEiKn43+kOkqbgTjdBjmJvsmvDYyQlrkk7nDGfGuNxEoK1Rc7B+ILi86gTOl1f2ChfymRadV5VNk7SQkaa/bMIVVLS/5f6s3/sSfc999yT9blOnTpo1aoV+vfvj/Lycm51xhJWIoqTkB1PUultV+YoWWXucVUgUdsydIBcP0XfuUoDnIwttd+5OmkzVP+kWq2Ie6+gXG2RObVdcRKmaZ5s+9j8M2gqqPpB6VtqbEEtF2XyY6odhslFuzkr3vnY6WgiqpVuH9VunijjUPjaJCax+YAa08qgLDRxEnC6+8iuMUWe+cR/duq4xZ50jxs3jnuJNQQz7KrBipplDl4TPB9lwpkWcvFcKmdBlX2a5Z6LTKepiGw4THBgCh4LXkOdGNmmL5wVLeoETxU4UZKXovOq9poq86TbFdRT3cQnTYhWun1Ez21L4McJnFWfVfYWvpdOPyiJM1t211HbqZKvrqzsXjL/RvGNaUW1Y8WnqKhI69O49k0Z40yXPbd9UZJm1AUp0X1qiy7nYkxh/2QYAPztb3/D+eefj+OPPx5fffUVAODxxx/HG2+8kVjDCkEwU+GvsASdgn/cPxY+F8avI7xaE74uWJdoZUd0ja2IZCeScdiJBP/CdVBkI7tG1key6x3mI7OloP5Q+z3N6OxIZpci3ygrq/Nr4fKyz2mA6q/CgahIjv7ntK4K+8h0UmS7tusM53l045dMxyjlwnXaMjZy+18kbx+d7wuXo8pfRFFRUSp3nFVUVGjHFoody3xfGuGMDdw6uXMLlT3JYvEk220CwecMH4sKe9L97LPPYtiwYWjYsCFWrFiBvXv3AvjOwO68887IDTEVkQOQlZEpFkUxqUGpLcqrM+Tg80Yd1HXOWhUwUOVJnTTYhP8saQzYKc+kGnhkemGL3elQJbOotiIKSMNEGchF90qLzQWJomNp8j86RMlv2ec0wA1YRRMS2SQ8TtxA1c+09IkqaRgsEzUAl9WZ1rEYUCdqw1AncOG6RcdtHa+p42OYsOyizEN0438cudoyf1HJhlpWB3vSPX36dMyZMwe//vWvUa9evczxgQMHYsWKFewGmIbMyXKCQNXkT5cNpRqG6cobZSAWOQ7VgEedKKnkZIs8HXxU+qELnmpDsO+jC9xliSeRTHRluBOMqGVMRCYbldx9ZD4xjStkaXwmQD9pjTLBowbhOl1T1aVrp+2IYjuZz5Ndq/KRlElQbdN5VRld4kiXBA7WYTvU8VImM4ruUj9T7qvD9H6J0j7uNezvdK9cuRInnHBCjeNlZWXYvn07tzrjCQtTN4ETlRENlOFy/v85WVOToT5P2NnqygTLBSdQouOiOkVJDtW9ZQGN6hpH4QgGL2F9CAdDKnQ2bApJ6CLV7ii2o7tG1Sei85z2mobsGXV9RpnQUORkK8FVvzT5Wq7uU/SGO86q7hE+pmuPKUS1M58k/Fc4FpFdr2pnGuH4KV3/5UIfTddtqu6KYl6d7sqOU3yFqfLKJTo/Q4U96W7bti1WrVqFrl27Zh1/4403cNBBB3GrsxJusCRT8qBSU5W4kE6C005O+7iORafkwfIyx627t0rOtjkc2bOkNbsugxIA6Y6bRhS/EXfSFyW5pbM7lZ1S22tan+mekZMAlD1bWn+BwIeayLYJziQQoAW91Im8Sueok5qok9tcEfe+cZL0FF9JmchTf27IJoIvUqP0kW6S7VMbJtthoiSW4spPpOu2JOKiEuW5/LI5+8mwSy65BBMnTsRvf/tbFBUVYf369Vi2bBkmT56Mm2++mVudUYgEppu0Bcv4cINZUSCsKlsoCnXvqAYexdHrruUkHkzBtvbGQTUJqU27Fih+iwols8vN9nISlNxJSj7h6E+U59CtOqQtUAdovyKSBigrSqLyIqjXqBI+1MR0kr4ll+japZK3bpJDjc9E8YKp8koa/0VqQVTyoS6qUCag3MSRLVBko0u8hY+HUR3nJIptROaLKXLN2U+G3XjjjaiursbJJ5+M3bt344QTTkBJSQkmT56MK6+8kludUVRUVKC0tFR4TmTQMqgT6DjbxUwj6ja3KPeQEWVSlYuJvOkEnUQag3Zq0Kg6Z3s/q9rPfbY42x+58rVN/qp2UrejcRJ81BU2mwm/SM12uIndMKI+p+pUnGQ+NylgG6rn0vktajIjziKN7YiSZ5TEEVXvVMkf22QadXeJqpwuOUYdQ0S7Ybh12EYuE2XsSXdRURF++tOf4rrrrsOqVauwc+dO9OrVC02aNEmsUYVEt8VFNPBRHbLsHqprbSFOACGDG7RGGczSFkj4qAI0/3NlZWVe25QPRL8NKtI1alCVNr0A6EEM1Y+JJofcVQvZPSiY2ldRJ9ucum0dL6Jial+roCaYqBPjoiLxi6NEdcs+i+oMH+OueKeZJILw2iQvQLzSLYK66ylMnLjPNKIuVonilahxc5SFKRtlHZe4Yy570u1Tv3599OrVK9bNbUBl0LqBjRPIp90hq7JuOjlRVwpETkbnmNOy4mbLlr9coxroOROVNMuPmyDzofgv3T3Ck/EkAnnT+4q7ui/Sz9o2uQ6TxueXjW+cxB93jNTVQ70vp25TycWuO5EN2xZLJIUqAa7ydbpxmpusshluLEzRuzTLK59ElSN70r1r1y7MnDkTixcvxubNm1FdXZ11/rPPPuNWaSSqrBB3YKMYTtocMmdriy4YDUMN1FVZP127bUOVcJCRxq3lgHpFNnwsfE1tCpC4k0GO36PKkbMd09Y+oU5eOCs2wd0qabXjILb2PQXqKrUoXqAm+nXXRRkrawPcBIQqfqCuQKYJyip21BXZ2qCvURK13PFEJ88ocratb6ixkKoMdRxmT7ovvvhiLF26FGPHjkW7du1S5zAoBk7duhXGNkVMgjjPHJY9JUsqujelHWnrm7Q8RxzS1qccouyqoQ6+4fKqc0nswLA9yEoicJedS+OEW7RClmaStJFwneHzSQbrtkN5rrgyESW/Rf2dxuRZ8J0xKh8edSdjbZgEyqDsiuIuNCUx2Q63j0Mh+4gz2Y6704I96V64cCFefPFFDBw4kHup8ah+49dHJVjKwCaCsippGjoDoQw0sjpln2VQgvLaMtlWEZZnGl+kRvkFAtW5tOgBZZVUF0hSd6tQVuCSwOS+Uflw6mq/arcKd0yxGepbYNMGdZWak/iPMu5x7cy2MZSSVOROtjkJSV070kJwLKasUnNXsjljt60ypiZqfShJHm5SPV96ms8+irIIl9ROC/aku7y8HM2bN+deZgWUnxvibIuRdVIuAv18O3BuFo1ShuoU0hxwJoXI+daGgB2gPWdce7E1YFKtooY/y+yNMtBT22H7KraPqt3cBKXoWhlpTJxRsV1nqOjiDBVRd7XEaV++iLp7TbVipdtVp0tuUPxruH1pHY+DvwYU5Vl1OprkyqxpUJM7uvKUa8N1yGwg7v117cpnv3GTGaoyfvupY3EdQvuyuP3223HLLbdg9+7d3EuNx9/W5jtfP5gMfw7jnwvjX0s5Lqsj7r0KTbhd1OcMlk3imbl1cNppKrbpSlLE6TvqtabIkOs3dBM8ir2Jzoev1dkVVX622yDA1xVO+TROuMMrZCId4OiQaVD9ctjegtf552TX6MZdlR0mNfblegzV9T/1vEiuPuFn0MlXdFx3f8/zUr+7Iyw3ju1Sy9rqDzhQ5MfVWdk9KPdPQuYm9pvIX+rmczn7Tvddd92F1atXo02bNujatSvq1auXdX7FihXcKo1ElmULd4QKagYnSvbPVKhZSdU5XQZTt2OAk22W3cOWLCpH3qY+Q66Iog+6DLNpsuMELoB4y7LKx3Huobuv6rPuuOmoEhrcVf3geVFyQ1RXmhD9TrdpehHHH+j6XVZeFXtwbTepSbXqHoXuoyhwfZ8sTqBeL7omLYgmITp5BY9Rxw7TKET7VHKkXsvRVVNlHxWdPw2OxbJnp650syfdw4cP515iDaKfG6IEN7oBjzI4yQJg2+BOWjjBKrcNupU90TW6NnDqzCVxHGVaB3kge0ubjyoBES4TJWlkEhy90AXLcZJbKnun3Ns2RKtbsgkiNZAPr1YESbMNizAtiRjnntQEgiomoPp0mZ/jjMMybLVVij/jjpUqWVB8XtpfpOYjkgU3sRHGtJg5yXbESa7pdFc3zovqMUXGuYIyZ5PJnmq/7O3lU6dOVf5xeP3113HmmWeiffv2KCoqwvPPP591/sILL6yxteq0007LKrNt2zacd955KC0tRbNmzTB+/Hjs3LmT+1haPE++lUu2TUO0RSFORqrQUNrJ3bISDiQocgzXKZOzzGC4Ows4A0S+kMnTR5ckSuo5TLPhsrIyUh8H7Vlk02Gotpxvouhz+Nrwn+iaoJ2Jyul8YViupsgvF1DkJYJSLldyM82OKSTpx3JJuM90+iErHzyvgzI+yILpqPprC6pYRCc33fggOp8v32eiDVPkFT6m+6wba2yGYvtBGYjkGzXGlcVCSdzDNkRyD8sj6vjDnnQnya5du9CnTx88+OCD0jKnnXYaNmzYkPn7/e9/n3X+vPPOwwcffIBFixbhz3/+M15//XVceumlibVRFWDKkHUOxdmbPOBRFEw3wIieixp0yAY2ivLnQo4m9U0Y1UDn/yXxPTITbZiSDItap+xzoaC2QzW51vmlKHpO9XUUP2eynamQ+f0oz6MK6pPANDu2tc99gu2X2RE1eFPZSFQ5iexPVsYUXxcXkQ/U/cn8FTUGVNWZNKbZMCUBLpILNc6zfVKosjnZcZkvocwVuLFC+DNH/01BN7fwkY3RomeX/VFhby9PktNPPx2nn366skxJSQnatm0rPPfRRx/hpZdewj//+U8cffTRAID7778f3//+9/HLX/4S7du3j9w2vwOCE0PZufBxH11H6Jw2pQ5TobZbZgCiczJ5BYMbVTlR3XEchw1OB8jt1lQbbFhFEnpgA7IkjAiZ3emCJ9l9ROc5cretb2TPJpowBcuJ5CyrI+nxwTQ71j236XB8D+cavxw19shFHGFbX/gkOR7o5Mux4aQwzYap33HVjQm26puM8CQQoOubj6x80DdQbV9Xd7Ae2/pA9Syi87LrKNdSvyJS0JVuCq+99hpat26Nww47DP/3f/+HrVu3Zs4tW7YMzZo1yzgIABg6dCjq1KmDt99+m30v1dvLg5kQXRY0TLgcJUtke0aJel4lF1W2mJs51mVNbUck3zjySpJ82rBo9T4sGxv1gJpNlT2P6PqoNhFlhYF6LxtWKHTI/JZOBiI9ldVRCDnl047D2GKnHHTjnqpcVHnI9IlTl219QV2RUq2IiWxTFCeqxuHwtYUg3/F0GNWYofNtHJ9ng46KbE+md7pyonrDn7ljhipu0tmHaeO4zn6j1BEmZ28vzyennXYaRowYgW7dumH16tW46aabcPrpp2PZsmUoLi7Gxo0b0bp166xr6tati+bNm2Pjxo3Sevfu3Yu9e/dmPldWVmb+r8pYhpFliGSZpjiZVtOzfbKMUpgostDdk5IF1N1XJ3dV3SYgareurfl4cUshbNhRE1XWW+e3woTLqfTMVn8WB84gDvB25hQqkMmFHVNsWKU/NuiOqJ3cMUUkA52tysZj2+UZBepzieSr84Gyz0F5U/s31+R7LBb9TjcFmbyi2ImJcBNcAH/3FOVaGZxxifq50HB1SiQDXdmcvb38tttuw+TJk9GoUaOs43v27MGsWbNwyy23cKuUMnr06Mz/e/fujSOPPBLdu3fHa6+9hpNPPjlyvTNmzMC0adOUZVTKTVXmKM40qsMxHdXgJZOnLqDgBC86+aVN7qa0O982zE0kxEmQ5ZO47YkykEapkyq/tNlbEOp4oJsYqQJ2/3i+3nqcCztWjcM6uzRVT1Tt1CWzZIhkoNMLna7ZIs98Q008JlFnvmVuwlisSvrKiJI0MRHKeMkdF1XJM9mEPO5knHONbehkpipLhb29fNq0acK3Ge7evVs7kY3LQQcdhJYtW2LVqlUAgLZt22Lz5s1ZZQ4cOIBt27ZJv7cCAFOmTEFFRUXmb926dZlzum0com0b4bKy7R2yOm3Efwbqs/gyEAUM3O1EceSXBtmrMP35CmHDIvvjlDVZnmE427xkZXXPTJEn1XZtky8H7rOJyuvkWKifGUrCjuPYsKlwxjfZM1FsRGarSepc2myT4pNk/kunf7L4RnUs+DmJl5pyycdYHIYSB6ZN73xEzxzWN9mfj+54sC6ZrOOM+zps7zuVrer8eM62l/udGubf//43mjdvzq2OxZdffomtW7eiXbt2AIABAwZg+/btWL58Ofr16wcAePXVV1FdXY3+/ftL6ykpKUFJSYnwnC7zJMokqVbFVXXbnDnSZc51UDJI3GwzxWHYJmcdlExpWC6FlEEhbFh3nFOHbaj8l6yszt5U+qSTm2x1N83I5EU9rjtXCJKwY5UN2wLF1+h0ntunlHGOWqfI/tJqk7rxQOQbZbGeKFEhO6+ro1DyzvVYTPmdbtl8QnWNDtPiakq/69pJjeEo43scdLprgryTQPScST0bedJdXl6emekfeuihWUpQVVWFnTt34vLLL2fdfOfOnZksGwB8/vnn+Ne//oXmzZujefPmmDZtGkaOHIm2bdti9erVuP7663HwwQdj2LBhAICePXvitNNOwyWXXII5c+Zg//79uOKKKzB69OhIbz0WfQdFJHyZww2j6yROsGo6cQYW6iRJF6QmMZjZ1g+UiWUun8U0GwaSHVzSiM5/cScFqoGeasNpgJKwFaGSjX9MJrektpebaMc2QpnI6aDYCje5JTsuqse2MVCGLi5IMpFFkXeuJyg22rBqEStqXGea3ibR7zq7FdkvtS5ZnbLzwTK2+wqqjxBdExmPyLx587y5c+d6RUVF3r333uvNmzcv8/fkk096f//736lVZViyZIkHoMbfuHHjvN27d3unnnqq16pVK69evXpely5dvEsuucTbuHFjVh1bt271xowZ4zVp0sQrLS31LrroIm/Hjh2sdlRUVHgAMv+qxCI6J3qG4F8akT0b9ZlF5XR1Uu+Zdtlz0cmtoqIict2m2bBMD9KiE9xnoNgG1b5U56ntSEMf6IgrX5VvlNUdx4Y9zww7poy/tiHqK1VZir+KY6uOmgRlpbOzOGMMpY40jcVBe47zFwXb9J/aXp0OUerOp4+wrR9U6HxuUO9VFP2/i8gsXboUxx9/POrVq8e5zGhEqwW+WCiZ6yS3VqcF6tZ7kQyibi8P18lZZagNfeLjP6u//Su4w8NWfBtWvUFSpBem9zu1fdRV1GA9SdmZ6FpT5ZkrOF87Uo0tOmRl02bDtj9LkKg7tCj6EVfnguVstVnqCl0UP6eLX6jXqdoDpEv3VWNxFF/nY/pYnQu44yrHR+RCnrb2EdV/io5xx2L2d7q7deuGDRs2SM937tyZW6UxUH/iQLdNSadwtilkFGTPqBrsudsvdeU4A1/a+oTy3Z4kttXZQFgOnudZMzhEnWyHz4sSDiK5yK4Rfc73VxlMJqhTXFTXyWy1ttmw6aj6R9dXuq97RJlsh8vp2m2L3UbxOTo/Fzwukz31Hs4e/0twwk2Rj2584SaYbIL7NSxVeZ0cuTrKkauNsgdoctfFRdSverEn3V27dlV2WlVVFbdKo+B8H4JqGLLzaYI7YVbJMXycO3mkOKI09wVAcxbU3xW0HcpulaTqzjfUwZiSRJQddxM/GlwdoMhV1ze1xYZNhzLp5dqRyra5q7uyOm0bB6O0l5tEjHof2b1tl3lUgr6JMkmUfaYukNgsV+pYSpmfxE3EUcpT455Cx0dhdL5A1c6k5hDsSfe7776b9Xn//v149913cffdd+OOO+6I1AhTKCsrkxq8StC6zuAOjDaie0bZcZWTkE0YOMpv+4AXNbiiXJtGVDbso0pIcDFNtpQAhpvMirP1SkZadFO1Cik7zpl0xV2lcCRLHL2l9h13ZVx0LMqqYFpsMoxupVskb+oiAnUVXUVabZr6O906WdcmuLs2VMepY0eU2JLaN7b2IWUslpXVwZ509+nTp8axo48+Gu3bt8esWbMwYsQIbpVGwV2xFZWh3sNWheRADb51x1R1UcpTs92m9UlUJxzMsMsCssrKygRaaB6cbWmm9beOJJMEnKBe1QbOCpGpdiaDs2oQdVJFkUlaA3PboExeddfqgmHOeBZ1VStOIG0rnCR9UrsUKYkzz/MS+xUC06Akf7hxXRqJuqtMNQHk+htKwp7aV6b7EuoEmpOQo8KedMs47LDD8M9//jOp6gqCaqueakWDO0k0XSHzAWeyHT4fJXNt+4p3HGrTKpnqJRZp6HNqVjqJADPq5IB6fxvgtJ+bcKBMvnX9mdbEmS1QglBuopeyO0wGNSi33S4B/koeNW6g3FPXlqhl0kRFRYW2DCdZlWZ0PiLKKis3XqZeRylrCrIxVwfFN0SNp9mT7vAg73keNmzYgFtvvRWHHHJIpEaYRJQJiumrpfkgyW2QOifAydxxVwRs6UNKABfV4diMant5lEHDVH2I2recVWnuAJV0Wdvg+kBOgCXTaUpg64hPnJ1R1JWlKIE1NbHPmSya6vPCUCcPVHlzJjC6ulW2K6uzNhAnLrRdXpxEOPc4Z1zXYat8g1DjujC6BEUSsCfdzZo1E2ZTO3XqhKeeeiqxhhUCUcCuCtSpK0Sy69Og3D7cYIQzwFFX2kT35AY2tvQJRU+5DicNVFRUsCakSU08TYMyeMcJJEXlKfdPM0mspAVRyTUXwYBDDjUYE/kcav/H6VNqUply3Dbb1fUFdYdOMEkf9Z5RSKsNU99ezl1ksRVOgo6TeAuWD5aLmwQWnU96jMsVOp2iLNiJPqvKUGFPupcsWZL1uU6dOmjVqhUOPvhg1K2b2G71gkHthOCxMKYoXj5JIpvswx1EVSvgVKdgap9xkxiqcknuRrABSlImXNZUPQgTtZ2cjDhHfro6bJFrHHQTMOpqo2injqnBTW0nSmKdM35R7hW1HWkl6sRA5RupE3dOncHPafxOt+rrmpxJeNoQ6QQ1NqMkkqh+RJdkl92be64QUBdeqO0OziVk11B/SYQ9Sx48eDD3EmugCI2TwU77pAbgT2a5GbzgNVFWqW0POqjtVsk5asBgK7VxgkK1DZVexCHqQG47nB07PlEDKxHuJ8PMRJX41UFNNquuCV9Lqdt2W406aVBNgpK8Z23xiT4iv8R59rTKS6VjcSffwUStLmmXNrkG4UymRddxfK1/DfX9KpGWpleuXIn7778fH330EQCgZ8+euOKKK9CjR48o1RmDyklwVoi45WyGm3BQrebortW1gbOt2FaiDES1KSkU/IpIEjIyBW7CSbdjJwg1qUVZeeMOdqbLPQq6BCR1BVPkG9MorzRBsbNw2fB5ym47qo4lveJjMlF3EITLq45RF1pEfZUGGXPRjS2qJHBadm+onl2mm7pdUSqiLGyp2plmOIsF3L6SUYfbyGeffRZHHHEEli9fjj59+qBPnz5YsWIFevfujWeffZZbnfEUFRUJB8Hwdo7gn+O/eJ5HygZzM6C1Rd7hZ+TKSlVnGl/CxH0mmS2bhqzfqceDn2XP7JfJhwzyea8wubif/zzhIFL0p2pXuJysTh+3ym0GYRtSlZEdl52P4vN115jq53IBx9foyoTrovRdbUY3tkSJ45KIgfKJqr268TvK+bBOUmSfVl+g87k+MnmqZBNVD9kr3ddffz2mTJmC2267Lev41KlTcf3112PkyJHsRpiELrPJcayya3WDoa5MGqBs44haBydbZTpR2xl2KOFjgAvYgfRtuYqTCaf6K0pWmEoh5F3oPqauRKjGGv+c215uBpQVZO7Kq+pe1FVB7kqtzVCS+4B6RZXbJ7p7Ble6azOqsSWtOqkbP1Wr/LKyqgmg7hjVPtIExeaD6BJuorL+cep7Gdgr3Rs2bMAFF1xQ4/j555+PDRs2cKszFkrmWpdBUq02he+lK2MrUbJruixfnPJpky+FNGcyKdjy/HFWYsI+h6PnsuyuzL+F72GDbLlwVrJkK1/hMrK6o7SrNvoxm6DoTtQ6Af2YJ9Pf2qw3un7QnRPZtC6+qa2yBrJ3nVFiYZksbUW3Sq0aT6ifVVDHLt31NqOzW90zUsZ3H2rym73SfeKJJ+Jvf/sbDj744Kzjb7zxBgYNGsStzjgoWTdZBkmXlaJmo22C+szU46I6w9fIyuvK1SYoMkjjG1Mp72UwVT8oOzO4K1qyz8Fr4toPpbzpsg+ThAz8Z+aumolWgWR1p/ErIjYhs5048YPuHuEgUnUP2+wuCXTPzDkeddIRlH9tkj0Vjg6Hr0mLPKM8ByeOpl6bxnmJT1TdEo3dUVbHRbAn3T/4wQ9www03YPny5TjuuOMAAG+99RaeeeYZTJs2DS+88EJWWVtRTSZVK7Sqz2lANgmgKK2onij39pG1IUqdpvUVt12UiZOpz5o0cfTBJJII2JIIJHUBvGpCr2qHycSxFZ0t6gInUcAu869pS5qFMc1nUZNglHZzkzGi63Q2yZGbabLWIbMJ2WfduBBeUVTVGaeduuNphLOQwl10sQ1RUjWphbo4daZFH6PETZTFwaTiySKP2bo6dWg70ouKilBVVRWpUflGtOJHGSyTXHmlKnyShpELI+ME5uFynGBUdA9dG+KWLQTcwIJTp09FRQVKS0tjt7WQ+DZs87Oo+jLqRE52XkSUybWsjjBp2Y1C6SOuHKME48GVbtv13scGG+b2cRKT7jBR6kxjoB03eSg7r7oXdTLOlacNuk9FtYMuytiWVlSTw6i7oyhloo5PlMmsqf4kyrPK0NWhs2H2Snd1dTX3EivhCF12njMoUJU0SWVOMvOq2gIXrFMkE27CgXudCtOdgy7by+lDkXNI20pZ8CfDbEPV7jgBo+x66q4UXZ0iqCuCphIlCcr14ZzdQDK7p/42qE2YbMOyfogyFlGDYc4OCG6izFQ568jFBEC1Y4e76qpazawtUOILlY9LO5Tx3kfmE0S6FXWngE5Pk7hHvqHaHsevx7XnSL/TXZuJMyE1TSHDxMmG667VOY3w/4NludlkioGY2ifc9nCyxFFWLm0j+B1Xzq4Ak/SBMtmKmqiinlNBkZEJckySKEEG1+eI+lY3MU/jd7ptfCaKvutWR2XlKej00yT/VmgodimzO0rMEeV+aSQ44VYlidIYh4hQ6RI1OZaETxDdX1WOcq1JxEnkyJKYqsUKH+oiVqRJ9+LFi7F48WJs3ry5xsr3b3/72yhVGofMUdq8xSIqlFVT3eAeZYKskyO3PKU9pqEb9GUOQLUa4pPWlW6fOBOkQkJJCnBXVYP1UJMvugFItPKmq8MWoq4SUIiTCAz3Qdrstzajm5Sr9CPJiZ0JNhtn1Y36WVWX6JzofLicLYndfEGZLEaN90yB2y6Of+e2QVWXaXLLJXH9oai8Tp7UPmNPuqdNm4bbbrsNRx99NNq1a1drslSciaepyp0L49M5CZ1iiq6jDmzh8iKjMLUvqCTpyH3SbLNpTCQA/OBPVS5q/1OSXFGTA6ZDeXZdUB9lpVvXn2nV9zCmB45x9D7KaoxqJUZUp22rWFHaS13tV92DGqzHSZjVFsI/GcbFtrFEN0ZQEjHUBBElcZRPn2mSf/a8mrsnoo7BqnE+TM5WuufMmYN58+Zh7Nix3EtTgWjAs4VcTLbDn3XbskTKz12xpg6yppOEo6Jk1n1qw0o3kOyqTyFRrSBzk1mU1Ryu3Ynqs33VQkaUlSzqDgJdOdH9/M9p/E63CFP0JMokjKrrnGSzzoZts684UFeeOPYmg+qPKfWnvW8osQVlMmM6UeNU0TGuDCgr49z4WmVPcfTfBKjypsTTYahfi2JPuvft24fjjz+ee5kViN46R1HmMLYooIwoAzZ39Yyi1FEnAcHjVEdTCCiBu+y8rA5OMiPtAbuJfc6Box+cwZuz8sMpxymTpj6RnaNOzGT1qLYMOgoDdzxRjUFcG1HpBTeRZqtv5IxvUZ6NmsykJlDSMKlMEk5yIi3y4tgeNb6Lcl8ZcWJK0+G2M84uUOoCFu33vwJcfPHFePLJJ9kNsoGg0IqKijIDZvhPdU5mSCZt6dW1J/ycwevCdYTL6GSiqlN3DbXd3HMmQdWhcB+FdVJ0bfiaNK5yAzWf1/FfdElEik2r7FBk3yb5Pi6c9sueXfYXJqyvFD+QVhs2DZlNyMqpfA9Vp3R6Ils5C+sQpZxtUPy7zp+FEcUcOp8ns+3gdY6aqGyAEjPaINcouqGLgXWyycX8I9heW/wG1TfIPlPmElFlwV7p/vbbb/HII4/glVdewZFHHol69eplnb/77rvZjSg0QcH5q3/+VgG/I4JbB/z/y1YK/UDIL6crny/C7dK1J1yuoqKihnzCQZ9/XhcMBu8dvk+4neH2y8qFnyfYXtsJy1vWD0HZhOUX1mX/GhucqA7/GSorK0n2adsbknW6rrO34POGdUcmJ50ti3RN5DNU9ygU4WeS6YNO3uHnBmomNmR+LGyHMvsU1el/XrduHTp16pQ6GzYVatuCfalKUAWR6aBI98Jlw/GKrk5bCdqG7FlldiTrh2A5XcymiguDiGImFX6ZNNmx75uChOUWlI0s7rNlTAlDsWfqZJj6zEVFRVIdVcmecg+b4mmZLoXR+ZDw8eA5Wd3aXTAe08pPOukkeWVFRXj11Vc51RnBl19+WcM5OBy1hXXr1qFjx46FbkYsnA07ajPOhh0O+3F27HDYjc6G2ZPuNFJdXY2VK1eiV69eWLduXY3vdZtOZWUlOnXqZGXbAbvbb3PbPc/Djh070L59e9Spw/6miVHYbsOA3bpkc9sBe9vvbNgsbNUjwO62A3a339mxOdisR4Dd7be57VQbjvQ73WmjTp066NChAwCgtLTUus72sbntgN3tt7XtaflOaFpsGLC7/Ta3HbCz/c6GzcPm9tvcdsDe9js7Ngub2w7Y3X5b257oT4aNGDGCVO65556jVulwOBwOh8PhcDgcDkeqIU+605KFczgcDofD4XA4HA6HI1+QJ91z587NZTsKTklJCaZOnYqSkpJCN4WNzW0H7G6/zW1PG7b3hc3tt7ntgP3tTwu294PN7be57YD97U8TNveFzW0H7G6/zW2n4l6k5nA4HA6Hw+FwOBwOR46w+zWJDofD4XA4HA6Hw+FwGIybdDscDofD4XA4HA6Hw5Ej3KTb4XA4HA6Hw+FwOByOHOEm3Q6Hw+FwOBwOh8PhcOQIN+kG8OCDD6Jr165o0KAB+vfvj3/84x+FblINZsyYgWOOOQZNmzZF69atMXz4cKxcuTKrzIknnoiioqKsv8svv7xALc7m1ltvrdG2Hj16ZM5/++23mDBhAlq0aIEmTZpg5MiR2LRpUwFbnE3Xrl1rtL+oqAgTJkwAYLbsawM22DBgtx07G3bkGhvs2GYbBuy2Y2fD5mODDQN227HNNgzUbjuu9ZPup59+Gtdccw2mTp2KFStWoE+fPhg2bBg2b95c6KZlsXTpUkyYMAFvvfUWFi1ahP379+PUU0/Frl27sspdcskl2LBhQ+bvF7/4RYFaXJPDDz88q21vvPFG5tykSZPwpz/9Cc888wyWLl2K9evXY8SIEQVsbTb//Oc/s9q+aNEiAMDZZ5+dKWOy7NOMLTYM2G/HzoYducIWO7bdhgF77djZsNnYYsOA/XZsqw0DtdyOvVrOscce602YMCHzuaqqymvfvr03Y8aMArZKz+bNmz0A3tKlSzPHBg8e7E2cOLFwjVIwdepUr0+fPsJz27dv9+rVq+c988wzmWMfffSRB8BbtmxZnlrIY+LEiV737t296upqz/PMln3asdWGPc8uO3Y27MglttqxTTbseemyY2fDZmGrDXueXXacJhv2vNplx7V6pXvfvn1Yvnw5hg4dmjlWp04dDB06FMuWLStgy/RUVFQAAJo3b551/IknnkDLli1xxBFHYMqUKdi9e3chmifk008/Rfv27XHQQQfhvPPOw9q1awEAy5cvx/79+7P6oUePHujcubOR/bBv3z7Mnz8fP/7xj1FUVJQ5brLs04rNNgzYZ8fOhh25wGY7ts2GgXTYsbNhs7DZhgH77DgNNgzUPjuuW+gGFJKvv/4aVVVVaNOmTdbxNm3a4OOPPy5Qq/RUV1fj6quvxsCBA3HEEUdkjp977rno0qUL2rdvj//85z+44YYbsHLlSjz33HMFbO139O/fH/PmzcNhhx2GDRs2YNq0aRg0aBDef/99bNy4EfXr10ezZs2yrmnTpg02btxYmAYreP7557F9+3ZceOGFmWMmyz7N2GrDgH127GzYkStstWPbbBhIjx07GzYLW20YsM+O02LDQO2z41o96baVCRMm4P3338/6DgcAXHrppZn/9+7dG+3atcPJJ5+M1atXo3v37vluZhann3565v9HHnkk+vfvjy5duuAPf/gDGjZsWMCW8Xn00Udx+umno3379pljJsveYSa22bGzYYcjG9tsGEiPHTsbdiSFbXacFhsGap8d1+rt5S1btkRxcXGNt/pt2rQJbdu2LVCr1FxxxRX485//jCVLlqBjx47Ksv379wcArFq1Kh9NY9GsWTMceuihWLVqFdq2bYt9+/Zh+/btWWVM7IcvvvgCr7zyCi6++GJlOZNlnyZstGEgHXbsbNiRFDbacRpsGLDTjp0Nm4eNNgykw45ttGGgdtpxrZ50169fH/369cPixYszx6qrq7F48WIMGDCggC2ried5uOKKK7BgwQK8+uqr6Natm/aaf/3rXwCAdu3a5bh1fHbu3InVq1ejXbt26NevH+rVq5fVDytXrsTatWuN64e5c+eidevWOOOMM5TlTJZ9mrDJhoF02bGzYUdS2GTHabJhwE47djZsHjbZMJAuO7bRhoFaaseFfY9b4Xnqqae8kpISb968ed6HH37oXXrppV6zZs28jRs3FrppWfzf//2fV1ZW5r322mvehg0bMn+7d+/2PM/zVq1a5d12223eO++8433++efe//f//X/eQQcd5J1wwgkFbvl3XHvttd5rr73mff75596bb77pDR061GvZsqW3efNmz/M87/LLL/c6d+7svfrqq94777zjDRgwwBswYECBW51NVVWV17lzZ++GG27IOm667NOOLTbseXbbsbNhRy6xxY5ttmHPs9+OnQ2biy027Hl227HtNux5tdeOa/2k2/M87/777/c6d+7s1a9f3zv22GO9t956q9BNqgEA4d/cuXM9z/O8tWvXeieccILXvHlzr6SkxDv44IO96667zquoqChsw/8f55xzjteuXTuvfv36XocOHbxzzjnHW7VqVeb8nj17vJ/85CdeeXm516hRI+9HP/qRt2HDhgK2uCYvv/yyB8BbuXJl1nHTZV8bsMGGPc9uO3Y27Mg1NtixzTbsefbbsbNhs7HBhj3Pbju23YY9r/bacZHneV5+1tQdDofD4XA4HA6Hw+GoXdTq73Q7HA6Hw+FwOBwOh8ORS9yk2+FwOBwOh8PhcDgcjhzhJt0Oh8PhcDgcDofD4XDkCDfpdjgcDofD4XA4HA6HI0e4SbfD4XA4HA6Hw+FwOBw5wk26HQ6Hw+FwOBwOh8PhyBFu0u1wOBwOh8PhcDgcDkeOcJNuh8PhcDgcDofD4XA4coSbdDscDofD4XA4HA6Hw5Ej3KTb4XA4HA6Hw+FwOByOHOEm3Q6Hw+FwOBwOh8PhcOQIN+l2OBwOh8PhcDgcDocjR7hJt8PhcDgcDofD4XA4HDnCTbodDofD4XA4HA6Hw+HIEW7S7XA4HA6Hw+FwOBwOR45wk26Hw+FwOBwOh8PhcDhyhJt0OxwOh8PhcDgcDofDkSPcpNvhyBHz5s1DUVER1qxZU+imOByOCNx6660oKioqdDMcDgcDN/Y6HOkiLTbtJt0JUlRURPp77bXXCtrOE088EUcccUTWsa5du2a1sXXr1hg0aBAWLFhQ41q/TJ06dVBaWorDDjsMY8eOxaJFi/L5GFpWrlyJSZMm4fjjj0eDBg20BvvCCy/gf/7nf9CgQQN07twZU6dOxYEDB/LXYEfBcTZslg0DwCuvvIKTTjoJLVu2RLNmzXDsscfi8ccfF5bdtGkTLrvsMnTo0AENGjRA165dMX78+Dy32GEKzp4La8+vvPIKhgwZgrKyMjRt2hT9+vXD008/XaOcG3sdYZztmjUWL1iwAMOGDUP79u1RUlKCjh074qyzzsL7779fo+y3336LGTNmoFevXmjUqBE6dOiAs88+Gx988EEBWm4WdQvdgDQRDgQfe+wxLFq0qMbxnj175rNZZPr27Ytrr70WALB+/Xo8/PDDGDFiBGbPno3LL788U65jx46YMWMGAGDXrl1YtWoVnnvuOcyfPx+jRo3C/PnzUa9evYI8Q5Bly5bhvvvuQ69evdCzZ0/861//kpZduHAhhg8fjhNPPBH3338/3nvvPUyfPh2bN2/G7Nmz89doR0FxNmyWDb/wwgsYPnw4BgwYkFl1/sMf/oALLrgAX3/9NSZNmpQpu27dOgwcOBAAcPnll6NDhw5Yv349/vGPfxSq+Y4C4+y5cPY8d+5cjB8/HqeccgruvPNOFBcXY+XKlVi3bl1WOTf2OkQ42zVrLH7vvfdQXl6OiRMnomXLlti4cSN++9vf4thjj8WyZcvQp0+fTNnzzjsPL7zwAi655BL8z//8D9avX48HH3wQAwYMwHvvvYcuXboU8EkKjOfIGRMmTPAoIt61a1ceWvNfBg8e7B1++OFZx7p06eKdccYZWcc2bNjgNW7c2Dv00EOV13qe5x04cMD7yU9+4gHwrr/++tw0nMnWrVu9yspKz/M8b9asWR4A7/PPPxeW7dWrl9enTx9v//79mWM//elPvaKiIu+jjz6KdP+5c+cq7+kwH2fDheWUU07x2rdv73377beZY/v37/e6d+/uHXnkkVllTz/9dK9bt27e119/ndj9p06dSup/hx04e84Pn3/+udewYUPvqquu0pZ1Y6+DgrNd89i4caNXt25d77LLLssc+/LLLz0A3uTJk7PKvvrqqx4A7+677450r7TYtNtenmf8rSjLly/HCSecgEaNGuGmm24C8N12mltvvbXGNV27dsWFF16YdWz79u24+uqr0alTJ5SUlODggw/Gz3/+c1RXVyfW1rZt26Jnz574/PPPtWWLi4szq8oPPPAAKioqEmtHVJo3b46mTZtqy3344Yf48MMPcemll6Ju3f9u/vjJT34Cz/Pwxz/+UVvHBx98gCFDhqBhw4bo2LEjpk+fLu2LhQsXYtCgQWjcuDGaNm2KM844Q7jt5plnnkGvXr3QoEEDHHHEEViwYAEuvPBCdO3aVdseR+5wNpw/KisrUV5ejpKSksyxunXromXLlmjYsGHm2Mcff4yFCxfiuuuuQ4sWLfDtt99i//79rHu98cYbOOaYY9CgQQN0794dDz/8sLTs/Pnz0a9fPzRs2BDNmzfH6NGja6zgAcCDDz6Igw46CA0bNsSxxx6Lv/3tbzjxxBNx4oknstrmyB3OnpNnzpw5qKqqwm233QYA2LlzJzzPq1HOjb2OODjbLSytW7dGo0aNsH379syxHTt2AADatGmTVbZdu3YAkDVuy0izTbvt5QVg69atOP300zF69Gicf/75NZRTx+7duzF48GB89dVXuOyyy9C5c2f8/e9/x5QpU7Bhwwbcc889ibRz//79WLduHVq0aEEqX1xcjDFjxuDmm2/GG2+8gTPOOEP5DLt37ybVWV5eTm5zFN59910AwNFHH511vH379ujYsWPmvIyNGzfipJNOwoEDB3DjjTeicePGeOSRR4TO5fHHH8e4ceMwbNgw/PznP8fu3bsxe/ZsfO9738O7776bcQAvvvgizjnnHPTu3RszZszAN998g/Hjx6NDhw7JPLQjFs6G82PDJ554In7+85/j5ptvxrhx41BUVIQnn3wS77zzDv7whz9kyr3yyisAvhvoTz75ZLz66qsoLi7GKaecgtmzZ2sH1vfeew+nnnoqWrVqhVtvvRUHDhzA1KlThf16xx134Oabb8aoUaNw8cUXY8uWLbj//vtxwgkn4N1330WzZs0AALNnz8YVV1yBQYMGYdKkSVizZg2GDx+O8vJydOzYMZI8HLnB2XOy9vzKK6+gR48e+Mtf/oLrrrsOX331FcrLyzFhwgRMmzYNdep8t97jxl5HXJzt5jee3r59O/bv34+NGzfinnvuQWVlJU4++eTM+e7du6Njx4646667cNhhh+Goo47C+vXrcf3116Nbt24YPXq0sv7U23SBV9pTjWg7zODBgz0A3pw5c2qUB+BNnTq1xvEuXbp448aNy3y+/fbbvcaNG3uffPJJVrkbb7zRKy4u9tauXatsl2w7zKmnnupt2bLF27Jli/fvf//bGz16tAfAu/LKK5XXBlmwYIEHwLv33nuVbfC3ber+unTpoqyHimp7uX9OJLdjjjnGO+6445R1X3311R4A7+23384c27x5s1dWVpZ1zx07dnjNmjXzLrnkkqzrN27c6JWVlWUd7927t9exY0dvx44dmWOvvfZaojJx6HE2LCcfNrxz505v1KhRXlFRUaa+Ro0aec8//3xWuauuusoD4LVo0cI77bTTvKefftqbNWuW16RJE6979+7aLYfDhw/3GjRo4H3xxReZYx9++KFXXFyc1f9r1qzxiouLvTvuuCPr+vfee8+rW7du5vjevXu9Fi1aeMccc0zWttl58+Z5ALzBgwdHFYkjBs6e5SRpz6WlpV55eblXUlLi3Xzzzd4f//hH79xzz/UAeDfeeGOmnBt7HVSc7crJZzx92GGHZepr0qSJ97Of/cyrqqrKKvP222973bt3z7p3v379vA0bNmjrT7tNu5XuAlBSUoKLLroo8vXPPPMMBg0ahPLycnz99deZ40OHDsXMmTPx+uuv47zzzmPX+9e//hWtWrXKfC4uLsbYsWPx85//nFxHkyZNAPx3i4mMCy64AN/73ve09VG2osRlz549AJC1hdWnQYMGqKysVF7/l7/8BccddxyOPfbYzLFWrVrhvPPOw0MPPZQ5tmjRImzfvh1jxozJ6rfi4mL0798fS5YsAfDdSzfee+893HTTTRl5AsDgwYPRu3dvbXscucfZcH5suKSkBIceeijOOussjBgxAlVVVXjkkUdw/vnnY9GiRTjuuOMAfLd9FfhuC9+LL76YWUnr2LEjxowZgyeffBIXX3yx8B5VVVV4+eWXMXz4cHTu3DlzvGfPnhg2bBj+8pe/ZI4999xzqK6uxqhRo7L6rW3btjjkkEOwZMkS3HTTTXjnnXewdetWzJgxI2vb7HnnnZf18jeHGTh7Ttaed+7cierqasycORM33HADAGDkyJHYtm0b7r33Xtx0001o2rSpG3sdsXG2m994eu7cuaisrMRnn32GuXPnYs+ePaiqqsqMuQBQXl6Ovn374uyzz8Zxxx2HVatWYcaMGTj77LOxaNEiNGjQQFp/2m3aTboLQIcOHVC/fv3I13/66af4z3/+k2XQQTZv3hyp3v79+2P69OkoKipCo0aN0LNnz8xWSSp+8Kv7LvVBBx2Egw46KFI7g+zZs6fG913atm3LqsN3RHv37q1x7ttvv9U6qi+++AL9+/evcfywww7L+vzpp58CAIYMGSKsp7S0NFMfABx88ME1yhx88MFYsWKFsj2O3ONsOD82fMUVV+Ctt97CihUrMoP6qFGjcPjhh2PixIl4++23AfzXhkeNGpU1+J999tkYO3Ys/v73v0sn3Vu2bMGePXtwyCGH1Dh32GGHZU26P/30U3ieJywLIPOWWZkN161b130v1ECcPSdnz8B39rhr1y6MGTMm6/iYMWPw0ksv4d1338UJJ5zgxl5HbJzt5jeeHjBgQOb/o0ePzrw9/pe//CUAoKKiAoMGDcJ1112XeXs78N1XSE488UTMnTsX//d//ydtQ9pt2k26CwA321RVVZX1ubq6Gqeccgquv/56YflDDz00UrtatmyJoUOHRrrWx//NPpGCB9m5c2fGoagoLi6WOkMAePrpp2tkOT3BC1tU+C942LBhAzp16pR1bsOGDVkZtzj4L4J4/PHHhYmB4IqYw2ycDefehvft24dHH30U119/fdZEul69ejj99NPxwAMPYN++fahfvz7at28PoObLW4qLi9GiRQt888032nZSqK6uRlFRERYuXIji4uIa54OZdIc9OHtOzp6B776T/emnn9awx9atWwNAxh7d2OuIi7PdwsXT5eXlGDJkCJ544onMpPvZZ5/Fpk2b8IMf/CCr7ODBg1FaWoo333xTOemmYqtNm9mqWkp5eXnWWwABYN++fdiwYUPWse7du2Pnzp2xDTppqqqq8OSTT6JRo0barS6//OUvMW3aNG2dXbp0wZo1a6Tnhw0bhkWLFnGbmkXfvn0BAO+8807WIL9+/Xp8+eWXuPTSS7Vt9LNuQVauXJn1uXv37gC+CzxUfef/huGqVatqnBMdc5iDs+GaRLXhrVu34sCBAzWCJOC7l9JUV1dnzvXr1w8A8NVXX2WV27dvH77++mtloNGqVSs0bNiQbMOe56Fbt27KYCxowyeddFLm+IEDB7BmzRoceeSR0msd5uDsuSY6ewa+s8dPP/0UX331VdYK3Pr16wEgY49u7HXkCme7NclFPB1eHd+0aROAmskNz/NQVVWFAwcOaNuYZpt2k26D6N69O15//fWsY4888kgN5R01ahRuvfVWvPzyyxg2bFjWue3bt6NJkyZ5z/JUVVXhqquuwkcffYQbb7wxs7VDRlLfQWnXrl0mWx6Vww8/HD169MAjjzyCyy67LLOCNXv2bBQVFeGss85SXv/9738f99xzD/7xj39kAoctW7bgiSeeyCo3bNgwlJaW4s4778RJJ52U2Yrqs2XLFrRq1Qrt27fHEUccgcceewxTpkzJrJ4tXboU7733XsaJOMzD2XBNotpw69at0axZMyxYsAC33XZbZgvhzp078ac//Qk9evTI1H3iiSeidevWeOKJJ3DTTTdlvjM2b948VFVV4ZRTTpHev7i4GMOGDcPzzz+PtWvXZr7X/dFHH+Hll1/OKjtixAhMmTIF06ZNw/z581FUVJQ553ketm3bhhYtWuDoo49GixYt8Otf/xoXXXRRpi+feOKJxFbdHbnH2XNNKCuL55xzDp566ik8+uijuOOOOwB8tzI1d+5cNG/ePJMkc2OvI1c4261JnHh68+bNmZ0qPmvWrMHixYuzfn3AT0Y/9dRTWT/Z9sILL2DXrl046qijlG1Iu027SbdBXHzxxbj88ssxcuRInHLKKfj3v/+Nl19+GS1btswqd9111+GFF17A//7v/+LCCy9Ev379sGvXLrz33nv44x//iDVr1tS4JkkqKiowf/58AN/9VMGqVavw3HPPYfXq1Rg9ejRuv/12bR1Jfn9M1c77778fAPDmm28CAB544AE0a9YMzZo1wxVXXJEpO2vWLPzgBz/AqaeeitGjR+P999/HAw88gIsvvjjznRUZ119/PR5//HGcdtppmDhxYuYnDrp06YL//Oc/mXKlpaWYPXs2xo4di//5n//B6NGj0apVK6xduxYvvvgiBg4ciAceeAAAcOedd+KHP/whBg4ciIsuugjffPMNHnjgARxxxBGkbUSOwuBsODmKi4sxefJk/OxnP8Nxxx2HCy64AFVVVXj00Ufx5ZdfZtoPfPcynVmzZmHcuHE44YQTMHbsWKxduxb33nsvBg0ahBEjRijvNW3aNLz00ksYNGgQfvKTn+DAgQO4//77cfjhh2fZcPfu3TF9+nRMmTIl8xNgTZs2xeeff44FCxbg0ksvxeTJk1G/fn3ceuutuPLKKzFkyBCMGjUKa9aswbx589C9e/esybrDXJw9R+OHP/whTj75ZMyYMQNff/01+vTpg+effx5vvPEGHn744awXp7mx15ELnO0mS+/evXHyySejb9++KC8vx6effopHH30U+/fvx8yZMzPlzjzzTBx++OG47bbb8MUXX2RepPbAAw+gXbt2GD9+vPI+qbfpvL4rvZYh+4kD2U8EVFVVeTfccIPXsmVLr1GjRt6wYcO8VatW1fiJA8/77nX5U6ZM8Q4++GCvfv36XsuWLb3jjz/e++Uvf+nt27dP2S7ZTxycccYZ2mfyf6IBgZ8MOOSQQ7zzzz/f++tf/6q9Pp98/vnnrJ9OWLBggde3b1+vpKTE69ixo/ezn/1MK0uf//znP97gwYO9Bg0aeB06dPBuv/1279FHHxX+TNmSJUu8YcOGeWVlZV6DBg287t27exdeeKH3zjvvZJV76qmnvB49englJSXeEUcc4b3wwgveyJEjvR49ekQViYOJs+HC88QTT3jHHnus16xZM69hw4Ze//79vT/+8Y/Csr///e+9Pn36eCUlJV6bNm28K664wqusrCTdZ+nSpV6/fv28+vXrewcddJA3Z86czE+xhHn22We9733ve17jxo29xo0bez169PAmTJjgrVy5Mqvcfffd53Xp0sUrKSnxjj32WO/NN9/0+vXr55122ml8QThi4+w5f+zYscObOHGi17ZtW69+/fpe7969vfnz5wvLurHXocPZbmGZOnWqd/TRR3vl5eVe3bp1vfbt23ujR4/2/vOf/9Qou23bNm/SpEneoYce6pWUlHgtW7b0Ro8e7X322Weke6XZpos8j/nWKYfDUTD69u2LVq1axf4eu8PhyD/V1dVo1aoVRowYgV//+teFbo7D4SDixl6HI10Uwqbr6Is4HI58s3///hovnHjttdfw73//GyeeeGJhGuVwOMh8++23Nd78+thjj2Hbtm3Ohh0OQ3Fjr8ORLkyyabfS7XAYyJo1azB06FCcf/75aN++PT7++GPMmTMHZWVleP/999GiRYtCN9HhcCh47bXXMGnSJJx99tlo0aIFVqxYgUcffRQ9e/bE8uXLY/22rMPhyA1u7HU40oVJNu1epOZwGEh5eTn69euH3/zmN9iyZQsaN26MM844AzNnznSDvsNhAV27dkWnTp1w3333Ydu2bWjevDkuuOACzJw50024HQ5DcWOvw5EuTLLp1Kx0P/jgg5g1axY2btyIPn364P7778/63UeHw2E2zoYdDvtxduxw2I2zYYcjN7C/0z1v3jzh8QMHDmDKlClx2xOJp59+Gtdccw2mTp2KFStWoE+fPhg2bBg2b95ckPY4HA4ezoYdDvtxduxw2I2zYYcjd7BXuktLSzFs2DA88sgjKC8vBwCsXLkS5557LrZu3Yo1a9bkop1K+vfvj2OOOSbzm2zV1dXo1KkTrrzyStx44415b4/D4eDhbNjhsB9nxw6H3TgbdjhyB/s73e+++y7OP/989O7dG3PnzsUnn3yC66+/HsOHD8dDDz2UizYq2bdvH5YvX561yl6nTh0MHToUy5YtE16zd+9e7N27N/O5uroa27ZtQ4sWLVBUVJTzNjscJuB5Hnbs2IH27dujTp3C/ZCBs2GHIxqm2DDAt2Nnww7Hd5hix24sdjiiQbVh9qS7e/fuePPNN3H11VfjtNNOQ3FxMX73u99hzJgxsRocla+//hpVVVVo06ZN1vE2bdrg448/Fl4zY8YMTJs2LR/NcziMZ926dejYsWPB7u9s2OGIR6FtGODbsbNhhyObQtuxG4sdjnjobDjS28tffPFFPPXUUxgwYAA++eQTPProoxg8eDDat28fuaH5ZMqUKbjmmmsynysqKtC5c+fM/4OUlZVlHS8rKyOVodQVPB4+ZhuyZ9Od948HzwWPBaHKU1WGco1JUOUapqKiQvrsPuvWrUOnTp3QtGnTpJqbN2Q27D+TCJUN6wjLzhb9iYNOf4JQbZcrxzi+Md+2no/71TYbpowX4XO2+vokUdlqEJFdUuMYXZ2i8rq6CtFXKj3h6hAnJhGRNjsuLS0FQItTgseCJGHHtvkC6tgrslXOuK2qU9YmVRlTidv/lDiksrKSNBazJ92XXXYZfve73+GOO+7ANddcg02bNuHHP/4xevfujdmzZ2PUqFHcKmPRsmVLFBcXY9OmTVnHN23ahLZt2wqvKSkpQUlJSY3jIgfg4x/3PC+zZcb/Orz/b/h4eGuN7OvzNr1AXvaMsmeQnRdtO5LJXnev8HXB8+GyNskakMtNpns+/mAX/H+4rsrKSuG1+SZJGy4tLZXKJKgnvkyo+my63ujsMMm6RLLS2XnQf6ruKbtXFPLdZ7r7RekjnT6aYsMA345lNtypUyepDfuIZEjxhWmF67fCdhkkbKuyOEbWN2F5q/TdBL+aZPso5VWxUKHtOMmxWJT8Fj07NXbUjTHBciaM33H8vY9uwhw+H/xMjadldap8rG0k0e6wX5PJT2fD7C+PvPnmm3j77bdx7bXXoqioCG3btsVf/vIX3Hbbbfjxj3/MrS429evXR79+/bB48eLMserqaixevBgDBgxg1+d5XtYfhaKiooyhhyd83LoKgd9+CrJn1JWX3UNVV/haWV0UOXOe0UbCMhDpYxhuBjRXJGnD1GeS2Wz4PPV4ocmFj6E+q6qMzDZ1Nhwsb6rMg6h0Radr4fIqwj7QFBsGkh+LRQSfX1dGN/b4mK5fovbp/BPVr1HGTN34qrPtoA3UFoLPq5KHaTLJVTztI9I/mTyosaaonAnonp1zbfi4zCY5sTn1nkE/kBa48Z1uDsORDXule/ny5cKs1oQJEzB06FBudYlwzTXXYNy4cTj66KNx7LHH4p577sGuXbtw0UUXseoJBjC+EHVBkookV59yCXWFRlWW+qyq3QC6bL3sWkpG1PQ+kCFbZdARDExVmXVTSMqGAf3qGGUAkZ3XZd1NQ9ROnb3IMuEqO6TKRXfvNNku11fKgizRtT6q3VmFIAk7Vm3jC8qOuhIW1dZNgaIXSTwDxyaDUMfl2oAoOUKRY2VlpTF2nORYLIMSU4bLynyh6LitOqeLfVXxc/izbvwOo6tbham2zh0TKDGOrCx1LGZPuktKSrB69WrMnTsXq1evxr333ovWrVtj4cKFme9F55tzzjkHW7ZswS233IKNGzeib9++eOmll2q8DIKCTuE4WQ3TFDAqsuxX8FyciR13Ek11JjY7X584SQ7ds5sUsCdlwxUVFTW2jvuoEjzcgd00vYozkZOhs2nRBEhWVuYnogb6snbYAHfyEjwWPmeK/fokZceUhKFOl2Tl0gB1IuxDSTwkNe6KxnPbkpUyqO0XJTlln00jyXjah2Kb3DGAe7xQUPx6UojG4igTTNl1tsRDPrn0O1GTFOzf6V66dClOP/10DBw4EK+//jo++ugjHHTQQZg5cybeeecd/PGPf2Q2vfCosowc8dg+oHDgZr9lx1WKyr22NsjdJ4osZNcEJ6q24tuwaNLNkUWcJIdJUJ7dRze5piTUogbmjpqodif4pNmGgWjJlrSPD1F8kG7Xj66c6Jpc2rhtfpaCrg+C59Nkx6KkPmdiFyZNOuFDtZkkEjVJ2CnVPtNmxxT5+/qus2H2d7pvvPFGTJ8+HYsWLUL9+vUzx4cMGYK33nqLW10qKCqifWevNiCThX9c9FkmN79MuE6OvFX3FX02Hdmzi+Qtu8a2Z+aie16K/GR12YKqvf45WRnds4pkJ9Mp6vEkddI0/aY+q0hvw9QGGw5uL1fJSicL22xW16fB54na/yqb15WRnU/SR9rWZ2HCMQugH1vSSllZGTkOFMV5snEqTXKjPqNOJsHPUeVGGaeo9mlqn+nGXpH9+sj6gOuz2NvL33vvPTz55JM1jrdu3Rpff/01tzrj4KzqyD7LrqWuqpmK7xDDxwD59scwuvNRy4raEv4/5XOhoOoEVYdEMgjL0aTt5UnhD/QAbTu0znbTYLNANLuL86w6PxG3POfehYbqc0TldHpoQiCTS6KMx9zzpsBpp04uXL+mqot7D1vknSQyfxWeOMkw6TvdSaLTt/DETHUNdVwSxamFIMoYRo07dPG1qIxuDNGNU0G5cp/NhP4A9DrF8Y9Rx2D2pLtZs2bYsGEDunXrlnX83XffRYcOHbjVGQdFmbgTJO51pqKazKrKAmoHoHMsukkUtU0mE7XtnME+LMc0DvIATybUAcc23VL5GuqzcOwyLM+oyTjRZ1v8ZtR2RumrNE+2VYkzkTzSNA5ERWd/lMkPVae4wXsa4E5+fIJyTbN8dFASOdwkDnXsLhRRJtvc86qJcbgMtQ4Kpsg4KoVMGLK3l48ePRo33HADNm7ciKKiIlRXV+PNN9/E5MmTccEFF+SijXmjoqICnkffcknZjqGrwyY4gZ5se4xq+4bs2nAdsj9Oe9JOUC5hmfvHVW8JthmOrnFt0hY9Uvkxqt8Ky1FWd/j/4Qmz7lpV+aC+UilUHyXl38N6q5JfWgn7KpGe+OjGAVtslorIdmXy0tm26hh1nNX5E4rsbe0jlX4GJ4UqH1cb0Pl9FTL9ksnVJtlSx0eq7VFsXleXSt62oXsmXTmfoFxlfUSNp9kr3XfeeScmTJiATp06oaqqCr169UJVVRXOPfdc/OxnP+NWZxy6rHkwc6nLKNmopCpkQY+sDLWucJ26zJzsOlXdtvdFWDaUJIMPNztvO1HsT6dDabJpju4Ey6tWtnT+gGKjouNpzMLrdEnlZ8Of0/gVEdUvEPhw+jiKHzBBh6KMh9T2q+qm2LuqXVFs2AR5q6DGdip7rW3jsOqlpqpnp+oTNyYyGarN6RDJlVoHxZ7jtq9QRJ2rBcvp7Jc66Wa/vdxn7dq1eP/997Fz504cddRROOSQQ6JUYwSqt6aqnAPXEZuumEkQJfhOIrCStcEW5xA1WKKUDeNfK3rjt62IbJg60eOWNZk4eq6bbMuOR0mg2ToRShKKvKn+IG02rEMVCIZJi/5QJnC6+IUyWaROANIiVw5RZMCJidJqx2lOYnMRJau5NkZJYsQZv1XX2Qg16aOSMzU+0tkwe6Xbp3PnzgX7Xe5cEX5rKkALhHQGYauycoJqH5kiyuRJyXhyHVC4LbJnMAlqsBRlhVsm47StkPlEHWR052yAoh9xV5919Qev4Qb9ovM2BP2iTHiUOqKcSyOc1V3qCk4Yk/SHAsVvRd0dxqlTN7ZHwZa+iNO+2rbSHSTKBC7qKq+NOsRtOyeGkcXcVL+YBj2lztlUn3V9Q911Rpp0X3PNNZRiAIC7776bXNY0ggKjTiaDx9I2yRYFtzIDpG49C0PJ9unQGZSNcJ8hzraitEHJ8HJ1Jo2y5CTARNdRVht1Az7H9k208yiJSe7xIGkKhFRECfziJGVNgrIKw01uyWxcdD3V1yWpi4XoC84qNTVI58SJtYE4iQaunEyXq6j/qYtU4eNhKHqnKyubv5guVxXU+EK34FBUJP4JsSiQJt3vvvtu1ucVK1bgwIEDOOywwwAAn3zyCYqLi9GvX79IjTARzsCXFiiKx10No2TZqAkOG1a8kibJVYQwaf0+qE4/osgyLbpFWUnWnU9yRdZ2ucZZteBs77NdTkkj0jPqeGD6eEFpV9RnVa3oREkCUe6VRjlTn1G0qCC6f9p/MsyHoxtJTXIKBSfuoI4VUe4bvkeSK9mm23gY7kKe6Plk8qLaL2nSvWTJksz/7777bjRt2hS/+93vUF5eDgD45ptvcNFFF2HQoEGkm5oMR/nTvuogcnrciXC4nO4elGvSlInTwRncZcj6orKyMokmGoXI8YmCyTTrTJA4wY1udVqFriw1y24jUSd7Ir/GWaFMC6oXMKmgrmKYomPc5EwQqo5xAu+oATRlsm5bcB6GuqigKp9GW9XBjQe5ZUwiTnJfJx+djQU/U8dt6up68LypvlQGt3265JqqzkS3lwe566678Ne//jUz4QaA8vJyTJ8+HaeeeiquvfZabpXGEFwlC2NjUJjLgS5qFo2yQiEjSua9kP2Vy1Vq3T1UDjLtg3+UFRvbg0IZSTxPlBUhah0U/U5Ln0SZjNuyapg03IBQdM50mcWd3AaJst1ZdVxVRtdulR7ngyR2mlB3/ejiQuqOjLSudPskEQOZasdRk2dJJhJF94hip0mWtxFVkojqE3SwJ92VlZXYsmVLjeNbtmzBjh07uNUZj2wgV5UxhaTaFVQq3eQ6yj2pq+fUe4uyfoXoo1xMtimZOF0daUa0vZyCqTYcF4q/ovg4XXmqP6Bk04Pnbe4X6sSHkrCU1ZHGr4iI3q0imlRG3VFgCzobCp7j7ihR1RUmfA/T5UttFyeBwz3PmfykFcpXveKMT6bIlatvSc4hVLtKdO1Q1cE5Ty1jAlx9VM19osKedP/oRz/CRRddhLvuugvHHnssAODtt9/GddddhxEjRsRqTKERBS+1eRVClQGmrnTLrlMFDlSnwVn9sK2PuCuDnFUQn7QH7KrVnySTRrZBTXLp7JHjH1TXUK6zEeogTdkNJCNt9uvDCdJl19qOagzVTYCpq2qiYF2W8KIm50Tl0upndXKmJP5rQ3KcsmLLXWiwFc4Kt+wzBWosnsSKeC77JEmfQd0xIBpvOAlMFexJ95w5czB58mSce+652L9//3eV1K2L8ePHY9asWdzqjCI4CeEEjVEHvEJBze6IylMdIzewF91Xdw/dirjqmUwjbvAkqo+T+EgLlO+DUjLNaQkORTai0wNqNjiK7YbLU67j+oVCEMXeOHZYG2w3CGe1xoT+zweclSZd4kw1MZbVHb6WqovBek3vI64uccYWVZySxu3llB0rwXMybPD/UaEuYoWPh68P1qOzS9vkFKe93FV8zgJe+Nqcfae7UaNGeOihhzBr1iysXr0aANC9e3c0btyYW5VxlJWVkSY9UVdzTIGa7aGeD5ahZH6D5VTy5E44bXa+upUAzmRb9H9OHWlBJdMkdN4E4mSzdYMydzJOqVOGSu9t8LecRB/VtkUrhGFZpDFYB/RjQVA2cfvf1HEjyk4uajnO2JAWX0kh6rOoEpO2LcokhSgB7hOUE3UMk2Gb/CjJampiXFQPNWlum9yiwH1GVfJSZ7eJvr1cROPGjXHkkUdGvdxYKA7RNmWlOjWOMVKv5Wyt4malfGzrDxW6Z6NOaiiTlbSSxCTNFtlxkzGixEPUyTflmqgrRtRzhUb1nEmsRut2GVRUVMS+h2kEn0mlm0mt5JiqX5SkIdXXcVa6o47DKmzxpzqirEzq/ECad63odvcE5cNZdRTdwxbdUo0V1HhPVhdnp4VtcosDde4QJcEZHItzstK9a9cuzJw5E4sXL8bmzZtRXV2ddf6zzz7jVmk0UbbDmAZ1Ihwl08id0Ivaxm2P6c4il+3TOdBwG0Tn/GvS+p1uSiJIF4yaqlsydAFL8Hl1OhRlEp6EL7ERziBNlQknCE+b/frogvXgMV0dpugctz2qnSacRBi3faL7iT5zMKUPosK1VVXcE8febYMzKUzqHoUiCX/DXeFOos4omOZbg1BiHB+OLVL9ow72pPviiy/G0qVLMXbsWLRr1y5VDkP1nW7RgGeiwlHgrj5xVsniZOYoWVHRtab1QxJOl1qnyvBr0+BOwVR9SYIoiTXOao3qnsGtV9zBLckAJZ9w7q2zQ1nChLKjII3by1Vf8+L0tWl2no/JBTcAjKPHtQmqXFUxS20bf1UJcMrkxjZ9i9Je6k4VWXnVOEstmwbfCsTbEUSxzSi6LII96V64cCFefPFFDBw4kHup8YgGexFchaN0uIlKHCaJLGWU7S/ha21djaTANWyKs85FptNkOCs0adEhjm1ETezIEK28UW3Y1tWzOAEW9TxFX9M24QbEW+ZVu1XCJKljhUQVcMvORV2RVV1bm6EmxCi+szYmwSmLMrUhrqMSd/cTZ/Io+2wrqufgxjYiO9fF0dSdo3W0JUKUl5ejefPm3Msiceutt2ZWUfy/Hj16ZM5/++23mDBhAlq0aIEmTZpg5MiR2LRpU6x7BldtZOe5iAbJ8HmT8dsvame4f8LXyD4Hj+tkrpNfbSLYFzJ5hidBwWPB4/n6Pmg+7VgWsKucrkh/bUNnI8Fn1OmQ7h5hfQrWKfMDsnJptO2wDGS6RekzXd35Ip82XFZWRhoTfKKOPaYQRV+ofivKedk1tvvIKOjGWZnfE2GC/PI9FsvGmuBnbmxpCzq7Vo2b4WcPy0jm80R/4TJxnsckktALajytui9XruxJ9+23345bbrkFu3fv5l4aicMPPxwbNmzI/L3xxhuZc5MmTcKf/vQnPPPMM1i6dCnWr18f67fCg07CRyRgW51AGIpTEGV6gud0hh6GoqBxA/K09A9AfxaRnsooRBCaTzv2CQ9cIllGCZ5MQBcYqwYG3cQ4fJwzIFGSQTZPtmXy5Uz6ZJ9Fx00KPPNlw5RxWKW/1EmsKVAnHaIgnJtAUwX5svvL4MjVpD6I0xaZbsn8m+hP5Gfz+ULEfNlxMHkWxe9zdds2VGNu+LNMfjLfF8X/6cqZ1gcqvdDJQjeucuJpLuzt5XfddRdWr16NNm3aoGvXrqhXr17W+RUrViTWOOC73wBv27ZtjeMVFRV49NFH8eSTT2LIkCEAgLlz56Jnz5546623cNxxx0W6ny9oVWeapnxREQXMus9hBZXJSzS5EaGSp65u2XVp6R9Avy0mmC0WnReVKUTwk287DiILaEXnbNEdrk2IrtPJgKonojpldVESbpRyhUb0XFx/JZMVRf7+uXy+DNEkGxaNRbaPB5TYI3yeq1sqmcn0LQlfaVIfqHwSVZ6cz7L7FSoJUUg7DiOK/6h2bTq6cVU1adSNm5wxgjoe2SpnEVHlGoYTj+TsJ8OGDx/OvSQWn376Kdq3b48GDRpgwIABmDFjBjp37ozly5dj//79GDp0aKZsjx490LlzZyxbtiySgwgKTabMnADeFjiBsszYZZNA/zhlsNc5Elvlq4OSyNENRKq+ktWRT/Jlx5T3MpiSOEvSb3ATV8FjMvvjBIdxn8UWH6oKVJKyYc7982nThbBhiv762KJDMjiTD934q7NhlW3rfImunOpak/pG1RZdPMORM7Wv8kW+7Fj1YmIRJupILoni72XXBnWptsgvCtwFO45t5uwnw6ZOncq9JDL9+/fHvHnzcNhhh2HDhg2YNm0aBg0ahPfffx8bN25E/fr10axZs6xr2rRpg40bNyrr3bt3L/bu3Zv5XFlZCeA7oZWWlmaVjWMYtsBZIUgicAyWy7fsTHLslEw7NfOuqj9Mvgf7XNixzIYBezLluWiXbgdEsAz1OPWeovtTrzW1j5JAl6jUXSe6Jt/yyqcNB7facnxV2nRI5fNl56g+P44eca+xaSKga6dudVC12KBKEuXrVwjyaceUXyGI4uNMGTO47eQkuMJ1cNpCXUSzffeZql26XWS6ulR9p1tQ1MGedOeT008/PfP/I488Ev3790eXLl3whz/8AQ0bNoxc74wZMzBt2rQax6kZdh2mKikV1USPOvmjrlqrFJZ7Lwom9Aln9UZG1EC+EOTCjmU2DNACJ9ttVAYlM05dIeQEFdQMMiXootzbRqiJNEqQlm87z7cN+1D0IImJpA0kkYRR6U/SCTNb+iNKO3WxiEjOJsijUHbso/KBXB0uNHHtpKhI/11r7uKLanJIHTuoY3ShUbWLm2TkxIxxIb1IrXnz5vj6668B/Pft5bK/XNKsWTMceuihWLVqFdq2bYt9+/Zh+/btWWU2bdok/L5KkClTpqCioiLzt27dOgDfZdh9Q/A89YtcVISvNQ3ds8jaH0UeFFnIyoTvES5nupxliHQrTPjZZfL26wr/ie5jCknYscqGfTg2azpUfdAhs2t/UAn+6e6VhK5R6jaBXOiSrM7wGBT8C1+TzxcwBcmlDQehjMMi35cGVPboI9OL8LWyujj3DaOTty39oWpnXP9EseFCkuuxmCI/k+SRJLJ+F/n38DU+OrtW3VM2l7HVbnV6EjwvG0N116rkHT4WrpM6FpNWun/1q1+hadOmAIB77rmHVHEu2LlzJ1avXo2xY8eiX79+qFevHhYvXoyRI0cCAFauXIm1a9diwIABynpKSkpQUlJS4zh1e48JGcs46LJlqgFIlcnlHFdlgCmTdBvh6A03w6nKrKvKFIIk7Fhmw4A8+xslq24K4fZy2x/se51u6c77BM/LsuncugvtW3XtTrKuODbsE/xaRT7JpQ1TtqXWBjgyiDsec66RYVsfUdqrGzM5fWTieJzrsZgSt9iiL1GJYhdUu1WNGdyY0fZ+EMV3UW1OJbu4dkuadI8bN074/1wzefJknHnmmejSpQvWr1+PqVOnori4GGPGjEFZWRnGjx+Pa665Bs2bN0dpaSmuvPJKDBgwIJG3LFIGOFvhKiJFueIMyJTMO+UepiNrf3DSEi6rG9RVfRnX8SRFIe0YsF9vOHAGE8oAzqmbco0usVbovop6/6C96eqiyldUrlC+MJ82LFox4Dyv7eOFzh51q8+c48HzVPtOMjFVSKK0V7Z4IFuMUCUkCzHZzqcdi5JnonjGNr2J6l9Udk1N7nB0hps0M50kxwDqfIXTLmoC3OjvdH/55ZcYM2YMtm7dilatWuF73/se3nrrLbRq1QrAdyvwderUwciRI7F3714MGzYMDz30UOT7iV6k5mO7wgahPovISVBXv6j3SmJCnwbiOnBVGerxXJFPO7bp7eUc4todpc+5wQRltSztxFnF0J2nyDVfPxeW77E4ilxtn2z7RAkUdRO5OBPMJOoykVzoi8rPqnYD5etFavm0Y397eZAoq6um2XXUdqgSMqoywc+cNiS9W8iWuEnUTq78VMkhmY2Td0p7Nkgxx/gOT/UTB6YZfqGgbiPlrLhR67SdKBNlrkxUDj2Mr++qZJMtBG3Yf5a06pEKzuQ77o4Hih7XJtnr0Pk5Ud9R+zOtNhxGpL+2kURiOkpSLXids8+aqHSL2meqcpQdZ7XFjtOELgZW6Qp3h2icOqO20zaSkEGUhQTqWGz0Sne+SesqmU9co6NkccNQnEXUbWqmOwvK1rPgZ9ExznbyMDrHk69VskIRRS9M1ymfKEkYWfmoAxRlm6st8iwEuqQHZSJF/W1Qm1CNwzbrUT5XVnU2q1p1S3tQLkM1QQ6XibOooLtHmkhi4smtM9/ofJWsvZSkKnVxi5LcSaNPFaGyvah9FdzlK7s2Z7/TnWZUb5+jOFHT4Cpc1OtFdSU5ObR1sKLKmyLXKBk6W+SULyh2a6pNJzl4cANHndxUuypMlWcuiLpLRZWMkyXhfAr19vJcksZnAuIltYPXBwNAXSKXk8Cmji1ps2nOc1FWxHTX+gTvl6/t5flGp1Oc5AQnDjUByvNQn4WaoFUlz3TtsgXOTqGkfBpFrlTcpFuDzQoa1ejCSk2ZKMucAicjLGufrU6Xiii45gZTKrnLrk3rQO/Dcc6mE3cA5axK6+5tY9IiH3BXrilyj7villbSsOPMRzauUfQiqn6I2kBddZNha6ykmvjJPkfZBUStozYgenbKKq4NxInRZHVQ/XxtGA+i6Ilqt0HwvOo66nxJB3vSvWvXLsycOROLFy/G5s2bUV1dnXX+s88+41ZpNCLna6IT4DioqCvLUZQ6TibYJy0ZO8o2I+oEiCIrnezTPOEG7NGLOCSVKReVibJyq9NjnX8odJ9F9SmcSSB1MkMJ3NMKdXeAjegS1JwEGmeinitsG4fDxElIRilvq5y4UN5ersJUOVGTU7LFIpG9RN0NJWobdwFH9hz5Iq7/ED2PTu+4uwGSXMRiT7ovvvhiLF26FGPHjkW7du1SP/j7RJlw5hPKvaNOjFXOQReoc+rUYfuKdz4yubV9sA86PcrAZAtcXVEN/LrdKJwBXnZfKqb1A7U9qoAlyoRd1hadb0zrd7rDmDDGRkEVBEdddRGV1dWVZAItzkQqFySlG1F8I0X+aVk0SJIoE09ToCbFkpjcUlZgqXVTx/V8E7UdUeYD1L4R2Td3jiODPeleuHAhXnzxRQwcODDWjdOEKcqrgzrpUxklNfOry66pslLU9lPaW0i42cvw/1VQEic6J5vGgB2Il4AylaQmcpSJMjU5R2kTd6XIln6JM0nhrOJGTWrajOjtrxR524ou8AsfF52jEicoN1XOUX2jKr7R1U1duAgG61xfaDvUdySpjpkEd3XUR6UrumemJuI4sbqpk+98QE10UlbPfbj2zJ50l5eXo3nz5tzLrIOikLYrLXfFO5i15Wbxksio2wbnefLhINMiVyoyWabh+amBHCXQy0WiJyo2903UAEk1Kdf5xsrKyiSabiUm60qc+EGXqPY8T3mOev9w+TT5R4C+C4Cy2kodlyl+Ni3yzTWmyYtqSzJU+qb7TI23RTsrqIkj24izY4DqJymTb24yrQ6pVIDbb78dt9xyC3bv3s291AqKiuSvhg8THPzi1mUC/vP4f+H2h52Fb+DBPx0imYTvR60rfL1pyJ5HJVddWapOqeTpH0/jKrcIU/WDg0hnRHrDsWGq/5LpXPD68P3Cf2noAxEi+cT1iUFZyvrZtrGFS1S/p6ojn4j6Pmq8INInWdk4Yyi1PVHL5RvKuBu2Jdk1Or8qu6cIU+WVNGVlZVo9VZHPMYPib7j2QBkDdc8oO6/S7agyT5Necp9F1v+ceqi/usFe6b7rrruwevVqtGnTBl27dkW9evWyzq9YsYJbpZFwM8aqOkwhF5lDiuMUlRNNBKJkCk2Gmj3zB3HRNdQsmiozL8uWpnV7uY9M/qqspelwM7Yq/YkyidHdU7cCZIK8/QCIew2gX6WmlNXJXWS7Yfy60rjSLfJJlBUd3TWmQdUPWZJadC6MTBdF9qnzl7rxzHQo47HOX3FsV3UfSl1pJjxhDB/LNxS/Tm0fJ46VjZPhspS6qO3ijGW2wom9g59l14v8Y7gOaizNnnQPHz6ce4k1iN62aDNhpchHAMwdWIKOJ1yHjwlOOReIJiuyz2F0wTiljjROuKnZRtt0iTvBkOlHEoEexR6p+lwI207iXqpJi64vqAO/6ppg4iyNpCVAVAVrMij6odMpXV2ye3LPmUhUn8IpT5V3bYeifybqF0WHoiZmOIlaqh5RFnBs10nqRDlKUj18jzAqveUuYrEn3VOnTuVeYjUmOgQquZi86pSSG2CKssuyumVtsa2PVM6DmnmT1RUsH3fFLS3Ikk+FIkk7pNqO6J5xk12q89RnLHRfhNGt0EdZ8Q6XodZB2a2SRioqKki6Z5ruiIgyyaDaneoanc9T6ZrOT5o+7ibZLt3CRbic6HrKmE79uSFboYxD+VgUohLn3hy71S1SxUnQUs+bIO8ocBKIuhhYJ1fVeMMdk9mTbp/ly5fjo48+AgAcfvjhOOqoo6JWZQzBVQNbFZGTUaQO1MHjUSfInIynrQF7GGpwrZoIUeuKEoSndXt5lK1C+SROMMtdsaKsyOp2pXDkaavf9EnS51AnV6rrbZdnUojGJmpi0jSoK1GqibMqiU25l+yeNkO1Fc5OHd3kmhO8U/1tmlHFlOEypkKN0eL0b5LjUJxdLoWAk9hWXa+6hrNqTr1fzla6N2/ejNGjR+O1115Ds2bNAADbt2/HSSedhKeeegqtWrXiVmkMadheTlk9jZqxUSlgHIdDXYk0NQCN6ySCdYSRDdSUwd40OeULXcBk6mSG0haqfVGeXXZf7gAUvN4keSYBZ6Cnlo0TqKdNviJE4zAliRzGVJlxx19V4ox6D4rtUsds0+QZt59VsVIYaqKEQrCuNK50p/2rL9TjMih2HGVyGGVyyrku13DbT1nAo57nLHiEr6XaL/vt5VdeeSV27NiBDz74ANu2bcO2bdvw/vvvo7KyEldddRW3OqMIOglRBs4muBO+sNEG/2THdZliSrlgWVl7TCcXuiKrM8q9fHmG/9I2yAPiN6b6n4Oys9W+w88S/tOdV9WpszuZP0jieQpN3HaI5CDTQ9nxYF3BvlS1K402zA3WZTIy3cZ1dscZQ3X3oPgD6jhsis36cOWjimtk8vIJ95lunE5qDE8bpsuAo+M6f+4j0juZHsmOU2JzXR26umwl+Lw6+enkHi4f/n/wM1d+7JXul156Ca+88gp69uyZOdarVy88+OCDOPXUU7nVWYMpWXNOO0SDquqzbhU1eEx2rygrtrJrqCvgtqLqS9mzx8lOhutI4/Zy0TOlSW9UE2fK8fCgESxDrZuirzpM8ac+SSQPZDbKnaCIfKOsr9K4QhZc6aboiSk6xEXWbt3zqMZMH8pque5etsqVimrlijrOyuqQTbpk59KKaX5eRpKxpq6fKf2vi/cKbb/56FfuPYKy0Y3FVN8rSzqG78eBPemurq6u8TNhAFCvXj1UV1dzq7MGU5xGLtohU0SRAsqUMs5kUHU/E8mlw6EmL8JtkZ2XHUsz1ADJNFRJLl2CLMogogvEqfKKYqem9oFP1AFfdA03qUFpTzBxlma4sswXUdoRNTElIm5QzhnbdXGBLVAS2dQYhLpgoaI2TMJt0ZUkJtm64yIdoS6MceLruD6y0BN63T04vk0X28jqVrVB1kfUBDh7e/mQIUMwceJErF+/PnPsq6++wqRJk3DyySdzq3PkgajbwUTXybZXhf90W278cuH/J93+XKBrb5R6wnILfw7/6dqikn3a4crKFCjtC+uHrpzKXsNldffQyZU7Acm3Tqr8WZgkdEXnAykyCPvVJNtnKqpEginPTW2HyE5k/a7TxeA9qfYjs9nweVW70oLMnyXhE2X6wCnrsAuuPxf5cF18J7tWVz4OtuunSn4yG5R9Dso3KZmzJ90PPPAAKisr0bVrV3Tv3h3du3dHt27dUFlZifvvvz9yQ0wgDdv0VEEx1cBl18kmd1HqDF4fritcNqoTMMVxUINv3eBNcboiJ6GrK62k4Tkpg0EQnf1xBnbOeep9qffKBaJ7xm0HZxCW9aWqj8P3kX12mIlqIhc+rku8yuqPor+iOtOS2EnSNsI2Shl3g9c5G/2ONPov7tgchpKA0cXXorjQVrulorNFgB5zU2MeynyKCnt7eadOnbBixQq88sor+PjjjwEAPXv2xNChQ7lVORLE73TZxFh0LnxcVYePriy3zqBCcx1F1OtyRZz2cOQVLEc5b4p88kEafoFAhWhwAfTb0mSJLlXdMmQ2rzpma59E8ZHUOinndf1dWVkZuR0mY5pvTwKZ75bZLgWqPwgmYmX3SovMqe2nxDlcbJ9I5oo4Om4K1JhX92wq/66L+2TXBcvp6rTdzqP4T5nv1fUp5f4+1EVb1qR7//79aNiwIf71r3/hlFNOwSmnnMK53Hhs/n4cZwDhGl1QYanKKQtWRXVGxTSnkY9AXDe5omZYHXZCDaY5Nh7XFlUTetNslItqZT94niM7zjU6f5uG3VkibNebINygXHadKpFKnRCEj9segMdBJN+oE3ZOfFNbZM59IaLpRJ0QqyaFUSZ9wfJxdNhWOPLmylF1D5XMAfqLiVnby+vVq4fOnTujqqqKc5mU119/HWeeeSbat2+PoqIiPP/881nnPc/DLbfcgnbt2qFhw4YYOnQoPv3006wy27Ztw3nnnYfS0lI0a9YM48ePx86dOxNpnw3ItjbIjom2VKjqCG+f0G1vkR33P6uOp42wvHVbXER9opNbGNFx2TaYJJJMptmwzYkzyjYlmf3J9ER0PdX+ZfeW6VOwPbai84U+InuUIbP/8HlVH8p8R1L6bpod24qon8LnZH0p++wT1ItwXVybDuuaqI7agii+4fpEH4pfCPsDz/NSORaH751W3dLpisy+VXYrGws4+kZtF1XXC0UUX6aTY7hujv+Mq8vs73T/9Kc/xU033YRt27ZFvqnPrl270KdPHzz44IPC87/4xS9w3333Yc6cOXj77bfRuHFjDBs2DN9++22mzHnnnYcPPvgAixYtwp///Ge8/vrruPTSSyO3iRp0mQJHAXQGHqfuMFEC+bh1mYJMrjrDpyY+ROdFn7kTsiiYaMO2QplshY/L/kQDkH9cdj+Zf5ANYCp9sjXI0vlCnYxEAVGcSRZlApYEzo7jofP5oj+ZrXKQXcv1+TbaKhVOskt2rcxmdcG6boLk910SO1ZMs2GbE+BR0NmgKt7mTv4ovoI6lpk2VusSC7rrVM9EnXyL+ixcNvK8xGPSt29fr0mTJl5JSYl36KGHekcddVTWX1QAeAsWLMh8rq6u9tq2bevNmjUrc2z79u1eSUmJ9/vf/97zPM/78MMPPQDeP//5z0yZhQsXekVFRd5XX31FvndFRYUHwKuoqIjcfhsB4AVVwP8sO865Rnev2ohKBjrZ645T5Bsum7Tem2DDMr21Fdkz6I5H+YvaJttlTCGKb6Req+oP6jVJjl2FsmORDevaWSjdS6KdOn+VxHhBbWeabTiKnlDsXVSOcl5EGsdi0bPYPCbHHS8p/l13L92944zrhYbjq6ixj66M7njwPLVdOhtmv0ht+PDh3Esi8fnnn2Pjxo1ZL2grKytD//79sWzZMowePRrLli1Ds2bNcPTRR2fKDB06FHXq1MHbb7+NH/3oR8K69+7di71792Y+p/VlNDq8/5e9oWTM/HL+/3V1hcuFP4czWaprZcdtIdx+2WcR4TI6WQTP6/oi13pfCBuuqKjQ6rNKj20hTvtVtig6rrPl4GdbbJXbTorfo8qVg8xHBG0419/rzpUdxx2HC6ljnHtTxzfdZ+p4LSobpQ4qhbZ5mW3IPsvKq2IS2XFK3XHG/6QwJZ42dVyg6DDVv0d5Rp0Oh49Tx2abiDoWi2Sh86mya2X+khLjUL/TzZ50T506lXtJJDZu3AgAaNOmTdbxNm3aZM5t3LgRrVu3zjpft25dNG/ePFNGxIwZMzBt2rQax0UvfvBJ0jGHKfQkIE7gSZn8iT4Hj3MHHeogJmpbIQIEzqSFWkcY0XPprsl1sF5oGw7D0TNqIkpUnmv/snt7Hn/bVxS91g3wcerSBROc89RkHOV40vbP8Y3U81HLJk2u7Fhmw9RtqYWe7HGhTgY5CdXwOR0cmVEnFYWWP3ds5Pg73cSYEifKyuaTQozFQTgxmS4pwRlfuZNZDnETtlHvq7ouSvKXk0iKMrehlIsDZeyN21dBucrkQx232N/pTgNTpkxBRUVF5m/dunUA1EILTg65QZtuYlnoQSsX+DIKf1dC9n2N4J9MXuG6wnXIPquutRWZHIPnddfa/J0rjg1H6XuRXqp0VHQu/JmaYFLpry3IZK6zf1m54DFqf6psRNcntsnbRmQ2HETVD2nx5T4UG4hbt0pmMpugXGsT4eeLImdODJIWucmQ2bEoqR/WMdE4qYsDOchkb6t/j9NunSwoY7WuPbq41BYozx4853lebn4yDADq1Kmj7PSk3mzetm1bAMCmTZvQrl27zPFNmzahb9++mTKbN2/Ouu7AgQPYtm1b5noRJSUlKCkpUd5fl+EMnqNmz2zLzIvQZSHDULOXwXNxs5EiY7FV5jKdoTyPTt9yvdJdKBvWrWz4A7oKXZadkr2OsxLrf7ZNf6n6SpW/qKxq0qC6VzgoVrXDFnnng1zZcZRxmJvs5l5TSDirpjr/pFs9FBHVb5kOVSaUFT3/M2VVMHxM1We5/ppIIcZiUQI8jk776MaO4Lgpq8M2HdYRnvgCernJdJpDHH9jEyKdivqM7JXuBQsW4Lnnnsv8Pf3007jxxhvRrl07PPLII9zqpHTr1g1t27bF4sWLM8cqKyvx9ttvY8CAAQCAAQMGYPv27Vi+fHmmzKuvvorq6mr0798/0n0p2V7uylmUlTZTkWV0w3+6lSRK5pyakVbdg1o2arlcQ836UjJz+da/QtmwLmMbtEXZKg5V3qJysoy9LpMvsq20ofMHovLUvomi39x+r40Uyo7jYvp4q4oxRGMs5Vqdbcj8FqWuqPI0xZ50cuWMmVHinEL6lkLH0xzdkflkavzHubbQUNsnkyMn7pNdq4vpKe3nxvKmo/INsnkJdecoe6X7hz/8YY1jZ511Fg4//HA8/fTTGD9+PLmunTt3YtWqVZnPn3/+Of71r3+hefPm6Ny5M66++mpMnz4dhxxyCLp164abb74Z7du3z7zMrWfPnjjttNNwySWXYM6cOdi/fz+uuOIKjB49Gu3bt+c+mvI73cGsBjWbk7ZsTxLoHIsIXZ+oyssynLq+Ma3PdO1JIuMeBdNsWIQqyy3TA51NU87pMsuyfjBN92SIZMfVU1Vdsmupcqa2yWG+HaexDyk+W1ROBNXXcMa7pGRuWt+p5Kzz0bqxM3xetRiQ9CTEdBsG1HLUjcW6PlFhmg76UCa1quOcuI/aFpXP4NqBrm7TUcU44Wcn71TxEmL16tVe48aNWdcsWbLEA2q+5n3cuHGe5333Mwc333yz16ZNG6+kpMQ7+eSTvZUrV2bVsXXrVm/MmDFekyZNvNLSUu+iiy7yduzYwWpH8KdKKH8ywud15Sl1mAZVFrryFLnmQ56myzsM9XlU8vU/J/EzJSbacBiRHOLqHkdvbNOxfMD1qXHkl2b5J/VTQybYcfBZuOMMBdv0gBODUGMW1flcyLwQcMYBXR1xxtvwdbqyaRuLg89CefYw1HKi8jrSpuMUfZMd555Xtcd2uUaBa8NF/++iWOzZswdTpkzBwoULsXLlyrjV5Z3g92nC4hBlkG3L1iRFcOWYmuHSZeSCx6OuDOruLToXxpQ+TaodolV+2b0qKipQWloa636Fxrdh0bOoVhtk6FZPOasUhdYpk6CuVqhsN+qqU/CzrX0SfhaV3tsG91lM8dlxibKCR91lF0ZmM8G4JlzWVrj6IfILUWINWVldfAOkdyyOsqpPjf84dpM2KPMTnex1co4ybqatL5KMp9nby8vLy2sERDt27ECjRo0wf/58bnVGEdyTr1KatCgSl+BzU2VANXxV2fC9dIGGf57TT6b0KbcdMlmJkhmcvrAV1U+G+ahkEy6j+ppJ+HNtkjNA2zpJ7QuVzVO/CsLdRheFQgcTpvgpE0iLLLg2Q5kcchNSNieiZCRh57I6qUlZVcwULJPrF6kVAtFYLJJBVF2mxIVxtqSbjOy5VAtj1Lg5XD6KzGyVN/frhkFy9jvd99xzT9bnOnXqoFWrVujfvz/Ky8u51RkFJWAPwlnFVR23kagTCpFDoNZFzXiqrrGVKM4gLc/OoaKiQpt8CQ5M1Gx6kllgHbb0m+rZqavTlGQHtU9k905Sjqb3ieO/2GJHPhybiftsUa63TZ4+XN9DgRvzRb2PzQQXsXQJUxGycZwyNsvG/rTInhK3RF0YU03Oqavi3DaYiui54i6usCfd48aN416SCkTKzFFW1XnToBhU1EwWZbISzNpx2ifCFpnr0MlbJde0r7gGkf02KBXuipEoeSQb8KnYprOqZFe4jG4FSVUnF4pvst03p5GgDSex2mIacXeBqBLWVDuKIldT5akjycm1j25CSJkE2SrPKKj8PnXcVNlBuM5wGVtXXsPoZCWSZ5TFKtn5tOzmi5Owl8mLutLN/skwAPjb3/6G888/H8cffzy++uorAMDjjz+ON954I0p1RlFUpH+1fbiM54l/EkJWF+UehcBvV/h5/M8iuM+uuq8M/x6ydqjaF6U9JuC3V6ZrYUT9EO4/ipxsp6KiQisjkb7qZBNH99KGypaotiwrL/us8kO6e8psSdQe07GtvVEQ2XCanjvumKny5VR7kl1n0xiZNKrxQBfzqeQc1W+lAd04K4o3w9fq6hDJVzZmmOpHqGOYTO9E+iaTJ3cMDiKbG+jqNA2ZjMKI4mnZNdSvh7An3c8++yyGDRuGhg0bYsWKFdi7dy+A7wbKO++8k1udNYSVSxfUi/4ok9hCEsdBUZXYh+IkqAMbJZAwVeZhqBNlqkMNnjPdESZF+Hk5SRmZzSYhuzTLX/ZsOjlyAtK4gZTKNhxmk4Z+ijJ5CB4P2pKsTPheHNsIX5uWcYMzoZER1Y8lPYbYBGUSQvH9tSHhrRsHZb5CFa/IyuruGb53lPbaAjVBoZpfcPWQPemePn065syZg1//+teoV69e5vjAgQOxYsUKbnVGofpxc84gpAtA0wQ32FY5CmrdsnuFr1NNWk1A9HxxJhC6OnUT+bSgy76GnanIcep0UiXDqPZv24AVhJpo1OmgrBwlAaW7Zxx7c+SPsrIycuCdBqLGEwB/5UklR67d2YLOt8tiFVWfUP0XpY6ioqLUvUQNqPmdbpkP5iRFqPGiauy3aYzlTm458QU1CaiSGXWCbxsyWaiSFqr5YxD2d7pXrlyJE044ocbxsrIybN++nVudUQRfpKYa5MLYZMRJo5OXrFzwc1imceWpqtskwoNC+JgKin76ZUQTjdpIUC9Ug0i4rKqc6j6yOqnXmYrIlqnPKJNvHB/AvWcS5KJOx3ek4WeTRMTVlXDArCtDqSvOGFRo4rY3zvWiiWMQv06RfGsLwUQCJQZRJbGD/8rGDlU/2qLTMjjja1g+smt1Y67oc9JjrSkxepw2+M+cs0l327ZtsWrVKnTt2jXr+BtvvIGDDjqIW51x6BRPdIzbYSrFtG3gk6GbvIgCdh2qibvqM6V9hYY72dbJVVVn0EmkMcNOmTjLBiZOHcHzlHakDUpySzfQ++Qiyanr0ziktU9NwVbbUU1mw1CfjRInRLWJ4PGoY1Ch0E0aokzOZNfq6lR9jpsgSQOq8TaJhZvgZ5uhTpBVuh11fpLE4he3TwrdZzr7Dh7XzQ2psTR70n3JJZdg4sSJ+O1vf4uioiKsX78ey5Ytw+TJk3HzzTdzqzMOigOIqyi2ZeQok5bwcdm1ouuoq15ch6TCRDkH0TmtKI61Ngzyot0qnJVZStItap1pDBKAaMlDziRB15/UPqLeL3itozBw5G9Sn4l0VWcDSSSiqO1JAhPkLIKa+FONnTp5UccH1fmoCRMbofQJV88pK7bU+DQfcPxTLnZtUGOdcBsoCSRqH5lKlKRAXLtlT7pvvPFGVFdX4+STT8bu3btxwgknoKSkBJMnT8aVV14ZqRGmoPpdwaCAo2bkOJgYSASJOimMs5MgiZWrfMo1zr2oEzfKvWTXpnGVW7XFRxVcUQZyVbkkVnttQbWaF3WCoRrI4iYtOIOk7X2TNih9bWKfifwCd9WUWj/lfJTg0qQYJElkSTvK5Ju6QKCaVNaGyTaQPRZTkhjUsUM38RP1YyFJog2yZ6YsYsWFk5SyDZ1cRedk+kjdOcqedBcVFeGnP/0prrvuOqxatQo7d+5Er1690KRJE25VxkH5fVBVcB1GV041qJngLFRQB30fSoYsalZSNQAWcsIT516ibUOi45RnT5ujTIKoASVnApgL/c0ncZ6VqnOUQEq300VHWicPaUU0DvsUui+jJHw4kwTRcU5iWgZnkkits9BQ+4ITWHP7l7oiLqoz7eOyaAKimiT6UMcMGYUeN6NAtU+KrlB3hEVNkFPaaQtRniOu3bIn3T7169dHr169ol5uJMFMBSfgjLrKY4uCqpSL+swqx5rEKiOlfJrgDEwyZ1tZWZnK1W4flXPkOk6OLnFXZrnH8wXHX3F9HHWVTxRAcYMy05IZDjXBF6npxpF8E+X+cSfE4XpEq+c6nyMrl8TEs1DkIt7i+myK3HX39Tyv1ozF4c9FReJflBARZzeVCTqdRIKLkqTWxcm6+DrtyaAg1PFF5HPDZSsrK0n3ZE+6d+3ahZkzZ2Lx4sXYvHkzqqurs85/9tln3CqNQeT0OFu9op43HZUT0x3nGK7OoejqUm3tsq0PkhjsZQS3w9QGRIOMbodGEpNx7uTbNuLYG7WcKnkkKkPBRvmnTXdUBN/LECfZZRq6FVfd5CN4Xufv4/gcU+VHhZrED5+Pszssyvgra18aoUwSqQkkGapEhwkyTjJhp5NZ8FgYahwtuldUv2Kqb6Yu8InO5W2l++KLL8bSpUsxduxYtGvXLvXZEMoqC6fjKOdtQGZ8nAHO/xxVhziZa9vhBlUU55tGor5IjToJV+m3bqKQlsk3ZTVHFzhRy4vKRl3ls0Xeovba0vYkiJoMtF1GlEA6DDfJFb5XnLpskzc1USE6FifJwY2R0gQnCcHpF9V1tumlCuqOC9U57mSRUo475zGtT7iJL4pvoMKedC9cuBAvvvgiBg4cyL3UeKhfhOdk3ETlTVNAGZSsTy7gGi5ncmUrVJlQntc/R90OYxucVWzuzgzqdiRR2XA7TIFrI5wET9Rse5T22Z7spKxWmNr2XGN636mI2oecpDJ3FZ1zP47PyzVR9IDqhykrebrJtqyc6tq0InoxMSWhxE3g2uwbZMRJpsWdVHPkq7MTU/sk6hyDUlYHe9JdXl6O5s2bR7qZ6YhWyUQDDlUpTVU4KpxVJ2pdlHO6SZPueBIrA7bACYiiZuZsQvR9UJWMuJNs2XFRwGYLSdgCNTCiBq2qBAnV3jm2boJf4PjItGPSRC8Ool0gojKAfKJM0feoNsBJ0ppAlLZwV/iCxN0Rper/YNk0fqc7GE+HiaNTtvjzOESNiVWJI52fiRK32LKyTSUf/rAO94Lbb78dt9xyC3bv3h3rxrbgeTV/Z9M/VlQk/26ozSTxXOE6/M+i4+EyYZmH5c1pn6wu0+E+a7g8V05pIfzm4+BfUB4y2YSv8QnLVKVHqvumHeqzyuQnul7WJ7I+ioKpfsHUduWatDy3Sj91n0V1icZB2bgq8lMUP2a7v6L6dplfCZbV1Rk+rxprwnWkRcejoIpPdDpKkaMtsuXqFcWefZIaLyk+Ii0xp0xvZH4iCPVrUeyV7rvuugurV69GmzZt0LVrV9SrVy/r/IoVK7hVGgNFaKLMpS4zbRtRMutJGho1m0zJ/tnaJ1FXJkTPLrvWZucoo6KiQioj0epDVP1QXSeaNNZWZDpGtXE/gJWdU2Gr3Cm6Zeuz1TaCvkbmd3Xjmqi8zpfrxmfVCplJ8UyUNnBlQrEzqrxFdZogx0KhG4tFyGScRjlS47wocow7bqrKm+QjkoQT10WFPekePnx4Ijc2Fc6khmMAtQXqIBXl2nBQ4CPrsyQmV6ajG6BE+Oeo7zCwCdGWNlXQGi6js3tKoocT3NlEFDuL+uwqeVN8swhb+oESkDrsQDRBDp4D+BO88AqTqqxszBS1k3Is38RpA/eZZauuwbLUwDt4HdUvpRHdpFJ1DVXmaUhSymJcavs542RS56llTCBqop4iV78MNZZmby+fOnWq8o/D66+/jjPPPBPt27dHUVERnn/++azzF154YY1tC6eddlpWmW3btuG8885DaWkpmjVrhvHjx2Pnzp3cx8rgO0nVdgnbt1DkE9kWIc614c9RtrJEuX/ScNorKxvWTwqyZ09iwm2aDYt2q/jPH5SD6Bggl3sUm6fqfpr8SfhZo+grQJNJHH/gyMY0O7adoJxkNhB1bAz7rmDdOr9GsZW025Hq+WR9oRsXZPKnLjYk8fOdJtswReYyO9GN0SpdNyHuk8F5RipxdFd33GaoeqCKu5OCPelOkl27dqFPn/+/vXOP0ao4//h3gWWrIqy4LOwqFwEFFFirFFxbgSpFaNPWSqxaxUsDRLu0qLUSm0ZcmtZEW6Mlpsa0BY2K1nhpSxqtcqtakJtovXQjBGVNX6Rq2JWCgrvz+6O/9815z87lmXPZM3Pe55NssuecOTPPec585/LMvO/bhPvuu0+ZZs6cOSgUCqW/1atXl12/4oor8Oabb+L555/HmjVr8Pe//x2LFi2KbZuu8XVZyFGwEZ3tZNA06Dat6uj+qGW4gq7emDoSVV5RBhBJ1l/XNDxo0CBjZxL+X4aq06YMZlVpVSTV4aYNpf6q/kwTD93gNZw2bI8pnQ8DsKxxTcemgWJvQy1XVn9N9c/2WW2e3zQZ16X1HWq7HHxuFaaxh40dadVh1zQMmOsUZZJNLSN8v0912DSuVp2X9XWmPFRtQhL6d3XsYoIyTgmnLVK8J7XPdCfJ3LlzMXfuXG2ampoaDBs2THrt7bffxrPPPoutW7diypQpAIAVK1bg61//On71q1+hsbHR2iZThdFVxvC9roq+aGfRvrCd4eNg+uK1cB5hTM9u6uB0hMs2HbuOTNxJ+Tmcv+w4Dq5pOPjt5UVkzx/2bxiT/yntgKqMONroTag6CnfoUfIK+0qWXjdZoOTtI6b6mRSu6Vilv6zeJbVcVd8pS2NqW1TtRnDQp+urbeyk3OMapr7S5Budr1TtUfi66jh43vSuksI1DQc/vqbzn+24zaYvdhld3VBh0x5S87YN4gXzdKV9jgtlXGIaf1DJdKWbwoYNG1BfX49x48bh+uuvx0cffVS6tmnTJtTW1pYaCACYNWsW+vTpg1deecW6rOLnQWWRTEoEhxJNdhHVylCRsA9k0TCTf1TpdX9Ue5KM1PUGsudRQfWzLE9TBDmJLW0UelvDFFR1xVR34kRyXauXtjrT5RO+x9aPqui77p5wmaYyZPa6jkt9Sm/quIgLzw3Qd8aEj4PvztQeq/KStVE2aaMEZm3IanWL+qymdxM8r7rHVIYK3XgkWDcqpS+WaUE1jrPVXPi86+28bhxto9vwc5ryoPbrlHG/zfzIJ2RzCtMzerHSbWLOnDm4+OKLccopp2D37t346U9/irlz52LTpk3o27cv9u3bh/r6+rJ7+vXrh8GDB2Pfvn3KfD/77DN89tlnpePOzk4A8m8+llVoFwYBUVBFvkzHwfvCkd+oES6Vf2XXTFEo1bGryJ5P5w/ZvUVMkUfZPcXjYr1Pk97WMEBbQaLWFV07IEunK9dkX29D1U8U+1VpTPVbV39VbY8KyvO48i5MZG1nGjrWadg1bOuaarAbpUxZW0PtL4rE0SzVzqwwtTWq82kG5GRjpqz9lEVfTGm7kx7vZe1nE3Hqg8pXNnVZNXZRpae0Na773BaZf01+oC74WE+6ly9fjptvvhnHHnts2fnDhw/jrrvuwm233WabpZLLLrus9P+kSZMwefJkjBkzBhs2bMAFF1wQOd877rgDra2t0mu6js4EZQKUJSY7KPaaKp7Jb0lMtk2EI/+ukuTALAq98c3lva1h3Teyh1cydGmo9TZOx+kLcQJsJn9RBgBJB9eCHahv7yIr0tCxrh92lTh9U9RAVBFd0NDUd0YNUPmAbbAwfJ0ymTAFXXW2uOLbLMbTJp8HgxKqe5PUWpboJnK26Oq87cKNChd9GBfTM6l0LvOrbeCziPX28tbWVum3GR46dCj1DnT06NGoq6vDrl27AADDhg3D/v37y9J8/vnn+Pjjj5WfWwGAW2+9FR0dHaW/9vZ2ZdrwNoMg4XPBCLTs2FWo21F090bdChTMn7JdSFaW6j4ffF8k7vYcmU/C16jvKk3S1nBwwq2q16agUrAuqnwm00SWfk2CqPbrtBv2U9ifquvh1bzgubh+9qldKKJqg7P6yb8kdGzTD4fJSmeqOqirk6a6HqcM1ZjDtq/0Dco4IXw+Dio/U8Z4rvq8N8fT4XoZPA6jau9txi8ujr0p4xCTfk1568bxReKM1VVpXa3jYUxtsMp3ST6b9Uq3SiivvfYaBg8enIhRKt5//3189NFHaGhoAAA0NzfjwIED2L59O84++2wAwLp169Dd3Y1p06Yp86mpqUFNTU2P88EBDCVS7OqKdlRUkZzgdeoKUTEv3US7eN1Ubm+u/maFKipvOm8TfQtfy+J3utPWMGC/GyN4D/W87P34WO+C2PpARtT6qTtvakuotuSRLDQMJKNjnYZNuPZOTYE83XlqvZalV+nIdvXXNX+asFlRpj5bsK1R+UmVt2osGBwzuUYWfbHs2FQHk1iZ9aWem/pPVXoZprGLadytsolyj6tQnzmMbN4bdSJOnnSfcMIJpQnSaaedVlZgV1cXDh48iOuuu86q8IMHD5aibACwZ88e7Ny5E4MHD8bgwYPR2tqKefPmYdiwYdi9ezduueUWjB07FhdeeCEAYMKECZgzZw4WLlyI+++/H0ePHsXixYtx2WWXRfrm8uA3H+saiTC+T75tKp4J6mA6HF2SpQmnVfnZN3/riPusNn5NYrDumoaD6II3qvpIGUTJ8s4DpmfVDTxtg0NpQH2HPhP2Y1JfwOSajnvznUUpK8m6ZZrgUSYR4YE0dXIt06fLOokysbKZSJuCgrp7ZelkfU5a/nVNwzJ0weq4fW2UwJdrmCa+pnS6MY4qLXXcrTrnEzbjZ9W9toE5WUYkVq1aJVauXCmqqqrEvffeK1atWlX6e/TRR8U//vEPalYl1q9fLwD0+Lv66qvFoUOHxOzZs8WQIUNEdXW1GDlypFi4cKHYt29fWR4fffSRuPzyy8WAAQPEwIEDxbXXXis++eQTKzs6OjpKZTNC6wuTn8LXKcfUvPOM7bOHNUPJM3xPsd53dHREtttFDat8Ejxv8o0tpvJcImpdo6RR/dmWQbk37nWfUPk1CQ0L4YaOKRp2naTrviwf7jPtoPgz3C9Q0lLKpF7LY1+s03MUnVQSpjEMpb+k1mHKeMnmmo9QfGeqr1QNV/1/ZmQ2btyIc889F9XV1Ta3OU1nZ6dx1Y/iJteiQCZ7qPZS0sVZyXLFX1kh24IWO5oWuNe0+0D229a+UdRwcLut6vllmDQSTpeHrWxJEWWVjPKxE9M16rHPmJ4tWO/zpGHfniVOnUuz78yTFoBoz2Ozam3qM6j9tC0+1/0wwfE0pX5Sx6dRtga7UP9txgq2z2yzMqu6TrHTZHeUPHoT2630Mqj3mDRs/ZnuU045BYVCQXl9xIgRtlk6g2zALoNaibPGZI9th62bHEbNm/mfr6j+oE6kdeTd9+G6F6cTCfuVMsHL60BY9+ymLWoqonTacYOIrmBTl3x7tkohzkA16mCYMlGh2qIr10WiTLajPJdpnGP6eBLrtfyjL1EWbpLwpQv+12nVNN4wtQVJLCzI7DKlV11ztf6rxnHh66r0wTGO6pmo369iPekeNWqU9gV3dXXZZukUlIhTnNVHn9BNXqKsVJnKiBrZdE3gtlBWCm0jnpSBO2WHh4/EWUW1LYMSkIoSBHCZKJ+FjBOxN5Xva7uQt3pRicSpe1GC3sVj6qAxatmuE2xvqQFT27GJqlxZWVFWYfPOoEGDrIJDSbwfHwg+X9RdW5T6Rg0MhUky2OFaH2zbXlPqZHA8TcF60v3qq6+WHR89ehSvvvoq7r77bvziF7+wzc5ZbDoxVyqULSZByK6bGoEkO6W8rhgWsYn+Rp2MU6/liTQGV5QBnuqeqGWmRdRybDRr2hlAtcFm+1yeJ7GqZ81j0CwP6IL1tvqTDZ59W2lKGt3Kk+0YhLJjJ3yPqqy8+92Gjo4O0m6OuAEk19GNJUzPStW5rDzbPKL43dd3F2X8YfIXtS+2nnQ3NTX1ODdlyhQ0NjbirrvuwsUXX2ybpVPYNuR5hjJwUN1TxDToDl5Lw7cuvTfdpMw2Wm8qQ5bWJV+kiapuUla4o+62MF2T5W17f1LYRtFN91EGD9R2tZJXQGTEDeQwvYtNe2G7K0S3QhamEuqJ7WQizuTCdrJdKX2tjuBKtykIKzuXF99F0ajtqnTwvriruTZ+9/Ud2Y7Vqqp6/rRx1PGI9aRbxbhx47B169akssuEYKQije1CrjUmVDt0UckwtiuEumtJDCxc8TWgn9xQV7Kj5B03MucTsi1tMi3bbr1Koh65VBeB6LqSddq2HRB1EJHGgNgnTDZn9TvdjByb/s2UThagti0jym62vKMLakT1k24iU0m+DSJb6bYJQpnS5cmvlF0YwWNd/2k7Rre97ioyu6OO43RBIVW5qX2mO7xvXQiBQqGA22+/Haeeeqptds6R5kCttytxloNPm0E4deUtbyu3USKdNlvnfPdPXHR1kDqxNE3O84xNIII68Y2jZeogIclIviuo/JnU73QzdlAHybJ7TANqVZ46otZx37SQRvBeFqAOY+oPwulUx5UEJQAehLoq7rpP4wTsqW2DKn2ctsJ1v5qQ2U9tC2yePe4ilvWku7a2Vlqphg8fjscee8w2O+fI0yA76Q4gGLW13S6qO7ZdcfP1nVA6EVOjafKV7H5VnnldJbNZGVKlydv2QV1dizpAD94fN2CmG5wl5WNf3hWF4rNQv7yFsSOJXVa295gGw7q2ndov6PpUF/VhsyptOjYNuGV52gZCogQF8oosICjzL3Wc6kvfaxMsC99DPS5C2cVHLTPOjhrXiWo3ZcXb9n1bT7rXr19fdtynTx8MGTIEY8eORb9+ie1Wz4Sov5HoYkWkTJB19wbT6yLBtpFenU0m+6jP4eL7AGgNKXWQZxO9V+VVKQN2SqAnicGrq/UOsKtrqus2EXxqwMxmYKIq37YsF9+PCh9tzgNJ+psa0KOml92jujeqja4QpZ2gQvGr7buTpatUDQcD+rb9rQ7X/Rjl2aIuYunqoepanNVe132vIom5UFJtrvUsecaMGba3eIPsix8og2sXK6LNZFZ3r+m8qbGwLYOStwkX34eJqFuSbLYTVQLBwJmuw4qq4ThBI9exDTwE77MdHFO3yyXZjmX1fuJ09FGCakz62AaAgveYJts29YUaGEtiApAlcbRMnWTI+gWbSY7KLp+DfnEI7qSzGd/47iebILBpkk1dtNL1k7b1L+pY1EWoO+riaNS2L460NN3W1oYVK1bg7bffBgBMmDABixcvxvjx46Nk5wzUz8f5XAll2IhRVTmpQqVU0EocUMaNcFImPZXg12DgzBTplUGNODNyoq7eFY+j1FHX31mcAJppwtDZ2ZnLj4i4DnXgKhsMU7csU3Yr6cqjXO/tFdmoZVDuM2nFZqJs2w5l3ca4iu1qq+pcHqAE/4vYjqeD16P2vdTAkg9EnUzbtMXhtNSPa/Yxpgjx5JNPYuLEidi+fTuamprQ1NSEHTt2YNKkSXjyySdts3MW3SqDC1RV9fwKe1Na1T3FZ6WkM+WhKrP4J/MrNU/X34mK8PPJjk2o3pHOR+F7wmny+CVMxW9MldXj4nMH/1R1T3WvCtc6KN1zqdJSnlHX+ZjKtfFR8P2Y8jLVc9cJ+1+m4XDaInmccId/RcQ1bQHmPjWYLozpnaradF1ZUeu6rq6lQVw7bXyg6it16VQk0bb40h4lhaxtkr0DW9+7SpJ2qsYppv6V0r9Tx9U+19eotpt8Jcvbtizrle5bbrkFt956K5YvX152ftmyZbjlllswb9482yydhhpx6m1s7KBGG03RtmJl1KWh2hksWxWZ1t3jMqY6ozs2PaNNFFIV7SuS9wF7GJ1vVe9Mdd42gtrbmOqP7pyp3siendoORG0vZJjaL1dR1Rmb+lkkj1+GGAwGuvJObesapU03acLUb+vSUvtU3wg+p0k/1GeW+VnlT5N2KXZWCrKfDCtiG4D1gajBJIDeJ1D7ZlkeprGKq2MZW2Saizpes2kTqItY1ivdhUIBV111VY/zV155JQqFgm12zqFbzfG9Mto+Q5SoJCWaHIwkpR1dzgKqD4JEXQm0ydsX//UG1Oi6LuIJ+FMnbepXOLquOq+LAqsi9aa8ZO2Eyj5ffB/GFCmXvSuTP5l0iep3Wd0OXtNpgtL/meqSqizf0bUpKigrgbJzunZKZlf4fVQypn6T4h/f666unmb5bHHKdvmdUPRpo1/qPan9ZNjMmTPx4osvYuzYsWXnX3rpJZx33nm22TmHKUJcCZFLU+Rdds4UTdOlo0bnfY/EUey2iaAHj3URzvCxr/6LiiwqrIoUh6+H8dWHwee1tV3lK5kvqB2xye+mgEi4XJ9Qado0YWDSh7ripLqvCEUTtm29asJIsddXreigvotwep2fKT6X5ZVH/8ZF9jvdMvJWd23qRNRnC5cRDubJylDVZWrb5mMwiTq3CKeXpaO2DSasJ93f+ta3sHTpUmzfvh3nnHMOAGDz5s144okn0Nraij//+c9laX2C0khEqWyuNcwme1SNIGXATh1IUO6hCsVXgs9p+y5UxzofUSY0viP79vIwwXpsM6F0Gaq9lIkdtS4G7zOVG3XiYWOfL0QJJtr4KQ9k8a6jBKR0g1/TPSps8jJpNS+akRF1nJDE4Jka7JBN5PP4LqIi01ze/EN5/6Z2JM5EPu7YxvX3YRMUoI5xdG2D6h1RP+pVJSw92qcPbUd6VVUVurq6bLLOjOA3wLpewZLEdiAsW5W2HUBQVmQr6R2YMHXuRXTXTe8q6u/Tu4TuW5wpExZqnbPpOH2HWveCaWzqJfX+vPlVBeU5w2mK9T5PGvbxWXT9YNSAVPj+StGBLTbtlCxdMD1lEi07ppahwue6H8amLwai12tf9SAbT5sw1T/Zzpq4ddRX/wL2q/c2AU7dOJqiYeuV7u7ubttbvMGlb3PuzQpvE11TRSWpE2dKnj6LXQYlKm4SvWnLlU1Qo1KgTOSK2G7TzMOKRtSVbdlz2nb0NgG/KLtnfET37Kp3lbcvUfMVU38nO0dpU2RlpBU09BXbiXI4ne5c1PEOZTJUCUTZAZKXFdgiJr0Hz6nuUY1XZJjqbFT/RtkJlBW2u11snsumTsuI9DvdeSZOw5hko5rFZNs2mkvJ03ReNrDMGzYTZNt3QJk8qt5FHn/jN7jFRzfYitroqtLrgkiukqQPbAcHVM3LJvSu+zepoEAlrfK7QlKrbkn0ZbbBsDh5ukIS9Z06UdbdW0wb9b3KgrGu+z5pZN9eTll0CUMNiLuCTQDf1F9Sd8EE09sEy21wzc9JkESA07ZtiDTpXrt2LdauXYv9+/f3WPn+wx/+ECVLZ8hLh6aLooWJEuUxlRul84ra+PqGLtJJmdTp0gX9rYqs5jW4AZR/L4PqeXWTxSQjpL7UV6ruol7vrTxdIer71tVTVfuZx58MyxLqijW1HZANrKl56mzypW2xxWbHgO2iAfWYUkbc54mTp09QdhfY5mE6nwY2q7w2wWvbCTJlQm+zs8MW3+tsnCCaKS21L7aedLe2tmL58uWYMmUKGhoavB4c6fC9cqURKQ4SdauKzSpQXutWEYrwqdvYotybx5VuwLy6GkyjCkwkEajyte2gbIcLYtPR2+7c0LU9Knz1O2XQz2SD7SqbzbuknpetnlYKuueNG+TSBcGjQulHKuEdprlLqTfH6GmMgWX9pm2gSGYftQ+OQtwgVNbECeCofB8MgFOwnnTff//9WLVqFebPn297q/MEV8l8q0w2IogTCaZsF9LlUUQ3gEiykUiTpBoeWeNLnVjobLCJ6OcR1Yq3EPRvi8+j72xX7WxWpaNq1+a+PLwDGVFW3Do7O3vJOgaw3+pKWaGlBqDC9+vK9Z0o45kituMam4BWkkHZvJN2QD9rH8eZbBePTe0FdVyoCxjZBgwpZO37IDZj4PB5U/o0Ap3Wk+4jR47g3HPPTaRwl/Fl4lckSuekqpCmiQclb1UZsnS++bpI3Ai7LK+o2190eavSuPTFgUkh++ZI3SDLl7qWJKZnNrULujqmyjvqSi2ls/Nt4mHSuK59CJPHnSo+QJ3o6SbItlqRtVu2k39fNFLEJlgfvoc6MZb5lRLw0OGrv5PGZiHHV19RFzd0x3FWtmXXbezw3f8UTDsKehPa738FWLBgAR599NE0bMmc4CSkuBqmWxXrTaqqqmJXEOqzFMsKl6lagZH5SVWWaZXRxtdJ+CQJ4tqh81v4WPVuVOll9hXT5HHAHnwmXT0u/pneXfG6K+1Akqj8Er5uevY49VOVd7BsW7tdIaoPwm2q7JorbZ/P2PiQqpU4dujaqXAdMOnMd2QaUPlAlUbloyTGNyq/57m/iIOuzfPVV6p3baqHwbqjqpsqTPVQpgsTvvq/iMwn4WumsY3qOHje9G6o42nrle5PP/0UDzzwAF544QVMnjwZ1dXVZdfvvvtu2ywzp/gyXN6qVwwIJGFjeIWzWJFUK5/BMsNpitfCFa54vpheVUbwywfCz1Y8r7IrSZ/EIWwH1e7gc5sEG74nfF7WGITLD/u5vb0dw4cP97rBLVJ8hvb29h71QVZnw+/IVPeyrmNJEaw/qmdTtQ9hdHUu/A3y4XvCZYfv0/ndl3dia6eqHQleC+s/jxrurfcapR7Z1tvi77YGUelJ1i/o8tbZEy7DF82YCPqCMrYI3hNG5e8gJn+Fy47q52L6POm4vb29h39MYyOfiNq+F6EEy8J5m+p6Z2cneUyjwvd3JPvWfNPcRtWWBNsGU3tSxKThKmGp8q9+9avqzKqqsG7dOpvsnOD999/H8OHDszaDYTKhvb0dJ598ctZmxII1zFQyrGGG8R/WMcP4jUnD1pPuPNLd3Y22tjacfvrpaG9v7/GZUNfp7OzE8OHDvbQd8Nt+n20XQuCTTz5BY2Mj+vSx/qSJU/iuYcDvuuSz7YC/9rOG3cLXegT4bTvgt/2sY3fwuR4Bftvvs+1UDUf6ne680adPH5x00kkAgIEDB3r3sov4bDvgt/2+2p6Xz3XnRcOA3/b7bDvgp/2sYffw2X6fbQf8tZ917BY+2w74bb+vtif6O90XX3wxKd1TTz1FzZJhGIZhGIZhGIZhcg150p2XKBzDMAzDMAzDMAzD9BbkSffKlSvTtCNzampqsGzZMtTU1GRtijU+2w74bb/PtucN39+Fz/b7bDvgv/15wff34LP9PtsO+G9/nvD5XfhsO+C3/T7bToW/SI1hGIZhGIZhGIZhUsLvr0lkGIZhGIZhGIZhGIfhSTfDMAzDMAzDMAzDpARPuhmGYRiGYRiGYRgmJXjSDeC+++7DqFGj8IUvfAHTpk3Dli1bsjapB3fccQe+9KUv4fjjj0d9fT0uuugitLW1laWZOXMmqqqqyv6uu+66jCwu5/bbb+9h2/jx40vXP/30U7S0tODEE0/EgAEDMG/ePHzwwQcZWlzOqFGjethfVVWFlpYWAG77vhLwQcOA3zpmDTNp44OOfdYw4LeOWcPu44OGAb917LOGgcrWccVPuh9//HHcdNNNWLZsGXbs2IGmpiZceOGF2L9/f9amlbFx40a0tLRg8+bNeP7553H06FHMnj0b//3vf8vSLVy4EIVCofR35513ZmRxT84444wy21566aXStRtvvBF/+ctf8MQTT2Djxo3497//Tf5t+N5g69atZbY///zzAIBLLrmklMZl3+cZXzQM+K9j1jCTFr7o2HcNA/7qmDXsNr5oGPBfx75qGKhwHYsKZ+rUqaKlpaV03NXVJRobG8Udd9yRoVVm9u/fLwCIjRs3ls7NmDFDLFmyJDujNCxbtkw0NTVJrx04cEBUV1eLJ554onTu7bffFgDEpk2beslCO5YsWSLGjBkjuru7hRBu+z7v+KphIfzSMWuYSRNfdeyThoXIl45Zw27hq4aF8EvHedKwEJWl44pe6T5y5Ai2b9+OWbNmlc716dMHs2bNwqZNmzK0zExHRwcAYPDgwWXnH3nkEdTV1WHixIm49dZbcejQoSzMk/LOO++gsbERo0ePxhVXXIG9e/cCALZv346jR4+WvYfx48djxIgRTr6HI0eO4OGHH8b3v/99VFVVlc677Pu84rOGAf90zBpm0sBnHfumYSAfOmYNu4XPGgb803EeNAxUno77ZW1Alnz44Yfo6urC0KFDy84PHToU//rXvzKyykx3dzduuOEGfPnLX8bEiRNL57/3ve9h5MiRaGxsxOuvv46lS5eira0NTz31VIbW/o9p06Zh1apVGDduHAqFAlpbW3HeeefhjTfewL59+9C/f3/U1taW3TN06FDs27cvG4M1PPPMMzhw4ACuueaa0jmXfZ9nfNUw4J+OWcNMWviqY980DORHx6xht/BVw4B/Os6LhoHK03FFT7p9paWlBW+88UbZZzgAYNGiRaX/J02ahIaGBlxwwQXYvXs3xowZ09tmljF37tzS/5MnT8a0adMwcuRI/PGPf8QxxxyToWX2/P73v8fcuXPR2NhYOuey7xk38U3HrGGGKcc3DQP50TFrmEkK33ScFw0Dlafjit5eXldXh759+/b4Vr8PPvgAw4YNy8gqPYsXL8aaNWuwfv16nHzyydq006ZNAwDs2rWrN0yzora2Fqeddhp27dqFYcOG4ciRIzhw4EBZGhffw3vvvYcXXngBCxYs0KZz2fd5wkcNA/nQMWuYSQofdZwHDQN+6pg17B4+ahjIh4591DBQmTqu6El3//79cfbZZ2Pt2rWlc93d3Vi7di2am5sztKwnQggsXrwYTz/9NNatW4dTTjnFeM/OnTsBAA0NDSlbZ8/Bgwexe/duNDQ04Oyzz0Z1dXXZe2hra8PevXudew8rV65EfX09vvGNb2jTuez7POGThoF86Zg1zCSFTzrOk4YBP3XMGnYPnzQM5EvHPmoYqFAdZ/s9btnz2GOPiZqaGrFq1Srx1ltviUWLFona2lqxb9++rE0r4/rrrxeDBg0SGzZsEIVCofR36NAhIYQQu3btEsuXLxfbtm0Te/bsEX/605/E6NGjxfTp0zO2/H/8+Mc/Fhs2bBB79uwRL7/8spg1a5aoq6sT+/fvF0IIcd1114kRI0aIdevWiW3btonm5mbR3NycsdXldHV1iREjRoilS5eWnXfd93nHFw0L4beOWcNMmviiY581LIT/OmYNu4svGhbCbx37rmEhKlfHFT/pFkKIFStWiBEjRoj+/fuLqVOnis2bN2dtUg8ASP9WrlwphBBi7969Yvr06WLw4MGipqZGjB07VvzkJz8RHR0d2Rr+/1x66aWioaFB9O/fX5x00kni0ksvFbt27SpdP3z4sPjBD34gTjjhBHHssceK73znO6JQKGRocU+ee+45AUC0tbWVnXfd95WADxoWwm8ds4aZtPFBxz5rWAj/dcwadhsfNCyE3zr2XcNCVK6Oq4QQonfW1BmGYRiGYRiGYRimsqjoz3QzDMMwDMMwDMMwTJrwpJthGIZhGIZhGIZhUoIn3QzDMAzDMAzDMAyTEjzpZhiGYRiGYRiGYZiU4Ek3wzAMwzAMwzAMw6QET7oZhmEYhmEYhmEYJiV40s0wDMMwDMMwDMMwKcGTboZhGIZhGIZhGIZJCZ50VzDXXHMNLrrooszKnz9/Pn75y19mVj6Fyy67DL/+9a+zNoNhpLCGzbCGGZdhDZthDTOuwzo2wzoGqoQQImsjmOSpqqrSXl+2bBluvPFGCCFQW1vbO0YFeO2113D++efjvffew4ABA4zpZ86ciTPPPBP33HNP+sYFeOONNzB9+nTs2bMHgwYN6tWymcqGNZwMrGEmK1jDycAaZrKEdZwMrGOgX9YGMOlQKBRK/z/++OO47bbb0NbWVjo3YMAAkjjTYsWKFbjkkksytYHCxIkTMWbMGDz88MNoaWnJ2hymgmANJwNrmMkK1nAysIaZLGEdJwPrGIBgcs/KlSvFoEGDepy/+uqrxbe//e3S8YwZM8TixYvFkiVLRG1traivrxcPPPCAOHjwoLjmmmvEgAEDxJgxY8Rf//rXsnz++c9/ijlz5ojjjjtO1NfXiyuvvFL85z//Udrz+eefi0GDBok1a9aUnb/vvvvE2LFjRU1Njaivrxfz5s0r2Qmg7G/Pnj2ksmfMmCFaWlpES0uLGDhwoDjxxBPFz372M9Hd3W0st0hra6v4yle+ovUxw6QJa5g1zPgNa5g1zPgP65h1HAf+TDdTxoMPPoi6ujps2bIFP/zhD3H99dfjkksuwbnnnosdO3Zg9uzZmD9/Pg4dOgQAOHDgAM4//3x88YtfxLZt2/Dss8/igw8+wHe/+11lGa+//jo6OjowZcqU0rlt27bhRz/6EZYvX462tjY8++yzmD59OgDg3nvvRXNzMxYuXIhCoYBCoYDhw4eTy37wwQfRr18/bNmyBffeey/uvvtu/O53vzOWW2Tq1KnYsmULPvvss0R8zDBpwhpmDTN+wxpmDTP+wzpmHfcg61k/kz42kblgBOrzzz8Xxx13nJg/f37pXKFQEADEpk2bhBBC/PznPxezZ88uy7e9vV0AEG1tbVJ7nn76adG3b9+y6NiTTz4pBg4cKDo7O6X3zJgxQyxZsqTsHKXsGTNmiAkTJpSVtXTpUjFhwgRSuUII8dprrwkA4t1331WmYZg0YQ2zhhm/YQ2zhhn/YR2zjuPAK91MGZMnTy7937dvX5x44omYNGlS6dzQoUMBAPv37wfwvy9wWL9+fekzLQMGDMD48eMBALt375aWcfjwYdTU1JR9OcXXvvY1jBw5EqNHj8b8+fPxyCOPlKJ/Kqhln3POOWVlNTc345133kFXVxep3GOOOQYAjPYwjAuwhlnDjN+whlnDjP+wjlnHYXjSzZRRXV1ddlxVVVV2rii27u5uAMDBgwfxzW9+Ezt37iz7e+edd3psKylSV1eHQ4cO4ciRI6Vzxx9/PHbs2IHVq1ejoaEBt912G5qamnDgwAGlrVHKDkMp9+OPPwYADBkyhJQnw2QJa5g1zPgNa5g1zPgP65h1HIYn3UwszjrrLLz55psYNWoUxo4dW/Z33HHHSe8588wzAQBvvfVW2fl+/fph1qxZuPPOO/H666/j3Xffxbp16wAA/fv3R1dXV6SyX3nllbL7Nm/ejFNPPRV9+/Y1lgv872cOTj75ZNTV1UVzEsM4DGuYYfyGNcww/sM6zj886WZi0dLSgo8//hiXX345tm7dit27d+O5557Dtdde20PURYYMGYKzzjoLL730UuncmjVr8Jvf/AY7d+7Ee++9h4ceegjd3d0YN24cAGDUqFF45ZVX8O677+LDDz9Ed3c3uey9e/fipptuQltbG1avXo0VK1ZgyZIlpHIB4MUXX8Ts2bPTcB/DZA5rmGH8hjXMMP7DOs4/POlmYtHY2IiXX34ZXV1dmD17NiZNmoQbbrgBtbW16NNHXb0WLFiARx55pHRcW1uLp556Cueffz4mTJiA+++/H6tXr8YZZ5wBALj55pvRt29fnH766RgyZAj27t1LLvuqq67C4cOHMXXqVLS0tGDJkiVYtGgRqdxPP/0UzzzzDBYuXJiG+xgmc1jDDOM3rGGG8R/Wcf6pEkKIrI1gKo/Dhw9j3LhxePzxx9Hc3JxaOTNnzsSZZ56Je+65J9L9v/3tb/H000/jb3/7W7KGMYznsIYZxm9YwwzjP6xjf+CVbiYTjjnmGDz00EP48MMPszZFS3V1NVasWJG1GQzjHKxhhvEb1jDD+A/r2B/6ZW0AU7nMnDkzaxOMLFiwIGsTGMZZWMMM4zesYYbxH9axH/D2coZhGIZhGIZhGIZJCd5ezjAMwzAMwzAMwzApwZNuhmEYhmEYhmEYhkkJnnQzDMMwDMMwDMMwTErwpJthGIZhGIZhGIZhUoIn3QzDMAzDMAzDMAyTEjzpZhiGYRiGYRiGYZiU4Ek3wzAMwzAMwzAMw6QET7oZhmEYhmEYhmEYJiV40s0wDMMwDMMwDMMwKfF/RQDPYP0v1ZcAAAAASUVORK5CYII=\n"},"metadata":{}}],"source":["# We use the following constants to make equations look nicer below\n","second = 1\n","ms = 1e-3\n","Hz = 1\n","\n","# Stimulus and simulation parameters\n","dt = 1*ms # large time step to make simulations run faster for tutorial\n","anf_per_ear = 100 # number of auditory nerve fibers connected to each ear with independent noise\n","envelope_power = 2 # higher values make sharper envelopes. Easier by eye => But does the network perform better ?\n","rate_max = 600*Hz # maximum Poisson firing rate\n","f = 20*Hz # stimulus frequency\n","duration = .1*second # stimulus duration\n","duration_steps = int(np.round(duration/dt)) # number of simulation steps\n","input_size = 2*anf_per_ear\n","\n","# Generate an input signal (spike array) from array of true IPDs\n","def input_signal(ipd):\n"," \"\"\"\n"," Generate a Poisson spike train based on an input Interaural Phase Difference (IPD) array\n"," and the delays imposed by the individual auditory nerve fibers.\n","\n"," Parameters\n"," ----------\n"," ipd : array-like\n"," An array of true Interaural Phase Differences (IPD). Shape: (num_samples, )\n","\n"," Returns\n"," -------\n"," spikes : ndarray\n"," A binary array indicating spike occurrences, shaped (num_samples, duration_steps, 2*anf_per_ear).\n"," `spikes[i, j, k]` is 1 if a spike occurred at the jth time step for the ith IPD in the kth auditory nerve fiber,\n"," and 0 otherwise.\n","\n"," Notes\n"," -----\n"," - The function first calculates an array of phases (`phi`) to define the sinudoidal auditory stimulus and adds a random\n"," phase offset because we want that the system learns to infer the angular location of the sound source indepent of its distance\n"," to the source.\n"," - An array of theta values is initialized that will hold the transformed phi values according to the phase delay imposed by the\n"," individual auditory nerve fibers and the ipd between the two ears.\n"," - Different phase delays, ranging from 0 to pi/2, are calculated and added with the ipd value to generate theta.\n"," - Poisson spikes are generated based on the theta values and a sinusoidal modulation of the firing rate.\n"," - The spikes are returned as a binary array, indicating the occurrence of spikes across auditory nerve fibers and time.\n"," \"\"\"\n"," num_samples = len(ipd) # corresponds to the number of different locations of the source in the data set\n","\n"," T = np.arange(duration_steps)*dt # array of times over which the auditory signal is constructed\n"," phi = 2*np.pi*(f*T) + 2*np.pi*np.random.rand() # array of phases corresponding to those times with random offset\n"," # because we want that the system learns to infer the angular location of the sound source indepent of its distance\n"," # to the source. The phase in this array increases linearly.\n","\n"," phase_delays = np.linspace(0, np.pi/2, anf_per_ear) # array of phase delays introduced by the auditory nerve fibers.\n"," # For each ear, we have anf_per_ear different phase delays from 0 to pi/2 so\n"," # that the differences between the two ears can cover the full range from -pi/2 to pi/2\n","\n"," theta = np.zeros((num_samples, duration_steps, 2*anf_per_ear)) # 3D array that holds the spike pattern of all auditory nerve fibers for all the interaural phase difference in the data set.\n"," # num_samples = number of different IPD values in our data set\n"," # duration_step = number of time points in our auditory signal\n"," # 2*anf_per_ear = total number of auditory nerve fibers\n","\n"," # Now we set up these theta values. Some numpy vectorisation logic using broadcasting to implements the idea in the text above.\n"," theta[:, :, :anf_per_ear] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]\n"," theta[:, :, anf_per_ear:] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]+ipd[:, np.newaxis, np.newaxis]\n","\n"," # now generate Poisson spikes at the given firing rate as in the previous notebook\n"," spikes = rate_max*dt*(0.5*(1+np.sin(theta)))**envelope_power > np.random.rand(num_samples, duration_steps, 2*anf_per_ear)\n"," return spikes\n","\n","# Generate some true IPDs from (-pi/2, pi/2) and corresponding spike arrays\n","def random_ipd_input_signal(num_samples, tensor=True):\n"," \"\"\"\n"," Generate random Interaural Phase Differences (IPDs) and then corresponding spike arrays using\n"," the function input_signal(idp).\n","\n"," The function generates `num_samples` IPDs, uniformly distributed in the range (-pi/2, pi/2).\n"," It then generates corresponding spike arrays using the `input_signal` function.\n"," Optionally, IPDs and spike arrays can be converted to PyTorch tensors.\n","\n"," Parameters\n"," ----------\n"," num_samples : int\n"," The number of IPD samples to generate.\n"," tensor : bool, optional\n"," If True, converts the IPDs and spike arrays to PyTorch tensors before returning them.\n"," If False, they are returned as NumPy arrays. Default is True.\n","\n"," Returns\n"," -------\n"," ipd : ndarray or Tensor\n"," An array of randomly generated IPDs. Shape: (num_samples, ).\n"," Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n"," spikes : ndarray or Tensor\n"," A binary array indicating spike occurrences along time, generated by `input_signal` based on `ipd`.\n"," Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n"," Shaped: (num_samples, duration_steps, 2*anf_per_ear)\n","\n"," Notes\n"," -----\n"," - Ensure that the `input_signal` function is defined in your environment as it is called within this function.\n"," - If `tensor` is True, ensure that PyTorch is installed and configured in your environment.\n","\n"," Examples\n"," --------\n"," >>> ipd, spikes = random_ipd_input_signal(50, tensor=False)\n"," >>> print(ipd.shape, spikes.shape)\n"," (50,) (50, duration_steps, 2*anf_per_ear)\n"," \"\"\"\n"," ipd = np.random.rand(num_samples)*np.pi-np.pi/2 # uniformly random in (-pi/2, pi/2)\n"," spikes = input_signal(ipd)\n"," if tensor:\n"," ipd = torch.tensor(ipd, device=device, dtype=dtype)\n"," spikes = torch.tensor(spikes, device=device, dtype=dtype)\n"," return ipd, spikes\n","\n","# Plot for a few true IPDs the generated spike trains of the auditory nerve fibers to show how it looks.\n","# The first 100 lines are auditory nerve fiber responses of the righ ear and the others are from the left ear.\n","# You note that the IPDs was applied to the left ear's fibers.\n","ipd, spikes = random_ipd_input_signal(8)\n","plt.figure(figsize=(10, 4), dpi=100)\n","for i in range(8):\n"," plt.subplot(2, 4, i+1)\n"," plt.imshow(spikes[i, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n"," plt.title(f'True IPD = {int(ipd[i]*180/np.pi)} deg')\n"," if i>=4:\n"," plt.xlabel('Time (steps)')\n"," if i%4==0:\n"," plt.ylabel('Input neuron index')\n","plt.tight_layout()"]},{"cell_type":"markdown","id":"177a735f","metadata":{"id":"177a735f"},"source":["### Classification approach\n","\n","Now the aim is to take these input spikes and infer the IPD. We can do this either by discretising and using a classification approach, or with a regression approach. For the moment, let's try it with a classification approach.\n","\n","We discretise the IPD range of $[-\\pi/2, \\pi/2]$ into $N_c$ (``num_classes``) equal width segments. Replace angle $\\phi$ with the integer part (floor) of $(\\phi+\\pi/2)N_c/\\pi$. We also convert the arrays into PyTorch tensors for later use. The algorithm will now guess the index $i$ of the segment, converting that to the midpoint of the segment $\\phi_i=a+(i+1/2)(b-a)/N_c$ when needed.\n","\n","The algorithm will work by outputting a length $N_c$ vector $y$ and the index of the maximum value of y will be the guess as to the class (1-hot encoding), i.e. $i_\\mathrm{est}=\\mathrm{argmax}_i y_i$. We will perform the training with a softmax and negative loss likelihood loss, which is a standard approach in machine learning, especially in the context of multi-class classification tasks.\n","\n","\n","\n","\n","\n","\n","#### Note on the use of the softmax function:\n","Probability Distribution: The softmax function transforms the output of a neural network's final layer into a probability distribution over multiple classes. This is important because it ensures that the predicted values for each class sum up to 1.0. This probability distribution allows us to interpret the network's output as the likelihood of each class being the correct class.\n","\n","Differentiability: The softmax function is differentiable, which makes it suitable for training neural networks using gradient-based optimization techniques, such as gradient descent. The gradients of the softmax function can be efficiently computed during backpropagation, enabling the network to learn and update its parameters.\n","\n","Cross-Entropy Loss: In conjunction with the softmax function, the cross-entropy loss (also known as log loss) is often used as the loss function for training neural networks. The cross-entropy loss measures the dissimilarity between the predicted probabilities and the true class labels. It encourages the network to assign high probabilities to the correct class and low probabilities to other classes, effectively optimizing the model's predictions for classification tasks.\n","\n","Multi-Class Classification: For multi-class classification problems, where an input can belong to one of several classes, the softmax function provides a natural way to model and predict class probabilities. It helps in making decisions about which class an input most likely belongs to.\n","\n","Interpretability: The softmax function's output can be interpreted as class probabilities, which is valuable not only for making predictions but also for understanding the model's confidence in those predictions. This can be useful for post-processing or decision-making based on the network's output probabilities."]},{"cell_type":"code","execution_count":null,"id":"3f817078","metadata":{"id":"3f817078","outputId":"34fca1cf-d589-4986-b0f1-68901774195e","colab":{"base_uri":"https://localhost:8080/"}},"outputs":[{"output_type":"stream","name":"stdout","text":["Number of classes = 12\n"]}],"source":["# classes at 15 degree increments\n","num_classes = 180//15\n","print(f'Number of classes = {num_classes}')\n","\n","def discretise(ipds):\n"," \"\"\"\n"," Discretize Interaural Phase Differences (IPDs) to generate class labels.\n","\n"," The function maps IPDs, which are continuous values in the range (-pi/2, pi/2),\n"," to discrete classes in the range [0, num_classes-1]. The resulting discrete values\n"," are suitable for classification tasks.\n","\n"," Parameters\n"," ----------\n"," ipds : Tensor\n"," A tensor containing continuous IPD values. The values should be in the range (-pi/2, pi/2).\n","\n"," Returns\n"," -------\n"," Tensor\n"," A tensor containing the classification of IPD values, in the range [0, num_classes-1].\n","\n"," Notes\n"," -----\n"," - Assumes the input `ipds` is a PyTorch tensor.\n"," - `num_classes` should be defined in the surrounding scope.\n"," - The output tensor will have the same shape as the input `ipds`.\n","\n"," Examples\n"," --------\n"," >>> ipds = torch.tensor([-np.pi/2, 0, np.pi/2])\n"," >>> ipd_indices = discretise(ipds)\n"," \"\"\"\n"," return ((ipds+np.pi/2)*num_classes/np.pi).long() # assumes input is tensor\n","\n","def continuise(ipd_indices): # convert indices back to IPD midpoints\n"," \"\"\"\n"," This function maps IPD indices, which are discrete values in the range [0, num_classes-1],\n"," back to continuous IPD values. The resulting continuous values are suitable for\n"," representing the midpoints of the original IPD ranges in the continuous domain.\n","\n"," Parameters\n"," ----------\n"," ipd_indices : array-like\n"," An array or tensor of IPD indices, which are discrete values obtained from\n"," discretizing continuous IPDs into `num_classes` bins by the function discretise(ipds).\n","\n"," Returns\n"," -------\n"," array-like\n"," An array or tensor of continuous IPD midpoints, corresponding to the provided\n"," `ipd_indices`. The midpoints are computed based on the assumed discretization\n"," strategy, and are in the range (-pi/2, pi/2).\n","\n"," Notes\n"," -----\n"," - `num_classes` should be defined in the surrounding scope and should be the same\n"," value that was used for discretization.\n"," - The input `ipd_indices` and the output will have the same shape.\n"," - The output type (e.g., NumPy array, PyTorch tensor) will match the input type.\n"," \"\"\"\n"," return (ipd_indices+0.5)/num_classes*np.pi-np.pi/2"]},{"cell_type":"markdown","source":["### Set training parameters:"],"metadata":{"id":"zvdDe_9rizLj"},"id":"zvdDe_9rizLj"},{"cell_type":"code","execution_count":null,"id":"fc5fdc4f","metadata":{"id":"fc5fdc4f"},"outputs":[],"source":["# Parameters for training. These aren't optimal, but instead designed\n","# to give a reasonable result in a small amount of time for the tutorial!\n","if my_computer_is_slow:\n"," batch_size = 64\n"," n_training_batches = 64\n","else:\n"," batch_size = 128\n"," n_training_batches = 128\n","n_testing_batches = 32\n","num_samples = batch_size*n_training_batches\n","\n","# NOTE 1:A batch is a subset of the training dataset used for a single update of the model parameters.\n","# Rather than updating model parameters after processing each individual data point (stochastic gradient descent),\n","# batches allow the network to update parameters after processing a group of data points.\n","# This approach is called mini-batch gradient descent and is more computationally efficient than stochastic gradient descent.\n","# The size of a batch, known as the batch size, is an important hyperparameter and can affect\n","# the model's training dynamics and performance.\n","\n","# NOTE2 : Small batch sizes improve generalization through noisier gradients and\n","# require less memory, making them ideal for limited resources, but they may\n","# lead to slower computation and less stable convergence due to noisier gradient\n","# updates. Conversely, large batch sizes enhance computational efficiency and stability\n","# of gradient estimates due to better GPU utilization, but they demand more memory and\n","# might result in poorer generalization due to the risk of converging to sharp minima\n","# that don't generalize well on unseen data.\n","\n","\n","\n","# Generator function iterates over the data in batches\n","# We randomly permute the order of the data to improve learning\n","def data_generator(ipds, spikes):\n"," \"\"\"\n"," Generate batches of data, iterating over IPDs and spikes in a randomized order.\n","\n"," This generator function yields shuffled batches of interaural phase differences (IPDs) and spikes,\n"," facilitating mini-batch gradient descent training of a model. The order of the data is randomized\n"," to improve learning, mitigating the risk of the model memorizing the order of the training data\n"," (overfitting) and helping the model generalize better to unseen data.\n","\n"," Parameters\n"," ----------\n"," ipds : Tensor\n"," A 1D tensor of IPD values.\n"," Shape: (n_samples, )\n"," spikes : Tensor\n"," A 3D tensor representing a batch of input spike trains.\n"," Shape: (n_samples, duration_steps, input_size)\n","\n"," Yields\n"," ------\n"," spike_batch : Tensor\n"," A 3D tensor containing a batch of input spike trains.\n"," Shape: (batch_size, duration_steps, input_size)\n"," ipd_batch : Tensor\n"," A 1D tensor containing a batch of IPD values.\n"," Shape: (batch_size, )\n","\n"," Notes\n"," -----\n"," - `batch_size` should be defined in the surrounding scope or passed as an argument.\n"," - Ensure that `ipds` and the first dimension of `spikes` have the same size.\n"," - The generator yields `spike_batch` and `ipd_batch` which are randomly shuffled batches of `spikes` and `ipds` respectively.\n"," \"\"\"\n"," perm = torch.randperm(spikes.shape[0])\n"," spikes = spikes[perm, :, :]\n"," ipds = ipds[perm]\n"," n, _, _ = spikes.shape\n"," n_batch = n//batch_size\n"," for i in range(n_batch):\n"," spike_batch = spikes[i*batch_size:(i+1)*batch_size, :, :] # spike_batch\n"," ipd_batch = ipds[i*batch_size:(i+1)*batch_size] # ipd_batch\n"," yield spike_batch, ipd_batch # yield means that at each function call the function returns the next result of the loop interation"]},{"cell_type":"markdown","id":"3bb91016","metadata":{"id":"3bb91016"},"source":["### Construct the Spiking model\n","\n","Next we'll implement a version of the model with spikes to see how that changes performance. We'll just add a single hidden feed-forward layer of spiking neurons between the input and the output layers. This layer will be spiking, so we need to use the surrogate gradient descent approach.\n","\n","![Full architecture](https://github.com/neural-reckoning/cosyne-tutorial-2022/blob/main/arch-full.png?raw=1)"]},{"cell_type":"markdown","id":"03f5456e","metadata":{"id":"03f5456e"},"source":["#### Surrogate gradient descent\n","\n","First, this is the key part of surrogate gradient descent, a function where we override the computation of the gradient to replace it with a smoothed gradient. You can see that in the forward pass (method ``forward``) it returns the Heaviside function of the input (takes value 1 if the input is ``>0``) or value 0 otherwise. In the backwards pass, it returns the gradient of a sigmoid function."]},{"cell_type":"code","execution_count":null,"id":"e5fabc7b","metadata":{"id":"e5fabc7b"},"outputs":[],"source":["beta = 5\n","\n","class SurrGradSpike(torch.autograd.Function):\n"," \"\"\"\n"," This class allows for the approximation of gradients for non-differentiable spiking functions, enabling\n"," the backpropagation of errors in networks that incorporate spiking neurons. The forward method applies\n"," a thresholding logic, mimicking the firing of a neuron, while the backward method implements the surrogate\n"," gradient calculation.\n","\n"," Methods\n"," -------\n"," @staticmethod\n"," forward(ctx, input):\n"," Computes the forward propagation step in the neural network. This method applies a specific logic to\n"," mimic the all-or-none spiking nature of biological neurons. It generates a binary output corresponding\n"," to whether each neuron in the input tensor has fired or not.\n"," Parameters:\n"," ctx : torch.autograd.function._ContextMethodMixin\n"," A context object for storing information necessary for the backward computation.\n"," input : torch.Tensor\n"," A tensor containing the input data, typically the neuronal activations in form of the membrane potential,\n"," for which the output firing response will be computed.\n"," Returns:\n"," torch.Tensor: A tensor with the same shape as input, filled with binary values indicating whether\n"," each neuron has fired (1.0) or not (0.0).\n","\n"," @staticmethod\n"," backward(ctx, grad_output):\n"," Computes the backward propagation step in the neural network. This method calculates the surrogate\n"," gradients of the loss function with respect to the input activations. It is designed to work with\n"," the non-differentiable nature of spiking neurons by approximating the gradients.\n"," Parameters:\n"," ctx : torch.autograd.function._ContextMethodMixin\n"," A context object that has the information stashed during the forward pass.\n"," grad_output : torch.Tensor\n"," A tensor containing the gradient of the loss function with respect to the outputs of the forward method.\n"," Returns:\n"," torch.Tensor: A tensor containing the surrogate gradients of the loss function with respect to\n"," the input activations, which can be backpropagated through the rest of the network.\n"," \"\"\"\n"," @staticmethod\n"," def forward(ctx, input):\n"," ctx.save_for_backward(input)\n"," out = torch.zeros_like(input)\n"," out[input > 0] = 1.0\n"," return out\n"," @staticmethod\n"," def backward(ctx, grad_output):\n"," input, = ctx.saved_tensors\n"," # Original SPyTorch/SuperSpike gradient\n"," # This seems to be a typo or error? But it works well\n"," # grad = grad_output/(100*torch.abs(input)+1.0)**2\n"," # Sigmoid\n"," grad = grad_output*beta*torch.sigmoid(beta*input)*(1-torch.sigmoid(beta*input))\n"," return grad\n","\n","spike_fn = SurrGradSpike.apply # allows the defined class to be used as a function."]},{"cell_type":"markdown","id":"911318ee","metadata":{"id":"911318ee"},"source":["#### Creat network architecture and update function\n","\n","The code for the updated model is very similar to the membrane only layer. First, for initialisation we now need two weight matrices, $W_1$ from the input to the hidden layer, and $W_2$ from the hidden layer to the output layer. Second, we run two passes of the loop that you saw above for the membrane only model.\n","\n","The first pass computes the output spikes of the hidden layer. The second pass computes the output layer and is exactly the same as before except using the spikes from the hidden layer instead of the input layer.\n","\n","For the first pass, we modify the function in two ways.\n","\n","Firstly, we compute the spikes with the line ``s = spike_fn(v-1)``. In the forward pass this just computes the Heaviside function of $v-1$, i.e. returns 1 if $v>1$, otherwise 0, which is the spike threshold function for the LIF neuron. In the backwards pass, it returns a gradient of the smoothed version of the Heaviside function.\n","\n","The other line we change is the membrane potential update line. Now, we multiply by $1-s$ where ($s=1$ if there was a spike in the previous time step, otherwise $s=0$), so that the membrane potential is reset to 0 after a spike (but in a differentiable way rather than just setting it to 0)."]},{"cell_type":"code","execution_count":null,"id":"7b072bb5","metadata":{"id":"7b072bb5"},"outputs":[],"source":["num_hidden = 30\n","\n","# Weights and uniform weight initialisation\n","def init_weight_matrices():\n"," # Input to hidden layer\n"," W1 = nn.Parameter(torch.empty((input_size, num_hidden), device=device, dtype=dtype, requires_grad=True))\n"," fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W1)\n"," bound = 1 / np.sqrt(fan_in)\n"," nn.init.uniform_(W1, -bound, bound)\n"," # Hidden layer to output\n"," W2 = nn.Parameter(torch.empty((num_hidden, num_classes), device=device, dtype=dtype, requires_grad=True))\n"," fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W2)\n"," bound = 1 / np.sqrt(fan_in)\n"," nn.init.uniform_(W2, -bound, bound)\n"," return W1, W2\n","\n","# Run the simulation\n","def snn(input_spikes, W1, W2, tau=20*ms):\n"," # First layer: input to hidden\n"," v = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n"," s = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n"," s_rec = [s]\n"," h = torch.einsum(\"abc,cd->abd\", (input_spikes, W1))\n"," alpha = np.exp(-dt/tau)\n"," for t in range(duration_steps - 1):\n"," new_v = (alpha*v + h[:, t, :])*(1-s) # multiply by 0 after a spike\n"," s = spike_fn(v-1) # threshold of 1\n"," v = new_v\n"," s_rec.append(s)\n"," s_rec = torch.stack(s_rec, dim=1)\n"," # Second layer: hidden to output\n"," v = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n"," s = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n"," v_rec = [v]\n"," h = torch.einsum(\"abc,cd->abd\", (s_rec, W2))\n"," alpha = np.exp(-dt/tau)\n"," for t in range(duration_steps - 1):\n"," # v = alpha * v + torch.where(h[:, t, :] > 0, h[:, t, :], torch.zeros_like(h[:, t, :])) # VB allow only positive inputs to change the membrane pot.\n"," v = alpha*v + h[:, t, :]\n"," v_rec.append(v)\n"," v_rec = torch.stack(v_rec, dim=1)\n"," # Return recorded membrane potential of output\n"," return v_rec"]},{"cell_type":"markdown","metadata":{"id":"8b4fce85"},"source":["### Define function to analyse the simulation results\n","\n","This function computes the training and test accuracy, and plots histograms and confusion matrices to understand the errors it's making."],"id":"8b4fce85"},{"cell_type":"code","execution_count":null,"metadata":{"id":"9cc91c87"},"outputs":[],"source":["def analyse(ipds, spikes, label, run, plot_analysis):\n"," \"\"\"\n"," Analyse the performance of a classifier on interaural phase difference (IPD) data.\n","\n"," This function evaluates the accuracy and error of a classifier by comparing its\n"," output with true IPD values. It computes the mean and standard deviation of the\n"," classifier's accuracy and the absolute error in degrees. Additionally, it can\n"," generate histograms and a confusion matrix to visualize the results.\n","\n"," Parameters:\n"," ipds (array): Array of true IPD values.\n"," spikes (array): Array of spike data corresponding to the IPDs.\n"," label (str): Label for the data, used in plot titles.\n"," run (callable): Function that runs the classifier on a batch of spike data.\n"," plot_analysis (bool): If True, plot histograms and confusion matrix.\n","\n"," Returns:\n"," tuple: Tuple containing mean and standard deviation of classifier accuracy,\n"," and mean and standard deviation of absolute error in degrees.\n"," \"\"\"\n"," accs = []\n"," ipd_true = []\n"," ipd_est = []\n"," confusion = np.zeros((num_classes, num_classes))\n"," for spike_batch, ipd_batch in data_generator(ipds, spikes): #Generate batches of data, iterating over IPDs and spikes in a randomized order.\n"," ipd_batch_orig = ipd_batch\n"," ipd_batch = discretise(ipd_batch)\n"," # run network\n"," output = run(spike_batch)\n"," m = torch.sum(output, 1) # agregration function: here Sum over time dimension\n"," _, am = torch.max(m, 1) # argmax over output units to select the classe with the highest score in the output\n","\n"," # construct confusion matrix\n"," for i, j in zip(ipd_batch.detach().cpu().numpy(), am.detach().cpu().numpy()): # update the confusion matrix\n"," confusion[j, i] += 1\n"," ipd_true.append(ipd_batch_orig) # creates a list of arrays\n"," ipd_est.append(continuise(am.detach().cpu().numpy()))\n","\n"," # calculate accuracy\n"," tmp = np.mean((ipd_batch == am).detach().cpu().numpy()) # compare to labels\n"," accs.append(tmp)\n"," ipd_true = np.hstack(ipd_true) # connetecates the arrays in the list horizontally to create a single flattened array\n"," ipd_est = np.hstack(ipd_est)\n"," abs_errors_deg = abs(ipd_true-ipd_est)*180/np.pi\n","\n"," classifier_accuracy_mean = 100*np.mean(accs) # in percent\n"," classifier_accuracy_std = 100*np.std(accs) # in percent\n"," absolute_error_mean = np.mean(abs_errors_deg) # in degree\n"," absolute_error_std = np.std(abs_errors_deg) # in degree\n","\n"," print()\n"," print(f\"{label} classifier accuracy: {100*np.mean(accs):.1f}%\")\n"," print(f\"{label} absolute error: {np.mean(abs_errors_deg):.1f} deg\")\n","\n"," if plot_analysis:\n"," plt.figure(figsize=(10, 4), dpi=100)\n"," plt.subplot(121)\n"," plt.hist(ipd_true*180/np.pi, bins=num_classes, label='True')\n"," plt.hist(ipd_est*180/np.pi, bins=num_classes, label='Estimated')\n"," plt.xlabel(\"IPD\")\n"," plt.yticks([])\n"," plt.legend(loc='best')\n"," plt.title(label)\n"," plt.subplot(122)\n"," confusion /= np.sum(confusion, axis=0)[np.newaxis, :]\n"," plt.imshow(confusion, interpolation='nearest', aspect='auto', origin='lower', extent=(-90, 90, -90, 90))\n"," plt.xlabel('True IPD')\n"," plt.ylabel('Estimated IPD')\n"," plt.title('Confusion matrix')\n"," plt.tight_layout()\n","\n"," return classifier_accuracy_mean, classifier_accuracy_std, absolute_error_mean, absolute_error_std\n"],"id":"9cc91c87"},{"cell_type":"markdown","id":"0a1662e0","metadata":{"id":"0a1662e0"},"source":["### Do the Training and the Analysing\n","\n","We train it as before, except that we modify the functions to take the two weight matrices into account."]},{"cell_type":"markdown","source":[],"metadata":{"id":"R6YKK_5EdBB9"},"id":"R6YKK_5EdBB9"},{"cell_type":"code","execution_count":null,"id":"a5d558df","metadata":{"id":"a5d558df","colab":{"base_uri":"https://localhost:8080/","height":682},"outputId":"fa115c52-e139-41e9-af4b-bdb09f28ee1f"},"outputs":[{"output_type":"stream","name":"stdout","text":["Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.17257\n","Epoch 2: loss=1.38754\n","Epoch 3: loss=1.10757\n","Epoch 4: loss=0.96420\n","Epoch 5: loss=0.84949\n","Epoch 6: loss=0.74436\n","Epoch 7: loss=0.73615\n","Epoch 8: loss=0.64543\n","Epoch 9: loss=0.64422\n","Epoch 10: loss=0.57507\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIXklEQVR4nO3dd3xUZaL/8e9MekISElJIg9CrhFANCIIiCl5cFNcCV4q7uqxgY4uyrthWY19+CmK5CusqNhRk7YBCqFKj9CItQCohndSZ3x8hI1lgSEKSM+Xzfr3mBTlzTuabm3vle8/znOcxWa1WqwAAAOD0zEYHAAAAQOOg2AEAALgIih0AAICLoNgBAAC4CIodAACAi6DYAQAAuAiKHQAAgIug2AEAALgIT6MDNDeLxaITJ04oMDBQJpPJ6DgAAAB2Wa1WFRYWKjo6Wmaz/XtyblfsTpw4obi4OKNjAAAA1EtaWppiY2PtnuN2xS4wMFBS9f9wgoKCDE4DAABgX0FBgeLi4mwdxh63K3Y1w69BQUEUOwAA4DTqMoWMhycAAABcBMUOAADARVDsAAAAXATFDgAAwEVQ7AAAAFyEocUuOTlZ/fv3V2BgoCIiIjR27Fjt3bvX7jVvvfWWhgwZopCQEIWEhGjEiBHauHFjMyUGAABwXIYWu1WrVmnatGnasGGDli1bpoqKCo0cOVLFxcUXvGblypW6/fbb9cMPP2j9+vWKi4vTyJEjdfz48WZMDgAA4HhMVqvVanSIGtnZ2YqIiNCqVas0dOjQOl1TVVWlkJAQzZkzRxMnTrzo+QUFBQoODlZ+fj7r2AEAAIdXn+7iUAsU5+fnS5JCQ0PrfE1JSYkqKioueE1ZWZnKyspsXxcUFFxaSAAAAAflMA9PWCwWPfDAAxo8eLB69uxZ5+seeughRUdHa8SIEed9Pzk5WcHBwbYX+8QCAABX5TDFbtq0adqxY4c+/PDDOl/z7LPP6sMPP9TixYvl6+t73nNmzpyp/Px82ystLa2xIgMAADgUhxiKnT59ur744gulpKQoNja2Tte8+OKLevbZZ7V8+XL16tXrguf5+PjIx8ensaICAAA4LEOLndVq1b333qvFixdr5cqVateuXZ2ue/755/X000/r22+/Vb9+/Zo4JQAAgHMwtNhNmzZNCxcu1Oeff67AwEBlZGRIkoKDg+Xn5ydJmjhxomJiYpScnCxJeu655zRr1iwtXLhQ8fHxtmtatGihFi1aGPODAAAAOABD59jNmzdP+fn5GjZsmKKiomyvjz76yHbO0aNHlZ6eXuua8vJy3XzzzbWuefHFF434Ec7rcE6xXvx2r15f9YvRUQAAgBsxfCj2YlauXFnr68OHDzdNmEb0S3aR5vxwQFHBvvrD0PYymUxGRwIAAG7AYZ6KdSWDO4bJz8tD6fml2nGcdfMAAEDzoNg1AV8vD13ZOVyStGxXhsFpAACAu6DYNZFrukdKkr7blWlwEgAA4C4odk3kqq4R8jCbtCejUEdPlhgdBwAAuAGKXRMJCfBW//gQSdJ3DMcCAIBmQLFrQiO7t5YkLWM4FgAANAOKXROqmWe36XCucovLDU4DAABcHcWuCcWF+qtbVJAsVun7PVlGxwEAAC6OYtfEbE/H7mSeHQAAaFoUuyY28kyxS9mfrdPlVQanAQAAroxi18R6RAcppqWfSissWnMgx+g4AADAhVHsmpjJZLINx7ILBQAAaEoUu2ZQU+xW7M5SlcVqcBoAAOCqKHbNYEC7UAX5eupkcbm2Hj1ldBwAAOCiKHbNwMvDrKu6Rkji6VgAANB0KHbNZGSP6l0ovtuVKauV4VgAAND4KHbNZGjncHl7mHXkZIn2ZxUZHQcAALggil0zaeHjqcEdW0li71gAANA0KHbN6JruZ4ZjmWcHAACaAMWuGY3oHiGTSfrpWL4y8kuNjgMAAFwMxa4ZRQT6qndcS0nSst0MxwIAgMZFsWtmI88MxzLPDgAANDaKXTOr2YVi/S85KiitMDgNAABwJRS7ZtYxooXahweoosqqVXuzjY4DAABcCMXOADV37b5jOBYAADQiip0BaubZrdyTpfJKi8FpAACAq6DYGSAxrqXCWviosKxSGw6eNDoOAABwERQ7A5jNJl3TPUIST8cCAIDGQ7EzSM08u2W7MmW1Wg1OAwAAXAHFziCDOoTJ39tDGQWl2n483+g4AADABVDsDOLr5aErO4dLkr7byXAsAAC4dBQ7A43s8etwLAAAwKWi2BloeJcIeZhN2ptZqCMni42OAwAAnBzFzkAt/b01sF2oJO7aAQCAS0exM5htFwrm2QEAgEtkaLFLTk5W//79FRgYqIiICI0dO1Z79+696HWffPKJunbtKl9fX1122WX66quvmiFt06gpdpuP5OpkUZnBaQAAgDMztNitWrVK06ZN04YNG7Rs2TJVVFRo5MiRKi6+8HyzdevW6fbbb9fvfvc7bdu2TWPHjtXYsWO1Y8eOZkzeeGJD/NU9KkgWq7RiT5bRcQAAgBMzWR1oddzs7GxFRERo1apVGjp06HnPufXWW1VcXKwvvvjCduzyyy9X79699frrr1/0MwoKChQcHKz8/HwFBQU1WvZLMXv5Ps1evl/XdI/UWxP7GR0HAAA4kPp0F4eaY5efX71Qb2ho6AXPWb9+vUaMGFHr2LXXXqv169ef9/yysjIVFBTUejmamuHY1fuzdbq8yuA0AADAWTlMsbNYLHrggQc0ePBg9ezZ84LnZWRkKDIystaxyMhIZWRknPf85ORkBQcH215xcXGNmrsxdI8KUkxLP5VWWLR6f7bRcQAAgJNymGI3bdo07dixQx9++GGjft+ZM2cqPz/f9kpLS2vU798YTCbTr0/HsuwJAABoIIcodtOnT9cXX3yhH374QbGxsXbPbd26tTIza5efzMxMtW7d+rzn+/j4KCgoqNbLEdXsQrFid6YqqywGpwEAAM7I0GJntVo1ffp0LV68WN9//73atWt30WuSkpK0YsWKWseWLVumpKSkporZLAbEhyrYz0unSiq05cgpo+MAAAAnZGixmzZtmt577z0tXLhQgYGBysjIUEZGhk6fPm07Z+LEiZo5c6bt6/vvv1/ffPONXnrpJe3Zs0ePP/64Nm/erOnTpxvxIzQaTw+zru4aIYldKAAAQMMYWuzmzZun/Px8DRs2TFFRUbbXRx99ZDvn6NGjSk9Pt309aNAgLVy4UG+++aYSEhK0aNEiLVmyxO4DF87i7Hl2DrQKDQAAcBIOtY5dc3DEdexqFJdVKvGpZSqvtOjbB4aqS+tAoyMBAACDOe06du4uwMdTV3QMkyR9t/P8y7cAAABcCMXOwYw8Mxy7bDfz7AAAQP1Q7BzM1d0iZTJJPx/LV3r+6YtfAAAAcAbFzsGEB/qoT5sQSdJyno4FAAD1QLFzQOxCAQAAGoJi54Bq5tmt/+Wk8k9XGJwGAAA4C4qdA2of3kIdwgNUabFq5d4so+MAAAAnQbFzUCN7VO99yy4UAACgrih2Dqpmnt3Kvdkqq6wyOA0AAHAGFDsH1Tu2pcIDfVRUVqkNB3ONjgMAAJwAxc5Bmc0mjeh25ulYdqEAAAB1QLFzYCN7VBe75bszZbG41Za+AACgASh2DmxQh1YK8PZQZkGZfj6eb3QcAADg4Ch2DszH00PDukRIkpbtYjgWAADYR7FzcLZdKHay7AkAALCPYufghneJkKfZpP1ZRTqUU2x0HAAA4MAodg4u2N9LA9uHSmI4FgAA2EexcwIju7MLBQAAuDiKnRMYcWae3eYjp5RTVGZwGgAA4Kgodk4gpqWfesYEyWqVvt+dZXQcAADgoCh2TuKabtXDsd8xzw4AAFwAxc5J1OxCsXp/jkrKKw1OAwAAHBHFzkl0bR2o2BA/lVValLIvx+g4AADAAVHsnITJZOLpWAAAYBfFzonU7EKxYk+mKqssBqcBAACOhmLnRPrHh6ilv5fySiq0+cgpo+MAAAAHQ7FzIp4eZl3VNUISe8cCAIBzUeycjG2e3e4MWa1Wg9MAAABHQrFzMkM7h8nH06y03NPak1FodBwAAOBAKHZOxt/bU0M6hUni6VgAAFAbxc4J1Twdyy4UAADgbBQ7J3R1t0iZTNKO4wU6kXfa6DgAAMBBUOycUFgLH/VtEyKJ4VgAAPArip2Tqtk7lmIHAABqUOyc1DVnlj3ZcPCk8k9XGJwGAAA4AkOLXUpKisaMGaPo6GiZTCYtWbLkote8//77SkhIkL+/v6KionTnnXfq5MmTTR/WwbQLC1CniBaqtFi1cm+W0XEAAIADMLTYFRcXKyEhQXPnzq3T+WvXrtXEiRP1u9/9Tjt37tQnn3yijRs36q677mripI7J9nQsu1AAAABJnkZ++KhRozRq1Kg6n79+/XrFx8frvvvukyS1a9dOf/jDH/Tcc881VUSHNrJHa7228het3Julssoq+Xh6GB0JAAAYyKnm2CUlJSktLU1fffWVrFarMjMztWjRIo0ePdroaIboFROsiEAfFZdXad0v7jccDQAAanOqYjd48GC9//77uvXWW+Xt7a3WrVsrODjY7lBuWVmZCgoKar1chdlssg3H8nQsAABwqmK3a9cu3X///Zo1a5a2bNmib775RocPH9bUqVMveE1ycrKCg4Ntr7i4uGZM3PTOLnYWi9XgNAAAwEgmq9XqEG3AZDJp8eLFGjt27AXPueOOO1RaWqpPPvnEdmzNmjUaMmSITpw4oaioqHOuKSsrU1lZme3rgoICxcXFKT8/X0FBQY36MxihrLJKfZ9arqKySi2+Z5ASzyxcDAAAXENBQYGCg4Pr1F2c6o5dSUmJzObakT08qh8YuFA/9fHxUVBQUK2XK/Hx9NCVXcIlSd8xHAsAgFsztNgVFRUpNTVVqampkqRDhw4pNTVVR48elSTNnDlTEydOtJ0/ZswYffbZZ5o3b54OHjyotWvX6r777tOAAQMUHR1txI/gEEYyzw4AAMjg5U42b96s4cOH276eMWOGJGnSpElasGCB0tPTbSVPkiZPnqzCwkLNmTNHf/rTn9SyZUtdddVVbrvcSY1hXSLkaTbpQFaRDmYXqX14C6MjAQAAAzjMHLvmUp9xamdyx9s/avX+HM0c1VV/uLKD0XEAAEAjcdk5drgw2y4UDMcCAOC2KHYuYkS36mK39egpZReWXeRsAADgiih2LiK6pZ8uiwmW1Sqt2M1dOwAA3BHFzoXwdCwAAO6NYudCrulRXexWH8hRcVmlwWkAAEBzo9i5kC6RgWoT6q/ySotW7882Og4AAGhmFDsXYjKZfn06difDsQAAuBuKnYupmWe3Yk+WKqssBqcBAADNiWLnYvq2DVGIv5fyT1do4+Fco+MAAIBmRLFzMZ4eZl3djadjAQBwRxQ7F3T2PDs32zEOAAC3RrFzQUM7hcvXy6zjeae1O73Q6DgAAKCZUOxckJ+3h67oGC5J+m5XhsFpAABAc6HYuaiRPZhnBwCAu6HYuairu0bIbJJ2nijQsVMlRscBAADNgGLnolq18FG/tqGSpOXctQMAwC1Q7FyY7elYih0AAG6BYufCaordj4dylV9SYXAaAADQ1Ch2Liw+LECdI1uoymLV93u5awcAgKuj2Lm4kd1bS+LpWAAA3AHFzsXVDMeu3Jut0ooqg9MAAICmRLFzcZfFBKt1kK9Kyqu0/peTRscBAABNiGLn4sxmk0Z0j5DELhQAALg6ip0b+HWeXZYsFqvBaQAAQFOh2LmBy9u3UqCPp3KKyrQtLc/oOAAAoIlQ7NyAt6dZw7pWD8fydCwAAK6LYucmft2Fgnl2AAC4KoqdmxjWJVxeHiYdzC7Wgawio+MAAIAmQLFzE0G+Xrq8fStJDMcCAOCqKHZuZGSPmqdjGY4FAMAVUezcyDXdqufZbUvLU1ZhqcFpAABAY6PYuZHWwb5KiA2W1Sqt2J1ldBwAANDIKHZuxvZ07E6GYwEAcDUUOzdTM89u7S8nVVRWaXAaAADQmCh2bqZTRAu1beWv8kqLUvZlGx0HAAA0IoqdmzGZTBp5ZjiWZU8AAHAthha7lJQUjRkzRtHR0TKZTFqyZMlFrykrK9Mjjzyitm3bysfHR/Hx8XrnnXeaPqwLuaZ79XDsit2ZqqiyGJwGAAA0Fk8jP7y4uFgJCQm68847ddNNN9XpmltuuUWZmZl6++231bFjR6Wnp8tioZzUR9+2IQoN8FZucbk2HcrVoI5hRkcCAACNwNBiN2rUKI0aNarO53/zzTdatWqVDh48qNDQUElSfHx8E6VzXR5mk67uGqFPthzTd7syKXYAALgIp5pjt3TpUvXr10/PP/+8YmJi1LlzZ/35z3/W6dOnL3hNWVmZCgoKar1w9i4UmbJarQanAQAAjcHQO3b1dfDgQa1Zs0a+vr5avHixcnJydM899+jkyZOaP3/+ea9JTk7WE0880cxJHd8VHcPk62XW8bzT2nmiQD1jgo2OBAAALpFT3bGzWCwymUx6//33NWDAAI0ePVovv/yy/vWvf13wrt3MmTOVn59ve6WlpTVzasfk5+2hoZ3CJfF0LAAArsKpil1UVJRiYmIUHPzr3aVu3brJarXq2LFj573Gx8dHQUFBtV6oZtuFgmIHAIBLcKpiN3jwYJ04cUJFRUW2Y/v27ZPZbFZsbKyByZzT1d0iZTZJu9MLlJZbYnQcAABwiQwtdkVFRUpNTVVqaqok6dChQ0pNTdXRo0clVQ+jTpw40Xb++PHj1apVK02ZMkW7du1SSkqK/vKXv+jOO++Un5+fET+CUwsN8Fa/+OqnixmOBQDA+Rla7DZv3qzExEQlJiZKkmbMmKHExETNmjVLkpSenm4reZLUokULLVu2THl5eerXr58mTJigMWPG6JVXXjEkvytgFwoAAFyHyepma10UFBQoODhY+fn5zLeTdPRkiYa+8IM8zCZt+fsItfT3NjoSAAA4S326i1PNsUPja9PKX11bB6rKYtX3e7KMjgMAAC4BxQ6/Ph27k+FYAACcGcUOGtm9eheKlP3ZKq2oMjgNAABoKIod1DMmSFHBviopr9LaAzlGxwEAAA1EsYNMJpNtOJanYwEAcF4UO0j6dZ7d8t2ZqrK41YPSAAC4DIodJEkD27VSoK+ncorKlZp2yug4AACgASh2kCR5e5o1vEuEJPaOBQDAWVHsYDOyx5l5dix7AgCAU6LYwebKzuHy8jDpYE6xDmQVGR0HAADUE8UONoG+XhrUIUyS9N2uDIPTAACA+qLYoRaWPQEAwHlR7FBLTbHbdjRPWQWlBqcBAAD1QbFDLZFBvkqIaylJWr47y9gwAACgXih2OMfIM3ftmGcHAIBzodjhHDXFbt2BkyoqqzQ4DQAAqCuKHc7RMaKF2oUFqLzKolV7s42OAwAA6ohih3OYTKazno5lOBYAAGdBscN51QzHfr8nSxVVFoPTAACAuqDY4bwS24SoVYC3CkortfFQrtFxAABAHVDscF4eZpNGdDvzdOxOhmMBAHAGFDtc0Nm7UFitVoPTAACAi6HY4YKu6BQmPy8Pncgv1c4TBUbHAQAAF0GxwwX5enloaOcwSdJ37B0LAIDDo9jBrpHdW0tinh0AAM6AYge7ruoaIQ+zSXsyCpWWW2J0HAAAYAfFDnaFBHirf3yIJIZjAQBwdBQ7XNQ1Z4Zj2YUCAADHRrHDRdXsQrHxUK5OFZcbnAYAAFwIxQ4XFRfqr66tA2WxVm8xBgAAHBPFDnUysseZp2MZjgUAwGFR7FAnNcOxKftyVFpRZXAaAABwPhQ71EmP6CBFB/vqdEWV1uzPMToOAAA4jwYVu7S0NB07dsz29caNG/XAAw/ozTffbLRgcCwmk6nW3rEAAMDxNKjYjR8/Xj/88IMkKSMjQ9dcc402btyoRx55RE8++WSjBoTjqJlnt3x3pqosVoPTAACA/9agYrdjxw4NGDBAkvTxxx+rZ8+eWrdund5//30tWLCgzt8nJSVFY8aMUXR0tEwmk5YsWVLna9euXStPT0/17t27fuHRYAPahSrI11Mni8u17egpo+MAAID/0qBiV1FRIR8fH0nS8uXLdcMNN0iSunbtqvT09Dp/n+LiYiUkJGju3Ln1+vy8vDxNnDhRV199db2uw6Xx8jDrqq4RktiFAgAAR9SgYtejRw+9/vrrWr16tZYtW6brrrtOknTixAm1atWqzt9n1KhR+sc//qEbb7yxXp8/depUjR8/XklJSfW6DpeuZheK73ZmyGplOBYAAEfSoGL33HPP6Y033tCwYcN0++23KyEhQZK0dOlS2xBtU5k/f74OHjyoxx57rE7nl5WVqaCgoNYLDXdll3B5e5h1+GSJDmQVGR0HAACcxbMhFw0bNkw5OTkqKChQSEiI7fjdd98tf3//Rgv33/bv36+HH35Yq1evlqdn3aInJyfriSeeaLJM7qaFj6cGdWyllXuz9d2uTHWKDDQ6EgAAOKNBd+xOnz6tsrIyW6k7cuSIZs+erb179yoiIqJRA9aoqqrS+PHj9cQTT6hz5851vm7mzJnKz8+3vdLS0poknzsZWTMcyzw7AAAcSoOK3W9+8xu9++67kqofZBg4cKBeeukljR07VvPmzWvUgDUKCwu1efNmTZ8+XZ6envL09NSTTz6pn376SZ6envr+++/Pe52Pj4+CgoJqvXBpRnSrLu8/peXp6MkSg9MAAIAaDSp2W7du1ZAhQyRJixYtUmRkpI4cOaJ3331Xr7zySqMGrBEUFKTt27crNTXV9po6daq6dOmi1NRUDRw4sEk+F+eKCPLV5e1DJUl3/3uzCksrDE4EAACkBs6xKykpUWBg9dyq7777TjfddJPMZrMuv/xyHTlypM7fp6ioSAcOHLB9fejQIaWmpio0NFRt2rTRzJkzdfz4cb377rsym83q2bNnresjIiLk6+t7znE0vRd/m6AbX1unPRmFuuf9rXpncn95ebBDHQAARmrQv8QdO3bUkiVLlJaWpm+//VYjR46UJGVlZdVrqHPz5s1KTExUYmKiJGnGjBlKTEzUrFmzJEnp6ek6evRoQyKiicWG+OudSf3l5+Wh1ftz9Mji7Sx/AgCAwUzWBvxrvGjRIo0fP15VVVW66qqrtGzZMknVT6CmpKTo66+/bvSgjaWgoEDBwcHKz89nvl0jWLE7U3e9u1kWq/Snazrr3qs7GR0JAACXUp/u0qBiJ1XvEZuenq6EhASZzdU3/jZu3KigoCB17dq1Id+yWVDsGt+/NxzRo0t2SJL+eWuCbkyMNTgRAACuoz7dpUFz7CSpdevWat26tY4dOyZJio2NbfLFieGY7ri8rY7lluiNlIP666KfFRnkq0EdwoyOBQCA22nQHDuLxaInn3xSwcHBatu2rdq2bauWLVvqqaeeksViaeyMcAIPXddV1/eKUkWVVX/49xbtzyw0OhIAAG6nQcXukUce0Zw5c/Tss89q27Zt2rZtm5555hm9+uqrevTRRxs7I5yA2WzSS79NUL+2ISosrdTk+ZuUVVhqdCwAANxKg+bYRUdH6/XXX9cNN9xQ6/jnn3+ue+65R8ePH2+0gI2NOXZN61RxuW6at06Hcop1WUywPrz7cgX4NHjEHwAAt1ef7tKgO3a5ubnnfUCia9euys3Nbci3hIsICfDW/Mn9FRrgre3H83XfB9tUWcXwPAAAzaFBxS4hIUFz5sw55/icOXPUq1evSw4F5xYfFqC3JvaTj6dZK/Zk6Yn/7GKNOwAAmkGDxsief/55XX/99Vq+fLmSkpIkSevXr1daWpq++uqrRg0I59S3bYhm39pb9yzcqn9vOKK4UD/dPbSD0bEAAHBpDbpjd+WVV2rfvn268cYblZeXp7y8PN10003auXOn/v3vfzd2RjipUZdF6ZHR3SRJz3y1R1/+nG5wIgAAXFuDFyg+n59++kl9+vRRVVVVY33LRsfDE83LarXq8aU79a/1R+TtadYHdw1U37ahRscCAMBpNPnDE0BdmUwmzRrTQyO6Raq80qLf/2uzDuUUGx0LAACXRLFDk/Mwm/TK7b3VKzZYp0oqNGX+RuUWlxsdCwAAl0OxQ7Pw9/bU25P6KzbET4dPluj3/9qk0grHHbIHAMAZ1eup2Jtuusnu+3l5eZeSBS4uPNBHC6b0102vrdPWo3l68KNUzR3fR2azyehoAAC4hHrdsQsODrb7atu2rSZOnNhUWeECOkYE6s2J/eTtYdbXOzKU/PVuoyMBAOAyGvWpWGfAU7GO4fPU47r/w1RJ0pO/6aGJSfGG5gEAwFHxVCwc3m96x+gv13aRJD2+dKeW78o0OBEAAM6PYgfD3DOsg27rHyeLVbr3g236+Vie0ZEAAHBqFDsYxmQy6amxPTW0c7hOV1TpzgWblZZbYnQsAACcFsUOhvLyMGvu+ER1bR2onKIyTVmwSfklFUbHAgDAKVHsYLhAXy/Nn9JfrYN8dSCrSH94b7PKKlnjDgCA+qLYwSFEBftp/pT+auHjqQ0Hc/Xwp9vlZg9sAwBwySh2cBjdooL02oQ+8jCbtHjbcb28bJ/RkQAAcCoUOziUoZ3DlXzjZZKkV78/oI83pRmcCAAA50Gxg8O5pX+c7r2qoyRp5uLtStmXbXAiAACcA8UODmnGNZ11Y2KMqixW3fP+Vu06UWB0JAAAHB7FDg7JZDLpuXG9dHn7UBWVVerOBZuUnn/a6FgAADg0ih0clrenWW/8bz91jGihjIJSTZm/SYWlrHEHAMCFUOzg0IL9vTR/cn+FtfDRnoxC3fP+VlVUWYyOBQCAQ6LYweHFhfrrncn95OflodX7c/T3xTtY4w4AgPOg2MEp9IptqVdvT5TZJH20OU1zfzhgdCQAABwOxQ5OY0T3SD1+Qw9J0ovf7dOSbccNTgQAgGOh2MGpTEyK111D2kmS/rLoJ204eNLgRAAAOA6KHZzOzFHdNPqy1qqosurudzfrQFah0ZEAAHAIFDs4HbPZpJdv6a0+bVqqoLRSk+dvUnZhmdGxAAAwnKHFLiUlRWPGjFF0dLRMJpOWLFli9/zPPvtM11xzjcLDwxUUFKSkpCR9++23zRMWDsXXy0P/N6m/4lv569ip0/rdvzappLzS6FgAABjK0GJXXFyshIQEzZ07t07np6Sk6JprrtFXX32lLVu2aPjw4RozZoy2bdvWxEnhiEIDvLVgygCF+Hvp52P5uu+DbaqysAwKAMB9mawOsiCYyWTS4sWLNXbs2Hpd16NHD916662aNWtWnc4vKChQcHCw8vPzFRQU1ICkcDRbjuTq9rd+VHmlRZOS2urxG3rIZDIZHQsAgEZRn+7i1HPsLBaLCgsLFRoaanQUGKhv21DNvrW3TCbpX+uP6O01h4yOBACAIZy62L344osqKirSLbfccsFzysrKVFBQUOsF1zP6sij9bVQ3SdLTX+3W19vTDU4EAEDzc9pit3DhQj3xxBP6+OOPFRERccHzkpOTFRwcbHvFxcU1Y0o0p98Paac7Lm8rq1V64KNUbTlyyuhIAAA0K6csdh9++KF+//vf6+OPP9aIESPsnjtz5kzl5+fbXmlpac2UEs3NZDLpsTHddXXXCJVVWnTXu5t1OKfY6FgAADQbpyt2H3zwgaZMmaIPPvhA119//UXP9/HxUVBQUK0XXJenh1mvjk/UZTHByi0u1+T5G5VbXG50LAAAmoWhxa6oqEipqalKTU2VJB06dEipqak6evSopOq7bRMnTrSdv3DhQk2cOFEvvfSSBg4cqIyMDGVkZCg/P9+I+HBQ/t6eentyP8W09NPhkyW6693NKq2oMjoWAABNztBit3nzZiUmJioxMVGSNGPGDCUmJtqWLklPT7eVPEl68803VVlZqWnTpikqKsr2uv/++w3JD8cVEeirBVP6K9DXU1uOnNKfPv5JFta4AwC4OIdZx665sI6de1n3S44mvbNRFVVW/WFoe80c3c3oSAAA1IvbrGMHXMygDmF6/uZekqQ3Ug7q3xuOGJwIAICmQ7GDy7sxMVZ/uqazJOmxz3doxe5MgxMBANA0KHZwC9Ov6qhb+8XJYpWmL9ym7cd44AYA4HoodnALJpNJ/7ixp4Z0CtPpiird+a9NOnaqxOhYAAA0Kood3IaXh1mvTeijrq0DlV1YpinzNyn/dIXRsQAAaDQUO7iVQF8vzZ/SX5FBPtqfVaSp/96i8kqL0bEAAGgUFDu4nahgP70zub8CvD20/uBJPfzpz3KzVX8AAC6KYge31CM6WK/9b195mE36bNtx/XPZPqMjAQBwySh2cFtXdg7X02N7SpJe+f6APt6UZnAiAAAuDcUObu22AW00bXgHSdLfFm/X6v3ZBicCAKDhKHZwe38e2UW/6R2tSotVf3xvq/ZkFBgdCQCABqHYwe2ZTCY9f3MvDWwXqqKySk2Zv0kZ+aVGxwIAoN4odoAkH08PvXlHP3UID1B6fqmmLNikorJKo2MBAFAvFDvgjGB/Ly2YMkBhLby1O71A097fqooq1rgDADgPih1wlrhQf709qb/8vDy0al+2Js/fqANZRUbHAgCgTih2wH9JiGupV29PlLeHWWsPnNR1s1P09Je7VFjK9mMAAMdGsQPOY0T3SH334FBd3TVClRar3lp9SFe9tEqfbjkmi4VdKgAAjslkdbO9lAoKChQcHKz8/HwFBQUZHQdO4Ic9WXryi106lFMsSerTpqUev6GHesW2NDYYAMAt1Ke7UOyAOiirrNI7aw7r1e/3q6S8SiaTdGu/OP3l2i5q1cLH6HgAABdGsbODYodLkVlQqme/3qPF245LkgJ9PTXjms664/K28vRgZgMAoPFR7Oyg2KExbD6cq1mf79Su9OpdKrpEBuqxG7prUIcwg5MBAFwNxc4Oih0aS5XFqg83HdUL3+5VXkn1E7PXXxalv13fTTEt/QxOBwBwFRQ7Oyh2aGx5JeV6edk+vbfhiCxWydfLrHuGddTdQ9vL18vD6HgAACdHsbODYoemsutEgR7/z05tPJQrSYoL9dPfr++ukd0jZTKZDE4HAHBWFDs7KHZoSlarVf/5OV3PfLlbGQWlkqQhncL02Jge6hjRwuB0AABnRLGzg2KH5lBcVqnXVh7QWymHVF5lkafZpCmD43Xf1Z0U6OtldDwAgBOh2NlBsUNzOnKyWE99sUvLd2dJksJa+OjhUV11U2KMzGaGZwEAF0exs4NiByP8sDdLT/7n190rEtu01BPsXgEAqAOKnR0UOxilvNKid9Ye0qsr9qv4rN0r/nxtF4WxewUA4AIodnZQ7GA0dq8AANQHxc4Oih0cxebDuXps6U7tPFG9e0XnyBZ6/IYe7F4BAKiFYmcHxQ6OpGb3ihe/3atT7F4BADgPip0dFDs4InavAABcCMXODoodHNnu9AI9tvTX3StiQ/z06P+wewUAuDOKnR0UOzg6dq8AAJytPt3F0EfwUlJSNGbMGEVHR8tkMmnJkiUXvWblypXq06ePfHx81LFjRy1YsKDJcwLNyWQy6YaEaH3/5ys1fXhHeXuYtXp/jq6bnaKnv9ylwtIKoyMCAByUocWuuLhYCQkJmjt3bp3OP3TokK6//noNHz5cqampeuCBB/T73/9e3377bRMnBZqfv7en/nxtFy2bMVQjukWo0mLVW6sPafiLq7RoyzFZLG51sx0AUAcOMxRrMpm0ePFijR079oLnPPTQQ/ryyy+1Y8cO27HbbrtNeXl5+uabb+r0OQzFwln9sDdLT/1nlw6yewUAuBWnGYqtr/Xr12vEiBG1jl177bVav369QYmA5jO8S4S+eWCoZo7qqgBvD207mqffzF2rhxb9rJyiMqPjAQAcgFMVu4yMDEVGRtY6FhkZqYKCAp0+ffq815SVlamgoKDWC3BW3p5m/eHKDvr+z8N0U2KMrFbpo81pGv7iSs1fe0gVVRajIwIADORUxa4hkpOTFRwcbHvFxcUZHQm4ZJFBvnr51t5aNDVJPaKDVFhaqSf+s0vXv7Ja6w7kGB0PAGAQpyp2rVu3VmZmZq1jmZmZCgoKkp/f+VfpnzlzpvLz822vtLS05ogKNIt+8aFaOv0KPXPjZQrx99K+zCKN/78fdc/7W3Q87/x3sQEArsupil1SUpJWrFhR69iyZcuUlJR0wWt8fHwUFBRU6wW4Eg+zSeMHttEPfx6mSUltZTZJX23P0NUvrdT/W75fpRVVRkcEADQTQ4tdUVGRUlNTlZqaKql6OZPU1FQdPXpUUvXdtokTJ9rOnzp1qg4ePKi//vWv2rNnj1577TV9/PHHevDBB42IDziUlv7eeuI3PfXlfUM0sF2oSiss+ufyfRrx8ip9syNDDvIAPACgCRm63MnKlSs1fPjwc45PmjRJCxYs0OTJk3X48GGtXLmy1jUPPvigdu3apdjYWD366KOaPHlynT+T5U7gDqxWq774OV3PfLVb6fln717RXR0jAg1OBwCoD7YUs4NiB3dSUl6p1374RW+mHFR5lUWeZpMmD4rX/SM6KdDXy+h4AIA6oNjZQbGDOzpyslhPfbFby3dXP3wU1sJHD13XReP6xMpsNhmcDgBgD8XODood3NnKvVl68qzdK3rFBmv68I4a0S2SggcADopiZwfFDu6uvNKi+WsP6ZUV+1VcXv3EbKeIFpp6ZQfd0DtaXh5O9bA8ALg8ip0dFDugWk5Rmd5Zc0j/Xn9EhWWVkqSYln66a0g73dq/jfy8PQxOCACQKHZ2UeyA2gpKK/T+hqN6e80h256zoQHemjIoXhOT4hXsz0MWAGAkip0dFDvg/EorqrRoyzG9mXJQR3NLJEkB3h4aP7CNfj+kvSKDfA1OCADuiWJnB8UOsK+yyqIvt6dr3spftCejUJLk7WHWTX1i9IcrO6hdWIDBCQHAvVDs7KDYAXVjtVq1cm+25q38RRsP50qSTCZpdM8o/XFYB/WMCTY4IQC4B4qdHRQ7oP42H87VvJW/aMWeLNuxIZ3CdM+wjrq8fahMJpZKAYCmQrGzg2IHNNyejAK9vvIX/efndFVZqv/T0Tuupe4Z1oG18ACgiVDs7KDYAZcuLbdEb6Yc1Meb01RWaZHEWngA0FQodnZQ7IDGk11YpvlrWQsPAJoSxc4Oih3Q+FgLDwCaDsXODood0HRYCw8AGh/Fzg6KHdD0Kqss+mpHhuat/EW70wsksRYeADQUxc4Oih3QfKxWq1buy9a8H1gLDwAaimJnB8UOMAZr4QFAw1Ds7KDYAcZiLTwAqB+KnR0UO8AxpOWW6K3VB/XRJtbCAwB7KHZ2UOwAx5JdWKYF6w7p3fVHVFj661p4vx/STrexFh4AUOzsodgBjqmgtEILfzyq/1tdey28yYPiNYm18AC4MYqdHRQ7wLGVVlTp063H9Maqc9fC+90V7dU6mLXwALgXip0dFDvAOdhbC+/uoe3VPryFwQkBoHlQ7Oyg2AHOhbXwALg7ip0dFDvAeV1oLbw/DuugpPatWAsPgEui2NlBsQOc34XWwvvjsA66hrXwALgYip0dFDvAdZxvLbyOZ9bC+w1r4QFwERQ7Oyh2gOs531p40cG+umtoe93SL04BPp4GJwSAhqPY2UGxA1zX+dbCC/T11K394jRpULziQv0NTggA9Uexs4NiB7i+mrXw/m/1IR3KKZZU/STtiG6RmjIoXkkdeNACgPOg2NlBsQPch8Vi1ap92Zq/7rBS9mXbjneJDNTkwfEa2zuGLcsAODyKnR0UO8A9Hcgq0r/WHdanW4+ppLxKktTS30u39W+jO5LaKqaln8EJAeD8KHZ2UOwA95Z/ukKfbE7Tv9YfVlruaUmSh9mka3tEavKgduofH8IwLQCHQrGzg2IHQJKqLFat2J2pBesOa90vJ23He0QHafKgeI1JiJavF8O0AIxHsbODYgfgv+3NKNSCdYe0eNtxlVZUr4fXKsBb4we20f9e3laRQb4GJwTgzih2dlDsAFzIqeJyfbQ5Te+uO6wT+aWSJE+zSaMui9KUwfFKjGvJMC2AZlef7uIQy7LPnTtX8fHx8vX11cCBA7Vx40a758+ePVtdunSRn5+f4uLi9OCDD6q0tLSZ0gJwVSEB3pp6ZQel/HW45k3oowHxoaq0WPWfn07optfWaezctVqy7bjKz+xyAQCOxvA7dh999JEmTpyo119/XQMHDtTs2bP1ySefaO/evYqIiDjn/IULF+rOO+/UO++8o0GDBmnfvn2aPHmybrvtNr388ssX/Tzu2AGojx3H87Vg3WEtTT2h8qrqQhce6KMJA9towsC2Cg/0MTghAFfnVEOxAwcOVP/+/TVnzhxJksViUVxcnO699149/PDD55w/ffp07d69WytWrLAd+9Of/qQff/xRa9asuejnUewANEROUZk+3HhU/95wRJkF1btaeHuY9T+9ojR5cLx6xbY0NiAAl+U0Q7Hl5eXasmWLRowYYTtmNps1YsQIrV+//rzXDBo0SFu2bLEN1x48eFBfffWVRo8efd7zy8rKVFBQUOsFAPUV1sJH06/qpDUPXaVXbk9UnzYtVV5l0WfbjuuGOWs1bt46/eenE6qoYpgWgHEM3Rk7JydHVVVVioyMrHU8MjJSe/bsOe8148ePV05Ojq644gpZrVZVVlZq6tSp+tvf/nbe85OTk/XEE080enYA7snLw6wbEqJ1Q0K0fkrL04J1h/XFzye05cgpbTlySq2DfHVHUlvdPqCNQgO8jY4LwM04xMMT9bFy5Uo988wzeu2117R161Z99tln+vLLL/XUU0+d9/yZM2cqPz/f9kpLS2vmxABcVUJcS/3z1t5a+9BVuv/qTgpr4a2MglK98O1eXZ68Qn9d9JN2nWCUAEDzMXSOXXl5ufz9/bVo0SKNHTvWdnzSpEnKy8vT559/fs41Q4YM0eWXX64XXnjBduy9997T3XffraKiIpnN9rsqc+wANJWyyip9+XO65q89rO3H823HB7YL1ZTB8RrRLVKeHk73/08DMJjTzLHz9vZW3759az0IYbFYtGLFCiUlJZ33mpKSknPKm4dH9erwbrYkHwAH4+PpoZv6xGrp9MH69I9J+p9eUfIwm/TjoVxNfW+rrnxhpd5Y9YvySsqNjgrARRk6x06SZsyYoUmTJqlfv34aMGCAZs+ereLiYk2ZMkWSNHHiRMXExCg5OVmSNGbMGL388stKTEzUwIEDdeDAAT366KMaM2aMreABgJFMJpP6tg1V37ahSs8/rfc2HNHCH4/qeN5pJX+9R/9cvk839YnV5EHx6hwZaHRcAC7E8GJ36623Kjs7W7NmzVJGRoZ69+6tb775xvZAxdGjR2vdofv73/8uk8mkv//97zp+/LjCw8M1ZswYPf3000b9CABwQVHBfvrLtV1171WdtDT1hN5Ze0h7Mgq18MejWvjjUQ3u2EpTBrXT8K4R8jCzqwWAS2P4OnbNjTl2AIxktVr146FcLVh7WN/typDlzH+B24T6a9KgeP22X6yCfL2MDQnAoTjVAsXNjWIHwFEcO1Wif68/og82HlVBaaUkyd/bQzf3jdWkQfHqEN7C4IQAHAHFzg6KHQBHU1JeqcXbjmvB2sPan1VkO35l53BNGRyvoZ3CZWaYFnBbFDs7KHYAHJXVatXaAye1YN0hrdiTpZr/OrcPC9CkQfEa1zdWLXwMnxoNoJlR7Oyg2AFwBkdOFutf647ok81pKiyrHqYN9PHUb/vFadKgtmrbKsDghACaC8XODoodAGdSVFapz7Ye04K1h3Uwp1iSZDJJV3eN0ORB7TS4YyuZTAzTAq6MYmcHxQ6AM7JYrErZn635aw9r1b5s23EvD5N8PT3k4+UhH0+zfL3M8vH0kK+XWb62Yx61/u7jaZaPl0ftcz095HP2n14etY7VnOvjZZaPp5kyCTSj+nQXJmsAgBMwm00a1iVCw7pE6JfsIr277rA+2XJMJeVVqqiqtA3XNpezS6Lvf5VE259nv//fxbHmeltx/LVwnv09g/y8WP4FqAfu2AGAkyqtqFJucblKK6pUVmlRaUWVSissKqv89c+yCotKa/48+zzbexaVVVSptPLX98tqfb9f/24x4F8Lk0ka3CFM4/rG6NoereXvzf0IuB/u2AGAG/D18lB0S79m+Syr1apKi/W85bG04r/K4DlF8qxyWevPX6+5UDEtrbBozYEcrTmQowDvHRp9WZRu7hur/vGhLAEDnAd37AAADistt0SfbT2uT7ce09HcEtvxuFA/3ZQYq3F9YtWmlb+BCYGmx8MTdlDsAMD5WK1WbTp8Sp9uOaYvt6er6Kw5hQPahermPrEa3SuKdf7gkih2dlDsAMC5nS6v0rc7M/Tp1mNacyDHtpCzr5dZo3pGaVyfWCV1aCUPhmrhIih2dlDsAMB1pOef1uJtx7VoyzEdzC62HY8K9tWNiTEa1zeWPXfh9Ch2dlDsAMD1WK1Wpabl6dOtx7Q09YQKSn8dqk1s01Lj+sRqTK9oBfuzdAqcD8XODoodALi20ooqrdidpU+3HtOqfdmqOrNOi7enWdd0j9TNfWI1pFOYPD3MBicF6oZiZwfFDgDcR1ZhqT7fdkKfbj2mPRmFtuPhgT4a2zta4/rGqmtr/i2AY6PY2UGxAwD3Y7VatfNEgRZtOaalP51QbnG57b2eMUEa1ydWv+kdo9AAbwNTAudHsbODYgcA7q280qKVe6uHar/fk6WKqup/Bj3NJl3VNULj+sZqeJcIeXsyVAvHQLGzg2IHAKiRW1yupanH9enW49p+PN92PDTAWzckROvmvrHqER0kk4mlU2Acip0dFDsAwPnszSjUp1uPafG248ouLLMd7xIZqHF9YzQ2MUYRgb4GJoS7otjZQbEDANhTWWXR6v05WrT1mJbtylR5pUWS5GE2aWinMI3rG6sR3SLl6+VhcFK4C4qdHRQ7AEBd5ZdU6IvtJ7RoyzFtO5pnOx7k66kxCdVP1SbGtWSoFk2KYmcHxQ4A0BC/ZBfps63H9NnW40rPL7Udbx8eoHF9YnVTnxhFBfsZmBCuimJnB8UOAHApqixWrf/lpD7dekxf70hXaUX1UK3JJA3uEKZxfWN0XY8o+XkzVIvGQbGzg2IHAGgsRWWV+mp7uhZtOaaNh3Jtx1v4eGr0Za01rk+sBrQLZagWl4RiZwfFDgDQFI6eLNGnW4/ps23HlJZ72nY8LtRP4/rEalyfWMWF+huYEM6KYmcHxQ4A0JQsFqs2Hc7Vp1uP6cuf01VcXmV7b0C7UN3cJ1aje0WphY+ngSnhTCh2dlDsAADNpaS8Ut/uzNCnW45r7S85qvkX18/LQ9f1rB6q7dy6hUwyyWSSzCaTTKqer2cyVR+r/toks0m286Qz55553/Z3hnxdEsXODoodAMAIJ/JOa/G24/p0yzEdzClu0s8y1xRDVZc+2Qri2eWxdnH872IpnSmTZwql+aziaDv3rGKpC5TQYD8vXdExTMO6RKhHdJDMZspnfVHs7KDYAQCMZLVatS0tT59uOaYvt6cr/3SF3OVf4rAW3hraKVxXdgnXkE7hCg3wNjqSU6DY2UGxAwA4IqvVKqtVstb8XZLlzDGd9fea9y1WSVbJquq/11xj/a+/W2x/P3P9mWtqvtevn1HzfX59/6Kff/b3sZz/84/kFmvV3mytPZBTa76hySQlxLbUlZ3DNaxLuHrFtpQHd/POi2JnB8UOAIDmV15p0ZYjp7RyX5ZW7c3WnozCWu+H+HtpSKfqkje0c7jCWvgYlNTxUOzsoNgBAGC8jPxSrdqXpVX7srV6f44KSytrvX9ZTLCGdQnXlZ3D1TuupTw9zAYlNR7Fzg6KHQAAjqWiyqJtR/O0al+WVu7N1s4TBbXeD/L11JDO1SVvWOdwRQT5GpTUGBQ7Oyh2AAA4tqzCUqXsy9HKvVlavT9H+acrar3fPSpIV3apLnl92obIy8Xv5jldsZs7d65eeOEFZWRkKCEhQa+++qoGDBhwwfPz8vL0yCOP6LPPPlNubq7atm2r2bNna/To0Rf9LIodAADOo8piVWpanlbtrR62/fl4fq2niAN9PDW4Y1j1sG2XcEUF+xkXtok4VbH76KOPNHHiRL3++usaOHCgZs+erU8++UR79+5VRETEOeeXl5dr8ODBioiI0N/+9jfFxMToyJEjatmypRISEi76eRQ7AACc18miMq3eX303L2V/jnKLy2u93yUy0HY3r198qLw9nf9unlMVu4EDB6p///6aM2eOJMlisSguLk733nuvHn744XPOf/311/XCCy9oz5498vLyqvfnUewAAHANFotV24/na+XebK3al6XUtLwzy7BU8/f20KAO1XfzhnUJV2yIc+7V6zTFrry8XP7+/lq0aJHGjh1rOz5p0iTl5eXp888/P+ea0aNHKzQ0VP7+/vr8888VHh6u8ePH66GHHpKHh8c555eVlamsrMz2dUFBgeLi4ih2AAC4mFPF5Vp9IEer9mZr1b5s5RSV1Xq/Q3iAhnWJ0JWdwzWgXah8vc7tDY6oPsXO0B2Ic3JyVFVVpcjIyFrHIyMjtWfPnvNec/DgQX3//feaMGGCvvrqKx04cED33HOPKioq9Nhjj51zfnJysp544okmyQ8AABxHSIC3bkiI1g0J0bJYrNqVXqBV+7K1cm+Wth7N0y/Zxfol+5DeXnNIfl4eSurQyrZActtWAUbHbxSG3rE7ceKEYmJitG7dOiUlJdmO//Wvf9WqVav0448/nnNN586dVVpaqkOHDtnu0L388st64YUXlJ6efs753LEDAAD5pyu09kD13LxV+7KVWVD7bl58K//qu3ldwnV5u1by83acu3lOc8cuLCxMHh4eyszMrHU8MzNTrVu3Pu81UVFR8vLyqjXs2q1bN2VkZKi8vFze3rX3nfPx8ZGPD6tXAwDgzoL9vDT6siiNvixKVqtVezIKbXfzNh8+pcMnS7Rg3WEtWHdYPp5mDWz/69289mEBMpmcY7szQ4udt7e3+vbtqxUrVtjm2FksFq1YsULTp08/7zWDBw/WwoULZbFYZDZXP+myb98+RUVFnVPqAAAA/pvJZFK3qCB1iwrS1Cs7qLC0Qut+OVn9EMbeLJ3IL1XKvmyl7MvWU19IcaF+ZxZHjlBSh1YK8DG0Ptll+FOxH330kSZNmqQ33nhDAwYM0OzZs/Xxxx9rz549ioyM1MSJExUTE6Pk5GRJUlpamnr06KFJkybp3nvv1f79+3XnnXfqvvvu0yOPPHLRz+OpWAAAcCFWq1UHsorOPGmbrY2HclVeZbG97+1hVv92IRrWuXrYtlNEiya/m+c0Q7GSdOuttyo7O1uzZs1SRkaGevfurW+++cb2QMXRo0dtd+YkKS4uTt9++60efPBB9erVSzExMbr//vv10EMPGfUjAAAAF2EymdQpMlCdIgN119D2Ki6r1IaD1XfzVu7LUlruaa09cFJrD5zU01/tVkxLP92YGKM/X9vF6OiSHOCOXXPjjh0AAGgIq9WqQznFtrt5Gw6eVFmlRbf0i9XzN198k4SGcqo7dgAAAM7AZDKpfXgLtQ9voTuvaKfT5VXacOikwls4zkOaFDsAAIAG8PP20PAu525/aiTn30ANAAAAkih2AAAALoNiBwAA4CIodgAAAC6CYgcAAOAiKHYAAAAugmIHAADgIih2AAAALoJiBwAA4CIodgAAAC6CYgcAAOAiKHYAAAAugmIHAADgIih2AAAALoJiBwAA4CI8jQ7Q3KxWqySpoKDA4CQAAAAXV9NZajqMPW5X7AoLCyVJcXFxBicBAACou8LCQgUHB9s9x2StS/1zIRaLRSdOnFBgYKBMJlOTfU5BQYHi4uKUlpamoKCgJvscNB1+h86N35/z43fo/PgdNg6r1arCwkJFR0fLbLY/i87t7tiZzWbFxsY22+cFBQXxv8xOjt+hc+P35/z4HTo/foeX7mJ36mrw8AQAAICLoNgBAAC4CIpdE/Hx8dFjjz0mHx8fo6OggfgdOjd+f86P36Hz43fY/Nzu4QkAAABXxR07AAAAF0GxAwAAcBEUOwAAABdBsWsCc+fOVXx8vHx9fTVw4EBt3LjR6Eioo+TkZPXv31+BgYGKiIjQ2LFjtXfvXqNj4RI8++yzMplMeuCBB4yOgno4fvy4/vd//1etWrWSn5+fLrvsMm3evNnoWKijqqoqPfroo2rXrp38/PzUoUMHPfXUU3XaEguXhmLXyD766CPNmDFDjz32mLZu3aqEhARde+21ysrKMjoa6mDVqlWaNm2aNmzYoGXLlqmiokIjR45UcXGx0dHQAJs2bdIbb7yhXr16GR0F9XDq1CkNHjxYXl5e+vrrr7Vr1y699NJLCgkJMToa6ui5557TvHnzNGfOHO3evVvPPfecnn/+eb366qtGR3N5PBXbyAYOHKj+/ftrzpw5kqq3MIuLi9O9996rhx9+2OB0qK/s7GxFRERo1apVGjp0qNFxUA9FRUXq06ePXnvtNf3jH/9Q7969NXv2bKNjoQ4efvhhrV27VqtXrzY6Chrof/7nfxQZGam3337bdmzcuHHy8/PTe++9Z2Ay18cdu0ZUXl6uLVu2aMSIEbZjZrNZI0aM0Pr16w1MhobKz8+XJIWGhhqcBPU1bdo0XX/99bX+7xHOYenSperXr59++9vfKiIiQomJiXrrrbeMjoV6GDRokFasWKF9+/ZJkn766SetWbNGo0aNMjiZ63O7vWKbUk5OjqqqqhQZGVnreGRkpPbs2WNQKjSUxWLRAw88oMGDB6tnz55Gx0E9fPjhh9q6das2bdpkdBQ0wMGDBzVv3jzNmDFDf/vb37Rp0ybdd9998vb21qRJk4yOhzp4+OGHVVBQoK5du8rDw0NVVVV6+umnNWHCBKOjuTyKHXAB06ZN044dO7RmzRqjo6Ae0tLSdP/992vZsmXy9fU1Og4awGKxqF+/fnrmmWckSYmJidqxY4def/11ip2T+Pjjj/X+++9r4cKF6tGjh1JTU/XAAw8oOjqa32ETo9g1orCwMHl4eCgzM7PW8czMTLVu3dqgVGiI6dOn64svvlBKSopiY2ONjoN62LJli7KystSnTx/bsaqqKqWkpGjOnDkqKyuTh4eHgQlxMVFRUerevXutY926ddOnn35qUCLU11/+8hc9/PDDuu222yRJl112mY4cOaLk5GSKXRNjjl0j8vb2Vt++fbVixQrbMYvFohUrVigpKcnAZKgrq9Wq6dOna/Hixfr+++/Vrl07oyOhnq6++mpt375dqamptle/fv00YcIEpaamUuqcwODBg89ZZmjfvn1q27atQYlQXyUlJTKba1cMDw8PWSwWgxK5D+7YNbIZM2Zo0qRJ6tevnwYMGKDZs2eruLhYU6ZMMToa6mDatGlauHChPv/8cwUGBiojI0OSFBwcLD8/P4PToS4CAwPPmRMZEBCgVq1aMVfSSTz44IMaNGiQnnnmGd1yyy3auHGj3nzzTb355ptGR0MdjRkzRk8//bTatGmjHj16aNu2bXr55Zd15513Gh3N5bHcSROYM2eOXnjhBWVkZKh379565ZVXNHDgQKNjoQ5MJtN5j8+fP1+TJ09u3jBoNMOGDWO5EyfzxRdfaObMmdq/f7/atWunGTNm6K677jI6FuqosLBQjz76qBYvXqysrCxFR0fr9ttv16xZs+Tt7W10PJdGsQMAAHARzLEDAABwERQ7AAAAF0GxAwAAcBEUOwAAABdBsQMAAHARFDsAAAAXQbEDAABwERQ7AAAAF0GxAwCDmUwmLVmyxOgYAFwAxQ6AW5s8ebJMJtM5r+uuu87oaABQb55GBwAAo1133XWaP39+rWM+Pj4GpQGAhuOOHQC35+Pjo9atW9d6hYSESKoeJp03b55GjRolPz8/tW/fXosWLap1/fbt23XVVVfJz89PrVq10t13362ioqJa57zzzjvq0aOHfHx8FBUVpenTp9d6PycnRzfeeKP8/f3VqVMnLV26tGl/aAAuiWIHABfx6KOPaty4cfrpp580YcIE3Xbbbdq9e7ckqbi4WNdee61CQkK0adMmffLJJ1q+fHmt4jZv3jxNmzZNd999t7Zv366lS5eqY8eOtT7jiSee0C233KKff/5Zo0eP1oQJE5Sbm9usPycAF2AFADc2adIkq4eHhzUgIKDW6+mnn7ZarVarJOvUqVNrXTNw4EDrH//4R6vVarW++eab1pCQEGtRUZHt/S+//NJqNputGRkZVqvVao2OjrY+8sgjF8wgyfr3v//d9nVRUZFVkvXrr79utJ8TgHtgjh0Atzd8+HDNmzev1rHQ0FDb35OSkmq9l5SUpNTUVEnS7t27lZCQoICAANv7gwcPlsVi0d69e2UymXTixAldffXVdjP06tXL9veAgAAFBQUpKyuroT8SADdFsQPg9gICAs4ZGm0sfn5+dTrPy8ur1tcmk0kWi6UpIgFwYcyxA4CL2LBhwzlfd+vWTZLUrVs3/fTTTyouLra9v3btWpnNZnXp0kWBgYGKj4/XihUrmjUzAPfEHTsAbq+srEwZGRm1jnl6eiosLEyS9Mknn6hfv3664oor9P7772vjxo16++23JUkTJkzQY489pkmTJunxxx9Xdna27r33Xt1xxx2KjIyUJD3++OOaOnWqIiIiNGrUKBUWFmrt2rW69957m/cHBeDyKHYA3N4333yjqKioWse6dOmiPXv2SKp+YvXDDz/UPffco6ioKH3wwQfq3r27JMnf31/ffvut7r//fvXv31/+/v4aN26cXn75Zdv3mjRpkkpLS/XPf/5Tf/7znxUWFqabb765+X5AAG7DZLVarUaHAABHZTKZtHjxYo0dO9boKABwUcyxAwAAcBEUOwAAABfBHDsAsIPZKgCcCXfsAAAAXATFDgAAwEVQ7AAAAFwExQ4AAMBFUOwAAABcBMUOAADARVDsAAAAXATFDgAAwEVQ7AAAAFzE/wcLnGEIugaE3AAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["# TRAINING\n","\n","# Training parameters\n","nb_epochs = 10 # is quick, it won't have converged.\n","# Note: An epoch is one complete pass through the entire training dataset.\n","# During an epoch, the neural network processes every example in the dataset once.\n","# Completing an epoch means that every data point has been used for calculating the loss and updating the model parameters.\n","# Multiple epochs are usually required for the network to converge to an optimal set of parameters.\n","lr = 0.01 # learning rate\n","\n","# Generate the training data\n","ipds, spikes = random_ipd_input_signal(num_samples)\n","\n","# Initialise a weight matrices\n","W1, W2 = init_weight_matrices()\n","\n","# Optimiser and loss function\n","optimizer = torch.optim.Adam([W1, W2], lr=lr)\n","log_softmax_fn = nn.LogSoftmax(dim=1)\n","loss_fn = nn.NLLLoss()\n","\n","print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n","\n","loss_hist = []\n","for e in range(nb_epochs):\n"," local_loss = []\n"," for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n"," # Run network\n"," output = snn(spike_batch, W1, W2)\n","\n"," # Compute cross entropy loss\n"," m = torch.sum(output, 1)*0.01 # Agregation fuction: Sum across time dimension. Note: We want loss for epoch 1 to be about -np.log(1/num_classes), multiply m by a constant to get this\n"," loss = loss_fn(log_softmax_fn(m), ipd_batch)\n"," local_loss.append(loss.item())\n","\n"," # The softmax function transforms the output of a neural network's final layer into a probability\n"," # distribution over multiple classes in such a way that increasing the score of one class\n"," # decreases the probabilities of the other classes. It does this by exponentiating each logit\n"," # and then normalizing these values so that they sum to 1. This is important because it ensures that\n"," # the predicted values for each class sum up to 1.0. This probability distribution allows us to\n"," # interpret the network's output as the likelihood of each class being the correct class.\n"," # Training Objective: The training process aims to increase the probability of the correct class.\n"," # As the model updates its weights to increase the probability (and hence the log probability) of the\n"," # correct class, the softmax function inherently decreases the probabilities of the other classes due\n"," # to the normalization step.\n"," # Using it with the negative log likelihood loss encourages the model to increase the log probability\n"," # of the correct class.\n"," # Interpretability: The softmax function's output can be interpreted as class probabilities, which is\n"," # valuable not only for making predictions but also for understanding the model's confidence in those\n"," # predictions. This can be useful for post-processing or decision-making based on the network's output\n"," # probabilities.\n","\n"," # Update gradients\n"," optimizer.zero_grad()\n"," loss.backward()\n"," optimizer.step()\n","\n"," loss_hist.append(np.mean(local_loss))\n"," print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n","\n","# Plot the loss function over time\n","plt.plot(loss_hist)\n","plt.xlabel('Epoch')\n","plt.ylabel('Loss')\n","plt.tight_layout()\n"]},{"cell_type":"code","source":["# ANALYSIS\n","\n","print(f\"Chance accuracy level: {100*1/num_classes:.1f}%\")\n","run_func = lambda x: snn(x, W1, W2)\n","results_Train = analyse(ipds, spikes, 'Train', run=run_func, plot_analysis=1)\n","ipds_test, spikes_test = random_ipd_input_signal(batch_size*n_testing_batches)\n","results_Train = analyse(ipds_test, spikes_test, 'Test', run=run_func, plot_analysis=1)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":637},"id":"YYmxcDagJkcw","outputId":"e043b59c-f89d-4c58-bd9b-75decb7c59e2"},"id":"YYmxcDagJkcw","execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 80.2%\n","Train absolute error: 5.0 deg\n","\n","Test classifier accuracy: 60.7%\n","Test absolute error: 11.1 deg\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUbElEQVR4nO3deVgVdf//8dcB4QAqi8imIoIWaq7pHaHmUhSaVla35Z0mqFmWZS7l0qJIKabl1te1O3Ftz7LMNDXN27QyuzUxJU3JUoFyAY0Ehfn90c9zdwITlWHg+Hxc17ku5jOfM/P6cJSZ95nNZhiGIQAAAAAAUObcrA4AAAAAAICrougGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGKrHExETVq1fP6hgAAFwx9u7dq1tuuUV+fn6y2Wx6//33y3T5GRkZstlsWrBgQZku1xXUq1dPiYmJVscALhpFN2ACm81WqteGDRusjgoAQKXzww8/6KGHHlJUVJS8vLzk6+urtm3bavr06fr9999NXXdCQoJ27typ8ePHa/HixWrdurWp63NF3333nZKSkpSRkWF1FKBc2AzDMKwOAbiaJUuWOE0vWrRIa9as0eLFi53ab775ZoWEhFzyes6cOaOioiLZ7fZLXgYAAJXJRx99pB49eshut6tPnz5q0qSJCgoKtGnTJr377rtKTEzUvHnzTFn377//Lh8fHz399NN6/vnnTVmHYRjKz8+Xh4eH3N3dTVmH1d555x316NFD69evV8eOHUv9vvz8fLm5ucnDw8O8cIAJqlgdAHBFvXv3dpr+4osvtGbNmmLtf5WXlycfH59Sr4eNDgDgSnLgwAH17NlTERER+vTTTxUWFuaYN2jQIO3bt08fffSRaev/5ZdfJEn+/v6mrcNms8nLy8u05Vc2hmHo9OnT8vb25iADKi1OLwcs0rFjRzVp0kTbtm1T+/bt5ePjo6eeekqStHz5cnXt2lW1atWS3W5X/fr19dxzz6mwsNBpGX+9pvvcdWAvvvii5s2bp/r168tut+sf//iHtm7dWp7DAwCgzE2aNEmnTp3Sq6++6lRwn9OgQQM9/vjjjumzZ8/queeec2wP69Wrp6eeekr5+flO76tXr566deumTZs26brrrpOXl5eioqK0aNEiR5+kpCRFRERIkp588knZbDbHNvh891hJSkqSzWZzaluzZo3atWsnf39/VatWTdHR0Y7tv3T+a7o//fRT3XDDDapatar8/f11xx13aPfu3SWub9++fUpMTJS/v7/8/PzUt29f5eXlnf8X+/+d2zf59ttv1aFDB/n4+KhBgwZ65513JEmfffaZYmJi5O3trejoaK1du9bp/T/++KMeeeQRRUdHy9vbW4GBgerRo4fTaeQLFixQjx49JEmdOnUqdsnduc9i9erVat26tby9vTV37lzHvHPXdBuGoU6dOikoKEjZ2dmO5RcUFKhp06aqX7++fvvttwuOGSgPFN2AhY4ePaouXbqoRYsWmjZtmjp16iTpjw1StWrVNGzYME2fPl2tWrXSmDFjNGrUqFIt97XXXtPkyZP10EMP6fnnn1dGRobuuusunTlzxszhAABgqg8//FBRUVFq06ZNqfo/8MADGjNmjK699lpNnTpVHTp0UEpKinr27Fms7759+/TPf/5TN998s1566SUFBAQoMTFRu3btkiTdddddmjp1qiTpX//6lxYvXqxp06ZdVP5du3apW7duys/PV3Jysl566SXdfvvt+vzzz//2fWvXrlV8fLyys7OVlJSkYcOGafPmzWrbtm2J10Xfc889OnnypFJSUnTPPfdowYIFGjduXKkyHj9+XN26dVNMTIwmTZoku92unj176s0331TPnj116623auLEifrtt9/0z3/+UydPnnS8d+vWrdq8ebN69uypGTNmaODAgVq3bp06duzoKPrbt2+vwYMHS5KeeuopLV68WIsXL1ajRo0cy0lPT9e//vUv3XzzzZo+fbpatGhRLKfNZtP8+fN1+vRpDRw40NE+duxY7dq1S6mpqapatWqpxgyYzgBgukGDBhl//e/WoUMHQ5IxZ86cYv3z8vKKtT300EOGj4+Pcfr0aUdbQkKCERER4Zg+cOCAIckIDAw0jh075mhfvny5Icn48MMPy2A0AACUv5ycHEOScccdd5Sq//bt2w1JxgMPPODU/sQTTxiSjE8//dTRFhERYUgyNm7c6GjLzs427Ha7MXz4cEfbue3s5MmTnZb51+3xOWPHjnXa/k+dOtWQZPzyyy/nzX1uHampqY62Fi1aGMHBwcbRo0cdbTt27DDc3NyMPn36FFtfv379nJZ55513GoGBgedd5znn9k1ee+01R9uePXsMSYabm5vxxRdfONpXr15dLGdJ+y9btmwxJBmLFi1ytL399tuGJGP9+vXF+p/7LFatWlXivISEBKe2uXPnGpKMJUuWGF988YXh7u5uDBky5IJjBcoTR7oBC9ntdvXt27dYu7e3t+PnkydP6tdff9UNN9ygvLw87dmz54LLvffeexUQEOCYvuGGGyRJ+/fvL4PUAACUv9zcXElS9erVS9V/5cqVkqRhw4Y5tQ8fPlySil373bhxY8f2UpKCgoIUHR1dptvOc9eCL1++XEVFRaV6z5EjR7R9+3YlJiaqRo0ajvZmzZrp5ptvdozzz/585Ff6Yz/g6NGjjt/h36lWrZrTmQDR0dHy9/dXo0aNFBMT42g/9/Offz9/3n85c+aMjh49qgYNGsjf31/ffPNNKUb7h8jISMXHx5eq74MPPqj4+Hg99thjuv/++1W/fn1NmDCh1OsCygNFN2Ch2rVry9PTs1j7rl27dOedd8rPz0++vr4KCgpy3IQtJyfngsutW7eu0/S5Avz48eNlkBoAgPLn6+srSU6nM/+dH3/8UW5ubmrQoIFTe2hoqPz9/fXjjz86tf912yn9sf0sy23nvffeq7Zt2+qBBx5QSEiIevbsqbfeeutvC/BzOaOjo4vNa9SokX799ddi1y5fzn5AnTp1il2H7ufnp/Dw8GJtf13m77//rjFjxig8PFx2u101a9ZUUFCQTpw4Uar9l3MiIyNL3VeSXn31VeXl5Wnv3r1asGCBU/EPVATcvRywUEkbhRMnTqhDhw7y9fVVcnKy6tevLy8vL33zzTcaOXJkqb4ZP98jRgyeEAgAqKR8fX1Vq1YtpaWlXdT7/lpAns/lbDvPt46/3gDV29tbGzdu1Pr16/XRRx9p1apVevPNN3XjjTfqk08+KbNHhF3OWM733tIs87HHHlNqaqqGDBmi2NhY+fn5yWazqWfPnqU+si+VvH/0dzZs2OC4Od7OnTsVGxt7Ue8HzEbRDVQwGzZs0NGjR7Vs2TK1b9/e0X7gwAELUwEAYL1u3bpp3rx52rJlywULq4iICBUVFWnv3r1ON+nKysrSiRMnHHciLwsBAQE6ceJEsfa/Hk2XJDc3N91000266aabNGXKFE2YMEFPP/201q9fr7i4uBLHIf1xc7G/2rNnj2rWrFlhbhj2zjvvKCEhQS+99JKj7fTp08V+N6X9IqQ0jhw5oscee0y33HKLPD099cQTTyg+Pr5MP1/gcnF6OVDBnPsm+c/fHBcUFGjWrFlWRQIAoEIYMWKEqlatqgceeEBZWVnF5v/www+aPn26JOnWW2+VpGJ3GJ8yZYokqWvXrmWWq379+srJydG3337raDty5Ijee+89p37Hjh0r9t5zd+b+62PMzgkLC1OLFi20cOFCp+I1LS1Nn3zyiWOcFYG7u3uxo+kvv/xysSP+574kKOmLios1YMAAFRUV6dVXX9W8efNUpUoV9e/fn7P7UKFwpBuoYNq0aaOAgAAlJCRo8ODBstlsWrx4MRsPAMAVr379+nrttdd07733qlGjRurTp4+aNGmigoICbd68WW+//bbjOc7NmzdXQkKC5s2b57h066uvvtLChQvVvXt3x2M6y0LPnj01cuRI3XnnnRo8eLDy8vI0e/ZsXX311U43EEtOTtbGjRvVtWtXRUREKDs7W7NmzVKdOnXUrl278y5/8uTJ6tKli2JjY9W/f3/9/vvvevnll+Xn56ekpKQyG8fl6tatmxYvXiw/Pz81btxYW7Zs0dq1axUYGOjUr0WLFnJ3d9cLL7ygnJwc2e123XjjjQoODr6o9aWmpuqjjz7SggULVKdOHUl/FPm9e/fW7Nmz9cgjj5TZ2IDLQdENVDCBgYFasWKFhg8frmeeeUYBAQHq3bu3brrpplLfyRMAAFd1++2369tvv9XkyZO1fPlyzZ49W3a7Xc2aNdNLL72kAQMGOPr++9//VlRUlBYsWKD33ntPoaGhGj16tMaOHVummQIDA/Xee+9p2LBhGjFihCIjI5WSkqK9e/c6Fd233367MjIyNH/+fP3666+qWbOmOnTooHHjxjluTFaSuLg4rVq1SmPHjtWYMWPk4eGhDh066IUXXrjom46Zafr06XJ3d9fSpUt1+vRptW3b1vGM8T8LDQ3VnDlzlJKSov79+6uwsFDr16+/qKL7559/1tChQ3XbbbcpISHB0d6rVy+9++67GjFihLp06VKhfj+4ctkMDp8BAAAAAGAKrukGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASUr1nO6ioiIdPnxY1atXl81mMzsTAAAVgmEYOnnypGrVqiU3N76nPh/2EwAAV6LS7ieUqug+fPiwwsPDyywcAACVyU8//aQ6depYHaPCYj8BAHAlu9B+QqmK7urVqzsW5uvrWzbJAACo4HJzcxUeHu7YDqJk534/7XSrqsjD4jQAgLJgXN/U6gglem3BAqsjOJw8VaSGrQ9fcD+hVEX3uVPFfH19KboBAFccTpn+e+d+P1XkoSo2im4AcAVGFS+rI5TIt3rFu9zrQvsJFS8xAAAAAAAugqIbAAAAAACTUHQDAAAAAGCSUl3TXVqFhYU6c+ZMWS4SFvLw8JC7u7vVMQAAAACg0iqTotswDGVmZurEiRNlsThUIP7+/goNDeUmQgAAAABwCcqk6D5XcAcHB8vHx4cCzQUYhqG8vDxlZ2dLksLCwixOBAAAAACVz2UX3YWFhY6COzAwsCwyoYLw9vaWJGVnZys4OJhTzQEAAADgIl32jdTOXcPt4+Nz2WFQ8Zz7XLlWHwAAAAAuXpndvZxTyl0TnysAAAAAXDoeGQYAAAAAgEkougEAcFGFhYV69tlnFRkZKW9vb9WvX1/PPfecDMNw9DEMQ2PGjFFYWJi8vb0VFxenvXv3WpgaAADXUqbP6f6reqM+MnPxTjImdi113wudMj127FglJSVdZiIAAKz1wgsvaPbs2Vq4cKGuueYaff311+rbt6/8/Pw0ePBgSdKkSZM0Y8YMLVy4UJGRkXr22WcVHx+v7777Tl5eXhaPAACAys/UoruiOnLkiOPnN998U2PGjFF6erqjrVq1ao6fDcNQYWGhqlS5In9VwJUtyc/CdedYt264jM2bN+uOO+5Q165/fDFdr149vf766/rqq68k/bGNmzZtmp555hndcccdkqRFixYpJCRE77//vnr27GlZdgAAXMUVeXp5aGio4+Xn5yebzeaY3rNnj6pXr66PP/5YrVq1kt1u16ZNm5SYmKju3bs7LWfIkCHq2LGjY7qoqEgpKSmO0/iaN2+ud955p3wHBwDA/9emTRutW7dO33//vSRpx44d2rRpk7p06SJJOnDggDIzMxUXF+d4j5+fn2JiYrRly5bzLjc/P1+5ublOLwAAUDIO357HqFGj9OKLLyoqKkoBAQGlek9KSoqWLFmiOXPm6KqrrtLGjRvVu3dvBQUFqUOHDiYnBgDA2ahRo5Sbm6uGDRvK3d1dhYWFGj9+vHr16iVJyszMlCSFhIQ4vS8kJMQxryQpKSkaN26cecEBAHAhFN3nkZycrJtvvrnU/fPz8zVhwgStXbtWsbGxkqSoqCht2rRJc+fOpegGAJS7t956S0uXLtVrr72ma665Rtu3b9eQIUNUq1YtJSQkXPJyR48erWHDhjmmc3NzFR4eXhaRAQBwORTd59G6deuL6r9v3z7l5eUVK9QLCgrUsmXLsowGAECpPPnkkxo1apTj2uymTZvqxx9/VEpKihISEhQaGipJysrKUlhYmON9WVlZatGixXmXa7fbZbfbTc0OAICroOg+j6pVqzpNu7m5OT1iRZLOnDnj+PnUqVOSpI8++ki1a9d26seOCQDACnl5eXJzc759i7u7u4qKiiRJkZGRCg0N1bp16xxFdm5urr788ks9/PDD5R0XAACXRNFdSkFBQUpLS3Nq2759uzw8PCRJjRs3lt1u18GDBzmVHABQIdx2220aP3686tatq2uuuUb//e9/NWXKFPXr10/SH4/QHDJkiJ5//nldddVVjkeG1apVq9jNQwEAwKWh6C6lG2+8UZMnT9aiRYsUGxurJUuWKC0tzXHqePXq1fXEE09o6NChKioqUrt27ZSTk6PPP/9cvr6+l3XtHAAAl+Lll1/Ws88+q0ceeUTZ2dmqVauWHnroIY0ZM8bRZ8SIEfrtt9/04IMP6sSJE2rXrp1WrVrFM7oBACgjFN2lFB8fr2effVYjRozQ6dOn1a9fP/Xp00c7d+509HnuuecUFBSklJQU7d+/X/7+/rr22mv11FNPWZgcAHClql69uqZNm6Zp06adt4/NZlNycrKSk5PLLxgAAFcQm/HXC5VLkJubKz8/P+Xk5MjX19dp3unTp3XgwAFFRkbyrbgL4vPFFS3Jz8J151i3bjj83fYP/3Pu99RRd6iKzcPqOACAMmC0bWF1hBK9/+Y8qyM45J4sUu2GP19wP4Ej3QAAAAAAJz928bY6Qol6tL7N6ggOZ4sKJL1ywX5uF+wBAAAAAAAuCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6y9CCBQvk7+9vdYyLUhkzAwAAAEBlUcXUpSf5mbp453XlXPRbEhMTtXDhwmLt8fHxWrVq1d++t169ehoyZIiGDBniaLv33nt16623XnSOi7VgwQINGTJEJ06cMH1dAAAAAIBLZ27RXQl07txZqampTm12u/2SluXt7S1vb++yiAUAAAAAcAFX/OnldrtdoaGhTq+AgAAZhqGkpCTVrVtXdrtdtWrV0uDBgyVJHTt21I8//qihQ4fKZrPJZrNJKn6qdlJSklq0aKH58+erbt26qlatmh555BEVFhZq0qRJCg0NVXBwsMaPH++UacqUKWratKmqVq2q8PBwPfLIIzp16pQkacOGDerbt69ycnIc605KSpIk5efn64knnlDt2rVVtWpVxcTEaMOGDU7LXrBggerWrSsfHx/deeedOnr0qDm/WAAAAAAAR7rP591339XUqVP1xhtv6JprrlFmZqZ27NghSVq2bJmaN2+uBx98UAMGDPjb5fzwww/6+OOPtWrVKv3www/65z//qf379+vqq6/WZ599ps2bN6tfv36Ki4tTTEyMJMnNzU0zZsxQZGSk9u/fr0ceeUQjRozQrFmz1KZNG02bNk1jxoxRenq6JKlatWqSpEcffVTfffed3njjDdWqVUvvvfeeOnfurJ07d+qqq67Sl19+qf79+yslJUXdu3fXqlWrNHbsWBN/iwAAAABwZbvii+4VK1Y4itZznnrqKXl5eSk0NFRxcXHy8PBQ3bp1dd1110mSatSoIXd3d1WvXl2hoaF/u/yioiLNnz9f1atXV+PGjdWpUyelp6dr5cqVcnNzU3R0tF544QWtX7/eUXT/+TrxevXq6fnnn9fAgQM1a9YseXp6ys/PTzabzWndBw8eVGpqqg4ePKhatWpJkp544gmtWrVKqampmjBhgqZPn67OnTtrxIgRkqSrr75amzdvvuD16wAAAACAS3PFF92dOnXS7Nmzndpq1Kih3377TdOmTVNUVJQ6d+6sW2+9VbfddpuqVLm4X1m9evVUvXp1x3RISIjc3d3l5ubm1Jadne2YXrt2rVJSUrRnzx7l5ubq7NmzOn36tPLy8uTj41Pienbu3KnCwkJdffXVTu35+fkKDAyUJO3evVt33nmn0/zY2FiKbgAAAAAwyRVfdFetWlUNGjQo1l6jRg2lp6dr7dq1WrNmjR555BFNnjxZn332mTw8PEq9/L/2tdlsJbYVFRVJkjIyMtStWzc9/PDDGj9+vGrUqKFNmzapf//+KigoOG/RferUKbm7u2vbtm1yd3d3mvfXI/kAAAAAgPJxxRfdf8fb21u33XabbrvtNg0aNEgNGzbUzp07de2118rT01OFhYVlvs5t27apqKhIL730kuNo+FtvveXUp6R1t2zZUoWFhcrOztYNN9xQ4rIbNWqkL7/80qntiy++KMP0AAAAAIA/u+KL7vz8fGVmZjq1ValSRStWrFBhYaFiYmLk4+OjJUuWyNvbWxEREZL+OG1848aN6tmzp+x2u2rWrFkmeRo0aKAzZ87o5Zdf1m233abPP/9cc+bMcepTr149nTp1SuvWrVPz5s3l4+Ojq6++Wr169VKfPn300ksvqWXLlvrll1+0bt06NWvWTF27dtXgwYPVtm1bvfjii7rjjju0evVqTi0HAAAAABNd8Y8MW7VqlcLCwpxe7dq1k7+/v1555RW1bdtWzZo109q1a/Xhhx86ro9OTk5WRkaG6tevr6CgoDLL07x5c02ZMkUvvPCCmjRpoqVLlyolJcWpT5s2bTRw4EDde++9CgoK0qRJkyRJqamp6tOnj4YPH67o6Gh1795dW7duVd26dSVJ119/vV555RVNnz5dzZs31yeffKJnnnmmzLIDAAAAAJzZDMMwLtQpNzdXfn5+ysnJka+vr9O806dP68CBA4qMjJSXl5dpQWGNEj/fJD/rAiXlWLduXHn4t37F+7vtH/7n3O+po+5QFVvp73sCAKi4Mp6PtTpCiRr8336rIzicLSrQ2qxXLrifcMUf6QYAAAAAwCwU3QAAuLBDhw6pd+/eCgwMlLe3t5o2baqvv/7aMd8wDI0ZM0ZhYWHy9vZWXFyc9u7da2FiAABcC0U3AAAu6vjx42rbtq08PDz08ccf67vvvtNLL72kgIAAR59JkyZpxowZmjNnjr788ktVrVpV8fHxOn36tIXJAQBwHVf83csBAHBVL7zwgsLDw5Wamupoi4yMdPxsGIamTZumZ555RnfccYckadGiRQoJCdH777+vnj17lntmAABcDUe6AQBwUR988IFat26tHj16KDg4WC1bttQrr7zimH/gwAFlZmYqLi7O0ebn56eYmBht2bLlvMvNz89Xbm6u0wsAAJSszI50FxUVldWiUIHwuQJA5bV//37Nnj1bw4YN01NPPaWtW7dq8ODB8vT0VEJCgjIzMyVJISEhTu8LCQlxzCtJSkqKxo0bZ2p2ADCD+9X1rY5QopUb3rU6QjHX/F8bqyOU6GxmltURHM4aZ0rV77KLbk9PT7m5uenw4cMKCgqSp6enbDbb5S4WFjMMQwUFBfrll1/k5uYmT09PqyMBAC5SUVGRWrdurQkTJkiSWrZsqbS0NM2ZM0cJCQmXvNzRo0dr2LBhjunc3FyFh4dfdl4AAFzRZRfdbm5uioyM1JEjR3T48OGyyIQKxMfHR3Xr1pWbG1ciAEBlExYWpsaNGzu1NWrUSO+++8cRldDQUElSVlaWwsLCHH2ysrLUokWL8y7XbrfLbreXfWAAAFxQmZxe7unpqbp16+rs2bMqLCwsi0WiAnB3d1eVKlU4cwEAKqm2bdsqPT3dqe37779XRESEpD9uqhYaGqp169Y5iuzc3Fx9+eWXevjhh8s7LgAALqnMrum22Wzy8PCQh4dHWS0SAABchqFDh6pNmzaaMGGC7rnnHn311VeaN2+e5s2bJ+mPbfeQIUP0/PPP66qrrlJkZKSeffZZ1apVS927d7c2PAAALoJHhgEA4KL+8Y9/6L333tPo0aOVnJysyMhITZs2Tb169XL0GTFihH777Tc9+OCDOnHihNq1a6dVq1bJy8vLwuQAALgOim4AAFxYt27d1K1bt/POt9lsSk5OVnJycjmmAgDgysHdsQAAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqlidQAAAAAArqdKZITVEYp5ZOVHVkco0a2NO1gdoZg6JzZbHcFlcKQbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AwBVi4sSJstlsGjJkiKPt9OnTGjRokAIDA1WtWjXdfffdysrKsi4kAAAuhqIbAIArwNatWzV37lw1a9bMqX3o0KH68MMP9fbbb+uzzz7T4cOHddddd1mUEgAA10PRDQCAizt16pR69eqlV155RQEBAY72nJwcvfrqq5oyZYpuvPFGtWrVSqmpqdq8ebO++OILCxMDAOA6KLoBAHBxgwYNUteuXRUXF+fUvm3bNp05c8apvWHDhqpbt662bNlS3jEBAHBJPKcbAAAX9sYbb+ibb77R1q1bi83LzMyUp6en/P39ndpDQkKUmZl53mXm5+crPz/fMZ2bm1tmeQEAcDUc6QYAwEX99NNPevzxx7V06VJ5eXmV2XJTUlLk5+fneIWHh5fZsgEAcDUU3QAAuKht27YpOztb1157rapUqaIqVaros88+04wZM1SlShWFhISooKBAJ06ccHpfVlaWQkNDz7vc0aNHKycnx/H66aefTB4JAACVF6eXo3JJ8rNw3TnWrRsALsFNN92knTt3OrX17dtXDRs21MiRIxUeHi4PDw+tW7dOd999tyQpPT1dBw8eVGxs7HmXa7fbZbfbTc0OAICroOgGAMBFVa9eXU2aNHFqq1q1qgIDAx3t/fv317Bhw1SjRg35+vrqscceU2xsrK6//norIgMA4HIougEAuIJNnTpVbm5uuvvuu5Wfn6/4+HjNmjXL6lgAALgMim4AAK4gGzZscJr28vLSzJkzNXPmTGsCAQDg4riRGgAAAAAAJqHoBgAAAADAJBTdAAAAAACYpHJf083jowAAAAAAFRhHugEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExSuZ/TDeCKVG/UR+WyngyvclkNAACXxT0oyOoIJRq2doXVEYp56boOVkcoUeGJY1ZHgIkougGgArqYLxYyJnY1MQkAAAAuB0X3JSqvI23ljZ13AAAAACg7FN0AAJioqKhICxYs0LJly5SRkSGbzabIyEj985//1P333y+bzWZ1RAAAYCKK7kuU4XWfpeuvd/o1S9cPALgwwzB0++23a+XKlWrevLmaNm0qwzC0e/duJSYmatmyZXr//fetjgkAAExE0Q0AgEkWLFigjRs3at26derUqZPTvE8//VTdu3fXokWL1KdPH4sSAgAAs/HIMAAATPL666/rqaeeKlZwS9KNN96oUaNGaenSpRYkAwAA5YUj3QAqriS/Ept5lBcqi2+//VaTJk067/wuXbpoxowZ5ZgIAACUN450AwBgkmPHjikkJOS880NCQnT8+PFyTAQAAMobRTcAACYpLCxUlSrnP6nM3d1dZ8+eLcdEAACgvHF6OQDA2XlO6y+fdedYt24TGIahxMRE2e32Eufn5+eXcyIAAFDeLCu664366LKXwXWdAICKLCEh4YJ9uHM5AACujSPdAACYJDU11eoISklJ0bJly7Rnzx55e3urTZs2euGFFxQdHe3oc/r0aQ0fPlxvvPGG8vPzFR8fr1mzZv3t9egAAKB0uKYbAAATZWRk6JVXXtHMmTO1a9eucl//Z599pkGDBumLL77QmjVrdObMGd1yyy367bffHH2GDh2qDz/8UG+//bY+++wzHT58WHfddVe5ZwUAwBVxpBsopbK4JOJSZUzsatm6UfGV9b9NLt0pO+vXr1e3bt30+++/S5KqVKmi+fPnq3fv3uWWYdWqVU7TCxYsUHBwsLZt26b27dsrJydHr776ql577TXdeOONkv44Qt+oUSN98cUXuv7668stKwAArogj3QAAmOTZZ5/VzTffrEOHDuno0aMaMGCARowYYWmmnJw/blZXo0YNSdK2bdt05swZxcXFOfo0bNhQdevW1ZYtWyzJCACAK+FINwAAJklLS9PmzZsVFhYmSZo8ebLmzp2ro0ePKjAwsNzzFBUVaciQIWrbtq2aNGkiScrMzJSnp6f8/f2d+oaEhCgzM7PE5eTn5zvdeT03N9e0zAAAVHYc6QYAwCS5ubmqWbOmY9rHx0fe3t6Oo83lbdCgQUpLS9Mbb7xxWctJSUmRn5+f4xUeHl5GCQEAcD0c6QYAwESrV6+Wn9//nn1eVFSkdevWKS0tzdF2++23m57j0Ucf1YoVK7Rx40bVqVPH0R4aGqqCggKdOHHC6Wh3VlaWQkNDS1zW6NGjNWzYMMd0bm4uhTcAAOdB0Q0AgIlKelb3Qw895PjZZrOpsLDQtPUbhqHHHntM7733njZs2KDIyEin+a1atZKHh4fWrVunu+++W5KUnp6ugwcPKjY2tsRl2u122e120zIDAOBKKLoBADBJUVGR1RE0aNAgvfbaa1q+fLmqV6/uuE7bz89P3t7e8vPzU//+/TVs2DDVqFFDvr6+euyxxxQbG8udywEAKAMU3XBSmkcP8TghCyT5XbiPSeqdfs3xM48uAyqf2bNnS5I6duzo1J6amqrExERJ0tSpU+Xm5qa7775b+fn5io+P16xZs8o5KQAAromiG0CplfezyvmCB5XdBx98UKp+Zl7TbRjGBft4eXlp5syZmjlzpmk5AAC4UlF0AwBgku7du1+wj9nXdAMAAGtRdAMAYJKKcE03AACwFkU3AAAAUEpVwkp+lJ6Vxm7+0OoIJUr6R2erIxRTePSo1RFwBXKzOgAAAAAAAK6KI90A/laG131WRwAAAAAqLY50AwAAAABgEopuAAAAAABMwunlAIAKoyyeBZ8xsWsZJAEAACgbFN0AAJggICBANputVH2PHTtmchoAAGAVim4AAEwwbdo0x89Hjx7V888/r/j4eMXGxkqStmzZotWrV+vZZ5+1KCEAACgPFN0AAJggISHB8fPdd9+t5ORkPfroo462wYMH6//+7/+0du1aDR061IqIAACgHHAjNQAATLZ69Wp17ty5WHvnzp21du1aCxIBAIDyQtENAIDJAgMDtXz58mLty5cvV2BgoAWJAABAeeH0cgAATDZu3Dg98MAD2rBhg2JiYiRJX375pVatWqVXXnnF4nQAAMBMFN0AAJgsMTFRjRo10owZM7Rs2TJJUqNGjbRp0yZHEQ4AAFwTRTcAAOUgJiZGS5cutToGAAAoZ1zTDQBAOfjhhx/0zDPP6L777lN2drYk6eOPP9auXbssTgYAAMxE0Q0AgMk+++wzNW3aVF9++aXeffddnTp1SpK0Y8cOjR071uJ0AADATBTdAACYbNSoUXr++ee1Zs0aeXp6OtpvvPFGffHFFxYmAwAAZqPoBgDAZDt37tSdd95ZrD04OFi//vqrBYkAAEB5oegGAMBk/v7+OnLkSLH2//73v6pdu7YFiQAAQHnh7uVAKWV43Wd1BACVVM+ePTVy5Ei9/fbbstlsKioq0ueff64nnnhCffr0sToeAAAwEUe6AQAw2YQJE9SwYUOFh4fr1KlTaty4sdq3b682bdromWeesToeAAAwEUU3AAAm8/T01CuvvKL9+/drxYoVWrJkifbs2aPFixfL3d3d6niSpJkzZ6pevXry8vJSTEyMvvrqK6sjAQDgEii6AQAwWXJysvLy8hQeHq5bb71V99xzj6666ir9/vvvSk5Otjqe3nzzTQ0bNkxjx47VN998o+bNmys+Pt7xPHEAAHDpKLoBADDZuHHjHM/m/rO8vDyNGzfOgkTOpkyZogEDBqhv375q3Lix5syZIx8fH82fP9/qaAAAVHoU3QAAmMwwDNlstmLtO3bsUI0aNSxI9D8FBQXatm2b4uLiHG1ubm6Ki4vTli1bLEwGAIBr4O7lAACYJCAgQDabTTabTVdffbVT4V1YWKhTp05p4MCBFiaUfv31VxUWFiokJMSpPSQkRHv27CnxPfn5+crPz3dM5+bmmpoRAIDKjKIbAACTTJs2TYZhqF+/fho3bpz8/Pwc8zw9PVWvXj3FxsZamPDSpKSkVIjT4uH63H19rY5QTOQHx62OUMy4NrdZHaFEhb9mWh0BqBAougEAMElCQoIkKTIyUm3atJGHh4fFiYqrWbOm3N3dlZWV5dSelZWl0NDQEt8zevRoDRs2zDGdm5ur8PBwU3MCAFBZcU03AAAm69Chg6PgPn36tHJzc51eVvL09FSrVq20bt06R1tRUZHWrVt33qPwdrtdvr6+Ti8AAFAyjnQDAGCyvLw8jRgxQm+99ZaOHj1abH5hYaEFqf5n2LBhSkhIUOvWrXXddddp2rRp+u2339S3b19LcwEA4AoougEAMNmTTz6p9evXa/bs2br//vs1c+ZMHTp0SHPnztXEiROtjqd7771Xv/zyi8aMGaPMzEy1aNFCq1atKnZzNQAAcPEougEAMNmHH36oRYsWqWPHjurbt69uuOEGNWjQQBEREVq6dKl69epldUQ9+uijevTRR62OAQCAy+GabgAATHbs2DFFRUVJknx9fXXs2DFJUrt27bRx40YrowEAAJNRdAMAYLKoqCgdOHBAktSwYUO99dZbkv44Au7v729hMgAAYDaKbgAATNa3b1/t2LFDkjRq1CjNnDlTXl5eGjp0qJ588kmL0wEAADNxTTcAACYbOnSo4+e4uDjt2bNH27ZtU4MGDdSsWTMLkwEAALNRdAMAUM4iIiIUERFhdQwAAFAOKLoBACgHW7du1fr165Wdna2ioiKneVOmTLEoFQAAMBtFNwAAJpswYYKeeeYZRUdHKyQkRDabzTHvzz8DAADXQ9ENAIDJpk+frvnz5ysxMdHqKAAAoJxx93IAAEzm5uamtm3bWh0DAABYgKIbAACTDR06VDNnzrQ6BgAAsACnlwMAYLInnnhCXbt2Vf369dW4cWN5eHg4zV+2bJlFyQAAgNkougEAMNngwYO1fv16derUSYGBgdw8DQCAKwhFNwAAJlu4cKHeffddde3a1eooAACgnHFNNwAAJqtRo4bq169vdQwAAGABim4AAEyWlJSksWPHKi8vz+ooAACgnHF6OQAAJpsxY4Z++OEHhYSEqF69esVupPbNN99YlAwAAJiNohsAAJN1797d6ggAAMAiFN0AAJhs7NixVkcAAAAW4ZpuAAAAAABMwpFuAABMUKNGDX3//feqWbOmAgIC/vbZ3MeOHSvHZLCcm7vVCYqpUjvM6gglemT9WqsjFDPloV5WRyimypFtVkcA8DcougEAMMHUqVNVvXp1x89/V3QDAADXRdENAIAJEhISHD8nJiZaFwQAAFiKa7oBADCZu7u7srOzi7UfPXpU7u4V71RjAABQdii6AQAwmWEYJbbn5+fL09PTlHVmZGSof//+ioyMlLe3t+rXr6+xY8eqoKDAqd+3336rG264QV5eXgoPD9ekSZNMyQMAwJWK08sBADDJjBkzJEk2m03//ve/Va1aNce8wsJCbdy4UQ0bNjRl3Xv27FFRUZHmzp2rBg0aKC0tTQMGDNBvv/2mF198UZKUm5urW265RXFxcZozZ4527typfv36yd/fXw8++KApuQAAuNJQdAMAYJKpU6dK+uNI95w5c5xOJff09FS9evU0Z84cU9bduXNnde7c2TEdFRWl9PR0zZ4921F0L126VAUFBZo/f748PT11zTXXaPv27ZoyZQpFNwAAZYSiGwAAkxw4cECS1KlTJy1btkwBAQGW5snJyVGNGjUc01u2bFH79u2dTnGPj4/XCy+8oOPHj583b35+vvLz8x3Tubm55oUGAKCS45puAABMtn79eqcCtrCwUNu3b9fx48fLLcO+ffv08ssv66GHHnK0ZWZmKiQkxKnfuenMzMzzLislJUV+fn6OV3h4uDmhAQBwARTdAACYbMiQIXr11Vcl/VFwt2/fXtdee63Cw8O1YcOGi1rWqFGjZLPZ/va1Z88ep/ccOnRInTt3Vo8ePTRgwIDLHs/o0aOVk5PjeP3000+XvUwAAFwVp5cDAGCyt99+W71795Ykffjhh8rIyNCePXu0ePFiPf300/r8889Lvazhw4df8LnfUVFRjp8PHz6sTp06qU2bNpo3b55Tv9DQUGVlZTm1nZsODQ097/LtdrvsdnupMwMAcCWj6AYAwGRHjx51FLErV65Ujx49dPXVV6tfv36aPn36RS0rKChIQUFBpep76NAhderUSa1atVJqaqrc3JxPcIuNjdXTTz+tM2fOyMPDQ5K0Zs0aRUdHW379OQAAroLTywEAMFlISIi+++47FRYWatWqVbr55pslSXl5eU53NC9Lhw4dUseOHVW3bl29+OKL+uWXX5SZmel0rfZ9990nT09P9e/fX7t27dKbb76p6dOna9iwYaZkAgDgSsSRbgAATNa3b1/dc889CgsLk81mU1xcnCTpyy+/NO053WvWrNG+ffu0b98+1alTx2meYRiSJD8/P33yyScaNGiQWrVqpZo1a2rMmDE8LgwAgDJE0V1JZXjdZ3UEAEApJSUlqUmTJvrpp5/Uo0cPx/XQ7u7uGjVqlCnrTExMvOC135LUrFkz/ec//zElAwAAoOgGAKBc/POf/yzWlpCQYEESAABQnrimGwAAk9x6663KyclxTE+cOFEnTpxwTB89elSNGze2IBkAACgvFN0AAJhk9erVys/Pd0xPmDBBx44dc0yfPXtW6enpVkQDAADlhKIbAACTnLth2fmmAQCA66PoBgAAAADAJBTdAACYxGazyWazFWsDAABXDu5eDgCASQzDUGJiouMRYadPn9bAgQNVtWpVSXK63hsAALgmim4AAEzy10eC9e7du1ifPn36lFccAABgAYpuAABMkpqaanUEAABgMa7pBgAAAADAJBzpBgAAKEeZj8dYHaGYZUMmWR2hRI917mt1hGKq7N5mdQQAlQxHugEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAEzCc7oBoALK8LrP6ggAAAAoAxzpBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAFxcfn6+WrRoIZvNpu3btzvN+/bbb3XDDTfIy8tL4eHhmjRpkjUhAQBwURTdAAC4uBEjRqhWrVrF2nNzc3XLLbcoIiJC27Zt0+TJk5WUlKR58+ZZkBIAANfEI8MAAHBhH3/8sT755BO9++67+vjjj53mLV26VAUFBZo/f748PT11zTXXaPv27ZoyZYoefPBBixIDAOBaONINAICLysrK0oABA7R48WL5+PgUm79lyxa1b99enp6ejrb4+Hilp6fr+PHj511ufn6+cnNznV4AAKBkFN0AALggwzCUmJiogQMHqnXr1iX2yczMVEhIiFPbuenMzMzzLjslJUV+fn6OV3h4eNkFBwDAxVB0AwBQiYwaNUo2m+1vX3v27NHLL7+skydPavTo0WWeYfTo0crJyXG8fvrppzJfBwAAroJrugEAqESGDx+uxMTEv+0TFRWlTz/9VFu2bJHdbnea17p1a/Xq1UsLFy5UaGiosrKynOafmw4NDT3v8u12e7HlAgCAklF0AwBQiQQFBSkoKOiC/WbMmKHnn3/eMX348GHFx8frzTffVExMjCQpNjZWTz/9tM6cOSMPDw9J0po1axQdHa2AgABzBgAAwBWGohsAABdUt25dp+lq1apJkurXr686depIku677z6NGzdO/fv318iRI5WWlqbp06dr6tSp5Z4XAABXRdENAMAVys/PT5988okGDRqkVq1aqWbNmhozZgyPCwMAoAxRdAMAcAWoV6+eDMMo1t6sWTP95z//sSARAABXBu5eDgAAAACASSi6AQAAAAAwCaeXAwAAl+RWtarVEUqUe/VZqyMUM+jqm6yOUCIjf6/VEQDgsnGkGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAIAL++ijjxQTEyNvb28FBASoe/fuTvMPHjyorl27ysfHR8HBwXryySd19uxZa8ICAOCCqlgdAAAAmOPdd9/VgAEDNGHCBN144406e/as0tLSHPMLCwvVtWtXhYaGavPmzTpy5Ij69OkjDw8PTZgwwcLkAAC4DopuAABc0NmzZ/X4449r8uTJ6t+/v6O9cePGjp8/+eQTfffdd1q7dq1CQkLUokULPffccxo5cqSSkpLk6elpRXQAAFwKp5cDAOCCvvnmGx06dEhubm5q2bKlwsLC1KVLF6cj3Vu2bFHTpk0VEhLiaIuPj1dubq527dplRWwAAFwORTcAAC5o//79kqSkpCQ988wzWrFihQICAtSxY0cdO3ZMkpSZmelUcEtyTGdmZp532fn5+crNzXV6AQCAknF6OQAAlcioUaP0wgsv/G2f3bt3q6ioSJL09NNP6+6775Ykpaamqk6dOnr77bf10EMPXXKGlJQUjRs3rli7e82acnerOKek3/OfHVZHKNFbd9exOkIxhfn5VkcAAJdF0Q0AQCUyfPhwJSYm/m2fqKgoHTlyRJLzNdx2u11RUVE6ePCgJCk0NFRfffWV03uzsrIc885n9OjRGjZsmGM6NzdX4eHhFzUOAACuFBTdAABUIkFBQQoKCrpgv1atWslutys9PV3t2rWTJJ05c0YZGRmKiIiQJMXGxmr8+PHKzs5WcHCwJGnNmjXy9fV1Ktb/ym63y263l8FoAABwfRTdAAC4IF9fXw0cOFBjx45VeHi4IiIiNHnyZElSjx49JEm33HKLGjdurPvvv1+TJk1SZmamnnnmGQ0aNIiiGgCAMkLRDQCAi5o8ebKqVKmi+++/X7///rtiYmL06aefKiAgQJLk7u6uFStW6OGHH1ZsbKyqVq2qhIQEJScnW5wcAADXQdENAICL8vDw0IsvvqgXX3zxvH0iIiK0cuXKckwFAMCVhUeGAQAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADBJFasDAAAA17D080/kW73ifJ9/R/d+VkcokbFrp9URAADlqOJsGQEAAAAAcDEU3QAAAAAAmISiGwAAF/X999/rjjvuUM2aNeXr66t27dpp/fr1Tn0OHjyorl27ysfHR8HBwXryySd19uxZixIDAOB6KLoBAHBR3bp109mzZ/Xpp59q27Ztat68ubp166bMzExJUmFhobp27aqCggJt3rxZCxcu1IIFCzRmzBiLkwMA4DoougEAcEG//vqr9u7dq1GjRqlZs2a66qqrNHHiROXl5SktLU2S9Mknn+i7777TkiVL1KJFC3Xp0kXPPfecZs6cqYKCAotHAACAa6DoBgDABQUGBio6OlqLFi3Sb7/9prNnz2ru3LkKDg5Wq1atJElbtmxR06ZNFRIS4nhffHy8cnNztWvXLquiAwDgUnhkGAAALshms2nt2rXq3r27qlevLjc3NwUHB2vVqlUKCAiQJGVmZjoV3JIc0+dOQS9Jfn6+8vPzHdO5ubkmjAAAANfAkW4AACqRUaNGyWaz/e1rz549MgxDgwYNUnBwsP7zn//oq6++Uvfu3XXbbbfpyJEjl5UhJSVFfn5+jld4eHgZjQ4AANfDkW4AACqR4cOHKzEx8W/7REVF6dNPP9WKFSt0/Phx+fr6SpJmzZqlNWvWaOHChRo1apRCQ0P11VdfOb03KytLkhQaGnre5Y8ePVrDhg1zTOfm5lJ4AwBwHhTdAABUIkFBQQoKCrpgv7y8PEmSm5vzSW1ubm4qKiqSJMXGxmr8+PHKzs5WcHCwJGnNmjXy9fVV48aNz7tsu90uu91+qUMAAOCKwunlAAC4oNjYWAUEBCghIUE7duzQ999/ryeffFIHDhxQ165dJUm33HKLGjdurPvvv187duzQ6tWr9cwzz2jQoEEU1QAAlBGKbgAAXFDNmjW1atUqnTp1SjfeeKNat26tTZs2afny5WrevLkkyd3dXStWrJC7u7tiY2PVu3dv9enTR8nJyRanBwDAdXB6OQAALqp169ZavXr13/aJiIjQypUryykRAABXHo50AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMUqU0nQzDkCTl5uaW2YqL8vMuexm5NqMMkgAAKooy2TaU4bbq3LLObQdRsnO/n5OniixO4uxs4WmrI5TIMM5YHQEAUAbO6o+/5xfaT7AZpdiT+PnnnxUeHl42yQAAqGR++ukn1alTx+oYFRb7CQCAK9mF9hNKVXQXFRXp8OHDql69umw2W5kGtFJubq7Cw8P1008/ydfX1+o4pmCMlZ+rj09y/TG6+vgk1x2jYRg6efKkatWqJTc3rsg6n/LYT3CFf2OuMAaJcVQ0jKPicIUxSIzjYpR2P6FUp5e7ubm59Df8vr6+lfofVGkwxsrP1ccnuf4YXX18kmuO0c/Pz+oIFV557ie4wr8xVxiDxDgqGsZRcbjCGCTGUVql2U/ga3sAAAAAAExC0Q0AAAAAgEmu6KLbbrdr7NixstvtVkcxDWOs/Fx9fJLrj9HVxyddGWOEtVzh35grjEFiHBUN46g4XGEMEuMwQ6lupAYAAAAAAC7eFX2kGwAAAAAAM1F0AwAAAABgEopuAAAAAABMckUW3Rs2bJDNZivxtXXrVklSRkZGifO/+OILi9OXXr169YrlnzhxolOfb7/9VjfccIO8vLwUHh6uSZMmWZT24mRkZKh///6KjIyUt7e36tevr7Fjx6qgoMCpT2X/DCVp5syZqlevnry8vBQTE6OvvvrK6kiXJCUlRf/4xz9UvXp1BQcHq3v37kpPT3fq07Fjx2Kf18CBAy1KfPGSkpKK5W/YsKFj/unTpzVo0CAFBgaqWrVquvvuu5WVlWVh4otT0t8Um82mQYMGSar8nx8qru+//1533HGHatasKV9fX7Vr107r16936nPw4EF17dpVPj4+Cg4O1pNPPqmzZ89alLhkH330kWJiYuTt7a2AgAB1797daX5lGMM5+fn5atGihWw2m7Zv3+40r6LvW5RmH0Kq+OOQKt8+Qmn2BSrbtnLixImy2WwaMmSIo62yjOHQoUPq3bu3AgMD5e3traZNm+rrr792zDcMQ2PGjFFYWJi8vb0VFxenvXv3Wpi4uMLCQj377LNO/5+fe+45/fm2ZRViHMYVKD8/3zhy5IjT64EHHjAiIyONoqIiwzAM48CBA4YkY+3atU79CgoKLE5fehEREUZycrJT/lOnTjnm5+TkGCEhIUavXr2MtLQ04/XXXze8vb2NuXPnWpi6dD7++GMjMTHRWL16tfHDDz8Yy5cvN4KDg43hw4c7+rjCZ/jGG28Ynp6exvz5841du3YZAwYMMPz9/Y2srCyro120+Ph4IzU11UhLSzO2b99u3HrrrUbdunWd/k126NDBGDBggNPnlZOTY2HqizN27Fjjmmuuccr/yy+/OOYPHDjQCA8PN9atW2d8/fXXxvXXX2+0adPGwsQXJzs722lsa9asMSQZ69evNwyj8n9+qLiuuuoq49ZbbzV27NhhfP/998Yjjzxi+Pj4GEeOHDEMwzDOnj1rNGnSxIiLizP++9//GitXrjRq1qxpjB492uLk//POO+8YAQEBxuzZs4309HRj165dxptvvumYXxnG8GeDBw82unTpYkgy/vvf/zraK8O+RWn2ISrDOCrjPkJp9gUq07byq6++MurVq2c0a9bMePzxxx3tlWEMx44dMyIiIozExETjyy+/NPbv32+sXr3a2Ldvn6PPxIkTDT8/P+P99983duzYYdx+++1GZGSk8fvvv1uY3Nn48eONwMBAY8WKFcaBAweMt99+26hWrZoxffp0R5+KMI4rsuj+q4KCAiMoKMhITk52tJ0r2P68IalsIiIijKlTp553/qxZs4yAgAAjPz/f0TZy5EgjOjq6HNKVvUmTJhmRkZGOaVf4DK+77jpj0KBBjunCwkKjVq1aRkpKioWpykZ2drYhyfjss88cbR06dHDaaFU2Y8eONZo3b17ivBMnThgeHh7G22+/7WjbvXu3IcnYsmVLOSUsW48//rhRv359x5eVlf3zQ8X0yy+/GJKMjRs3Otpyc3MNScaaNWsMwzCMlStXGm5ubkZmZqajz+zZsw1fX1+nbZxVzpw5Y9SuXdv497//fd4+FX0Mf7Zy5UqjYcOGxq5du4ptZyvrvsVf9yEqwzhcYR/hr/sClWlbefLkSeOqq64y1qxZ47T9qyxjGDlypNGuXbvzzi8qKjJCQ0ONyZMnO9pOnDhh2O124/XXXy+PiKXStWtXo1+/fk5td911l9GrVy/DMCrOOK7I08v/6oMPPtDRo0fVt2/fYvNuv/12BQcHq127dvrggw8sSHd5Jk6cqMDAQLVs2VKTJ092Ok1ty5Ytat++vTw9PR1t8fHxSk9P1/Hjx62Ie1lycnJUo0aNYu2V9TMsKCjQtm3bFBcX52hzc3NTXFyctmzZYmGyspGTkyNJxT6zpUuXqmbNmmrSpIlGjx6tvLw8K+Jdsr1796pWrVqKiopSr169dPDgQUnStm3bdObMGafPs2HDhqpbt26l/DwLCgq0ZMkS9evXTzabzdFe2T8/VDyBgYGKjo7WokWL9Ntvv+ns2bOaO3eugoOD1apVK0l/bM+aNm2qkJAQx/vi4+OVm5urXbt2WRXd4ZtvvtGhQ4fk5uamli1bKiwsTF26dFFaWpqjT0UfwzlZWVkaMGCAFi9eLB8fn2LzK+u+xV/3ISr6OFxlH+Gv+wKVaVs5aNAgde3a1SmrVHnG8MEHH6h169bq0aOHgoOD1bJlS73yyiuO+QcOHFBmZqbTOPz8/BQTE1OhxtGmTRutW7dO33//vSRpx44d2rRpk7p06SKp4oyjSrmtqQJ79dVXFR8frzp16jjaqlWrppdeeklt27aVm5ub3n33XXXv3l3vv/++br/9dgvTlt7gwYN17bXXqkaNGtq8ebNGjx6tI0eOaMqUKZKkzMxMRUZGOr3n3MY+MzNTAQEB5Z75Uu3bt08vv/yyXnzxRUdbZf8Mf/31VxUWFjrtgEl/fEZ79uyxKFXZKCoq0pAhQ9S2bVs1adLE0X7fffcpIiJCtWrV0rfffquRI0cqPT1dy5YtszBt6cXExGjBggWKjo7WkSNHNG7cON1www1KS0tTZmamPD095e/v7/SekJAQZWZmWhP4Mrz//vs6ceKEEhMTHW2V/fNDxWSz2bR27Vp1795d1atXl5ubm4KDg7Vq1SrHdiozM7PEv5Xn5llt//79kv6478OUKVNUr149vfTSS+rYsaO+//571ahRo8KPQfrjusjExEQNHDhQrVu3VkZGRrE+lXHfoqR9iIo+DlfYRyhpX6CybCvfeOMNffPNN457Qf1ZZRnD/v37NXv2bA0bNkxPPfWUtm7dqsGDB8vT01MJCQmOrCX9G6tI4xg1apRyc3PVsGFDubu7q7CwUOPHj1evXr0kqcKMw6WK7lGjRumFF1742z67d+92urHRzz//rNWrV+utt95y6lezZk0NGzbMMf2Pf/xDhw8f1uTJky0t2C5mjH/O36xZM3l6euqhhx5SSkqK7Ha72VEvyaV8hocOHVLnzp3Vo0cPDRgwwNFeUT9D/PHtcFpamjZt2uTU/uCDDzp+btq0qcLCwnTTTTfphx9+UP369cs75kU7962q9Mf/uZiYGEVEROitt96St7e3hcnK3quvvqouXbqoVq1ajrbK/vmhfJX27310dLQGDRqk4OBg/ec//5G3t7f+/e9/67bbbtPWrVsVFhZWTomLK+0YioqKJElPP/207r77bklSamqq6tSpo7ffflsPPfSQ6Vn/TmnH8cknn+jkyZMaPXp0OSW7OGW5DwHznW9foKL76aef9Pjjj2vNmjXy8vKyOs4lKyoqUuvWrTVhwgRJUsuWLZWWlqY5c+YoISHB4nSl99Zbb2np0qV67bXXdM0112j79u0aMmSIatWqVaHG4VJF9/Dhw52OupQkKirKaTo1NVWBgYGlKsJiYmK0Zs2ay4l42S5ljOfExMTo7NmzysjIUHR0tEJDQ4vdSfHcdGhoaJnkvVgXO77Dhw+rU6dOatOmjebNm3fB5VeEz7C0atasKXd39xI/I6s+n7Lw6KOPasWKFdq4caPT2SUliYmJkfTHUYjKWLT5+/vr6quv1r59+3TzzTeroKBAJ06ccPr2uzJ+nj/++KPWrl17wSPYlf3zg7lK+/f+008/1YoVK3T8+HH5+vpKkmbNmqU1a9Zo4cKFGjVqlEJDQ4vdtbk8tmelHcORI0ckSY0bN3a02+12RUVFOS5BsWoM0sV9Flu2bCn2xX3r1q3Vq1cvLVy40NJ9i7Lch6iI+0h/Vtn3Ec63LxAaGlrht5Xbtm1Tdna2rr32WkdbYWGhNm7cqP/7v//T6tWrK/wYJCksLMzpb5IkNWrUSO+++66k//07z8rKcvpyMysrSy1atCi3nBfy5JNPatSoUerZs6ekP770//HHH5WSkqKEhIQKMw6XKrqDgoIUFBRU6v6GYSg1NVV9+vSRh4fHBftv377d0m/UpYsf459t377dcVqeJMXGxurpp5/WmTNnHONfs2aNoqOjLTtt6mLGd+jQIXXq1EmtWrVSamqq3NwufIuCivAZlpanp6datWqldevWOR4rU1RUpHXr1unRRx+1NtwlMAxDjz32mN577z1t2LCh2Gl7JTn3GJrK8pn91alTp/TDDz/o/vvvV6tWreTh4aF169Y5jnSlp6fr4MGDio2NtTjpxUlNTVVwcLC6du36t/0q++cHc5X27/25+wL89W+8m5ub4whybGysxo8fr+zsbMc2bs2aNfL19S22U1mWSjuGVq1ayW63Kz09Xe3atZMknTlzRhkZGYqIiLB0DFLpxzFjxgw9//zzjunDhw8rPj5eb775puNLNiv3LcpyH6Ii7iP9WWXdR7jQvkBl2FbedNNN2rlzp1Nb37591bBhQ40cOVLh4eEVfgyS1LZt22KPa/v+++8df5MiIyMVGhqqdevWOYrT3Nxcffnll3r44YfLO+555eXlFfv/6+7u7tg+VJhxlNst2yqgtWvXGpKM3bt3F5u3YMEC47XXXjN2795t7N692xg/frzh5uZmzJ8/34KkF2/z5s3G1KlTje3btxs//PCDsWTJEiMoKMjo06ePo8+JEyeMkJAQ4/777zfS0tKMN954w/Dx8alQj8M4n59//tlo0KCBcdNNNxk///yz0yOKzqnsn6Fh/PE4ELvdbixYsMD47rvvjAcffNDw9/d3urttZfHwww8bfn5+xoYNG5w+r7y8PMMwDGPfvn1GcnKy8fXXXxsHDhwwli9fbkRFRRnt27e3OHnpDR8+3NiwYYNx4MAB4/PPPzfi4uKMmjVrGtnZ2YZh/PEIkbp16xqffvqp8fXXXxuxsbFGbGysxakvTmFhoVG3bl1j5MiRTu2u8PmhYvrll1+MwMBA46677jK2b99upKenG0888YTh4eFhbN++3TCM/z1u65ZbbjG2b99urFq1yggKCqpQj9t6/PHHjdq1axurV6829uzZY/Tv398IDg42jh07ZhhG5RjDX5X0lJDKsG9Rmn2IyjCOyriPcKF9AcOonNvKvz69ozKM4auvvjKqVKlijB8/3ti7d6+xdOlSw8fHx1iyZImjz8SJEw1/f39j+fLlxrfffmvccccdFe6RYQkJCUbt2rUdjwxbtmyZUbNmTWPEiBGOPhVhHFd00f2vf/3rvM/MW7BggdGoUSPDx8fH8PX1Na677jqnW/9XdNu2bTNiYmIMPz8/w8vLy2jUqJExYcIE4/Tp0079duzYYbRr186w2+1G7dq1jYkTJ1qU+OKkpqYakkp8nVPZP8NzXn75ZaNu3bqGp6encd111xlffPGF1ZEuyfk+r9TUVMMwDOPgwYNG+/btjRo1ahh2u91o0KCB8eSTT1aq5zzfe++9RlhYmOHp6WnUrl3buPfee52ed/n7778bjzzyiBEQEGD4+PgYd955p9NOXmWwevVqQ5KRnp7u1O4Knx8qrq1btxq33HKLUaNGDaN69erG9ddfb6xcudKpT0ZGhtGlSxfD29vbqFmzpjF8+HDjzJkzFiUurqCgwBg+fLgRHBxsVK9e3YiLizPS0tKc+lT0MfzV+R7NWdH3LUqzD2EYFX8chlH59hEutC9gGJVzW/nXoruyjOHDDz80mjRpYtjtdqNhw4bGvHnznOYXFRUZzz77rBESEmLY7XbjpptuKrb9t1pubq7x+OOPG3Xr1jW8vLyMqKgo4+mnn3Z63F9FGIfNMAyjfI6pAwAAAABwZeE53QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiG7BQYmKiunfv7vjZZrPJZrPJ09NTDRo0UHJyss6ePStJ2rBhg2O+m5ub/Pz81LJlS40YMUJHjhyxcBQAAOCcc9vq872SkpLKLUvHjh01ZMgQp+lzOby8vNS4cWPNmjXLMX/BggWO+e7u7goICFBMTIySk5OVk5NTbrkBV0PRDVQgnTt31pEjR7R3714NHz5cSUlJmjx5slOf9PR0HT58WFu3btXIkSO1du1aNWnSRDt37rQoNQAAOOfIkSOO17Rp0+Tr6+vU9sQTTzj6Gobh+HK9vAwYMEBHjhzRd999p3vuuUeDBg3S66+/7ph/Lu/PP/+szZs368EHH9SiRYvUokULHT58uFyzAq6CohuoQOx2u0JDQxUREaGHH35YcXFx+uCDD5z6BAcHKzQ0VFdffbV69uypzz//XEFBQXr44YctSg0AAM4JDQ11vPz8/GSz2RzTe/bsUfXq1fXxxx+rVatWstvt2rRpk9OZb+cMGTJEHTt2dEwXFRUpJSVFkZGR8vb2VvPmzfXOO+9cdD4fHx+FhoYqKipKSUlJuuqqq5z2Nc7lDQsLU6NGjdS/f39t3rxZp06d0ogRIy711wJc0Si6gQrM29tbBQUFF+wzcOBAff7558rOzi6nZAAA4FKNGjVKEydO1O7du9WsWbNSvSclJUWLFi3SnDlztGvXLg0dOlS9e/fWZ599dllZSrOvERwcrF69eumDDz5QYWHhZa0PuBJVsToAgOIMw9C6deu0evVqPfbYYxfs37BhQ0lSRkaGgoODzY4HAAAuQ3Jysm6++eZS98/Pz9eECRO0du1axcbGSpKioqK0adMmzZ07Vx06dLjoDIWFhXr99df17bff6sEHH7xg/4YNG+rkyZM6evQo+xrARaLoBiqQFStWqFq1ajpz5oyKiop03333leqGK4ZhSPrjlDAAAFCxtW7d+qL679u3T3l5ecUK9YKCArVs2fKiljVr1iz9+9//VkFBgdzd3TV06NBSXaLGvgZw6Si6gQqkU6dOmj17tjw9PVWrVi1VqVK6/6K7d++WJNWrV8/EdAAAoCxUrVrVadrNzc1R1J5z5swZx8+nTp2SJH300UeqXbu2Uz+73X5R6+7Vq5eefvppeXt7KywsTG5upbvadPfu3fL19VVgYOBFrQ8ARTdQoVStWlUNGjS4qPf8/vvvmjdvntq3b6+goCCTkgEAALMEBQUpLS3NqW379u3y8PCQJDVu3Fh2u10HDx68pFPJ/8zPz++i9zWys7P12muvqXv37qUu0gH8D0U3UMlkZ2fr9OnTOnnypLZt26ZJkybp119/1bJly6yOBgAALsGNN96oyZMna9GiRYqNjdWSJUuUlpbmOHW8evXqeuKJJzR06FAVFRWpXbt2ysnJ0eeffy5fX18lJCSUWRbDMJSZmSnDMHTixAlt2bJFEyZMkJ+fnyZOnFhm6wGuJBTdQCUTHR0tm82matWqKSoqSrfccouGDRum0NBQq6MBAIBLEB8fr2effVYjRozQ6dOn1a9fP/Xp00c7d+509HnuuecUFBSklJQU7d+/X/7+/rr22mv11FNPlWmW3NxchYWFyWazydfXV9HR0UpISNDjjz8uX1/fMl0XcKWwGX+9gAQAAAAAAJQJLsoAAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYJL/Bwxvr29Ef24cAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVa0lEQVR4nO3de3zP9f//8ft7s723YQc7y+xADTnGtzUUahlR6ewT2ZBSSs6HCqOYKIf65FQZSiedUxEiHzmmD5nDEEthW4ktYWN7/f7o5/3p3SbDXnttb7fr5fK+XPZ6vp7v1+v+3Iu9X4/362QzDMMQAAAAAAAoc25WBwAAAAAAwFVRdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAACltGfPHrVv315+fn6y2Wz66KOPynT5mZmZstlsmjdvXpku1xVERUUpOTnZ6hjABaPoBsqBzWYr1WvVqlWXvK4TJ04oJSWlTJYFAEBF9MMPP+jhhx9WTEyMvLy85Ovrq1atWmn69Ok6efKkqetOSkrStm3bNH78eL3++utq0aKFqetzRTt27FBKSooyMzOtjgKUiypWBwAuB6+//rrT9IIFC7Rs2bJi7fXr17/kdZ04cUJjx46VJLVt2/aSlwcAQEXy2Wef6Z577pHdblePHj3UsGFDFRQUaM2aNRo6dKi2b9+uOXPmmLLukydPat26dXrqqaf02GOPmbKOyMhInTx5Uh4eHqYsvyLYsWOHxo4dq7Zt2yoqKqrU78vIyJCbG8cMUflQdAPloHv37k7T69ev17Jly4q1AwCAc9u/f7+6du2qyMhIffXVVwoPD3fM69evn/bu3avPPvvMtPX/8ssvkiR/f3/T1mGz2eTl5WXa8isbwzB06tQpeXt7y263Wx0HuCh8VQRUEEVFRZo2bZquvvpqeXl5KTQ0VA8//LCOHj3q1O/bb79VYmKigoKC5O3trejoaPXq1UvSn9eBBQcHS5LGjh3rOG09JSWlvIcDAECZmzRpko4fP67XXnvNqeA+q27dunriiScc02fOnNEzzzyjOnXqyG63KyoqSk8++aTy8/Od3hcVFaXOnTtrzZo1uvbaa+Xl5aWYmBgtWLDA0SclJUWRkZGSpKFDh8pmszmO0iYnJ5d4xDYlJUU2m82pbdmyZWrdurX8/f1VrVo1xcbG6sknn3TMP9c13V999ZWuv/56Va1aVf7+/rr99tu1c+fOEte3d+9eJScny9/fX35+furZs6dOnDhx7l/s/9e2bVs1bNhQ33//vdq0aSMfHx/VrVtX7733niTp66+/VlxcnLy9vRUbG6vly5c7vf/HH3/Uo48+qtjYWHl7eyswMFD33HOP02nk8+bN0z333CNJateuXbFL7M5ui6VLl6pFixby9vbW7NmzHfPOXtNtGIbatWun4OBg5eTkOJZfUFCgRo0aqU6dOvrjjz/OO2agPFB0AxXEww8/rKFDhzquSevZs6cWLlyoxMREnT59WpKUk5Oj9u3bKzMzUyNGjNBLL72kbt26af369ZKk4OBgzZw5U5J0xx136PXXX9frr7+uO++807JxAQBQVj799FPFxMSoZcuWper/4IMPavTo0brmmms0depUtWnTRqmpqeratWuxvnv37tXdd9+tm2++WS+88IICAgKUnJys7du3S5LuvPNOTZ06VZL0r3/9S6+//rqmTZt2Qfm3b9+uzp07Kz8/X+PGjdMLL7yg2267Td98880/vm/58uVKTExUTk6OUlJSNGjQIK1du1atWrUq8broe++9V7///rtSU1N17733at68eY5Lz87n6NGj6ty5s+Li4jRp0iTZ7XZ17dpV77zzjrp27apbbrlFEydO1B9//KG7775bv//+u+O9mzZt0tq1a9W1a1e9+OKL6tu3r1asWKG2bds6iv4bbrhB/fv3lyQ9+eSTjn2Vv15il5GRoX/961+6+eabNX36dDVt2rRYTpvNprlz5+rUqVPq27evo33MmDHavn270tLSVLVq1VKNGTCdAaDc9evXz/jrf7///Oc/hiRj4cKFTv2WLFni1P7hhx8akoxNmzadc9m//PKLIckYM2aMKdkBALBCbm6uIcm4/fbbS9V/y5YthiTjwQcfdGofMmSIIcn46quvHG2RkZGGJGP16tWOtpycHMNutxuDBw92tO3fv9+QZEyePNlpmUlJSUZkZGSxDGPGjHH6vJ86daohyfjll1/OmfvsOtLS0hxtTZs2NUJCQowjR4442rZu3Wq4ubkZPXr0KLa+Xr16OS3zjjvuMAIDA8+5zrPatGljSDLefPNNR9uuXbsMSYabm5uxfv16R/vSpUuL5Txx4kSxZa5bt86QZCxYsMDRtmjRIkOSsXLlymL9z26LJUuWlDgvKSnJqW327NmGJOONN94w1q9fb7i7uxsDBgw471iB8sSRbqACWLRokfz8/HTzzTfr119/dbyaN2+uatWqaeXKlZL+dw3Z4sWLHUe/AQC4HOTl5UmSqlevXqr+n3/+uSRp0KBBTu2DBw+WpGLXfjdo0EDXX3+9Yzo4OFixsbHat2/fRWf+u7Of4x9//LGKiopK9Z7Dhw9ry5YtSk5OVo0aNRztjRs31s033+wY51/99civJF1//fU6cuSI43f4T6pVq+Z0JkBsbKz8/f1Vv359xcXFOdrP/vzX34+3t7fj59OnT+vIkSOqW7eu/P399d1335VitH+Kjo5WYmJiqfo+9NBDSkxM1OOPP64HHnhAderU0YQJE0q9LqA8UHQDFcCePXuUm5urkJAQBQcHO72OHz/uuFapTZs2uuuuuzR27FgFBQXp9ttvV1paWrFr0wAAcDW+vr6S5HQ68z/58ccf5ebmprp16zq1h4WFyd/fXz/++KNTe+3atYstIyAgoNi9VS7Ffffdp1atWunBBx9UaGiounbtqnffffcfC/CzOWNjY4vNq1+/vn799ddi1y7/fSwBAQGSVKqx1KpVq9h16H5+foqIiCjW9vdlnjx5UqNHj1ZERITsdruCgoIUHBysY8eOKTc397zrPis6OrrUfSXptdde04kTJ7Rnzx7NmzfPqfgHKgLuXg5UAEVFRQoJCdHChQtLnH/25mg2m03vvfee1q9fr08//VRLly5Vr1699MILL2j9+vWqVq1aecYGAKDc+Pr6qmbNmkpPT7+g9/29gDwXd3f3EtsNw7jodRQWFjpNe3t7a/Xq1Vq5cqU+++wzLVmyRO+8845uvPFGffnll+fMcKEuZSznem9plvn4448rLS1NAwYMUHx8vPz8/GSz2dS1a9dSH9mXdMFF86pVqxwHILZt26b4+PgLej9gNopuoAKoU6eOli9frlatWpXqg+a6667Tddddp/Hjx+vNN99Ut27d9Pbbb+vBBx8s9c4FAACVTefOnTVnzhytW7fuvIVVZGSkioqKtGfPHqebdGVnZ+vYsWOOO5GXhYCAAB07dqxY+9+PpkuSm5ubbrrpJt10002aMmWKJkyYoKeeekorV65UQkJCieOQ/ry52N/t2rVLQUFBFeaGYe+9956SkpL0wgsvONpOnTpV7HdTlvsqhw8f1uOPP6727dvL09NTQ4YMUWJiYpluX+BScXo5UAHce++9Kiws1DPPPFNs3pkzZxwfVkePHi32LfXZO3qe/YbXx8dHkkr88AcAoDIbNmyYqlatqgcffFDZ2dnF5v/www+aPn26JOmWW26RpGJ3GJ8yZYokqVOnTmWWq06dOsrNzdX333/vaDt8+LA+/PBDp36//fZbsff+/XP878LDw9W0aVPNnz/f6bM9PT1dX375pWOcFYG7u3ux/ZSXXnqp2BH/s18SlMW+Sp8+fVRUVKTXXntNc+bMUZUqVdS7d+9SHdUHygtHuoEKoE2bNnr44YeVmpqqLVu2qH379vLw8NCePXu0aNEiTZ8+XXfffbfmz5+vGTNm6I477lCdOnX0+++/65VXXpGvr6/jQ9fb21sNGjTQO++8o6uuuko1atRQw4YN1bBhQ4tHCQDApalTp47efPNN3Xfffapfv7569Oihhg0bqqCgQGvXrtWiRYscz3Fu0qSJkpKSNGfOHB07dkxt2rTRxo0bNX/+fHXp0kXt2rUrs1xdu3bV8OHDdccdd6h///46ceKEZs6cqauuusrpBmLjxo3T6tWr1alTJ0VGRionJ0czZsxQrVq11Lp163Muf/LkyerYsaPi4+PVu3dvnTx5Ui+99JL8/PyUkpJSZuO4VJ07d9brr78uPz8/NWjQQOvWrdPy5csVGBjo1K9p06Zyd3fXc889p9zcXNntdt14440KCQm5oPWlpaXps88+07x581SrVi1Jfxb53bt318yZM/Xoo4+W2diAS0HRDVQQs2bNUvPmzTV79mw9+eSTqlKliqKiotS9e3e1atVKkhw7DG+//bays7Pl5+ena6+9VgsXLnS66cirr76qxx9/XAMHDlRBQYHGjBlD0Q0AcAm33Xabvv/+e02ePFkff/yxZs6cKbvdrsaNG+uFF15Qnz59HH1fffVVxcTEaN68efrwww8VFhamkSNHasyYMWWaKTAwUB9++KEGDRqkYcOGKTo6WqmpqdqzZ49T0X3bbbcpMzNTc+fO1a+//qqgoCC1adNGY8eOddyYrCQJCQlasmSJxowZo9GjR8vDw0Nt2rTRc889d8E3HTPT9OnT5e7uroULF+rUqVNq1aqV4xnjfxUWFqZZs2YpNTVVvXv3VmFhoVauXHlBRffPP/+sgQMH6tZbb1VSUpKjvVu3bnr//fc1bNgwdezYsUL9fnD5shmcewEAAAAAgCm4phsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmKdVzuouKinTo0CFVr15dNpvN7EwAAFQIhmHo999/V82aNeXmxvfU58J+AgDgclTa/YRSFd2HDh1SREREmYUDAKAy+emnn1SrVi2rY1RY7CcAAC5n59tPKFXRXb16dcfCfH19yyYZAAAVXF5eniIiIhyfgyjZ2d9P47tHyd3Dy+I0/xPw4VarI5So6FS+1REA4LzcA/ytjlCi/dNqWh3BoehkvjL7TjnvfkKpiu6zp4r5+vpSdAMALjucMv3Pzv5+3D285O5ZcYruKjZPqyOUqMhWZHUEADgv9wr6N9Tdp+J8zpx1vv0ELlADAAAAAMAkFN0AAAAAAJiEohsAAAAAAJOU6pru0iosLNTp06fLcpGwkIeHh9zd3a2OAQAAAACVVpkU3YZhKCsrS8eOHSuLxaEC8ff3V1hYGDcRAgAAAICLUCZF99mCOyQkRD4+PhRoLsAwDJ04cUI5OTmSpPDwcIsTAQAAAEDlc8lFd2FhoaPgDgwMLItMqCC8vb0lSTk5OQoJCeFUcwAAAAC4QJd8I7Wz13D7+PhcchhUPGe3K9fqAwAAAMCFK7O7l3NKuWtiuwIAAADAxeORYQAAAAAAmISiGwAAF1VYWKhRo0YpOjpa3t7eqlOnjp555hkZhuHoYxiGRo8erfDwcHl7eyshIUF79uyxMDUAAK6lTJ/T/XdRIz4zc/FOMid2KnXf850yPWbMGKWkpFxiIgAArPXcc89p5syZmj9/vq6++mp9++236tmzp/z8/NS/f39J0qRJk/Tiiy9q/vz5io6O1qhRo5SYmKgdO3bIy8vL4hEAAFD5mVp0V1SHDx92/PzOO+9o9OjRysjIcLRVq1bN8bNhGCosLFSVKpflrwq4vKX4WbjuXOvWDZexdu1a3X777erU6c8vpqOiovTWW29p48aNkv78jJs2bZqefvpp3X777ZKkBQsWKDQ0VB999JG6du1qWXYAAFzFZXl6eVhYmOPl5+cnm83mmN61a5eqV6+uL774Qs2bN5fdbteaNWuUnJysLl26OC1nwIABatu2rWO6qKhIqampjtP4mjRpovfee698BwcAwP/XsmVLrVixQrt375Ykbd26VWvWrFHHjh0lSfv371dWVpYSEhIc7/Hz81NcXJzWrVt3zuXm5+crLy/P6QUAAErG4dtzGDFihJ5//nnFxMQoICCgVO9JTU3VG2+8oVmzZunKK6/U6tWr1b17dwUHB6tNmzYmJwYAwNmIESOUl5enevXqyd3dXYWFhRo/fry6desmScrKypIkhYaGOr0vNDTUMa8kqampGjt2rHnBAQBwIRTd5zBu3DjdfPPNpe6fn5+vCRMmaPny5YqPj5ckxcTEaM2aNZo9ezZFNwCg3L377rtauHCh3nzzTV199dXasmWLBgwYoJo1ayopKemilzty5EgNGjTIMZ2Xl6eIiIiyiAwAgMuh6D6HFi1aXFD/vXv36sSJE8UK9YKCAjVr1qwsowEAUCpDhw7ViBEjHNdmN2rUSD/++KNSU1OVlJSksLAwSVJ2drbCw8Md78vOzlbTpk3PuVy73S673W5qdgAAXAVF9zlUrVrVadrNzc3pESuSdPr0acfPx48flyR99tlnuuKKK5z6sWMCALDCiRMn5ObmfPsWd3d3FRUVSZKio6MVFhamFStWOIrsvLw8bdiwQY888kh5xwUAwCVRdJdScHCw0tPTndq2bNkiDw8PSVKDBg1kt9t14MABTiUHAFQIt956q8aPH6/atWvr6quv1n//+19NmTJFvXr1kvTnIzQHDBigZ599VldeeaXjkWE1a9YsdvNQAABwcSi6S+nGG2/U5MmTtWDBAsXHx+uNN95Qenq649Tx6tWra8iQIRo4cKCKiorUunVr5ebm6ptvvpGvr+8lXTsHAMDFeOmllzRq1Cg9+uijysnJUc2aNfXwww9r9OjRjj7Dhg3TH3/8oYceekjHjh1T69attWTJEp7RDQBAGaHoLqXExESNGjVKw4YN06lTp9SrVy/16NFD27Ztc/R55plnFBwcrNTUVO3bt0/+/v665ppr9OSTT1qYHABwuapevbqmTZumadOmnbOPzWbTuHHjNG7cuPILBgDAZcRm/P1C5RLk5eXJz89Pubm58vX1dZp36tQp7d+/X9HR0Xwr7oLYvrispfhZuO5c69YNh3/6/MP/nP09NfvXeLl7VpzPihrv/tfqCCUqOnXK6ggAcF7upXxscnnbN7uW1REcCk+c0r6k1PPuJ3CkGwAAlAm/tzaqis3D6hgORVYHAIDSstmsTlBMQZNoqyOUyP9jT6sjOBQWuJeqn9v5uwAAAAAAgItB0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASiu4yNG/ePPn7+1sd44JUxswAAAAAUFlUMXXpKX6mLt55XbkX/Jbk5GTNnz+/WHtiYqKWLFnyj++NiorSgAEDNGDAAEfbfffdp1tuueWCc1yoefPmacCAATp27Jjp6wIAAAAAXDxzi+5KoEOHDkpLS3Nqs9vtF7Usb29veXt7l0UsAAAAAIALuOxPL7fb7QoLC3N6BQQEyDAMpaSkqHbt2rLb7apZs6b69+8vSWrbtq1+/PFHDRw4UDabTTabTVLxU7VTUlLUtGlTzZ07V7Vr11a1atX06KOPqrCwUJMmTVJYWJhCQkI0fvx4p0xTpkxRo0aNVLVqVUVEROjRRx/V8ePHJUmrVq1Sz549lZub61h3SkqKJCk/P19DhgzRFVdcoapVqyouLk6rVq1yWva8efNUu3Zt+fj46I477tCRI0fM+cUCAAAAADjSfS7vv/++pk6dqrfffltXX321srKytHXrVknSBx98oCZNmuihhx5Snz59/nE5P/zwg7744gstWbJEP/zwg+6++27t27dPV111lb7++mutXbtWvXr1UkJCguLi4iRJbm5uevHFFxUdHa19+/bp0Ucf1bBhwzRjxgy1bNlS06ZN0+jRo5WRkSFJqlatmiTpscce044dO/T222+rZs2a+vDDD9WhQwdt27ZNV155pTZs2KDevXsrNTVVXbp00ZIlSzRmzBgTf4sAAAAAcHm77IvuxYsXO4rWs5588kl5eXkpLCxMCQkJ8vDwUO3atXXttddKkmrUqCF3d3dVr15dYWFh/7j8oqIizZ07V9WrV1eDBg3Url07ZWRk6PPPP5ebm5tiY2P13HPPaeXKlY6i+6/XiUdFRenZZ59V3759NWPGDHl6esrPz082m81p3QcOHFBaWpoOHDigmjVrSpKGDBmiJUuWKC0tTRMmTND06dPVoUMHDRs2TJJ01VVXae3atee9fh0AAAAAcHEu+6K7Xbt2mjlzplNbjRo19Mcff2jatGmKiYlRhw4ddMstt+jWW29VlSoX9iuLiopS9erVHdOhoaFyd3eXm5ubU1tOTo5jevny5UpNTdWuXbuUl5enM2fO6NSpUzpx4oR8fHxKXM+2bdtUWFioq666yqk9Pz9fgYGBkqSdO3fqjjvucJofHx9P0Q0AAAAAJrnsi+6qVauqbt26xdpr1KihjIwMLV++XMuWLdOjjz6qyZMn6+uvv5aHh0epl//3vjabrcS2oqIiSVJmZqY6d+6sRx55ROPHj1eNGjW0Zs0a9e7dWwUFBecsuo8fPy53d3dt3rxZ7u7uTvP+fiQfAAAAAFA+Lvui+594e3vr1ltv1a233qp+/fqpXr162rZtm6655hp5enqqsLCwzNe5efNmFRUV6YUXXnAcDX/33Xed+pS07mbNmqmwsFA5OTm6/vrrS1x2/fr1tWHDBqe29evXl2F6AAAAAMBfXfZFd35+vrKyspzaqlSposWLF6uwsFBxcXHy8fHRG2+8IW9vb0VGRkr687Tx1atXq2vXrrLb7QoKCiqTPHXr1tXp06f10ksv6dZbb9U333yjWbNmOfWJiorS8ePHtWLFCjVp0kQ+Pj666qqr1K1bN/Xo0UMvvPCCmjVrpl9++UUrVqxQ48aN1alTJ/Xv31+tWrXS888/r9tvv11Lly7l1HIAAAAAMNFl/8iwJUuWKDw83OnVunVr+fv765VXXlGrVq3UuHFjLV++XJ9++qnj+uhx48YpMzNTderUUXBwcJnladKkiaZMmaLnnntODRs21MKFC5WamurUp2XLlurbt6/uu+8+BQcHa9KkSZKktLQ09ejRQ4MHD1ZsbKy6dOmiTZs2qXbt2pKk6667Tq+88oqmT5+uJk2a6Msvv9TTTz9dZtkBAAAAAM5shmEY5+uUl5cnPz8/5ebmytfX12neqVOntH//fkVHR8vLy8u0oLAG2xeXtRQ/C9eda9264fBPn3/4n7O/p7a6XVVspb/vCQDg/7PZrE5QTGGbZlZHKNHxKzytjuBQWHBK37379Hn3Ey77I90AAAAAAJiFohsAABd28OBBde/eXYGBgfL29lajRo307bffOuYbhqHRo0crPDxc3t7eSkhI0J49eyxMDACAa6HoBgDARR09elStWrWSh4eHvvjiC+3YsUMvvPCCAgICHH0mTZqkF198UbNmzdKGDRtUtWpVJSYm6tSpUxYmBwDAdVz2dy8HAMBVPffcc4qIiFBaWpqjLTo62vGzYRiaNm2ann76ad1+++2SpAULFig0NFQfffSRunbtWu6ZAQBwNRzpBgDARX3yySdq0aKF7rnnHoWEhKhZs2Z65ZVXHPP379+vrKwsJSQkONr8/PwUFxendevWnXO5+fn5ysvLc3oBAICSldmR7qKiorJaFCoQtisAVF779u3TzJkzNWjQID355JPatGmT+vfvL09PTyUlJSkrK0uSFBoa6vS+0NBQx7ySpKamauzYsaZmBwAzGK2aWh2hRDPf/LfVEYp5L++41RFK9FXv66yO4HDmTOkuxbrkotvT01Nubm46dOiQgoOD5enpKVsFvOU9LoxhGCooKNAvv/wiNzc3eXpWnFvzAwBKp6ioSC1atNCECRMkSc2aNVN6erpmzZqlpKSki17uyJEjNWjQIMd0Xl6eIiIiLjkvAACu6JKLbjc3N0VHR+vw4cM6dOhQWWRCBeLj46PatWvLzY0rEQCgsgkPD1eDBg2c2urXr6/3339fkhQWFiZJys7OVnh4uKNPdna2mjZtes7l2u122e32sg8MAIALKpPTyz09PVW7dm2dOXNGhYWFZbFIVADu7u6qUqUKZy4AQCXVqlUrZWRkOLXt3r1bkZGRkv68qVpYWJhWrFjhKLLz8vK0YcMGPfLII+UdFwAAl1Rm13TbbDZ5eHjIw8OjrBYJAAAuwcCBA9WyZUtNmDBB9957rzZu3Kg5c+Zozpw5kv787B4wYICeffZZXXnllYqOjtaoUaNUs2ZNdenSxdrwAAC4CB4ZBgCAi/q///s/ffjhhxo5cqTGjRun6OhoTZs2Td26dXP0GTZsmP744w899NBDOnbsmFq3bq0lS5bIy8vLwuQAALgOim4AAFxY586d1blz53POt9lsGjdunMaNG1eOqQAAuHxwdywAAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEmqWB0AlVCKn4XrzrVu3QAAACg1tyb1rY5QTJ1pO62OUKLHO/ayOkIxhTt2Wx3hHLZZHeB/jNOl6saRbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AACXiYkTJ8pms2nAgAGOtlOnTqlfv34KDAxUtWrVdNdddyk7O9u6kAAAuBiKbgAALgObNm3S7Nmz1bhxY6f2gQMH6tNPP9WiRYv09ddf69ChQ7rzzjstSgkAgOuh6AYAwMUdP35c3bp10yuvvKKAgABHe25url577TVNmTJFN954o5o3b660tDStXbtW69evtzAxAACug6IbAAAX169fP3Xq1EkJCQlO7Zs3b9bp06ed2uvVq6fatWtr3bp15R0TAACXxHO6AQBwYW+//ba+++47bdq0qdi8rKwseXp6yt/f36k9NDRUWVlZ51xmfn6+8vPzHdN5eXlllhcAAFfDkW4AAFzUTz/9pCeeeEILFy6Ul5dXmS03NTVVfn5+jldERESZLRsAAFdD0Q0AgIvavHmzcnJydM0116hKlSqqUqWKvv76a7344ouqUqWKQkNDVVBQoGPHjjm9Lzs7W2FhYedc7siRI5Wbm+t4/fTTTyaPBACAyovTywEAcFE33XSTtm3b5tTWs2dP1atXT8OHD1dERIQ8PDy0YsUK3XXXXZKkjIwMHThwQPHx8edcrt1ul91uNzU7AACugqIbAAAXVb16dTVs2NCprWrVqgoMDHS09+7dW4MGDVKNGjXk6+urxx9/XPHx8bruuuusiAwAgMuh6AYA4DI2depUubm56a677lJ+fr4SExM1Y8YMq2MBAOAyKLovVoqfxevPtXb9AIBKadWqVU7TXl5eevnll/Xyyy9bEwgAABfHjdQAAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCRVrA4AAAAA4OK5+/tZHaFEPv/+xeoIxexLirQ6QokKd+y2OkIxtioVs1Q0zpyxOsIF40g3AAAAAAAmoegGAAAAAMAkFfOcAeBcUiw8fSol17p1A6i0ioqKNG/ePH3wwQfKzMyUzWZTdHS07r77bj3wwAOy2WxWRwQAACbiSDcAACYxDEO33XabHnzwQR08eFCNGjXS1VdfrR9//FHJycm64447rI4IAABMxpFuAABMMm/ePK1evVorVqxQu3btnOZ99dVX6tKlixYsWKAePXpYlBAAAJiNI90AAJjkrbfe0pNPPlms4JakG2+8USNGjNDChQstSAYAAMoLRTcAACb5/vvv1aFDh3PO79ixo7Zu3VqOiQAAQHmj6AYAwCS//fabQkNDzzk/NDRUR48eLcdEAACgvFF0AwBgksLCQlWpcu7bp7i7u+vMmTPlmAgAAJQ3bqQGAIBJDMNQcnKy7HZ7ifPz8/PLOREAAChvFN1AZcDzyYFKKSkp6bx9uHM5AACujaIbAACTpKWlWR1Bqamp+uCDD7Rr1y55e3urZcuWeu655xQbG+voc+rUKQ0ePFhvv/228vPzlZiYqBkzZvzj9egAAKB0uKYbAAATZWZm6pVXXtHLL7+s7du3l/v6v/76a/Xr10/r16/XsmXLdPr0abVv315//PGHo8/AgQP16aefatGiRfr666916NAh3XnnneWeFQAAV8SRbgAATLJy5Up17txZJ0+elCRVqVJFc+fOVffu3cstw5IlS5ym582bp5CQEG3evFk33HCDcnNz9dprr+nNN9/UjTfeKOnPI/T169fX+vXrdd1115VbVgAAXBFHugEAMMmoUaN088036+DBgzpy5Ij69OmjYcOGWZopN/fP+zTUqFFDkrR582adPn1aCQkJjj716tVT7dq1tW7dOksyAgDgSjjSDQCASdLT07V27VqFh4dLkiZPnqzZs2fryJEjCgwMLPc8RUVFGjBggFq1aqWGDRtKkrKysuTp6Sl/f3+nvqGhocrKyipxOfn5+U53Xs/LyzMtMwAAlR1HugEAMEleXp6CgoIc0z4+PvL29nYcbS5v/fr1U3p6ut5+++1LWk5qaqr8/Pwcr4iIiDJKCACA6+FINwAAJlq6dKn8/P732L+ioiKtWLFC6enpjrbbbrvN9ByPPfaYFi9erNWrV6tWrVqO9rCwMBUUFOjYsWNOR7uzs7MVFhZW4rJGjhypQYMGOabz8vIovAEAOAeKbgAATFTSs7offvhhx882m02FhYWmrd8wDD3++OP68MMPtWrVKkVHRzvNb968uTw8PLRixQrdddddkqSMjAwdOHBA8fHxJS7TbrfLbreblhkAAFdC0Q0AgEmKioqsjqB+/frpzTff1Mcff6zq1as7rtP28/OTt7e3/Pz81Lt3bw0aNEg1atSQr6+vHn/8ccXHx3PncgAAygBFNwAALmzmzJmSpLZt2zq1p6WlKTk5WZI0depUubm56a677lJ+fr4SExM1Y8aMck4KAIBrougGAMAkn3zySan6mXlNt2EY5+3j5eWll19+WS+//LJpOQAAuFxRdAMAYJIuXbqct4/Z13QDAABrUXQDAGCSinBNNwAAsBZFNwAAAFBK+bf8n9URilnxymyrI5SofY8+VkcopsqOzVZHqDSMM2esjuAy3KwOAAAAAACAq6LoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGAS7l4OAIAJAgICZLPZStX3t99+MzkNAACwCkU3AAAmmDZtmuPnI0eO6Nlnn1ViYqLi4+MlSevWrdPSpUs1atQoixICAIDyQNENAIAJkpKSHD/fddddGjdunB577DFHW//+/fXvf/9by5cv18CBA62ICAAAygHXdAMAYLKlS5eqQ4cOxdo7dOig5cuXW5AIAACUF4puAABMFhgYqI8//rhY+8cff6zAwEALEgEAgPLC6eUAAJhs7NixevDBB7Vq1SrFxcVJkjZs2KAlS5bolVdesTgdAAAwE0U3AAAmS05OVv369fXiiy/qgw8+kCTVr19fa9ascRThAADANVF0AwBQDuLi4rRw4UKrYwAAgHLGNd0AAJSDH374QU8//bTuv/9+5eTkSJK++OILbd++3eJkAADATBTdAACY7Ouvv1ajRo20YcMGvf/++zp+/LgkaevWrRozZozF6QAAgJkougEAMNmIESP07LPPatmyZfL09HS033jjjVq/fr2FyQAAgNkougEAMNm2bdt0xx13FGsPCQnRr7/+akEiAABQXii6AQAwmb+/vw4fPlys/b///a+uuOIKCxIBAIDyQtENAIDJunbtquHDhysrK0s2m01FRUX65ptvNGTIEPXo0cPqeAAAwEQU3QAAmGzChAmqV6+eIiIidPz4cTVo0EA33HCDWrZsqaefftrqeAAAwEQU3QAAmMzT01OvvPKK9u3bp8WLF+uNN97Qrl279Prrr8vd3d3qeJKkl19+WVFRUfLy8lJcXJw2btxodSQAAFxCFasDAJVF1IjPLFt3ppdlqwZQBsaNG6chQ4YoIiJCERERjvaTJ09q8uTJGj16tIXppHfeeUeDBg3SrFmzFBcXp2nTpikxMVEZGRkKCQmxNBsAAJUdRTeASqe8vgDhyw6UlbFjx6pv377y8fFxaj9x4oTGjh1redE9ZcoU9enTRz179pQkzZo1S5999pnmzp2rESNGWJoNAIDKjqK7kjKr6Mic2MmU5QLA5cwwDNlstmLtW7duVY0aNSxI9D8FBQXavHmzRo4c6Whzc3NTQkKC1q1bZ2EyAABcA0U3AAAmCQgIkM1mk81m01VXXeVUeBcWFur48ePq27evhQmlX3/9VYWFhQoNDXVqDw0N1a5du0p8T35+vvLz8x3TeXl5pmYEAKAyo+gGAMAk06ZNk2EY6tWrl8aOHSs/Pz/HPE9PT0VFRSk+Pt7ChBcnNTVVY8eOtToGLgM2D0+rIxTzWz0PqyMU0ynqOqsjlKjK6c1WRwAqBIpuAABMkpSUJEmKjo5Wy5Yt5eFR8XbWg4KC5O7uruzsbKf27OxshYWFlfiekSNHatCgQY7pvLw8pxvEAQCA/+GRYQAAmKxNmzaOgvvUqVPKy8tzelnJ09NTzZs314oVKxxtRUVFWrFixTmPwtvtdvn6+jq9AABAyTjSDQAV0IXcLJEbIFZ8J06c0LBhw/Tuu+/qyJEjxeYXFhZakOp/Bg0apKSkJLVo0ULXXnutpk2bpj/++MNxN3MAAHDxKLoBoJKz8hnyf0Xxf25Dhw7VypUrNXPmTD3wwAN6+eWXdfDgQc2ePVsTJ060Op7uu+8+/fLLLxo9erSysrLUtGlTLVmypNjN1QAAwIWj6AYAwGSffvqpFixYoLZt26pnz566/vrrVbduXUVGRmrhwoXq1q2b1RH12GOP6bHHHrM6BgAALoeiG0DFleJXYnOmVznnAC7Rb7/9ppiYGEmSr6+vfvvtN0lS69at9cgjj1gZDQAAmMyyopvTIQEAl4uYmBjt379ftWvXVr169fTuu+/q2muv1aeffip/f3+r4wEAABNd9ke6L7b450gbAKC0evbsqa1bt6pNmzYaMWKEbr31Vv373//W6dOnNWXKFKvjAQAAE132RTeAf/bXL6Y4MwS4OAMHDnT8nJCQoF27dmnz5s2qW7euGjdubGEyAABgNopuAADKWWRkpCIjI62OAQAAygFFNwCgTHCvjn+2adMmrVy5Ujk5OSoqKnKaxynmAAC4LopuAABMNmHCBD399NOKjY1VaGiobDabY95ffwYAAK6HohsAAJNNnz5dc+fOVXJystVRAABAOaPoBlBq5X36ME8JgKtwc3NTq1atrI4BAAAs4GZ1AAAAXN3AgQP18ssvWx0DAABYgCPdAACYbMiQIerUqZPq1KmjBg0ayMPDw2n+Bx98YFEyAABgNopuAABM1r9/f61cuVLt2rVTYGAgN08DAOAyQtENAIDJ5s+fr/fff1+dOlXMx5kBAADzcE03AAAmq1GjhurUqWN1DAAAYAGOdAMAnGR63W/ZuqNOvWnZus2UkpKiMWPGKC0tTT4+PlbHAQAA5YiiGwAAk7344ov64YcfFBoaqqioqGI3Uvvuu+8sSgYAAMxG0Q0AgMm6dOlidQQAAGARim4AAEw2ZswYqyMAAACLcCM1AAAAAABMwpFuOIka8dl5+2R6lUMQAKjkatSood27dysoKEgBAQH/+Gzu3377rRyTXT7cgwKtjlAim291qyMUd/KU1QlK5P621QmKO/WNYXWE4owiqxMA+AcU3QAAmGDq1KmqXr264+d/KroBAIDrougGAMAESUlJjp+Tk5OtCwIAACzFNd0AAJjM3d1dOTk5xdqPHDkid3d3CxIBAIDyQtENAIDJDKPka0Dz8/Pl6elpyjozMzPVu3dvRUdHy9vbW3Xq1NGYMWNUUFDg1O/777/X9ddfLy8vL0VERGjSpEmm5AEA4HLF6eUAAJjkxRdflCTZbDa9+uqrqlatmmNeYWGhVq9erXr16pmy7l27dqmoqEizZ89W3bp1lZ6erj59+uiPP/7Q888/L0nKy8tT+/btlZCQoFmzZmnbtm3q1auX/P399dBDD5mSCwCAyw1FNwAAJpk6daqkP490z5o1y+lUck9PT0VFRWnWrFmmrLtDhw7q0KGDYzomJkYZGRmaOXOmo+heuHChCgoKNHfuXHl6eurqq6/Wli1bNGXKFIpuAADKCEU3gH+U6XW/1RGASmv//v2SpHbt2umDDz5QQECApXlyc3NVo0YNx/S6det0ww03OJ3inpiYqOeee05Hjx49Z978/Hzl5+c7pvPy8swLDQBAJcc13QAAmGzlypVOBWxhYaG2bNmio0ePlluGvXv36qWXXtLDDz/saMvKylJoaKhTv7PTWVlZ51xWamqq/Pz8HK+IiAhzQgMA4AIougEAMNmAAQP02muvSfqz4L7hhht0zTXXKCIiQqtWrbqgZY0YMUI2m+0fX7t27XJ6z8GDB9WhQwfdc8896tOnzyWPZ+TIkcrNzXW8fvrpp0teJgAArorTywEAMNmiRYvUvXt3SdKnn36qzMxM7dq1S6+//rqeeuopffPNN6Ve1uDBg8/73O+YmBjHz4cOHVK7du3UsmVLzZkzx6lfWFiYsrOzndrOToeFhZ1z+Xa7XXa7vdSZAQC4nFF0AwBgsiNHjjiK2M8//1z33HOPrrrqKvXq1UvTp0+/oGUFBwcrODi4VH0PHjyodu3aqXnz5kpLS5Obm/MJbvHx8Xrqqad0+vRpeXh4SJKWLVum2NhYy68/BwDAVXB6OQAAJgsNDdWOHTtUWFioJUuW6Oabb5YknThxwumO5mXp4MGDatu2rWrXrq3nn39ev/zyi7Kyspyu1b7//vvl6emp3r17a/v27XrnnXc0ffp0DRo0yJRMAABcjjjSDQCAyXr27Kl7771X4eHhstlsSkhIkCRt2LDBtOd0L1u2THv37tXevXtVq1Ytp3mGYUiS/Pz89OWXX6pfv35q3ry5goKCNHr0aB4XBgBAGaLoBgDAZCkpKWrYsKF++ukn3XPPPY7rod3d3TVixAhT1pmcnHzea78lqXHjxvrPf/5jSgYAAEDRDQBAubj77ruLtSUlJVmQBAAAlCeu6QYAwCS33HKLcnNzHdMTJ07UsWPHHNNHjhxRgwYNLEgGAADKC0U3AAAmWbp0qfLz8x3TEyZM0G+//eaYPnPmjDIyMqyIBgAAyglFNwAAJjl7w7JzTQMAANdH0Q0AAAAAgEkougEAMInNZpPNZivWBgAALh/cvRwAAJMYhqHk5GTHI8JOnTqlvn37qmrVqpLkdL03AABwTRTdAACY5O+PBOvevXuxPj169CivOAAAwAIU3QAAmCQtLc3qCAAAwGJc0w0AAAAAgEk40g0AAFxS4a9HrI5QogOPxVodoZidD82wOkKJmo99xOoIxUTPXmd1hGJ4GCFQsXGkGwAAAAAAk1B0AwAAAABgEopuAAAAAABMQtENAAAAAIBJKvWN1DK97rc6AgAAAAAA58SRbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMA4OLy8/PVtGlT2Ww2bdmyxWne999/r+uvv15eXl6KiIjQpEmTrAkJAICLougGAMDFDRs2TDVr1izWnpeXp/bt2ysyMlKbN2/W5MmTlZKSojlz5liQEgAA11TF6gAAAMA8X3zxhb788ku9//77+uKLL5zmLVy4UAUFBZo7d648PT119dVXa8uWLZoyZYoeeughixIDAOBaONINAICLys7OVp8+ffT666/Lx8en2Px169bphhtukKenp6MtMTFRGRkZOnr06DmXm5+fr7y8PKcXAAAoGUU3AAAuyDAMJScnq2/fvmrRokWJfbKyshQaGurUdnY6KyvrnMtOTU2Vn5+f4xUREVF2wQEAcDEU3QAAVCIjRoyQzWb7x9euXbv00ksv6ffff9fIkSPLPMPIkSOVm5vreP30009lvg4AAFwF13QDAFCJDB48WMnJyf/YJyYmRl999ZXWrVsnu93uNK9Fixbq1q2b5s+fr7CwMGVnZzvNPzsdFhZ2zuXb7fZiywUAACWj6AYAoBIJDg5WcHDwefu9+OKLevbZZx3Thw4dUmJiot555x3FxcVJkuLj4/XUU0/p9OnT8vDwkCQtW7ZMsbGxCggIMGcAAABcZii6AQBwQbVr13aarlatmiSpTp06qlWrliTp/vvv19ixY9W7d28NHz5c6enpmj59uqZOnVrueQEAcFUU3QAAXKb8/Pz05Zdfql+/fmrevLmCgoI0evRoHhcGAEAZougGAOAyEBUVJcMwirU3btxY//nPfyxIBADA5YG7lwMAAAAAYBKKbgAAAAAATMLp5QAAAOUo8tmNVkcoJjGlqdURShSkdVZHAIBLxpFuAAAAAABMQtENAAAAAIBJKLoBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmISiGwAAAAAAk1B0AwAAAABgEopuAAAAAABMUsXqAACA4jK97rc6AgAAAMoAR7oBAAAAADAJRTcAAAAAACah6AYAAAAAwCQU3QAAAAAAmIQbqQGlxI2tAAAAAFwojnQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAALuyzzz5TXFycvL29FRAQoC5dujjNP3DggDp16iQfHx+FhIRo6NChOnPmjDVhAQBwQdy9HAAAF/X++++rT58+mjBhgm688UadOXNG6enpjvmFhYXq1KmTwsLCtHbtWh0+fFg9evSQh4eHJkyYYGFyAABcB0U3AAAu6MyZM3riiSc0efJk9e7d29HeoEEDx89ffvmlduzYoeXLlys0NFRNmzbVM888o+HDhyslJUWenp5WRAcAwKVwejkAAC7ou+++08GDB+Xm5qZmzZopPDxcHTt2dDrSvW7dOjVq1EihoaGOtsTEROXl5Wn79u1WxAYAwOVQdAMA4IL27dsnSUpJSdHTTz+txYsXKyAgQG3bttVvv/0mScrKynIquCU5prOyss657Pz8fOXl5Tm9AABAyTi9HACASmTEiBF67rnn/rHPzp07VVRUJEl66qmndNddd0mS0tLSVKtWLS1atEgPP/zwRWdITU3V2LFji7W7NbhKbu72i15uWRvzyUKrI5To/s8etTpCMVc+vsHqCADgsii6AQCoRAYPHqzk5OR/7BMTE6PDhw9Lcr6G2263KyYmRgcOHJAkhYWFaePGjU7vzc7Odsw7l5EjR2rQoEGO6by8PEVERFzQOAAAuFxQdAMAUIkEBwcrODj4vP2aN28uu92ujIwMtW7dWpJ0+vRpZWZmKjIyUpIUHx+v8ePHKycnRyEhIZKkZcuWydfX16lY/zu73S67veIc0QYAoCKj6AYAwAX5+vqqb9++GjNmjCIiIhQZGanJkydLku655x5JUvv27dWgQQM98MADmjRpkrKysvT000+rX79+FNUAAJQRim4AAFzU5MmTVaVKFT3wwAM6efKk4uLi9NVXXykgIECS5O7ursWLF+uRRx5RfHy8qlatqqSkJI0bN87i5AAAuA6KbgAAXJSHh4eef/55Pf/88+fsExkZqc8//7wcUwEAcHnhkWEAAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATELRDQAAAACASSi6AQAAAAAwCUU3AAAAAAAmoegGAAAAAMAkFN0AAAAAAJiEohsAAAAAAJNQdAMAAAAAYBKKbgAAAAAATFLF6gAAAMA1HBplk7uPzeoYDs9cf6vVEUp05cENVkcAAJQjjnQDAAAAAGASim4AAAAAAExC0Q0AgIvavXu3br/9dgUFBcnX11etW7fWypUrnfocOHBAnTp1ko+Pj0JCQjR06FCdOXPGosQAALgeim4AAFxU586ddebMGX311VfavHmzmjRpos6dOysrK0uSVFhYqE6dOqmgoEBr167V/PnzNW/ePI0ePdri5AAAuA6KbgAAXNCvv/6qPXv2aMSIEWrcuLGuvPJKTZw4USdOnFB6erok6csvv9SOHTv0xhtvqGnTpurYsaOeeeYZvfzyyyooKLB4BAAAuAaKbgAAXFBgYKBiY2O1YMEC/fHHHzpz5oxmz56tkJAQNW/eXJK0bt06NWrUSKGhoY73JSYmKi8vT9u3b7cqOgAALoVHhgEA4IJsNpuWL1+uLl26qHr16nJzc1NISIiWLFmigIAASVJWVpZTwS3JMX32FPSS5OfnKz8/3zGdl5dnwggAAHANHOkGAKASGTFihGw22z++du3aJcMw1K9fP4WEhOg///mPNm7cqC5duujWW2/V4cOHLylDamqq/Pz8HK+IiIgyGh0AAK6HI90AAFQigwcPVnJy8j/2iYmJ0VdffaXFixfr6NGj8vX1lSTNmDFDy5Yt0/z58zVixAiFhYVp48aNTu/Nzs6WJIWFhZ1z+SNHjtSgQYMc03l5eRTeAACcA0U3AACVSHBwsIKDg8/b78SJE5IkNzfnk9rc3NxUVFQkSYqPj9f48eOVk5OjkJAQSdKyZcvk6+urBg0anHPZdrtddrv9YocAAMBlhdPLAQBwQfHx8QoICFBSUpK2bt2q3bt3a+jQodq/f786deokSWrfvr0aNGigBx54QFu3btXSpUv19NNPq1+/fhTVAACUEYpuAABcUFBQkJYsWaLjx4/rxhtvVIsWLbRmzRp9/PHHatKkiSTJ3d1dixcvlru7u+Lj49W9e3f16NFD48aNszg9AACug9PLAQBwUS1atNDSpUv/sU9kZKQ+//zzckoEAMDlhyPdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYpIrVAXBxMr3utzoCAAAAAOA8SlV0G4YhScrLyyuzFRfln7jkZeTZjDJIAgCoKMrks6EMP6vOLuvs5yBKdvb3U3gi3+Ikzs4UVaw8Z50xTlsdAQBQBs7oz7/n59tPsBml2JP4+eefFRERUTbJAACoZH766SfVqlXL6hgVFvsJAIDL2fn2E0pVdBcVFenQoUOqXr26bDZbmQa0Ul5eniIiIvTTTz/J19fX6jimYIyVn6uPT3L9Mbr6+CTXHaNhGPr9999Vs2ZNublxG5RzKY/9BFf4N+YKY5AYR0XDOCoOVxiDxDguRGn3E0p1ermbm5tLf8Pv6+tbqf9BlQZjrPxcfXyS64/R1ccnueYY/fz8rI5Q4ZXnfoIr/BtzhTFIjKOiYRwVhyuMQWIcpVWa/QS+tgcAAAAAwCQU3QAAAAAAmOSyLrrtdrvGjBkju91udRTTMMbKz9XHJ7n+GF19fNLlMUZYyxX+jbnCGCTGUdEwjorDFcYgMQ4zlOpGagAAAAAA4MJd1ke6AQAAAAAwE0U3AAAAAAAmoegGAAAAAMAkl2XRvWrVKtlsthJfmzZtkiRlZmaWOH/9+vUWpy+9qKioYvknTpzo1Of777/X9ddfLy8vL0VERGjSpEkWpb0wmZmZ6t27t6Kjo+Xt7a06depozJgxKigocOpT2behJL388suKioqSl5eX4uLitHHjRqsjXZTU1FT93//9n6pXr66QkBB16dJFGRkZTn3atm1bbHv17dvXosQXLiUlpVj+evXqOeafOnVK/fr1U2BgoKpVq6a77rpL2dnZFia+MCX9TbHZbOrXr5+kyr/9UHHt3r1bt99+u4KCguTr66vWrVtr5cqVTn0OHDigTp06ycfHRyEhIRo6dKjOnDljUeKSffbZZ4qLi5O3t7cCAgLUpUsXp/mVYQxn5efnq2nTprLZbNqyZYvTvIq+b1GafQip4o9Dqnz7CKXZF6hsn5UTJ06UzWbTgAEDHG2VZQwHDx5U9+7dFRgYKG9vbzVq1EjffvutY75hGBo9erTCw8Pl7e2thIQE7dmzx8LExRUWFmrUqFFO/5+feeYZ/fW2ZRViHMZlKD8/3zh8+LDT68EHHzSio6ONoqIiwzAMY//+/YYkY/ny5U79CgoKLE5fepGRkca4ceOc8h8/ftwxPzc31wgNDTW6detmpKenG2+99Zbh7e1tzJ4928LUpfPFF18YycnJxtKlS40ffvjB+Pjjj42QkBBj8ODBjj6usA3ffvttw9PT05g7d66xfft2o0+fPoa/v7+RnZ1tdbQLlpiYaKSlpRnp6enGli1bjFtuucWoXbu207/JNm3aGH369HHaXrm5uRamvjBjxowxrr76aqf8v/zyi2N+3759jYiICGPFihXGt99+a1x33XVGy5YtLUx8YXJycpzGtmzZMkOSsXLlSsMwKv/2Q8V15ZVXGrfccouxdetWY/fu3cajjz5q+Pj4GIcPHzYMwzDOnDljNGzY0EhISDD++9//Gp9//rkRFBRkjBw50uLk//Pee+8ZAQEBxsyZM42MjAxj+/btxjvvvOOYXxnG8Ff9+/c3OnbsaEgy/vvf/zraK8O+RWn2ISrDOCrjPkJp9gUq02flxo0bjaioKKNx48bGE0884WivDGP47bffjMjISCM5OdnYsGGDsW/fPmPp0qXG3r17HX0mTpxo+Pn5GR999JGxdetW47bbbjOio6ONkydPWpjc2fjx443AwEBj8eLFxv79+41FixYZ1apVM6ZPn+7oUxHGcVkW3X9XUFBgBAcHG+PGjXO0nS3Y/vpBUtlERkYaU6dOPef8GTNmGAEBAUZ+fr6jbfjw4UZsbGw5pCt7kyZNMqKjox3TrrANr732WqNfv36O6cLCQqNmzZpGamqqhanKRk5OjiHJ+Prrrx1tbdq0cfrQqmzGjBljNGnSpMR5x44dMzw8PIxFixY52nbu3GlIMtatW1dOCcvWE088YdSpU8fxZWVl336omH755RdDkrF69WpHW15eniHJWLZsmWEYhvH5558bbm5uRlZWlqPPzJkzDV9fX6fPOKucPn3auOKKK4xXX331nH0q+hj+6vPPPzfq1atnbN++vdjnbGXdt/j7PkRlGIcr7CP8fV+gMn1W/v7778aVV15pLFu2zOnzr7KMYfjw4Ubr1q3POb+oqMgICwszJk+e7Gg7duyYYbfbjbfeeqs8IpZKp06djF69ejm13XnnnUa3bt0Mw6g447gsTy//u08++URHjhxRz549i8277bbbFBISotatW+uTTz6xIN2lmThxogIDA9WsWTNNnjzZ6TS1devW6YYbbpCnp6ejLTExURkZGTp69KgVcS9Jbm6uatSoUay9sm7DgoICbd68WQkJCY42Nzc3JSQkaN26dRYmKxu5ubmSVGybLVy4UEFBQWrYsKFGjhypEydOWBHvou3Zs0c1a9ZUTEyMunXrpgMHDkiSNm/erNOnTzttz3r16ql27dqVcnsWFBTojTfeUK9evWSz2RztlX37oeIJDAxUbGysFixYoD/++ENnzpzR7NmzFRISoubNm0v68/OsUaNGCg0NdbwvMTFReXl52r59u1XRHb777jsdPHhQbm5uatasmcLDw9WxY0elp6c7+lT0MZyVnZ2tPn366PXXX5ePj0+x+ZV13+Lv+xAVfRyuso/w932ByvRZ2a9fP3Xq1Mkpq1R5xvDJJ5+oRYsWuueeexQSEqJmzZrplVdecczfv3+/srKynMbh5+enuLi4CjWOli1basWKFdq9e7ckaevWrVqzZo06duwoqeKMo0q5rakCe+2115SYmKhatWo52qpVq6YXXnhBrVq1kpubm95//3116dJFH330kW677TYL05Ze//79dc0116hGjRpau3atRo4cqcOHD2vKlCmSpKysLEVHRzu95+yHfVZWlgICAso988Xau3evXnrpJT3//POOtsq+DX/99VcVFhY67YBJf26jXbt2WZSqbBQVFWnAgAFq1aqVGjZs6Gi///77FRkZqZo1a+r777/X8OHDlZGRoQ8++MDCtKUXFxenefPmKTY2VocPH9bYsWN1/fXXKz09XVlZWfL09JS/v7/Te0JDQ5WVlWVN4Evw0Ucf6dixY0pOTna0Vfbth4rJZrNp+fLl6tKli6pXry43NzeFhIRoyZIljs+prKysEv9Wnp1ntX379kn6874PU6ZMUVRUlF544QW1bdtWu3fvVo0aNSr8GKQ/r4tMTk5W37591aJFC2VmZhbrUxn3LUrah6jo43CFfYSS9gUqy2fl22+/re+++85xL6i/qixj2Ldvn2bOnKlBgwbpySef1KZNm9S/f395enoqKSnJkbWkf2MVaRwjRoxQXl6e6tWrJ3d3dxUWFmr8+PHq1q2bJFWYcbhU0T1ixAg999xz/9hn586dTjc2+vnnn7V06VK9++67Tv2CgoI0aNAgx/T//d//6dChQ5o8ebKlBduFjPGv+Rs3bixPT089/PDDSk1Nld1uNzvqRbmYbXjw4EF16NBB99xzj/r06eNor6jbEH9+O5yenq41a9Y4tT/00EOOnxs1aqTw8HDddNNN+uGHH1SnTp3yjnnBzn6rKv35fy4uLk6RkZF699135e3tbWGysvfaa6+pY8eOqlmzpqOtsm8/lK/S/r2PjY1Vv379FBISov/85z/y9vbWq6++qltvvVWbNm1SeHh4OSUurrRjKCoqkiQ99dRTuuuuuyRJaWlpqlWrlhYtWqSHH37Y9Kz/pLTj+PLLL/X7779r5MiR5ZTswpTlPgTMd659gYrup59+0hNPPKFly5bJy8vL6jgXraioSC1atNCECRMkSc2aNVN6erpmzZqlpKQki9OV3rvvvquFCxfqzTff1NVXX60tW7ZowIABqlmzZoUah0sV3YMHD3Y66lKSmJgYp+m0tDQFBgaWqgiLi4vTsmXLLiXiJbuYMZ4VFxenM2fOKDMzU7GxsQoLCyt2J8Wz02FhYWWS90Jd6PgOHTqkdu3aqWXLlpozZ855l18RtmFpBQUFyd3dvcRtZNX2KQuPPfaYFi9erNWrVzudXVKSuLg4SX8ehaiMRZu/v7+uuuoq7d27VzfffLMKCgp07Ngxp2+/K+P2/PHHH7V8+fLzHsGu7NsP5irt3/uvvvpKixcv1tGjR+Xr6ytJmjFjhpYtW6b58+drxIgRCgsLK3bX5vL4PCvtGA4fPixJatCggaPdbrcrJibGcQmKVWOQLmxbrFu3rtgX9y1atFC3bt00f/58S/ctynIfoiLuI/1VZd9HONe+QFhYWIX/rNy8ebNycnJ0zTXXONoKCwu1evVq/fvf/9bSpUsr/BgkKTw83OlvkiTVr19f77//vqT//TvPzs52+nIzOztbTZs2Lbec5zN06FCNGDFCXbt2lfTnl/4//vijUlNTlZSUVGHG4VJFd3BwsIKDg0vd3zAMpaWlqUePHvLw8Dhv/y1btlj6jbp04WP8qy1btjhOy5Ok+Ph4PfXUUzp9+rRj/MuWLVNsbKxlp01dyPgOHjyodu3aqXnz5kpLS5Ob2/lvUVARtmFpeXp6qnnz5lqxYoXjsTJFRUVasWKFHnvsMWvDXQTDMPT444/rww8/1KpVq4qdtleSs4+hqSzb7O+OHz+uH374QQ888ICaN28uDw8PrVixwnGkKyMjQwcOHFB8fLzFSS9MWlqaQkJC1KlTp3/sV9m3H8xV2r/3Z+8L8Pe/8W5ubo4jyPHx8Ro/frxycnIcn3HLli2Tr69vsZ3KslTaMTRv3lx2u10ZGRlq3bq1JOn06dPKzMxUZGSkpWOQSj+OF198Uc8++6xj+tChQ0pMTNQ777zj+JLNyn2LstyHqIj7SH9VWfcRzrcvUBk+K2+66SZt27bNqa1nz56qV6+ehg8froiIiAo/Bklq1apVsce17d692/E3KTo6WmFhYVqxYoWjOM3Ly9OGDRv0yCOPlHfcczpx4kSx/7/u7u6Oz4cKM45yu2VbBbR8+XJDkrFz585i8+bNm2e8+eabxs6dO42dO3ca48ePN9zc3Iy5c+dakPTCrV271pg6daqxZcsW44cffjDeeOMNIzg42OjRo4ejz7Fjx4zQ0FDjgQceMNLT0423337b8PHxqVCPwziXn3/+2ahbt65x0003GT///LPTI4rOquzb0DD+fByI3W435s2bZ+zYscN46KGHDH9/f6e721YWjzzyiOHn52esWrXKaXudOHHCMAzD2Lt3rzFu3Djj22+/Nfbv3298/PHHRkxMjHHDDTdYnLz0Bg8ebKxatcrYv3+/8c033xgJCQlGUFCQkZOTYxjGn48QqV27tvHVV18Z3377rREfH2/Ex8dbnPrCFBYWGrVr1zaGDx/u1O4K2w8V0y+//GIEBgYad955p7FlyxYjIyPDGDJkiOHh4WFs2bLFMIz/PW6rffv2xpYtW4wlS5YYwcHBFepxW0888YRxxRVXGEuXLjV27dpl9O7d2wgJCTF+++03wzAqxxj+rqSnhFSGfYvS7ENUhnFUxn2E8+0LGEbl/Kz8+9M7KsMYNm7caFSpUsUYP368sWfPHmPhwoWGj4+P8cYbbzj6TJw40fD39zc+/vhj4/vvvzduv/32CvfIsKSkJOOKK65wPDLsgw8+MIKCgoxhw4Y5+lSEcVzWRfe//vWvcz4zb968eUb9+vUNHx8fw9fX17j22mudbv1f0W3evNmIi4sz/Pz8DC8vL6N+/frGhAkTjFOnTjn127p1q9G6dWvDbrcbV1xxhTFx4kSLEl+YtLQ0Q1KJr7Mq+zY866WXXjJq165teHp6Gtdee62xfv16qyNdlHNtr7S0NMMwDOPAgQPGDTfcYNSoUcOw2+1G3bp1jaFDh1aq5zzfd999Rnh4uOHp6WlcccUVxn333ef0vMuTJ08ajz76qBEQEGD4+PgYd9xxh9NOXmWwdOlSQ5KRkZHh1O4K2w8V16ZNm4z27dsbNWrUMKpXr25cd911xueff+7UJzMz0+jYsaPh7e1tBAUFGYMHDzZOnz5tUeLiCgoKjMGDBxshISFG9erVjYSEBCM9Pd2pT0Ufw9+d69GcFX3fojT7EIZR8cdhGJVvH+F8+wKGUTk/K/9edFeWMXz66adGw4YNDbvdbtSrV8+YM2eO0/yioiJj1KhRRmhoqGG3242bbrqp2Oe/1fLy8ownnnjCqF27tuHl5WXExMQYTz31lNPj/irCOGyGYRjlc0wdAAAAAIDLC8/pBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdgIWSk5PVpUsXx882m002m02enp6qW7euxo0bpzNnzkiSVq1a5Zjv5uYmPz8/NWvWTMOGDdPhw4ctHAUAADjr7Gf1uV4pKSnllqVt27YaMGCA0/TZHF5eXmrQoIFmzJjhmD9v3jzHfHd3dwUEBCguLk7jxo1Tbm5uueUGXA1FN1CBdOjQQYcPH9aePXs0ePBgpaSkaPLkyU59MjIydOjQIW3atEnDhw/X8uXL1bBhQ23bts2i1AAA4KzDhw87XtOmTZOvr69T25AhQxx9DcNwfLleXvr06aPDhw9rx44duvfee9WvXz+99dZbjvln8/78889au3atHnroIS1YsEBNmzbVoUOHyjUr4CoouoEKxG63KywsTJGRkXrkkUeUkJCgTz75xKlPSEiIwsLCdNVVV6lr16765ptvFBwcrEceecSi1AAA4KywsDDHy8/PTzabzTG9a9cuVa9eXV988YWaN28uu92uNWvWOJ35dtaAAQPUtm1bx3RRUZFSU1MVHR0tb29vNWnSRO+9994F5/Px8VFYWJhiYmKUkpKiK6+80mlf42ze8PBw1a9fX71799batWt1/PhxDRs27GJ/LcBljaIbqMC8vb1VUFBw3j59+/bVN998o5ycnHJKBgAALtaIESM0ceJE7dy5U40bNy7Ve1JTU7VgwQLNmjVL27dv18CBA9W9e3d9/fXXl5SlNPsaISEh6tatmz755BMVFhZe0vqAy1EVqwMAKM4wDK1YsUJLly7V448/ft7+9erVkyRlZmYqJCTE7HgAAOASjBs3TjfffHOp++fn52vChAlavny54uPjJUkxMTFas2aNZs+erTZt2lxwhsLCQr311lv6/vvv9dBDD523f7169fT777/ryJEj7GsAF4iiG6hAFi9erGrVqun06dMqKirS/fffX6obrhiGIenPU8IAAEDF1qJFiwvqv3fvXp04caJYoV5QUKBmzZpd0LJmzJihV199VQUFBXJ3d9fAgQNLdYka+xrAxaPoBiqQdu3aaebMmfL09FTNmjVVpUrp/ovu3LlTkhQVFWViOgAAUBaqVq3qNO3m5uYoas86ffq04+fjx49Lkj777DNdccUVTv3sdvsFrbtbt2566qmn5O3trfDwcLm5le5q0507d8rX11eBgYEXtD4AFN1AhVK1alXVrVv3gt5z8uRJzZkzRzfccIOCg4NNSgYAAMwSHBys9PR0p7YtW7bIw8NDktSgQQPZ7XYdOHDgok4l/ys/P78L3tfIycnRm2++qS5dupS6SAfwPxTdQCWTk5OjU6dO6ffff9fmzZs1adIk/frrr/rggw+sjgYAAC7CjTfeqMmTJ2vBggWKj4/XG2+8ofT0dMep49WrV9eQIUM0cOBAFRUVqXXr1srNzdU333wjX19fJSUllVkWwzCUlZUlwzB07NgxrVu3ThMmTJCfn58mTpxYZusBLicU3UAlExsbK5vNpmrVqikmJkbt27fXoEGDFBYWZnU0AABwERITEzVq1CgNGzZMp06dUq9evdSjRw9t27bN0eeZZ55RcHCwUlNTtW/fPvn7++uaa67Rk08+WaZZ8vLyFB4eLpvNJl9fX8XGxiopKUlPPPGEfH19y3RdwOXCZvz9AhIAAAAAAFAmuCgDAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEkougEAAAAAMAlFNwAAAAAAJqHoBgAAAADAJBTdAAAAAACYhKIbAAAAAACTUHQDAAAAAGASim4AAAAAAExC0Q0AAAAAgEn+H5VmEj6SeDZqAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","id":"26e19d66","metadata":{"id":"26e19d66"},"source":["### Now play with it\n","Change systematically some of the parameters and record the performance. You can do this for example by running the following code in a loop:"]},{"cell_type":"code","source":["plot_analysis = 0\n","Envelop_powers = [0, 1, 2, 3, 4, 5, 10, 30, 40, 50, 100]\n","\n","Train_accuracy_mean = []\n","Train_accuracy_std = []\n","Train_abs_error_mean = []\n","Train_abs_error_std = []\n","\n","Test_accuracy_mean = []\n","Test_accuracy_std = []\n","Test_abs_error_mean = []\n","Test_abs_error_std = []\n","\n","results_Train = []\n","results_Test = []\n","\n","#for j in range(3)\n","for i, envelope_power in enumerate(Envelop_powers):\n"," plt.imshow(spikes[0, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n","\n"," # Training parameters\n"," nb_epochs = 10 # quick, it won't have converged\n"," lr = 0.01 # learning rate\n","\n"," # Generate the training data\n"," ipds, spikes = random_ipd_input_signal(num_samples)\n","\n"," # Initialise a weight matrices\n"," W1, W2 = init_weight_matrices()\n","\n"," # Optimiser and loss function\n"," optimizer = torch.optim.Adam([W1, W2], lr=lr)\n"," log_softmax_fn = nn.LogSoftmax(dim=1)\n"," loss_fn = nn.NLLLoss()\n","\n"," print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n","\n"," loss_hist = []\n"," for e in range(nb_epochs):\n"," local_loss = []\n"," for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n"," # Run network\n"," output = snn(spike_batch, W1, W2)\n"," #output = torch.abs(output)\n"," # Compute cross entropy loss\n"," m = torch.sum(output, 1) * 0.01 # Mean across time dimension\n"," loss = loss_fn(log_softmax_fn(m), ipd_batch)\n"," local_loss.append(loss.item())\n"," # Update gradients\n"," optimizer.zero_grad()\n"," loss.backward()\n"," optimizer.step()\n","\n"," loss_hist.append(np.mean(local_loss))\n"," print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n","\n"," if plot_analysis:\n"," # Plot the loss function over time\n"," plt.plot(loss_hist)\n"," plt.xlabel('Epoch')\n"," plt.ylabel('Loss')\n"," plt.tight_layout()\n","\n","\n"," # Analyse\n"," print(f\"Chance accuracy level: {100*1/num_classes:.1f}%\")\n"," run_func = lambda x: snn(x, W1, W2)\n"," results_Train = analyse(ipds, spikes, 'Train', run=run_func, plot_analysis=0)\n"," ipds_test, spikes_test = random_ipd_input_signal(batch_size*n_testing_batches)\n"," results_Test = analyse(ipds_test, spikes_test, 'Test', run=run_func, plot_analysis=0)\n","\n"," Train_accuracy_mean.append(results_Train[0])\n"," Train_accuracy_std.append(results_Train[1])\n"," Train_abs_error_mean.append(results_Train[2])\n"," Train_abs_error_std.append(results_Train[3])\n","\n"," Test_accuracy_mean.append(results_Test[0])\n"," Test_accuracy_std.append(results_Test[1])\n"," Test_abs_error_mean.append(results_Test[2])\n"," Test_abs_error_std.append(results_Test[3])\n","#\n","plt.figure(figsize=(8, 6))\n","plt.errorbar(Envelop_powers,Train_accuracy_mean, yerr=Train_accuracy_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n","plt.errorbar(Envelop_powers,Test_accuracy_mean, yerr=Test_accuracy_std, label='Test', fmt='o', ecolor='red', capsize=5)\n","#plt.xscale('log')\n","plt.ylim([0,100])\n","plt.xlim([-1,50])\n","plt.xlabel('Envelop Power')\n","plt.ylabel('Accurancy (mean+/-std (%))')\n","plt.legend()\n","\n","plt.figure(figsize=(8, 6))\n","plt.errorbar(Envelop_powers,Train_abs_error_mean, yerr=Train_abs_error_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n","plt.errorbar(Envelop_powers,Test_abs_error_mean, yerr=Test_abs_error_std, label='Test', fmt='o', ecolor='red', capsize=5)\n","#plt.xscale('log')\n","plt.ylim([0,100])\n","plt.xlim([-1,50])\n","plt.xlabel('Envelop Power')\n","plt.ylabel('Abs_error (mean+/-std (deg))')\n","plt.legend()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"yf14Jn81LBu3","outputId":"dee52a27-d030-48ad-b964-8ea37e3a3d9d"},"id":"yf14Jn81LBu3","execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.77004\n","Epoch 2: loss=2.57296\n","Epoch 3: loss=2.56450\n","Epoch 4: loss=2.55602\n","Epoch 5: loss=2.56089\n","Epoch 6: loss=2.58390\n","Epoch 7: loss=2.57072\n","Epoch 8: loss=2.56044\n","Epoch 9: loss=2.54922\n","Epoch 10: loss=2.55242\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 8.7%\n","Train absolute error: 44.7 deg\n","\n","Test classifier accuracy: 8.4%\n","Test absolute error: 45.5 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.61462\n","Epoch 2: loss=1.82795\n","Epoch 3: loss=1.49260\n","Epoch 4: loss=1.28227\n","Epoch 5: loss=1.11968\n","Epoch 6: loss=1.01151\n","Epoch 7: loss=0.93219\n","Epoch 8: loss=0.86270\n","Epoch 9: loss=0.81091\n","Epoch 10: loss=0.77063\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 78.0%\n","Train absolute error: 5.1 deg\n","\n","Test classifier accuracy: 74.0%\n","Test absolute error: 5.6 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.15496\n","Epoch 2: loss=1.54471\n","Epoch 3: loss=1.26991\n","Epoch 4: loss=1.08247\n","Epoch 5: loss=0.95155\n","Epoch 6: loss=0.88683\n","Epoch 7: loss=0.81155\n","Epoch 8: loss=0.75849\n","Epoch 9: loss=0.70110\n","Epoch 10: loss=0.69270\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 70.7%\n","Train absolute error: 5.8 deg\n","\n","Test classifier accuracy: 69.2%\n","Test absolute error: 5.9 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.34375\n","Epoch 2: loss=1.60742\n","Epoch 3: loss=1.33732\n","Epoch 4: loss=1.17774\n","Epoch 5: loss=1.03960\n","Epoch 6: loss=0.96242\n","Epoch 7: loss=0.88544\n","Epoch 8: loss=0.81449\n","Epoch 9: loss=0.80581\n","Epoch 10: loss=0.74611\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 79.3%\n","Train absolute error: 4.9 deg\n","\n","Test classifier accuracy: 68.8%\n","Test absolute error: 5.9 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=2.11549\n","Epoch 2: loss=1.28715\n","Epoch 3: loss=1.00168\n","Epoch 4: loss=0.84978\n","Epoch 5: loss=0.76968\n","Epoch 6: loss=0.68437\n","Epoch 7: loss=0.64780\n","Epoch 8: loss=0.60212\n","Epoch 9: loss=0.57376\n","Epoch 10: loss=0.51894\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 84.6%\n","Train absolute error: 4.5 deg\n","\n","Test classifier accuracy: 56.7%\n","Test absolute error: 7.6 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.99632\n","Epoch 2: loss=1.21324\n","Epoch 3: loss=0.96305\n","Epoch 4: loss=0.83350\n","Epoch 5: loss=0.75726\n","Epoch 6: loss=0.67166\n","Epoch 7: loss=0.61378\n","Epoch 8: loss=0.59108\n","Epoch 9: loss=0.54676\n","Epoch 10: loss=0.51395\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 82.9%\n","Train absolute error: 4.7 deg\n","\n","Test classifier accuracy: 47.3%\n","Test absolute error: 11.4 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.84569\n","Epoch 2: loss=1.03422\n","Epoch 3: loss=0.79383\n","Epoch 4: loss=0.64682\n","Epoch 5: loss=0.57783\n","Epoch 6: loss=0.53457\n","Epoch 7: loss=0.48613\n","Epoch 8: loss=0.44701\n","Epoch 9: loss=0.43875\n","Epoch 10: loss=0.40391\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 85.8%\n","Train absolute error: 4.4 deg\n","\n","Test classifier accuracy: 46.7%\n","Test absolute error: 39.5 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.78420\n","Epoch 2: loss=1.08667\n","Epoch 3: loss=0.84305\n","Epoch 4: loss=0.71055\n","Epoch 5: loss=0.63383\n","Epoch 6: loss=0.56749\n","Epoch 7: loss=0.53407\n","Epoch 8: loss=0.50717\n","Epoch 9: loss=0.46092\n","Epoch 10: loss=0.44702\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 84.3%\n","Train absolute error: 4.6 deg\n","\n","Test classifier accuracy: 62.4%\n","Test absolute error: 22.8 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.52320\n","Epoch 2: loss=0.76583\n","Epoch 3: loss=0.55913\n","Epoch 4: loss=0.44230\n","Epoch 5: loss=0.35985\n","Epoch 6: loss=0.31028\n","Epoch 7: loss=0.29018\n","Epoch 8: loss=0.25092\n","Epoch 9: loss=0.24675\n","Epoch 10: loss=0.23128\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 93.6%\n","Train absolute error: 4.0 deg\n","\n","Test classifier accuracy: 59.1%\n","Test absolute error: 10.5 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.66361\n","Epoch 2: loss=0.84902\n","Epoch 3: loss=0.61970\n","Epoch 4: loss=0.49541\n","Epoch 5: loss=0.42454\n","Epoch 6: loss=0.36200\n","Epoch 7: loss=0.33508\n","Epoch 8: loss=0.31719\n","Epoch 9: loss=0.30413\n","Epoch 10: loss=0.24375\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 93.3%\n","Train absolute error: 4.0 deg\n","\n","Test classifier accuracy: 61.0%\n","Test absolute error: 11.7 deg\n","Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n","Epoch 1: loss=1.71752\n","Epoch 2: loss=0.92687\n","Epoch 3: loss=0.65282\n","Epoch 4: loss=0.52519\n","Epoch 5: loss=0.45046\n","Epoch 6: loss=0.39243\n","Epoch 7: loss=0.34650\n","Epoch 8: loss=0.31953\n","Epoch 9: loss=0.31076\n","Epoch 10: loss=0.28762\n","Chance accuracy level: 8.3%\n","\n","Train classifier accuracy: 92.0%\n","Train absolute error: 4.1 deg\n","\n","Test classifier accuracy: 49.6%\n","Test absolute error: 46.5 deg\n"]},{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":63},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApyUlEQVR4nO3dfXRU5YHH8d8EzAA1mZhgEmadQKRd0SKsgqSprpUlFoKHLjXbXSx240qxWlAh7Yrp1hds3XBqX7VUT/dU2HMKpXqO4MqesgdBYD2NyMumLFYpobRgSUIrhxkS6vCSu39UZzvJBO/k3sl97p3v55x7jnPnzuQJ1+fmeX7Pc58bsizLEgAAgEEKvC4AAABAXzRQAACAcWigAAAA49BAAQAAxqGBAgAAjEMDBQAAGIcGCgAAMA4NFAAAYBwaKAAAwDg0UAAAgHE8baCsXLlS48aN04gRI1RTU6PXX3/dy+IAAABDeNZA+elPf6qmpiY98sgj2rt3ryZPnqyZM2fq+PHjXhUJAAAYIuTVwwJramp03XXX6fvf/74kqbe3V7FYTPfee68efPDBC362t7dXx44dU1FRkUKh0FAUFwAAOGRZlk6dOqVoNKqCggtnJMOHqExpzpw5oz179qi5uTm1r6CgQHV1dWptbe13fDKZVDKZTL3+3e9+p6uuumpIygoAANx19OhRXXbZZRc8xpMGyh/+8AedP39eFRUVafsrKir01ltv9Tu+paVFy5cv77f/6NGjKi4uzlk5TRaJRPrti8fjOT8OgDcy1dFMqLcwWSKRUCwWU1FR0Qce60kDJVvNzc1qampKvX7/FywuLs7bBkomdv8t3D4OgDmot/ADO9MzPGmgjB49WsOGDVNXV1fa/q6uLlVWVvY7PhwOKxwOD1XxfCHT1CG783EyHefRVCQg7wy2/tmto3avA9R5mM6Tu3gKCws1ZcoUbdmyJbWvt7dXW7ZsUW1trRdFAgAABvFsiKepqUmNjY2aOnWqpk2bpu9+97vq6enRP/3TP3lVJGPkOuGg5wR4Z7D1j2QE+cazBso//MM/6Pe//70efvhhdXZ26q/+6q+0adOmfhNn81GuLzAM8QD+42RYF/Ajz9ZBcSKRSCgSiSgejzMh7M84uVj58H8DIO/R2YDfZPP32xd38cAeJ5PouNABZqOOIt/wsEAAAGAcEpQAYRId4E99667bdZT0BX5EggIAAIxDguITdnpYTuag0JsCvONm/aN+IyhIUAAAgHFIUHyibw+I9Q8AZEJagqAgQQEAAMYhQfEpJ70k0hcgGJhvgiCjgRIg3GYM+JObnQYaLQgKhngAAIBxSFB8wk4Py8nDxOh1Ad6xU9dISJFvSFAAAIBxSFB8yu1Hr9PrAszhJNEkDUVQkKAAAADjkKD4xGAXaqPnBPiPk4TU7me5NsB0JCgAAMA4JCgBZ7fnRA8L8B+7dZS6DD8iQQEAAMYhQfGJwd6hQw8LCAa3k09SU5iOBAUAABiHBMWn3F4HBYDZ3K7fpCUwHQ0Uj9mNWe1cTIh2AbMMdpL6YK8BQJAwxAMAAIxDguIxJ6mHm98PwH2DrX9MfgVIUAAAgIFIUHzCzR4QvSnAf9ycrwb4AQkKAAAwDgmKgZhvAgSXnfrNMgIACQoAADAQCYpP8cA/IDgGu84RdR5BRoICAACMQ4JioMH2gOg5AeazU0/tzjehziPISFAAAIBxSFB8gjt7gGCgLgP2uJ6gtLS06LrrrlNRUZHKy8s1d+5cHThwIO2Ym266SaFQKG27++673S6Kb/X9twmFQrIs6wM3AGahLgOD53oDZfv27Vq0aJFee+01bd68WWfPntUnP/lJ9fT0pB23cOFCdXR0pLZvfOMbbhcFAAD4lOtDPJs2bUp7vXr1apWXl2vPnj268cYbU/tHjRqlyspKt398IPA4diC/UZeBIZgkG4/HJUmlpaVp+9esWaPRo0dr4sSJam5u1unTpwf8jmQyqUQikbYBAIDgyukk2d7eXi1ZskTXX3+9Jk6cmNr/2c9+VmPHjlU0GtW+ffu0bNkyHThwQC+88ELG72lpadHy5ctzWVTX8bh0AG4uWc81APkmZOXw//p77rlHP/vZz/Tqq6/qsssuG/C4rVu3asaMGWpvb9f48eP7vZ9MJpVMJlOvE4mEYrGY4vG4iouLc1J2p2igAMiEBgryWSKRUCQSsfX3O2cJyuLFi7Vx40bt2LHjgo0TSaqpqZGkARso4XBY4XA4J+XMFScXk8F+loYNYJbB1km7jRjqPILM9QaKZVm69957tX79em3btk3V1dUf+Jm2tjZJ0pgxY9wuDgAA8CHXGyiLFi3S2rVr9eKLL6qoqEidnZ2SpEgkopEjR+rQoUNau3atZs+erbKyMu3bt09Lly7VjTfeqEmTJrldHOO5uaQ1PSfALIMd1rX7Oeo8gsz1OSgD/cFdtWqV7rjjDh09elS333679u/fr56eHsViMX3605/WV7/6VdvzSbIZwzIdz9wAMNgGCuA3ns5B+aCKFYvFtH37drd/rG/ZneU/2AsYY9SA+aiTQH88iydHct0wsPv9XPiAoeEkDbXzWeoy8g1PMwYAAMYhQckRu72kXKceDPEAQ4NF2QB3kaAAAADjkKAMISepips/E4D7WFwNcBcJCgAAMA4JSo4w3wRArpcRAIKMBAUAABiHBCVHvJhvAsA7bt7FA4AEBQAAGIgEJUfspiWDPY5VYwGzuF3ngXxHggIAAIxDgpIjTnpEjFsD/uNmnSdRAWigeI4IGAgGJx0L6jfQH0M8AADAOCQoOeLFJFkAZrFbT6nfQH8kKAAAwDgkKDniZloy0HEAzOGkLtup31wXkG9IUAAAgHFIUDzGLcVAMOQ64SAtQb4hQQEAAMYhQckRJ/NNAHgj13ffDXQcgP5IUAAAgHFIUC7ASe/HyXGkKoA3qLeAOUhQAACAcUhQLsDtMWU310QAYBYn14HBfhcQZDRQsuTkwpHrJxxzUQPcNxQT3qm7QH8M8QAAAOOQoHiMYR/AbE7SEuotMHgkKAAAwDgkKFkaikmyLO4EmI3bjIHcI0EBAADGIUHJkpu3Eg50nJ3eGYkK4B1STiD3SFAAAIBxSFB8gt4Z4I2hmHcGoD/XE5RHH31UoVAobZswYULq/XfffVeLFi1SWVmZLr74YjU0NKirq8vtYgAAAB/LyRDPRz/6UXV0dKS2V199NfXe0qVL9dJLL+n555/X9u3bdezYMd166625KIZxLMvqt2XSt4HH3QGAd4ai3lLfgf5yMsQzfPhwVVZW9tsfj8f1ox/9SGvXrtXf/M3fSJJWrVqlK6+8Uq+99po+9rGP5aI4OcftwwCc4DoA9JeTBOXgwYOKRqO6/PLLNX/+fB05ckSStGfPHp09e1Z1dXWpYydMmKCqqiq1trYO+H3JZFKJRCJtAwAAweV6A6WmpkarV6/Wpk2b9PTTT+vw4cP667/+a506dUqdnZ0qLCxUSUlJ2mcqKirU2dk54He2tLQoEomktlgs5naxHbEbAdvFEA9gtkx1NNN1wO1rA5BPXB/iqa+vT/33pEmTVFNTo7Fjx+q5557TyJEjB/Wdzc3NampqSr1OJBLGNVIAAIB7cn6bcUlJif7yL/9S7e3tuvnmm3XmzBmdPHkyLUXp6urKOGflfeFwWOFwONdFdRWpBxAMThZdtItkBegv5wu1dXd369ChQxozZoymTJmiiy66SFu2bEm9f+DAAR05ckS1tbW5LgoAAPAJ1xOUL3/5y5ozZ47Gjh2rY8eO6ZFHHtGwYcN02223KRKJaMGCBWpqalJpaamKi4t17733qra21rd38AyER7QD/kPyCZjD9QbK22+/rdtuu03vvPOOLr30Ut1www167bXXdOmll0qSvvOd76igoEANDQ1KJpOaOXOmfvCDH7hdDAAA4GMhy4fd9UQioUgkong8ruLiYq+LkxFpCRBczDcBBiebv988LBAAABiHhwXmiJM5KAC84XYdJS0BBo8EBQAAGIcExQVO5pvwfB7AHG4nn9RvYPBooLjA7VuKuagBZst1feQaADDEAwAADESC4gK7vR27x9FTArzhdl0ebJLKNQAgQQEAAAYiQXEBtxQD/uN2HWXeCOAuEhQAAGAcEhQXkJYAwTAU800A2EOCAgAAjEOCkiW3Z/kDCAauA4C7SFAAAIBxSFCyZLf34/bqsgDc5aQuu/0zAPRHggIAAIxDgpIlt8eU6WEBueek3jKPBPAGDZQsuX1R4+IH5J7bdYp6C+QeQzwAAMA4JCgucLJAE70uwBwkI4A5SFAAAIBxSFAuwG5vyu7cEnpngNmc1EfqN+AuEhQAAGAcEpQLcHLXDT0nILhIS4DcI0EBAADGIUEBEHgssAj4DwkKAAAwDgmKCxiPBszmZAVoJ98HYPDysoEyFHEvFzrAf1gyADAHQzwAAMA4eZmguJ14kJYAwUW9BbxBggIAAIyTlwlKJk4m0TlJVQB4w0ldJlUBco8EBQAAGIcE5T1uzyOhJwaYjeQTMBsJCgAAMI7rDZRx48YpFAr12xYtWiRJuummm/q9d/fdd7tdDFdYltVvM+n7APSX6fqTaQNgNteHeHbt2qXz58+nXu/fv18333yzPvOZz6T2LVy4UI899ljq9ahRo9wuBgAA8DHXGyiXXnpp2usVK1Zo/Pjx+sQnPpHaN2rUKFVWVtr+zmQyqWQymXqdSCRsf9bJvA+379ghMQFyz+367fZnAdiT0zkoZ86c0Y9//GPdeeedaRV6zZo1Gj16tCZOnKjm5madPn36gt/T0tKiSCSS2mKxWC6LDQAAPBayctjsf+655/TZz35WR44cUTQalST98Ic/1NixYxWNRrVv3z4tW7ZM06ZN0wsvvDDg92RKUGKxmOLxuIqLi10pK2siAPmFugwMvUQioUgkYuvvd04bKDNnzlRhYaFeeumlAY/ZunWrZsyYofb2do0fP97W92bzCw4FLnSA/zA0Cwy9bP5+52yI57e//a1efvllff7zn7/gcTU1NZKk9vb2XBUFAAD4TM4Walu1apXKy8t1yy23XPC4trY2SdKYMWNyUg4mwgGgLgP+k5MGSm9vr1atWqXGxkYNH/7/P+LQoUNau3atZs+erbKyMu3bt09Lly7VjTfeqEmTJuWiKAAAwIdy0kB5+eWXdeTIEd15551p+wsLC/Xyyy/ru9/9rnp6ehSLxdTQ0KCvfvWruSiGpKFZzpqeGGA2JrwD/pPTSbK54nSSrJMGig//uQBkQAMFGHrZ/P3mYYHvsdvDYuY/YDYnHRAaLYA5eFggAAAwTl4mKE56RPSmALPxOAogGEhQAACAcfIyQcmEx68DweVkjhmpCuANEhQAAGCcvExQ3E5L6HUBAOCuvGygZMLEOiC4nNRlOiCANxjiAQAAxiFBeY/dHhapChBcTJYHzEGCAgAAjEOC4gLSEsBszC0B/IcEBQAAGCcvExQnvSnGqAGzkYwAwUCCAgAAjJOXCYrbd+wAyD0n9ZFUBfAfEhQAAGCcvExQmNEP+I/bc8Ko84DZAtVAcXuiKxcwwGx26yPDtYD/MMQDAACME6gEZShuHyZVAczhJBmh3gJmI0EBAADGCVSCkonbvSR6XQAA5B4JCgAAME7gExS7Y9Qsaw+Yzcn8r0yfZT4ZYDYSFAAAYJzAJyh2kZYA/uMkBSEtAcxGggIAAIwT+ATFydwSelhAMFCXAf8hQQEAAMYJfILiBLP8Af+h3gLB4OsGSiQSSXvt9q3CXNSAYOA6APgPQzwAAMA4vm6gxONxWZaV2gAE15/XdTfqvNvfB8Bdvm6gAACAYMq6gbJjxw7NmTNH0WhUoVBIGzZsSHvfsiw9/PDDGjNmjEaOHKm6ujodPHgw7ZgTJ05o/vz5Ki4uVklJiRYsWKDu7m5Hv0g27PacQqFQvw2A/9it86QqgDmybqD09PRo8uTJWrlyZcb3v/GNb+jJJ5/UM888o507d+pDH/qQZs6cqXfffTd1zPz58/XGG29o8+bN2rhxo3bs2KG77rpr8L8FAAAIlJDloIsQCoW0fv16zZ07V9Kfeh/RaFRf+tKX9OUvf1nSn+aJVFRUaPXq1Zo3b57efPNNXXXVVdq1a5emTp0qSdq0aZNmz56tt99+W9FotN/PSSaTSiaTqdeJREKxWEzxeFzFxcWDLf6g2L2FkVsdAbO5XZep88AHSyQSikQitv5+uzoH5fDhw+rs7FRdXV1qXyQSUU1NjVpbWyVJra2tKikpSTVOJKmurk4FBQXauXNnxu9taWlRJBJJbbFYzM1iAwAAw7jaQOns7JQkVVRUpO2vqKhIvdfZ2any8vK094cPH67S0tLUMX01NzcrHo+ntqNHj7pZ7Kwwlg3kl0x1OdP8NLvHAbDHFwu1hcNhhcNhr4sBAACGiKsJSmVlpSSpq6srbX9XV1fqvcrKSh0/fjzt/XPnzunEiROpY/wmUy/J7gbAG0NxNx9JKjB4rjZQqqurVVlZqS1btqT2JRIJ7dy5U7W1tZKk2tpanTx5Unv27Ekds3XrVvX29qqmpsbN4gAAAJ/Keoinu7tb7e3tqdeHDx9WW1ubSktLVVVVpSVLlujrX/+6PvKRj6i6uloPPfSQotFo6k6fK6+8UrNmzdLChQv1zDPP6OzZs1q8eLHmzZuX8Q4e05B6AP7j5A4bJ6kHd/YAg5d1A2X37t2aPn166nVTU5MkqbGxUatXr9YDDzygnp4e3XXXXTp58qRuuOEGbdq0SSNGjEh9Zs2aNVq8eLFmzJihgoICNTQ06Mknn3Th18k9uxcXLkyAObxqZFDngcFztA6KV7K5j9orNFCAYKAuA+7J5u+3L+7iMYmTIR4udAAA2MPDAgEAgHFIUHKEZAQwG2koYDYSFAAAYBwSlAuw28PiwWGA/wzFHXlcB4DBI0EBAADGIUG5ACc9HXpJQH4hLQHcRYICAACMQ4JyAcxBAfzHbt1ze24JAHfRQHEBjRHAHHYbI5kMReMGgD0M8QAAAOOQoFwATzEFgsHtoRvqMpB7JCgAAMA4JCgA8B7mmwDmIEEBAADGCXyCMhTLVNPDAsxGHQX8hwQFAAAYJ/AJylCkJQDM5iT55MGAgDdIUAAAgHECn6DY5XZPh94U4A23H1Fh97PUb8BdJCgAAMA4JCjvcXsFSeaqAOawW29JQQBz0EDJktsT6wCYYyiWJQBgD0M8AADAOCQo7+GWYiAY3B6GJTUFvEGCAgAAjEOCkiWWugfM5nbySV0GvEGCAgAAjEOCkiXSEsBsTlJO5p0B5iBBAQAAxiFBeQ89LCAYnNRR5pgB5iBBAQAAxiFBuQC310kAYA63H28BwF0kKAAAwDh5maCwTgKQX6ijgP9knaDs2LFDc+bMUTQaVSgU0oYNG1LvnT17VsuWLdPVV1+tD33oQ4pGo/rHf/xHHTt2LO07xo0bp1AolLatWLHC8S9jl2VZrm59fxcm0gLecbuOUr8Bb2TdQOnp6dHkyZO1cuXKfu+dPn1ae/fu1UMPPaS9e/fqhRde0IEDB/SpT32q37GPPfaYOjo6Utu99947uN8AAAAETtZDPPX19aqvr8/4XiQS0ebNm9P2ff/739e0adN05MgRVVVVpfYXFRWpsrIy2x+fM04mzBEfA+bgIYBAMOR8kmw8HlcoFFJJSUna/hUrVqisrEzXXHONnnjiCZ07d27A70gmk0okEmkbAAAIrpxOkn333Xe1bNky3XbbbSouLk7tv++++3TttdeqtLRUP//5z9Xc3KyOjg59+9vfzvg9LS0tWr58eS6L6qiXxG3GgDmcLLBIXQbMEbIc1L5QKKT169dr7ty5/d47e/asGhoa9Pbbb2vbtm1pDZS+nn32WX3hC19Qd3e3wuFwv/eTyaSSyWTqdSKRUCwWUzwev+D3DhUuaoDZ3F5dFsDgJBIJRSIRW3+/c5KgnD17Vn//93+v3/72t9q6desHFqKmpkbnzp3Tb37zG11xxRX93g+HwxkbLoPlZFl7xqgBc9DwAILL9QbK+42TgwcP6pVXXlFZWdkHfqatrU0FBQUqLy93uzgAAMCHsm6gdHd3q729PfX68OHDamtrU2lpqcaMGaO/+7u/0969e7Vx40adP39enZ2dkqTS0lIVFhaqtbVVO3fu1PTp01VUVKTW1lYtXbpUt99+uy655BL3frMLcPtx7PTEAHPYrbfUZcBsWc9B2bZtm6ZPn95vf2Njox599FFVV1dn/Nwrr7yim266SXv37tUXv/hFvfXWW0omk6qurtbnPvc5NTU12R7GyWYMyy4aKID/uP0UcuoykFvZ/P12NEnWK04bKFysAHAdAIae55Nk/Yi0BDCbk/rodtICIPd4mjEAADBO4BMUFmgCgmEoUk7qPGAOEhQAAGCcwCcoTsaoAXjDyQRWJ3WZJBUwBwkKAAAwTqASFJa9BoLB7XkkLNQG+A8JCgAAME6gEhQn803oTQHBxZongP+QoAAAAOMEKkGxy+0xatIXwBusEAsEFwkKAAAwTuATFLfXUyAtAczBk4uB4Ap8A8VJw8Pu9wHIPbeHaehsAGZjiAcAABjH1wlKJBJx7bvoOQHmcHuCOmkJ4D8kKAAAwDi+TlDi8biKi4tTr92eEEsPC/CG3brnZJIsdR4wGwkKAAAwjq8TlL7o/QAAEAwkKAAAwDiBSlAycbJ2AmPUgNlYvwgILhIUAABgnMAnKPScgPxCnQeCgQQFAAAYJ/AJil3MNwHMxqqxQH4JfAOFSXRAcLEoGxBcDPEAAADj+DpB6fuwQHpEADLh2gD4DwkKAAAwjq8TlL4YZwaQCdcGwH9IUAAAgHF8naDE43EVFxenXjtZ1h6AOZzUZZIRIBhIUAAAgHF8naD0ZbfnxHg0YDa7C7BlQv0GgiHrBGXHjh2aM2eOotGoQqGQNmzYkPb+HXfcoVAolLbNmjUr7ZgTJ05o/vz5Ki4uVklJiRYsWKDu7m5HvwgAAAiOrBsoPT09mjx5slauXDngMbNmzVJHR0dq+8lPfpL2/vz58/XGG29o8+bN2rhxo3bs2KG77ror+9L30bdhNNAGwGx2661lWf02AMGQ9RBPfX296uvrL3hMOBxWZWVlxvfefPNNbdq0Sbt27dLUqVMlSU899ZRmz56tb37zm4pGo9kW6YKcRMUAcs/t+sjzeYBgyMkk2W3btqm8vFxXXHGF7rnnHr3zzjup91pbW1VSUpJqnEhSXV2dCgoKtHPnzozfl0wmlUgk0jYAABBcrk+SnTVrlm699VZVV1fr0KFD+spXvqL6+nq1trZq2LBh6uzsVHl5eXohhg9XaWmpOjs7M35nS0uLli9f3m//YJe6p+cEmM3tOkqdB7zhJCF1vYEyb9681H9fffXVmjRpksaPH69t27ZpxowZg/rO5uZmNTU1pV4nEgnFYjHHZQUAAGbK+Tool19+uUaPHq329nZJUmVlpY4fP552zLlz53TixIkB562Ew2EVFxenbQCCIdNEV7uTZJkYD5gjU93rW7fj8bjt78t5A+Xtt9/WO++8ozFjxkiSamtrdfLkSe3Zsyd1zNatW9Xb26uamppcFwcAAPhA1kM83d3dqTREkg4fPqy2tjaVlpaqtLRUy5cvV0NDgyorK3Xo0CE98MAD+vCHP6yZM2dKkq688krNmjVLCxcu1DPPPKOzZ89q8eLFmjdvXtZ38PRd6j4Tu7P3meUPmIO77wD/cftvZsjK8hu3bdum6dOn99vf2Niop59+WnPnztX//M//6OTJk4pGo/rkJz+pr33ta6qoqEgde+LECS1evFgvvfSSCgoK1NDQoCeffFIXX3yxrTIkEglFIhEaKEAe4fk8gP9l9fc72waKCQb6BWlkAMHgdl3m2gB4Y6COhZ0GCg8LBAAAxgn8wwLpOQH+42QOSqbPUucBb/Ste++PgNhBggIAAIzj6wTFbisMgLncnvxKagqYw0n99nWCEo/HMy7yxJNNAX9zUpe5DgDB4OsGCgAACCaGeAAYh0XZgGBgkiwAAAgUXycog11JFoA5mCMCIBMSFAAAYBxfJyh9x7HoiQHBwHN3AP9xe8SCBAUAABjH1wlKX8w3AcxGHQWCy056yV08AADA1wKVoDD2DJjD7pLzbh8HwBtu11ESFAAAYJxAJSiZ0OsCvGE3BcmEegv4j9t11NcNlL4LtXFRA/zHSUMGgDm4zRgAAAQeDRQAAGAcGigAAMA4vp6D0he3JgJms1v3qKOA/7g9n4wEBQAAGCdQCQppCeA/PBgQQCYkKAAAwDiBSlDoTQH+Q70FzOZkdKLvcTwsEAAA+FqgEhQA5mBuCRAMduuj2/NAfd1AsRMTcaEDzMHzeQD/sVv3uM0YAAAEnq8TlL4PCwTgDbs9LB4CCPiPV3WZBAUAABjH1wlKX4xRA8FFXQbMMdj6yG3GAADA13ydoPRthdHDAvyHegsEg9vzUrJOUHbs2KE5c+YoGo0qFAppw4YNae+HQqGM2xNPPJE6Zty4cf3eX7FiheNfBgAABEPWCUpPT48mT56sO++8U7feemu/9zs6OtJe/+xnP9OCBQvU0NCQtv+xxx7TwoULU6+LioqyLQoAQ7C+CQC37/bJuoFSX1+v+vr6Ad+vrKxMe/3iiy9q+vTpuvzyy9P2FxUV9TsWAABAyvEk2a6uLv3nf/6nFixY0O+9FStWqKysTNdcc42eeOIJnTt3bsDvSSaTSiQSaZv0p3VQLMtKbQDM9uf19UIbAP/JNL3DiZxOkv33f/93FRUV9RsKuu+++3TttdeqtLRUP//5z9Xc3KyOjg59+9vfzvg9LS0tWr58eS6LCgAADBKyHHRXQqGQ1q9fr7lz52Z8f8KECbr55pv11FNPXfB7nn32WX3hC19Qd3e3wuFwv/eTyaSSyWTqdSKRUCwWYyVZwBBuryRLigKYbbB1+f11UOz8/c5ZgvLf//3fOnDggH76059+4LE1NTU6d+6cfvOb3+iKK67o9344HM7YcAFgBrsNChoeQHD55mGBP/rRjzRlyhRNnjz5A49ta2tTQUGBysvLc1UcAADgI1knKN3d3Wpvb0+9Pnz4sNra2lRaWqqqqipJf4pwnn/+eX3rW9/q9/nW1lbt3LlT06dPV1FRkVpbW7V06VLdfvvtuuSSSxz8KgCGgtuLMZGqAMHg9rUh6wbK7t27NX369NTrpqYmSVJjY6NWr14tSVq3bp0sy9Jtt93W7/PhcFjr1q3To48+qmQyqerqai1dujT1PQAAAI4myXploIcN+fBXAQAgEOxMls9mkiwPCwQAAMbx9cMC+7bAWDIbMAf1EYCRd/EAAAAMlq8TlL7s3oNNLw7IPeoZEAxuLrA40BzSTEhQAACAcQKVoGRCLw7wBuklEAxurxBrFwkKAAAwTuATFACD53YK4uT7SGQAcwxF3aOBAmBAXjUAaIwA5hiK4ZxMGOIBAADGIUEB4JjdxMPN2xUBeMfJ0KxdJCgAAMA4JCgAcsJJqkKCApjDSb0d6GGBdpCgAAAA45CgAHCM+SZAcNmty26noSQoAADAOL5OUPqOY9ETA3KPZAQIBrcTD7frPAkKAAAwjq8TlHg8ruLiYq+LAQQWd9gAwWW3LntV533dQAGQW24/d8ftnwHAXW4vuugEQzwAAMA4JCgAsuJk2IeF2gCz5bqOslAbAADwNV8nKNxmDJjB7VQFgP+wUBsAAAg8Xyco3GYMmIu5JYDZnNyJw108AAAgL/k6QQGQW6xlAuQXr9Y8yYQEBQAAGIcEBcCAnPSmmIMCmM30dYlIUAAAgHFIUADkBGkJ4D8mpSo0UABIcnYRMikWBtCfHye8M8QDAACMQ4IC5CG3H6luUiwM5LuhSEOHIpEhQQEAAMYhQQHykNsP8vNqIScA/TlJLUxKOX3ZQHn/HzCRSHhcEgDZoM4C+aVvnX//tZ2GkC8bKKdOnZIkxWIxj0sCIBuRSMTrIgAYQgPV+VOnTn3g9SBkmZTn2NTb26tjx46pqKhIp06dUiwW09GjR3mysccSiQTnwhCcC3NwLszBufCeZVk6deqUotGoCgouPA3WlwlKQUGBLrvsMkn/P/ZdXFzM/3CG4FyYg3NhDs6FOTgX3rKbpHIXDwAAMA4NFAAAYBzfN1DC4bAeeeQRhcNhr4uS9zgX5uBcmINzYQ7Ohb/4cpIsAAAINt8nKAAAIHhooAAAAOPQQAEAAMahgQIAAIxDAwUAABjH1w2UlStXaty4cRoxYoRqamr0+uuve12kwGtpadF1112noqIilZeXa+7cuTpw4EDaMe+++64WLVqksrIyXXzxxWpoaFBXV5dHJc4fK1asUCgU0pIlS1L7OBdD53e/+51uv/12lZWVaeTIkbr66qu1e/fu1PuWZenhhx/WmDFjNHLkSNXV1engwYMelji4zp8/r4ceekjV1dUaOXKkxo8fr6997WtpD6jjfPiA5VPr1q2zCgsLrWeffdZ64403rIULF1olJSVWV1eX10ULtJkzZ1qrVq2y9u/fb7W1tVmzZ8+2qqqqrO7u7tQxd999txWLxawtW7ZYu3fvtj72sY9ZH//4xz0sdfC9/vrr1rhx46xJkyZZ999/f2o/52JonDhxwho7dqx1xx13WDt37rR+/etfW//1X/9ltbe3p45ZsWKFFYlErA0bNli/+MUvrE996lNWdXW19cc//tHDkgfT448/bpWVlVkbN260Dh8+bD3//PPWxRdfbH3ve99LHcP5MJ9vGyjTpk2zFi1alHp9/vx5KxqNWi0tLR6WKv8cP37ckmRt377dsizLOnnypHXRRRdZzz//fOqYN99805Jktba2elXMQDt16pT1kY98xNq8ebP1iU98ItVA4VwMnWXLllk33HDDgO/39vZalZWV1hNPPJHad/LkSSscDls/+clPhqKIeeWWW26x7rzzzrR9t956qzV//nzLsjgffuHLIZ4zZ85oz549qqurS+0rKChQXV2dWltbPSxZ/onH45Kk0tJSSdKePXt09uzZtHMzYcIEVVVVcW5yZNGiRbrlllvS/s0lzsVQ+o//+A9NnTpVn/nMZ1ReXq5rrrlG//Zv/5Z6//Dhw+rs7Ew7F5FIRDU1NZyLHPj4xz+uLVu26Fe/+pUk6Re/+IVeffVV1dfXS+J8+IUvn2b8hz/8QefPn1dFRUXa/oqKCr311lselSr/9Pb2asmSJbr++us1ceJESVJnZ6cKCwtVUlKSdmxFRYU6Ozs9KGWwrVu3Tnv37tWuXbv6vce5GDq//vWv9fTTT6upqUlf+cpXtGvXLt13330qLCxUY2Nj6t870zWLc+G+Bx98UIlEQhMmTNCwYcN0/vx5Pf7445o/f74kcT58wpcNFJhh0aJF2r9/v1599VWvi5KXjh49qvvvv1+bN2/WiBEjvC5OXuvt7dXUqVP1r//6r5Kka665Rvv379czzzyjxsZGj0uXf5577jmtWbNGa9eu1Uc/+lG1tbVpyZIlikajnA8f8eUQz+jRozVs2LB+dyN0dXWpsrLSo1Lll8WLF2vjxo165ZVXdNlll6X2V1ZW6syZMzp58mTa8Zwb9+3Zs0fHjx/Xtddeq+HDh2v48OHavn27nnzySQ0fPlwVFRWciyEyZswYXXXVVWn7rrzySh05ckSSUv/eXLOGxj//8z/rwQcf1Lx583T11Vfrc5/7nJYuXaqWlhZJnA+/8GUDpbCwUFOmTNGWLVtS+3p7e7VlyxbV1tZ6WLLgsyxLixcv1vr167V161ZVV1envT9lyhRddNFFaefmwIEDOnLkCOfGZTNmzND//u//qq2tLbVNnTpV8+fPT/0352JoXH/99f1ut//Vr36lsWPHSpKqq6tVWVmZdi4SiYR27tzJuciB06dPq6Ag/c/bsGHD1NvbK4nz4Rtez9IdrHXr1lnhcNhavXq19ctf/tK66667rJKSEquzs9ProgXaPffcY0UiEWvbtm1WR0dHajt9+nTqmLvvvtuqqqqytm7dau3evduqra21amtrPSx1/vjzu3gsi3MxVF5//XVr+PDh1uOPP24dPHjQWrNmjTVq1Cjrxz/+ceqYFStWWCUlJdaLL75o7du3z/rbv/1bbmvNkcbGRusv/uIvUrcZv/DCC9bo0aOtBx54IHUM58N8vm2gWJZlPfXUU1ZVVZVVWFhoTZs2zXrttde8LlLgScq4rVq1KnXMH//4R+uLX/yidckll1ijRo2yPv3pT1sdHR3eFTqP9G2gcC6GzksvvWRNnDjRCofD1oQJE6wf/vCHae/39vZaDz30kFVRUWGFw2FrxowZ1oEDBzwqbbAlEgnr/vvvt6qqqqwRI0ZYl19+ufUv//IvVjKZTB3D+TBfyLL+bGk9AAAAA/hyDgoAAAg2GigAAMA4NFAAAIBxaKAAAADj0EABAADGoYECAACMQwMFAAAYhwYKAAAwDg0UAABgHBooAADAODRQAACAcf4PXO9KPwfdjdIAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWj0lEQVR4nO3deXhU5f3+8XsSspFkJiRAFg0QBYHIJiDIorhEiVgWtSIaf4BapYhFxJVvlYBaWVotdWPRVuuCLLYiWokiVhBlk00wSkHDomRRAxkSkgCZ8/tjzMiQBDLJmWQm835d11zOnHPm5BMPhDvPPOfzWAzDMAQAAAAEiKDGLgAAAABoSARgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCgEIABAAAQUAjAAAAACCgEYAAAAASURg3Aa9as0dChQ5WUlCSLxaJly5a57TcMQ1OnTlViYqIiIiKUlpam3bt3ux1TWFiojIwMWa1WxcTE6Pbbb1dxcXEDfhcAAADwJ40agEtKStS9e3c9//zz1e6fPXu2nnnmGc2bN08bNmxQZGSkBg8erLKyMtcxGRkZ+uqrr7Ry5Uq99957WrNmje68886G+hYAAADgZyyGYRiNXYQkWSwWvf322xoxYoQk5+hvUlKS7rvvPt1///2SpKKiIsXHx+uVV17RqFGj9PXXXys1NVWbNm1S7969JUlZWVkaMmSIvv/+eyUlJTXWtwMAAAAf1ayxC6hJTk6O8vLylJaW5tpms9nUt29frVu3TqNGjdK6desUExPjCr+SlJaWpqCgIG3YsEHXXntttecuLy9XeXm567XD4VBhYaHi4uJksVi8900BAACgTgzD0JEjR5SUlKSgoPpNYvDZAJyXlydJio+Pd9seHx/v2peXl6fWrVu77W/WrJliY2Ndx1RnxowZmj59uskVAwAAwNsOHDigs88+u17n8NkA7E1TpkzR5MmTXa+LiorUpk0bHThwQFartRErAwAAQHXsdruSk5MVHR1d73P5bABOSEiQJOXn5ysxMdG1PT8/Xz169HAdU1BQ4Pa+EydOqLCw0PX+6oSFhSksLKzKdqvVSgAGAADwYWZMV/XZPsApKSlKSEjQqlWrXNvsdrs2bNigfv36SZL69eunw4cPa/Pmza5jPv74YzkcDvXt27fBawYAAIDva9QR4OLiYu3Zs8f1OicnR9u2bVNsbKzatGmjSZMm6YknnlCHDh2UkpKiRx99VElJSa5OEZ07d1Z6erruuOMOzZs3T8ePH9fdd9+tUaNG0QECAAAA1WrUAPzFF1/osssuc72unJc7ZswYvfLKK3rwwQdVUlKiO++8U4cPH9bAgQOVlZWl8PBw13veeOMN3X333briiisUFBSk66+/Xs8880yDfy8AAADwDz7TB7gx2e122Ww2FRUVMQcYAADAB5mZ13x2DjAAAADgDQRgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCgNOpCGAAAALWVm+t8eCox0fkAKhGAAQCAX5g/X5o+3fP3ZWZK06aZXg78GAEYAAD4hXHjpGHD3LeVlkoDBzqfr10rRURUfR+jv/6lppH+4mLzvgYBGAAA+IXqpjKUlPz6vEcPKTKyQUuCF9R1pN8TBGAAAAD4jDON9JuBAAwAAACfcaaRfjPQBg0AAAABhQAMAACAgEIABgAAQEAhAAMAACCgEIABAIDfqnAYCkv+Wc07/6CNe39WhcNo7JLgB+gCAQAA/FLWzlxlvpOthJvLJEm3viYl2sKVOTRV6V1Y/QI1YwQYAAD4nayduRr/+hblHylz255XVKbxr29R1s5qlhKD36pwGAo9q9C08xGAAQCAX6lwGJr+braqm+xQuW36u9lMh2gisnbm6spnPlb8DZtMOycBGAAA+JWNOYXKLSqrcb8hKbeoTBtzzBsxROOoaaS/vgjAAADArxTUMgzV9jj4ptON9NcXARgAAPiV1tHhph4H33Smkf76IAADAAC/0iclVom2cFlq2G+RsxtEn5TYhiwLJvPmCD4BGAAA+JXgIIsyh6ZKUpUQXPk6c2iqgoNqisjwB94cwScAAwAAv5PeJVFzb+lZJSQl2MI195ae9AFuAs400l8fLIQBAAD8UnqXRPVvm6DW5xcqOKpM7y0N1yWdYxn5bSIqR/rHv77F9BDMCDAAAPBbwUEWlR+I09Gvz1KfdnGE3yamppH++mIEGAAAAD6rcqS/Ved9pp2TEWAAAAD4tOAgi479YF5XDwIwAAAAAgoBGAAAAAGFAAwAAICAQgAGAABAQCEAAwAAIKDQBg0BLTfX+fBUYqLzAQBoONX9zC4t/fX5tm1SRETV9/Ez27+c6TqbgQCMgDZ/vjR9uufvy8yUpk0zvRwAwGmc6Wf2wIHVb+dntn+p67/NnrAYhmF490v4PrvdLpvNpqKiIlmt1sYuBw2opt8yK3+Irl3LaAIA+Ao+tQsMNV3n4mK7Bg0yJ68RgEUAhruSEikqyvm8uFiKjGzcegAAgLl5jZvgAAAAEFAIwAAAAAgo3AQHAGgSmB8KoLYIwE0Y/xgACCR0dQFQWwTgJox/DAAEknHjpGHD3LfVtqsLgMBCAG7C+McAQCCp7tOrkpJfn/foQVcXAE4E4CaMfwwAAACqogsEAAAAAgoBGAAAAAGFAAwAAICAQgAGAABAQOEmOLihdzAAAGjqCMBwQ+9gAADQ1BGA4YbewVKFw1BYcqGCo8q0cW+4Lukcq+AgS2OXBQAATEIAhptA7x2ctTNXme9kK+HmMknSra9JibZwZQ5NVXqXJpTyAQAIYNwEB/wia2euxr++RflHyty25xWVafzrW5S1sw6TowEAgM8hAANyTnuY/m62jGr2VW6b/m62KhzVHQEAAPwJARiQtDGnULlFZTXuNyTlFpVpY05hwxUFAAC8ggAMSCo4UnP4rctxAADAdxGAA4yzw8HPat75B23c+zMf6f+idXS4qccBAADfRReIAEKHg5r1SYlVoi1ceUVl1c4DtkhKsIWrT0psQ5cGoB5oawigOowABwg6HJxecJBFmUNTJTnD7skqX2cOTeUfTsCPZO3M1ZXPfKyEm9er1bBtuvW19Ro46+OA/3kHgAAcEOhwUDvpXRI195aeVaY5JNjCNfeWngE/Sg74E37pB3A6TIHwI7m5zofH76uofYeDfufG1b3AJiC9S6L6t01Q6/OdH5m+t5SPTAF/c6Zf+i1y/tJ/ZWoCf7eBAEUA9iPz50vTp3v+vv/3CB0OPBEcZFH5AecvAn3aScF8TgL4FU/aGgb6L/1AoCIA+5Fx46Rhw9y3lZZKAwc6n69dK0VEVH1fbkW41vzrzOenwwGApoC2hgDOhADsRxITnY+TlZT8+rxHDykysur7KhyxSvyIDgcAAgNtDQGcCR/uBoD6djigdzAAf1LZ1rCm2b0WOVtA8ks/ELgIwAGirh0OaCMEwN/Q1hDAmVgMwwj44Ty73S6bzaaioiJZrdbGLscjJSVSVJTzeXFx9VMgTmY/YtS6w0FlG6FT/4BUHt1UW4N5+v8UgG+qXPzn5FZoLP4D+C8z8xpzgANMbTsc0EYIgL+jrSGAmjAFAtXypI0QAPiqyl/6j359lvq0iyP8ApBEAEYNaCMEAACaKqZAmKiuK7VV196ssdFGCAAANFUEYBPVdaW2zExp2jTTy6mXyjZC9A4GAABNDQHYRHVdqc3XRn+lX9sIjX99iyySWwimjRAAAPBnBGAT1XWlNl9V2Tv41DZCCbQRAgAAfowAjNOijRAAAGhqCMA4o9r2DvZH1d24WFr66/Nt22qetuKLU1cAAMCZEYAR0M5042Ll/O1T+eKNiwAAoHYIwAho1d24WBuM/gIA4L98OgBXVFRo2rRpev3115WXl6ekpCSNHTtWjzzyiCwW5xxUwzCUmZmpF198UYcPH9aAAQM0d+5cdejQoZGrhz9gKgMAAIHHp2dzzpo1S3PnztVzzz2nr7/+WrNmzdLs2bP17LPPuo6ZPXu2nnnmGc2bN08bNmxQZGSkBg8erLIyVigDAABAVT49Avz5559r+PDhuuaaayRJ7dq105tvvqmNGzdKco7+zpkzR4888oiGDx8uSXr11VcVHx+vZcuWadSoUQ1bcDV3VAWVShdUPt8mqZobquozDFnhMBSW7OzQsHGve4cGbvACAACoyqcDcP/+/bVgwQL973//03nnnaft27dr7dq1evrppyVJOTk5ysvLU1pamus9NptNffv21bp162oMwOXl5SovL3e9ttvt5hRczR1VEZK2VL6o4Yaqut5RlbUzV5nvZCvhZudo962vSYkn9ejlBi8AAICqfDoAP/zww7Lb7erUqZOCg4NVUVGhP/3pT8rIyJAk5eXlSZLi4+Pd3hcfH+/aV50ZM2Zoel3WLD6Tau6oKi0sVcSVzqRZunKtImLNWQoua2euxr++pcoyxXlFZRr/+hbNvaWnxo1L5AYvAACAU/h0AF6yZIneeOMNLVy4UOeff762bdumSZMmKSkpSWPGjKnzeadMmaLJkye7XtvtdiUnJ9e/4GrmDjgKfl0KztGth9S6/kvBVTgMTX83u0r4lZxLFlskTX83W2sfSlBiIgtWAAAAnMynA/ADDzyghx9+2DWVoWvXrtq3b59mzJihMWPGKCEhQZKUn5+vxJOCZ35+vnr06FHjecPCwhQWFubV2r1pY06hcotqvsnPkJRbVKaNOYXqd25cwxUGAI2I+x4A1JZPB+CjR48qKMi9UUVwcLAcDockKSUlRQkJCVq1apUr8Nrtdm3YsEHjx49v6HIbTMGR2nW4qO1xANAUcN8DgNry6QA8dOhQ/elPf1KbNm10/vnna+vWrXr66ad12223SZIsFosmTZqkJ554Qh06dFBKSooeffRRJSUlacSIEY1b/C8qHIbWJXdVQVQLWQ8c0iUtm7u6NNRV6+hwU48DgKaAhW0A1JbFMIzqppL6hCNHjujRRx/V22+/rYKCAiUlJemmm27S1KlTFRoaKunXhTAWLFigw4cPa+DAgXrhhRd03nnn1frr2O122Ww2FRUVyWq1mlZ/1s5cZS77SvnFv3acOLlLQ11VOAwNnPWx8orKqp0HbJGUYAvX2ocur3fYlqSSEikqyvm8uFiKrP80ZgAAAI+Ymdd8OgA3FG8E4Jq6NFTG0bm39KxXCK48vyS3r1Hf89c0h67yo8O1a5lDBwAAGh4B2GRmB+DKEdqablQza4S2sg9w/klzfes7wjxt2unn0NWEOXQAAMCbzMxrPj0H2F81VJeG9C6J6t82Qa3Pd64E995S95Xg6oI5dAAAoKkjAHtBQ3ZpCA6yqPyAM0T3aScFB53++DNhKgMAAGjq6hmXUB26NAAAAPguArAX9EmJVaItXDVNRLDIOVe3T0psQ5YFAAAAEYC9IjjIosyhqZJUJQRXvs4cmmpKizIAAAB4hgDsJeldEjX3lp5qHeW+5HKCLbzeLdAAAABQd9wE50XpXRLVv2W0vurT37kS3Gtv6JILzmLkFwAAoBERgL0sOMiifgd2SJJKklsQfgEAABoZUyAAAAAQUBgBbkTVLTtcG/TqBQAAqDsCcCOaP59lhwEAABoaAbgRVbfscGmpNHCg8/natVJERNX3MfoLAABQdwTgRlTdVIaSkl+f9+ghRUY2aEkAAABNHjfBAQAAIKAQgAEAABBQmALhbY4KqW2wFG1R0A+fSy0vl4KCnfuqaQMRVCpdUPl8m6ST5wD/+KP0009Sy5ZSq1ZnPr4SbSMAAABcLIZhGI1dRGOz2+2y2WwqKiqS1Wo178TZy+X4z4MKKjkp5FqTpPRZUuowZyuHurSB8BRtIwAAgJ8zM68RgOWlAJy9XFoyWoYMua/99surka9KLS6sMgJcWliqiCudbSBKV65VROxJQ7rVjACf9vhKjAADAAA/Z2ZeYwqENzgqpKyHpCrhV5IMSRYp62Fp0o4qwdRR8GsbCEe3HlLr07eB8PR4AACAQEcA9oZ9n0v2g6c5wJDsPziPS7m41qetbuW48kKp3y/Pv/xSCout+j4GgAEAAH5FADZRZUBt8X2+UmpxfM6OfB06VPuAWt3Kcc0lVY4Bp10pHa3mfUwBBgAA+BUB2ESVAXVQ23h9MvbMx986MV6r99U+oFa3clxQqaRfVo77bK3kYOU4AACA0yIAm8gVUI3+OrYySSFlubKo6j2Ghiw6Hp6kp//VX7LUPqBWO1J8yspxYgowAADAaRGATfRrQA2WImZJS0bL2fXh5BBskUVS6LCZ6pka3BhlAgAABDRWgvOW1GHOVmdRCe7brUnO7anDqn8fAAAAvIoRYG9KHSYlXyp1jZWiLdKS96WOJ60EBwAAgAZHAPa2oGBpX4XzeZv+hF8AAIBGxhQIAAAABBQCMAAAAAIKARgAAAABhTnAPqbCYWhdclcVRLWQ9cAhXdKyuYKDLI1dFgAAQJNBAPYhWTtzlbnsK+XfPMO5Yel2JX64S5lDU5XeheXcAAAAzMAUCB+RtTNX41/fovzicrfteUVlGv/6FmXtzG2kygAAAJoWArAPqHAYmv5udjWLJv+6htz0d7NV4ajuCAAAAHjCoykQDodDq1ev1qeffqp9+/bp6NGjatWqlS644AKlpaUpOTnZW3U2aRtzCpVbVFbjfkNSblGZNuYUqt+5cQ1XGAAAQBNUqxHg0tJSPfHEE0pOTtaQIUO0YsUKHT58WMHBwdqzZ48yMzOVkpKiIUOGaP369d6uuckpOFJz+K3LcQAAAKhZrUaAzzvvPPXr108vvviirrzySoWEhFQ5Zt++fVq4cKFGjRqlP/7xj7rjjjtML7apah0dbupxAAAAqFmtAvCHH36ozp07n/aYtm3basqUKbr//vu1f/9+U4oLFH1SYpVoC1deUZkscqhP0DdqrcMqUIw2OjrJUJASbOHqkxLb2KUCAAD4vVoF4DOF35OFhITo3HPPrXNBgSg4yKLMoalatnCepoa8qiRLoWvfQSNWjx0frRFDf08/YAAAABPUqQ/w/v373W6CO//88xUWFmZ2bQElPWiTBof+TcYpvSASLIWaG/o3WYJ6SRpW9Y2OCqltsBRtkfZ/LnW8XAoKbpiiAQAA/FCtA/DevXs1d+5cLVq0SN9//70M49egFhoaqosvvlh33nmnrr/+egUF0V3NI44KKeshWWTo1DFe1//JrIelTte4h9vs5dL7D0pjI52vF/9WsiZJ6bOk1GrCMgAAAGrXBWLixInq3r27cnJy9MQTTyg7O1tFRUU6duyY8vLy9P7772vgwIGaOnWqunXrpk2bNnm77qZl3+eS/eBpDjAk+w/O4yplL5eWjJaKT1kgw57r3J693CulAgAA+LtajQBHRkbqu+++U1xc1R60rVu31uWXX67LL79cmZmZysrK0oEDB3ThhReaXmyTVZzv2XG/jBirxqUzLNWPGAMAAKB2AXjGjBm1PmF6enqdiwlYUfGeHefJiHHKxfUuDwAAoCmp001wlX766Sdt2LBBFRUVuvDCC5WYmGhWXYGlbX/n3F17rqof1bU497ft73zp6YgxAAAAXOp8t9q//vUvtW/fXtOnT1dmZqbOPfdcvfzyy2bWFjiCgp03rknV3Ab3y+v0mb9OZ/B0xBgAAAAutR4BLi4uVlRUlOv19OnTtXHjRp133nmSpP/85z+64447dOutt5pfZSBIHSaNfFXGfx6UpeSkG9usSc7we3JXB09HjAEAAPxFbq7zcariYtO+RK0DcK9evTR79mwNHz7c+cZmzVRQUOAKwPn5+QoNDTWtML9U3QUrLf31+bZtUkRE1fclJjofqcNUGnupIi+KlaItKn31fUV0r6avb+WI8ZLRco4QnxyCqxkxBoBAUNM/mmdS+TMYgG+YP1+aPt2rX8JinNzQ9zT27t2rCRMmKDQ0VM8//7y+/fZbjRo1ShUVFTpx4oSCgoL0yiuvaMiQIV4t2BvsdrtsNpuKiopktVrrfqJp0+p2wTIzne+VVFJQosh450h7SX6xIltH1vy+yj7AJ7dCs55VdcQYAAKBCT+DAfiAGgYU7QMHyibVP6/JgwBc6c0339TUqVM1ceJE/e53v9OePXtUUVGhTp06KTw8vF7FNBbTArAJow8eBWBJOmKXujpHjLXkfVaCAxC4avoUbuBA5/O1a0//KRwA31VSIntUVOMFYEk6fPiw7r//fu3YsUMLFixQ9+7d61VEYzMtAJvA4wBcUiJVzs0uLpYiz3A8AAQSfkYCTYPJAdijNmjvv/++vv76a3Xv3l0vvfSSVq9erYyMDF199dV67LHHFFHdb9YAAACAD6l1G7T77rtPt956qzZt2qRx48bp8ccf16BBg7RlyxaFh4frggsu0IoVK7xZKwAAAFBvtZ4CERcXpw8//FC9evVSYWGhLrroIv3vf/9z7c/Ozta4ceP06aefeq1Yb2EKBAA0UfyMBJoGk6dA1HoEODIyUjk5OZKkAwcOVLnhLTU11S/DLwAAAAJLrQPwjBkzNHr0aCUlJWnQoEF6/PHHvVkXAAAA4BW1vgkuIyND6enp+u6779ShQwfFxMR4sSwAAADAOzzqAhEXF6e4uDhv1QIAAAB4Xa0C8O9//3s98sgjOvvss8947OLFi3XixAllZGTUuzgAAAAXlruGSWoVgFu1aqXzzz9fAwYM0NChQ9W7d28lJSUpPDxchw4dUnZ2ttauXatFixYpKSlJCxYs8HbdAAAg0Myfz3LXMEWt26Dl5+frpZde0qJFi5Sdne22Lzo6Wmlpafrd736n9PR0rxTqTY3VBq26X2TLC0vU70pny551K4sVFlu1ZY/bL7K0+AGAmvEzsmlhuevA5QtLIR86dEj79+9XaWmpWrZsqXPPPVcWi6VehTSmxgrA06ZV/UW2uUpUIucP60gV66iq/rB2+0WWH+4AUDN+RjZ9XOPA0JhLIVdq0aKFWrRoUa8vDGncOGnYMPdtQaWSfvlF9rO1kqOGX2QBAABQN3UKwDBHtZ/IlPz6tEcPqZoBYAAAANRDrRfCAAAAAJoCAjAAAAACCgEYAAAAAYU5wI2ppnYulbZto50LAACAyWoVgC+44IJatznbsmVLvQoKKGdq6F3Z1/BUNPQGgNpxVEhtg6Voi7T/c6nj5VJQcGNXBaCR1SoAjxgxwvW8rKxML7zwglJTU9WvXz9J0vr16/XVV1/prrvu8kqRTVZ1fdBqg9FfADiz7OXS+w9KY39pp7P4t5I1SUqfJaXW4WcvgCbD44Uwfve73ykxMVGPP/642/bMzEwdOHBA//jHP0wtsCE01kIYHmMFHAConezl0pLRkk79J+6XTzNHvkoIbipYCCMwNPZKcDabTV988YU6dOjgtn337t3q3bu3ioqK6lVQY/CbAFzd0nG1ceedztHm2iIwA/BnjgppThfJfrCGAyzOkeBJO5gO0RQQgANDY68EFxERoc8++6xKAP7ss88UHh5er2JwBp5OmZg/X1qw4NdHbTHHGIA/2/f5acKvJBmS/QfncSkXN1hZAHyHxwF40qRJGj9+vLZs2aI+ffpIkjZs2KB//OMfevTRR00vECfxdGR22rSqI7+1nTIBAP6qON/c4wA0OR4H4IcffljnnHOO/va3v+n111+XJHXu3Fkvv/yyRo4caXqBqIfqAnPJKWst81ERgKYmKt7c4wA0OXXqAzxy5EjCLgDAN7Xt75zja89V1ZvgJNcc4Lb9G7oyAHXlqJCSg6QDDlNO5/FKcOecc45+/vnnKtsPHz6sc845x5SiAACos6BgZ6szSa6uDy6/vE6fyQ1wgL/IXi7N7yNlmPeptccBeO/evaqoqKiyvby8XD/88IMpRQEAUC+pw5ytzqIS3Ldbk2iBBviTypaGxblnPtYDtZ4CsXz5ctfzDz74QDabzfW6oqJCq1atUrt27UwtDgCAOksdJiVfKnWNda4Et+R9VoID/ImjQsp6SNVPZaqfWgfgytXgLBaLxowZ47YvJCRE7dq101NPPWVqcQAA1EtQsLTvl08t2/Qn/AL+5IwtDeuu1gHY4XBOOk5JSdGmTZvUsmVLrxQEAAAAeLNVocdzgHNycqqE38OHD5tVTxU//PCDbrnlFsXFxSkiIkJdu3bVF1984dpvGIamTp2qxMRERUREKC0tTbt37/ZaPQAAAGgAXmxV6HEAnjVrlhYvXux6fcMNNyg2NlZnnXWWtm/fbmpxhw4d0oABAxQSEqIVK1YoOztbTz31lFq0aOE6Zvbs2XrmmWc0b948bdiwQZGRkRo8eLDKyspMrQUAAAANqLKlYZVuLvXncQCeN2+ekpOTJUkrV67URx99pKysLF199dV64IEHTC1u1qxZSk5O1ssvv6w+ffooJSVFV111lc4991xJztHfOXPm6JFHHtHw4cPVrVs3vfrqqzp48KCWLVtmai0AAABoQKdtaVjPU3v6hry8PFcAfu+99zRy5EhdddVVevDBB7Vp0yZTi1u+fLl69+6tG264Qa1bt9YFF1ygF1980bU/JydHeXl5SktLc22z2Wzq27ev1q1bV+N5y8vLZbfb3R4AAMAPOSqktsFSl2bS/s+dr9F01NTSsJ48DsAtWrTQgQMHJElZWVmu8GkYRrX9gevju+++09y5c9WhQwd98MEHGj9+vCZOnKh//vOfkpxhXJLi493niMTHx7v2VWfGjBmy2WyuR2WgBwAAfqRygYSxkdL1zaXFv5XmdHFuR9OROkwat1F6o8S0U3ocgK+77jrdfPPNuvLKK/Xzzz/r6quvliRt3bpV7du3N60wydl5omfPnnryySd1wQUX6M4779Qdd9yhefPm1eu8U6ZMUVFRketRGegBAICfqGmBBHuuczshuGkJCjZtGWSpDgH4r3/9q+6++26lpqZq5cqVioqKkiTl5ubqrrvuMq0wSUpMTFRqaqrbts6dO2v//v2SpIQE53B4fr57m4z8/HzXvuqEhYXJarW6PQAAgJ847QIJv2zLepjpEKhRrfsAVwoJCdH9999fZfu9995rSkEnGzBggHbt2uW27X//+5/atm0rydmTOCEhQatWrVKPHj0kSXa7XRs2bND48eNNrwcAAPiAMy6QYEj2H5zHpVzcYGXBf3g8Anwyq9Wq7777zqxaqrj33nu1fv16Pfnkk9qzZ48WLlyoBQsWaMKECZKcq9JNmjRJTzzxhJYvX64dO3Zo9OjRSkpKcq1cBwAAmpjaLpDgxYUU4N88HgE+mWGYvzbzyS688EK9/fbbmjJlih577DGlpKRozpw5ysjIcB3z4IMPqqSkRHfeeacOHz6sgQMHKisrS+Hh4V6tDQAANJLaLpDgxYUU4N8sRj1SbHR0tLZv365zzjnHzJoanN1ul81mU1FRUdOfD1xSIv0yb1vFxVJkZOPWAwDexM+8pslR4ez2YM9V9fOALc4FFCbtcN48Bf9XUiJ7VJRskil5rV5TIG655ZamHxgBAIBvOe0CCb+8Tp9J+EWNah2AR48erX/9618qLi52bZs7d65atmzplcIAAABqVNMCCdYk5/bUYY1TF/xCrecAt2/fXk8++aRuueUWXXrppRo2bJiGDx+upKQkb9YHAABQvdRhUvKlUtdYKdoiLXlf6ng5I784o1qPAE+dOlWbN2/W7t27NXToUC1btkznnHOOevXqpccee0zbtm3zYpkwDUtGAgCakqBgaV+FtPOE1KY/4Re1Uq+b4I4cOaIVK1bonXfe0YoVKxQdHa2hQ4dq/PjxOv/8882s06sC5ia47OXS+w+6r5pjTXLOo+KjIgBNETfBNX1c48DgSzfBRUdHa+TIkXrjjTf0448/6h//+IeCg4O1bt26ehUFL2DJSAAAAEn17AN8suDgYF1xxRW64oorzDolzHLGJSMtziUjO13DR0cA/FdurvNxstLSX59v2yZFRFR9X2Ki8wEgYNQrAN9111167LHH6ATh61gyEkAgmD9fmj695v0DB1a/PTNTmjbNKyUB8E31CsCvv/667r//fgKwr2PJSACBYNw4aVgd7mdg9BcIOD69FDJMwpKRAAIBUxkA1FK9boKTJIvl1BVY4HPa9nd2e6iyWk4li2Q9y3kcAABAE+fRCHBKSopb4C0tLdWgQYPUrNmvp/nuu+/Mqw7mqFwycsloOUPwySP3LBkJAAACi0cB+JVXXnE9NwxDQ4YM0cyZM3XWWWeZXRfMVrlkZLV9gGfSBxgAAAQMjwLwoEGD3F4HBwfroosu0jnnnGNqUfASlowEAACo301wzP/1Q5VLRkosGQkAAAJSvW6CowsEAAAA/E29RoCPHDliVh0AAABAg6h3GzQAAADAn9RpBPjw4cPauHGjCgoK5HA43PaNHj3alMIAAAAAb/A4AL/77rvKyMhQcXGxrFar241wFouFAAwAAACf5nEAvu+++3TbbbfpySefVPPmzb1REwAAAAJVbq7zcbLSUlO/hMcB+IcfftDEiRMJvwAAADDf/PnS9Ole/RIeB+DBgwfriy++YPELAAAAmG/cOGlYNSvUFhdLpyzKVlceB+BrrrlGDzzwgLKzs9W1a1eFhIS47R9WXcHwH9V97FAbiYnOBwAAQH3UlCnsdtO+hMXwcDWLoKCaO6dZLBZVVFTUu6iGZrfbZbPZVFRUJKvV2tjleFdJiRQV5XxeXCxFRrrvnzatbh87ZGY63wsAQEM6079raDLMzGsejwCf2vYMTUx1HzuUlkoDBzqfr10rRURUfZ+/jv4y4g0A/uNMN0dt21bzv1H8zMZJ6rUSHJqg6n5IlJT8+rxHj6b123VdJ9oz4g0ADe9MP7MrB2tOxc9snKJOAbikpESrV6/W/v37dezYMbd9EydONKUwoEEE2og3APizmm6OOhN+ZuMUHgfgrVu3asiQITp69KhKSkoUGxurn376Sc2bN1fr1q0JwPAvgTbiDQD+jKkMMEnNd7TV4N5779XQoUN16NAhRUREaP369dq3b5969eqlv/zlL96oEQAAADCNxwF427Ztuu+++xQUFKTg4GCVl5crOTlZs2fP1v/93/95o0YAAADANB4H4JCQEFcrtNatW2v//v2SJJvNpgMHDphbHQAAAGAyj+cAX3DBBdq0aZM6dOigQYMGaerUqfrpp5/02muvqUuXLt6oEQAAADCNxyPATz75pBJ/mYD+pz/9SS1atND48eP1448/asGCBaYXCAAAAJjJ4xHg3r17u563bt1aWVlZphYEAAAAeFOd+gCfOHFCn3zyib799lvdfPPNio6O1sGDB2W1WhVVuRwhGh8r5gAAAFThcQDet2+f0tPTtX//fpWXl+vKK69UdHS0Zs2apfLycs2bN88bdaIuWDEHAACgCo8D8D333KPevXtr+/btiouLc22/9tprdccdd5haHOqJFXMAAACq8DgAf/rpp/r8888VGhrqtr1du3b64YcfTCsMJmAqAwAAQBUed4FwOByqqKiosv37779XdHS0KUUBAAAA3uJxAL7qqqs0Z84c12uLxaLi4mJlZmZqyJAhZtYGAAAAmM7jKRBPPfWUBg8erNTUVJWVlenmm2/W7t271bJlS7355pveqBEAAAAwjccB+Oyzz9b27du1aNEiffnllyouLtbtt9+ujIwMRVTXUgsAAADwIXXqA9ysWTPdcsstZtcCAAAAeF2dAvDBgwe1du1aFRQUyOFwuO2bOHGiKYUBAAAA3uBxAH7llVc0btw4hYaGKi4uThaLxbXPYrEQgAEAAODTPA7Ajz76qKZOnaopU6YoKMjjJhLwR44KqW2wFG2R9n8udbxcCgpu7KoAAADqxOMEe/ToUY0aNYrwGyiyl0vz+0hjI6Xrm0uLfyvN6eLcDgAA4Ic8TrG33367li5d6o1a4Guyl0tLRkvFue7b7bnO7YRgAADghyyGYRievKGiokK/+c1vVFpaqq5duyokJMRt/9NPP21qgQ3BbrfLZrOpqKhIVqu1scvxDY4K50iv/WANB1gka5I0aUfTmw5xxC51jXVO+VjyPlM+AADwAWbmNY/nAM+YMUMffPCBOnbsKElVboJDE7Hv89OEX0kyJPsPzuNSLm6wsrwue7n0/oPOKR+Sc8qHNUlKnyWlDmvc2gAAgCnqtBLcP/7xD40dO9YL5cBnFOebe5w/qJzyoVM+FKmc8jHyVUIwAABNgMdzgMPCwjRgwABv1AJfEhVv7nG+zlEhZT2kKuFX+nVb1sPO4wAAgF/zOADfc889evbZZ71RC3xJ2/7Oj/5V07QWi2Q9y3lcU+DJlA8AAODXPJ4CsXHjRn388cd67733dP7551e5Ce7f//63acWhEQUFO+e9LhktZwg+eWT0l1CcPrPp3BwWiFM+AAAIUB4H4JiYGF133XXeqAW+JnWYc97r+w+6t0KzJjnDb1OaDxtoUz4AAAhgHrdBa4pog3YGgdAWzNX2LVfVzwNuwm3fAADwA2bmNZZzw5kFBUv7KqSdJ6Q2/ZtmAKyc8iGp6rznJjjlAwCAAFarAJyenq7169ef8bgjR45o1qxZev755+tdGNDgKqd8RCW4b7cm0QINAIAmpFZzgG+44QZdf/31stlsGjp0qHr37q2kpCSFh4fr0KFDys7O1tq1a/X+++/rmmuu0Z///Gdv1w14R+owKfnSpj/lAwCAAFbrOcDl5eVaunSpFi9erLVr16qoqMh5AotFqampGjx4sG6//XZ17tzZqwV7A3OAz6CkRIqKcj4vLpYiIxu3Hm8LtO8XAAA/YGZeq/NNcEVFRSotLVVcXFyVVmj+hgB8BoEWCAPt+wUAwA+Ymdc8boNWyWazyWaz1euLAwAAAA2NLhAAAAAIKARgAAAABBQCMAAAAAIKARgAAAABxeMAPGbMGK1Zs8YbtQAAAABe53EALioqUlpamjp06KAnn3xSP/zwgzfqAgAAALzC4wC8bNky/fDDDxo/frwWL16sdu3a6eqrr9Zbb72l48ePe6NGAAAAwDR1mgPcqlUrTZ48Wdu3b9eGDRvUvn17/b//9/+UlJSke++9V7t37za7TgAAAMAU9boJLjc3VytXrtTKlSsVHBysIUOGaMeOHUpNTdVf//pXs2oEAAAATONxAD5+/Lj+9a9/6Te/+Y3atm2rpUuXatKkSTp48KD++c9/6qOPPtKSJUv02GOPeaNeAAAAoF48Xgo5MTFRDodDN910kzZu3KgePXpUOeayyy5TTEyMCeUBAAAA5vI4AP/1r3/VDTfcoPDw8BqPiYmJUU5OTr0KAwAAALzB4ykQw4YN09GjR6tsLywslN1uN6UoAAAAwFs8DsCjRo3SokWLqmxfsmSJRo0aZUpRAAAAgLd4PAViw4YNevrpp6tsv/TSS/XHP/7RlKLQiHJznY+TlZb++nzbNikiour7EhOdDwAAAB/ncQAuLy/XiRMnqmw/fvy4Sk8OSvBP8+dL06fXvH/gwOq3Z2ZK06Z5pSQAAAAzeRyA+/TpowULFujZZ5912z5v3jz16tXLtMLQSMaNk4YN8/x9jP4CAAA/4XEAfuKJJ5SWlqbt27friiuukCStWrVKmzZt0ocffmh6gWhggTaVgSkfAAAEHI9vghswYIDWrVun5ORkLVmyRO+++67at2+vL7/8UhdffLE3anSZOXOmLBaLJk2a5NpWVlamCRMmKC4uTlFRUbr++uuVn5/v1TrQhMyfL/Xq5f44eZrHwIFV9/fq5XwfAADwSxbDMIzGLqI2Nm3apJEjR8pqteqyyy7TnDlzJEnjx4/Xf/7zH73yyiuy2Wy6++67FRQUpM8++6zW57bb7bLZbCoqKpLVavXSdwCfVN0IcG0wAgwAQIMyM695PAVCkhwOh/bs2aOCggI5HA63fZdcckm9CqpOcXGxMjIy9OKLL+qJJ55wbS8qKtLf//53LVy4UJdffrkk6eWXX1bnzp21fv16XXTRRabXgiaGIAsAQMDxOACvX79eN998s/bt26dTB48tFosqKipMK67ShAkTdM011ygtLc0tAG/evFnHjx9XWlqaa1unTp3Upk0brVu3rsYAXF5ervLyctdrFvAAAAAIHB4H4N///vfq3bu3/vOf/ygxMVEWi8UbdbksWrRIW7Zs0aZNm6rsy8vLU2hoqGJiYty2x8fHKy8vr8ZzzpgxQ9NP1+oLAAAATZbHAXj37t1666231L59e2/U4+bAgQO65557tHLlSoWHh5t23ilTpmjy5Mmu13a7XcnJyaadHwAAAL7L4y4Qffv21Z49e7xRSxWbN29WQUGBevbsqWbNmqlZs2ZavXq1nnnmGTVr1kzx8fE6duyYDh8+7Pa+/Px8JSQk1HjesLAwWa1WtwcAAAACg8cjwH/4wx903333KS8vT127dlVISIjb/m7duplW3BVXXKEdO3a4bbv11lvVqVMnPfTQQ0pOTlZISIhWrVql66+/XpK0a9cu7d+/X/369TOtDgAAADQdHgfgyqB52223ubZZLBYZhmH6TXDR0dHq0qWL27bIyEjFxcW5tt9+++2aPHmyYmNjZbVa9Yc//EH9+vWjAwQAAACq5XEAzsnJ8UYddfbXv/5VQUFBuv7661VeXq7BgwfrhRdeaOyyAAAA4KP8ZiEMb2IhDAAAAN/W6AthSFJ2drb279+vY8eOuW0fNmxYvQoCAAAAvMnjAPzdd9/p2muv1Y4dO1xzfyW5+gF7YyEMAAAAwCwet0G75557lJKSooKCAjVv3lxfffWV1qxZo969e+uTTz7xQokAAACAeTweAV63bp0+/vhjtWzZUkFBQQoKCtLAgQM1Y8YMTZw4UVu3bvVGnQAAAIApPB4BrqioUHR0tCSpZcuWOnjwoCSpbdu22rVrl7nVAQAAACbzeAS4S5cu2r59u1JSUtS3b1/Nnj1boaGhWrBggc455xxv1AgAAACYxuMA/Mgjj6ikpESS9Nhjj+k3v/mNLr74YsXFxWnx4sWmFwgAAACYyZQ+wIWFhWrRooWrE4S/oQ8wAACAbzMzr3k0B/j48eNq1qyZdu7c6bY9NjbWb8MvAAAAAotHATgkJERt2rSh1y8AAAD8lsddIP74xz/q//7v/1RYWOiNegAAAACv8vgmuOeee0579uxRUlKS2rZtq8jISLf9W7ZsMa04AAAAwGweB+ARI0Z4oQwAAACgYZjSBcLf0QUCAADAtzVaFwgAAADA33k8BSIoKOi0Lc/oEAEAAABf5nEAfvvtt91eHz9+XFu3btU///lPTZ8+3bTCAAAAAG8wbQ7wwoULtXjxYr3zzjtmnK5BMQcYAADAt/nkHOCLLrpIq1atMut0AAAAgFeYEoBLS0v1zDPP6KyzzjLjdAAAAIDXeDwHuEWLFm43wRmGoSNHjqh58+Z6/fXXTS0OAAAAMJvHAfivf/2rWwAOCgpSq1at1LdvX7Vo0cLU4gAAAACzeRyAx44d64UyAAAAgIbh8Rzgl19+WUuXLq2yfenSpfrnP/9pSlEAAACAt3gcgGfMmKGWLVtW2d66dWs9+eSTphQFAAAAeIvHAXj//v1KSUmpsr1t27bav3+/KUUBAAAA3uJxAG7durW+/PLLKtu3b9+uuLg4U4oCAAAAvMXjAHzTTTdp4sSJ+u9//6uKigpVVFTo448/1j333KNRo0Z5o0YAAADANB53gXj88ce1d+9eXXHFFWrWzPl2h8Oh0aNHMwcYAAAAPs9iGIZRlzfu3r1b27ZtU0REhLp27aq2bduaXVuDMXNtaQAAAJjPzLzm8QhwpQ4dOqhDhw71+uIAAABAQ/N4DvD111+vWbNmVdk+e/Zs3XDDDaYUBQAAAHiLxwF4zZo1GjJkSJXtV199tdasWWNKUQAAAIC3eByAi4uLFRoaWmV7SEiI7Ha7KUUBAAAA3uJxAO7atasWL15cZfuiRYuUmppqSlEAAACAt3h8E9yjjz6q6667Tt9++60uv/xySdKqVav05ptvaunSpaYXCAAAAJjJ4wA8dOhQLVu2TE8++aTeeustRUREqFu3bvroo480aNAgb9QIAAAAmKbOfYCrs3PnTnXp0sWs0zUY+gADAAD4NjPzmsdzgE915MgRLViwQH369FH37t3rezoAAADAq+ocgNesWaPRo0crMTFRf/nLX3T55Zdr/fr1ZtYGAAAAmM6jOcB5eXl65ZVX9Pe//112u10jR45UeXm5li1bRgcIAAAA+IVajwAPHTpUHTt21Jdffqk5c+bo4MGDevbZZ71ZGwAAAGC6Wo8Ar1ixQhMnTtT48ePVoUMHb9YEAAAAeE2tR4DXrl2rI0eOqFevXurbt6+ee+45/fTTT96sDQAAADBdrQPwRRddpBdffFG5ubkaN26cFi1apKSkJDkcDq1cuVJHjhzxZp0AAACAKerVB3jXrl36+9//rtdee02HDx/WlVdeqeXLl5tZX4OgDzAAAIBv85k+wB07dtTs2bP1/fff680336xXIQAAAEBDMHUlOH/FCDAAAIBv85kRYAAAAMDfEIABAAAQUAjAAAAACCgEYAAAAAQUAjAAAAACCgEYAAAAAYUADAAAgIBCAAYAAEBAIQADAAAgoBCAAQAAEFAIwAAAAAgoBGAAAAAEFAIwAAAAAgoBGAAAAAGFAAwAAICAQgAGAABAQCEAAwAAIKAQgAEAABBQCMAAAAAIKARgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCgEIABAAAQUAjAAAAACCgEYAAAAAQUAjAAAAACCgEYAAAAAYUADAAAgIBCAAYAAEBAIQADAAAgoBCAAQAAEFB8OgDPmDFDF154oaKjo9W6dWuNGDFCu3btcjumrKxMEyZMUFxcnKKionT99dcrPz+/kSoGAACAr/PpALx69WpNmDBB69ev18qVK3X8+HFdddVVKikpcR1z77336t1339XSpUu1evVqHTx4UNddd10jVg0AAABfZjEMw2jsImrrxx9/VOvWrbV69WpdcsklKioqUqtWrbRw4UL99re/lSR988036ty5s9atW6eLLrqo2vOUl5ervLzc9dputys5OVlFRUWyWq0N8r0AAACg9ux2u2w2myl5zadHgE9VVFQkSYqNjZUkbd68WcePH1daWprrmE6dOqlNmzZat25djeeZMWOGbDab65GcnOzdwgEAAOAz/CYAOxwOTZo0SQMGDFCXLl0kSXl5eQoNDVVMTIzbsfHx8crLy6vxXFOmTFFRUZHrceDAAW+WDgAAAB/SrLELqK0JEyZo586dWrt2bb3PFRYWprCwMBOqAgAAgL/xixHgu+++W++9957++9//6uyzz3ZtT0hI0LFjx3T48GG34/Pz85WQkNDAVQIAAMAf+HQANgxDd999t95++219/PHHSklJcdvfq1cvhYSEaNWqVa5tu3bt0v79+9WvX7+GLhcAAAB+wKenQEyYMEELFy7UO++8o+joaNe8XpvNpoiICNlsNt1+++2aPHmyYmNjZbVa9Yc//EH9+vWrsQMEAAAAAptPt0GzWCzVbn/55Zc1duxYSc6FMO677z69+eabKi8v1+DBg/XCCy94NAXCzLYaAAAAMJ+Zec2nA3BDIQADAAD4toDtAwwAAADUFwEYAAAAAYUADAAAgIBCAAYAAEBAIQADAAAgoBCAAQAAEFAIwAAAAAgoBGAAAAAEFAIwAAAAAgoBGAAAAAGFAAwAAICAQgAGAABAQCEAAwAAIKAQgAEAABBQCMAAAAAIKARgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCgEIABAAAQUAjAAAAACCgEYAAAAAQUAjAAAAACCgEYAAAAAaVZYxfgy3JznQ9PJSY6HwAAAPA9BODTmD9fmj7d8/dlZkrTppleDgAAAExAAD6NceOkYcPct5WWSgMHOp+vXStFRFR9H6O/AAAAvosAfBqJylWi3OdAlEq64JfnPSVVk38lJf7yAAAAgK8hAJ9ONXMgIiRtqXwxsIb3MQcCAADAZxGAT6eaORClhaWKuNKZfEtXrlVELHMgAADwJw6HQ8eOHWvsMnCKkJAQBQcHN8jXIgCfTjXtHBwFJb8+79ZDah3ZwEUBAIC6OnbsmHJycuRwOBq7FFQjJiZGCQkJslgsXv06BGAAABAQDMNQbm6ugoODlZycrKAglkPwFYZh6OjRoyooKJAkJXr503QCMAAACAgnTpzQ0aNHlZSUpObNmzd2OThFxC+ttQoKCtS6dWuvTocgAAMAgIBQUVEhSQoNDa31e1gUq2FV/mJy/PhxAjAAAIBZPJlfyqJYDcvbc38rEYABAABqwKJYTRMBGAAAoAbVTWWwHzEUllyo4KgyHYsJ10WdYxUc1DAjl2Zp166dJk2apEmTJtXq+E8++USXXXaZDh06pJiYGK/W1hAIwB6qcBhal9xVBVEtZD1wSJe0bO53f+gBAEDdZO3MVeY72Uq4uUySdOtrUqItXJlDU5Xexfxh3zNNCcjMzNS0Osy12LRpkyIja9/KtX///srNzZXNZvP4a/kiArAHsnbmKnPZV8q/eYZzw9LtSvxwl9f+0AMAAN+RtTNX41/fIuOU7XlFZRr/+hbNvaWn6Xkg96Q78BYvXqypU6dq165drm1RUVGu54ZhqKKiQs2anTnetWrVyqM6QkNDlZCQ4NF7fBkN8Gqp8g/9j8WluigoW8OCPtdFQdkqKDqq8a9vUdbOOtwiCgAA/EKFw9D0d7OrhF9Jrm3T381WhaO6I+ouISHB9bDZbLJYLK7X33zzjaKjo7VixQr16tVLYWFhWrt2rb799lsNHz5c8fHxioqK0oUXXqiPPvrI7bzt2rXTnDlzXK8tFoteeuklXXvttWrevLk6dOig5cuXu/Z/8sknslgsOnz4sCTplVdeUUxMjD744AN17txZUVFRSk9PdwvsJ06c0MSJExUTE6O4uDg99NBDGjNmjEaMGGHq/6O6IADXQuUf+quCNmpt2EQtCn1Cz4Q+p0WhT+jTsIkaHLTRK3/oAQCAb9iYU6jcorIa9xuScovKtDGnsOGK+sXDDz+smTNn6uuvv1a3bt1UXFysIUOGaNWqVdq6davS09M1dOhQ7d+//7TnmT59ukaOHKkvv/xSQ4YMUUZGhgoLa/5+jh49qr/85S967bXXtGbNGu3fv1/333+/a/+sWbP0xhtv6OWXX9Znn30mu92uZcuWmfVt1wsBuBY25hSq25E1mhsyRwly/4OQoEK9EDJH3Y6saZQ/9AAAwPsKjtQcfutynJkee+wxXXnllTr33HMVGxur7t27a9y4cerSpYs6dOigxx9/XOeee67biG51xo4dq5tuuknt27fXk08+qeLiYm3cuLHG448fP6558+apd+/e6tmzp+6++26tWrXKtf/ZZ5/VlClTdO2116pTp0567rnnfOYGOgJwLRTYS5QZ8qok6dT73SpfZ4a8pgJ7SQNXBgAAGkLr6HBTjzNT79693V4XFxfr/vvvV+fOnRUTE6OoqCh9/fXXZxwB7tatm+t5ZGSkrFara2ni6jRv3lznnnuu63ViYqLr+KKiIuXn56tPnz6u/cHBwerVq5dH35u3cBNcLbQ/ukNJlppHd4MsUpJ+VvujOyS1abjCAABAg+iTEqtEW7jyisqqnQdskZRgC1eflNiGLq1KN4f7779fK1eu1F/+8he1b99eERER+u1vf6tjx46d9jwhISFury0WixwOh0fHG4Z/TAdlBLgWOkcfNfU4AADgX4KDLMocmirJGXZPVvk6c2iqT7RG/eyzzzR27Fhde+216tq1qxISErR3794GrcFmsyk+Pl6bNm1ybauoqNCWLVsatI6aEIBrISi6dm0/anscAADwP+ldEjX3lp5Vpjkk2MK90gKtrjp06KB///vf2rZtm7Zv366bb775tCO53vKHP/xBM2bM0DvvvKNdu3bpnnvu0aFDhxpsuePTYQpEbbTtL1mTZNhzZanmgw9DFlmsSc7jAABAk5XeJVH92yao9fnOleDeWxquS3xsJbinn35at912m/r376+WLVvqoYcekt1ub/A6HnroIeXl5Wn06NEKDg7WnXfeqcGDBys4OLjBazmVxfCXyRpeZLfbZbPZVFRUJKvVWv1B2culJaNlSG4h2JDF+dHHyFel1GHVvxcAADS6srIy5eTkKCUlReHhtbtZLTfX+ThZaak0cKDz+dq1UkRE1fdVt4RyoHM4HOrcubNGjhypxx9/vNpjTneNapXXaokR4NpKHSaNfFXGfx6UpeTXvwkWa5KUPpPwCwBAEzR/vjR9es37K4PwqTIzpTqsUNyk7Nu3Tx9++KEGDRqk8vJyPffcc8rJydHNN9/c2KURgD2SOkylsZcq8qJYKdqi0lffV0T3y6Wgxh/KBwAA5hs3ThpWhzEuRn+loKAgvfLKK7r//vtlGIa6dOmijz76SJ07d27s0gjAHgsKlvZVSJIcZ/Un/AIA0IQxlaHukpOT9dlnnzV2GdWiCwQAAAACCgEYAAAAAYUADAAAgIDCHGAAAICaVNcHrTaYPOzTCMAAAAA1OVMftJrQB82nEYABAABqUl0ftNquhAGfRQAGAACoSXVTGY7YpbbBUrRFij0qdbyItqh+hpvgAAAAait7uTS/jzQ2Urq+ubT4t9KcLs7tXmCxWE77mFaPaRYWi0XLli0zrVZ/wgjwaeRvy1XhV+4T34/bS9Xtl+ff/mubQqxVP/aIPT9R8T346AMAgCYle7m0ZLQkw327Pde5feSrUmodlo07jdyTbsBbvHixpk6dql27drm2RUVFmfr1AgUB+DS+njRfl66ueeJ7t7uqXwD8k0GZiv9kmpeqAgAADc5RIWU9pCrhV/plm0XKeljqdI2p0yESEhJcz202mywWi9u2l156SU899ZRycnLUrl07TZw4UXfddZck6dixY5o8ebL+9a9/6dChQ4qPj9fvf/97TZkyRe3atZMkXXvttZKktm3bau/evabV7esIwKfRec44ff2V57/JdT6f0V8AAJqUfZ9L9oOnOcCQ7D84j0u5uEFKeuONNzR16lQ999xzuuCCC7R161bdcccdioyM1JgxY/TMM89o+fLlWrJkidq0aaMDBw7owIEDkqRNmzapdevWevnll5Wenq7g4MCaw0wAPo34HkxlAAAAkorzzT3OBJmZmXrqqad03XXXSZJSUlKUnZ2t+fPna8yYMdq/f786dOiggQMHymKxqG3btq73tmrVSpIUExPjNqIcKAjAAAAAZxIVb+5x9VRSUqJvv/1Wt99+u+644w7X9hMnTshms0mSxo4dqyuvvFIdO3ZUenq6fvOb3+iqq65qkPp8HQEYAADgTNr2l6xJzhveqp0HbHHub9u/QcopLi6WJL344ovq27ev277K6Qw9e/ZUTk6OVqxYoY8++kgjR45UWlqa3nrrrQap0ZcRgAEAAM4kKFhKn/VLFwiL3EOwxfmf9JkN1g84Pj5eSUlJ+u6775SRkVHjcVarVTfeeKNuvPFG/fa3v1V6eroKCwsVGxurkJAQVVRUNEi9voYADAAAUBupw5ytzt5/UCo+qU2qNckZfk1ugXYm06dP18SJE2Wz2ZSenq7y8nJ98cUXOnTokCZPnqynn35aiYmJuuCCCxQUFKSlS5cqISFBMTExkqR27dpp1apVGjBggMLCwtSiRYsGrb8xEYABAABqK3WYlHyp1DXWuRLckveljpc3ykpwv/vd79S8eXP9+c9/1gMPPKDIyEh17dpVkyZNkiRFR0dr9uzZ2r17t4KDg3XhhRfq/fffV1CQcx20p556SpMnT9aLL76os846K6DaoFkMw6huIktAsdvtstlsKioqktVqbexyAACAF5SVlSknJ0cpKSkKDw+v3Ztyc52Pk5WWSgN/WQtg7VopouqiWNUuoYwzOt01MjOvMQIMAABQk/nzpek1L4rlCsKnysyU6rFMMbyLAAwAAFCTceOkYXWY28vor08jAAMAANSEqQxNUlBjFwAAAAA0JAIwAAAIKNz/77sa6toQgAEAQECoXCHt2LFjjVwJanL06FFJUkhIiFe/DnOAAQBAQGjWrJmaN2+uH3/8USEhIa5+uGh8hmHo6NGjKigoUExMjOuXFW8hAAMAgIBgsViUmJionJwc7du3r7HLQTViYmKUkJDg9a9DAAYAAAEjNDRUHTp0YBqEDwoJCfH6yG8lAjAAAAgoQUFBtV8JDk1Sk5n88vzzz6tdu3YKDw9X3759tXHjxsYuCQAAAD6oSQTgxYsXa/LkycrMzNSWLVvUvXt3DR48WAUFBY1dGgAAAHxMkwjATz/9tO644w7deuutSk1N1bx589S8eXP94x//aOzSAAAA4GP8fg7wsWPHtHnzZk2ZMsW1LSgoSGlpaVq3bl217ykvL1d5ebnrdVFRkSTJbrd7t1gAAADUSWVOM2OxDL8PwD/99JMqKioUHx/vtj0+Pl7ffPNNte+ZMWOGpk+fXmV7cnKyV2oEAACAOX7++WfZbLZ6ncPvA3BdTJkyRZMnT3a9djgcKiwsVFxcnCwWyxnfb7fblZycrAMHDshqtXqzVDQSrnFg4DoHBq5z08c1DgxFRUVq06aNYmNj630uvw/ALVu2VHBwsPLz89225+fn19hIOSwsTGFhYW7bYmJiPP7aVquVv2hNHNc4MHCdAwPXuenjGgcGM1bw8/ub4EJDQ9WrVy+tWrXKtc3hcGjVqlXq169fI1YGAAAAX+T3I8CSNHnyZI0ZM0a9e/dWnz59NGfOHJWUlOjWW29t7NIAAADgY5pEAL7xxhv1448/aurUqcrLy1OPHj2UlZVV5cY4s4SFhSkzM7PKNAo0HVzjwMB1Dgxc56aPaxwYzLzOFsOMXhIAAACAn/D7OcAAAACAJwjAAAAACCgEYAAAAAQUAjAAAAACCgHYQ88//7zatWun8PBw9e3bVxs3bmzsklAPa9as0dChQ5WUlCSLxaJly5a57TcMQ1OnTlViYqIiIiKUlpam3bt3N06xqJMZM2bowgsvVHR0tFq3bq0RI0Zo165dbseUlZVpwoQJiouLU1RUlK6//voqi+vAt82dO1fdunVzLYTQr18/rVixwrWfa9z0zJw5UxaLRZMmTXJt4zr7v2nTpslisbg9OnXq5Npv1jUmAHtg8eLFmjx5sjIzM7VlyxZ1795dgwcPVkFBQWOXhjoqKSlR9+7d9fzzz1e7f/bs2XrmmWc0b948bdiwQZGRkRo8eLDKysoauFLU1erVqzVhwgStX79eK1eu1PHjx3XVVVeppKTEdcy9996rd999V0uXLtXq1at18OBBXXfddY1YNTx19tlna+bMmdq8ebO++OILXX755Ro+fLi++uorSVzjpmbTpk2aP3++unXr5rad69w0nH/++crNzXU91q5d69pn2jU2UGt9+vQxJkyY4HpdUVFhJCUlGTNmzGjEqmAWScbbb7/teu1wOIyEhATjz3/+s2vb4cOHjbCwMOPNN99shAphhoKCAkOSsXr1asMwnNc0JCTEWLp0qeuYr7/+2pBkrFu3rrHKhAlatGhhvPTSS1zjJubIkSNGhw4djJUrVxqDBg0y7rnnHsMw+LvcVGRmZhrdu3evdp+Z15gR4Fo6duyYNm/erLS0NNe2oKAgpaWlad26dY1YGbwlJydHeXl5btfcZrOpb9++XHM/VlRUJEmKjY2VJG3evFnHjx93u86dOnVSmzZtuM5+qqKiQosWLVJJSYn69evHNW5iJkyYoGuuucbtekr8XW5Kdu/eraSkJJ1zzjnKyMjQ/v37JZl7jZvESnAN4aefflJFRUWV1eXi4+P1zTffNFJV8Ka8vDxJqvaaV+6Df3E4HJo0aZIGDBigLl26SHJe59DQUMXExLgdy3X2Pzt27FC/fv1UVlamqKgovf3220pNTdW2bdu4xk3EokWLtGXLFm3atKnKPv4uNw19+/bVK6+8oo4dOyo3N1fTp0/XxRdfrJ07d5p6jQnAAALGhAkTtHPnTrf5ZGg6OnbsqG3btqmoqEhvvfWWxowZo9WrVzd2WTDJgQMHdM8992jlypUKDw9v7HLgJVdffbXrebdu3dS3b1+1bdtWS5YsUUREhGlfhykQtdSyZUsFBwdXudMwPz9fCQkJjVQVvKnyunLNm4a7775b7733nv773//q7LPPdm1PSEjQsWPHdPjwYbfjuc7+JzQ0VO3bt1evXr00Y8YMde/eXX/729+4xk3E5s2bVVBQoJ49e6pZs2Zq1qyZVq9erWeeeUbNmjVTfHw817kJiomJ0Xnnnac9e/aY+neZAFxLoaGh6tWrl1atWuXa5nA4tGrVKvXr168RK4O3pKSkKCEhwe2a2+12bdiwgWvuRwzD0N133623335bH3/8sVJSUtz29+rVSyEhIW7XedeuXdq/fz/X2c85HA6Vl5dzjZuIK664Qjt27NC2bdtcj969eysjI8P1nOvc9BQXF+vbb79VYmKiqX+XmQLhgcmTJ2vMmDHq3bu3+vTpozlz5qikpES33nprY5eGOiouLtaePXtcr3NycrRt2zbFxsaqTZs2mjRpkp544gl16NBBKSkpevTRR5WUlKQRI0Y0XtHwyIQJE7Rw4UK98847io6Ods0Ts9lsioiIkM1m0+23367JkycrNjZWVqtVf/jDH9SvXz9ddNFFjVw9amvKlCm6+uqr1aZNGx05ckQLFy7UJ598og8++IBr3ERER0e75u5XioyMVFxcnGs719n/3X///Ro6dKjatm2rgwcPKjMzU8HBwbrpppvM/btcj04VAenZZ5812rRpY4SGhhp9+vQx1q9f39gloR7++9//GpKqPMaMGWMYhrMV2qOPPmrEx8cbYWFhxhVXXGHs2rWrcYuGR6q7vpKMl19+2XVMaWmpcddddxktWrQwmjdvblx77bVGbm5u4xUNj912221G27ZtjdDQUKNVq1bGFVdcYXz44Yeu/VzjpunkNmiGwXVuCm688UYjMTHRCA0NNc466yzjxhtvNPbs2ePab9Y1thiGYZgY3AEAAACfxhxgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCgEIABAAAQUAjAAAAACCgEYADwUdOmTVOPHj0auwwAaHIIwABwirFjx8pisVR5pKenN3ZpXnHppZe6vsfw8HClpqbqhRdeaOyyAMBrCMAAUI309HTl5ua6Pd58883GLstr7rjjDuXm5io7O1sjR47UhAkTfOb7PXbsWGOXAKCJIQADQDXCwsKUkJDg9mjRooVrv8Vi0UsvvaRrr71WzZs3V4cOHbR8+XJJksPh0Nlnn625c+e6nXPr1q0KCgrSvn37JEmHDx/W7373O7Vq1UpWq1WXX365tm/fXmNNDodDjz32mM4++2yFhYWpR48eysrKcu3fu3evLBaLFi1apP79+ys8PFxdunTR6tWrz/j9Nm/eXAkJCTrnnHM0bdo0t+9n//79Gj58uKKiomS1WjVy5Ejl5+dLkoqKihQcHKwvvvjCVWNsbKwuuugi17lff/11JScnu14fOHBAI0eOVExMjGJjYzV8+HDt3bvXtX/s2LEaMWKE/vSnPykpKUkdO3Y8Y/0A4AkCMADU0fTp0zVy5Eh9+eWXGjJkiDIyMlRYWKigoCDddNNNWrhwodvxb7zxhgYMGKC2bdtKkm644QYVFBRoxYoV2rx5s3r27KkrrrhChYWF1X69v/3tb3rqqaf0l7/8RV9++aUGDx6sYcOGaffu3W7HPfDAA7rvvvu0detW9evXT0OHDtXPP//s0fcWERGhY8eOyeFwaPjw4SosLNTq1au1cuVKfffdd7rxxhslSTabTT169NAnn3wiSdqxY4csFou2bt2q4uJiSdLq1as1aNAgSdLx48c1ePBgRUdH69NPP9Vnn32mqKgopaenu430rlq1Srt27dLKlSv13nvveVQ7AJyRAQBwM2bMGCM4ONiIjIx0e/zpT39yHSPJeOSRR1yvi4uLDUnGihUrDMMwjK1btxoWi8XYt2+fYRiGUVFRYZx11lnG3LlzDcMwjE8//dSwWq1GWVmZ29c+99xzjfnz5xuGYRiZmZlG9+7dXfuSkpLcajAMw7jwwguNu+66yzAMw8jJyTEkGTNnznTtP378uHH22Wcbs2bNqvH7HTRokHHPPfcYhmEYJ06cMF577TVDkvHcc88ZH374oREcHGzs37/fdfxXX31lSDI2btxoGIZhTJ482bjmmmsMwzCMOXPmGDfeeKPRvXt31/+L9u3bGwsWLDAMwzBee+01o2PHjobD4XCdr7y83IiIiDA++OAD1///+Ph4o7y8vMaaAaA+mjVq+gYAH3XZZZdVmcIQGxvr9rpbt26u55GRkbJarSooKJAk9ejRQ507d9bChQv18MMPa/Xq1SooKNANN9wgSdq+fbuKi4sVFxfnds7S0lJ9++23Veqx2+06ePCgBgwY4LZ9wIABVaZN9OvXz/W8WbNm6t27t77++uvTfr8vvPCCXnrpJR07dkzBwcG69957NX78eD333HNKTk52m8KQmpqqmJgYff3117rwwgs1aNAg/f3vf1dFRYVWr16tq666SgkJCfrkk0/UrVs37dmzR5deeqnr+96zZ4+io6Pdvn5ZWZnb9921a1eFhoaetmYAqCsCMABUIzIyUu3btz/tMSEhIW6vLRaLHA6H63VGRoYrAC9cuFDp6emuwFtcXKzExETX1IGTxcTE1Lt+T2VkZOiPf/yjIiIilJiYqKCg2s+Qu+SSS3TkyBFt2bJFa9as0ZNPPqmEhATNnDlT3bt3V1JSkjp06CDJ+X336tVLb7zxRpXztGrVyvU8MjKy/t8UANSAOcAA4CU333yzdu7cqc2bN+utt95SRkaGa1/Pnj2Vl5enZs2aqX379m6Pli1bVjmX1WpVUlKSPvvsM7ftn332mVJTU922rV+/3vX8xIkT2rx5szp37nzaWm02m9q3b6+zzjrLLfx27txZBw4c0IEDB1zbsrOzdfjwYdfXjYmJUbdu3fTcc88pJCREnTp10iWXXKKtW7fqvffec83/rfy+d+/erdatW1f5vm0222lrBACzEIABoBrl5eXKy8tze/z0008enaNdu3bq37+/br/9dlVUVGjYsGGufWlpaerXr59GjBihDz/8UHv37tXnn3+uP/7xj66OCqd64IEHNGvWLC1evFi7du3Sww8/rG3btumee+5xO+7555/X22+/rW+++UYTJkzQoUOHdNttt3n+P+GXOrt27aqMjAxt2bJFGzdu1OjRozVo0CD17t3bddyll16qN954wxV2Y2Nj1blzZy1evNgtAGdkZKhly5YaPny4Pv30U+Xk5OiTTz7RxIkT9f3339epRgDwFAEYAKqRlZWlxMREt8fAgQM9Pk9GRoa2b9+ua6+9VhEREa7tFotF77//vi655BLdeuutOu+88zRq1Cjt27dP8fHx1Z5r4sSJmjx5su677z517dpVWVlZWr58uWt6QaWZM2e6ph+sXbtWy5cvr3ZUuTYsFoveeecdtWjRQpdcconS0tJ0zjnnaPHixW7HDRo0SBUVFa65vpIzFJ+6rXnz5lqzZo3atGmj6667Tp07d9btt9+usrIyWa3WOtUIAJ6yGIZhNHYRAID627t3r1JSUrR161aWUAaA02AEGAAAAAGFAAwAAICAwhQIAAAABBRGgAEAABBQCMAAAAAIKARgAAAABBQCMAAAAAIKARgAAAABhQAMAACAgEIABgAAQEAhAAMAACCg/H9dGVLPOJ3S7wAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUDklEQVR4nO3deXxTVf7/8XdaSlu6pJSlC2tZBqhsAoIsI46gVBw2HcEBfoCiMiyDCKjwHaGgKIuKDKKA+6gouIuMFpFBFGQvuAAiKkKRLirQ0EILNPf3R2gktIWmvaFp8no+HnmYnHvu7Sfctnl7eu65FsMwDAEAAAB+IqCiCwAAAAAuJwIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwKwRgAAAA+BUCMAAAAPxKhQbgzz//XH369FF8fLwsFovef/99l+2GYWj69OmKi4tTaGioevbsqf3797v0OXr0qIYMGaLIyEhFRUVp5MiRysnJuYzvAgAAAJVJhQbg3NxctWnTRk8//XSx2+fNm6eFCxdqyZIl2rJli8LCwtSrVy/l5eU5+wwZMkS7d+/WmjVrtGrVKn3++ee6++67L9dbAAAAQCVjMQzDqOgiJMlisei9995T//79JTlGf+Pj4zVp0iRNnjxZkpSdna2YmBi9/PLLuu2227R3714lJiZq27Zt6tChgyQpJSVFvXv31uHDhxUfH19RbwcAAABeqkpFF1CSAwcOKCMjQz179nS2Wa1WderUSZs2bdJtt92mTZs2KSoqyhl+Jalnz54KCAjQli1bNGDAgGKPnZ+fr/z8fOdru92uo0ePqkaNGrJYLJ57UwAAACgTwzB04sQJxcfHKyCgfJMYvDYAZ2RkSJJiYmJc2mNiYpzbMjIyVLt2bZftVapUUXR0tLNPcWbPnq2ZM2eaXDEAAAA8LS0tTXXr1i3XMbw2AHvS1KlTNXHiROfr7Oxs1a9fX2lpaYqMjKzAygAAAFAcm82mevXqKSIiotzH8toAHBsbK0nKzMxUXFycsz0zM1Nt27Z19snKynLZ7+zZszp69Khz/+IEBwcrODi4SHtkZCQBGAAAwIuZMV3Va9cBTkhIUGxsrNauXetss9ls2rJlizp37ixJ6ty5s44fP64dO3Y4+/zvf/+T3W5Xp06dLnvNAAAA8H4VOgKck5OjH374wfn6wIED2rVrl6Kjo1W/fn1NmDBBs2bNUtOmTZWQkKBp06YpPj7euVJEixYtlJSUpLvuuktLlizRmTNnNG7cON12222sAAEAAIBiVWgA3r59u/7yl784XxfOyx0+fLhefvll3X///crNzdXdd9+t48ePq1u3bkpJSVFISIhzn2XLlmncuHHq0aOHAgICdMstt2jhwoWX/b0AAACgcvCadYArks1mk9VqVXZ2NnOAAQDwcYZh6OzZsyooKKjoUnCewMBAValSpcQ5vmbmNa+9CA4AAMBsp0+fVnp6uk6ePFnRpaAY1apVU1xcnKpWrerRr0MABgAAfsFut+vAgQMKDAxUfHy8qlatyg2wvIRhGDp9+rR+/fVXHThwQE2bNi33zS4uhgAMAAD8wunTp2W321WvXj1Vq1atosvBBUJDQxUUFKSDBw/q9OnTLtd8mY0ADAAA/Io7I4vp6Y6Hu+LiHA+4x5OjvucjAAP8dgMAlGDpUmnmTPf3S06WZswwvRyYhAAM8NsNAFCCUaOkvn1d206dkrp1czzfsEEKDS26H+Mj3o0ADPDbDQBQguL+2Gc7YSi43lEFhufpdFSIrm4RrcCAynUxXcOGDTVhwgRNmDChVP0/++wz/eUvf9GxY8cUFRXl0douBwIwUNxvt9zcP563bSuFhV3WkgAA3inl23Qlf7BHsYPzJEm3vyrFWUOU3CdRSS3NHxi51CoVycnJmlGGv0Zu27ZNYW58tnXp0kXp6emyWq1ufy1vRAAGAAAohZRv0zX6tVRdeAexjOw8jX4tVYuHtjM9BKefd43KihUrNH36dO3bt8/ZFh4e7nxuGIYKCgpUpcql412tWrXcqqNq1aqKjY11ax9vdnkutQMAAKjECuyGZn64p0j4leRsm/nhHhXYzb3BbmxsrPNhtVplsVicr7/77jtFRETo448/Vvv27RUcHKwNGzboxx9/VL9+/RQTE6Pw8HBdddVV+vTTT12O27BhQy1YsMD52mKx6Pnnn9eAAQNUrVo1NW3aVCtXrnRu/+yzz2SxWHT8+HFJ0ssvv6yoqCitXr1aLVq0UHh4uJKSklwC+9mzZzV+/HhFRUWpRo0aeuCBBzR8+HD179/f1H+jsiAAAwAAXMLWA0eVnp1X4nZDUnp2nrYeOHr5ijpnypQpmjNnjvbu3avWrVsrJydHvXv31tq1a7Vz504lJSWpT58+OnTo0EWPM3PmTA0cOFBff/21evfurSFDhujo0ZLfz8mTJ/X444/r1Vdf1eeff65Dhw5p8uTJzu1z587VsmXL9NJLL2njxo2y2Wx6//33zXrb5UIABgAAuISsEyWH37L0M9NDDz2k66+/Xo0bN1Z0dLTatGmjUaNGqWXLlmratKkefvhhNW7c2GVEtzgjRozQ3//+dzVp0kSPPvqocnJytHXr1hL7nzlzRkuWLFGHDh3Url07jRs3TmvXrnVuf+qppzR16lQNGDBAzZs316JFi7zmAjoCMAAAwCXUjijdXclK289MHTp0cHmdk5OjyZMnq0WLFoqKilJ4eLj27t17yRHg1q1bO5+HhYUpMjJSWVlZJfavVq2aGjdu7HwdFxfn7J+dna3MzEx17NjRuT0wMFDt27d36715ChfBAQAAXELHhGjFWUOUkZ1X7Dxgi6RYa4g6JkRf7tKKrOYwefJkrVmzRo8//riaNGmi0NBQ/e1vf9Pp06cvepygoCCX1xaLRXa73a3+hmHuHGhPYQQYAADgEgIDLErukyjJEXbPV/g6uU+iV6wHvHHjRo0YMUIDBgxQq1atFBsbq59//vmy1mC1WhUTE6Nt27Y52woKCpSamnpZ6ygJARgAAKAUklrGafHQdkWmOcRaQzyyBFpZNW3aVO+++6527dqlr776SoMHD77oSK6n/POf/9Ts2bP1wQcfaN++fbrnnnt07NixS65tfDkwBQIAAKCUklrGqUuDWNW+wnEnuFVvhegaL7sT3Pz583XHHXeoS5cuqlmzph544AHZbLbLXscDDzygjIwMDRs2TIGBgbr77rvVq1cvBQYGXvZaLmQxKstkDQ+y2WyyWq3Kzs5WZGRkRZcDb5CbKxUuLp6Tw53gAMAH5OXl6cCBA0pISFBISOkuVktPdzzOd+qU1K2b4/mGDVJoaNH9irvJqL+z2+1q0aKFBg4cqIcffrjYPhc7R2bmNUaAAQAASrB0qTRzZsnbC4PwhZKTpTLcodinHDx4UJ988om6d++u/Px8LVq0SAcOHNDgwYMrujQCMAAAQElGjZL69nV/P0Z/pYCAAL388suaPHmyDMNQy5Yt9emnn6pFixYVXRoBGAAAoCRMZSi7evXqaePGjRVdRrFYBQIAAAB+hQAMAAAAv0IABgAAgF9hDjAAAEBJilsHrTSYPOzVCMAAAAAludQ6aCVhHTSvRgAGAAAoSXHroJX2ThjwWgRgAACAkhQ3leGETWoQKEVYpOiTUrOrpYCKv70vSo+L4AAAAEprz0ppaUdpRJh0SzVpxd+kBS0d7R5gsVgu+phRjmkWFotF77//vmm1ViaMAAMAAJTGnpXSm8MkGa7ttnRH+8BXpMQy3DbuItLPuwBvxYoVmj59uvbt2+dsCw8PN/Xr+QtGgAEAAC7FXiClPKAi4Vf6oy1liqOfiWJjY50Pq9Uqi8Xi0rZ8+XK1aNFCISEhat68uZ555hnnvqdPn9a4ceMUFxenkJAQNWjQQLNnz5YkNWzYUJI0YMAAWSwW52t/wQgwAADApRz8UrIduUgHQ7L94uiX8OfLUtKyZcs0ffp0LVq0SFdeeaV27typu+66S2FhYRo+fLgWLlyolStX6s0331T9+vWVlpamtLQ0SdK2bdtUu3ZtvfTSS0pKSlJgoH/NYSYAAwAAXEpOprn9TJCcnKwnnnhCN998syQpISFBe/bs0dKlSzV8+HAdOnRITZs2Vbdu3WSxWNSgQQPnvrVq1ZIkRUVFKTY29rLV7C0IwAAAAJcSHmNuv3LKzc3Vjz/+qJEjR+quu+5ytp89e1ZWq1WSNGLECF1//fVq1qyZkpKS9Ne//lU33HDDZanP2xGAAQAALqVBFyky3nHBW7HzgC2O7Q26XJZycnJyJEnPPfecOnXq5LKtcDpDu3btdODAAX388cf69NNPNXDgQPXs2VNvv/32ZanRmxGAAQAALiUgUEqae24VCItcQ7DF8Z+kOZdtPeCYmBjFx8frp59+0pAhQ0rsFxkZqUGDBmnQoEH629/+pqSkJB09elTR0dEKCgpSQYG5F+1VFgRgAACA0kjs61jq7KP7pZw/lidTZLwj/Jq8BNqlzJw5U+PHj5fValVSUpLy8/O1fft2HTt2TBMnTtT8+fMVFxenK6+8UgEBAXrrrbcUGxurqKgoSY6VINauXauuXbsqODhY1atXv6z1VyQCMAAAQGkl9pXqXSu1inbcCe7Nj6Rm11XIneDuvPNOVatWTY899pjuu+8+hYWFqVWrVpowYYIkKSIiQvPmzdP+/fsVGBioq666Sh999JECAhyr4D7xxBOaOHGinnvuOdWpU0c///zzZX8PFcViGEZxE1n8is1mk9VqVXZ2tiIjIyu6HHiD3FypcHHxnBwpLKxi6wEAlFteXp4OHDighIQEhYSElG6n9HTH43ynTkndujmeb9gghYYW3a+4Wyjjki52jszMa4wAAwAAlGTpUmnmzJK3FwbhCyUnS+W4TTE8iwAMAABQklGjpL5lmNvL6K9XIwADAACUhKkMPimgogsAAAAALicCMAAA8Ctc/++9Lte5IQADAAC/EBQUJEk6efJkBVeCkhSem8Jz5SnMAQYAAH4hMDBQUVFRysrKkiRVq1ZNFoulgquC5Bj5PXnypLKyshQVFeW8nbOnEIABAIDfiI2NlSRnCIZ3iYqKcp4jTyIAAwAAv2GxWBQXF6fatWvrzJkzFV0OzhMUFOTxkd9CBGAAAOB3AgMDL1vYgvfhIjgAAAD4FQIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwKwRgAAAA+BUCMAAAAPwKARgAAAB+hQAMAAAAv0IABgAAgF8hAAMAAMCvEIABAADgVwjAAAAA8CsEYAAAAPgVAjAAAAD8CgEYAAAAfoUADAAAAL9CAAYAAIBfIQADAADArxCAAQAA4FcIwAAAAPArBGAAAAD4FQIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwK14dgAsKCjRt2jQlJCQoNDRUjRs31sMPPyzDMJx9DMPQ9OnTFRcXp9DQUPXs2VP79++vwKoBAADgzbw6AM+dO1eLFy/WokWLtHfvXs2dO1fz5s3TU0895ewzb948LVy4UEuWLNGWLVsUFhamXr16KS8vrwIrBwAAgLeqUtEFXMyXX36pfv366aabbpIkNWzYUG+88Ya2bt0qyTH6u2DBAj344IPq16+fJOmVV15RTEyM3n//fd12220VVjsAAAC8k1ePAHfp0kVr167V999/L0n66quvtGHDBt14442SpAMHDigjI0M9e/Z07mO1WtWpUydt2rSpxOPm5+fLZrO5PAAAAOAfvHoEeMqUKbLZbGrevLkCAwNVUFCgRx55REOGDJEkZWRkSJJiYmJc9ouJiXFuK87s2bM1c+ZMzxUOAAAAr+XVI8Bvvvmmli1bptdff12pqan6z3/+o8cff1z/+c9/ynXcqVOnKjs72/lIS0szqWIAAAB4O68eAb7vvvs0ZcoU51zeVq1a6eDBg5o9e7aGDx+u2NhYSVJmZqbi4uKc+2VmZqpt27YlHjc4OFjBwcEerR0AAADeyatHgE+ePKmAANcSAwMDZbfbJUkJCQmKjY3V2rVrndttNpu2bNmizp07X9ZaAQAAUDl49Qhwnz599Mgjj6h+/fq64oortHPnTs2fP1933HGHJMlisWjChAmaNWuWmjZtqoSEBE2bNk3x8fHq379/xRYPAAAAr+TVAfipp57StGnTNGbMGGVlZSk+Pl6jRo3S9OnTnX3uv/9+5ebm6u6779bx48fVrVs3paSkKCQkpAIrBwAAgLeyGOffVs1P2Ww2Wa1WZWdnKzIysqLLgTfIzZXCwx3Pc3KksLCKrQcAAD9nZl7z6jnAAAAAgNkIwAAAAPArBGAAAAD4FQIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwKwRgAAAA+BUCMAAAAPwKARgAAAB+hQAMAAAAv0IABgAAgF8hAAMAAMCvEIABAADgVwjAAAAA8CsEYAAAAPgVAjAAAAD8CgEYAAAAfoUADAAAAL9CAAYAAIBfIQADAADArxCAAQAA4FcIwAAAAPArBGAAAAD4FQIwAAAA/EqVii7Aq6WnOx7uiotzPAAAAOB1CMAXs3SpNHOm+/slJ0szZpheDgAAAMqPAHwxo0ZJffu6tp06JXXr5ni+YYMUGlp0P0Z/AQAAvBYB+GKKm8qQm/vH87ZtpbCwy1oSAAAAysetAHz8+HG99957+uKLL3Tw4EGdPHlStWrV0pVXXqlevXqpS5cunqqzQhQ3BTjglNT23PNduyR7CQPADAIDAAB4p1IF4CNHjmj69OlatmyZ4uPj1bFjR7Vt21ahoaE6evSo1q1bp8cff1wNGjRQcnKyBg0a5Om6L4vipgBXk1Q4Bty1m3SymP2YAgwAAOC9ShWAr7zySg0fPlw7duxQYmJisX1OnTql999/XwsWLFBaWpomT55saqEVobgpwPlHJV3veP7pGik4uuh+jP4CAAB4L4thGMalOv3++++qUaNGqQ/qbv+KZrPZZLValZ2drcjIyIv2zc3KVVhMuON5Zo7CajMH2Cfl5krhjvOsnBzmegMAUMHcyWuXUqobYbgbZitT+AUAAIB/cXsViPz8fG3ZsqXIRXAJCQmeqA8AAAAwVakD8MaNG/Xvf/9bH374oc6cOSOr1eq8CC4/P1+NGjXS3XffrX/84x+KiIjwZM0AAABAmZUqAPft21epqakaPHiwPvnkE3Xo0EGh590A4qefftIXX3yhN954Q/Pnz9crr7yi66+/3mNFAwBQBLevB1BKpQrAN910k9555x0FBQUVu71Ro0Zq1KiRhg8frj179ii9LL+AAAAoD25fD6CUSrUKhK9jFQgUwSoQQOVT3AhwaW9fzwgw4PXMXAWCWyEDAHwDt68HUEpuB+Dq1avLYrEUabdYLAoJCVGTJk00YsQI3X777aYUCAAAAJjJ7QA8ffp0PfLII7rxxhvVsWNHSdLWrVuVkpKisWPH6sCBAxo9erTOnj2ru+66y/SCAQAAgPJwOwBv2LBBs2bN0j/+8Q+X9qVLl+qTTz7RO++8o9atW2vhwoUEYAAAAHidUt0J7nyrV69Wz549i7T36NFDq1evliT17t1bP/30U/mrAwAAAEzmdgCOjo7Whx9+WKT9ww8/VHR0tCQpNzeXm2EAAADAK7k9BWLatGkaPXq01q1b55wDvG3bNn300UdasmSJJGnNmjXq3r27uZUCAAAAJnA7AN91111KTEzUokWL9O6770qSmjVrpvXr16tLly6SpEmTJplbJQAAAGCSMq0D3LVrV3Xt2tXsWgAAAACPc3sOsCT9+OOPevDBBzV48GBlZWVJkj7++GPt3r3b1OIAAAAAs7kdgNevX69WrVppy5Yteuedd5STkyNJ+uqrr5ScnGx6gQAAAICZ3A7AU6ZM0axZs7RmzRpVrVrV2X7ddddp8+bNphYHAAAAmM3tAPzNN99owIABRdpr166t3377zZSiAAAAAE9xOwBHRUUpPT29SPvOnTtVp04dU4oCAAAAPMXtAHzbbbfpgQceUEZGhiwWi+x2uzZu3KjJkydr2LBhnqgRAAAAMI3bAfjRRx9V8+bNVa9ePeXk5CgxMVHXXHONunTpogcffNATNQIAAACmcXsd4KpVq+q5557TtGnT9O233yonJ0dXXnmlmjZt6on6AAAAAFOV6UYYklS/fn3Vr1/fzFoAAAAAjytVAJ44cWKpDzh//vwyFwMAAAB4WqkC8M6dO11ep6am6uzZs2rWrJkk6fvvv1dgYKDat29vfoUAAACAiUoVgNetW+d8Pn/+fEVEROg///mPqlevLkk6duyYbr/9dv35z3/2TJUAAACASdxeBeKJJ57Q7NmzneFXkqpXr65Zs2bpiSeeMLU4AAAAwGxuB2CbzaZff/21SPuvv/6qEydOmFIUAAAA4CluB+ABAwbo9ttv17vvvqvDhw/r8OHDeueddzRy5EjdfPPNnqgRAAAAMI3by6AtWbJEkydP1uDBg3XmzBnHQapU0ciRI/XYY4+ZXiAAAABgJrcDcLVq1fTMM8/oscce048//ihJaty4scLCwkwvDgAAADBbmW+EERYWptatW5tZCwAAAOBxpZoD/I9//EOHDx8u1QFXrFihZcuWlasoAAAAwFNKNQJcq1YtXXHFFeratav69OmjDh06KD4+XiEhITp27Jj27NmjDRs2aPny5YqPj9ezzz7r6boBAACAMilVAH744Yc1btw4Pf/883rmmWe0Z88el+0RERHq2bOnnn32WSUlJXmkUAAAAMAMFsMwDHd3OnbsmA4dOqRTp06pZs2aaty4sSwWiyfquyxsNpusVquys7MVGRl50b65WbkKiwl3PM/MUVhtLv7zSbm5UrjjPCsnR+IiT6By4mcZ8Bnu5LVLKdNFcNWrV3e5ExwAAABQWbh9IwwAAACgMiMAAwAAwK8QgAEAAOBXCMAAAADwKwRgAAAA+JVSrQJx5ZVXlnqZs9TU1HIVBAAAAHhSqQJw//79nc/z8vL0zDPPKDExUZ07d5Ykbd68Wbt379aYMWM8UiQAAABgllIF4OTkZOfzO++8U+PHj9fDDz9cpE9aWpq51QEAAAAmc3sO8FtvvaVhw4YVaR86dKjeeecdU4o63y+//KKhQ4eqRo0aCg0NVatWrbR9+3bndsMwNH36dMXFxSk0NFQ9e/bU/v37Ta8DAAAAvsHtABwaGqqNGzcWad+4caNCQkJMKarQsWPH1LVrVwUFBenjjz/Wnj179MQTT7jchW7evHlauHChlixZoi1btigsLEy9evVSXl6eqbUAAADAN7h9K+QJEyZo9OjRSk1NVceOHSVJW7Zs0Ysvvqhp06aZWtzcuXNVr149vfTSS862hIQE53PDMLRgwQI9+OCD6tevnyTplVdeUUxMjN5//33ddtttptYDAACAys/tEeApU6boP//5j3bs2KHx48dr/PjxSk1N1UsvvaQpU6aYWtzKlSvVoUMH3Xrrrapdu7auvPJKPffcc87tBw4cUEZGhnr27Olss1qt6tSpkzZt2lTicfPz82Wz2VweAAAA8A9ujwBL0sCBAzVw4ECzaynip59+0uLFizVx4kT93//9n7Zt26bx48eratWqGj58uDIyMiRJMTExLvvFxMQ4txVn9uzZmjlzpkdrBwAAgHdyewS4UaNG+v3334u0Hz9+XI0aNTKlqEJ2u13t2rXTo48+qiuvvFJ333237rrrLi1ZsqRcx506daqys7OdD1avAAAA8B9uB+Cff/5ZBQUFRdrz8/P1yy+/mFJUobi4OCUmJrq0tWjRQocOHZIkxcbGSpIyMzNd+mRmZjq3FSc4OFiRkZEuDwAAAPiHUk+BWLlypfP56tWrZbVana8LCgq0du1aNWzY0NTiunbtqn379rm0ff/992rQoIEkxwVxsbGxWrt2rdq2bStJstls2rJli0aPHm1qLQAAAPANpQ7AhXeDs1gsGj58uMu2oKAgNWzYUE888YSpxd17773q0qWLHn30UQ0cOFBbt27Vs88+q2effdZZy4QJEzRr1iw1bdpUCQkJmjZtmuLj413uXgcAAAAUKnUAttvtkhyjrtu2bVPNmjU9VlShq666Su+9956mTp2qhx56SAkJCVqwYIGGDBni7HP//fcrNzdXd999t44fP65u3bopJSXF9DWJAQAA4BsshmEY5T3I8ePHFRUVZUI5FcNms8lqtSo7O/uS84Fzs3IVFhPueJ6Zo7DaYZejRFxuublSuOM8KydHCuM8A5USP8uAz3Anr12K2xfBzZ07VytWrHC+vvXWWxUdHa06deroq6++KlcxAAAAgKe5HYCXLFmievXqSZLWrFmjTz/9VCkpKbrxxht13333mV4gAAAAYCa3b4SRkZHhDMCrVq3SwIEDdcMNN6hhw4bq1KmT6QUCAAAAZnJ7BLh69erOG0ekpKQ4b0NsGEax6wMDAAAA3sTtEeCbb75ZgwcPVtOmTfX777/rxhtvlCTt3LlTTZo0Mb1AAAAAwExuB+Ann3xSDRs2VFpamubNm6fwc1fXpqena8yYMaYXCAAAAJjJ7QAcFBSkyZMnF2m/9957TSkIAAAA8CS35wCfLzIyUj/99JNZtQAAAAAeV64AbMI9NAAAAIDLqlwBGAAAAKhsyhWAhw4dWu5b0QEAAACXU6kD8LBhw/TOO+8oJyfH2bZ48WLVrFnTI4UBAAAAnlDqANykSRM9+uijqlWrlm688UYtXrxYR44c8WRtAAAAgOlKHYCnT5+uHTt2aP/+/erTp4/ef/99NWrUSO3bt9dDDz2kXbt2ebBMAAAAwBxuzwGuW7euxowZo9WrV+vXX3/VAw88oH379um6665TgwYNNG7cOO3evdsTtQIAAADlVq6L4CIiIjRw4EAtW7ZMv/76q1588UUFBgZq06ZNZtUHAAAAmMrtO8GVJDAwUD169FCPHj3MOiQAAABgunKNAI8ZM0a//fabWbUAAAAAHleuAPzaa6/JZrOZVQsAAADgcdwKGQAAAH6l3LdCtlgsZtQBAAAAXBZuXQSXkJDgEnhPnTql7t27q0qVPw7z008/mVcdAAAAYDK3AvDLL7/sfG4Yhnr37q05c+aoTp06ZtcFAAAAeIRbAbh79+4urwMDA3X11VerUaNGphYFAAAAeEq55gAz/xcAAACVDatAAAAAwK+U605wJ06cMKsOAAAA4LIo9zJoAAAAQGVSphHg48ePa+vWrcrKypLdbnfZNmzYMFMKAwAAADzB7QD84YcfasiQIcrJyVFkZKTLhXAWi4UADAAAAK/m9hSISZMm6Y477lBOTo6OHz+uY8eOOR9Hjx71RI0AAACAadwOwL/88ovGjx+vatWqeaIeAAAAwKPcDsC9evXS9u3bPVELAAAA4HFuzwG+6aabdN9992nPnj1q1aqVgoKCXLb37dvXtOIAAAAAs7kdgO+66y5J0kMPPVRkm8ViUUFBQfmrAgAAADzE7QB84bJnAAAAQGXCjTAAAADgV8p0I4zc3FytX79ehw4d0unTp122jR8/3pTCAAAAAE9wOwDv3LlTvXv31smTJ5Wbm6vo6Gj99ttvqlatmmrXrk0ABgAAgFdzewrEvffeqz59+ujYsWMKDQ3V5s2bdfDgQbVv316PP/64J2oEAAAATON2AN61a5cmTZqkgIAABQYGKj8/X/Xq1dO8efP0f//3f56oEQAAADCN2wE4KChIAQGO3WrXrq1Dhw5JkqxWq9LS0sytDgAAADCZ23OAr7zySm3btk1NmzZV9+7dNX36dP3222969dVX1bJlS0/UCAAAAJjG7RHgRx99VHFxcZKkRx55RNWrV9fo0aP166+/6tlnnzW9QAAAAMBMbo8Ad+jQwfm8du3aSklJMbUgAAAAwJPKdCOMs2fP6tNPP9XSpUt14sQJSdKRI0eUk5NjanEAAACA2dweAT548KCSkpJ06NAh5efn6/rrr1dERITmzp2r/Px8LVmyxBN1AgAAAKZwewT4nnvuUYcOHZzrABcaMGCA1q5da2pxAAAAgNncHgH+4osv9OWXX6pq1aou7Q0bNtQvv/xiWmEAAACAJ7g9Amy321VQUFCk/fDhw4qIiDClKAAAAMBT3A7AN9xwgxYsWOB8bbFYlJOTo+TkZPXu3dvM2gAAAADTuT0F4oknnlCvXr2UmJiovLw8DR48WPv371fNmjX1xhtveKJGAAAAwDRuB+C6devqq6++0vLly/X1118rJydHI0eO1JAhQ1wuigMAAAC8kdsBWJKqVKmioUOHml0LAAAA4HFlCsBHjhzRhg0blJWVJbvd7rJt/PjxphTmtewFUoNAKcKigF++lGpeJwUEVnRVAAAAKCW3A/DLL7+sUaNGqWrVqqpRo4YsFotzm8Vi8e0AvGelQv97vzQiTJIU+sHfpHXxUtJcKbFvBRcHAACA0rAYhmG4s0O9evX0j3/8Q1OnTlVAQJnupOx1bDabrFarsrOzFRkZWXynPSulN4fJkCGLy4Zzrwa+Qgj2Jbm5Uni443lOjhQWVrH1ACgbfpYBn1GqvFZKbifYkydP6rbbbvOZ8Fsq9gIp5QGpSPiVpHP//5AyxdEPAAAAXs3tFDty5Ei99dZbnqjFex38UrIduUgHQ7L94ugHAAAAr+b2HODZs2frr3/9q1JSUtSqVSsFBQW5bJ8/f75pxXmNnExz+wEAAKDClCkAr169Ws2aNZOkIhfB+aTwGHP7AQAAoMKU6U5wL774okaMGOGBcrxTQb3O+k01VMv4XQHFZHy7IWVZaqhWvc5iQTQAAADv5vYc4ODgYHXt2tUTtXitrQezNf30/5PkCLvnK3ydfPr/aevB7MtcGQAAANzldgC+55579NRTT3miFq+VdSJPq+0dNfrMBGUo2mVbhmpo9JkJWm3vqKwTeRVUIQAAAErL7SkQW7du1f/+9z+tWrVKV1xxRZGL4N59913TivMWtSNCJEmr7R21Jr+DOgZ8p9o6rixFaau9uezn/j+isB8AAAC8l9sBOCoqSjfffLMnavFaHROiFWcNUUZ2nuwK0GZ7ost2i6RYa4g6JkQXfwAAAAB4DbcD8EsvveSJOrxaYIBFyX0SNfq1VFnkvPWFJOd94JTcJ1GBxV0hBwAAAK/iR7dzK5+klnFaPLSdaocHu7THWkO0eGg7JbWMq6DKAAAA4I5SjQAnJSVpxowZuvrqqy/a78SJE3rmmWcUHh6usWPHmlKgN0lqGacuNSO0u2MXZYVXV+Sry3TNlXUY+QUAAKhEShWAb731Vt1yyy2yWq3q06ePOnTooPj4eIWEhOjYsWPas2ePNmzYoI8++kg33XSTHnvsMU/XXWECAyzqnPaNJCm3XnXCLwAAQCVTqgA8cuRIDR06VG+99ZZWrFihZ599VtnZjjVvLRaLEhMT1atXL23btk0tWrTwaMEAAABAeZT6Irjg4GANHTpUQ4cOlSRlZ2fr1KlTqlGjRpGl0AAAAABv5fYqEIWsVqusVquZtQAAAAAexyoQAAAA8CsEYAAAAPgVAjAAAAD8ilsBuKCgQJ9//rmOHz/uoXIAAAAAz3IrAAcGBuqGG27QsWPHPFUPAAAA4FFuT4Fo2bKlfvrpJ0/UAgAAAHic2wF41qxZmjx5slatWqX09HTZbDaXBwAAAODN3F4HuHfv3pKkvn37ymL54zbAhmHIYrGooKDAvOoAAAAAk7kdgNetW+eJOkplzpw5mjp1qu655x4tWLBAkpSXl6dJkyZp+fLlys/PV69evfTMM88oJiamwuoEAACA93I7AHfv3t0TdVzStm3btHTpUrVu3dql/d5779V///tfvfXWW7JarRo3bpxuvvlmbdy4sULqhI+wF0gNAqUIi3ToS6nZdVJAYEVXBQAATFCmWyEfP35cL7zwgvbu3StJuuKKK3THHXd47NbIOTk5GjJkiJ577jnNmjXL2Z6dna0XXnhBr7/+uq677jpJ0ksvvaQWLVpo8+bNuvrqqz1SD3zcnpXSR/dLI8Icr1f8TYqMl5LmSol9K7Y2AABQbm5fBLd9+3Y1btxYTz75pI4ePaqjR49q/vz5aty4sVJTUz1Ro8aOHaubbrpJPXv2dGnfsWOHzpw549LevHlz1a9fX5s2bSrxePn5+Vy8h+LtWSm9OUzKSXdtt6U72vesrJi6AACAadweAb733nvVt29fPffcc6pSxbH72bNndeedd2rChAn6/PPPTS1w+fLlSk1N1bZt24psy8jIUNWqVRUVFeXSHhMTo4yMjBKPOXv2bM2cOdPUOuED7AVSygOSjGI2GpIsUsoUqflNTIcAAKASK9MI8AMPPOAMv5JUpUoV3X///dq+fbupxaWlpemee+7RsmXLFBISYtpxp06dquzsbOcjLS3NtGOjEjv4pWQ7cpEOhmT7xdEPAABUWm4H4MjISB06dKhIe1pamiIiIkwpqtCOHTuUlZWldu3aqUqVKqpSpYrWr1+vhQsXqkqVKoqJidHp06eL3Jo5MzNTsbGxJR43ODhYkZGRLg9AOZnm9gMAAF7J7SkQgwYN0siRI/X444+rS5cukqSNGzfqvvvu09///ndTi+vRo4e++eYbl7bbb79dzZs31wMPPKB69eopKChIa9eu1S233CJJ2rdvnw4dOqTOnTubWgv8QHgpl84rbT8AAOCV3A7Ajz/+uCwWi4YNG6azZ89KkoKCgjR69GjNmTPH1OIiIiLUsmVLl7awsDDVqFHD2T5y5EhNnDhR0dHRioyM1D//+U917tyZFSDgvgZdHKs92NJV/Dxgi2N7gy6XuzIAAGAitwJwQUGBNm/erBkzZmj27Nn68ccfJUmNGzdWtWrVPFLgpTz55JMKCAjQLbfc4nIjDMBtAYGOpc7eHCbJItcQfO6uh0lzuAAOAIBKzmIYRnFDXSUKCQnR3r17lZCQ4KmaLjubzSar1ars7OxLzgfOzcpVWEy443lmjsJqh12OEnE5Fa4DfP5SaJF1HOGXdYCByiU3Vwp3/M5WTo4Uxu9soLJyJ69dittTIFq2bKmffvrJpwIw4CKxr1TvWqlVtONOcG9+xJ3gAADwIW6vAjFr1ixNnjxZq1atUnp6OjeUgG8KCJQOFkjfnpXqdyH8AgDgQ9weAe7du7ckqW/fvrJYLM52wzBksVhUUFBgXnUAAACAydwOwOvWrfNEHQAAAMBl4VYAPnPmjB566CEtWbJETZs29VRNAAAAgMe4NQc4KChIX3/9tadqAQAAADzO7Yvghg4dqhdeeMETtQAAAAAe5/Yc4LNnz+rFF1/Up59+qvbt2yvsgjUV58+fb1pxAAAAgNncDsDffvut2rVrJ0n6/vvvXbadvyoEAAAA4I1YBQIAAAB+xe05wIV++OEHrV69WqdOnZLkWAcYAAAA8HZuB+Dff/9dPXr00J/+9Cf17t1b6enpkqSRI0dq0qRJphcIAAAAmMntAHzvvfcqKChIhw4dUrVq1ZztgwYNUkpKiqnFAQAAAGZzew7wJ598otWrV6tu3bou7U2bNtXBgwdNKwwAAADwBLdHgHNzc11GfgsdPXpUwcHBphQFAAAAeIrbAfjPf/6zXnnlFedri8Uiu92uefPm6S9/+YupxQEAAABmc3sKxLx589SjRw9t375dp0+f1v3336/du3fr6NGj2rhxoydqBAAAAEzj9ghwy5Yt9f3336tbt27q16+fcnNzdfPNN2vnzp1q3LixJ2oEAAAATOP2CLAkWa1W/etf/7ponzFjxuihhx5SzZo1y1QYAAAA4AllvhHGpbz22muy2WyeOjwAAABQJh4LwNwZDgAAAN7IYwEYAAAA8EYEYAAAAPgVAjAAAAD8CgEYAAAAfsVjAXjo0KGKjIz01OEBAACAMnE7AKekpGjDhg3O108//bTatm2rwYMH69ixY872xYsXswYwAAAAvI7bAfi+++5zru/7zTffaNKkSerdu7cOHDigiRMnml4gAAAAYCa37wR34MABJSYmSpLeeecd/fWvf9Wjjz6q1NRU9e7d2/QCAQAAADO5PQJctWpVnTx5UpL06aef6oYbbpAkRUdHc+c3AAAAeD23R4C7deumiRMnqmvXrtq6datWrFghSfr+++9Vt25d0wsEAAAAzOT2CPCiRYtUpUoVvf3221q8eLHq1KkjSfr444+VlJRkeoEAAACAmdweAa5fv75WrVpVpP3JJ580pSAAAADAk9wOwJJUUFCg9957T3v37pUktWjRQv3791eVKmU6HAAAAHDZuJ1Yd+/erT59+igzM1PNmjWTJM2dO1e1atXShx9+qJYtW5peJAAAAGAWt+cA33nnnWrZsqUOHz6s1NRUpaamKi0tTa1bt9bdd9/tiRoBAAAA07g9Arxr1y5t375d1atXd7ZVr15djzzyiK666ipTiwMAAADM5vYI8J/+9CdlZmYWac/KylKTJk1MKQoAAADwlFIFYJvN5nzMnj1b48eP19tvv63Dhw/r8OHDevvttzVhwgTNnTvX0/UCAAAA5VKqKRBRUVGyWCzO14ZhaODAgc42wzAkSX369FFBQYEHygQAAADMUaoAvG7dOk/XAQAAAFwWpQrA3bt3L9XBvv3223IVAwAAAHia2xfBXejEiRN69tln1bFjR7Vp08aMmgAAAACPKXMA/vzzzzV8+HDFxcXp8ccf13XXXafNmzebWRsAAABgOrfWAc7IyNDLL7+sF154QTabTQMHDlR+fr7ef/99JSYmeqpGAAAAwDSlHgHu06ePmjVrpq+//loLFizQkSNH9NRTT3myNgAAAMB0pR4B/vjjjzV+/HiNHj1aTZs29WRNAAAAgMeUegR4w4YNOnHihNq3b69OnTpp0aJF+u233zxZGwAAAGC6Ugfgq6++Ws8995zS09M1atQoLV++XPHx8bLb7VqzZo1OnDjhyToBAAAAU7i9CkRYWJjuuOMObdiwQd98840mTZqkOXPmqHbt2urbt68nagQAAABMU651gJs1a6Z58+bp8OHDeuONN8yqCQAAAPCYct8IQ5ICAwPVv39/rVy50ozDAQAAAB5jSgAGAAAAKgsCMAAAAPwKARgAAAB+hQAMAAAAv0IABgAAgF8hAAMAAMCvEIABAADgV6pUdAEAAACAU3q643GhnBzTvgQBGAAAAN5j6VJp5kyPfgkCMAAAALzHqFFS376ubadOSd26mfYlCMAAAADwHnFxjsf5cnNN/RJcBAcAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwKwRgAIDvshdIDQKlllWkQ186XgPwewRgAIBv2rNSWtpRGhEm3VJNWvE3aUFLRzsAv0YABgD4nj0rpTeHSTkX3E7Vlu5oJwQDfo0ADADwLfYCKeUBSUYxG8+1pUxhOgTgxwjAAADfcvBLyXbkIh0MyfaLox8Av0QABgD4lpxMc/sB8DlVKroAAABMFR5jbj94j/R0x8NdcXGOB3AOARgA4FsadJEi4x0XvBU7D9ji2N6gy+WuDOW1dKk0c6b7+yUnSzNmmF4OKi8CMADAtwQESklzHas9yCLXEGxx/CdpjqMfKpdRo6S+fV3bTp2SunVzPN+wQQoNLbofo7+4AAEYAOB7EvtKA1+RPrrfdSm0yHhH+E3sW/K+8F7FTWXIzf3jedu2UljYZS0JlRMBGADgmxL7SvWulVpFSxEW6c2PpGbXMfILgACMC3CBAQBfEhAoHTy33m/9LoRfAJIIwLgQFxgAAAAfRwCGKy4wAAAAPs7rA/Ds2bP17rvv6rvvvlNoaKi6dOmiuXPnqlmzZs4+eXl5mjRpkpYvX678/Hz16tVLzzzzjGJiWOPRbVxgAAAAfJzX3wlu/fr1Gjt2rDZv3qw1a9bozJkzuuGGG5R7Xii799579eGHH+qtt97S+vXrdeTIEd18880VWDUAAAC8ldePAKekpLi8fvnll1W7dm3t2LFD11xzjbKzs/XCCy/o9ddf13XXXSdJeumll9SiRQtt3rxZV199dZFj5ufnKz8/3/naZrN59k0AAADAa3j9CPCFsrOzJUnR0dGSpB07dujMmTPq2bOns0/z5s1Vv359bdq0qdhjzJ49W1ar1fmoV6+e5wsHAACAV6hUAdhut2vChAnq2rWrWrZsKUnKyMhQ1apVFRUV5dI3JiZGGRkZxR5n6tSpys7Odj7S0tI8XToAAAC8hNdPgTjf2LFj9e2332rDhg3lOk5wcLCCg4NNqgoAAACVSaUZAR43bpxWrVqldevWqW7dus722NhYnT59WsePH3fpn5mZqdjY2MtcJQAAALyd1wdgwzA0btw4vffee/rf//6nhIQEl+3t27dXUFCQ1q5d62zbt2+fDh06pM6dO1/ucgEAAODlvH4KxNixY/X666/rgw8+UEREhHNer9VqVWhoqKxWq0aOHKmJEycqOjpakZGR+uc//6nOnTsXuwKEW4q5LXDA0VN/PP96lxRdwk0huDEEAACAV/L6ALx48WJJ0rXXXuvS/tJLL2nEiBGSpCeffFIBAQG65ZZbXG6EUW7F3Bb4/Lgben234vfjtsAAAABey2IYhlHRRVQ0m80mq9Wq7OxsRUZG/rGhmBHgU6ekrudy78YS7grscyPAublSeLjjeU6Of9wJzh/fM+CL+Fn2fZxj/5CbK1t4uKxS0bxWBl4/AlyR0hWndLkG2VOSdp57nirXEeFCceceAAAA8D4E4IsoZgaEi27MgAAAAKh0CMAXMWqU1Lev+/v50uwHAAAAX0MAvghfm8oLAACASrAOMAAAAGAmAjAAAAD8CgEYAAAAfoUADAAAAL9CAAYAAIBfIQADAADArxCAAQAA4FcIwAAAAPArBGAAAAD4FQIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwKwRgAAAA+BUCMAAAAPwKARgAAAB+pUpFFwAPS093PNwVF+d4AAAA+BgCsK9bulSaOdP9/ZKTpRkzTC8HAACgohGAfd2oUVLfvq5tp05J3bo5nm/YIIWGFt2P0V8AAOCjCMC+rripDLm5fzxv21YKC7usJQEAALjFXiDVC5DS7KYcjovgcGn2AqlBoNSyinToS8drAACAy2HPSmlpR2mIeQN2jADj4vaslD66Xxpx7ptuxd+kyHgpaa6U2Pfi+wIAAJTHnpXSm8MkGaYelhFglKzwmy7nglUkbOmO9j0rK6YuAADg++wFUsoDMjv8SgRglOSi33Tn2lKmMB0CAAB4xsEvJdsRjxyaAIziXfKbzpBsvzj6AQBQUbhOxXflZHrs0ARgFK+033Qe/OYEAOCiCi+OGhEm3VLNcZ3KgpZM0fMV4TEeOzQBGMUr7TedB785AQAoEdep+L4GXRwX3sti+qEJwCjeJb/pLFJkHUc/AAAuJ65T8Q8BgY5VpySZHYIJwCjeRb/pzr1OmuPoBwDA5cR1Kv4jsa808BUpPNbUw7IOcAXK3JWuo7vTL93xnCrHflWV478psnFN1WhWq/RfqLi7wZVG4TfdR/e7/okpMt4RflkHGABQEbhOxb8k9pXqXStdUd20QxKAK9DeCUt17fqZnv9CycnSjBll27fwm65VtBRhkd78SGp2HSO/AICKw3Uq/icg0LTbIEsEYHOlpzsepdTq7s460PM1nY2qqbPVHSO6Z2yn1HpMN0nS189sUFBkqLN/sSPAp05J3Rz9tWGDFBqqIsoy+nu+gEDp4Ll5VPW7EH4BABWr8DoVW7qKnwdscWznOhWUgABspqVLpZmlH9Gtce6h5GRp3AxJUm5WrjTGsb3xLW0VVvsS973Ozf3jedu2Uph598kGAMArFV6n8uYwOa5LOT8Ec50KLo0AbKZRo6S+F8yLvRwjtAAA+BuuU0E5EIDNVNzFZozQAgDgGVyngjIiAJuouCnAAaektuee79ol2UsYAGYQGACAMuA6FZQBAdhExU0BriapcAy4azfpZDH7lWeRBgAAALiHAGyi4qYA5x+VdL3j+adrpODoovsx+gsAAHD5EIBNVOwU4Kw/nrduLYXVLvvxTZtiYS+QGgQ65ksd+pL5UgAAwK8QgCsRU6ZY7FnpuGJ2xLmL8Vb87dwVs3O5YhYAAPgFAnAlUu4pFntWnlsz8YJFw23pjvaBryi9el8u5ANQKXEhMoDSIgBXImWZYlH4gZB+pEAt1zygIBmFS4Sfx5Ahi86snKKZB27S0mddp0NwIR+AyoALkQGUFgHYxxV+IHRv8KU+G3GkxH4WGaqa94u+W/2lpD/r7rsdI86S71/Ix6gR4Bu4EBlAaRGAfVzhB0L1w5lS6qX7v7QwU8fquoY7My/k80aMGgG+wdMXIgPwHQRgH+f8QKgeU6oAnNAqRgkJHi/LqzBqBACAfyEAe5vzligL+OVLqeYlligrbf8GXRyrPdjSVeQiOEmSxbG9QRez3kmlwagRAAD+hQDsTfasVOh//1iiLPSDv8lYFy9LSUuUFdNf60pY0iwg0NH+5jAZssjiEoLPXRaXNIf1gAEAXotrNvxDSee5kYlfgwDsaaUdod2zUkYxS5QZtiPSm8NkGfiKa6g9t6SZ5SJLmhUJwYl9pYGvyPjv/bLknvedFRnvCL+sAwwA8GJcs+EfSjrP6cX2LhuLYRjF/T3cr9hsNlmtVmVnZysyMtK8A+9ZKft/71dAkbB5wQitvUCnHktU8MkMBRRdo0x2Q8qvFqvQ+/Y4wrO9QFrQUrKVtKrDuekME74pNmznZtgUdnW0FGHRqVc+Umibi0+zyM3KVVhMuON5Zo7CaoeV5t1Xav74ngFfxM+ybyluZDD/aK46X+84x5vW5Cg4uug5ZgS4cinpPF9xfbiskil5jRFgTylhhNawpctywQhtwc8bFXoqQ8Us0CtJCrBIoacyVPDzRgU2ukY6+OVFwq8kGZLtF0e/hD8Xc8BA6WCBJMlepwvTHgAAlQLXbPiHks5zgYlfI8DEY6GQvUBKeeDc7SVcWWQ4InHKFEc/ST/+9GOpDuvsl5NZujpK2w8AAMCPEIA94dwIbQkDuo5R4cIRWklZRlSpDuvsFx5TujpK2+8SCuyGNtVrpQ9aXKOtacdUYPf7WTMAKgl+fwEoDlMgPMB+IqNU/2dR2C+wYVcd2RCtWB0tcQ5whmoosGFXR0ODLjoVGnvpOcMlLGlW+IGQFV5dkWnHdE3Nagos7kCSUr5NV/L7u5U5eLaj4a2vFPfJPiX3SVRSS9+dUOXOvxEA7+Svv78AXBojwB6w90Q1t/p1bFxLC4PulOQIr+crfL0waKQ6Nq4lSSpQgGaeGXbR/jPPDFNBMac35dt0Xf/8Zv198Gzd0/d+3f7WV+o2939K+bbotZUp36Zr9GupyszJd2nPyM7T6NdSi93HF7jzbwTAO/nr7y8ApUMA9oAfqrXSESO6SDgtZDekI0YN/VCtlSQpMMCia/vfoTFnJihDrrccy1ANjTkzQdf2v8M5Arn1wFEtz2mr0SX0H31mgpbntNXWA0ddtrnzgVBgNzTzwz3F3jKjsG3mh3t87s+JfGgClZ+//v7yV0xz8Q8FdkNb6ySadjymQHhA7cgwzTwzTIuDFshuyGWawh8jtP9PIyL/WKolqWWcNPgfuuW9Lmpw6mvV1nFlKUpp4W007dZWLn+uyzqRJ0labe+oNfkd1DHgO2f/rfbmsp/7/5rCftKlPxAscnwgXJ8Yq8AAi7YeOKr07Lxiev+xT3p2nrYeOKrOjWu4+0/kldz9NwLgnfzx95e/YpqLfyg8z+m3zpAWDDTlmARgD+iYEK2JEddozAlpetAritcfI7EZqqGHzvw/fR1xjTomuI7eJrWMU5eaEdrd8T7H3NNXl+maK+sUCVu1I0Kcz+0K0GZ78f9HdH4/dz8Qzg/PF1PafpUBH5qAb/DH31/+qPAvdhcOWhT+xW7x0HaEYB9Q0nkuLwKwBwQGWJTcJ1GjX8vTmvwOuuq8Edpt50ZoF/dJLHYUMTDAos5p30iScutVL7ZPx4RoxVlDlJGdV+w3hEVSrDXEJWC7+4Fwfni+mNL2qwz40AR8gz/+/vI3/MXOP1zsPJcXc4A9JKllnBYPbaea4aHabE/USnsXbbYnqra1Wrn/r7QwYEtF751R+Dr5goDt7gdCYcgueSk3Ke6CkF3Z8aEJ+AZ//P3lb9z5ix0qr0ud5/IgAHtQUss4rbnzar3x+lT9e+U8vXRrG2144DpT/iRTGLBrhwe7tMdaQ4oN2O5+IJQlZFd2fGgCvsEff3/5G/5i5x88ef6YAuFhpZnSUFZ/zBnuctE5w4V1OKZlpMoiufw5oaQPhMKQnfz+bpdVEWKtIT55gUFZ/o0AeCd/+/3lb/iLnX/w5PkjAFdy7gTssnwguBOyfQEfmoDv8LffX/6kLNfCoPK51HkuDwKwnynLB4InR7G9ER+agO/wt99f/oK/2PmHC8+zmZgD7IcKPxD67f1cHflAKBb/RgDg3dy9FgaVU0nnubwYAQYAAJUSf7HzD4XneWuHTrrepGMSgAEAQKXFNBf/EBhgUcdf9ph2PKZAAAAAwK8wAuzr0tMdj/MEHD31x/Ovd0nRoUX3i4tzPAAAAHwMAdjXLV0qzZzp0nR+3A29vlvx+yUnSzNmeKwsAACAikIArkiXY3R21Cipb1+XplOnpK7ncu/GDVLo+V/i11+l336TataUUlM9UxMAAEAFIgBXoBOPL1XEfPdHZ9NuvFs5Q0ZJks7YTqn1ufYf39mloEjXcHrsmJQfHSdr8z/C6SlJO889T73ga0a+OkNNlrlf04mJyYp4Ykax2wAAMEMx40bKPyp1Pvf866+l4GLufcEYTeVS0nm+wsSvQQA2UeaudB3d7XrGLhZQV+/trK16Tb+ppn5TrUsef5SWapSeVb2Pn5U+frbI9tZjig+nM5SsmZpR7LZuF+wSq1GKU99i+17MYMVpstt7eQd+oQK+gZ9l31fMrD5Vk5R77nnP66WTxezHrL7KpaTznF5s77KxGIZh9t3lKh2bzSar1ars7GxFRkaW+TifXTtD166feemOF/iwXbLqPDfjkv2yv0vXqZ/SFRUlVa9eumMXNwJ8MefPgKh16UzuVJk/QGbMKO4HLVe5CpckhSlHJxVWZD9+oQLehZ9l31fc/+QEnMpV226Oc7xrQ47soUXPcWX+jPJHJZ3nRt3CZZXKndckArAk8wJwcSPApRF9RZxi2vKTWVH4hQr4Bn6W/VRurhTuOMfKyZHCip5j+IDcXNnCCcBFPP3003rssceUkZGhNm3a6KmnnlLHjh1Lta9ZARg+hF+ogG/gZ9n3cY79g8kB2CduhLFixQpNnDhRycnJSk1NVZs2bdSrVy9lZWVVdGkAAADwMj4RgOfPn6+77rpLt99+uxITE7VkyRJVq1ZNL774YkWXBgAAAC9T6VeBOH36tHbs2KGpU6c62wICAtSzZ09t2rSp2H3y8/OVn5/vfJ2dnS3JMRUCkOT4k1ohm00qKKi4WgCUHT/Lvo9z7B9yc1WY0syYvVvpA/Bvv/2mgoICxcTEuLTHxMTou+++K3af2bNna+aFlwpLqlevnkdqRCUXH1/RFQAwAz/Lvo9z7Bd+//13Wa3Wch2j0gfgspg6daomTpzofG2323X06FHVqFFDFovlkvvbbDbVq1dPaWlpXDTnwzjPvo9z7B84z76Pc+wfsrOzVb9+fUVHF7Ogt5sqfQCuWbOmAgMDlZmZ6dKemZmp2NjYYvcJDg5WcHCwS1tUVJTbXzsyMpIfND/AefZ9nGP/wHn2fZxj/xAQUP5L2Cr9RXBVq1ZV+/bttXbtWmeb3W7X2rVr1blz54vsCQAAAH9U6UeAJWnixIkaPny4OnTooI4dO2rBggXKzc3V7bffXtGlAQAAwMv4RAAeNGiQfv31V02fPl0ZGRlq27atUlJSilwYZ5bg4GAlJycXmUYB38J59n2cY//AefZ9nGP/YOZ59pk7wQEAAAClUennAAMAAADuIAADAADArxCAAQAA4FcIwAAAAPArBGA3Pf3002rYsKFCQkLUqVMnbd26taJLQjl8/vnn6tOnj+Lj42WxWPT++++7bDcMQ9OnT1dcXJxCQ0PVs2dP7d+/v2KKRZnMnj1bV111lSIiIlS7dm31799f+/btc+mTl5ensWPHqkaNGgoPD9ctt9xS5OY68G6LFy9W69atnTdC6Ny5sz7++GPnds6x75kzZ44sFosmTJjgbOM8V34zZsyQxWJxeTRv3ty53axzTAB2w4oVKzRx4kQlJycrNTVVbdq0Ua9evZSVlVXRpaGMcnNz1aZNGz399NPFbp83b54WLlyoJUuWaMuWLQoLC1OvXr2Ul5d3mStFWa1fv15jx47V5s2btWbNGp05c0Y33HCDcnNznX3uvfdeffjhh3rrrbe0fv16HTlyRDfffHMFVg131a1bV3PmzNGOHTu0fft2XXfdderXr592794tiXPsa7Zt26alS5eqdevWLu2cZ99wxRVXKD093fnYsGGDc5tp59hAqXXs2NEYO3as83VBQYERHx9vzJ49uwKrglkkGe+9957ztd1uN2JjY43HHnvM2Xb8+HEjODjYeOONNyqgQpghKyvLkGSsX7/eMAzHOQ0KCjLeeustZ5+9e/cakoxNmzZVVJkwQfXq1Y3nn3+ec+xjTpw4YTRt2tRYs2aN0b17d+Oee+4xDIOfZV+RnJxstGnTpthtZp5jRoBL6fTp09qxY4d69uzpbAsICFDPnj21adOmCqwMnnLgwAFlZGS4nHOr1apOnTpxziux7OxsSVJ0dLQkaceOHTpz5ozLeW7evLnq16/Pea6kCgoKtHz5cuXm5qpz586cYx8zduxY3XTTTS7nU+Jn2Zfs379f8fHxatSokYYMGaJDhw5JMvcc+8Sd4C6H3377TQUFBUXuLhcTE6PvvvuugqqCJ2VkZEhSsee8cBsqF7vdrgkTJqhr165q2bKlJMd5rlq1qqKiolz6cp4rn2+++UadO3dWXl6ewsPD9d577ykxMVG7du3iHPuI5cuXKzU1Vdu2bSuyjZ9l39CpUye9/PLLatasmdLT0zVz5kz9+c9/1rfffmvqOSYAA/AbY8eO1bfffusynwy+o1mzZtq1a5eys7P19ttva/jw4Vq/fn1FlwWTpKWl6Z577tGaNWsUEhJS0eXAQ2688Ubn89atW6tTp05q0KCB3nzzTYWGhpr2dZgCUUo1a9ZUYGBgkSsNMzMzFRsbW0FVwZMKzyvn3DeMGzdOq1at0rp161S3bl1ne2xsrE6fPq3jx4+79Oc8Vz5Vq1ZVkyZN1L59e82ePVtt2rTRv//9b86xj9ixY4eysrLUrl07ValSRVWqVNH69eu1cOFCValSRTExMZxnHxQVFaU//elP+uGHH0z9WSYAl1LVqlXVvn17rV271tlmt9u1du1ade7cuQIrg6ckJCQoNjbW5ZzbbDZt2bKFc16JGIahcePG6b333tP//vc/JSQkuGxv3769goKCXM7zvn37dOjQIc5zJWe325Wfn8859hE9evTQN998o127djkfHTp00JAhQ5zPOc++JycnRz/++KPi4uJM/VlmCoQbJk6cqOHDh6tDhw7q2LGjFixYoNzcXN1+++0VXRrKKCcnRz/88IPz9YEDB7Rr1y5FR0erfv36mjBhgmbNmqWmTZsqISFB06ZNU3x8vPr3719xRcMtY8eO1euvv64PPvhAERERznliVqtVoaGhslqtGjlypCZOnKjo6GhFRkbqn//8pzp37qyrr766gqtHaU2dOlU33nij6tevrxMnTuj111/XZ599ptWrV3OOfURERIRz7n6hsLAw1ahRw9nOea78Jk+erD59+qhBgwY6cuSIkpOTFRgYqL///e/m/iyXY6UKv/TUU08Z9evXN6pWrWp07NjR2Lx5c0WXhHJYt26dIanIY/jw4YZhOJZCmzZtmhETE2MEBwcbPXr0MPbt21exRcMtxZ1fScZLL73k7HPq1CljzJgxRvXq1Y1q1aoZAwYMMNLT0yuuaLjtjjvuMBo0aGBUrVrVqFWrltGjRw/jk08+cW7nHPum85dBMwzOsy8YNGiQERcXZ1StWtWoU6eOMWjQIOOHH35wbjfrHFsMwzBMDO4AAACAV2MOMAAAAPwKARgAAAB+hQAMAAAAv0IABgAAgF8hAAMAAMCvEIABAADgVwjAAAAA8CsEYAAAAPgVAjAAeKkZM2aobdu2FV0GAPgcAjAAXGDEiBGyWCxFHklJSRVdmkdce+21zvcYEhKixMREPfPMMxVdFgB4DAEYAIqRlJSk9PR0l8cbb7xR0WV5zF133aX09HTt2bNHAwcO1NixY73m/Z4+fbqiSwDgYwjAAFCM4OBgxcbGujyqV6/u3G6xWPT8889rwIABqlatmpo2baqVK1dKkux2u+rWravFixe7HHPnzp0KCAjQwYMHJUnHjx/XnXfeqVq1aikyMlLXXXedvvrqqxJrstvteuihh1S3bl0FBwerbdu2SklJcW7/+eefZbFYtHz5cnXp0kUhISFq2bKl1q9ff8n3W61aNcXGxqpRo0aaMWOGy/s5dOiQ+vXrp/DwcEVGRmrgwIHKzMyUJGVnZyswMFDbt2931hgdHa2rr77aeezXXntN9erVc75OS0vTwIEDFRUVpejoaPXr108///yzc/uIESPUv39/PfLII4qPj1ezZs0uWT8AuIMADABlNHPmTA0cOFBff/21evfurSFDhujo0aMKCAjQ3//+d73++usu/ZctW6auXbuqQYMGkqRbb71VWVlZ+vjjj7Vjxw61a9dOPXr00NGjR4v9ev/+97/1xBNP6PHHH9fXX3+tXr16qW/fvtq/f79Lv/vuu0+TJk3Szp071blzZ/Xp00e///67W+8tNDRUp0+flt1uV79+/XT06FGtX79ea9as0U8//aRBgwZJkqxWq9q2bavPPvtMkvTNN9/IYrFo586dysnJkSStX79e3bt3lySdOXNGvXr1UkREhL744gtt3LhR4eHhSkpKchnpXbt2rfbt26c1a9Zo1apVbtUOAJdkAABcDB8+3AgMDDTCwsJcHo888oizjyTjwQcfdL7OyckxJBkff/yxYRiGsXPnTsNisRgHDx40DMMwCgoKjDp16hiLFy82DMMwvvjiCyMyMtLIy8tz+dqNGzc2li5dahiGYSQnJxtt2rRxbouPj3epwTAM46qrrjLGjBljGIZhHDhwwJBkzJkzx7n9zJkzRt26dY25c+eW+H67d+9u3HPPPYZhGMbZs2eNV1991ZBkLFq0yPjkk0+MwMBA49ChQ87+u3fvNiQZW7duNQzDMCZOnGjcdNNNhmEYxoIFC4xBgwYZbdq0cf5bNGnSxHj22WcNwzCMV1991WjWrJlht9udx8vPzzdCQ0ON1atXO//9Y2JijPz8/BJrBoDyqFKh6RsAvNRf/vKXIlMYoqOjXV63bt3a+TwsLEyRkZHKysqSJLVt21YtWrTQ66+/rilTpmj9+vXKysrSrbfeKkn66quvlJOToxo1argc89SpU/rxxx+L1GOz2XTkyBF17drVpb1r165Fpk107tzZ+bxKlSrq0KGD9u7de9H3+8wzz+j555/X6dOnFRgYqHvvvVejR4/WokWLVK9ePZcpDImJiYqKitLevXt11VVXqXv37nrhhRdUUFCg9evX64YbblBsbKw+++wztW7dWj/88IOuvfZa5/v+4YcfFBER4fL18/LyXN53q1atVLVq1YvWDABlRQAGgGKEhYWpSZMmF+0TFBTk8tpischutztfDxkyxBmAX3/9dSUlJTkDb05OjuLi4pxTB84XFRVV7vrdNWTIEP3rX/9SaGio4uLiFBBQ+hly11xzjU6cOKHU1FR9/vnnevTRRxUbG6s5c+aoTZs2io+PV9OmTSU53nf79u21bNmyIsepVauW83lYWFj53xQAlIA5wADgIYMHD9a3336rHTt26O2339aQIUOc29q1a6eMjAxVqVJFTZo0cXnUrFmzyLEiIyMVHx+vjRs3urRv3LhRiYmJLm2bN292Pj979qx27NihFi1aXLRWq9WqJk2aqE6dOi7ht0WLFkpLS1NaWpqzbc+ePTp+/Ljz60ZFRal169ZatGiRgoKC1Lx5c11zzTXauXOnVq1a5Zz/W/i+9+/fr9q1axd531ar9aI1AoBZCMAAUIz8/HxlZGS4PH777Te3jtGwYUN16dJFI0eOVEFBgfr27evc1rNnT3Xu3Fn9+/fXJ598op9//llffvml/vWvfzlXVLjQfffdp7lz52rFihXat2+fpkyZol27dumee+5x6ff000/rvffe03fffaexY8fq2LFjuuOOO9z/RzhXZ6tWrTRkyBClpqZq69atGjZsmLp3764OHTo4+1177bVatmyZM+xGR0erRYsWWrFihUsAHjJkiGrWrKl+/frpiy++0IEDB/TZZ59p/PjxOnz4cJlqBAB3EYABoBgpKSmKi4tzeXTr1s3t4wwZMkRfffWVBgwYoNDQUGe7xWLRRx99pGuuuUa33367/vSnP+m2227TwYMHFRMTU+yxxo8fr4kTJ2rSpElq1aqVUlJStHLlSuf0gkJz5sxxTj/YsGGDVq5cWeyocmlYLBZ98MEHql69uq655hr17NlTjRo10ooVK1z6de/eXQUFBc65vpIjFF/YVq1aNX3++eeqX7++br75ZrVo0UIjR45UXl6eIiMjy1QjALjLYhiGUdFFAADK7+eff1ZCQoJ27tzJLZQB4CIYAQYAAIBfIQADAADArzAFAgAAAH6FEWAAAAD4FQIwAAAA/AoBGAAAAH6FAAwAAAC/QgAGAACAXyEAAwAAwK8QgAEAAOBXCMAAAADwK/8fbkoGKhOKCtYAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","source":["# save pipe.pkl to output data folder\n","!cp SoundLocalization_SNN_VB.ipynb /content/drive/MyDrive/Mini-Project_ColabNotebooks\n","\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tZ_SqPO-jWLb","outputId":"bb6ec6ae-a9cb-47f7-d45c-862cf00223fe"},"id":"tZ_SqPO-jWLb","execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["cp: cannot stat 'SoundLocalization_SNN_VB.ipynb': No such file or directory\n"]}]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.9.10"},"colab":{"provenance":[{"file_id":"1-43unpBGK093z1hZjSnobrKl4P66W72j","timestamp":1706243181322}]}},"nbformat":4,"nbformat_minor":5} \ No newline at end of file +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Context\n", + "This tutorial on Spiking Neural Networks (SNNs), applied to a sound localization task, is an extensively annotated version of [the excellent tutorial created by Dan Goodman for the 2022 Cosyne Conference](https://neural-reckoning.github.io/cosyne-tutorial-2022/).\n", + "\n", + "Expanding on the original Cosyne tutorial, I have developed this version specifically for a computational project as paort of a neuroscience lecture at the master’s level in Paris that I started together with [Marcus Ghosh](https://neural-reckoning.org/marcus_ghosh.html). While the core code remains unchanged, this version includes additional annotations, additional detailed explanations, and additional plotting to improve accessibility and enhance understanding for students.\n", + "\n", + "As a starting point, I highly recommend watching the comprehensive video lecture delivered by Dan Goodman during the Cosyne workshop. [Watch this video lecture on YouTube.](https://www.youtube.com/watch?v=GTXTQ_sOxak)


\n", + "\n", + "\n", + "\n", + "[Volker Bormuth](https://www.labojeanperrin.fr/?article6) \n", + "Assistant Professor \n", + "Laboratoire Jean Perrin \n", + "Sorbonne Universiy \n", + "Paris, France " + ], + "metadata": { + "id": "YI_z3RB52moV" + }, + "id": "YI_z3RB52moV" + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "---\n", + "# Introduction\n", + "---\n", + "---\n", + "\n", + "Animals localise sounds by detecting location- or direction-specific cues in the signals that arrive at their ears. Some of the most important sources of cues (although not the only ones) come from differences in the signals between two ears, including both level and timing differences. Respectively, termed interaural level difference (ILD) and interaural timing difference (ITD). In some cases humans are able to detect arrival time differences as small as 20 μs.\n", + "\n", + "The classic model of ITD sensitivity is the delay line model of Jeffress ([1948](https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0061495) ) in which an array of binaural coincidence detector neurons receive inputs from the two ears with different delays. When a neurons’ delays exactly match the acoustic delays induced by the sound location, it will be maximally active. Therefore, the identity of the most active neuron indicates the direction of the sound.\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "40c0tOD7tCKm" + }, + "id": "40c0tOD7tCKm" + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "![Screenshot 2024-11-18 at 01.30.47.png]()" + ], + "metadata": { + "id": "e_eLxRnnrtMM" + }, + "id": "e_eLxRnnrtMM" + }, + { + "cell_type": "markdown", + "source": [ + "A simple sound localization task is defined, and input/output data for it are generated.\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "The task is to estimate the ITD of a pure tone (sine wave) at a fixed frequency. This is equivalent to estimating the interaural phase difference (IPD) since the ITD is ambiguous for a sine wave.\n", + "\n", + "An SNN model is defined, and trained on this data, using surrogate gradient descent.\n", + "\n", + "The model consists of three layers. First, a layer of spiking input neurons which fire spikes according to a Poisson process with a time-varying rate determined by the input stimulus. This layer is divided into two subpopulations corresponding to the two ears, with signals to one ear delayed with respect to the other. Each neuron within a subpopulation has a different phase delay. Next, comes a single hidden layer of leaky integrate-and-fire (LIF) neurons, and an output layer of leaky, non-spiking neurons. Each output neuron is associated to a particular IPD, and the estimated IPD of the model is the identity of the most active output neuron.\n", + "\n", + "The input neurons are all-to-all connected to the layer of hidden neurons via a trainable weight matrix. In this way, during training the model is free to select the neurons with the appropriate phase delays to generate the desired properties for the hidden layer neurons. This lets the model learn to make use of delays without having to directly implement trainable delays, as this is a challenging problem" + ], + "metadata": { + "id": "YWULn4CcxiFj" + }, + "id": "YWULn4CcxiFj" + }, + { + "cell_type": "markdown", + "source": [ + "![model-diagram-593d15413d9f989c7040d1dc614d19cf.png]()" + ], + "metadata": { + "id": "ckVj4tm_xkCz" + }, + "id": "ckVj4tm_xkCz" + }, + { + "cell_type": "markdown", + "source": [ + "# Our objective:\n" + ], + "metadata": { + "id": "zLsc3TCSqY3-" + }, + "id": "zLsc3TCSqY3-" + }, + { + "cell_type": "markdown", + "source": [ + "You will define a project and will play with the model to investigate ow to improve the performance of the network?\n", + "\n", + "Some project ideas for you:\n", + "\n", + "- Change time constant\n", + "- Mean or max of output neurons membrane potential\n", + "- Heterogeneous time constants\n", + "- Change number of hidden units\n", + "- Only positive weights\n", + "- Adaptive thresholds\n", + "- What is better, to use the mean or the max of the output neurons membrane potential time variation?\n", + "…\n", + "\n", + "- Can we understand what the network is doing?\n", + "Ablate neurons after training and see how this affects the test performance\n" + ], + "metadata": { + "id": "nefPqmJPqW8L" + }, + "id": "nefPqmJPqW8L" + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "---\n", + "# Before Starting: Setting Up Your Environment\n", + "---\n", + "---\n", + "\n", + "\n", + "1. Download a copy of this notebook to\n", + "your personal google drive\n", + "In the Colab menue select:\n", + "\n", + " \"Files\" -> \"Save a copy in Drive\"\n", + "\n", + " This will create a folder \"Colab Notebooks\" where the notebook will be saved.\n", + "\n", + " you can locate where this copy was saved in your dirve:\n", + " \n", + " \"Files\" => \"Locate in Drive\"\n", + "\n", + " Now you can rename the located file and move it to a location of your choice in your google drive\n", + "\n", + "2. Close the original notebook\n", + "\n", + "\n" + ], + "metadata": { + "id": "vjbKLMEHG_VW" + }, + "id": "vjbKLMEHG_VW" + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ], + "metadata": { + "id": "gF0MTqoCHJ43", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b80b4e81-f289-49fe-8879-c63962f11bbf" + }, + "id": "gF0MTqoCHJ43", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + " To check if your google drive is mounted" + ], + "metadata": { + "id": "NJU3BW2s31el" + }, + "id": "NJU3BW2s31el" + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "\n", + "# Check if Google Drive is mounted\n", + "if os.path.exists('/content/drive'):\n", + " print(\"Google Drive is already mounted.\")\n", + "else:\n", + " print(\"Google Drive is not mounted. Please execute the mount command.\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g67gPWhv3_E3", + "outputId": "89f351cc-7a5c-4917-dac7-a81411b14fc8" + }, + "id": "g67gPWhv3_E3", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Google Drive is already mounted.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + " Create a plot and save it into your Google Colab virtual workspace. Note this workspace will be deleted when you exit Google Colab.\n", + "\n", + " In left menue click on the folder symbole. You will see the example_plot.png" + ], + "metadata": { + "id": "w_qSEwtx4Fic" + }, + "id": "w_qSEwtx4Fic" + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Example plot\n", + "x = [1, 2, 3, 4]\n", + "y = [10, 20, 25, 30]\n", + "plt.plot(x, y)\n", + "plt.title(\"Example Plot\")\n", + "\n", + "# Save the plot as an image file\n", + "plt.savefig('example_plot.png')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 452 + }, + "id": "QbM_popw4J55", + "outputId": "bf40c5f6-60d1-482b-bf8f-f936e52a49c7" + }, + "id": "QbM_popw4J55", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGzCAYAAAAMr0ziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTDklEQVR4nO3deVxU9eL/8dewK8K4sSYYuIGamCZey8yFxOVWeutW3lu5de1btpiVqZXV14qyunUrU7s3xRbbs03FzASv5W64pKIiqKTgFjMsss75/eEvvpGojAJngPfz8ZjHo3PmnDPvczo6b2c+c47FMAwDERERERfmZnYAERERkfNRYRERERGXp8IiIiIiLk+FRURERFyeCouIiIi4PBUWERERcXkqLCIiIuLyVFhERETE5amwiIiIiMtTYRGReic5ORmLxUJycnKdv7bFYuGpp56q89cVaexUWEQamMTERCwWy1kf69atMzuiy8nMzKx0jNzd3QkPD2fkyJGkpqbWyGvs3LmTp556iszMzBrZnkhj42F2ABGpHf/7v/9LRETEGfPbt29vQpr6YdSoUQwbNozy8nJ27drFnDlzWLZsGevWraN79+4Xte2dO3fy9NNP079/fy699NIaySvSmKiwiDRQQ4cO5YorrjA7Rr3So0cPbrvttorpq666iuuvv545c+Ywb948E5OJiL4SEmmknnzySdzc3Fi5cmWl+RMmTMDLy4utW7cCUFJSwowZM+jZsydWqxVfX1+uvvpqVq1aVWm9375Weemll5g9ezaRkZE0bdqUwYMHc+jQIQzDYObMmbRp04YmTZpwww03cPLkyUrbuPTSS/nzn//Mt99+S/fu3fHx8aFz5858/vnn1dqn9evXM2TIEKxWK02bNuWaa67hhx9+uOBjNHDgQAAyMjLOudxPP/3E0KFD8ff3p1mzZgwaNKjSV2+JiYn89a9/BWDAgAEVXz2ZMQZHpL5SYRFpoGw2G8ePH6/0OHHiRMXzjz/+ON27d2f8+PHk5eUBsHz5cv79738zY8YMYmJiALDb7fznP/+hf//+vPDCCzz11FMcO3aM+Pj4Ksd3vP/++7z55pvcd999PPTQQ6SkpHDzzTfz+OOPk5SUxKOPPsqECRP4+uuvefjhh89Yf+/evdxyyy0MHTqUhIQEPDw8+Otf/8qKFSvOub/ff/89/fr1w2638+STT/Lcc8+Rm5vLwIED2bBhwwUdw/T0dABatWp11mV+/vlnrr76arZu3cqUKVN44oknyMjIoH///qxfvx6Afv36cf/99wMwffp03n33Xd59912io6MvKJdIo2SISIOyYMECA6jy4e3tXWnZ7du3G15eXsadd95p/Prrr8Yll1xiXHHFFUZpaWnFMmVlZUZxcXGl9X799VcjKCjIGDduXMW8jIwMAzACAgKM3NzcivnTpk0zACMmJqbSdkeNGmV4eXkZRUVFFfPatm1rAMZnn31WMc9msxkhISHG5ZdfXjFv1apVBmCsWrXKMAzDcDgcRocOHYz4+HjD4XBULFdYWGhEREQY11577TmP2W/Zn376aePYsWNGdna2kZycbFx++eVn5AGMJ598smJ6xIgRhpeXl5Genl4x7/Dhw4afn5/Rr1+/inmffPJJpcwi4hyNYRFpoGbPnk3Hjh0rzXN3d6803bVrV55++mmmTZvGtm3bOH78ON9++y0eHh6V1vltPYfDQW5uLg6HgyuuuIItW7ac8bp//etfsVqtFdO9e/cG4Lbbbqu03d69e/PBBx/wyy+/EBkZWTE/NDSUkSNHVkz7+/tzxx138MILL5CdnU1wcPAZr5mamsrevXt5/PHHK32KBDBo0CDeffddHA4Hbm7n/lD5ySef5Mknn6z02i+88AJ/+ctfqly+vLycb7/9lhEjRlTah5CQEP72t7/x73//G7vdjr+//zlfV0TOT4VFpIGKjY2t1qDbRx55hA8//JANGzbw3HPP0blz5zOWWbhwIS+//DK7d++mtLS0Yn5Vv0IKDw+vNP1beQkLC6ty/q+//lppfvv27bFYLJXm/Va8MjMzqywse/fuBWD06NFV7ySnvyJr0aLFWZ+H0+N3/vrXv+Lm5kbz5s3p0qUL3t7eZ13+2LFjFBYW0qlTpzOei46OxuFwcOjQIbp06XLO1xWR81NhEWnk9u/fX/GGv3379jOef++99xgzZgwjRozgkUceITAwEHd3dxISEirGePzeHz/FOd98wzAuIv1pDocDgBdffPGsPz9u1qzZebfToUMH4uLiLjqPiNQ8FRaRRszhcDBmzBj8/f2ZNGkSzz33HDfddFOlr0A+/fRTIiMj+fzzzyt98vH7r05q0r59+zAMo9Jr7dmzB+Cs1y9p164dcPornLosHAEBATRt2pS0tLQzntu9ezdubm4Vnyz98VMjEXGOfiUk0oj985//5Mcff+Stt95i5syZXHnlldx9990cP368YpnfPhn5/Sch69evZ+3atbWS6fDhwyxevLhi2m63884779C9e/cqvw4C6NmzJ+3ateOll14iPz//jOePHTtWK1nd3d0ZPHgwX375ZaUr2Obk5LBo0SL69u1bMX7F19cXgNzc3FrJItLQ6RMWkQZq2bJl7N69+4z5V155JZGRkezatYsnnniCMWPGcN111wGnrxfSvXt37rnnHj7++GMA/vznP/P5558zcuRIhg8fTkZGBnPnzqVz585VloOL1bFjR8aPH8/GjRsJCgpi/vz55OTksGDBgrOu4+bmxn/+8x+GDh1Kly5dGDt2LJdccgm//PILq1atwt/fn6+//rrGswI888wzrFixgr59+3LPPffg4eHBvHnzKC4uZtasWRXLde/eHXd3d1544QVsNhve3t4MHDiQwMDAWskl0tCosIg0UDNmzKhy/oIFC2jbti2jR4+mdevWvPrqqxXPdejQgYSEBB544AE+/vhjbr75ZsaMGUN2djbz5s1j+fLldO7cmffee49PPvmkVi581qFDB15//XUeeeQR0tLSiIiI4KOPPiI+Pv6c6/Xv35+1a9cyc+ZM3njjDfLz8wkODqZ3797cddddNZ7zN126dOG///0v06ZNIyEhAYfDQe/evXnvvfcqfiEFEBwczNy5c0lISGD8+PGUl5ezatUqFRaRarIYNTHiTUSkBlx66aV07dqVb775xuwoIuJiNIZFREREXJ4Ki4iIiLg8FRYRERFxeRrDIiIiIi5Pn7CIiIiIy1NhEREREZfXIK7D4nA4OHz4MH5+frr8tYiISD1hGAZ5eXmEhoae927qDaKwHD58+Iw7wYqIiEj9cOjQIdq0aXPOZRpEYfHz8wNO7/Bv9+0QERER12a32wkLC6t4Hz+XBlFYfvsayN/fX4VFRESknqnOcA4NuhURERGXp8IiIiIiLk+FRURERFyeCouIiIi4PBUWERERcXkqLCIiIuLyVFhERETE5amwiIiIiMtTYRERERGXp8IiIiIiLs+pwjJnzhy6detWcQn8Pn36sGzZsorni4qKmDhxIq1ataJZs2bceOON5OTknHObhmEwY8YMQkJCaNKkCXFxcezdu/fC9kZEREQaJKcKS5s2bXj++efZvHkzmzZtYuDAgdxwww38/PPPADz44IN8/fXXfPLJJ6SkpHD48GH+8pe/nHObs2bN4rXXXmPu3LmsX78eX19f4uPjKSoquvC9EhERkQbFYhiGcTEbaNmyJS+++CI33XQTAQEBLFq0iJtuugmA3bt3Ex0dzdq1a/nTn/50xrqGYRAaGspDDz3Eww8/DIDNZiMoKIjExERuvfXWKl+zuLiY4uLiiunf7vZos9l080MREZEadKqknP/8dz+FpeU8OiSqRrdtt9uxWq3Vev++4DEs5eXlfPjhhxQUFNCnTx82b95MaWkpcXFxFctERUURHh7O2rVrq9xGRkYG2dnZldaxWq307t37rOsAJCQkYLVaKx5hYWEXuhsiIiJSBYfD4LPNWQx8OZmXV+zhrdX7OXCiwLQ8Hs6usH37dvr06UNRURHNmjVj8eLFdO7cmdTUVLy8vGjevHml5YOCgsjOzq5yW7/NDwoKqvY6ANOmTWPy5MkV0799wiIiIiIXb236CZ5dupMdv9gBuKR5E6YM6URYi6amZXK6sHTq1InU1FRsNhuffvopo0ePJiUlpTaynZW3tzfe3t51+poiIiIN3f5j+SQs282Knad/MNPM24N7BrRj3FUR+Hi6m5rN6cLi5eVF+/btAejZsycbN27kX//6F7fccgslJSXk5uZW+pQlJyeH4ODgKrf12/ycnBxCQkIqrdO9e3dno4mIiMgFOFlQwmsr9/LeugOUOQzc3SyMig1jUlxHWjdzjQ8ILvo6LA6Hg+LiYnr27ImnpycrV66seC4tLY2DBw/Sp0+fKteNiIggODi40jp2u53169efdR0RERGpGcVl5by1Op1rXlxF4o+ZlDkMBkYFsnzS1Twz4jKXKSvg5Ccs06ZNY+jQoYSHh5OXl8eiRYtITk5m+fLlWK1Wxo8fz+TJk2nZsiX+/v7cd9999OnTp9IvhKKiokhISGDkyJFYLBYmTZrEM888Q4cOHYiIiOCJJ54gNDSUESNG1PS+ioiICKd/pbtk+xFeSNrNoZOnAIgO8efx4dFc1b61yemq5lRhOXr0KHfccQdHjhzBarXSrVs3li9fzrXXXgvAK6+8gpubGzfeeCPFxcXEx8fz5ptvVtpGWloaNputYnrKlCkUFBQwYcIEcnNz6du3L0lJSfj4+NTA7omIiMjvbT7wK88u2cmWg7kABPp583B8J27s0QZ3N4u54c7hoq/D4gqc+R23iIhIY3ToZCHPJ+1mybYjADTxdOeuayKZ0C+Spl5OD2mtEc68f5uTUEREROqE7VQpb67ax4IfMikpd2CxwE092vBwfCeC/OvPtxkqLCIiIg1QabmDResP8up3e/i1sBSAq9q3YvqwaLqEWk1O5zwVFhERkQbEMAy+23WUhGW72H/s9JVp2wc247Fh0fTvFIDF4rrjVM5FhUVERKSB2PGLjWeW7GTd/pMAtPL14sFrO3JrrzA83C/6SiamUmERERGp547YTvHi8jQW//QLhgFeHm6M7xvBPf3b4efjaXa8GqHCIiIiUk8VFJcxNyWdf/93P0WlDgBu6B7KI/GdaGPifX9qgwqLiIhIPVPuMPhk0yFe+nYPx/OLAeh1aQseG96Z7mHNzQ1XS1RYRERE6pHVe47x3NJd7M7OA6Btq6ZMGxpFfJfgejugtjpUWEREROqBPTl5PLtkFyl7jgFgbeLJ/YM6cPuf2uLlUb8H1FaHCouIiIgLO5ZXzD9X7OGjjQdxGODpbuGOPpdy38D2NG/qZXa8OqPCIiIi4oJOlZTz9pr9zElOp6CkHIAhXYKZOjSKS1v7mpyu7qmwiIiIuBCHw+CL1F94cXkaR2xFAMS0sfLY8M7ERrQ0OZ15VFhERERcxLr9J3h2yS62/2ID4JLmTZgypBPXdQvFzYXvpFwXVFhERERMtv9YPgnLdrNiZw4Azbw9uGdAO8ZdFYGPp7vJ6VyDCouIiIhJfi0o4V8r9/LeugOUOQzc3SyMig1jUlxHWjfzNjueS1FhERERqWPFZeUs/DGT17/fR15RGQADowKZNjSKDkF+JqdzTSosIiIidcQwDJZuz+b5pF0cOnkKgOgQfx4bFk3fDq1NTufaVFhERETqwJaDv/Lskl1sPvArAIF+3jwc34kbe7TBvZEPqK0OFRYREZFadOhkIS8k7eabbUcAaOLpzl3XRDKhXyRNvfQ2XF06UiIiIrXAdqqUN1ftY8EPmZSUO7BY4KYebXg4vhNB/j5mx6t3VFhERERqUGm5g0XrD/Lqd3v4tbAUgKvat2L6sGi6hFpNTld/qbCIiIjUAMMw+G7XURKW7WL/sQIA2gc2Y/qwKAZ0CmzQd1KuCyosIiIiF2nHLzaeXbKLtftPANDK14tJ13ZkVK8wPNwb/p2U64IKi4iIyAXKthXx4vI0Pv8pC8MALw83xveN4O7+7fD38TQ7XoOiwiIiIuKkguIy5qWk89Z/91NU6gDghu6hPBLfiTYtmpqcrmFSYREREammcofBJ5sO8fKKPRzLKwbgirYtePzPneke1tzccA2cCouIiEg1rN5zjOeW7mJ3dh4AbVs1ZeqQKIZ0DdaA2jqgwiIiInIOe3LyeHbJLlL2HAPA2sST+wa2544+l+LloQG1dUWFRUREpArH8op55bs9fLjhIA4DPN0t3P6nS7l/UHuaN/UyO16jo8IiIiLyO0Wl5by9JoM3V+2joKQcgCFdgpk6NIpLW/uanK7xUmEREREBHA6DL7f+wotJaRy2FQEQ08bKY8M7ExvR0uR04tSXbwkJCfTq1Qs/Pz8CAwMZMWIEaWlpFc9nZmZisViqfHzyySdn3e6YMWPOWH7IkCEXvlciIiJOWL//BCPe/IEHP9rKYVsRoVYfXr2lO4vvuUplxUU49QlLSkoKEydOpFevXpSVlTF9+nQGDx7Mzp078fX1JSwsjCNHjlRa56233uLFF19k6NCh59z2kCFDWLBgQcW0t7e3M9FERESclnG8gISlu/h2Zw4Azbw9uGdAO8ZdFYGPp7vJ6eT3nCosSUlJlaYTExMJDAxk8+bN9OvXD3d3d4KDgysts3jxYm6++WaaNWt2zm17e3ufse7ZFBcXU1xcXDFtt9uruQciIiLwa0EJ/1q5l/fWHaDMYeDuZmFUbBiT4jrSupn+weyKLmoMi81mA6Bly6o/Ltu8eTOpqanMnj37vNtKTk4mMDCQFi1aMHDgQJ555hlatWpV5bIJCQk8/fTTFx5cREQapeKyct758QCvf78Xe1EZAAOjApk2NIoOQX4mp5NzsRiGYVzIig6Hg+uvv57c3FzWrFlT5TL33HMPycnJ7Ny585zb+vDDD2natCkRERGkp6czffp0mjVrxtq1a3F3P/Mjuao+YQkLC8Nms+Hv738huyMiIg2YYRgs3Z7NC0m7OXiyEICoYD8eH96Zvh1am5yu8bLb7Vit1mq9f1/wJywTJ05kx44dZy0rp06dYtGiRTzxxBPn3datt95a8d+XXXYZ3bp1o127diQnJzNo0KAzlvf29tYYFxERqZYtB3/l2SW72HzgVwAC/bx5eHAnbuzZBnc3XaG2vrigwnLvvffyzTffsHr1atq0aVPlMp9++imFhYXccccdTm8/MjKS1q1bs2/fvioLi4iIyPkcOlnIC0m7+Wbb6R+DNPF0Z0K/SCb0i8TXW1f1qG+c+j9mGAb33XcfixcvJjk5mYiIiLMu+/bbb3P99dcTEBDgdKisrCxOnDhBSEiI0+uKiEjjZi8qZfaqfSz4IZOSMgcWC9zUow0PDe5EsNXH7HhygZwqLBMnTmTRokV8+eWX+Pn5kZ2dDYDVaqVJkyYVy+3bt4/Vq1ezdOnSKrcTFRVFQkICI0eOJD8/n6effpobb7yR4OBg0tPTmTJlCu3btyc+Pv4idk1ERBqT0nIHH2w4yKvf7eVkQQkAV7VvxfRh0XQJtZqcTi6WU4Vlzpw5APTv37/S/AULFjBmzJiK6fnz59OmTRsGDx5c5XbS0tIqfmHk7u7Otm3bWLhwIbm5uYSGhjJ48GBmzpypcSoiInJehmGwctdRnlu2i/3HCgBoF+DLY8OjGdApUHdSbiAu+FdCrsSZUcYiItJw7PjFxrNLdrF2/wkAWvp68WBcB26NDcfTXXdSdnV18ishERERs2TbinhxeRqf/5SFYYCXhxvjrorgngHt8PfxNDue1AIVFhERqTcKisuYl5LOW//dT1GpA4DrY0J5JL4TYS2bmpxOapMKi4iIuLxyh8Gnmw/x0rd7OJZ3+sKhV7RtwWPDo7k8vIXJ6aQuqLCIiIhL++/eYzy7ZBe7s/MAaNuqKVOHRDGka7AG1DYiKiwiIuKS9uTk8dzSXSSnHQPA38eD+wd14PY+bfH20J2UGxsVFhERcSnH8op55bs9fLjhIA4DPNws3N6nLfcP7EALXy+z44lJVFhERMQlFJWW8/aaDOYkp5NffPpOykO6BPPo0CgiWvuanE7MpsIiIiKmcjgMvtz6Cy8mpXHYVgRATBsrjw3vTGxES5PTiatQYREREdNsyDjJM0t2si3r9NXPQ60+TBkSxfUxobjpTsryOyosIiJS5zKOF/D8sl0s/zkHgGbeHtzdvx3j+0bg46kBtXImFRYREakzuYUl/GvlXt5de4Ayh4GbBUbFhvPgtR1p3Uz3j5OzU2EREZFaV1xWzrtrD/Dayr3Yi04PqB3QKYDpw6LpEORncjqpD1RYRESk1hiGwbId2Ty/bDcHTxYCEBXsx+PDO9O3Q2uT00l9osIiIiK14qeDv/Lskl1sOvArAIF+3jw8uBM39myDuwbUipNUWEREpEZl/VrIrKQ0vtp6GAAfTzcm9GvHXf0i8fXW245cGJ05IiJSI+xFpby5Kp35P2RQUubAYoEbe7Th4cGdCLb6mB1P6jkVFhERuSil5Q4+2HCQV7/by8mCEgCubNeKx4ZH0yXUanI6aShUWERE5IIYhsH3u4/y3NJdpB8rAKBdgC/Th0UzMCpQd1KWGqXCIiIiTvv5sI1nl+zix/QTALT09eLBuA7cGhuOp7ubyemkIVJhERGRasu2FfHSt2l8tiULwwAvDzfGXRXBPQPa4e/jaXY8acBUWERE5LwKisuYt3o//169n1Ol5QBcFxPKlPhOhLVsanI6aQxUWERE5KzKHQafbj7Ey9/u4WheMQBXtG3BY8OjuTy8hcnppDFRYRERkSr9d+8xnl2yi93ZeQC0bdWUqUOiGNI1WANqpc6psIiISCV7c/J4bukuVqUdA8Dfx4P7B3Xg9j5t8fbQnZTFHCosIiICwPH8Yl5ZsYcPNx6i3GHg4Wbh9j5tuX9gB1r4epkdTxo5FRYRkUauqLSct9dkMCc5nfzi03dSju8SxNSh0US09jU5nchpKiwiIo2Uw2Hw1dbDvLg8jV9yTwHQrY2Vx4ZF0zuylcnpRCpTYRERaYQ2ZJzk2SU72ZplAyDU6sOUIVFcHxOKm+6kLC5IhUVEpBHJOF7A88t2sfznHACaeXtwd/92jO8bgY+nBtSK61JhERFpBHILS3ht5T7eXZdJabmBmwVGxYYzKa4jAX7eZscTOS8VFhGRBqykzME7azN5/ft92E6VAtC/UwDTh0XTMcjP5HQi1efUHaoSEhLo1asXfn5+BAYGMmLECNLS0iot079/fywWS6XH//zP/5xzu4ZhMGPGDEJCQmjSpAlxcXHs3bvX+b0RERHg9N+ry7Yf4dpXUnhmyS5sp0qJCvbj3fGxJI6NVVmResepwpKSksLEiRNZt24dK1asoLS0lMGDB1NQUFBpuX/84x8cOXKk4jFr1qxzbnfWrFm89tprzJ07l/Xr1+Pr60t8fDxFRUXO75GISCOXeiiXm+et5e73t3DgRCEBft68cONlLLn/aq7uEGB2PJEL4tRXQklJSZWmExMTCQwMZPPmzfTr169iftOmTQkODq7WNg3D4NVXX+Xxxx/nhhtuAOCdd94hKCiIL774gltvvfWMdYqLiykuLq6YttvtzuyGiEiDlPVrIbOS0vhq62EAfDzdmNCvHXf1i8TXWyMApH5z6hOWP7LZTv8crmXLlpXmv//++7Ru3ZquXbsybdo0CgsLz7qNjIwMsrOziYuLq5hntVrp3bs3a9eurXKdhIQErFZrxSMsLOxidkNEpF6zF5Xy/LLdDHw5ha+2HsZigZt6tiH54QFMvrajyoo0CBd8FjscDiZNmsRVV11F165dK+b/7W9/o23btoSGhrJt2zYeffRR0tLS+Pzzz6vcTnZ2NgBBQUGV5gcFBVU890fTpk1j8uTJFdN2u12lRUQanbJyBx9sPMSrK/ZwoqAEgCvbtWL6sGi6XmI1OZ1IzbrgwjJx4kR27NjBmjVrKs2fMGFCxX9fdtllhISEMGjQINLT02nXrt2FJ/0db29vvL31MzwRaZwMw+D73Ud5buku0o+dHkPYLsCX6cOiGRgVqDspS4N0QYXl3nvv5ZtvvmH16tW0adPmnMv27t0bgH379lVZWH4b65KTk0NISEjF/JycHLp3734h8UREGqyfD9t4dskufkw/AUBLXy8ejOvArbHheLpf1Lf8Ii7NqcJiGAb33XcfixcvJjk5mYiIiPOuk5qaClCpjPxeREQEwcHBrFy5sqKg2O121q9fz9133+1MPBGRBivbVsRL36bx2ZYsDAO8PNwYd1UE9wxoh7+Pp9nxRGqdU4Vl4sSJLFq0iC+//BI/P7+KMSZWq5UmTZqQnp7OokWLGDZsGK1atWLbtm08+OCD9OvXj27dulVsJyoqioSEBEaOHInFYmHSpEk888wzdOjQgYiICJ544glCQ0MZMWJEje6siEh9U1hSxryU/by1ej+nSssBuC4mlCnxnQhr2dTkdCJ1x6nCMmfOHOD0xeF+b8GCBYwZMwYvLy++++47Xn31VQoKCggLC+PGG2/k8ccfr7R8WlpaxS+MAKZMmUJBQQETJkwgNzeXvn37kpSUhI+PzwXulohI/VbuMPhscxYvfZvG0bzTl3Ho2bYFjw+P5vLwFianE6l7FsMwDLNDXCy73Y7VasVms+Hv7292HBGRi7Jm73GeWbKT3dl5AIS3bMrUoVEM7RqsAbXSoDjz/q0f54uIuIi9OXk8t3QXq9KOAeDv48H9gzpwe5+2eHvoTsrSuKmwiIiY7Hh+Ma+s2MOHGw9R7jDwcLNwe5+23D+wAy18vcyOJ+ISVFhERExSVFrO22symJOcTn5xGQDxXYKYOjSaiNa+JqcTcS0qLCIidczhMPh622FmJaXxS+4pAC67xMrjw6PpHdnK5HQirkmFRUSkDm3MPMkz3+xka9bpX0qGWn14ZEgnboi5BDc3DagVORsVFhGROpB5vIDnl+0m6efT16/y9XLnngHtGd83Ah9PDagVOR8VFhGRWpRbWMJrK/fx7rpMSssN3Cxwa2w4D8Z1JMBP90QTqS4VFhGRWlBS5uCdtZm8/v0+bKdKAejfKYDpw6LpGORncjqR+keFRUSkBhmGQdKObJ5P2s2BE4UARAX78djwaK7uEGByOpH6S4VFRKSGpB7K5dklO9mY+SsAAX7ePDy4Izf1DMNdA2pFLooKi4jIRcr6tZBZSWl8tfUwAD6ebkzo1467+kXi662/ZkVqgv4kiYhcIHtRKW+uSmf+DxmUlDmwWODGHm14eHAngq26eatITVJhERFxUlm5gw82HuLVFXs4UVACwJXtWjF9WDRdL7GanE6kYVJhERGpJsMwWJV2lOeW7mbf0XwAIgN8mT40mkHRgbqTskgtUmEREamGnYftPLt0Jz/sOwFAS18vJsV1YFRsOJ7ubianE2n4VFhERM4hx17ES8vT+HRLFoYBXu5ujO17KRMHtMffx9PseCKNhgqLiEgVCkvKmJeyn7dW7+dUaTkA18WEMiW+E2Etm5qcTqTxUWEREfmdcofBZ5uzeOnbNI7mFQPQs20LHh8ezeXhLUxOJ9J4qbCIiPx/a/Ye59mlu9h1xA5AeMumTB0axdCuwRpQK2IyFRYRafT2Hc3juaW7+X73UQD8fTy4b2AH7riyLd4eupOyiCtQYRGRRut4fjGvfreHDzYcotxh4OFm4bY/teWBQR1o4etldjwR+R0VFhFpdIpKy5n/QwZvrkonv7gMgPguQTw6JIrIgGYmpxORqqiwiEij4XAYfL3tMLOS0vgl9xQAl11i5fHh0fSObGVyOhE5FxUWEWkUNmae5JlvdrI1ywZAqNWHR4Z04oaYS3DTnZRFXJ4Ki4g0aJnHC3h+2W6Sfs4GwNfLnXsGtGd83wh8PDWgVqS+UGERkQYpt7CE11bu4911mZSWG7hZ4NbYcB6M60iAn7fZ8UTESSosItKglJQ5eGdtJq9/vw/bqVIA+ncKYPqwaDoG+ZmcTkQulAqLiDQIhmGQtCOb55N2c+BEIQBRwX48NjyaqzsEmJxORC6WCouI1HtbD+XyzJKdbMz8FYAAP28eHtyRm3qG4a4BtSINggqLiNRbWb8W8uLyNL5MPQyAj6cbE66O5K5r2uHrrb/eRBoS/YkWkXonr6iUN5PTeXtNBiVlDiwW+MvlbXg4viMh1iZmxxORWuDmzMIJCQn06tULPz8/AgMDGTFiBGlpaRXPnzx5kvvuu49OnTrRpEkTwsPDuf/++7HZbOfc7pgxY7BYLJUeQ4YMubA9EpEGq6zcwbvrDtD/xWTmJKdTUuagT2Qrvr63Ly/fHKOyItKAOfUJS0pKChMnTqRXr16UlZUxffp0Bg8ezM6dO/H19eXw4cMcPnyYl156ic6dO3PgwAH+53/+h8OHD/Ppp5+ec9tDhgxhwYIFFdPe3vrZoYicZhgGq9KO8tzS3ew7mg9AZIAv04dGMyg6UHdSFmkELIZhGBe68rFjxwgMDCQlJYV+/fpVucwnn3zCbbfdRkFBAR4eVfejMWPGkJubyxdffFGt1y0uLqa4uLhi2m63ExYWhs1mw9/f3+n9EBHXtfOwnWeX7uSHfScAaOnrxaS4DoyKDcfT3akPiUXExdjtdqxWa7Xevy9qDMtvX/W0bNnynMv4+/uftaz8Jjk5mcDAQFq0aMHAgQN55plnaNWq6nt7JCQk8PTTT194cBFxeTn2Il7+No1PNmdhGODl7sbYvpcycUB7/H08zY4nInXsgj9hcTgcXH/99eTm5rJmzZoqlzl+/Dg9e/bktttu49lnnz3rtj788EOaNm1KREQE6enpTJ8+nWbNmrF27Vrc3c+8dLY+YRFpuApLynhr9X7mpeznVGk5ANfFhDIlvhNhLZuanE5EapIzn7BccGG5++67WbZsGWvWrKFNmzZVhrj22mtp2bIlX331FZ6e1f8X0f79+2nXrh3fffcdgwYNOu/yzuywiLimcofBZ1uyePnbNHLsp/9B0rNtCx4fHs3l4S1MTicitaHWvxK69957+eabb1i9enWVZSUvL48hQ4bg5+fH4sWLnSorAJGRkbRu3Zp9+/ZVq7CISP22Zu9xnl26i11H7ACEt2zK1KFRDO0arAG1IgI4WVgMw+C+++5j8eLFJCcnExERccYydrud+Ph4vL29+eqrr/Dx8XE6VFZWFidOnCAkJMTpdUWk/th3NI/nlu7m+91HAfD38eC+gR2448q2eHvoTsoi8n+cKiwTJ05k0aJFfPnll/j5+ZGdffp27VarlSZNmmC32xk8eDCFhYW899572O127PbT/2IKCAioGI8SFRVFQkICI0eOJD8/n6effpobb7yR4OBg0tPTmTJlCu3btyc+Pr6Gd1dEXMHx/GJe/W4PH2w4RLnDwMPNwm1/assDgzrQwtfL7Hgi4oKcKixz5swBoH///pXmL1iwgDFjxrBlyxbWr18PQPv27Sstk5GRwaWXXgpAWlpaxS+M3N3d2bZtGwsXLiQ3N5fQ0FAGDx7MzJkzdS0WkQamqLSc+T9k8OaqdPKLywAY3DmIqUOjiAxoZnI6EXFlF3UdFlehQbcirs3hMPh622FmJaXxS+4pAC67xMpjw6P5U2TVly8QkYavzq7DIiJyPhszT/LMNzvZmnX6U9UQqw9ThnTihphLcNOdlEWkmlRYRKRWZB4v4Pllu0n6+fRYN18vd+4Z0J7xfSPw8dSAWhFxjgqLiNSo3MISXv9+H++szaS03MDNArf0CmfytR0J8NO4NBG5MCosIlIjSspO30n5tZV7sZ0qBeCajgFMHxZNp2A/k9OJSH2nwiIiF8UwDJb/nM3zy3aTeaIQgKhgP6YPi6ZfxwCT04lIQ6HCIiIXbOuhXJ5dsosNmScBCPDz5qFrO/LXK8Jw14BaEalBKiwi4rRfck8xK2k3X6YeBsDH040JV0dy1zXt8PXWXysiUvP0N4uIVFteUSlvJqfz9poMSsocWCzwl8vb8HB8R0KsTcyOJyINmAqLiJxXWbmDDzYe4tUVezhRUAJAn8hWPDY8mq6XWE1OJyKNgQqLiJyVYRisSjvKc0t3s+9oPgCRAb5MHxrNoOhA3UlZROqMCouIVGnnYTvPLt3JD/tOANDS14tJcR0YFRuOp7ubyelEpLFRYRGRSnLsRbz8bRqfbM7CMMDL3Y2xfS9l4oD2+Pt4mh1PRBopFRYRAaCwpIy3Vu9nXsp+TpWWA/DnbiE8OiSKsJZNTU4nIo2dCotII1fuMPhsSxYvf5tGjr0YgB7hzXn8z53pEd7C5HQiIqepsIg0Yj/sO84zS3ax64gdgLCWTZg6JJphlwVrQK2IuBQVFpFGaN/RPJ5bupvvdx8FwM/Hg/sHduCOK9vi7aE7KYuI61FhEWlEjucX8+p3e/hgwyHKHQYebhZu+1NbHhjUgRa+XmbHExE5KxUWkUagqLScBT9kMnvVPvKLywAY3DmIqUOjiAxoZnI6EZHzU2ERacAMw+CrrYeZlZTGL7mnALjsEiuPDY/mT5GtTE4nIlJ9KiwiDdSmzJPMXLKLrYdyAQix+jBlSCduiLkEN91JWUTqGRUWkQbmwIkCnl+2m2U7sgHw9XLnngHtGd83Ah9PDagVkfpJhUWkgbAVlvLa93t5Z20mpeUGbha4pVc4k6/tSICft9nxREQuigqLSD1XUubg3XUHeG3lXmynSgG4pmMA04dF0ynYz+R0IiI1Q4VFpJ4yDIPlP2fz/LLdZJ4oBCAq2I/pw6Lp1zHA5HQiIjVLhUWkHtp6KJdnl+xiQ+ZJAAL8vHno2o789Yow3DWgVkQaIBUWkXrkl9xTzErazZephwHw8XRjwtWR3HVNO3y99cdZRBou/Q0nUg/kFZXyZnI6b6/JoKTMgcUCf7m8DQ/HdyTE2sTseCIitU6FRcSFlZU7+HDjIV5ZsYcTBSUA/CmyJY8P70zXS6wmpxMRqTsqLCIuyDAMktOO8dzSXew9mg9AZGtfpg2LJi46UHdSFpFGR4VFxMXsPGznuaW7WLPvOAAtmnoyKa4jf+sdjqe7m8npRETMocIi4iJy7EW8/G0an2zOwjDAy92NsVddyj0D2mNt4ml2PBERUzn1z7WEhAR69eqFn58fgYGBjBgxgrS0tErLFBUVMXHiRFq1akWzZs248cYbycnJOed2DcNgxowZhISE0KRJE+Li4ti7d6/zeyNSDxWWlPHqd3vo/2IyH286XVb+3C2ElQ9dw7Rh0SorIiI4WVhSUlKYOHEi69atY8WKFZSWljJ48GAKCgoqlnnwwQf5+uuv+eSTT0hJSeHw4cP85S9/Oed2Z82axWuvvcbcuXNZv349vr6+xMfHU1RUdGF7JVIPlDsMPt50iAEvJfPqd3s5VVpOj/DmfH7Plbzxtx6EtWxqdkQREZdhMQzDuNCVjx07RmBgICkpKfTr1w+bzUZAQACLFi3ipptuAmD37t1ER0ezdu1a/vSnP52xDcMwCA0N5aGHHuLhhx8GwGazERQURGJiIrfeeusZ6xQXF1NcXFwxbbfbCQsLw2az4e/vf6G7I1JntmfZePSzbew8YgcgrGUTpg6JZthlwRpQKyKNht1ux2q1Vuv9+6JG8NlsNgBatmwJwObNmyktLSUuLq5imaioKMLDw1m7dm2V28jIyCA7O7vSOlarld69e591nYSEBKxWa8UjLCzsYnZDpE7tycnj7/9Zx84jdvx8PHhsWDTfTb6G4d1CVFZERM7igguLw+Fg0qRJXHXVVXTt2hWA7OxsvLy8aN68eaVlg4KCyM7OrnI7v80PCgqq9jrTpk3DZrNVPA4dOnShuyFSpw7nnmL0/A3Yi8ro2bYFKY8M4B/9IvH2cDc7moiIS7vgXwlNnDiRHTt2sGbNmprMUy3e3t54e3vX+euKXAxbYSljFmzgiK2I9oHNeHv0FTRv6mV2LBGReuGCPmG59957+eabb1i1ahVt2rSpmB8cHExJSQm5ubmVls/JySE4OLjKbf02/4+/JDrXOiL1TVFpOf94dxN7cvIJ8vdm4bhYlRURESc4VVgMw+Dee+9l8eLFfP/990RERFR6vmfPnnh6erJy5cqKeWlpaRw8eJA+ffpUuc2IiAiCg4MrrWO321m/fv1Z1xGpT8odBg9+lMqGjJP4eXuwcFwslzTX/X9ERJzhVGGZOHEi7733HosWLcLPz4/s7Gyys7M5deoUcHqw7Pjx45k8eTKrVq1i8+bNjB07lj59+lT6hVBUVBSLFy8GwGKxMGnSJJ555hm++uortm/fzh133EFoaCgjRoyouT0VMYFhGPzv1z+zbEc2Xu5uvHXHFUQF65dsIiLOcmoMy5w5cwDo379/pfkLFixgzJgxALzyyiu4ublx4403UlxcTHx8PG+++Wal5dPS0ip+YQQwZcoUCgoKmDBhArm5ufTt25ekpCR8fHwuYJdEXMeclHQWrj2AxQL/vCWGPu1amR1JRKReuqjrsLgKZ37HLVJXPtucxUOfbAVgxp87M65vxHnWEBFpXOrsOiwiUrXktKM8+tk2AO7qF6myIiJykVRYRGrYtqxc7nl/C2UOgxHdQ3l0SJTZkURE6j0VFpEadOBEAeMSN1JYUs7VHVoz66YY3Nx09VoRkYulwiJSQ47nF3PH/A0czy+hS6g/c27riZeH/oiJiNQE/W0qUgMKissYl7iRAycKCWvZhAVje9HM+4IvJC0iIn+gwiJykUrLHdzz/ha2Zdlo6evFwrGxBPrpJ/kiIjVJhUXkIhiGwdTPtpOy5xhNPN15e/QVRAY0MzuWiEiDo8IichFe+jaNz7Zk4e5mYfbfL+fy8BZmRxIRaZBUWEQu0LtrM5m9Kh2AhJGXMTAqyOREIiINlwqLyAVI2nGEGV/9DMDkaztyc68wkxOJiDRsKiwiTtqQcZL7P0zFMOBvvcO5b2B7syOJiDR4KiwiTtiTk8edCzdSUubg2s5BzLyhKxaLLgwnIlLbVFhEqumI7RSj52/AXlRGz7YteH3U5bjrKrYiInVChUWkGmynShkzfyNHbEW0C/Dl7dFX4OPpbnYsEZFGQ4VF5DyKSsv5xzubSMvJI8jfm4XjYmne1MvsWCIijYoKi8g5lDsMHvwolQ0ZJ/Hz9iBxbCxtWjQ1O5aISKOjwiJyFoZh8L9f/8yyHdl4ubsx746eRIf4mx1LRKRRUmEROYs5KeksXHsAgJdvjuHKdq1NTiQi0nipsIhU4bPNWcxKSgPgiT935rqYUJMTiYg0biosIn+QnHaURz/bBsCEfpGM7xthciIREVFhEfmdbVm53PP+FsocBiO6hzJ1SJTZkUREBBUWkQoHThQwLnEjhSXlXN2hNbNuisFNF4YTEXEJKiwiwPH8Yu6Yv4Hj+SV0CfVnzm098fLQHw8REVehv5Gl0SsoLmNc4kYOnCgkrGUTFoztRTNvD7NjiYjI76iwSKNWWu7gnve3sC3LRktfLxaOjSXQz8fsWCIi8gcqLNJoGYbB1M+2k7LnGE083Xl79BVEBjQzO5aIiFRBhUUarZe+TeOzLVm4u1mY/ffLuTy8hdmRRETkLFRYpFF6d20ms1elA5Aw8jIGRgWZnEhERM5FhUUanaQdR5jx1c8ATL62Izf3CjM5kYiInI8KizQqGzJOcv+HqRgG/K13OPcNbG92JBERqQYVFmk09uTkcefCjZSUObi2cxAzb+iKxaILw4mI1AdOF5bVq1dz3XXXERoaisVi4Ysvvqj0vMViqfLx4osvnnWbTz311BnLR0XpkuhSc47YTjF6/gbsRWX0bNuC10ddjruuYisiUm84XVgKCgqIiYlh9uzZVT5/5MiRSo/58+djsVi48cYbz7ndLl26VFpvzZo1zkYTqZLtVClj5m/kiK2IdgG+vD36Cnw83c2OJSIiTnD6cp5Dhw5l6NChZ30+ODi40vSXX37JgAEDiIyMPHcQD48z1j2b4uJiiouLK6btdnu11pPGp6i0nH+8s4m0nDyC/L1ZOC6W5k29zI4lIiJOqtUxLDk5OSxZsoTx48efd9m9e/cSGhpKZGQkf//73zl48OBZl01ISMBqtVY8wsL0Kw85U7nDYPLHqWzIOImftweJY2Np06Kp2bFEROQC1GphWbhwIX5+fvzlL38553K9e/cmMTGRpKQk5syZQ0ZGBldffTV5eXlVLj9t2jRsNlvF49ChQ7URX+oxwzCY+c1Olm7PxsvdjXl39CQ6xN/sWCIicoFq9Q5v8+fP5+9//zs+Pue+N8vvv2Lq1q0bvXv3pm3btnz88cdVfjrj7e2Nt7d3jeeVhmNuyn4Sf8wE4OWbY7iyXWtzA4mIyEWptcLy3//+l7S0ND766COn123evDkdO3Zk3759tZBMGrrPt2TxQtJuAJ74c2euiwk1OZGIiFysWvtK6O2336Znz57ExMQ4vW5+fj7p6emEhITUQjJpyFL2HGPKp9sAmNAvkvF9I0xOJCIiNcHpwpKfn09qaiqpqakAZGRkkJqaWmmQrN1u55NPPuHOO++schuDBg3ijTfeqJh++OGHSUlJITMzkx9//JGRI0fi7u7OqFGjnI0njdj2LBt3v7eZMofBiO6hTB2ia/mIiDQUTn8ltGnTJgYMGFAxPXnyZABGjx5NYmIiAB9++CGGYZy1cKSnp3P8+PGK6aysLEaNGsWJEycICAigb9++rFu3joCAAGfjSSN14EQBYxM3UFhSTt/2rZl1UwxuujCciEiDYTEMwzA7xMWy2+1YrVZsNhv+/volSGNzPL+Ym+b8SOaJQjqH+PPRXX/Cz8fT7FgiInIezrx/615CUq8VFJcxPnEjmScKadOiCYnjeqmsiIg0QCosUm+VljuYuGgLW7NstGjqyTvjYgn0O/dP6EVEpH5SYZF6yTAMpn62neS0Y/h4ujF/TC8iA5qZHUtERGqJCovUSy99m8ZnW7Jwd7Mw+289uDy8hdmRRESkFqmwSL3z7tpMZq9KB+DZEV0ZFB1kciIREaltKixSryTtOMKMr34G4MG4jtwaG25yIhERqQsqLFJvbMg4yf0fpmIYMCo2nPsHtTc7koiI1BEVFqkX9uTkcefCjZSUOYiLDmLmDV2wWHRhOBGRxkKFRVzeEdspRs/fgL2ojJ5tW/D6qMvxcNepKyLSmOhvfXFptlOljJm/kSO2ItoF+PL26Cto4uVudiwREaljKizisopKy/nHO5tIy8kjyN+bheNiad7Uy+xYIiJiAhUWcUnlDoPJH6eyIeMkft4eJI6NpU2LpmbHEhERk6iwiMsxDIOZ3+xk6fZsvNzdmHdHT6JDdFNLEZHGTIVFXM7clP0k/pgJwMs3x3Blu9bmBhIREdOpsIhL+XxLFi8k7QbgiT935rqYUJMTiYiIK1BhEZeRsucYUz7dBsCEfpGM7xthciIREXEVKiziErZn2bj7vc2UOQxGdA9l6pAosyOJiIgLUWER0x04UcDYxA0UlpTTt31rZt0Ug5ubrmIrIiL/R4VFTHU8v5jR8zdwPL+EziH+zLmtB14eOi1FRKQyvTOIaQqKyxifuJHME4W0adGExHG98PPxNDuWiIi4IBUWMUVpuYOJi7awNctGi6aevDMulkA/H7NjiYiIi1JhkTpnGAbTPt9OctoxfDzdmD+mF5EBzcyOJSIiLkyFRercy9/u4dPNWbi7WZj9tx5cHt7C7EgiIuLiVFikTr277gBvrNoHwLMjujIoOsjkRCIiUh+osEidSdqRzYwvdwDwYFxHbo0NNzmRiIjUFyosUic2Zp7k/g9/wjBgVGw49w9qb3YkERGpR1RYpNbtzcljfOJGSsocxEUHMfOGLlgsujCciIhUnwqL1KojtlOMnr8Be1EZPcKb8/qoy/Fw12knIiLO0TuH1BrbqVLGzN/IYVsR7QJ8eXt0L5p4uZsdS0RE6iEVFqkVRaXlTHhnE2k5eQT6ebNwXCwtfL3MjiUiIvWUCovUuHKHweSPU1mfcRI/bw8Sx8bSpkVTs2OJiEg95nRhWb16Nddddx2hoaFYLBa++OKLSs+PGTMGi8VS6TFkyJDzbnf27Nlceuml+Pj40Lt3bzZs2OBsNHEBhmEw85udLN2ejae7hXm396RzqL/ZsUREpJ5zurAUFBQQExPD7Nmzz7rMkCFDOHLkSMXjgw8+OOc2P/roIyZPnsyTTz7Jli1biImJIT4+nqNHjzobT0w2N2U/iT9mAvDyzd25sn1rcwOJiEiD4OHsCkOHDmXo0KHnXMbb25vg4OBqb/Of//wn//jHPxg7diwAc+fOZcmSJcyfP5+pU6eesXxxcTHFxcUV03a7vdqvJbXn8y1ZvJC0G4DHh0dzfUyoyYlERKShqJUxLMnJyQQGBtKpUyfuvvtuTpw4cdZlS0pK2Lx5M3Fxcf8Xys2NuLg41q5dW+U6CQkJWK3WikdYWFiN74M4J2XPMaZ8ug2Af1wdwZ1XR5qcSEREGpIaLyxDhgzhnXfeYeXKlbzwwgukpKQwdOhQysvLq1z++PHjlJeXExRU+Z4yQUFBZGdnV7nOtGnTsNlsFY9Dhw7V9G6IE7Zn2bj7vc2UOQxu6B7KtKHRZkcSEZEGxumvhM7n1ltvrfjvyy67jG7dutGuXTuSk5MZNGhQjbyGt7c33t7eNbItuTgHThQwNnEDhSXlXNW+FS/eFIObm65iKyIiNavWf9YcGRlJ69at2bdvX5XPt27dGnd3d3JycirNz8nJcWocjNS94/nFjJ6/geP5JXQO8WfubT3x8tAv5UVEpObV+rtLVlYWJ06cICQkpMrnvby86NmzJytXrqyY53A4WLlyJX369KnteHKBCorLGJ+4kcwThbRp0YTEsb3w8/E0O5aIiDRQTheW/Px8UlNTSU1NBSAjI4PU1FQOHjxIfn4+jzzyCOvWrSMzM5OVK1dyww030L59e+Lj4yu2MWjQIN54442K6cmTJ/Pvf/+bhQsXsmvXLu6++24KCgoqfjUkrqW03MHERVvYmmWjRVNPFo6LJdDfx+xYIiLSgDk9hmXTpk0MGDCgYnry5MkAjB49mjlz5rBt2zYWLlxIbm4uoaGhDB48mJkzZ1Yac5Kens7x48crpm+55RaOHTvGjBkzyM7Opnv37iQlJZ0xEFfMZxgG0z7fTnLaMXw83Zg/phftApqZHUtERBo4i2EYhtkhLpbdbsdqtWKz2fD311VVa9NLy9N4Y9U+3N0svHV7TwZFq1SKiMiFceb9WyMkpdreXXeAN1adHjz97IiuKisiIlJnVFikWpJ2ZDPjyx0APBjXkVtjw01OJCIijYkKi5zXxsyT3P/hTxgGjIoN5/5B7c2OJCIijYwKi5zT3pw8xidupKTMQVx0EDNv6ILFogvDiYhI3VJhkbM6YjvF6PkbsBeV0SO8Oa+PuhwPd50yIiJS9/TuI1WynSplzPyNHLYV0S7Al7dH96KJl7vZsUREpJFSYZEzFJWWM+GdTaTl5BHo583CcbG08PUyO5aIiDRiKixSicNh8NDHW1mfcRI/bw8Sx8bSpkVTs2OJiEgjp8IiFQzD4H+/2cmS7UfwdLcw7/aedA7VhfhERMR8KixSYd7q/ST+mAnAyzd358r2rc0NJCIi8v+psAgAn2/J4vlluwF4fHg018eEmpxIRETk/6iwCKv3HGPKp9sA+MfVEdx5daTJiURERCpTYWnkdvxi4+73NlPmMLiheyjThkabHUlEROQMKiyN2METhYxZsIGCknKuat+KF2+Kwc1NV7EVERHXo8LSSJ3IL+aO+es5nl9C5xB/5t7WEy8PnQ4iIuKa9A7VCBWWlDEucSOZJwpp06IJiWN74efjaXYsERGRs1JhaWRKyx1MfH8LW7NstGjqycJxsQT6+5gdS0RE5JxUWBoRwzCY9vl2VqUdw8fTjbfH9KJdQDOzY4mIiJyXCksj8vK3e/h0cxZuFnhjVA96hLcwO5KIiEi1qLA0Eu+uO8Abq/YB8NzIy4jrHGRyIhERkepTYWkEknZkM+PLHQBMiuvArbHhJicSERFxjgpLA7cx8yT3f/gThgGjYsN4YFAHsyOJiIg4TYWlAdubk8f4xI2UlDmIiw5i5g1dsVh0YTgREal/VFgaqCO2U4yevwF7URk9wpvz+qjL8XDX/24REamf9A7WANlOlTJm/kYO24qIDPDl7dG9aOLlbnYsERGRC6bC0sAUlZYz4Z1NpOXkEeDnzcKxsbTw9TI7loiIyEVRYWlAHA6Dhz7eyvqMkzTz9iBxbC/CWjY1O5aIiMhFU2FpIAzD4H+/2cmS7UfwdLfw1u096RJqNTuWiIhIjVBhaSDmrd5P4o+ZALx8c3eubN/a3EAiIiI1SIWlAfh8SxbPL9sNwOPDo7k+JtTkRCIiIjVLhaWeW73nGFM+3QbAP66O4M6rI01OJCIiUvOcLiyrV6/muuuuIzQ0FIvFwhdffFHxXGlpKY8++iiXXXYZvr6+hIaGcscdd3D48OFzbvOpp57CYrFUekRFRTm9M43Njl9s3P3eZsocBjd0D2Xa0GizI4mIiNQKpwtLQUEBMTExzJ49+4znCgsL2bJlC0888QRbtmzh888/Jy0tjeuvv/682+3SpQtHjhypeKxZs8bZaI3KwROFjFmwgYKScq5q34oXb4rBzU1XsRURkYbJw9kVhg4dytChQ6t8zmq1smLFikrz3njjDWJjYzl48CDh4We/6Z6HhwfBwcHVylBcXExxcXHFtN1ur9Z6DcWJ/GLumL+e4/kldA7xZ+5tPfHy0Ld7IiLScNX6u5zNZsNisdC8efNzLrd3715CQ0OJjIzk73//OwcPHjzrsgkJCVit1opHWFhYDad2XYUlZYxL3EjmiULatGhC4the+Pl4mh1LRESkVtVqYSkqKuLRRx9l1KhR+Pv7n3W53r17k5iYSFJSEnPmzCEjI4Orr76avLy8KpefNm0aNput4nHo0KHa2gWXUlruYOL7W9iaZaNFU08Wjosl0N/H7FgiIiK1zumvhKqrtLSUm2++GcMwmDNnzjmX/f1XTN26daN37960bduWjz/+mPHjx5+xvLe3N97e3jWe2ZUZhsFji7ezKu0YPp5uvD2mF+0CmpkdS0REpE7USmH5rawcOHCA77///pyfrlSlefPmdOzYkX379tVGvHrpnyv28PGmLNws8MaoHvQIb2F2JBERkTpT418J/VZW9u7dy3fffUerVq2c3kZ+fj7p6emEhITUdLx66b11B3j9+9Pl7bmRlxHXOcjkRCIiInXL6cKSn59PamoqqampAGRkZJCamsrBgwcpLS3lpptuYtOmTbz//vuUl5eTnZ1NdnY2JSUlFdsYNGgQb7zxRsX0ww8/TEpKCpmZmfz444+MHDkSd3d3Ro0adfF7WM8t/zmbGV/uAGBSXAdujT37L61EREQaKqe/Etq0aRMDBgyomJ48eTIAo0eP5qmnnuKrr74CoHv37pXWW7VqFf379wcgPT2d48ePVzyXlZXFqFGjOHHiBAEBAfTt25d169YREBDgbLwGZVPmSe7/4CccBoyKDeOBQR3MjiQiImIKi2EYhtkhLpbdbsdqtWKz2ZweL+Oq9ubkcdPctdhOlRIXHcTc23rg4a5rrYiISMPhzPu33gFdULatiNHzN2A7VUqP8Oa8PupylRUREWnU9C7oYmynShmzYAOHbUVEBvjy9uheNPFyNzuWiIiIqVRYXEhxWTl3vbuJ3dl5BPh5s3BsLC18vcyOJSIiYjoVFhfhcBhM/mgr6/afpJm3B4ljexHWsqnZsURERFyCCosLMAyD//1mJ0u2H8HT3cJbt/ekS6jV7FgiIiIuQ4XFBcxbvZ/EHzMBePnm7lzZvrW5gURERFyMCovJPt+SxfPLdgPw+PBoro8JNTmRiIiI61FhMdHqPceY8uk2AO7sG8GdV0eanEhERMQ1qbCYZMcvNu5+bzNlDoPrY0KZPiza7EgiIiIuS4XFBAdPFDJmwQYKSsq5sl0rXvxrN9zcLGbHEhERcVkqLHXsRH4xd8xfz/H8EqJD/Jl3e0+8PXRhOBERkXNRYalDhSVljEvcSOaJQi5p3oSFY3vh5+NpdiwRERGXp8JSR0rLHUx8fwtbs2w0b+rJO+NjCfT3MTuWiIhIvaDCUgcMw+CxxdtZlXYMH0833h7di3YBzcyOJSIiUm+osNSBf67Yw8ebsnCzwOujetCzbQuzI4mIiNQrKiy17L11B3j9+30APDvyMq7tHGRyIhERkfpHhaUWLf85mxlf7gBgUlwHRsWGm5xIRESkflJhqSWbMk9y/wc/4TBgVGwYDwzqYHYkERGRekuFpRbszclj/MJNFJc5iIsOYuYNXbFYdGE4ERGRC6XCUsOybUWMnr8B26lSeoQ35/VRl+PhrsMsIiJyMfROWoNsp0oZs2ADh21FRAb48vboXjTx0lVsRURELpYKSw0pLivnrnc3sTs7jwA/bxaOjaWFr5fZsURERBoEFZYa4HAYTP54K+v2n6SZtweJY3sR1rKp2bFEREQaDBWWi2QYBjOX7GTJtiN4ult46/aedAm1mh1LRESkQVFhuUhvrd7Pgh8yAXj55u5c2b61uYFEREQaIBWWi7D4pywSlu0G4PHh0VwfE2pyIhERkYZJheUC/XfvMR75ZBsAd/aN4M6rI01OJCIi0nCpsFyAHb/Y+J93N1PmMLg+JpTpw6LNjiQiItKgqbA46eCJQsYs2EhBSTlXtmvFi3/thpubrmIrIiJSm1RYnHAiv5jRCzZwPL+Y6BB/5t3eE28PXRhORESktqmwVFNhSRnjFm4i43gBlzRvwsKxvfDz8TQ7loiISKPgdGFZvXo11113HaGhoVgsFr744otKzxuGwYwZMwgJCaFJkybExcWxd+/e82539uzZXHrppfj4+NC7d282bNjgbLRaU1bu4N5FP7H1UC7Nm3ryzvhYAv19zI4lIiLSaDhdWAoKCoiJiWH27NlVPj9r1ixee+015s6dy/r16/H19SU+Pp6ioqKzbvOjjz5i8uTJPPnkk2zZsoWYmBji4+M5evSos/FqnGEYTF+8ne93H8XH0423R/eiXUAzs2OJiIg0KhbDMIwLXtliYfHixYwYMQI4/eYeGhrKQw89xMMPPwyAzWYjKCiIxMREbr311iq307t3b3r16sUbb7wBgMPhICwsjPvuu4+pU6eesXxxcTHFxcUV03a7nbCwMGw2G/7+/he6O1V6+ds0Xv9+H24WmHf7FVzbOahGty8iItJY2e12rFZrtd6/a3QMS0ZGBtnZ2cTFxVXMs1qt9O7dm7Vr11a5TklJCZs3b660jpubG3FxcWddJyEhAavVWvEICwuryd2okHool9e/3wfAsyMvU1kRERExSY0WluzsbACCgiq/sQcFBVU890fHjx+nvLzcqXWmTZuGzWareBw6dKgG0p+pe1hzZt7QhQfjOjIqNrxWXkNERETOz8PsABfC29sbb2/vOnmt2/tcWievIyIiImdXo5+wBAcHA5CTk1Npfk5OTsVzf9S6dWvc3d2dWkdEREQalxotLBEREQQHB7Ny5cqKeXa7nfXr19OnT58q1/Hy8qJnz56V1nE4HKxcufKs64iIiEjj4vRXQvn5+ezbt69iOiMjg9TUVFq2bEl4eDiTJk3imWeeoUOHDkRERPDEE08QGhpa8UsigEGDBjFy5EjuvfdeACZPnszo0aO54ooriI2N5dVXX6WgoICxY8de/B6KiIhIved0Ydm0aRMDBgyomJ48eTIAo0ePJjExkSlTplBQUMCECRPIzc2lb9++JCUl4ePzfxdaS09P5/jx4xXTt9xyC8eOHWPGjBlkZ2fTvXt3kpKSzhiIKyIiIo3TRV2HxVU48ztuERERcQ2mXYdFREREpDaosIiIiIjLU2ERERERl6fCIiIiIi5PhUVERERcngqLiIiIuDwVFhEREXF5KiwiIiLi8url3Zr/6Ldr39ntdpOTiIiISHX99r5dnWvYNojCkpeXB0BYWJjJSURERMRZeXl5WK3Wcy7TIC7N73A4OHz4MH5+flgslhrdtt1uJywsjEOHDumy/+ehY1V9OlbVp2PlHB2v6tOxqr7aOlaGYZCXl0doaChubucepdIgPmFxc3OjTZs2tfoa/v7+OqGrSceq+nSsqk/Hyjk6XtWnY1V9tXGszvfJym806FZERERcngqLiIiIuDwVlvPw9vbmySefxNvb2+woLk/Hqvp0rKpPx8o5Ol7Vp2NVfa5wrBrEoFsRERFp2PQJi4iIiLg8FRYRERFxeSosIiIi4vJUWERERMTlqbCIiIiIy2v0hWX16tVcd911hIaGYrFY+OKLL867TnJyMj169MDb25v27duTmJhY6zldgbPHKjk5GYvFcsYjOzu7bgKbJCEhgV69euHn50dgYCAjRowgLS3tvOt98sknREVF4ePjw2WXXcbSpUvrIK35LuR4JSYmnnFe+fj41FFi88yZM4du3bpVXG20T58+LFu27JzrNNbzytlj1VjPqao8//zzWCwWJk2adM7l6vrcavSFpaCggJiYGGbPnl2t5TMyMhg+fDgDBgwgNTWVSZMmceedd7J8+fJaTmo+Z4/Vb9LS0jhy5EjFIzAwsJYSuoaUlBQmTpzIunXrWLFiBaWlpQwePJiCgoKzrvPjjz8yatQoxo8fz08//cSIESMYMWIEO3bsqMPk5riQ4wWnLxH++/PqwIEDdZTYPG3atOH5559n8+bNbNq0iYEDB3LDDTfw888/V7l8Yz6vnD1W0DjPqT/auHEj8+bNo1u3budczpRzy5AKgLF48eJzLjNlyhSjS5culebdcsstRnx8fC0mcz3VOVarVq0yAOPXX3+tk0yu6ujRowZgpKSknHWZm2++2Rg+fHileb179zbuuuuu2o7ncqpzvBYsWGBYrda6C+XCWrRoYfznP/+p8jmdV5Wd61jpnDKMvLw8o0OHDsaKFSuMa665xnjggQfOuqwZ51aj/4TFWWvXriUuLq7SvPj4eNauXWtSItfXvXt3QkJCuPbaa/nhhx/MjlPnbDYbAC1btjzrMjqv/k91jhdAfn4+bdu2JSws7Lz/cm6IysvL+fDDDykoKKBPnz5VLqPz6rTqHCvQOTVx4kSGDx9+xjlTFTPOrQZxt+a6lJ2dTVBQUKV5QUFB2O12Tp06RZMmTUxK5npCQkKYO3cuV1xxBcXFxfznP/+hf//+rF+/nh49epgdr044HA4mTZrEVVddRdeuXc+63NnOq4Y+3uePqnu8OnXqxPz58+nWrRs2m42XXnqJK6+8kp9//rnW79xutu3bt9OnTx+Kiopo1qwZixcvpnPnzlUu29jPK2eOVWM+pwA+/PBDtmzZwsaNG6u1vBnnlgqL1JpOnTrRqVOniukrr7yS9PR0XnnlFd59910Tk9WdiRMnsmPHDtasWWN2lHqhuserT58+lf6lfOWVVxIdHc28efOYOXNmbcc0VadOnUhNTcVms/Hpp58yevRoUlJSzvpG3Jg5c6wa8zl16NAhHnjgAVasWOHSA41VWJwUHBxMTk5OpXk5OTn4+/vr05VqiI2NbTRv3vfeey/ffPMNq1evPu+/0M52XgUHB9dmRJfizPH6I09PTy6//HL27dtXS+lch5eXF+3btwegZ8+ebNy4kX/961/MmzfvjGUb+3nlzLH6o8Z0Tm3evJmjR49W+uS7vLyc1atX88Ybb1BcXIy7u3uldcw4tzSGxUl9+vRh5cqVleatWLHinN+Lyv9JTU0lJCTE7Bi1yjAM7r33XhYvXsz3339PRETEeddpzOfVhRyvPyovL2f79u0N/tyqisPhoLi4uMrnGvN5VZVzHas/akzn1KBBg9i+fTupqakVjyuuuIK///3vpKamnlFWwKRzq9aG89YTeXl5xk8//WT89NNPBmD885//NH766SfjwIEDhmEYxtSpU43bb7+9Yvn9+/cbTZs2NR555BFj165dxuzZsw13d3cjKSnJrF2oM84eq1deecX44osvjL179xrbt283HnjgAcPNzc347rvvzNqFOnH33XcbVqvVSE5ONo4cOVLxKCwsrFjm9ttvN6ZOnVox/cMPPxgeHh7GSy+9ZOzatct48sknDU9PT2P79u1m7EKdupDj9fTTTxvLly830tPTjc2bNxu33nqr4ePjY/z8889m7EKdmTp1qpGSkmJkZGQY27ZtM6ZOnWpYLBbj22+/NQxD59XvOXusGus5dTZ//JWQK5xbjb6w/PbT2z8+Ro8ebRiGYYwePdq45pprzline/fuhpeXlxEZGWksWLCgznObwdlj9cILLxjt2rUzfHx8jJYtWxr9+/c3vv/+e3PC16GqjhFQ6Ty55pprKo7bbz7++GOjY8eOhpeXl9GlSxdjyZIldRvcJBdyvCZNmmSEh4cbXl5eRlBQkDFs2DBjy5YtdR++jo0bN85o27at4eXlZQQEBBiDBg2qeAM2DJ1Xv+fssWqs59TZ/LGwuMK5ZTEMw6i9z29ERERELp7GsIiIiIjLU2ERERERl6fCIiIiIi5PhUVERERcngqLiIiIuDwVFhEREXF5KiwiIiLi8lRYRERExOWpsIiIiIjLU2ERERERl6fCIiIiIi7v/wHzvmB4qefVmQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + " Now copy example_plot.png to you Google Drive:\n", + "\n", + " Note: You have to change adpat the file path after /content/drive/ to define where you want to save your figures." + ], + "metadata": { + "id": "Xk8gAmCq4NCH" + }, + "id": "Xk8gAmCq4NCH" + }, + { + "cell_type": "code", + "source": [ + "!cp example_plot.png \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"" + ], + "metadata": { + "id": "r2zp3Ub54QZx" + }, + "id": "r2zp3Ub54QZx", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + " Check if it was well copied" + ], + "metadata": { + "id": "3Y6XwEn24WkC" + }, + "id": "3Y6XwEn24WkC" + }, + { + "cell_type": "code", + "source": [ + "!ls \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MdCxsZxy4ZcH", + "outputId": "ad0fbdf4-ddee-4340-a1b6-a3463346a9f4" + }, + "id": "MdCxsZxy4ZcH", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "example_plot.png Proj_EnvelopePower.png\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "---\n", + "# Let's start: Run the notebook\n", + "---\n", + "---\n" + ], + "metadata": { + "id": "uU4xuSxrHpO7" + }, + "id": "uU4xuSxrHpO7" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee3c91b7", + "metadata": { + "id": "ee3c91b7" + }, + "outputs": [], + "source": [ + "# Import necessary libraries\n", + "import os # Provides functionalities to interact with the operating system (e.g., file management).\n", + "import numpy as np # Used for numerical computations and working with arrays.\n", + "import matplotlib.pyplot as plt # For creating visualizations and plots.\n", + "from matplotlib.gridspec import GridSpec # To create complex subplot layouts.\n", + "from matplotlib.colors import ListedColormap\n", + "\n", + "import torch # PyTorch library for machine learning and deep learning.\n", + "import torch.nn as nn # PyTorch module for building neural network layers.\n", + "\n", + "# Specify the default data type for PyTorch tensors\n", + "dtype = torch.float # Setting the default data type to 32-bit floating point.\n", + "\n", + "# Check whether a GPU is available\n", + "if torch.cuda.is_available():\n", + " device = torch.device(\"cuda\") # If a GPU is available, set PyTorch to use it.\n", + "else:\n", + " device = torch.device(\"cpu\") # Otherwise, default to using the CPU.\n", + "\n", + "# Flag to indicate whether the current environment is resource-constrained\n", + "my_computer_is_slow = True # Set this to True if using a slower system, like Google Colab, to optimize resource usage.\n", + "\n", + "# Importing the Python Debugger module\n", + "import pdb # The built-in Python Debugger, used for step-by-step debugging of code.\n", + "\n", + "# Importing pandas for data manipulation and analysis\n", + "import pandas as pd # A powerful library for working with structured data, such as DataFrames and Series." + ] + }, + { + "cell_type": "markdown", + "id": "345a4686", + "metadata": { + "id": "345a4686" + }, + "source": [ + "## Generation of input signals" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Introduction to Input Signal Generation" + ], + "metadata": { + "id": "H6HPbDl81boK" + }, + "id": "H6HPbDl81boK" + }, + { + "cell_type": "markdown", + "source": [ + "The following function creates a set of auditory stimuli that can be used for **training or testing**. These stimuli are modeled based on interaural differences between two ears, capturing the essence of how the auditory system processes spatial sound localization cues. Below is a detailed explanation of the structure and logic behind the signal generation process.\n", + "\n", + "---\n", + "\n", + "#### **Key Components of the Stimuli**\n", + "\n", + "##### **1. Two Ears**\n", + "- The simulation involves **two ears** (labeled `0` and `1` in the code).\n", + "- Ear 1 receives a delayed version of the signal based on a given **Interaural Phase Difference (IPD)**, denoted as $\\alpha$ in equations (referred to as `ipd` in the code).\n", + "\n", + "---\n", + "\n", + "##### **2. The Base Signal**\n", + "- The base auditory signal is a **sine wave**, made positive for firing rate modulation:\n", + " \\[\n", + " \\frac{1}{2}(1 + \\sin(\\theta))\n", + " \\]\n", + " - $\\theta$ represents the phase angle for each neuron at each time step.\n", + " - This signal is then modulated to generate Poisson spike trains for each auditory nerve fiber.\n", + "\n", + "---\n", + "\n", + "##### **3. Auditory Nerve Fibers (ANFs)**\n", + "- Each ear is connected to **$N_a$ auditory nerve fibers** (referred to as `anf_per_ear` in the code).\n", + "- Each ANF generates **Poisson spike trains** at an instantaneous firing rate proportional to the base signal.\n", + "- These spike trains are **independent** across neurons, introducing natural variability.\n", + "\n", + "---\n", + "\n", + "##### **4. Phase Delays Across Neurons**\n", + "- To make the simulation biologically realistic, each auditory nerve fiber is assigned a unique **phase delay**. These delays:\n", + " - Are uniformly distributed between $0$ and $\\pi/2$ for neurons within each ear.\n", + " - Allow differences between the two ears to cover the full range of possible IPDs, from $-\\pi/2$ to $\\pi/2$.\n", + "\n", + "The phase angle for neuron $j$ in ear $i \\in \\{0, 1\\}$ at time $t$ is computed as:\n", + "$$\n", + "\\theta = 2\\pi f t + i \\cdot \\alpha + j \\cdot \\frac{\\pi}{2N_a}\n", + "$$\n", + "Where:\n", + "- $f$ is the signal frequency.\n", + "- $\\alpha$ is the IPD applied to ear 1.\n", + "- $j \\cdot \\frac{\\pi}{2N_a}$ is the phase delay for the $j$th neuron.\n", + "\n", + "---\n", + "\n", + "##### **5. Poisson Spike Generation**\n", + "- Each auditory nerve fiber generates Poisson spike trains based on a **modulated firing rate**:\n", + "$$\n", + "R(t) = R_\\mathrm{max} \\left( \\frac{1}{2}(1 + \\sin(\\theta)) \\right)^k\n", + "$$\n", + "Where:\n", + "- $R_\\mathrm{max}$ (`rate_max`) is the **maximum firing rate**.\n", + "- $k$ (`envelope_power`) sharpens the envelope of the firing rate.\n", + "- Higher values of $R_\\mathrm{max}$ and $k$ make the problem easier to solve because the firing patterns become more distinct.\n", + "\n", + "---\n", + "\n", + "#### **Output Structure**\n", + "\n", + "The functions return the following arrays:\n", + "\n", + "1. **`ipd`**:\n", + " - A 1D array of length `num_samples` representing the true IPD for each stimulus.\n", + "\n", + "2. **`spikes`**:\n", + " - A 3D binary array of shape `(num_samples, duration_steps, 2 * anf_per_ear)`, where:\n", + " - `num_samples`: The number of generated stimuli.\n", + " - `duration_steps`: The number of time steps in the stimulus.\n", + " - `2 * anf_per_ear`: Total number of auditory nerve fibers (including both ears).\n", + "\n", + "---\n", + "\n", + "#### **Simplified Explanation**\n", + "\n", + "1. For **each ear**, the function generates a **delayed signal** based on the IPD and the phase delay for each neuron.\n", + "2. The **spike trains** are computed independently for each neuron, following Poisson statistics.\n", + "3. The resulting **binary spike array** represents the auditory nerve responses over time, for each IPD and ear.\n", + "\n", + "---\n", + "\n", + "#### **Visualizing the Stimulus Architecture**\n", + "\n", + "Here’s a diagram that provides an overview of the stimuli generation process:\n", + "\n", + "![Stimuli architecture](https://github.com/neural-reckoning/cosyne-tutorial-2022/blob/main/arch-stimuli.png?raw=1)\n", + "\n", + "---\n", + "\n", + "#### **What to Experiment With**\n", + "- Adjust **$R_\\mathrm{max}$** and **$k$** (`rate_max` and `envelope_power`) to observe their effect on the signal sharpness and the ease of classification.\n", + "- Explore how different IPDs affect the spike patterns for the two ears, particularly in relation to the phase delays introduced by the auditory nerve fibers.\n", + "\n", + "By understanding these parameters, you can better interpret the generated spike trains and their relevance to spatial sound localization." + ], + "metadata": { + "id": "uqYDcWy61FdF" + }, + "id": "uqYDcWy61FdF" + }, + { + "cell_type": "markdown", + "source": [ + "### The data generation function" + ], + "metadata": { + "id": "T1dl7HlK2Blm" + }, + "id": "T1dl7HlK2Blm" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5bb26693", + "metadata": { + "id": "5bb26693" + }, + "outputs": [], + "source": [ + "# We use the following constants to make equations look nicer below\n", + "second = 1\n", + "ms = 1e-3\n", + "Hz = 1\n", + "\n", + "# Stimulus and simulation parameters\n", + "dt = 1*ms # large time step to make simulations run faster for tutorial\n", + "anf_per_ear = 100 # number of auditory nerve fibers connected to each ear with independent noise\n", + "envelope_power = 2 # higher values make sharper envelopes. Easier by eye => But does the network perform better ?\n", + "rate_max = 600*Hz # maximum Poisson firing rate\n", + "f = 20*Hz # stimulus frequency\n", + "duration = .1*second # stimulus duration\n", + "duration_steps = int(np.round(duration/dt)) # number of simulation steps\n", + "input_size = 2*anf_per_ear\n", + "\n", + "# Generate an input signal (spike array) from array of true IPDs\n", + "def input_signal(ipd, envelope_power=envelope_power):\n", + " \"\"\"\n", + " Generate a Poisson spike train based on an input Interaural Phase Difference (IPD) array\n", + " and the delays imposed by the individual auditory nerve fibers.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd : array-like\n", + " An array of true Interaural Phase Differences (IPD). Shape: (num_samples,)\n", + " Represents the angular difference in the phase of sound waves reaching the two ears.\n", + " envelope_power : float, optional\n", + " A parameter controlling the strength of the signal envelope, which modulates\n", + " the spike train generation. Default value is the globally defined `envelope_power`.\n", + " Returns\n", + " -------\n", + " spikes : ndarray\n", + " A binary array indicating spike occurrences, shaped (num_samples, duration_steps, 2*anf_per_ear).\n", + " `spikes[i, j, k]` is 1 if a spike occurred at the jth time step for the ith IPD in the kth auditory nerve fiber,\n", + " and 0 otherwise.\n", + "\n", + " Notes\n", + " -----\n", + " - The function first calculates an array of phases (`phi`) to define the sinudoidal auditory stimulus and adds a random\n", + " phase offset because we want that the system learns to infer the angular location of the sound source indepent of its distance\n", + " to the source.\n", + " - An array of theta values is initialized that will hold the transformed phi values according to the phase delay imposed by the\n", + " individual auditory nerve fibers and the ipd between the two ears.\n", + " - Different phase delays, ranging from 0 to pi/2, are calculated and added with the ipd value to generate theta.\n", + " - Poisson spikes are generated based on the theta values and a sinusoidal modulation of the firing rate.\n", + " - The spikes are returned as a binary array, indicating the occurrence of spikes across auditory nerve fibers and time.\n", + " \"\"\"\n", + " num_samples = len(ipd) # corresponds to the number of different locations of the source in the data set\n", + "\n", + " T = np.arange(duration_steps)*dt # array of times over which the auditory signal is constructed\n", + " phi = 2*np.pi*(f*T) #+ 2*np.pi*np.random.rand() # array of phases corresponding to those times with random offset.\n", + " # The random offset ensures that the system learns to infer the angular location of the sound source indepent of its distance\n", + " # to the source.\n", + "\n", + " phase_delays = np.linspace(0, np.pi/2, anf_per_ear) # array of phase delays introduced by the auditory nerve fibers.\n", + " # For each ear, we have anf_per_ear different phase delays from 0 to pi/2 so\n", + " # that the differences between the two ears can cover the full range from -pi/2 to pi/2\n", + "\n", + " theta = np.zeros((num_samples, duration_steps, 2*anf_per_ear)) # 3D array that holds the spike pattern of all auditory nerve fibers for all the interaural phase difference in the data set.\n", + " # num_samples = number of different IPD values in our data set\n", + " # duration_step = number of time points in our auditory signal\n", + " # 2*anf_per_ear = total number of auditory nerve fibers\n", + "\n", + " # Now we set up these theta values. Some numpy vectorisation logic using broadcasting to implements the idea in the text above.\n", + " theta[:, :, :anf_per_ear] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]\n", + " theta[:, :, anf_per_ear:] = phi[np.newaxis, :, np.newaxis]+phase_delays[np.newaxis, np.newaxis, :]+ipd[:, np.newaxis, np.newaxis]\n", + "\n", + " # now generate Poisson spikes at the given firing rate as in the previous notebook\n", + " spikes = rate_max*dt*(0.5*(1+np.sin(theta)))**envelope_power > np.random.rand(num_samples, duration_steps, 2*anf_per_ear)\n", + " return spikes, theta\n", + "\n", + "# Generate some true IPDs from (-pi/2, pi/2) and corresponding spike arrays\n", + "def random_ipd_input_signal(num_samples, envelope_power=envelope_power, tensor=True):\n", + " \"\"\"\n", + " Generate random Interaural Phase Differences (IPDs) and then corresponding spike arrays using\n", + " the function input_signal(idp).\n", + "\n", + " The function generates `num_samples` IPDs, uniformly distributed in the range (-pi/2, pi/2).\n", + " It then generates corresponding spike arrays using the `input_signal` function.\n", + " Optionally, IPDs and spike arrays can be converted to PyTorch tensors.\n", + "\n", + " Parameters\n", + " ----------\n", + " num_samples : int\n", + " The number of IPD samples to generate.\n", + " envelope_power : float, optional\n", + " A parameter controlling the strength of the signal envelope, which modulates\n", + " the spike train generation. Default value is the globally defined `envelope_power`.\n", + "\n", + " tensor : bool, optional\n", + " If True, converts the IPDs and spike arrays to PyTorch tensors before returning them.\n", + " If False, they are returned as NumPy arrays. Default is True.\n", + "\n", + " Returns\n", + " -------\n", + " ipd : ndarray or Tensor\n", + " An array of randomly generated IPDs. Shape: (num_samples, ).\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " spikes : ndarray or Tensor\n", + " A binary array indicating spike occurrences along time, generated by `input_signal` based on `ipd`.\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " Shaped: (num_samples, duration_steps, 2*anf_per_ear)\n", + "\n", + " Notes\n", + " -----\n", + " - Ensure that the `input_signal` function is defined in your environment as it is called within this function.\n", + " - If `tensor` is True, ensure that PyTorch is installed and configured in your environment.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipd, spikes = random_ipd_input_signal(50, tensor=False)\n", + " >>> print(ipd.shape, spikes.shape)\n", + " (50,) (50, duration_steps, 2*anf_per_ear)\n", + " \"\"\"\n", + " ipd = np.random.rand(num_samples)*np.pi-np.pi/2 # uniformly random in (-pi/2, pi/2)\n", + " spikes, theta = input_signal(ipd)\n", + " if tensor:\n", + " ipd = torch.tensor(ipd, device=device, dtype=dtype)\n", + " spikes = torch.tensor(spikes, device=device, dtype=dtype)\n", + " return ipd, spikes, theta\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Test the data generation function and plot some examples" + ], + "metadata": { + "id": "S9BlEkbwZEpa" + }, + "id": "S9BlEkbwZEpa" + }, + { + "cell_type": "code", + "source": [ + "# Plot for a few true IPDs the generated spike trains of the auditory nerve fibers to show how it looks.\n", + "# The first 100 lines are auditory nerve fiber responses of the righ ear and the others are from the left ear.\n", + "# You note that the IPDs was applied to the left ear's fibers.\n", + "ipd, spikes, theta = random_ipd_input_signal(8)\n", + "plt.figure(figsize=(10, 4), dpi=100)\n", + "for i in range(8):\n", + " plt.subplot(2, 4, i+1)\n", + " plt.imshow(spikes[i, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n", + " plt.title(f'True IPD = {int(ipd[i]*180/np.pi)} deg')\n", + " if i>=4:\n", + " plt.xlabel('Time (steps)')\n", + " if i%4==0:\n", + " plt.ylabel('Input neuron index')\n", + "plt.tight_layout()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 383 + }, + "id": "Og9fwc42ZDTN", + "outputId": "562b865a-30b1-4742-8381-7b5fd8d284ed" + }, + "id": "Og9fwc42ZDTN", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1+klEQVR4nOy9eZwVxdX//xm2YZ0BZBuURRYVRMVgJEgUI+hAjAY1UVQQd01QUTQqRkXUKHnQPCbiEhODCYoajeabRFERWdSgTwRMxBgE3FAZQJBhFZHp3x/++qZvTy3nVPe9t6qn3q/XvOB219anzqk6dapu37IgCAJ4PB6Px+PxeDwej8fjSZ1GpW6Ax+PxeDwej8fj8Xg8WcUvuj0ej8fj8Xg8Ho/H4ykQftHt8Xg8Ho/H4/F4PB5PgfCLbo/H4/F4PB6Px+PxeAqEX3R7PB6Px+PxeDwej8dTIPyi2+PxeDwej8fj8Xg8ngLhF90ej8fj8Xg8Ho/H4/EUCL/o9ng8Ho/H4/F4PB6Pp0D4RbfH4/F4PB6Px+PxeDwFwi+6PZ4C8dBDD6GsrAwffPBBqZvi8XgMWLBgAcrKyrBgwYJSN8Xj8RDxduvxZIus2LRfdKdIWVkZ6a/USnP00UdjwIABedd69uyZ18ZOnTrhyCOPxNNPP10vb5imUaNGqKiowP77749x48Zh7ty5xXwMLU8//TSqq6vRtWtXlJeXY5999sEPfvADLF++XJlv9erVaN68OcrKyvDGG28UqbUeG/A2bJcNP/XUUzjttNPQq1cvtGzZEvvvvz+uvPJKbN68uV7aK664At/4xjfQvn17tGzZEv369cNNN92Ebdu2Fb/hHivw9lwae543bx7OPfdc7LfffmjZsiV69eqF888/H2vXrlXm27x5Mzp16oSysjI8+eSTRWqtx0a87do1F69YsQJXXHEFjjjiiJx/LNtQ8nOxnCalbkCWmDVrVt7nP/zhD5g7d2696/369Stms8gMHDgQV155JQDg008/xa9//WucfPLJuO+++3DxxRfn0u2zzz64/fbbAQDbt2/HqlWr8NRTT+Hhhx/GqaeeiocffhhNmzYtyTNEeeutt9CuXTtMnDgRHTp0QE1NDX73u9/h8MMPx+LFi3HIIYcI811xxRVo0qQJdu3aVeQWe0qNt2G7bPjCCy9E165dMXbsWHTv3h1vvfUWZsyYgWeffRZLly5FixYtcmn/8Y9/4Mgjj8Q555yD5s2bY9myZZg2bRpefPFFLFq0CI0a+RhzQ8Pbc2ns+ZprrsGmTZvwwx/+EH379sV7772HGTNm4G9/+xvefPNNdOnSRZjvxhtvxI4dO4rWTo+9eNu1ay5evHgxfvWrX6F///7o168f3nzzTWlaPxcrCDwFY8KECQFFxNu3by9Ca/7LsGHDggMPPDDvWo8ePYLjjz8+79ratWuDVq1aBfvtt58ybxAEwVdffRX8+Mc/DgAEV199dWEangI1NTVBkyZNgosuukh4/7nnnguaNWsWXH/99QGA4B//+IdxXTNnzgwABO+//75xGZ7S4m24tMyfP7/etd///vcBgOA3v/mNNv8dd9wRAAgWL15sXD8AYTs87uHtuTgsXLgw2LNnT71rAIKf/vSnwjxvvfVW0KRJk+Dmm28OAARPPPGEcf3ebrOHt93SsnHjxmDLli1BEATB9OnT2b6tn4u/pgGHG0pDeBRlyZIlOOqoo9CyZUtcd911AL4+TnPTTTfVy9OzZ0+cffbZedc2b96Myy+/HN26dUN5eTn69OmDn//856irq0utrV26dEG/fv3w/vvva9M2btw4FwWbMWMGamtrU2tHmnTq1AktW7YUHk/dvXs3Jk6ciIkTJ6J3796sct9++20cc8wxaNGiBfbZZx/ceuut0r6YM2cOjjzySLRq1Qpt2rTB8ccfj7fffrteuieeeAL9+/dH8+bNMWDAADz99NM4++yz0bNnT1bbPOnibbh4HH300fWunXTSSQCAd955R5s/tBWRvcf5+OOPMXr0aLRq1QqdOnXCFVdcIT3t8vrrr2PkyJGorKxEy5YtMWzYMLz66qv10i1YsACHHXYYmjdvjt69e+PXv/41brrpJpSVlWnb4ykO3p7T56ijjqq3m3XUUUehffv2UrudOHEiTjrpJBx55JGsurzdNly87RaP9u3bo02bNsb5/Vz8Nf54eQnYuHEjRo0ahTFjxmDs2LHo3LkzK/+OHTswbNgwfPLJJ7jooovQvXt3/P3vf8fkyZOxdu1a3HXXXam0c/fu3VizZg322msvUvrGjRvj9NNPxw033IBXXnkFxx9/vPIZKMfIGjdujHbt2pHbLGLz5s3YvXs3ampqcNddd2HLli0YPnx4vXR33XUXPv/8c1x//fV46qmnyOXX1NTgO9/5Dr766itce+21aNWqFR544IG8o68hs2bNwvjx41FdXY2f//zn2LFjB+677z58+9vfxrJly3ID0zPPPIPTTjsNBx10EG6//XZ8/vnnOO+887D33nsby8GTHt6Gi2vDUWpqagAAHTp0qHfvq6++wubNm/Hll19i+fLluP7669GmTRscfvjhyjJ37tyJ4cOH46OPPsJll12Grl27YtasWXjppZfqpX3ppZcwatQoDBo0CFOmTEGjRo0wc+ZMHHPMMXj55ZdzdS1btgwjR45EVVUVpk6dij179uDmm29Gx44dU5CCJ028PRfenrdt24Zt27YJ7faJJ57A3//+d7zzzjusF496u/V42y3dXKzCz8USSr3VnmVEx2GGDRsWAAjuv//+eukBBFOmTKl3vUePHsH48eNzn2+55ZagVatWwbvvvpuX7tprrw0aN24cfPTRR8p2yY7DHHfcccGGDRuCDRs2BP/85z+DMWPGBACCSy+9VJk3ytNPPx0ACH75y18q2zBlypQAgPavR48eynIo7L///rnyWrduHVx//fX1jr6tXbs2aNOmTfDrX/86CIL/Hg2nHC+//PLLAwDB66+/nru2fv36oLKyMu8IztatW4O2bdsGF1xwQV7+mpqaoLKyMu/6QQcdFOyzzz7B1q1bc9cWLFiQmkw8NLwNyymmDUc577zzgsaNG9eTXRAEweLFi/Pq3n///UnH0e66664AQPDHP/4xd2379u1Bnz598o601dXVBX379g2qq6uDurq6XNodO3YE++67b3Dsscfmrp1wwglBy5Ytg08++SR3beXKlUGTJk1IxyQ96ePtWU6h7fmWW24JAATz5s3Lu75jx46ge/fuweTJk4Mg+O8xUsrxcm+3DQdvu3KKPRdTjpf7uViM3+kuAeXl5TjnnHOM8z/xxBM48sgj0a5dO3z22We56yNGjMC0adOwaNEinHnmmexyX3jhhbzIT+PGjTFu3Dj8/Oc/J5fRunVrAMDWrVuV6c466yx8+9vf1pYn2i3mMnPmTGzZsgXvvfceZs6ciZ07d2LPnj15x9+uueaa3BtWuTz77LP41re+lRfB69ixI84880zce++9uWtz587F5s2bcfrpp+f1W+PGjTF48GDMnz8fwNcv3Xjrrbdw3XXX5eQJAMOGDcNBBx2ELVu2sNvoSRdvw8W14ZDZs2fjwQcfxNVXX42+ffvWu9+/f3/MnTsX27dvx9///ne8+OKLpDemPvvss6iqqsIPfvCD3LWWLVviwgsvxNVXX5279uabb2LlypW4/vrrsXHjxrwyhg8fjlmzZqGurg5BEODFF1/ESSedhK5du+bS9OnTB6NGjcJf//pXk8f3FAhvz4W150WLFmHq1Kk49dRTccwxx+TdmzZtGnbv3p07FszB263H225p5mIdfi4W4xfdJWDvvfdGs2bNjPOvXLkS//rXv6RHI9avX29U7uDBg3HrrbeirKws95r/tm3bssoIjUr33Y9evXqhV69eRu2MsnPnznrfd4m/GXXIkCG5/48ZMyb3tss77rgDAPDaa69h1qxZmDdvntFbFT/88EMMHjy43vX9998/7/PKlSsBoJ7TEVJRUZErD/h6UIjTp08fLF26lN1GT7p4Gy6uDQPAyy+/jPPOOw/V1dX42c9+JiyroqICI0aMAAB8//vfx+zZs/H9738fS5culf5aAfC1zfXp06fe97tkNjx+/HhpWbW1tfjiiy+wc+dOqQ177MLbc3r2HOc///kPTjrpJAwYMAC//e1v8+598MEHmD59Ou655568ADMVb7ceb7vFn4sp+LlYjF90lwButGnPnj15n+vq6nDsscfmRX2i7Lfffkbt6tChQ85ITAl/A1unzOH3u3Q0btxY+b2Lxx9/vF6UMwgCafp27drhmGOOwSOPPJJbdF999dU48sgjse++++a+TxZGPNeuXYuPPvoI3bt317ZVR/hSjlmzZgkHsiZNvDm6grfh4trwP//5T5x44okYMGAAnnzySbKtnHzyyRg3bhwee+wx5URPJbTh6dOnY+DAgcI0rVu3xhdffJG4Lk/x8Pacnj1HWbNmDY477jhUVlbi2Wefrbd4uPHGG7H33nvj6KOPzs294TsbNmzYgA8++ADdu3dP/BND3m6zi7fd0vnTHPxc/DXey7eIdu3a1Xuz35dffom1a9fmXevduze2bduW2KDTZs+ePZg9ezZatmypPepyxx13YOrUqdoye/TooXyxSnV1NebOnctqZzya99FHH+HDDz/EvvvuWy/tiSeeiMrKSuUbF3v06JGLukVZsWJF3ufwjeidOnVS9l2PHj0AAKtWrap3T3TNYw/ehuuT1IZXr16NkSNHolOnTnj22WdZO2K7du1CXV2d9u2vPXr0wPLlyxEEQV6EXWbD0Si+iE6dOqF58+behh3H23N9dPYcsnHjRhx33HHYtWsX5s2bh6qqqnppPvroI6xatUq4S/fjH/8YAPD5559Ldwi93XpkeNutTyH8aSp+Lv4av+i2iN69e2PRokV51x544IF6kblTTz0VN910E55//nlUV1fn3du8eTNat25d9F3TPXv24LLLLsM777yDa6+9NndUWkZa30GpqqoSTubA18eCOnXqlHftgw8+wLx583DYYYflrj3wwAP13vz40ksv4e6778Ydd9yBAw44QNmG7373u7jrrrvwf//3f7nvdW/YsAGPPPJIXrrq6mpUVFTgtttuw3e+8x00bdo07/6GDRvQsWNHdO3aFQMGDMAf/vAHTJ48ObfIWLhwId56663cotxjH96G65PEhmtqanDcccehUaNGeP7556VR+s2bN6NVq1b1bCo8zhq1dxHf/e538cILL+DJJ5/ED3/4QwBfvxH2gQceyEs3aNAg9O7dG3fccQfOOOOMegGA0IYbN26MESNG4M9//jM+/fTT3HfJVq1ahTlz5ijb4rEHb8/1oewsbt++Hd/97nfxySefYP78+cL3LwDArbfemvc9WuDr3b0bbrgBV199NYYMGYJWrVpJ6/F265Hhbbc+SeZiKn4uVuMX3RZx/vnn4+KLL8Ypp5yCY489Fv/85z/x/PPP1/uJjZ/85Cf4y1/+gu9973s4++yzMWjQIGzfvh1vvfUWnnzySXzwwQfCn+VIi9raWjz88MMAvjaGVatW4amnnsLq1asxZswY3HLLLdoyCvX9sSgHHXQQhg8fjoEDB6Jdu3ZYuXIlHnzwQezevRvTpk3LpTvuuOPq5Q0jpMOGDdMOEldffTVmzZqFkSNHYuLEibmfDOvRowf+9a9/5dJVVFTgvvvuw7hx4/CNb3wDY8aMQceOHfHRRx/hmWeewdChQzFjxgwAwG233Ybvf//7GDp0KM455xx8/vnnmDFjBgYMGEA6RuQpDd6G02XkyJF47733cPXVV+OVV17BK6+8krvXuXNnHHvssQC+/g3Oyy67DD/4wQ/Qt29ffPnll3j55Zfx1FNP4bDDDsPYsWOV9VxwwQWYMWMGzjrrLCxZsgRVVVWYNWsWWrZsmZeuUaNG+O1vf4tRo0bhwAMPxDnnnIO99947t7ioqKjIvZjlpptuwgsvvIChQ4fiRz/6Efbs2ZOz4TfffDNdQXkKgrdnM84880z83//9H84991y88847eb/N3bp1a4wePRoAhAuFcFf7m9/8Zi6dDG+3HhnedtNv59133w0Aud/BnjFjBtq2bYu2bdvikksuAeDnYi1FfVd6A0P2EweynwjYs2dPcM011wQdOnQIWrZsGVRXVwerVq2q9xMHQfD1z09Nnjw56NOnT9CsWbOgQ4cOwRFHHBHccccdwZdffqlsl+wnDo4//njtM4U/0RD+tW7dOujbt28wduzY4IUXXtDmLyZTpkwJDjvssKBdu3ZBkyZNgq5duwZjxowJ/vWvf2nzcn4yLAiC4F//+lcwbNiwoHnz5sHee+8d3HLLLcGDDz4o/FmF+fPnB9XV1UFlZWXQvHnzoHfv3sHZZ58dvPHGG3npHnvsseCAAw4IysvLgwEDBgR/+ctfglNOOSU44IADyDLwJMPbcGmB4udPhg0blku3atWq4Kyzzgp69eoVtGjRImjevHlw4IEHBlOmTAm2bdtGquvDDz8MTjzxxKBly5ZBhw4dgokTJwbPPfdc3s+UhCxbtiw4+eSTg7322isoLy8PevToEZx66qn1fg5p3rx5waGHHho0a9Ys6N27d/Db3/42uPLKK4PmzZsnFY3HAG/PxaFHjx7GP1vE+cmwIPB221Dwtlta3n//fZJN+7lYTVkQpPQteY/HU3AGDhyIjh07Fux7Nx6Pp7CMHj0ab7/9tvA9EB6Px0683Xo82aIUNp3slZAej6cg7N69G1999VXetQULFuCf//wnjj766NI0yuPxsNi5c2fe55UrV+LZZ5/1NuzxWIy3W48nW9hi036n2+OxkA8++AAjRozA2LFj0bVrV/znP//B/fffj8rKSixfvhx77bVXqZvo8Xg0VFVV4eyzz0avXr3w4Ycf4r777sOuXbuwbNky6culPB5PafF26/FkC1ts2r9IzeOxkHbt2mHQoEH47W9/iw0bNqBVq1Y4/vjjMW3aNL/g9ngcYeTIkXj00UdRU1OD8vJyDBkyBLfddpt33D0ei/F26/FkC1tsOjM73ffccw+mT5+OmpoaHHLIIbj77rtzP9/k8Xjsx9uwx+M+3o49HrfxNuzxFAb2d7ofeugh4fWvvvoKkydPTtoeIx5//HFMmjQJU6ZMwdKlS3HIIYeguroa69evL0l7PB4PD2/DHo/7eDv2eNzG27DHUzjYO90VFRWorq7GAw88gHbt2gEAVqxYgTPOOAMbN27EBx98UIh2Khk8eDC++c1v5n7juK6uDt26dcOll16Ka6+9tujt8Xg8PLwNezzu4+3Y43Ebb8MeT+Fgf6d72bJlGDt2LA466CDMnDkT7777Lq6++mqMHj0a9957byHaqOTLL7/EkiVL8nbZGzVqhBEjRmDx4sWkMurq6vDpp5+iTZs2KCsrK1RTPR6rCIIAW7duRdeuXdGoUel+yMDbsMdjhi02DCS3Y2/DnoaKLXbs52KPxwyqDbMX3b1798arr76Kyy+/HCNHjkTjxo3x+9//HqeffnqiBpvy2WefYc+ePejcuXPe9c6dO+M///mPMM+uXbuwa9eu3OdPPvkE/fv3L2g7PR5bWbNmDfbZZ5+S1e9t2ONJRqltGODbsbdhjyefUtuxn4s9nmTobNjo7eXPPPMMHnvsMQwZMgTvvvsuHnzwQQwbNgxdu3Y1bmgxuf322zF16tR619esWYOKigpt/srKSgBAbW0t6X74WUa0HF3ZSShk2aZUVlbWa4+snTI5qvoh3ge6Z9fVbZPskrJlyxZ069YNbdq0KXVT2HBsmNJ3VBuNp1PZrom+6trpOjIZUeSrK0OGagzgyty2PmooNhwS7Wvq/GCaXlWGbXpARTW/pe3PRPNxfSZd+ylpi0lSfciiHQO0/iykT0b1Jbn3XcTUBinjpKnPY9JOW4i3k2rD7EX3RRddhN///vf42c9+hkmTJmHdunU499xzcdBBB+G+++7DqaeeatB8czp06IDGjRtj3bp1edfXrVuHLl26CPNMnjwZkyZNyn0OhdWtWzdwvuIeOgayIzRxxyEsO54+qqjxNGm+XN7GF9VH26R7ZqpsovKN94Guz0LCPgnriNZtoxw5+hKmDQeLUh8BS9OGKyoqpHYngqpLYZlxHYzqCVVv4xNTPB8l8Gc7cZ2KP2PcvmTpo9dFtqgiXidlrKGOQbZRahsG+HbMseE05kPKuMCZW0Rl2g5Fr2UyiNtsHNGYGEfWr7r7Itu3SfZpjQultuM05+La2lppH4l0LH5NphsUndHpbryOeNm2jvMm6OQokwlFBlQ5UWxVti6ypS9k8pKlk8H+8sirr76K119/HVdeeSXKysrQpUsXPPvss7j55ptx7rnncotLTLNmzTBo0CDMmzcvd62urg7z5s3DkCFDhHnKy8tzE3t8gi8rKxP+RYk72OHn+PV43vjnaPrw/7o8uuuuIZNHeE8kC1k6jkxkfRa/LuozG1Et+pKkLQZp23CISi/iuqTTIZ1uUfQvrlvxum3rFw5x+cmeRWZ38fuUOmRlUvqUW39WxttCwrVjig2HqMZ8WZo4lLlVNu5TyxTddwHO+EX1USj1xcumwknrbZdOofzpONH+pvrJOv9PhC6tzP/LEjpfN4Tib1PXOjpEayzZPG4LabWHvdO9ZMkSlJeX17s+YcIEjBgxInGDTJg0aRLGjx+Pww47DIcffjjuuusubN++Heeccw6rnGhkTqZA0SiaLjJHJW4Isnqj93WdL4r22Yhqt4GSNnqda/SqMlRydiEa6kr/h6Rlw5WVlWQbEZFEx6iRz3i6UvdTGvpMlRtl3KKUq8ojy8t5Tu546/maNOw4asMcdLoT3pfpgWjMNNHHJOmLjUgWaS1QOWXL5JyG/GzvA9tIay6moNrQ4OoKZW4WBd9F6bII1eflrGuoY26cLMqZ+nUl9qK7vLwcq1evxsyZM7F69Wr88pe/RKdOnTBnzhx0796d3dA0OO2007BhwwbceOONqKmpwcCBA/Hcc8/VexkEB5UTKTNcrtLKIoCc9shwWam5bac4CdzFFDVyGk1rk8yjeip7Rpu+M1MIG46jmuBlaXXpRNH6uMOoK6vU+lOIernPpJIN196SjKGl7gvXScuOKXNo0iBskgBaVvRD9BxpBQVVZasCH5T7ooV8Vvqk1BRyLlb1FcdP1pWp88njZEl3TJ89yWJbRpJx1DW7jr67QgX7d7oXLlyIUaNGYejQoVi0aBHeeecd9OrVC9OmTcMbb7yBJ5980rjRpWLLli25FzqYfE+IGnlTXecqGNewbEV1ciCaRgRlZ7GQzpOrMg9Jqvc2Yfos3F0dk4ALx4F0Ac4zx+HuJIpsWddnro+JHBqaDVN2T3Xzr6ws1emgrNmwCp3zTZGjLD/VhmVkdbHdkO2Yq2+qsmT34qQ5j7sGdxOAE/BM2pcuQ7Vh9ne6r732Wtx6662YO3cumjVrlrt+zDHH4LXXXjNrbUYId0HDXa/4rmj8umjXNJ42uoMmqkv22RVUzxB/dp3cROll99JqO3X3LO26PckwtSuZTsbtVWW7srJdgdJuyhinIjpWiq6Jyub0XVZs0uQN3LZD2i0ok38XUHddhsiOo/dkO7cu2rAKmR3Jxjpd/ii6OZ1q2y6TlbGHgk5XRH6ybs6Nl6mag3Xtitepyue6DurWJTJ5UuZxWd4Qnc/uoj2Ytpt9vPytt97C7Nmz613v1KkTPvvsM3YDXIEiXGpULZ5eNplT6nBtEKDsLuh2LmSfdeVQytB9pjxTHNf6yHUoNqLr73hZ8fuiOmR6kGRCcSW6TrVZGar01L7RISpThi1y1+kn9UibS6i+9hJ3FqNQx2GdTEXYog9poXqeQsgxiexF6VxeALnabi7RdzPE502RHet0gjOX6HwAE1+dO6eVGpl/rLuu8oF1MuCuT2yXoQrTtrMX3W3btsXatWux77775l1ftmwZ9t57b6NG2IjKKHUKR1VE0cIz6QLO9gEh3i5KwEHmXMVROey69pg6A5Q6ikkSZyprmDwndxKRLcKj15LI27W+oti3CMrYqVt86+rk9IctctfJ08UdAgomzyXTD92YbjLmh3B0yqbxV6RHVH8mDifYqOsjXdm26rurelAsOItvKhQ5cgNHlHJs7jeVH1KI8qn+kc0yS4uCvUhtzJgxuOaaa/DEE0+grKwMdXV1ePXVV3HVVVfhrLPOYjfUJkS/ly2CGu2RRZLi6UR5TJXZduWm7HTH4Q6QIrnqypalN1m8lnKgMZmAsgbH8Yl/pkbb43U1xN0yEWnbBiUoFy+bet12KGNjFne6AZr+UB1AznXuvMqxZZvsXmWHOl8jzXFM10eU8dWGcdVED1wdl5Jg4p/o5MTRDZlvTs1vO6oxLI6pLOL1Re9R+yqJPG3tE+pczF5033bbbZgwYQK6deuGPXv2oH///tizZw/OOOMMXH/99UaNtQXRF+A5zrTuumri1h3tEOWhYpOSUpwZ6gTMcQI4fRFNL8qnq9cGOVPIorMeJY2dTe7OjKpeV/SCiujYmSpN9F9OUJHqnFIDk5TFrA240MZCo3IMdfMBN0CmCtZmrS84cydl00BXhq4vTILflHuqOkpNtD3hS5iyRG1tLWmcp5yQiOblLMKTzsG26QyFtOZizkkV03SidulwsU+isBfdzZo1w29+8xvccMMNWL58ObZt24ZDDz0Uffv2LUT7ik6SIyvUskXlcJ37NCelUhIddKknB+Ko8lMdMhmuytXDsynuLqlqQqJiqzNIJUkwgwpn4qfusruE6zqSFMpcQJWNLlirctZlZXHbUCo4gUDufBvPl6Q9qnZxy+CUVQySnJJylSSbQ9wgj0iOro+fJu1PGvQ32ehLosvUIEEp4LShYMfLQ7p3716y3+UuJDJFNdl5oZapIuu7ZirnieokqSJ33OgZZ9fc9T7I6tFUikNM1SlOcCaNQE4pSKrPJjvH1IWzaieE62zbJncKLrY5KdEXMMVRBVRFaUTp0pxTXekfk0Vs0nEhyXxsGoC3GZVOZ3GnG6D1I3fe5AZbTdpnC0nGJGqQhxqkpvQTNyCn8h1s6BPOuJnq8fJJkyZRkgEAfvGLX5DT2ozKGKkOOieCQ40u2T5IhHBkYbKDLbpPaU9Sx8uVo6kNGc5Op06HODZsekKDQiHtPmmZIscpzXGLeixO1T6bSXux4zrRt5dTHEed7XLmDaq9Z7FvuGMhx7mnzKuqukTXbd4hCzEJOGQJzphm6ler6khzDnaVpEFJkQ7r5l7q/O+K/DnrFB2kRfeyZcvyPi9duhRfffUV9t9/fwDAu+++i8aNG2PQoEGkSm1F9CI11c6LTtgcRaNOSq4swjk7zKYDI+U4KXe3nNJeF/DBATkU+6M68irH3dSmVfXaiq59XHujOFBpyqSU42gSRySLu2OAfr5LUpaqr013z7NEXE5c36OQJ/goGxY29YlKx1RpsgLn5JhuzjWxOa5sXbVr1SYAN2gRJ3qfu9bhYKPsOXNFqjvd8+fPz/3/F7/4Bdq0aYPf//73aNeuHQDg888/xznnnIMjjzySUpzVUDqcu/OaxnGYrEXqojLgTrScgTwOd/Ft40CgwrX2po3oaCpFJtSdWtcjtkmgOItUR5y6m2ESPKIE41zpr4bkoItQ2RvVZuOoxvysBV9DktgE15bj+UTOOtVXiqdXBUxNAjKlwDXdSYLJhpNpsIezwy1L52rfqHal41DHRW59os8cudroe6vqNm0X+zvdd955J1544YXcghsA2rVrh1tvvRXHHXccrrzySqOG2IDoWBtlspfl4Sg3dTdXN3nZOmjIBjfRZM/d+ebk5y6abJWnDMrCMkyTxV0yig2L7nEdtzQcPFd1S/Xs3IUPpQ5un1Da4MpiVufcZPW9DCGqhRzVqUzDmaMsWrllFhNdu1Q7x/HrSTYXqHZXjF1NT2GJBsBVmxw6n9ZkQ4S7y5sVOEGNOGnMn2mOg1nrmxD2onvLli3YsGFDvesbNmzA1q1bU2lUqVC9wEW1QJYNErr7KgdTthhwdXFIaTf3RADFCaAOsq47VRTibc+6wx6imnh1E1A8T5LdXtdJM9BAneCjTpnO6aIu5F3uF1d285IgGpM4p1W4OzyUsjmLVheJzpXcnW3K5gI3QJJFm3X5GZJS7GdvKDI38W2otkgJmnHbmSW7DuHKhL3oPumkk3DOOefgzjvvxOGHHw4AeP311/GTn/wEJ598Mrc4q4j+rqBqQkkreiYq23RR7YoSqwyZEhVVlUmpz9T4bZerpz6cYEwckxMmSYNG1HylRtRe08lUN2FxdtV12CpPCrK2b9mypcgtKTy1tbWoqKggp6cupik7aLbbXlIoJ72oAUeO7VIW5qL2qcZOV8ZNXTuzGkiLnjqjoJOHrf1bSiiBQtONhSRy1tmxy31IHR9lsBfd999/P6666iqcccYZ2L1799eFNGmC8847D9OnT+cWZx2cHS0q1ONu0f83RIeSumjhTFK6gYTa31kc8LO4yy16piQBNJmDJLqe1ikJW3WMYofUyTWJTeugBNZstGdOm8K0XMfWBVTjkkhG1ACaLD0naMu9bxuURWzSRSIlKEdZ/HPSya6VCpVeiJ4liz8Zpnq/SvSz6UaTanxPy15ttW9Ou5LIMX7ddAzIEkmfjb3obtmyJe69915Mnz4dq1evBgD07t0brVq1StQQ20jDwaQu3DkOhOuoJmRupJNyfIa7+6irM0tk8Xh50meiRoXj16M73aYLT9cw2R0rxO6OSR02yp7TpqzvkoWoTihR51uT00wN7QSUypbj16m6pzoFpOrX6GfXAmchlHZm3XajqHw13a6oyQYYxTeMpnNtjtYFFURp0nhW7uk8StDSVhnHSWu8YS+6Q1q1aoWDDz44UeW2ofrJsPh10T1RGhGqycsVBUwLymLF1AESyZXbZ9w22ISLbU4Dk8VLCNURMrHdLPeH6SRM/SwqI153MRb4pSYun6wGzijHy013sCn6QNVPV6As/Ew3EXSBbdFOt66MOCL5u9IHlEVOFne6o6dwTOZZ07mYoxuu6FASuPMfZdzk+uTcDQlOHa7BXnRv374d06ZNw7x587B+/XrU1dXl3X/vvfdSa1yxUTkwqo6PKxb36EUSpbJFManOicqp5jrkOrlHF/TUqHw0r+qzragmnrj8sjbJA+I3plKgRGSj903sjhsFtg2TI23cCV9UdtKTA67IV4VsYZNVKLpGXfTpoCwO42ldoxS2wVlYyeZy1+Zhyq6sa+O+KaqveokwPalCCdRS89oKZ5GrG7uo46VI/qZ2aSJf2/pE155Uf6c7yvnnn4+FCxdi3LhxqKqqyuzkr1JMruJRHCbuYlVXZ7FJ4hhzd5lNouWUBbrovqgfbJG5CNUObBZ3/uJQXoYompi4O68mO91xXNs9M4lKU22YE9TI2oIojujZqXLMAqpfEYmSdAeH41RS5yDboJ4GUDnrsjKp87YKU38mybhbSGxqiw3odrhF/pRuo0S2+SKrk9M+W0kSsKfao8nGQtLNNlfkLyIuT+r7VdiL7jlz5uCZZ57B0KFDuVmthxqZ407I8XQmuKycUXQDpihNHN0CmlJv2vdtg7JDlMUjbYB+gSJy2JIuCrNg21QdT7Kbw53402yfKzYs2nmN38syKufFZCFHnU+oaVTpbMNkB8p0Ma3KZ7qgV/WdK30Q0hACZjKSBFGLISfb5gbOmCW7Rw0M6jYFOTZosti2TfaFhr3obteuHdq3b1+ItpQc0fEAzs4WN5qj2tGQkRUFVcmRussoy69aXJliu7w5ehGmzfqbj012uuPoAjxZcpyoOq6afLk2qiO68Ey6eHbNhlU7ryFZ/E63yIZVmO7kyO6L0rg671IXeiInWJaGurnAWShzx1Hb+oESZCxEwNZmRKfOQkx2auOfC3HqzBZM1wGqQC13DFPpsulJnywEz+JEN7EoNOJWcMstt+DGG2/Ejh07uFnZ3HTTTSgrK8v7O+CAA3L3v/jiC0yYMAF77bUXWrdujVNOOQXr1q1Lpe4gCPL+wvpVaUPCtPHrlPuqerJAXK5R4n0tk18cmcyo/RdNG2+DK1BkFZdrsZz1YtqxKpAQ7WOZXsRlRNEt1ycNHRRbkKWh2h1lvNWVFe871/pG1F7Z3FLs8alUNqyaC2T9a9rvut0jl3RJJjeZvUXvxdPqkOWL6qhMj03KshFZO0XjUCl1qZQ+NcDzb6lzh0n9tutTEnQ+DNWnoeiyrO54HtehjFVU2Dvdd955J1avXo3OnTujZ8+eaNq0ad79pUuXshuh4sADD8SLL76Y+9ykyX+bfMUVV+CZZ57BE088gcrKSlxyySU4+eST8eqrrxrXZyJEXcRXVocq8kTdMbIdSqSTGzXjyNvVHYo0EO2cRa8Xc5es2HYMmO0opGFvWdM5znPoZE29Hi2HKk/TiL7N6OaBYjqOpbDhEJEtq3Qm+jlehgqZztiqU1Q/QeeLUMrWydukTEoeyn1bMA32FPOrXsWy4+jzUMZ9mf1SdZcyJrqiR7rxhuJP6+xSJmeZvyjy1allyRD1v41QxrSCfad79OjR3CyJaNKkCbp06VLvem1tLR588EHMnj0bxxxzDABg5syZ6NevH1577TV861vfYtel+k63yqCpiqbbpRGV6Royw1VBdSB1jkS8HBOHlFqHC+gGU+pxmDQoph2nuVCmOvbxnQyX4C4oRBNsKRaBMkwWAzYh2x0sNcW04RCThXM8rWwuEum96aKwVItyan3FdH5VsuAG1G3S/7Qo9RhZLDsW/fSfyuao/h9lAU/1xW3VL9O5OPr/uJx0i+p4uiTtpa6JVAt5V+D60+xF95QpU7hZErFy5Up07doVzZs3x5AhQ3D77beje/fuWLJkCXbv3o0RI0bk0h5wwAHo3r07Fi9erBwgdu3ahV27duU+h8JS/T6oalLSKTfHwF3frUnDCeBG6JK2RVWma/IXIXuGYn4XNG07ltmw6CfDKAEgah7KBOWaznDbmyQAWYhdsyRl2IiovTY4JsWyYYC+wwPQ+5syr5jqiq06Rt2tVgUeuLqXRBY2Be8oUBZ3JjuyhaSYdmyyw63LK4Ojd6Y+ZaGhrh1M1hTxvPH7JuuWNDapSi1zLjK5UP1p9ne6i8ngwYPx0EMP4bnnnsN9992H999/H0ceeSS2bt2KmpoaNGvWDG3bts3L07lzZ9TU1CjLvf3221FZWZn769atW+5eeGwt/icivKfbkZDdj14P/08t01ZU8oreF/2Fzxz/i+eVXY/XTRm0k8hb96ylRiSP6OdivUitEHYss+Hw5S0UPYmm0clKVqZKX7OCTs9VY5vMNmVyp/RZPK1s7JTV4SIyuRSLYtow1XnR2bAM1XysGwdsg2KbovEqnp9im7K6deOeyo/S+QK2Q/H9QnRjXTEoph2r4MyXsvGd4qPLMNX5NFDVobNXXZkqG9LNjzpfSJVXdj+LJJ2LSTvd7du3x7vvvosOHTqgXbt2ygo2bdpErlzHqFGjcv8/+OCDMXjwYPTo0QN//OMf0aJFC+NyJ0+ejEmTJuU+b9myJTdQ6KLkoaJF08Y/i/JQcV1RKfITXVchkze3DZT2cChFX3HareuLYlEIO1bZsAyR/qgmP87ncMLJAnEdkz1XVJ66sU+nczK9FtXNSau67hJJxs80KLUNc54znlbX/6ox1XbdSdq+JL6JrE9E17Nsmzp0/mIQFO873cW2Y4qPTNWBNHRI5z8VQx/TqCNNWejKUPlLXH/fNTjPQX1HEmnR/b//+79o06YNAOCuu+6iZCkIbdu2xX777YdVq1bh2GOPxZdffonNmzfnRebWrVsn/L5KlPLycpSXlyvTyBzP6CBBXXzLyg7RRYkpZbqCyqGnOuZxKMEOnYPginw5DqRMz8Lrpfq5oTTsWGbDope3iOyT6sTrFo8UPXZFtwoRPKQuFnVjavSaK/I0xYUxqZA2rPqpIUrgjKq/Il3jzuW2YGq7JgEH3Tws29EWpTHtK5egBGxLRaHnYl1/qTaxQrg6rFrIu6Y/1GfXXRNBDYir8lD8IZeh+HXhv6l+p3v8+PHC/xebbdu2YfXq1Rg3bhwGDRqEpk2bYt68eTjllFMAACtWrMBHH32EIUOGGJUfHSRUTnbSQaFYO7HFJI0IoqljLisnOvgWMjBiEyrnKf7sxXyRWpRC27FuYlClDUkS4LFZVzgOCXfyVuVJ4lgW0gG3fZzVta9UgbNC2rDqrceUgKpu3ohfF322VR9kcG3axNa5i/BovqQLS9f6Q6Wnovm4mG8vj1LouZiz2WGy8yq6LyvfJUwCDSFpPzMnINcQSBo0Y79IrZhcddVVOOGEE9CjRw98+umnmDJlCho3bozTTz8dlZWVOO+88zBp0iS0b98eFRUVuPTSSzFkyJBEb0sNoSh1IRxM13Zkk0amKQsiXVrKjiZXbrbJWQdn8Rfd6S4GxbZjqtMdvZbmDpGttgqY7VZT4O5cUxcJqjYk3T3TlV8sVEFZygmAYlBMGxYFElSBNGr/c8jijquIJM66iW5SFuhZgDLWlOJZS+lTi+DYJlXPsqBDpqdMVGm4dVDWPlmQNZW0TqhYvej++OOPcfrpp2Pjxo3o2LEjvv3tb+O1115Dx44dAXx97L1Ro0Y45ZRTsGvXLlRXV+Pee+81rk90rI0SsZRBVUjKxGercheiXbqdCdkOZprOlWuYnCQo1k53Me04+gsEcT2hLL5l1ynBI9d1KA5nx5Bqm1RnQhXMkLVH9tn2flHJhHKapxgU04ZFO36cnTFTZ1x0MopbRqngBrcoY6CpPYnGgrTkZvt8bTKOFZNi+9RxKHOxbnFjuw6kgWlAuZC2luamha1w1n8h3Lm4LHBNKgUgPNqjOqqXZEfLxAlwVWlDOO3XKTo1Oi4yhqwNClRUgZy4nFQ/lecKouN5lImd6wBlVV9EJLFh2XWT3Yokpw6yTnTuyooNiwJnqjEsab9nWX/SsGHZfc6utamMs9Q3qmfJuh2rMNW7LPh0abVZZYump85UASRuWa5D2e2n6r3VO93FRvQbvyFRAZMjGoSop6h8XVoX4ETYkzjkqnyUnaKsItJT0WK7FN8jKyTRZ6Icc6SeqjDRF9cXi0meWVeGyU6crg7b5Rmik5HqOVx5xiRExyTV+C07VUENglPmY2qZrqCyHa4t6uZp1S4RdVxwRe4UnXLlWQqBye5+Q9jhTho44IxTSU6ZhelkdskNtrsG5YQVFb/oNkC3MNelFymeq8oYR2fAlCg5d5LPiuzShjowZgmRw65y/tJaJIrS6PTSdr3lOMjUMVEUGBPVkWXnleNQ6eSStaBZHNWulmw84zp4ooWnqzpm6tyqnMo0bJbaTld2L02CAyYnHl1G9PZy0TxRyJMqtuqPjDTayQ3q6oIb0fvUxXSSscFGVEHJEOpczF50b9++HdOmTcO8efOwfv161NXV5d1/7733uEVaBVUhVde4kXZKh9qK6UQSfXbu8SFRGZQ6uWlthrIgaqhBCupkosojc6Zc1x+TsYYSBDONzMvui8rWyd7VPokjGhvj97JM9LQKJXCWFtHdc9d2aEydX5Ndf911UdmF2LmzCZXf6HogxxTRi1o5NiuzQY5NumbHMrhBKlUZMjjzquun+ExIa75hL7rPP/98LFy4EOPGjUNVVVWmdstUb00NUT2v6SDhsmJSnzFNuSXZQXRZ1lFMBjvKKYMsQAnaUG2Rs6Phgm6ZtJFin9TgGzWgJkrngnw5JHEes4zoa16UxbdsRzbExIZd0TnTgHX0Ptehp8pb1S7Zc9hOmjt7WbZp3SYWJY1ut5zig9qoV5xgNXe3mlJG/DqnDBvlWWh0ekeFveieM2cOnnnmGQwdOpSb1QkoTqLpDmwWoz9UVDIznXQoys+Vvet9JNohTGuwcAVKH1MnsazriwrO7pRMp7g6JnLkqQEm1/rCZAGSdduNo9KrtILYouCRKzoUh7pw0V2PotvppmxMUIMCtsmdu5nA8UWi10v1O92FJPo8Jjvc1HS2nnQs5GYbJ8hDCbhx6orm4Y43LqPzbajvSGIvutu1a4f27dtzszmB6kVqUajHragROlVZtimv6e5zPL8oL3UCozrbqp1N3XPYKn8ZqvY2FAedSpp9art+pKnHaToPhbAv2/vCQ0d3ckI0tnN1KsunKUwCD7ogbTSt6rOqjwqxACkkpjvzlIVK/HrWUP0KgeqUVCED3sXUs2Iu7KN1Uk+kUHU7yS56VkjTr27EzXDLLbfgxhtvxI4dO4wqzBJBECj/dPkoZdsGtV1lZWXCP1X+8J4sTzxveF9WpyqtrB2UdpaCePvjiNpr67OUCpF+ye7FP8fR9YctqPRC9wyydCq7k9UrGyNl8haloba7VKTdLq69ZwnqmC+C2g9Zl6EIlQ3p5mrdfBxH1X+22nDaUHyOIAiE3392ncrKStIco/PFkuiK7Xqmm1t1iOZTah5ZGdT7qj7LCqrnMZ0/2Dvdd955J1avXo3OnTujZ8+eaNq0ad79pUuXshthC7W1tVIByxxvQL+L6tquaRKozx6fiKPXZJG5eF5O5Fgme1f6hts+2eQOZDeyDuTbsOx5OVFLzk5GvCwbdUq0+ySDGiGPB7hUaUXtSNpOW0i7naoxMus2HKJ6bq7NcrDZhlVQ50pROup8qqsjnk5VdlYRPXtIQ/ILKXMM1Y5lfqLLqPzipGXK/OcQnV9kop9Z6BMZFD+SAnvRPXr0aKOKXMHEUdcpZ5qK6NpAnaSd1LxJBuNCDHq2IdPlrH6PzMQOqQvMENfsMIQSLJClVTnjVBuUOf+cAJquLNf6RIUuaJnFxbfqZ/9E6HSJqhfR4JFrOsTV/TSDsg3BDqmIZEHVz4YAZ0NElUd0XyRzG3UwDfvglKHTM+omlqsbDSo4a7e0no296J4yZUoqFduIarIXdU5akxQH15Q6jkqOsrS6dKr8posm1wYRlaxceYY0oBzTEzlC3EUiZQHvGlT7SuPkANXx5MjZVbnHicpGp3fUl7e4BOVXRERQd2izoidR0pjnuH4MJ0DGlbmrfcUZk7K+2BadWBFBPZlWik2uQsBZvJqcGNPJk3tfVFdW594QkQzSCoCzF90hS5YswTvvvAMAOPDAA3HooYeaFmUVOqeQEqmjHotxdWKJQo2OcQYT7jEOlTHoDEWGa31CaW9cFllz1gHayxBVAQlTvVAFeFyBasuiMdHEzqP3ZZ8pk56rmOxWxPNm9buglAUd19nROfUu7uQUYgFiujPGqcv1hVMczrglSpvVU2cyVCcBdHko1221Vx3UtYTqfpo+Tfy+yS64zXA2GnRyKtjby9evX48xY8ZgwYIFaNu2LQBg8+bN+M53voPHHnsMHTt25BZpFTonENBPSrpIXfy6y3ADCJTFtsnOmq59tlOIwUtXZhZ3yUSoBlBqlJ1Sh+sTUJwku9HchZCqDSZOvQs0BCfSFM6CjhrwlaWnYJvcTedKVT6qw8/dGbNNdoWAsysYJ+s73iLSCKLFy1ItDl1BF7TW7U6L8lDLjiNKl3WbNtmk4+ot++3ll156KbZu3Yq3334bmzZtwqZNm7B8+XJs2bIFl112Gbc4awkC8zeMh9d1922lrEz+xr74vfAz9ZnCdGE+2fEY0f14HbI6o/lUz2ITXJ2gPFdc1rbrXdrEn5+SRme7lPpcQ6dLMv2h2DKlDzhtyRKUZ9XJvqEhkll8vqDKJp5PNK/Ziqlvobqvm4+pZXH8B+59VxDJRjbHBEE2314efSbRM8vmBuoczLF3V/SKOs7L0lHkGpebbuyL1tVQ5iHZvBC9Zwp7p/u5557Diy++iH79+uWu9e/fH/fccw+OO+4444bYBnWXR5TWdTi7Cmk8M1WBdX1C6QdX+0q2g8HZuYiXlcWJHjDTA52du6YvHCjBRdFnSgScM46q8lHvuYTMhqnBCSC7NhxCsVOdzsn0hDPP2Q71mWVEbZhqX7qxUrZQ17XDJXTjHidPFtGNcbLghCpvvGxOO7KCSr9kY6XuekPSyxCuXy26xl2AsxfddXV19X4mDACaNm2Kuro6bnFWITpuKxK+KoobTZtkInTdAKhOuOheSBoTNGXB4AJUB4ija1k8Wl5bW4uKigoAtEmF62C6oi9J4DqSqgAPd7GtqpM7jtrSZ9yxUDXXxD9n0YaB+nqjmhu4To8temGKyN64NhHPJyqTuqg2meM5eWzAdOEXDWbE87iw85oE0dhECTBS5WO7zqSBTgYUP5p7nTNGuI5JwCep3rGPlx9zzDGYOHEiPv3009y1Tz75BFdccQWGDx9u1AhbCF/gYnp8Is2jFjYd2zA5LiaTY/x69AiH7B6nPfH71Pa5ikpmSY/BuIruuFQUnZ7K9DYL6Gwjapsi+4x+jqeVIZOjLH8S2dvSZ1R5cuzVlmcrFDI9EKGTBacsF0ij7SoZyPRTdp8zT8vKtL1PuM9KeR7bn7kQxOWo8rV1c6+r8qP40zob1OljNA31ug7VXJUVX1Omg2k+G3une8aMGTjxxBPRs2dPdOvWDQCwZs0aDBgwAA8//HBqDSsVlF1sWSSO2jGcSEkponmcXVNuhJ0SxeQ+a5KyXIuW6iJxop3BhhppDymEnZnojS26Ro146/SHUocskqxLF72vijq7BMUJl9FQbDUOZa7VzVOu6kucQow5lJ1GXR/Ey87i/MJ9FpFssqKHHCg+iE43Te/biok/zfVLVGWoFum6snQ2nzWiz5uWvrEX3d26dcPSpUvx4osv4j//+Q8AoF+/fhgxYkSihtiA6nh59HNSw7B1sR2SpE6dQYsG3+jOrKh+ahBAlC+Jo2sTJg6OTp5ZfHu56nlUAyh3gZk0UlwqRDZBCTRS71PHrbi8G9pkToHi6GfRhkVfERGRNWdcRxp2RpkvZHlF7eC2l1uGLXB1TbSolMkgCLL5k2G1tbUsvTOVcZbR2Y1sJ1uUV1cWxc/W5bGVNDZVdM9OtWHWonv37t1o0aIF3nzzTRx77LE49thjOdmtR/X7oKqdRBlJFNJ2JZYhk59MjqJJibrI1snX9uBGGqgW1rrIZtYmeYAWOAP0A2iSUys26xSlTVynOsmOFkdGuh1vm+VOQTTu6Z4pizZM+X3fhg41cBZPz/FnqKdVKLvoWe23huTbcYn609Td1WjahiAn7lzGmWtNg2aUvirGycA04dZr4idR52LWd7qbNm2K7t27Y8+ePZxsUhYtWoQTTjgBXbt2RVlZGf785z/n3Q+CADfeeCOqqqrQokULjBgxAitXrsxLs2nTJpx55pmoqKhA27Ztcd5552Hbtm3GbSor0/9MVTxN/LMsb0MilEkoA5ksRPIM04bX439pYksf6Z4t3k6OLAr5jDbasErXogsZSh6TumzRKS46u0vT/pKUqetf29A9Y3ysjKaX9Una2GTHtbW12nkD4M+71HnbdkR6IJOX7rOoXFV9UT3V5df1X0OAGvhPI3hmkw2HUHVGpV/FmI9KBXUuk8mGY186uXLmVa5d2zIOUHVGlS7pPMJ+kdpPf/pTXHfdddi0aRM3az22b9+OQw45BPfcc4/w/v/8z//gV7/6Fe6//368/vrraNWqFaqrq/HFF1/k0px55pl4++23MXfuXPztb3/DokWLcOGFFxq1JzrZx1Eppy0KVQyoDmT8s2ygVAU44sQd0DTkbsvATX0WzrPrJqc0fm7INhsWOS8ie42jC7bp0ruELsjFXdSqxkLdwkiXPgvOVZJxTeeIpoVNdlxZWWnkWHMDl67O25TFLPXZROm4fk6S+diVBZTO0VYFLKhlJsUmGw4RBRKj1ylzLDWglEW4ekcJ0HLHyXg+m+1URhprhtSePWAycODAoHXr1kF5eXmw3377BYceemjenykAgqeffjr3ua6uLujSpUswffr03LXNmzcH5eXlwaOPPhoEQRD8+9//DgAE//jHP3Jp5syZE5SVlQWffPIJue7a2toAQN6fqH2ye1SS5i8USdoVz0uVoyy9SV5V23Rl2AZF/zgyUNUR/tXW1iZud1iuTTbM+Ys+Qxq2bis6e6HonkpGpvKmtIXaJ672nYm8Qr1Py4bDOkphx6JnUdmnLE1DwHR+paTjlpVFTHwNynyi+2toc3HYVur8Ek2fBdIay0zkR7Vnl+WdVtspczLVhtkvUhs9ejQ3ixHvv/8+ampq8l7QVllZicGDB2Px4sUYM2YMFi9ejLZt2+Kwww7LpRkxYgQaNWqE119/HSeddJKw7F27dmHXrl25z1u2bKmXJoxoBLGoSBDof3cxnieezjZ07VI9V/zZk9QfLyNeL1XO8XI5eUpNvH2m7Q6jeqKyikUpbFj0nW6O7HS6aFKmraiOTwF6uws/y3ayRffSGGuo7S01smdRzS3R+6JraYy3XAplx5R5OISzi5hFW42T1MfgyETn78jKdGXOFUEda2RE01HlV0hK7U9zyJIe6ZDNASGFsDFqWlXZrvSJaftEzyfze8LrBXmRGgBMmTKFm8WImpoaAEDnzp3zrnfu3Dl3r6amBp06dcq736RJE7Rv3z6XRsTtt9+OqVOn1rsefWtqHJXwZddNBm6qo2ai9KaGQklvOtmL5BqH61SrDEaVxuR6oeEEFnTX49cK/cbUUtgwkMzu4mVwHHudjaZhw0mh2Bslryw/10mgOKCc48WqOkXo+iJJH5kujCi2y53ok1AoO5bZsOiFpnFEixlq/6t0zjRYZCvUuTKa1nTcUsk5qfxEdRZz/DSdh6l5szgXi36FgDK2UW1PNq5TdISrw5x2pUkSvaNCtXdVfdR5X1cOpT3FwGSdQoX9ne4sMHnyZNTW1ub+1qxZw8ov+35A/LruOwDx716I8srKiNdNwSSPDejarZKzTo46RP2SVtmlxuU3H5vYsKoPdToWvx9+FpUpqo9Sh6t6xGmzbnxTjZ1xmcv6hDp2ivLK0nrSR2XDOpsR6Uw8L9e2Vfato1S2m2a9VF+D6t9E08frkNmo7HMW7JCrl64gs+Oof0Gx47hcqHOFqEyZbup0Vla36J7r6GwvRPXMurWQqAxVICOaNv7ZVf8oDnunu1GjRsoHT+vN5l26dAEArFu3DlVVVbnr69atw8CBA3Np1q9fn5fvq6++wqZNm3L5RZSXl6O8vNy4bVSDE0WKRNd1ShiFE3XWRaVcHTh07Y/KhpIm+pkjE1n/uiLfQv/Gr802HEfWh7LPuuuUuiiRXBd0ySQKTI2EyxwnEUki5KpxlFpGVimUHctsWHTiTGUbur6Ll0GxZZOAdilIq14TG6HOrao8uj5U+VA22qRoDNLJqxgLiVLMxarf6Y7KhOrPyRCVzfXJGuI4n8b6hDOmivKZ+Nuuw97pfvrpp/HUU0/l/h5//HFce+21qKqqwgMPPJBaw/bdd1906dIF8+bNy13bsmULXn/9dQwZMgQAMGTIEGzevBlLlizJpXnppZdQV1eHwYMHp9aWONRorC5yF08nSsuN+lCiQbZOWCHUaGSaEWNuNLXQ7ckCNttwHJmdyf5EehJiapsiHXRVl6jPGqLb1aCUKbND0Xgry0u93pAoth1TAoEq3RGlVc2x0XKoZGXXhaPfFBuVQc2j861st0cTnQqCIJVfElFRqrlY5xupxuloGtGfDM74LmtnFnw5qn3q1i2itNT5UpY+K+NnFOoGFnun+/vf/369az/4wQ9w4IEH4vHHH8d5551HLmvbtm1YtWpV7vP777+PN998E+3bt0f37t1x+eWX49Zbb0Xfvn2x77774oYbbkDXrl1zL3Pr168fRo4ciQsuuAD3338/du/ejUsuuQRjxoxB165duY8mRBTt4UxS0TK493X3RG0Rtc3mKF40Ehwii4Zz04kinnFUUb3o9Wh606ipzf1gim02TP0+qOj/ImSRelk6VZm661nSD65tpFmHDNHCOwuyTgOb7Di6AFH1k8wmdbtraZA1vRHNw9F7gH63Oo5qzNTlkX32yLHJhkN086doLk66m0rx+2R5XYMiT1keqj+tSkMtm1KO63My+eRokBKrV68OWrVqxcozf/78AKj/Kvbx48cHQfD1zxzccMMNQefOnYPy8vJg+PDhwYoVK/LK2LhxY3D66acHrVu3DioqKoJzzjkn2Lp1K6sdqp9dCdukgpJGlJ7zJ8ubtC1pPI9tmMhXJ29R+a6Txs8N2WbDlH7R9a/oOkc/uGWYYLsOUuVFHec4NkqRs4nd20haPxlmgx1T5uFov6SlS9F0MmzXj1KMKaZjZ5IxMAvzsai9WZyLKT/FG0WnT5zxn5q3IZHGeElJQ0nPaSf3fqmg2nBZECQPK+zcuROTJ0/GnDlzsGLFiqTFFZ3wzZGqt5dH4e50UndRRXni16lQdt5cg7qDHP2si5rq+jCej9IeLqpdhkLC1Xubib79NYksqTvbIdF0Otvl7gi5aLemNsGVuwjduGDSDtvJog2L3nocRzUex9OY7Hy7pgcy0nwO6rjGkWsxTiXYgupZs27HIRzbi8OdkzkU098rJCJfknPagHKfUjbns83y5EC1Yfbx8nbt2tVb0G3duhUtW7bEww8/bNZax9EZo4kjGc9DNZTwusuKrBskqM+qGoCodVECJUlxua9cRDXQx6/rJg9RgEdnuzKyoAe6Z9AdbaN8nYMb1JC1gdJeT2lRjb+cBbkKzlfIXHC8OYieh7tpoBoTw8+yuTorcqTQkJ89hBIsk2EyD1BlTEnnQn+J2qjTO+o4qtpYSMPHcW1sNW0ve9F911135X1u1KgROnbsiMGDB6Ndu3bc4pxD5LBTlZqzgGtIi+w41MmJGlWL/59StqwOUd6GHL23DdULaVT9QO0jysKa6qSatNNWuKd/ZIjkanLqQFWXaoHhksyzDOckEjXIpQu4qvK6qh8ce6TIR5VOVgenTNfka0Iap3pcgPJ+FcpOZ9Kd77TImo5y1xiqPJyFe/Q6JdBpK6btZS+6x48fb1SRC4gGCRODpk5CKoUtxKTkyqBBnZh1TrbIoKkOg8qR49Qr+uwpLpwjTdQACmVHltMeSj6bSSsoqBpvdTbMqUM2hsjq9BQP0ctoktgIZy71/U1fzFDHL9XOo2uL8DTaJZJb9OtRWUEUAKfIT+cnU+aWtPQset82XeSS5pyss31ZH6rSue4PUe2X/ZNhAPDyyy9j7NixOOKII/DJJ58AAGbNmoVXXnnFpDhrCH9XMK4I0T8A9dLEieeJG2waBmxShusDR9j+UP66foinE/WrrA7ZdVE/ytqha5+nOMT7SdRncVuN3+f0pSytTrei7RNNTi7oEtUWuDISIeszWRnR+6JrqjHbUzxEzrpqrKX2O8emXbE3LnFZRZ+TO59RP4vsLSTeZ7q+LDVptEskp6wtuOPI+pXiz8nyivw72fxuisjndIVS+KW6OkV9xS3LVqg/+8dedP/pT39CdXU1WrRogaVLl2LXrl25Cm+77TZucdahG1RFDhl1UlctGmX3dAOO7HOW0TnGIkc6nlfXN7IyKQt4lWPjKR6qvtTpDpVoH1MX7pyAj+1OaBxqoJFjuzp7k5VByeeKXBsa1PmOMt9S64iW0VD0Impj8Wu6YBZ1buUsWKhzpsvzqSi4V+jf6S41JsFU089p2K9sLHFpTJDZL3X9Ei8nCteXUX3mttN12IvuW2+9Fffffz9+85vfoGnTprnrQ4cOxdKlS1NtnE2oOpy6CFQ5BTol1i3CTdtuI9QFMDW9Kg3V+Y+nV9VHXWB4CotqMI9D1QuVQxovS+eEytogCsa5DsWJpi6qki62OO2j9p0nXShypjp8SergprVFP6hzU3Ss4gSr4nlVTrPJ+EWpMyuUlWVzp5v6TLI5NY5ucShKG69DVrcrmIwv1EAWx4+m+tOysUH0TLq+cK2vZLC/071ixQocddRR9a5XVlZi8+bNabSppESdXdn96EI5iuy67L6qLq5y6ZTVReLyikbGKOmjyPpE1gcqmVF0RFeGp3jI9Eh2LXqdim4y47STUo+ruhVvv+6zKk1I0r5ToWqXDWTRWY+i6+voNeq8K9MXlVOXpg0XkjT0VDevxdNR7C0tuZRavlxE/iJHbi4Tfl0TUI/dlAV0PI/quiqvDI7/V0pM2kUJXlLrps69VJ2Pjrm2zrFpw150d+nSBatWrULPnj3zrr/yyivo1atXWu0qGZRJV6ZI3EFVlK6hKaAKqgx0O2icunRtSOJg+D4tLqpgDcUBj37W5YtOSNT+pTgNcVzRHZnsdQ6UqD90fWHSNp2TRQ30lZra2trML7yjUIJblECOKF8WoM49IplwgxdURPbWUOZCkXzjn7O8+KYsvqhBnvj1JIHarKIK8kTTUKDIjuvDqMrM+lgQwl50X3DBBZg4cSJ+97vfoaysDJ9++ikWL16Mq666CjfccEMh2mgVaexoicrSKTg3wmTSDtuUnupEcRwJqtxMJgnq83iKA+f0B3WSpjgI3MiyrXqRZFwwla9qJ4S7Y8TZEdG131M8or8iwnEcqQGzOJy+tnWu1EFZjOsCYtygV0NZ6OhI6zSVi1BsznQ8p+hjmvbqgu2rgjyqtADvRFnSHe+GDHvRfe2116Kurg7Dhw/Hjh07cNRRR6G8vBxXXXUVLr300kK0saSolMV0Z0ukoCa74qL7JthuCEmCGZx7ovuciKkfaOyAehwtei+eN4njTu13zi5vKeCMa7pn0e3ycGyGumPEcXaTtKcUhO3K4guYVD81FKJyAOOYBF6pemwr1EB1lLQXhUl2GU0CZbZC0bcs/mQYBdUcp9NHik6YbmJR2uMq3MB39Dp1PKT6A6X2cUoBe9FdVlaGn/70p/jJT36CVatWYdu2bejfvz9at25diPYVleigJ9tFVUF19jlHu3ROn61OYTFJEk3lRgM50T5PaaBM4tS+M9kt5eqBqm4X7FsVXefu+qvyUcdXSsCE6ujZKvewXVu2bClxSwqDboFMCZzI7uvqkF1zCW6gQWQb3EBUvG8oC3yZ7boufxW2B/TShDIWc4LkIlTpqOO87XB0hXoyjOrbiPoqLfmlsZnpGuxFd0izZs3Qv3//NNtScmpra1FRUaFMQ4mwU5WbMunLJrIsKiZ1Z4q700WpQ1a2Cp0jY3vfZDGyHj2aqiItHRPB2VHjttN1ZOOaKh0nak4pU1WWxw4oC2juqS/KKac0bNYGqHOpyS40NdilOkEQz2MLxexv2549baJzMdUnNiHrcgTMnpG63qCOl6IxlxvUU41HrvjNMqj+NHvRvX37dkybNg3z5s3D+vXrUVdXl3f/vffe4xZpNZRBmLsbLfqs21nnRq1cVVwRVLmaDORpyss1mWfxJUzU47ZU548TBTbN65recOCeJBE57KbOQxoOnS00BF0JEZ04C9EFVqL3dMEZ0X3XAqcyuHYXhepIU4NdKmxbhBeiftuesRRQTh3J9CiNBbupb247qrWESd4oon7RyZ672HZFzlGS2jN70X3++edj4cKFGDduHKqqqjLl2FBe4CK6p4seUw2ekpcapbId0bNz5BT9nEQHKTsqMlweOIBs7nQD9CCYKo/JYjvpZOeqHgH8Z9JdNwmc6crmpvGUDurphijcxaKqXmrZpSbpTlM0vW6M445XovvU8TVLZDkYqCIaAFfJgLuYNrFF6jhiux7qxjLOuMida0UBcFkdpvM/JW+pkbWLuonFXnTPmTMHzzzzDIYOHcrNaj2i3xUUYbpQUw0u3N1yXdtsgXukJZqHkjZ6nxPE4DoUqp031wjbn8WdbhWq6Ho8jUlATTceJLEF2+w6DndCN3ke06BGWmlLSUNz3DknzJKUQcVW/aC2i7qgVuWljpWiz1k5QUBFpXuia1l9kZpMzyg+sG7nW1cHJY9rephGe3W2KJO7aqdb59Nw5O1Kn5jqEHvR3a5dO7Rv356bzRl0AowqHtf4KZElqtPvSsS4EM41Z7I3iealkcZmwvZn9SVMnF1U6m44RX9MF9dcB63YmOyShXB22mT5KHZuiqvOWNSGs+ismwQZTPvMlT5XIXOkqYFAURlx59t0p1s1PmQF2/2wUiD6mojqhCM1QEtJR91pbYj9xl04q071UXe+syhX02dqxM1wyy234MYbb8SOHTuMKnSNsrL8n/OKG7ZMIcPorup+NF38niyt7r7LyOTFvS6SqyyNrq/i6Sn1e0pL2C/x/gk/UwMrFHsT1RPPY6JbNqFrn+geVSYU29bZuaxMWf8neVZP4YkeS1XpRwh1DJfhcp9HxzTOM4hklZYc4/bHGQtdnVNVfhjXf8kKtbW1Ur2kzMUyfYrfj5fJGfNdtn0dsrGBqo8c/cyqXRcC9k73nXfeidWrV6Nz587o2bMnmjZtmnd/6dKlqTXOJqKRG53yyHbJVLsqXIXMQnQ+ji4qqUsnciKofSG7rxuwPfZBiW6b7KQlSR/No9ObLNp2HM5Og84mCxlNN93l85ij+gUC1Q6tLK0sXRb7kCuLQs5zop1H2ee4DbtuZ9H2U8f7rCGyY4q+UXVYViZlDtFdtw2TeYjqT1PnV1HaeB5Zu0zka2vfJG0Xe9E9evRoo4pchaPUOqVVGT7VEArpYNoCd3ESohrQKYO9CFUbbB0UGjochzKEYqOislQTkuyzzvl3RZ9U+q+TASfwYGq7aYyZrvZN1hDpD9W+4mVkCa5+qpxiqt+SxsI4a33BGWtM5icXiZ9YEcGZm5Okoy5AbUW31qD4IbK8unwmwQzTdKJ22kD8hIUI6te82MfLp0yZovzjsGjRIpxwwgno2rUrysrK8Oc//znv/tlnn13vaMnIkSPz0mzatAlnnnkmKioq0LZtW5x33nnYtm0b97G0qI6uUI9OxI/LhJ9FRz/i1ykR06wQl5MuHTWarOq7eFnx+6K22N4nxTjSY6MN6/RHZG/cskV2K0ury+sqUTnH0Y1jVLmrxldKP6scBc9/scmOwxeamvaT6dyZJb2g2oxoDqTm0dVl0r54nbL0tvUVxwcR6Sf1py5V2GTDceJzX5J5kKJ/Mv0qhk9USOLtF8lQNi/q7FtG9L7p/K3K50KfUPSVasPsRXeabN++HYcccgjuueceaZqRI0di7dq1ub9HH3007/6ZZ56Jt99+G3PnzsXf/vY3LFq0CBdeeGHitskUVvVHXcDJ6uC0R3bfVaWOopOTbEEsSicb4GWTuqwPOe3l3i8UxVjc2WzDcUT2GCJziDg2K5tYTBaFLtkrZRLWjaeydKK0xQxI2t4Xab1EzSY7Do+lchddXIdQlN9VqA62yg5lDjJ3gawKSJouuER12IRKRrqgRllZWSp2bJMNh1DmBd24nqb/nHSMKDUmwR3qIlw3ZpiOqbr2FsNPpZJEL6g2zD5eniajRo3CqFGjlGnKy8vRpUsX4b133nkHzz33HP7xj3/gsMMOAwDcfffd+O53v4s77rgDXbt2ZbcpFHioBCIHUJZH9jmeRxaB06VRoYtUuUBc9vHrIdTnkTnwqs+qBZUMyqCSVWy04RCZ3MMJSATVdlXpKJOirn0uIVsAcfLIxltdPZQ6kzhXtvSFTGfS+tk/m+xY9Pu+lD6kzhMq+9PZpq1Q2ysbzyjzG9eOKGW7Ku8Qmb/IDSik8SsENtlwiIkfTZ0XVbLX+Xmu6lsckcy4usjxr2Uy19UlW9/Y1g/FaE9Jd7opLFiwAJ06dcL++++PH/3oR9i4cWPu3uLFi9G2bdvcAAEAI0aMQKNGjfD666+nUr8sWkSJKoeYRE90uztZRLa7QdkNi16P3lf1X9KoKTWPq1HVtCimDVdWVtbrnzTkr7N5kS7pdjhKDWUXgio33Q6CbDdNlk7UDsqOmmp8dnkctaHdxbJjkQ2r+k+3s8OZr7lytn1s58xRcXQ2S52XVdig1yZwZCLLG/0r1s/+ldqfDonKj5JGNbdQ5lnb7VSHbl7l5KXO+6Ixl7rW0bXXVbsXET4r9Xh5SXe6dYwcORInn3wy9t13X6xevRrXXXcdRo0ahcWLF6Nx48aoqalBp06d8vI0adIE7du3R01NjbTcXbt2YdeuXbnP0d8r5kTmQqjRTlWUiKqAnHbZTNwJil8TpZXJU1ZOOFCLSBL55Mrc1T5Kg1LacIhqgkmyQ6ErM45t0V1dO6jtVNlZiCzSTak7Hk2XlSGLvqvKtKUvuITtT+O7oBQKYceceZgy7+nSFKLPS6E/HH+BOhbqFoomdVHKdNX+TNCNV4WmFHNxiOxZTebmNMYC1+AGAqN5kspCFuhQ1RHHNfmLnk83n4j0XgR70X3zzTfjqquuQsuWLfOu79y5E9OnT8eNN97ILVLKmDFjcv8/6KCDcPDBB6N3795YsGABhg8fblzu7bffjqlTpyrTcAZE3eAQjRLJ4DoErilxHBMHmOtk66J5lDop7XG9LwpJsW1Y9cZUVaDHdIJPs+9d0SeKo1TIOmR1UoNzojSuwZ3ok1IIO1bNw5y+LMViu5Sk4UeIZKTa/VdB3WSgpnGBJAHJYi+2Q0rpT8cphA6L7rm6u83daNJdU0ENiKjs2DX7jcMZw0Li1wr29vKpU6cK32a4Y8cOtuFx6dWrFzp06IBVq1YBALp06YL169fnpfnqq6+wadMm6fdWAGDy5Mmora3N/a1Zs6ZeGtWRFd1xF1m6+J/omIUsbbxMCq4fqQmhyln2WZXWtE5VWVmReyEohg1TbEZ35KoQfajTF9FYYCPRcSv+F0fWF7Jxz6TeuPySjJmuUaxjqXHSsGPOPBwS7WMqWe7/EJ0NhMh8EhE6e+LMy7I+aAh9oxsjS0Wh5+Lo2KTST5keyeZknc8cxTaZU9G1mzN/yuZL3RhBaYusj9Lwp4rpR8uemaI/YTsLdrxcNuH985//RPv27bnFsfj444+xceNGVFVVAQCGDBmCzZs3Y8mSJRg0aBAA4KWXXkJdXR0GDx4sLae8vBzl5eXCexTHj4quLEokOAkuDDZxw4xCjbBTkEXmChFpd0HupaLQNkxdhOgiyLL0qoioab+rAkSlhHoKQBQoiDrb0esy+al2JlQTvuqzK7i425eGHctsOPpyOJVtmDhx0TJdlLsM6vym2nWV2RN194cyf7smc2p7VXLWje+lGreK6U/rFpDUtKr88To5Zbmilxy/RbUIj96n6h/Hx0lDjrb3RUjYztSPl7dr1y43MO+33355HbVnzx5s27YNF198Maux27Zty0XZAOD999/Hm2++ifbt26N9+/aYOnUqTjnlFHTp0gWrV6/G1VdfjT59+qC6uhoA0K9fP4wcORIXXHAB7r//fuzevRuXXHIJxowZY/zWY8pASJ2csji5p41KJlSnX1aWyDGTLQp07cpiH6axS2ajDYeobFnlfEY/y9Krrut0xRVdko1nss+iazKb5Tj4XHnZLtc4Ju1N21G3yY7DnwyLottRpeCaXnAwHXMogTPdWBmHssByBao8KWOjTI5BkM7by22yYeDr4FlFRYUyjWiBbBLsjaLSZRml1ktT+zWxNercIZI3xecWtdfWtRAnqJZakCwg8tBDDwUzZ84MysrKgl/+8pfBQw89lPubPXt28Pe//51aVI758+cHAOr9jR8/PtixY0dw3HHHBR07dgyaNm0a9OjRI7jggguCmpqavDI2btwYnH766UHr1q2DioqK4Jxzzgm2bt3KakdtbW2u7jjx6/H/R/90UNLL0lDrKBVJ2kd9Vp38RLqk++O2iVOG7YTtr62tNS7DRhum2rIITr9nQQeicJ8lmp46bunSidpgOiZmuY+itpvUhoPADjum2HCIygZdnUOpcHyN+GeKzGR5ZHVkRa5pYjKOZXkupupQWvZMHT9M77sAVa7UfFkcS3Vw5iLqXFz2/2cis3DhQhxxxBFo2rQpJ5vVhFHGaGSOsuMV3uPuwMbLYnZBg0UnV1E/6NJw67a1rzjtC9OGxzgpEWnb4dow1XbjmPQ/92sTxSJNnebuTnB3zyh5ZW3RXXeJ+DOI9N5Vort9Mr0JUR0hzUI/pw13nDNB12dZgrozGUU1fmXVjkNUusD9apfsvqrsrI4RSZ6DOiaI7puuabIidxFUG2Z/p3vffffF2rVrpfe7d+/OLdI54goj+yw7Shnez6LihST53pesDBPnWncsmNoHtveVSftK9RKmQhI9miqTSVQvuI4ixVnVjQ+2kLRdKpnpxkRZWaJydOMoFVv7IQ5Hrlm0YUAftInKwTQI4yqq71Zyj6GK5Gg6JlKCnFlBJyORXAsR6HAVzjxKXRyK+oKi9y5iokumwQ2KPx0vw/S+rN5iU8i62Yvunj17KgW/Z8+eRA0qJaLvksXhTPbx61kYdJN+R0YXkFCVQf0+CaUMqiPhmgNB+Y5efJcsS4h+MowTqY2Ths26Gv3l2JtpsIKzo6mri7posN2GRW2TPUv0pWNZQfVMaZyEcB1V0DCEY0/hda4N64Lhqvbq6nClzyj+hU4+WfALRUTtOImfF79OTd8QUZ3uDJH54JwABXWMTWLPpRwDTIIDVNiL7mXLluV93r17N5YtW4Zf/OIX+NnPfsYtzipqa2u1A6Io2kNdVKsUkxpdLvWklHa9KoNOuvuYRhRfV4dtUAIPWUYVOIv2ve4URTxPHJE+UXblOHWUGpN26eyMumuhag/Vll3d5RDtLDQ0RzOJvnCdTtv1QQR3TOEsZJLKJckcZEtfpKUbokVQljZhdFDGbK4/TTnZYoselQLqyZ/4fVvkauu4nJa9shfdhxxySL1rhx12GLp27Yrp06fj5JNPTqVhpcIkWs5Vckr9pvdtx2T3ket4mjgQuoWSaiKwYZCgtCGeJms7ZCG6RZlIP+IUYtEoa5+tUAOA0TSUtCI4CyHq4lrWBtvlHkW3k5bF0yqqr4gksTtTvbER2ZgmC1jrxq80HepCLOSLjemmh0jH0pgzXERkx6JNLZnuxtHNERS5uqaHOjjzJFfvKH5TGusV7iZFmnD0wdS3icNedMvYf//98Y9//COt4kqCapAQCZY7CKgcqKwNBjpUz6saoKP3KQsjndMqa5esLUmi+IUkyaDR0DDZfUhjQnfNxpNMqDpHM41gha4OVxdZFEcqfNbo1ymyguqZVPOwLK1uDnDFLlXzWgjV3jj2x9klF32mLOhd6QPuczTknW7KV71EO90hunE9jcCb7XB9iqg8qf5yCNXvNmmnKl0p+4RTt27eoAbA2Yvu+A+AB0GAtWvX4qabbkLfvn25xVmF6Hh5kk7h5OMuDl1HNCnpIl5cR0JVNrefs9gPWf8+qGpSTroIFOmPrsys6JDJc1EnY9HnrMhNR9bHfBM4Dh8VV+XLaTd13oump45fSRfhqva6AnUMpO5EZvHECkDTP9NAEVfHXcbEtrj2qgt+cNqla1MaZRUbneyp9stedLdt21ao/N26dcNjjz3GLc5aKAZM3RVPsqB2NSovQ6W41AUxJzJq6ki4HgRR7S5keZcselpFNalQo+icII2rO6syODtZlHvR+1THSLUTokO102njeGqyqIoHwbMA5ViqSC9M+9SGvk9KMeYv6skBSp022R0HkwVeQ1gU6qCMxVT5JFlsu6Z3JsGcEO7cS/WzqfVzKUWfmOhDUntmL7rnz5+f97lRo0bo2LEj+vTpgyZNUjutXhIokYokTqAMVfSPet02qMGCQu9oUXfLs7bT7Vp7C0kxdmYLIe9i7/bqTprI0kX/r7PzJBNWWjYqardNcByBLO6ORU+c6XQwmsY1hzpNdP6Cbt7jnArjBMzi6XVji+3IApC63URRmoa0COc8K9WesxbkNoFyckD3Wdcn0XxZO71n0v6kz8xeJQ8bNixRhTaj+1FzQD2IhnCV2nXFFUF1wlVBDO5upApqWsqOgQv9pWpnlnfJRLv3IntMOmEXQweKrWecRXY8HyWolkZbVO3Kyo4bp51Z/IpI9HkoTl7S02A26kAUSvu48xtl/DOdd1VBuaxS6l1CGxHZsclpnjSw3caTwtlIoJ7iEwXbuGMqp32lJI0d74J9pxsAVqxYgbvvvhvvvPMOAKBfv3645JJLcMABB5gUZzUiReVEhkSfKXnj9bsKJUpJjR5To/aiOrl94fpJA1faWUhUjqVuZ0KngyqSLgJKhexZKfaZ9NlMTsBQAye2y52CTJeytuAOoY71qrzcukoNZ0EcRzdeURaF8bTUYLhr45wJ1F1DkzknCIJMfqc7GhDkzKdcvRNBPbWVFVSnSbjH9VW6bWoHtkMJVuqCjNSvazbiNQ3405/+hAEDBmDJkiU45JBDcMghh2Dp0qU46KCD8Kc//YlbnFXEI3PRv+j1IAiEf3HCvOF9UVnxP12ZHj2ifgvRyZUjd1kdpSTaJpUO29buQqB67ng/62TC0Yt4WldsmTqeifKJxrLoeBavg9MmU/1VpZO1z1Yais3GkelkFsc1rt3p7lHSR+uUzRfUOmXtd8G+dMR9ON24phpXXNdTKiJ/OkSldzr/WuZPR3FtXDfVCdWcnfYcl1Tvo21yDZ2+cWDvdF999dWYPHkybr755rzrU6ZMwdVXX41TTjklcaNKiS7KFk1DjSRxovWuRorimDyHLgpqcl/WDu51ETb2EcXpoeqti0RfwhQiek6qDXMi9A0FkeyokW+uDSdplyr6bmP/UcYeG9tdKnQ7D67KKsncKbMz2f3odZltmtqsaHxwnaw8R7HQ2agoTRq+mStQ7TV+PZ4/+llWlgzuHE1B1n7b+06lY7pnofou7J3utWvX4qyzzqp3fezYsVi7di23OOvgRNV0EV/dnyi/KxG6OKpIZvS+bHdCFZGjli1CJmtVVN5F+YvQPUsW314O1I/wUqLBsjJkZcnSZTGQoZOBymZ1kXCZ7KJ2S42mu27TqnbK5JZFG6Y8k2rnQTW/ugBF3yk2SZlLo9epUP2e6HXXofgvsrnAVT1MisqOZfNx9F5DklvSOS7EZEzQrXlUax/X+4jafpXNc2HvdB999NF4+eWX0adPn7zrr7zyCo488kh2A2yHI9R4pEj3OUvInlWXTnZNlCeOrq5ohJ3avoZE1r5DBqh/p9vE/nR6El8IqXBV95KMY7qxUJZetTBwTX6FIMtzSXRc0u0uAPT5lqKDNutYtG06+wmJz3+qMmVlyNJybdtldP5MSJZlwEX1850hUR8tnoZi+6qyk6a1GZXeUeeEJP4Rxy+yGZmOqfRE9mzUl5qyF90nnngirrnmGixZsgTf+ta3AACvvfYannjiCUydOhV/+ctf8tK6CkVp4h0kigaJ0nHqiGP7oEGdnKIykcmJOijIZKIagHRlZ8GR0OlbFt98HEXVZzpnyWQBnZWJKI7M3kJUi5f4Z6qTqovmi9K6bKseNZy+1ekSZ1ywAZPglu56iGqxzfVX0vRzSgU1KMgNIlLTZA2KTlGDPLrrunpMy7IJk/mSW3a8TO4pGFV7XJG3Sr5Jn6EsYOZs1Ih2Ir2srAx79uwxalSxUb05khOZoyqtdxKTDZwm8nTZEaCg2rGQPWuo95SfyrOd6LPo3pgqIi0ni1KGreicnDgqh51aho6oU8aVnytyNyF8tlDfs2bD4bOodC+JU+4yqoUc13GO3qeWRWkXJX0WMNlYEelnFufiKJydWa6fl3V7F0GRAWXeluVV5eeU4TocPaXOxeyd7rq6Om4WZ1Dt/ImETzk6I0oniv5lfQBRGTD12Bp3cBBdz5pcQzjHYLKObldHpBe6CDJ155bTHtvg7tRTnP/4DoPJ4tt0bHRF7iGcXaAk8rSd6LFUis7JdM01ksz9XB+EA9X+VGNlVvpEt6gWpePu5GYRlQy4wZ6GKK80/BBZnjTmU1f7hDNu6tYjW7ZsIdVp9DvdWSaJE82dlBrSQoky6euOIsWvyxx6VXQqK8df0iCrR8s5QRhdGpmOcRagtpNU5ymnVZKMiVm3SZVjL9OzLC62Q2pra7WLHZftTUaS50i6AaDaIePuLGZpkUR9FpVPQt1MyBqiHT9VwFsGNfDh8jzBDfrryhHl1ZWlk6vLwTMZ1MCtarM1utNNwWjRPW/ePMybNw/r16+vt/P9u9/9zqRI66BGmlRwJsK0BgzbBh7KjpducODKnjLh6fK6CsWJCsnid7qpPxkWonOi4p9Vg3RWnacQToScakcUh163gHAdimPPPeXjOpxgDHdRmAV0z0bVF9XcSl3kUNvkMqY6JhrH0jh94AKiuZgSWNRBDfa4BFWPOIEb3SmpeDpKQM51uMENlR9iOhezF91Tp07FzTffjMMOOwxVVVWZGjCSDhIyZaUMEmkpdiENxCTSRXl2zq6GKp3KMZORtYGFc3oiS7YbEt0lC+GcskjizLquQ9wdLMqOrGndqrK5crbVxint0o2NWQ+cqZxNajCGe73UUBZ4OudRVqauLkq7uHXZJl8OXDmblJ1lKAs/nQ5mSZ+ocP0QzsaC6XhosollG7pnpuigTAYFe3v5/fffj4ceegjjxo3jZnUCykCoS6NbFLqmqCGcdpsYtm6A1u1siOTt6uBQSLI82XN3umU0pBMS1IlI5fzoAh3UPhHZdlIbtrVvKI6VLk3WFtxA/jE91YkTk+A25Xqp0S3wKCchqD5KND91zDNxXF2ZhzmneaJQFirxtNG6VC/zdRmT3X1q0Jy6k5tFVGOCbm6VfdbZv2jMdf2UEVU/o88eJ7xesOPlX375JY444ghuNicQRSpMHPZCKJ5typx0Yo5ep0b1qG1QRaWSkoUdzbRlYismAR7dgpMzudhms1RMdrrTqjPNo22uyl/V7ricsrjTDfB2XRoaqgUydzeas3vOXeREy7O5r5K0k7NJ01Dm3SiqoFn4maq7nLnY1bE/RKcjnDmCulCO5xfV5ao8dSQJgHPtmvb7XxHOP/98zJ49m5vNGeKKFX6OXhddE12P7tKk3a5SY9qeUCbhn0pO8esyucfLpLRb1n5dGTb1gY74s3Dk5CrRaGPcDlXPrtNnE323zWZlyPQk/lklQ5lNysqQIbJPXft0ZdkGVQaqvGGaLC64AbntRu9TcX28E82ZIVwfJK4/0fu6OVHn18jma1UaG6DYWxKblcktej2LdkzZ+aPork7fRLI39e9sQdZ+3XNxnk2XXiXfeHsoaV1CNK5SxjcK7J3uL774Ag888ABefPFFHHzwwWjatGne/V/84hfsRpSaUHDRIz7hgBG+Bj46KMpeDR+/HpYRV2zqMQSbicuJmy68HncIVIj6QtUGUT/J+ii8Hv/sMtRnycogCeTrRlwvop9F+hclrmuysqL5w2tU27AFmQ2EzxZ/LlF+6mSvGwdE92XjqKs2ajLGxHVKtzvhIlEbltmOyN7ixGXlypiuGzeifc+dd+PPLrJtmQ3K8ujmUtUzFKMv0hiH42OfbF6QySIq1zhReW7ZsgXdunXLnB2HxOUo0jWdXxefn+LXOf1t21hAtX3ZHB1FZscyHdXdV8lKZweuI5KzbB2yZs0akg2XBUwr/853viMvrKwML730Eqc4K/j444/RrVu3UjfD4ykJa9aswT777FPqZiTC27CnIeNt2ONxH2/HHo/b6GyYvejOInV1dVixYgX69++PNWvW1PttQdsJo6Quth1wu/0utz0IAmzduhVdu3ZFo0bsb5pYhes2DLitSy63HXC3/d6G7cJVPQLcbjvgdvu9HduDy3oEuN1+l9tOtWGj3+nOGo0aNcLee+8NAKioqHCus0NcbjvgdvtdbXtWvkuWFRsG3G6/y20H3Gy/t2H7cLn9LrcdcLf93o7twuW2A26339W2p/qTYSeffDIp3VNPPUUt0uPxeDwej8fj8Xg8nkxDXnRnJQrn8Xg8Ho/H4/F4PB5PsSAvumfOnFnIdpSc8vJyTJkyBeXl5aVuChuX2w643X6X2541XO8Ll9vvctsB99ufFVzvB5fb73LbAffbnyVc7guX2w643X6X207Fv0jN4/F4PB6Px+PxeDyeAuH2axI9Ho/H4/F4PB6Px+OxGL/o9ng8Ho/H4/F4PB6Pp0D4RbfH4/F4PB6Px+PxeDwFwi+6PR6Px+PxeDwej8fjKRB+0Q3gnnvuQc+ePdG8eXMMHjwY//d//1fqJtXj9ttvxze/+U20adMGnTp1wujRo7FixYq8NEcffTTKysry/i6++OIStTifm266qV7bDjjggNz9L774AhMmTMBee+2F1q1b45RTTsG6detK2OJ8evbsWa/9ZWVlmDBhAgC7Zd8QcMGGAbft2Nuwp9C4YMcu2zDgth17G7YfF2wYcNuOXbZhoGHbcYNfdD/++OOYNGkSpkyZgqVLl+KQQw5BdXU11q9fX+qm5bFw4UJMmDABr732GubOnYvdu3fjuOOOw/bt2/PSXXDBBVi7dm3u73/+539K1OL6HHjggXlte+WVV3L3rrjiCvz1r3/FE088gYULF+LTTz/FySefXMLW5vOPf/wjr+1z584FAPzwhz/MpbFZ9lnGFRsG3Ldjb8OeQuGKHbtuw4C7duxt2G5csWHAfTt21YaBBm7HQQPn8MMPDyZMmJD7vGfPnqBr167B7bffXsJW6Vm/fn0AIFi4cGHu2rBhw4KJEyeWrlEKpkyZEhxyyCHCe5s3bw6aNm0aPPHEE7lr77zzTgAgWLx4cZFayGPixIlB7969g7q6uiAI7JZ91nHVhoPALTv2NuwpJK7asUs2HATZsmNvw3bhqg0HgVt2nCUbDoKGZccNeqf7yy+/xJIlSzBixIjctUaNGmHEiBFYvHhxCVump7a2FgDQvn37vOuPPPIIOnTogAEDBmDy5MnYsWNHKZonZOXKlejatSt69eqFM888Ex999BEAYMmSJdi9e3dePxxwwAHo3r27lf3w5Zdf4uGHH8a5556LsrKy3HWbZZ9VXLZhwD079jbsKQQu27FrNgxkw469DduFyzYMuGfHWbBhoOHZcZNSN6CUfPbZZ9izZw86d+6cd71z5874z3/+U6JW6amrq8Pll1+OoUOHYsCAAbnrZ5xxBnr06IGuXbviX//6F6655hqsWLECTz31VAlb+zWDBw/GQw89hP333x9r167F1KlTceSRR2L58uWoqalBs2bN0LZt27w8nTt3Rk1NTWkarODPf/4zNm/ejLPPPjt3zWbZZxlXbRhwz469DXsKhat27JoNA9mxY2/DduGqDQPu2XFWbBhoeHbcoBfdrjJhwgQsX7487zscAHDhhRfm/n/QQQehqqoKw4cPx+rVq9G7d+9iNzOPUaNG5f5/8MEHY/DgwejRowf++Mc/okWLFiVsGZ8HH3wQo0aNQteuXXPXbJa9x05cs2Nvwx5PPq7ZMJAdO/Y27EkL1+w4KzYMNDw7btDHyzt06IDGjRvXe6vfunXr0KVLlxK1Ss0ll1yCv/3tb5g/fz722WcfZdrBgwcDAFatWlWMprFo27Yt9ttvP6xatQpdunTBl19+ic2bN+elsbEfPvzwQ7z44os4//zzlelsln2WcNGGgWzYsbdhT1q4aMdZsGHATTv2NmwfLtowkA07dtGGgYZpxw160d2sWTMMGjQI8+bNy12rq6vDvHnzMGTIkBK2rD5BEOCSSy7B008/jZdeegn77ruvNs+bb74JAKiqqipw6/hs27YNq1evRlVVFQYNGoSmTZvm9cOKFSvw0UcfWdcPM2fORKdOnXD88ccr09ks+yzhkg0D2bJjb8OetHDJjrNkw4Cbduxt2D5csmEgW3bsog0DDdSOS/set9Lz2GOPBeXl5cFDDz0U/Pvf/w4uvPDCoG3btkFNTU2pm5bHj370o6CysjJYsGBBsHbt2tzfjh07giAIglWrVgU333xz8MYbbwTvv/9+8P/+3/8LevXqFRx11FElbvnXXHnllcGCBQuC999/P3j11VeDESNGBB06dAjWr18fBEEQXHzxxUH37t2Dl156KXjjjTeCIUOGBEOGDClxq/PZs2dP0L179+Caa67Ju2677LOOKzYcBG7bsbdhTyFxxY5dtuEgcN+OvQ3biys2HARu27HrNhwEDdeOG/yiOwiC4O677w66d+8eNGvWLDj88MOD1157rdRNqgcA4d/MmTODIAiCjz76KDjqqKOC9u3bB+Xl5UGfPn2Cn/zkJ0FtbW1pG/7/c9pppwVVVVVBs2bNgr333js47bTTglWrVuXu79y5M/jxj38ctGvXLmjZsmVw0kknBWvXri1hi+vz/PPPBwCCFStW5F23XfYNARdsOAjctmNvw55C44Idu2zDQeC+HXsbthsXbDgI3LZj1204CBquHZcFQRAUZ0/d4/F4PB6Px+PxeDyehkWD/k63x+PxeDwej8fj8Xg8hcQvuj0ej8fj8Xg8Ho/H4ykQftHt8Xg8Ho/H4/F4PB5PgfCLbo/H4/F4PB6Px+PxeAqEX3R7PB6Px+PxeDwej8dTIPyi2+PxeDwej8fj8Xg8ngLhF90ej8fj8Xg8Ho/H4/EUCL/o9ng8Ho/H4/F4PB6Pp0D4RbfH4/F4PB6Px+PxeDwFwi+6PR6Px+PxeDwej8fjKRB+0e3xeDwej8fj8Xg8Hk+B8Ituj8fj8Xg8Ho/H4/F4CoRfdHs8Ho/H4/F4PB6Px1Mg/KLb4/F4PB6Px+PxeDyeAuEX3R6Px+PxeDwej8fj8RQIv+j2eDwej8fj8Xg8Ho+nQPhFt8fj8Xg8Ho/H4/F4PAXCL7o9nhQoKyvDTTfdVOpmeDyehCxYsABlZWVYsGBBqZvi8XgMeOihh1BWVoYPPvig1E3xeDyGZNGO/aK7wJSVlZH+Su3gHX300RgwYEDetZ49e+a1sVOnTjjyyCPx9NNP18sbpmnUqBEqKiqw//77Y9y4cZg7d24xH0NL/Jmif3379i118zwW4W23NLa7aNEinHjiiejWrRuaN2+OLl26YOTIkXj11VeF6f/+97/j29/+Nlq2bIkuXbrgsssuw7Zt24rcao+NeBsujQ1H2xT/a9q0aV7abdu24fLLL8c+++yD8vJy9OvXD/fdd19J2u2xE2/HpfOjlyxZgu9973vo0qULWrdujYMPPhi/+tWvsGfPnnpp//KXv+Ab3/gGmjdvju7du2PKlCn46quvStBqe2lS6gZknVmzZuV9/sMf/oC5c+fWu96vX79iNovMwIEDceWVVwIAPv30U/z617/GySefjPvuuw8XX3xxLt0+++yD22+/HQCwfft2rFq1Ck899RQefvhhnHrqqXj44YfrTbal4K677qrnkH/44Ye4/vrrcdxxx5WoVR4b8bZbGtt999130ahRI1x88cXo0qULPv/8czz88MM46qij8Mwzz2DkyJG5tG+++SaGDx+Ofv364Re/+AU+/vhj3HHHHVi5ciXmzJlTtDZ77MTbcGls+Kc//SnOP//8vGvbt2/HxRdfnDfP7tmzB9XV1XjjjTcwYcIE9O3bF88//zx+/OMf4/PPP8d1111XtDZ77MXbcWnseMmSJTjiiCPQt29fXHPNNWjZsiXmzJmDiRMnYvXq1fjlL3+ZSztnzhyMHj0aRx99NO6++2689dZbuPXWW7F+/XofRIsSeIrKhAkTAorYt2/fXoTW/Jdhw4YFBx54YN61Hj16BMcff3zetbVr1watWrUK9ttvP2XeIAiCr776Kvjxj38cAAiuvvrqwjQ8BW655ZYAQPDqq68alwEgmDJlSnqN8liHt93SsX379qBz585BdXV13vVRo0YFVVVVQW1tbe7ab37zmwBA8PzzzxvVNX/+/ABAMH/+/CRN9liIt+HSMWvWrABA8Mgjj+Su/fGPfwwABA8++GBe2lNOOSVo3rx5sG7dOqO6Zs6cGQAI3n///SRN9liKt+PicMEFFwTNmjULNm7cmHf9qKOOCioqKvKu9e/fPzjkkEOC3bt356799Kc/DcrKyoJ33nnHqP4s2rE/Xm4B4ZGUJUuW4KijjkLLli1zEV7Zd4V79uyJs88+O+/a5s2bcfnll6Nbt24oLy9Hnz598POf/xx1dXWptbVLly7o168f3n//fW3axo0b41e/+hX69++PGTNmoLa2NrV2pMns2bOx77774ogjjtCm3bVrF6644gp07NgRbdq0wYknnoiPP/5YmPaTTz7Bueeei86dO6O8vBwHHnggfve739VL9+GHH+LEE09Eq1at0KlTJ1xxxRV4/vnnrTgu5VHjbbc4tGzZEh07dsTmzZtz17Zs2YK5c+di7NixqKioyF0/66yz0Lp1a/zxj3/Ulvvxxx9j9OjReba3a9cuYdrXX38dI0eORGVlJVq2bIlhw4YJj7wvWLAAhx12GJo3b47evXvj17/+NW666SaUlZXxH9xTcLwNF4fZs2ejVatW+P73v5+79vLLLwMAxowZk5d2zJgx+OKLL/D//t//05b79ttv45hjjkGLFi2wzz774NZbb5XKfM6cOTjyyCPRqlUrtGnTBscffzzefvvteumeeOIJ9O/fH82bN8eAAQPw9NNP4+yzz0bPnj0ZT+wpJt6O02fLli1o3rw52rZtm3e9qqoKLVq0yH3+97//jX//+9+48MIL0aTJfw9Q//jHP0YQBHjyySe1dTUUO/bHyy1h48aNGDVqFMaMGYOxY8eic+fOrPw7duzAsGHD8Mknn+Ciiy5C9+7d8fe//x2TJ0/G2rVrcdddd6XSzt27d2PNmjXYa6+9SOkbN26M008/HTfccANeeeUVHH/88cpn2LFjB6nMdu3akdusYtmyZXjnnXfw05/+lJT+/PPPx8MPP4wzzjgDRxxxBF566SXhM61btw7f+ta3UFZWhksuuQQdO3bEnDlzcN5552HLli24/PLLAXx9hOiYY47B2rVrMXHiRHTp0gWzZ8/G/PnzU3k+T+HxtlsY292yZQu+/PJLfPbZZ/jDH/6A5cuX5x03feutt/DVV1/hsMMOy8vXrFkzDBw4EMuWLVOWv3PnTgwfPhwfffQRLrvsMnTt2hWzZs3CSy+9VC/tSy+9hFGjRmHQoEGYMmUKGjVqhJkzZ+KYY47Byy+/jMMPPxzA1+PJyJEjUVVVhalTp2LPnj24+eab0bFjR9Ize0qDt+HCzr8bNmzA3Llzcdppp6FVq1a567t27ULjxo3RrFmzvPQtW7YE8PXx1gsuuEBabk1NDb7zne/gq6++wrXXXotWrVrhgQceyFsQhMyaNQvjx49HdXU1fv7zn2PHjh2477778O1vfxvLli3LOeLPPPMMTjvtNBx00EG4/fbb8fnnn+O8887D3nvvzXpmT/HxdpyuHR999NF4/PHHcdFFF2HSpEm54+VPPfUUpk+fnksXzrXxubhr167YZ599tHNxg7LjUm+1NzREx2KGDRsWAAjuv//+eukhObbco0ePYPz48bnPt9xyS9CqVavg3XffzUt37bXXBo0bNw4++ugjZbtkx2KOO+64YMOGDcGGDRuCf/7zn8GYMWMCAMGll16qzBvl6aefDgAEv/zlL5VtmDJlSgBA+9ejRw9lORyuvPLKAEDw73//W5v2zTffDAAEP/7xj/Oun3HGGfX66bzzzguqqqqCzz77LC/tmDFjgsrKymDHjh1BEATBnXfeGQAI/vznP+fS7Ny5MzjggAP8EVfL8LYrpxC2W11dncvXrFmz4KKLLgp27tyZu//EE08EAIJFixbVy/vDH/4w6NKli7L8u+66KwAQ/PGPf8xd2759e9CnT58826urqwv69u0bVFdXB3V1dbm0O3bsCPbdd9/g2GOPzV074YQTgpYtWwaffPJJ7trKlSuDJk2akI5DegqLt2E5hZx/77777gBA8Oyzz+ZdD+e/l19+Oe/6tddeGwAIvve97ynLvfzyywMAweuvv567tn79+qCysjLvWOrWrVuDtm3bBhdccEFe/pqamqCysjLv+kEHHRTss88+wdatW3PXFixYkLrv4THH27GcNO34q6++Ci655JKgadOmuXyNGzcO7rvvvrx006dPDwAI5fPNb34z+Na3vqWspyHZsd/ptoTy8nKcc845xvmfeOIJHHnkkWjXrh0+++yz3PURI0Zg2rRpWLRoEc4880x2uS+88ELeLk3jxo0xbtw4/PznPyeX0bp1awDA1q1blenOOussfPvb39aWJ4p+mVBXV4fHHnsMhx56KOkFHM8++ywA4LLLLsu7fvnll2P27Nm5z0EQ4E9/+hNOPfVUBEGQ1x/V1dV47LHHsHTpUgwdOhTPPfcc9t57b5x44om5NM2bN8cFF1yQe/GGx2687RbGdqdNm4Yrr7wSa9aswe9//3t8+eWXeW9C3blzJ4Cv5R+nefPmufsynn32WVRVVeEHP/hB7lrLli1x4YUX4uqrr85de/PNN7Fy5Upcf/312LhxY14Zw4cPx6xZs1BXV4cgCPDiiy/ipJNOQteuXXNp+vTpg1GjRuGvf/0r+dk9xcXbcGHn39mzZ6Njx4449thj866fccYZuPnmm3HuuefinnvuQd++ffHCCy/g3nvvBQCSDX/rW9/KnTQBgI4dO+LMM8/MlQEAc+fOxebNm3H66afn9U/jxo0xePDg3MmyTz/9FG+99Rauu+66nNwAYNiwYTjooIOwZcsW9rN7ioe343TtuHHjxujduzeqq6vxwx/+EM2bN8ejjz6KSy+9FF26dMHo0aMB6Odind00JDv2i25L2HvvvesdseKwcuVK/Otf/5IeY1y/fr1RuYMHD8att96KsrIytGzZEv369av3/Q4d4dvC27Rpo0zXq1cv9OrVy6idUXbu3Fnvey9dunSpl27hwoX45JNPcMUVV5DK/fDDD9GoUSP07t077/r++++f93nDhg3YvHkzHnjgATzwwAPCssL++PDDD9G7d+963/fs06cPqU2e0uNtNz3bjTJw4MDc/8eOHYtvfOMbOPvss3PfDwudBtF3sL/44gutU/Hhhx+iT58+9Wwvbs8rV64EAIwfP15aVm1tLb744gvs3LlTaLvenu3G23BhbBgA3nvvPSxevBiXXHJJ3vc9ga/n5b/85S8YN25c7q3mFRUVuPvuuzF+/Pg8h1nEhx9+iMGDB9e7LrPhY445RlhO+E6IDz/8EIDYXvv06YOlS5cq2+MpLd6O07XjadOm4Ze//CVWrlyZs8VTTz0V3/nOdzBhwgR873vfQ5MmTVKZixuKHftFtyVwo8fx38irq6vDsccem7dDE2W//fYzaleHDh0wYsQIo7why5cvB6B3PLdt20b6fd3GjRsrvyP5+OOP14t2BkFQL90jjzyCRo0a4fTTT9fWySF8+cPYsWOljvrBBx+cap2e0uFtNz3bldGsWTOceOKJmDZtGnbu3IkWLVqgqqoKALB27dp66deuXZu325yE0J6nT5+eFwiI0rp1a3zxxRep1OcpPt6GC2fD4Skw2Q7hUUcdhffeew9vvfUWtm/fjkMOOQSffvopAHO5xQlteNasWcIAfDwY4HETb8fp2vG9996LY445pl7w68QTT8SkSZPwwQcfoE+fPnlzcbdu3fLSrl27Nm8HOwlZsGP7W9jAadeuXd4bewHgyy+/rOdo9u7dG9u2bUts2GmzZ88ezJ49Gy1bttQeebnjjjswdepUbZk9evTABx98IL1fXV2NuXPnKsvYtWsX/vSnP+Hoo48mO+c9evRAXV0dVq9enReBW7FiRV668M3me/bs0fZHjx498O9//xtBEOTtuK1atYrUJo+9eNutj852VezcuRNBEGDr1q1o0aIFBgwYgCZNmuCNN97Aqaeemkv35Zdf4s0338y7JmvL8uXL69le3J7Dky0VFRXKPurUqROaN28utF1vz27ibbg+XBuePXs2evfujW9961vSNI0bN84LaL344osAQJo/w92vKDIb7tSpk7LMHj16ABDbq7dhd/F2XB+KHa9bt65eYAL4+kVwAHJf9wpt94033shbYH/66af4+OOPceGFF2rb0lDs2C+6Lad3795YtGhR3rUHHnigniGceuqpuOmmm/D888+juro6797mzZvRunXrokeB9uzZg8suuwzvvPMOrr322ryf9RGR1ndRqqqqcpE3Gc8++yw2b97M+n7OqFGjcN111+FXv/oV7rnnntz1+BstGzdujFNOOQWzZ8/G8uXLMWDAgLz7GzZsyEUYwwDBX/7yl9xPqXzxxRf4zW9+Q26Xx0687daHshOxfv16dOrUKe/a5s2b8ac//QndunXL3ausrMSIESPw8MMP44Ybbsgdu5s1axa2bduGH/7wh8p6vvvd7+KFF17Ak08+mUu7Y8eOel8JGTRoEHr37o077rgDZ5xxRr2of2jPjRs3xogRI/DnP/8Zn376aS6Yt2rVKsyZM0f73B778DZcH85uYvjrIDfccAM5z4YNG/Dzn/8cBx98sHbx893vfhd33XUX/u///i/n7G/YsAGPPPJIXrrq6mpUVFTgtttuw3e+8x00bdq0Xp0dO3ZE165dMWDAAPzhD3/A5MmTc7a+cOFCvPXWWzln3uMW3o7rQ7Hj/fbbD3PnzsXGjRtzb1rfs2cP/vjHP6JNmza5RfCBBx6IAw44AA888AAuuugiNG7cGABw3333oaysLO+9KSIakh37RbflnH/++bj44otxyimn4Nhjj8U///lPPP/88+jQoUNeup/85Cf4y1/+gu9973s4++yzMWjQIGzfvh1vvfUWnnzySXzwwQf18qRJbW0tHn74YQBfO66rVq3CU089hdWrV2PMmDG45ZZbtGUU6jtlIh555BGUl5fjlFNOIecZOHAgTj/9dNx7772ora3FEUccgXnz5gkjZ9OmTcP8+fMxePBgXHDBBejfvz82bdqEpUuX4sUXX8SmTZsAABdddBFmzJiB008/HRMnTkRVVRUeeeQRNG/eHAD8b/s6jLddM0aNGoV99tkHgwcPRqdOnfDRRx9h5syZ+PTTT/H444/npf3Zz36GI444AsOGDcOFF16Ijz/+GHfeeSeOO+44jBw5UlnPBRdcgBkzZuCss87CkiVLUFVVhVmzZuV+riikUaNG+O1vf4tRo0bhwAMPxDnnnIO9994bn3zyCebPn4+KiorcS9JuuukmvPDCCxg6dCh+9KMfYc+ePZgxYwYGDBiAN998MxX5eIqHt+FkhE6zKrg9bNgwDBkyBH369EFNTQ0eeOABbNu2DX/729/QqFEjZflXX301Zs2ahZEjR2LixIm5nxrq0aMH/vWvf+XSVVRU4L777sO4cePwjW98A2PGjEHHjh3x0Ucf4ZlnnsHQoUMxY8YMAMBtt92G73//+xg6dCjOOeccfP755zkbphzb9diHt2Mzrr32WowdOxaDBw/GhRdeiBYtWuDRRx/FkiVLcOutt+YteqdPn44TTzwRxx13HMaMGYPly5djxowZOP/887UvKm5Qdlyy96Y3UGQ/dSD7qYA9e/YE11xzTdChQ4egZcuWQXV1dbBq1ap6P3UQBF+/Tn/y5MlBnz59gmbNmgUdOnQIjjjiiOCOO+4IvvzyS2W7ZD91cPzxx2ufKfyphvCvdevWQd++fYOxY8cGL7zwgjZ/samtrQ2aN28enHzyyey8O3fuDC677LJgr732Clq1ahWccMIJwZo1a4Q/SbFu3bpgwoQJQbdu3YKmTZsGXbp0CYYPHx488MADeenee++94Pjjjw9atGgRdOzYMbjyyiuDP/3pTwGA4LXXXkvyqJ4U8bZbHGbMmBF8+9vfDjp06BA0adIk6NixY3DCCScIfxosCILg5ZdfDo444oigefPmQceOHYMJEyYEW7ZsIdX14YcfBieeeGLQsmXLoEOHDsHEiROD5557TvhzfcuWLQtOPvnkYK+99grKy8uDHj16BKeeemowb968vHTz5s0LDj300KBZs2ZB7969g9/+9rfBlVdeGTRv3txIHp708DZcPPbs2RPsvffewTe+8Q1luiuuuCLo1atXUF5eHnTs2DE444wzgtWrV5Pr+de//hUMGzYsaN68ebD33nsHt9xyS/Dggw/m/dRQyPz584Pq6uqgsrIyaN68edC7d+/g7LPPDt544428dI899lhwwAEHBOXl5cGAAQOCv/zlL8Epp5wSHHDAAeR2eQqHt+Pi8dxzzwXDhg0LOnToEDRr1iw46KCDhD/LFgRf/6zZwIEDg/Ly8mCfffYJrr/+eq3MQhqKHZcFgeANUx6Pp6TcdddduOKKK/Dxxx9j7733LnVzPB5PAkaPHo23335b+L01j8djPwMHDkTHjh2174vxeDz2Umo7Vp/d8Xg8BSf+W6RffPEFfv3rX6Nv375+we3xOEbcnleuXIlnn30WRx99dGka5PF4yOzevTv3gqiQBQsW4J///Ke3YY/HEWy1Y7/T7fGUmFGjRqF79+4YOHBg7js9b7/9Nh555BGcccYZpW6ex+NhUFVVhbPPPhu9evXChx9+iPvuuw+7du3CsmXL0Ldv31I3z+PxKPjggw8wYsQIjB07Fl27dsV//vMf3H///aisrMTy5ctzL5TyeDz2Yqsd+xepeTwlprq6Gr/97W/xyCOPYM+ePejfvz8ee+wxnHbaaaVumsfjYTJy5Eg8+uijqKmpQXl5OYYMGYLbbrvNL7g9Hgdo164dBg0ahN/+9rfYsGEDWrVqheOPPx7Tpk3zC26PxxFstePM7HTfc889mD59OmpqanDIIYfg7rvvTu0H2T0eT+HxNuzxuI+3Y4/HbbwNezyFgf2d7oceekh4/auvvsLkyZOTtseIxx9/HJMmTcKUKVOwdOlSHHLIIaiursb69etL0h6Px8PD27DH4z7ejj0et/E27PEUDvZOd0VFBaqrq/HAAw+gXbt2AIAVK1bgjDPOwMaNG/HBBx8Uop1KBg8ejG9+85u532erq6tDt27dcOmll+Laa68tens8Hg8Pb8Mej/t4O/Z43MbbsMdTONjf6V62bBnGjh2Lgw46CDNnzsS7776Lq6++GqNHj8a9995biDYq+fLLL7FkyZK8XfZGjRphxIgRWLx4sTDPrl27sGvXrtznuro6bNq0CXvttRfKysoK3maPxwaCIMDWrVvRtWtXNGpUuh8y8Dbs8Zhhiw0DfDv2NuzxfI0tduznYo/HDKoNsxfdvXv3xquvvorLL78cI0eOROPGjfH73/8ep59+eqIGm/LZZ59hz5496Ny5c971zp074z//+Y8wz+23346pU6cWo3kej/WsWbMG++yzT8nq9zbs8SSj1DYM8O3Y27DHk0+p7djPxR5PMnQ2bPT28meeeQaPPfYYhgwZgnfffRcPPvgghg0bhq5duxo3tJhMnjwZkyZNyn2ura1F9+7dsWbNGlRUVAAAKisrhXlra2tz/w/TRK9RrqvKktWnyquq03YqKyulbS6EfKl5VNddk7GMLVu2oFu3bmjTpk2pm8KGYsNxojqgs6d4nni6uD5F03H1OYtwn5VihxTZq+DYMHfsKRUN1YbD9LJ7FDi2K2uHLXpgCmdM5PogIhnp0qQhVxf7Jqt23K1bt9w1ESb+HwUTH5Fy30WoNheikgnFPxbBGRNchWrD7EX3RRddhN///vf42c9+hkmTJmHdunU499xzcdBBB+G+++7DqaeeatxoEzp06IDGjRtj3bp1edfXrVuHLl26CPOUl5ejvLy83vWKiop6SiP6ynv8yEzoIITXdV+TD++Ljt7I8squU+u0FUq7ZQ6Y7LpIviqZi9rB7Ydo2dS+sKXvSn0ELG0bTqIXMj3RpUtTL1xB9VzxazJ5xj+H6USTd/waZawWQUlnYv9pYaIvpbZhgG/HHBsW2Z3MzmXEdUyUP9Qpmf6G13XzcbxO26moqJDaoOwZ4vdlY2fUTnVpTHSeOnfbSlQWpbbjtOdiSl/ogmVx/1pGVLeo87hOh7ljjI1wfBVALm/VPK/zn+J9HJWrC/Ya1SnRPeC/QQOdnrK/PPLqq6/i9ddfx5VXXomysjJ06dIFzz77LG6++Wace+653OIS06xZMwwaNAjz5s3LXaurq8O8efMwZMgQVlmVlZUIgiBPuGVlZfX+wjThX3hdhux+tC5ZvTpM85UKUfvi8g2RPZvuevRznHjf6drAIV5m2umzSpo2HEVku3H7lekU1a6i5ciQjRO226oOlf7qxkxZOlU9uj6StcE1XB0X0rRjWd+p5g+Z3KjzNDetqD2u9V20vTr/xnSM1NUbRTZmi8ZO12QtIwgCa3b5CjUXh4j6M65v3LlXl05Uv6yueNmuziGAfA6mrldEstGVpSvbVZtVtZn7TOyd7iVLlgijWhMmTMCIESO4xaXCpEmTMH78eBx22GE4/PDDcdddd2H79u0455xzWOVEBz6dM6lKE00bTRd+FkWQqGXKyta12xYo0TKufGWfOXllETpVBM92WbtEWjYcRdansmuqMuL5OPYq06Es6o/ps6n6SpZWljcayNSR5b4oBWnZsa4/TObMeNmqeThEVoeubhf1ifqM1HHMxKZ18pa11ZMeac7FJv1manMq0izLdrh2aeKXqALkqvtJyEqfsRfd5eXlWL16NWbOnInVq1fjl7/8JTp16oQ5c+age/fuhWijltNOOw0bNmzAjTfeiJqaGgwcOBDPPfdcvZdBUEiieFSFUy3gOIu+rGAacAjRyY5TF8fZo5ZZamTt434HspAU0oY5gR4Z8bIoDruuLNv1xgRuoIzjbOvGQlWgNH4/i7K3gbTsWGbDSQJocURjgG6xF88ra4stemXSHp0zTl2MR9PJgpVpbhrYJnsqtvl0adlweHJUhWwHW3ZPlzeaXwVVR1zTJcD82XRyj46Purk3jfWKbg6wrW+o/jT7d7oXLlyIUaNGYejQoVi0aBHeeecd9OrVC9OmTcMbb7yBJ5980qjBpWTLli3S7weKJhzTSBHFSSxElK8UJNkJlF03/RwlzQi6a30SJ9T72tpa57+7JHoWVd9SAzdUfdEdqaKUkQWoO1UhlHGOG1VPY0Hkim1n1YYp3/GlBnBM0lGDQa4svpNgan8ch9tETtw+sLlPsmrHnLlYpzecAK2NfVwsTPWeko67oZjlfog/I9WG2Tvd1157LW699VZMmjQp7y1txxxzDGbMmMEtzipEwqIs4Ki702lE611x2Dntou4666JpovuU3W8RlEEjjUHMUziS9F0czmKykItsW3WKG9Hm7GZwF/CU8Ze6a2cbtvZ/oUliQ7IdWEpabmBHdN/1PuM8q8l9gC8j0bigK6vU8ucGJLOE6hRECHVnmxLsoQbPS60ThYCq9yYy4m6MyeqKludqX5i2l73ofuuttzB79ux61zt16oTPPvvMqBE2ohoATBfIusV59P+6Y1iUul1Q4jRODpjsbOsCJibYEBBxdQArBpS+Ndmliec1vZ9GoKeYRNtLDUDKUE3SpmMhZXfdJnlScK29JoiO6Yn0Q2erJgtl7q5uvC5RHa72GVd+KhmYzo2yfK6MkVFsbVcpoCzkZFBOVuj8voa0IxtiOraJyjAdC1wdHynrFOrLENlvL2/bti3Wrl1b7/qyZcuw9957c4uzivhPW1D/4nl0iPJT81KxRZFFUccoHPnJygqvi/KH9+J54591fat7DlEZpUBVt0wWWULksMf1g6NjKt0CwOpvqg66AqW9YRqqzpnYcpL2UdtjKza9lyFNKHrDHdN184fLtmhK9Lmp8uPahG4Dg9OHrkEdp2x5e3mhkI3rOt9Q5R+q5mSZHtk+nqeJbkyTyYRia/H+5MqbM67bgC7Ixxmb2IvuMWPG4JprrkFNTQ3KyspQV1eHV199FVdddRXOOussbnFWIRr40pz0OZ3j6iQTh2PApoNEvBxVMIM6cMfblIX+iOthFh32qA3L7NNkQNfZOsd5oNbhCpRJlRrEitu4ylZ1tklZwOswCb4Vkyw66/FfEVE5dSL9oDqCovshOv2kXrcFyvPo5leqLZjYiOuLaxlZepYkUBbIaY2tnDJ0+lbq8V5Xv+g+1WeNpxPNvXF7141/ujLi6UXYPgYk9QnYx8tvu+02TJgwAd26dcOePXvQv39/7NmzB2eccQauv/56bnFWIXrbYvhZNglFESk/Jb3MYZTdE8FNXyio7Yim48jFtA3xfpR9jiPq/1LLOC2iLyzKIrJ+ii/mwmvRPKpAmyhdONFQypC1z1W9UtkZJ6/oumrcldVBaYPpuGpbH2XRfqPzMNemKHlUfagaM0T3OWWXEup8F0U3V8qePY0+i18X1WGTrG3xv2yHszjRpdWN/6K03P4pdX+a1K/LI7NLjox04wl3zBC1Q5XGJrg+D3vR3axZM/zmN7/BDTfcgOXLl2Pbtm049NBD0bdvX25R1hHfJQPEzlZ4T5aGutgWfZY5d7oydREtXZq0SHsBHS1DVgclr6yPqO0V9b/tg0EcV9ttikxvogtkXR4daU7wrsJxqmXXZXaZRIaqMZRabkPpQ5uI73QDYj3hOjtxVA4hdX41WbyWEo6fIPNzdPlVdcrKTOJT2SBfG/rWNlQBQU5QlRpkVZG0f2wL8oQUIsDAWRhTN7NMFvSlxGTNQd3EYi+6Q7p3716y3+UuJJSIq2yi4JYZL09UVhoKaONkRNltMIl+y+rgBkJk2Dr4UojLKYtHU6OoHDrqTjfVsc/CSQhT5zoaxODKNY4ov6mtNgSyflolRLUI5u6yFFt/SjkecIPLUZIudlR16PpMV0Z0XHB9vG2IUE6I6fw6mT2LgupJN4Ns1zGVbyNKE/03DiUwp8uTprxKEVQrZF2kRfekSZPIBf7iF78wbkypER1rC6FMTiEmi0JdPYXYQS4mlPZy5WayEOJM6qI6XZG3ivAZtmzZUuKWFAbd5KLSG+qiUJTOZLFqE1wHJOr0JN2pVjlaXOeUu7B3CdfGfRNUby83WahQx3hRGluh6gHHBrhjHneslF2LXjdZBNloEza2qdhEA4Iy2xON8zpb16WjBMBt96d17VHd5+bljKlUX4rbhy4SfzbqJhZp0b1s2bK8z0uXLsVXX32F/fffHwDw7rvvonHjxhg0aBCpUlupra0lGXSSSJHuPjUy7ZqyUtrLmbxV10WkFdl0ZadbtUPoQvuTkCTIRd0NM5Fh1uROcapNI+AcWWV1zIzSUGwX+HoerqioSFwOZUfMVQrZdu6CvhBOfNxmVX1nYz9y/J0s73hzfTpVGpMNsaTtLBXcNYTIHribD7pFuiiPDkqf2RwkF7VN1l7qJhZp0T1//vzc/3/xi1+gTZs2+P3vf4927doBAD7//HOcc845OPLII0mV2oxMmSm7Y7IyOIOGjYpXCDg739zBwmRXndpHrvSD7TsBhUSnH0EQ1HPEdRMTxTkspFNvex/qAmLcdlMmuyTOmO3y9HyNahFGnWepgbWoDXu9kGPirFP7hLMzaWMfcZz0kCAIsGXLlkx/TYQShKUGvHVl2qobaZJkp5uLSQCc04c291UhfAj2d7rvvPNOvPDCC7kFNwC0a9cOt956K4477jhceeWV3CKtQXWszSQyFydJRDircI6mUuWrKjtelgybBwIuWXoWHVEbppxWSDrRRz8XUs4296Fq4qdep97X1VuMvKXAtfamBeW5ubYrK1vlAGZlMZ7EWaf6LaJ01AA6d5fdNmxtV6lRBV2omyimARsTbLN3080BbppouhCT9Qp1HLVFvhyStpm96N6yZQs2bNhQ7/qGDRuwdevWRI0pNZTvoIgEbjpBmESQijHgFBPKLn8IdTBQDei6snR1uyTnhhjkER1NNRnoZYtySqTeNced227Kc1BPp3B3rzntMWm3DXB2+bP+MkTKOM21VdlCT0WSedcmvePYbAjV4ZeVp1p8J90BzwINYV7mBKuT7nSncWLFNn3jrDGS2KeuTqq9euSwF90nnXQSzjnnHNx55504/PDDAQCvv/46fvKTn+Dkk09OvYG2UIhjBiIFpe76UtplMxR5cvOqBgTdAp17vM0FuCcFGgqUY4/cqHDUeeAGdEoNt31p7D5Sghi6etPambMNSmDX1WdLE66OpTnGJwlAuQZ3h1t03XR8NZGdbQt1SjAj68fLZVCOFyfx97IGxbfQBba4J3FFaxBTf9rlftEFGlJ9kVqU+++/H1dddRXOOOMM7N69++tCmjTBeeedh+nTp3OLs4ro28vjRAXOnXx0huKyIqYBJ9KmSs+po6HLvCGgOroom4B0xx05Dh3Vzm1zEpMcAaNGwDkLIVlfJQ2kuUSWnoUDJZBFnQ8o+sINZmSxP0wDOZw5VhdEony22bGnnFaxoZ2FJsmpEurisCHIMYTiE1MXvjLb0sldVRb3xAol6GILabWTvehu2bIl7r33XkyfPh2rV68GAPTu3RutWrVKpUGlRBWpoOw+UI5GihApHndXxzUoO4SySZw7QYvKELVDVaeL6OST1eh6IWyF4zwUYue4mBSyPRxbpbYrjZ1L28dXW9tlIzonkqMvrs8LJkFDro3qAmyc9nAW0Db3AcVfzDqiTSyKTpnuxFICHa6R5okQ3eJbll7VBtM1j6xNLhL1pymwF90hrVq1wsEHH2ya3XookRlORChalkpRkyqxLSQZ7Ex3uFXR8KR1u4iNOwDFgLoDmqSs+H1qGhW2OAhptsN0QudM9GlQaplziR5py3LgLIQSSNXttpjUK6vLdriLbZOFsi4vpa+4QQ1X5B8liexdJvoTvHFEPm8cnb6ZLDRtmWOppNl+07VFNL2p3FyRNwfTvmAvurdv345p06Zh3rx5WL9+Perq6vLuv/fee9wirSJJJC6EerxD9Jk62dg+eHAic0kHAxmUIzdJnH9XkD1DFp11ESaTc0iSnSJZGUnaWQy4soheS8PJj6fTReip7XUZ2bhFja67CmUXK55Wdl9Wtu6a6rqt6HwO1Q6zTq7cOZNykk9WNrVOm8miT8GFa5uUvJxAka4sV/rCxOeVpdHdF9mg7mQKtY4sEB+TCvad7vPPPx8LFy7EuHHjUFVVlbkoHdVIVWl0eZM48LrrhSRJpEtUFkBzfGRy40RIdbK2Sc5pI5NnVnfJQigTLGUCF5UpmpCyrEMAbZfKNHhF2dnkLNQ5dbuArO1Ztl9Ar0+iNNRdU1U66k677TrF0X3qjjX1mUUnzqhyzPJYKhpHs/pVL0oQRbfZUsjTJ1nQpyiUtYSpnFV9JQu6U3B1fo4/I9V+2YvuOXPm4JlnnsHQoUO5Wa1H9Bu/osgO9XgVZ3JyIWKkagO1nYU8+scpg+s4hNjQD6bEnz3ru2S6Uw0quPYompBc1hURlN0DXZCSuygXjbe6dmVN7g0ZlT7JgrBU21WNB64usuNw5mNqsJtbN2VsdHVn26R9SeXqEpRnpdoYZ7ecOgbYrl8hSU516cY93bNH0+v600SXbZd9SFq60oiboV27dmjfvn2iSqncdNNNuY4O/w444IDc/S+++AITJkzAXnvthdatW+OUU07BunXrUqk7qmDRzzpDj0fLZYNMOBFR89iCrH2ynb54+jCdSJ7xvpbl5bQxKmOVnLnP5SKlepZi2nE8cBbVteh1GTI9idusCKpO2Qp1vDIpiypXkf3LbFh23VU4+lJs3SrlXAyIdVCml7J5RJZOpT+26lbSsUa2yFbZZJI2Un0nE3mXcpyl+D26sTAIAvLR1KQU247jOsSxNZ0emvjOsjnEtbk6DkWuMr9aV5bIn5b1p63jZSGIj1lUG2Yvum+55RbceOON2LFjB7uRJhx44IFYu3Zt7u+VV17J3bviiivw17/+FU888QQWLlyITz/9NNFvhdfW1kqVJnpdp1jcwUA3INs0KHCNSidP0Z8MrqGrBmqdXE0X/DZTSh0qlh2HL2/R9SlX1yg2H/2/i4tB6qJEJF/TBQ7FoZLdkzkRnPHWJkz0pVjOOlA8Gw7feizSC5UDGIc7T8fLtxnqHMh1sFVlxcvU2aHIZ0q6ADBNU2goz24LxbRjE3T2rNMdjv1SggGFhDreUO1bNQ/K/G3q/MlZh5gERGxHpyMFO15+5513YvXq1ejcuTN69uyJpk2b5t1funQpt0glTZo0QZcuXepdr62txYMPPojZs2fjmGOOAQDMnDkT/fr1w2uvvYZvfetb7LqiP3EQdfiihIoXTRNCVap42RRjt2nQToPos8flIJOrrE9k90WDkcjBEJEleXP0rFAUy46jNkydHKJpdXlUsjSxa5vR2YYogCEaL6PIbDcORYac9lHy2YxsjCzmV0SKORfHEemXbh7WzRuqsl1HJxvO+CW7buIHmbTLBXRBCl2aYlIKO05iY9Q5Jb7IE6WVtatUJK2f43Po5KirQ5VHVrZtul8IwmekviOJvegePXo0u1FJWLlyJbp27YrmzZtjyJAhuP3229G9e3csWbIEu3fvxogRI3JpDzjgAHTv3h2LFy82GiCiuwYqZzCpU0cZeGxXVuqEq5vIKWVwocjMdJCI9r8NJFmcFJNi2rEMysSvW4SrHFBZ0MhVTCbptBY4IgdKlYZy3/YxVYUNbS6lDauC33GoQVvVwtN1ihFM1tkyx8+RXc9Kf6godrCnWHYc/ckw3YaKChMfM+nY75r+FWKxLcsfLcO0bNfkq4IbUGIvuqdMmcLNYszgwYPx0EMPYf/998fatWsxdepUHHnkkVi+fDlqamrQrFkztG3bNi9P586dUVNToyx3165d2LVrV+6zaLcgjcgcNXIswnZl5E7qqmeWBS24jnsag4NusLatXyiLwKSDblIKYccUG1aRdHcri7tjcXRRbZGuUcugOkWqsrk7ILbZrg5KgK9Ybzwupg2Lft9XFQzjLKqjZMnxi2MiA90JMt18opqvde3JwmkULlGZFOvt5cW0Y9XzRHVFd5IinsckoMTVp1LrH3dMU9lxCDVIzfFpTBfZpZZvGsTlVLCd7mIyatSo3P8PPvhgDB48GD169MAf//hHtGjRwrjc22+/HVOnTq13XfT2cs5kQI3iZXmyl8E5/kJ19nWDtWgA4kZAXekjkZ7asiAshB3LbFj0HVfRZCLTGapDWepARjHh6BF1zOOelBHRkHa64xTbtotpwwDNLqky0M0TovnCdR2htp+y20+dlyllp+V823bijINucVlIij0XV1RUAFDrkG5uMPGjufOzbXZvupgV2YVsDOW2QbSR42qgO0lQUpaHGjQjvUitffv2+OyzzwD89+3lsr9C0rZtW+y3335YtWoVunTpgi+//BKbN2/OS7Nu3Trh91WiTJ48GbW1tbm/NWvW5O4FgfpNqCriaWVlqfK6juw5TGQRzxN+lsk5XmY8mipKE68jS8jkF1Kq3wVNw45lNqx6e7lJX+v02TX9ET0LdeyhPLMujUlfxO3ddKx0ra90AYcgKN5bj+MU0oaB+noi6jtdf+rGetGcJJsnsoZoruTKM4QzFnL8AFXdttqx6HnSmIcKRbHm4hCRXcvuhVDlFZU9d34udZ/o7EDWPtF4pZsnTZ+V0ielliOVNPWCOxeTdrr/93//F23atAEA3HXXXaSCC8G2bduwevVqjBs3DoMGDULTpk0xb948nHLKKQCAFStW4KOPPsKQIUOU5ZSXl6O8vFyZhrLjxY3EqT67oKgAPcKluy6KzFGjTqIyRNcpUHfgould6CubHZQ07JhiwyGqvqXu0sTTqXSOawvFRDZRiqC2V7a4jt6T2arOpinjrQ1yTQOKTonulYJC2zBlPNYt1qhjejy9qI5Sy1uGaftE8zFlrla1QdW2pPKzVf5xRGO+bgwMguIdL49TaDuW+VfR+7r5R4YrOkEhTfug+jRxdHMzp4ys+dMAfz6RQVp0jx8/Xvj/QnPVVVfhhBNOQI8ePfDpp59iypQpaNy4MU4//XRUVlbivPPOw6RJk9C+fXtUVFTg0ksvxZAhQ4xf3BKNVMicv+jkpHOEbHOU0kD2DLrrnEWKbtAQ9YkIkUFT65BhWx/qHCVVGup3UJJSTDtWfR80hLqzEs2rkm8cro3YBsWuovc58pR9NpEn9b4riMY3ncNeLEe9mDYs2yED1DqX5s60KzrFDX7L8pmkpQa9VY61K3I2hRPkLAbFnotl4xMlmJZ13SgUSYMYqnRpbyi40seq4D/3Gaz+TvfHH3+M008/HRs3bkTHjh3x7W9/G6+99ho6duwI4Osd+EaNGuGUU07Brl27UF1djXvvvTdRnRRB6nauZelk5WQRzu4CN6JJXUTZvFOUFhznqVSTWTHtWPWTYaLTFVS9oJxaSbpjbAu6CTVJwIErC9H4QM3rmtxDOI5osQJnxbRh1XdBKX3KXXy7ph8qODtMovSqsnTX42VH02d1/k1CKcanUvjUgFrfqHLQpWtIOqWSJzVIrfMPOfqZtT4R+TyyzVZ22YGrUkmR6NEencNJiXhQP8fLaQiY7Hhz+sS0TF17s9RHcXlFnVxXCW1Y9CwUJzBOQw6YxaGePBFd4+yGy8rmRtVdsVmTkzrxPCq9d43os8QDCSK9op5o4c4nDQmRPKnyCqHYvO+D+kSfuaHasepe0sB4Q0QV/I+mUUGZs5Pu9maJUAahvuts2Oqd7mKj+p1u1QQiyyMjnp9jKKVQ7jTqphxZ0X02qd/U6Y/ndwWRrLg7FS4j+gWC+GfOTreJrLI2EemcHBXUBTtn5zLJTrxNUHckgOzplArVzr3KHqm2LCszi+jsj7LzqJs/CrEjZtvGhKn9qQJnss9ZQfU1kRDRDmIaGyLcgJEtcAMOqrmPEywXlU2Zo22TX6GgBsAp+EV3hOjRVJViUg1BFznmOPSlVO406tYNftE0MrlxJ6uooVADJa4PIpyBsVhHU0uFyv5kusN13EUTkus6REXl7MjS6mzZZGLXjRtZ6I8sB8ooqOZhrmw4euHqzqzprrUojU6+Jv6NTn62yTWN9nD6ICuY+LhU/zr+mTIH26ZXcQrRPl2QTBf0EG1WxLF9PKSikoEuuE/1pf2iW4JKMak7P2kqoCtKTXVSKIOx7plNZJLGTqYNUGRju64UCpNgjamONVQZR0lypC3JLrquLNf6hrJzE+LquMVFF9CO/1+Vx+QkhGt2r3Oc46gc6qQBB5VuZjEwFoWyqdCQUC2cdXJJY+5wVb+48yPnBBBl0yqaXrXhmNXAd7T9ur6gbmKxF93bt2/HtGnTMG/ePKxfvx51dXV599977z1ukdYgevMxR4l1kSNdRFiFq0obwtlV0F3XyU20o8mVX6kHi6SLvSTPnhVUk4tuYZ5lmXGdZupOs+gad8Kn7F6aBuNstwdVu2TPksXTKqIXqYVQdl3i6HbKbNUHE3TOryw9956qzDTrcAWKT6dakJTqJ8MKDfV0BAVZHs5Ot+1zAJUk7ecGfVQLT53euyZnVXt1ulOwne7zzz8fCxcuxLhx41BVVZXZqB138uKUIVJcV5STuhjkDG5pOceqwde1HUvT9ogGSNmzZ3GSB2j6o7NrXcTWpA5bMY1OU06pUOsKoTiruusybO+HOC7NC4VCNV7rAjpZ2W0xwcT5NbFNUf6GCEe3kviUWUG0MSJDZ8ccXc/aGJBG0CKJ7mYVSiDH1G7Zi+45c+bgmWeewdChQ40qtJnoIoQycVN3yXTK7pICUyOIHEeYuhtG3bHgGIwri3AqlJ2grO+Shc+kirJTI/CUqHp43ZUoL9dpoQQgqDtqMrnK6lLtostwfbFFaXdDcdhVukfV0zgN0cmkyCLpOKCab1y3SRlJgoZZJzoXq3w3nb1yg66ism2Cow+ma4skqMrijhGc+krRVyabK7I0BTte3q5dO7Rv356bzVlUDmYcnQImGRxcH7jTiO5SZaAyENtJussfQokgZ23BDYifibJwMw2+uKZfHExsVndyQJcuDVzrE9k8QXFMsxg4U6HSG2p/c5x1V3SIispHochFVBYngE0N2rsGZ/GR9UCZCNUYR13IUbHd/6OsJWR54lAWhar6OfdV8xF3vFQFT4uJbgzj+I7Ut5c34jbylltuwY033ogdO3ZwszpBXAlEn2X3QsrKyoQKHb8e5qeUUWrljCNrX/x6+FklV92zye5H5SeqW5RX1h5bMG2X6Dnj8klahwvU1tZK+zz+WXQtjux6SLQuXVrXkdkbxTbj103skCpfXf/bhmp80+XJ4oK7srJSa5+qOTOuWzodjF93cWzkjmci+6POw/EyZGWLrsva55rNhiTxL6L6Fv252qwQ/hqQSD5ROen0iDOf6/w/m6C0S/fsKt/XdEyQtYGj5xy/qZCk5TOo5BNeL9h3uu+8806sXr0anTt3Rs+ePdG0adO8+0uXLuUWaQ2qF6mpIkmyyJAsIkKJvtk6UITI2kd9xrhCi+5R8orSRfNTZJ0lRAvAhvLsQP7P/sVRyUOnzxRckbPOfnTXVWXKxkJZ2bK2yCZ/UV06bO0XzjzQkGyZunuvk41MJ+PzdhaQ+Rqyz2nWybFhWZpitLdUNEQbDjEJnOj0J8m85Aqm7ZYtClVly+6L0uvaY5u8TdvBGY/Ce9SXIbIX3aNHj+ZmyQTUaIkqrc4JUKW1HapDk+YzcyZ32eesIJKdzgnN6tFU3WQdRmijaZM6RtEybYc7TsWvy9Kr6tKlVck/vObamKiD4sDIArtZkYEOla6aLrZ1+bMEV0aya1F0mwmqPFkLfFACDlSfKItQN6SipCkP2/UrLZ9XNF/K8srqpgTOqRuLWUYmX+ppFfaie8qUKdwszhDdJeNMILL7uuuu7HQn2ZHhDLbx+rjpksjMdQfMZBLL4oI7CqUvTU9TyNJlAY6DHocbcJTlowSRdHW4iugUEDV4kQUop1UA/qkK6nWXoepLGosekxMzWQseUQI5DdGGQyinFrk6QUnnin6ZBgJV+agbCibBs4YG5XRkmKZgx8tDlixZgnfeeQcAcOCBB+LQQw81LcoaosfLVYrLXezZNgCkeTyTGrlOsgjnROLi16kDeqn7xtRZkt1XDRIhWdzpFv3Gr8luWVKHPgtQA2gie4uXIfuss22OU2ZLX6R1eoJiw1l0kFQ7BiY61xDQ2VmIynZ0tpmm35DVUwcUm20oROdiGaqAjCiNKF2W5MtdS1DsPmkgjhP4ToNC9muSMUw3phbsePn69esxZswYLFiwAG3btgUAbN68Gd/5znfw2GOPoWPHjtwirUH1k2EhoskpnieaVlSGimIMJKZlRx1galmcuqgROl2+eJu57UiSzxTThYTKMdIN0Fl9eUscyuRCXXyrPut252xzDri6pbsehbvwSRJlt02+3DGSclSwIe1CqBwXyhifph7YplshsmfmBmmj6ag6luYJszTLsAmO3gRBQHbYXYLzXgYTVP5h1vQpxMQH1gW4dItJkzEwybhZyPE7TX0zhf328ksvvRRbt27F22+/jU2bNmHTpk1Yvnw5tmzZgssuuyxRY2wgOvkA4p1tXV5dGaoy43ltgtIu3bPKZKQqK0wbfpZdN2mvDJv7QYWq3fF7WZvkZah0TtfPKt2iTvK265JujJO1X3Q9bpu6PHGbjqejOq02y5cKRz/D61kMnAE0ndPpmg7RXEVthy1w59f4/egcWqg2uYjpM1B0UqR3DWUujmMy7zRkKHpJnWOp6xLRmMvJU0qo7aDIRldmwY6XP/fcc3jxxRfRr1+/3LX+/fvjnnvuwXHHHcctzno4ESTTMqOTng2KyoG7C6YbZKP/6urQlZNFqKcAojuvrjtASSlE1NVVexVhGtEWjV+ie6o6demjepwFWatQ7UDEZRDey+qiW6UP3DwyRAGOYlKMcYm7qyUqS5Y2vK/bTRKdArJ9/Ezq24lQPXMWd7oBvZ6KrnHnI9P5q1hw2kUd91R2zbFxUXqO/CgbZ9wyC4msPZS5wFQ/47AX3XV1dfV+JgwAmjZtirq6Om5xVkH5yTDRYsbUMReV6RppOtVUh4E7qIiwbTCgwhnkdPLM6kQfInM0fUBCjM5mVfLUobNZ6jiiap+rqJ5dJ7ctW7YUrF02oFvQRdNwy0ribKZBmgE96typqpMa9Ka2JUQ0F7m2CA9J4njbonfFhKM7Sf1q2+RootOUtYIoHWeRqKtT1W6u3drWJ6bjTvS+zP+hviOJveg+5phjMHHiRDz66KPo2rUrAOCTTz7BFVdcgeHDh3OLswrR28tFyk2NOlGVXTQpycq2BWq7dLJR5acujCiOBDWPa5gsHrO+0NQtDqN9X4gdDVfh2Gb0vmhHNl4m9b6qHup120gyVursO6s73TpEi0TuuGar/hQyeKyyR9k93WKRcp3j1NoMd7eQsqnQEKCM+yYLIJtJ046p90X1m+6ei+rgyt7W9UuIyeZgUntmL7pnzJiBE088ET179kS3bt0AAGvWrMGAAQPw8MMPc4uzDqqCitLIrlMieDY5lqp2JnVsOBOyyUDTUODIRuWwZ3GnmzN5cHcdVAOtrROLDNNAn2qS4Z5CodRt+8Qtg9tu0TzREHe6VW89NjlV4Zre6FDtSodw7Y2SN54nK4ujJFBkQN2kyRoqO44+u8niT3XfRUx3o0X3w3um80+8HNVYw92Bt73vKH6hzH4LttPdrVs3LF26FC+++CL+85//AAD69euHESNGcIuyDtEgQYkgxa/LsFXR4lB2n+OkuVNvOkllcfLS7T7Er4vyyQbGrDrsnEAC1yZ1cncJasRWN6FSdC1eVjx9kjJtxWRXLJ5P96xZDJqJfqdbJDOOHEWf45js5NiOzpZVgXWKbYquU2RYSlsuVd1ZX2SL4JyCSBrMcW1+EFGItuv0jXrCxWRdYJoubZIGwCmnZqn+NGvRvXv3brRo0QJvvvkmjj32WBx77LGc7E6RZLfXNeM3WTBzneokg68scqeLCppMbqXuO4pTlLTMaGQua6gc9qhMuTuyru+eJQl+6exStQCKI7NpWT7OAtR2uH1AOUWRxdMqonerhKThtJsuyosNNeCqyssJVFPnf9NNB9O0aVPqfhbJM4vvV4k+j2o+SCsIUep+5SI6cZd08ao6xWcKx/93Ha5fGM1D9adZPxnWtGlTdO/eHXv27OFkk7Jo0SKccMIJ6Nq1K8rKyvDnP/85734QBLjxxhtRVVWFFi1aYMSIEVi5cmVemk2bNuHMM89ERUUF2rZti/POOw/btm0zak9lZaXwuEuUUKnjzmCWlC+Ugeq5TJ85zKeSs0y+suuU9nLbVyq49cvkGJdZoZ7JNhsG6ssk/vyqezKKIctCYmLLOvuK3g8J08b7QNYnurpdQjd36J5JNTbK5JqWo26THet+pzuqi6p5WDc22o7MRlR2Fc8rgzP/ev5L3A5lclTJVzdOmGKTDcuI26/O16bouquY+HkymUTlqvN/kkD1tXX2UWi4MhDNK5wACEe+7N/p/ulPf4rrrrsOmzZt4matx/bt23HIIYfgnnvuEd7/n//5H/zqV7/C/fffj9dffx2tWrVCdXU1vvjii1yaM888E2+//Tbmzp2Lv/3tb1i0aBEuvPBCo/aoIhXRTqQ6lDpKqZRRCjHJchbIsolMN8DIyo7WkVUok71Onmk47C7YsIkDZOJMZRXKYka1QDCRoy1jIwfTgBll/ojLN23Z2GTHURvmyLSQzqZNUAL+ormQKwtd2bo6KeOuTTZOaQfVKRfdV8kti3MxIPcDRWl0aQs19pUSqi3p5lVKEIMb6FbN8zpKvUnBrVf27Cq5GvvTAZOBAwcGrVu3DsrLy4P99tsvOPTQQ/P+TAEQPP3007nPdXV1QZcuXYLp06fnrm3evDkoLy8PHn300SAIguDf//53ACD4xz/+kUszZ86coKysLPjkk0/IddfW1gYAcv/q/kRtNxBlppDJiHpdJWfddUq7OHlshCsDjt7W1tam1kYbbDjaHqruiZ7FRT0xgfqsFHmalkG9b9JuW9C1VyTX+D3ZX1o2HNZVCjumzL/RNqY9ttuuS9Hn49pPknnYVM4uj68mtppEF0XzVxJsmYtN9MvzX6gyEo0N1DGA05asw5GNaA6m2DD7RWqjR4/mZjHi/fffR01NTd4L2iorKzF48GAsXrwYY8aMweLFi9G2bVscdthhuTQjRoxAo0aN8Prrr+Okk04Slr1r1y7s2rUr9zn6BfhAEJ0UXY8S3ounpeR1DdkzxZ+ZShDIf09aJz+KnGXtdA2qDCgUK0pcChsWfaebQxZtVofsWUVRbtV1Sh6dXDlyd22c1clZdF82NoYU4zvdhbJj1TwcR9TX1HkihDqf2Eq0fVQ/RXc9Wh7XfzGxdW47bYU6jkVP3KnGzUJjy1ws6meqHevk55oOUaDKQnVdl5YqL45cXe0Llbx14xvVr2YvuqdMmcLNYkRNTQ0AoHPnznnXO3funLtXU1ODTp065d1v0qQJ2rdvn0sj4vbbb8fUqVNJ7UiiNNS81GNNNsB1mk0cHKoyh+lMlZ9Tt2iSsKVPALO2FNphL4UNi46XUwITpXQGbdQngG670QlJZ4s6W1bZmyyPbXLjkmSMLMYvEBTKjlXzsCwAq8J0UW2r/XHgBqZVz6oL9OjGU874oGt/qUjaHpFsTHQ6LUrlT3P0jutbyspWyd51KLbIDUZz0hVigW4jqqCkDKo/zf5OdxaYPHkyamtrc39r1qxJVJ7o/D/lOwAm35mgfhfKpe+8yJ45Ltf4n06esp1vinwp6V39bpFOBi5AseH4c4qem6p78esiqLapa2ep4Ywx8Yk4nlf2bBy5yuy/IRIf+1x+47HKhmX6EH3+tPQiS/okmxN145xInrrrIdT5mNJeV1HJRjYmRv9c/iURmR1T35FEvUfVFdWYYJO+UQOJVH9UlieufzJ91M37tsoxCbp5JppOdo8Le6e7UaNGSmGn9WbzLl26AADWrVuHqqqq3PV169Zh4MCBuTTr16/Py/fVV19h06ZNufwiysvLUV5eLrxHifpQI2ycSFw8jw5dNMtlJ4K785Ak+mcSDaT0o6d0NhySRv/obDj6OWt6wdl54I5bVFRyVQXDTOpyAdn4VUgKZccyG6buGOjG/az1v+q5VAErSlm6RZCoTKr8o2VnyU8RQfE94rhsw4DcjqM2rJpH05ZPPBAcpRT6ZqL7XD9VJE9d2aoydLhqtzI9lCGSiaxvCvKTYQDw9NNP46mnnsr9Pf7447j22mtRVVWFBx54gFuclH333RddunTBvHnzcte2bNmC119/HUOGDAEADBkyBJs3b8aSJUtyaV566SXU1dVh8ODBieqn7LxQ0kbvJ4kOmUSwXUEXzdNF0HWReFGeeF5KlE80aLo6+BSDUthw/LdBdbthVJuU6VzUDrOCiV7H88h2y2R2ptplk9VFtWlXoYxDxdghK7Ydh98FFdlriMimZXOi63oQwrFL3TNT5jPu57TaXkpMdUU1P4iuFVsfS+VPU2xRJo+4PVP1zzY9U+m+zrflplfNsTo56+C001Z041BcdvGAoUiXw+vUU2fsne7vf//79a794Ac/wIEHHojHH38c5513Hrmsbdu2YdWqVbnP77//Pt588020b98e3bt3x+WXX45bb70Vffv2xb777osbbrgBXbt2zb3MrV+/fhg5ciQuuOAC3H///di9ezcuueQSjBkzBl27duU+GgDe7gl350VWl8i55EauTdMVGl2EjrJg0UX7dM5F0vbFy9PlaUjYaMM6u1TtQlAjzLLJS5SW2l5X9Iky7snkGEd3P8nELuszV+RMaWdax8tttGMdMj2k2r8rekCB6rdQnl0mR+pcKVrMuyJzjpxE6eKfRf6iKO2WLVsS27JtNlxbW1sQny1LiGwlCnWMU5WR1v14wCPLiGzURJdlhafC6tWrg1atWrHyzJ8/PwDq/3TA+PHjgyD4+mcObrjhhqBz585BeXl5MHz48GDFihV5ZWzcuDE4/fTTg9atWwcVFRXBOeecE2zdupXVDs7PDUURtV2UR1YGpWwd1HQ2I5OXTq7UcillU9uWJdL4mRIbbZjTxzpd49i4rGzX0NkMJ6+sDGo6VXuyDkWn0vqpIRvsWGS78edOooOukuYzU+WbZN4V1ZlVTPRSlCeLczF1HpClySqFmEcpOmgq9zTrKDVJ2kV9dp0Nl/3/iROxc+dOTJ48GXPmzMGKFSuSFld0wihjbW0tKioqtOm5UVAZ0fymO0OU7rM5yqza6ebsWMrS6eSqk7esbk47bYWr9zYTfZZwx4DTD2naW0OEaz/U9KJTCbq6Tfrd1X7Nog0Dcn2J6gV1rtThug4A9HlOlZ47F5rMmVmQNWDum4jSAtm3Y5MTFzJ0O44u6xZ1LKP4sTrZy+rIghxNUT07de2gs2H28fJ27drV69itW7eiZcuWePjhh7nFWQXlN35FkxNlQpOVFaajTpay66p8rhmPicMgS6cbeEwcNtURMk/poUwuvg/1cBwl6pgoQ9VnOvtP0ne2O266ucTltx6rSHIslXrcz7a+ToJpUDl63dSf0QXDXPZF4ph8HS1+z9UgvQk6WzTxp6k+sa1w5tF4nng6WX5RPdRx0fY5kYLp10MocOUZh73ovuuuu/I+N2rUCB07dsTgwYPRrl07o0bYQvQ7KCHxzlBNIDonVdVJpt9P06UvNlwlVg08nDzRuil5XBpAPHSogTPR/wG+3YnKzYpu6WxG5VSbnhwR5Td1Uk3y2dB3FD0K7xXjd7qLDffEWfwzdRHoyk4sp01JdrN08uTak00yNEWmM5zxTbeYLLXPVkgom0M6v5kT1HEN6pqBI4Okp86yoI9J5gBVetk1AOT3MrAX3ePHj+dmcYb4m49FRCNzXEwWxtyoU6kHoDTq5xo9Jcjho/UNA8rOn2qi1y3CVZ9d1QtT50X07NxdRlFZJm0R5XWtPyhjTfyzy7/TrYLTl1SdcSXoEkcVHJCloe6YqfKYBqpV/ZFkp7jQiMZwqp/FCQBlYVFDRadLqnmT6uvatvjmtJtrY7oTKyb6Rh07dPWUCpOgpMl9na9Ihf2TYQDw8ssvY+zYsTjiiCPwySefAABmzZqFV155xagRtlBbW4sgMP/xeVneePoQVV2yPA2JUD7xPx3R/pD1TbzMMF1c7tQ6baYh6VJlZSXL3qj9rdMDl3WEa1ci+cbtTGZv8c9x+4t/FtUrG39dh6Kf8etZPF4e/31fmc6FxOWmk1kWkNmPLJ0MkZ3F73HtTVUnZRzlzPVpYhroU417orSierNoxyJE80Bcz7g6YJuPRh2PROjGO1OfOJpXNp/KfKFoHbbJGihem3RriYL9Tvef/vQnVFdXo0WLFli6dCl27doF4OsF62233cYtzlo4Ew130helj5clK1M3ybqCarJPakQm+amDmIsyt3GgLAWUiV1nuyYTKLd9tqNaQIfonkVn89FxTlY/10mzTb6UxaFuvM/qTrcO1eLQNHDmEtQ5k7NApspN5rxz2qvDNluV0RB0LQ1Uizxu0NcVKOOR6JroT7dQVs2X1DpMdNa1PolDDXJQ9JQ6F7MX3bfeeivuv/9+/OY3v0HTpk1z14cOHYqlS5dyi7MWlbNjGsmSlakyLlmdrpMkeqaTv6g/ZHLVGZ1ocHN9oAnJosMejTZS9IpqZzrHU4QujSs2Tgn4UR1w6uJAtPCktpNbd6ngOOwy/cvqDhkl+CzLoyML4zf1WWV6ExKVBTdQRimT217T9LYhGr9UC6oszsWA2ckFqp7Zjm6uo/ibJoFE7jhI8Z9luNYnSXwuXZ9R52L2d7pXrFiBo446qt71yspKbN68mVuc9cQ7JD6Yxu+pyhA5qtR6ufddQeZAydJGkclVdl1FPE80ICBL6zrRn9fKErL+MdELma3r6hLlpehWMdA9UxxK4EKWJurQR8vSpRf1lci5UOXJip02NKIvNNXpieoe1WZd0xeRvVFtQJZOZWeysjjydUm2AF0GMt9DtthqaOiemTN/ZgXV88j0S6Zn8XSqtJyFNJes9RVlfgnhype96O7SpQtWrVqFnj175l1/5ZVX0KtXL25xTqJb7IXoOif62XQStQ0Th576rCYLn3ga2SAmMxjOIsBjN6KJSacXSaDqr6xNhSJp+aLn0jmfXPsSyYIqnyzapWocyhrx73SLSLOPbdUXzjyoC0hRyqaOgVzfhCPfUvs5adXL2VDJsi3HoYxfurmg1DpSDEzHPZE/rUorqlPVR2nYeClJcw0R/0zdxGIvui+44AJMnDgRv/vd71BWVoZPP/0UixcvxlVXXYUbbriBW5y1qBSQG/XkRPtcH2C4u9ay4zGytKqyuG1Q1SW770o/eP6LyJZ0E3o8r+xzlKS2WmzdoraXsvtDWTSLSGOcc90mTZ49TEv9mZKswDkB4Tqq+c50t54SZDSVXxq+iq19R50fKHkb0iI7hLPhJMsr++wq0Wc39WFFm0e6MmUbTpS5mOqLF7OPktSpC2yKfMaksBfd1157Lerq6jB8+HDs2LEDRx11FMrLy3HVVVfh0ksvTaVRNkCJ9phOdCIa2kBciIUxZ1JLM2JXysCIa0GZQiP62T+OjKi6RNltspHopJzmzjs1sMiN4IsWV64GJrntFvVVQ5knKH3N2cV1CYoDTnWodfMcRZ9cl2cS4s9ODfxTyLpN19bWoqKiIu+aagGd1cW1DNGz68a0eHqVb0y1fd2CM3qdGyApBmkE+Thzs0w+1OA3e9FdVlaGn/70p/jJT36CVatWYdu2bejfvz9at27NLcp5dMqaxuKwIUBVeBMni+qEuLrTliRIkOWXMAHyiK4I0+NcJgtTV/SFE0yU2SrVaVXVoRtHXXHOuE6l6tlDsjqHUPrW1Km0HZM5insaTFWvriydHrsqdxHUvjDRuWjarJ5Y0fl2lKBqVuDsZnN2YOP3qQFwm3arbUM0pul0uGDHy0OaNWuG/v37m2a3ksrKSpJjRFVqKkkmUVcMQ7WQpk7i8fuqATy8brrDlia29VXYji1btpS4JekTfQmTCurOUJp6Y0v/m0LZdaQ6CUl2q22zp0LSEJ4xTtR54QQVTI9o2k6SAAQ36JwEb5e8nbKQrAbOqP60LkieFX2iPIfOL6HshJvauMlYa1PfpLFxRvH3ir7TvX37dkybNg3z5s3D+vXrUVdXl3f/vffe4xZpDdGdP5NjpbLdHcpuj+mOkI3KD9AjwRxZmAxEujLiZRWCUveNTEeyGFkXTfS64Ez0XjyP7H78uih4FKcUtpqkTp0MOM9OidBT88raWWo7KwZZddCjJB2XsqYHnOdJ4lhzA2FJT7FkAd3cQpV3Vne6Qzg7s9yTE6I+sFkXRc/DncNUPrFMnqY+sKhtNvo6lLUExRc0pWA73eeffz4WLlyIcePGoaqqKlNOgEhgFEfdNJosGiRMjc82uAMnJS+1rKgsqQt1qsNh+4AuQvZMWfzJMNXPDXHGKqr+JimzGKRRZyHabXLskNseVxbjlHZyA44uI/ouKOf0SkOC2/8UZ526cOfYoY19k8b4QNkQkG3KeL5GN9cmDejahkg3qItCk8Vj0hNASXaOS41pEENls7I+K9hO95w5c/DMM89g6NCh3KxOQNklU+34RP/V1REtOyuLbRkchzKeR9YnlJ0vqnNPdextlbsqeiojawtugP8VEequeJIgkq1Qg1fx9LL7ojTUXQpd3dFrWdthU8lGt0uRxcAZxYZVQZmsQglEcYODJsEbE6fd1fGSOv6r7lN3crNG9OSoSUCRi2u6JbKLpBt5qjEi7jdTfWLXbFe1iUkNWqjWfbK+oZ5WYS+627Vrh/bt23OzOYHoeDnHYQ+hTmSUgShrzr5qMKEaAFW+tkbYC4FqkdLQMHFiqE5pluyRO6nKgouq4Ba3DZS2mAYmXeyrrAUYqOgcP4ocXOxvgBcI1s2ZnHRc2+UslnSLhlL0EaVOrv6J5KvblAmC7B4vT2tBbTNJdJi6OIzXFc+vapesLkoZlPu2IOoHrg+gslXdJh+VRqzUAG655RbceOON2LFjBzer9VRWVqKsrCw3UIbOZHxiCv9C4ml0hOmjf/Ey459111X12ISo/XFZm8oi2jdR4xH1n6yueL+IoMrVRvlHyerby0N0+qGbsER9J9MnThm2ILMBWTpKep1dmYydovFSZ6MiOGNnKYnKSkcWHXXRuGTSd670dxxKu1V+iWp8U13n1C+q08QuS9lHnLGHO26J5CJLU1ZWlkk7BsQ+GTdNKedRSt1ptNtUv0zqyipJxhKdrarycOtl73TfeeedWL16NTp37oyePXuiadOmefeXLl3KLdIaREf1RNEhqoB1kWPZwpBTB6V+G9FN/ID+CAilDsqkGq2D6mxQ67eR8JmzuuhWLQjjaaj6oStblcdWkuqxSoY6241fV9m+rXbEhbojEpVNVp6di04/dPdcII3263wLmRxN5lSKrboEp72mu1wU+QZBdne6Q1TzKHX3sRQkqZszhlHLkOVXpYvXq/OPXLPjEFH7TccsUXpZGVzYi+7Ro0cbVeQCou+ShYiUOo0BN16+KRRjs4k02isbaEQOu25x7fqAwyF8xiz+ZBhAPyouukctU6UvruuQyUQlszOqsyC7zll42m7DSZ5DJtesfqc7DvVkEeDO2E4dc1QOIHcxqAt+qdpH9Y1skXOS9lDzyuzSJJiRRXRB64YQWKQs1qgbdPEyVLKjBrazAsUX4262iObgxAQlZOHChcH3vve9oKqqKgAQPP3003n3x48fHwDI+6uurs5Ls3HjxuCMM84I2rRpE1RWVgbnnntusHXrVlY7amtrc+XHidcf/YunMUVUpmvo2k95PpWsOX+cMrOMTE/Dv1Dva2trjeuwzYZFzyKSg46s6onqmQr5rDp5cuouRfuTkMbYKCMNGw4CO+w4bRvOMjofhDrfJdG9rI6RJlB8QorvkqW5mKp/DRmqfVLtXZTX9LOtmLTT9Fkpdhy/rrNh9ne602T79u045JBDcM8990jTjBw5EmvXrs39Pfroo3n3zzzzTLz99tuYO3cu/va3v2HRokW48MILjdrD/S5Z/Fh4/DtNuj9VPa59R8O0/VF5hGXIZK67Hv5F69blkbXTNfmLiD97/HMaO2S22XD0vQwy+6Sg00VR2S4gshOdDVDGL10aqhxVbdCVpRqrSwl1bFTJNf457fHJJjuW/XRnfCwLycJYTUE0V8rS6O7r0kXTytCNka7B9VeS2mFUdml81csmGway+/U1Lhydkd3j+CFUndT5h7aSpJ3xcY/qI6r6JMxD1Xf28fI0GTVqFEaNGqVMU15eji5dugjvvfPOO3juuefwj3/8A4cddhgA4O6778Z3v/td3HHHHejatSurPdzj5bp71Othx4nSuEL8OEa8/ZTn0ckpXkf8uq48Ebr+zgKyvknje2S22XD0uK3KZnWIjhdFMdFv2xCNQybpVGOi7rrK4Y/f17XTNqjtVd2XyT7tRaZtdhxCkSFVj11B9hzR50zia0Q/6xbVJu2kUIq+0vlYnLboxkCOv5iWDGyz4ag/LdMzl21V13+6+TJc/KnS6uxaVFcWZa2CM0dQ81D8D9M5uKQ73RQWLFiATp06Yf/998ePfvQjbNy4MXdv8eLFaNu2bW6AAIARI0agUaNGeP311xPVS4lOyaIluusm7bAd6rOJZCIrgypXSltkUXmqfF3pBxGljmAW04bDiZ6iJypM9cQlZLtdlF0wUTqVvGTjKTXS7CIy+XHsUdYXpbDpUs3FUVQ7OaUe59JC9xzxuYyyY0ORDXeOTDLOlqKvZM+nQvdsujFUVG8px7hi2nD8d7pl8snSmB+FYsdx/aHOh5R1SbxMVR6XEclZ529Qx1hKnvA6dQOrpDvdOkaOHImTTz4Z++67L1avXo3rrrsOo0aNwuLFi9G4cWPU1NSgU6dOeXmaNGmC9u3bo6amRlrurl27sGvXrtxn0QulVBEoatRJV1bciRKRBSciCiXKS40kcWQji1JRo85Z6Ie4PItx/KsUNqyLSHJsWXfdZXTPSt29kQXRVHVRI/uUsimRbpeIO+vxa1GK9RK1QtgxZx6mXncBU31V2QLFNjnlq8qW1U0p27V+o/oiIRR/MV52sSjlXByH4vtyKaSOhYuuKKb2K3p2js+iKlt3TVVnltD5CvHP1DWcKE/4mfpSU/ai++abb8ZVV12Fli1b5l3fuXMnpk+fjhtvvJFbpJQxY8bk/n/QQQfh4IMPRu/evbFgwQIMHz7cuNzbb78dU6dOVabRGYEqj64sUXquQ+mawagCDrI0IaYOhaoOSlpK24qNSTuoi6dCUEoblhGdQKmy4E6CLqLTE1WgSpdGV2eSxZWtfWE6ZqgCkfGyi0Uh7Fhmw7W1tYkWeLZjOtfrrqnymoz5VMeVE0i3CVV7Zf6KKBhIpZjzrohSzMWcBZ4ujW6jpJA6lmbZonnTZFGtS6fTt/+vvbOPkao6//h3gGVLQVhhedmVNwEFFFgqFFxagVK6apq2VkLVVhQbINilXbUthKQRl6Y1sSmRElNi2oJGREoA25JGq4BELMibQKl2A4Q304Utkl3cLhTYPb8//M1k5u49b3dm9t5z5/tJJjB3zj3nueec7znPec7ZmShqUkUufHDTIIesbFUepr8GZH28vLa2Fs3Nze2ut7S0BHaCTRk2bBhKS0tx/PhxAMCAAQPQ0NCQkeb69eu4ePGi9O9WAGDp0qVoampKvc6ePQvA/ziM39ECv6MHJscPVMiOfGSTZ5jojrCkf+59Fm99evNKXpe9cmm36XGUjkJmh19962wP44tO8q3hdLzPn/6S9U+dDqPSD/KB7ViTXpdedPq36cemecoIel+22PYVv7FHlyYscqFjmYZlPxmW/lIRlTqyxWa+k32WJIg/4cV03tXlrbInTIKM5bp5QDe/+KVJJBKh/OxfR8zFNv6TLo1Nf+tITPu2n0Z1eQTxcXXjSFD7wyaX7W2iU9MybTVsvdMtc7IOHz6M3r1722Znxccff4xPPvkEZWVlAIDKyko0NjbiwIEDmDBhAgBg+/btaGtrw+TJk6X5FBcXo7i42KpsmSD8PvNej1PU3jTaZPO57S6iLkrldz09YGKTpyttZOJIed+HMdHnW8OqIz5+bWrb9+KI6c6ViTZMtasjl+3gapv6zbXeNgjrd7pzoWPVPCwbu0ydW5cx0VDQZ1QFtGztsMG1NjH1E2w+j5pPke+5WBY8AzL1HJX6CIrXfp1PofI/ZPd406vm4lz1M9d8Iz9/X5bGdD1gcnLAZm4CLBbdN954Y2pFf+utt2YU0NraiubmZixcuNA0OwBAc3NzKsoGACdPnsShQ4fQu3dv9O7dG7W1tZg1axYGDBiAEydOYPHixRgxYgTuvvtuAMDo0aNxzz33YP78+Vi9ejWuXbuGRYsW4cEHHwz8balJglSszklV3ScTbtQ6etDBQPV8pvVkupAPIpQ4BERkyOo1Fw57FDWcCwc9G+cq6mT7bH7a8ZukbMowqU9XA2JebMYcnUOXqwV3FHXsh6ttnktkGx/eNID+OLRqzvTiuu6SBHkOb/3pNOz3ueyzXO0yRk3DQQPgro/zQezV9Q3TNYXfSSnd2iLbDbSoEcSHMPV5/NJYB8CFIWvXrhVr1qwRiURCrFy5Uqxduzb1evXVV8Xf//5306xS7NixQwBo93r00UdFS0uLqKqqEn379hVFRUViyJAhYv78+eLcuXMZeXzyySfioYceEj169BA9e/YUjz32mPj000+t7GhqakqV7cXPPu8ryD0WVR9rgtSj7nObtLoy40jy2ZL9vqmpKXBeUdOw37PY9A/T93FCpwWT67b1altmnMlm/MqFhoWIho79nkXVT+KG6dwTZFzKhT9SCNq0aQPbl0kecZ+LC4kgerHpK7pxoBD06oeN/xFkLNS1ga7fJ/4/sTE7d+7ElClTUFRUZHNbpEn+XrHfb/z6YXtE0mSX1TaqF7UooO1Ocvp9urS6qJTubzJUeblGLu1Pj9D17Nkz6/zCJOhvjmfb9+KIaV2kX9eNdbI8bI6wxbXuVWOnrP68xE3DujaOw7FUU0yOLNsSJC/b+nZRr6Z+TC52y/2Ik45N/WnXyWZO8+bhJZt6C6o/13Qb5E8WsvVTVJ/pNGz9N90333wz6uvrpZ8PHjzYNstIYTLIqhaQJnmoyrW1MyrYLm5Njl/J7pG997Mh6FHaqA48poNJ1OzuKNIHPJUevccuTds/jvWai+ONpprNxjHx5ul6IMTGbll9BQ02RRm/by/3OxLparvLsP3TDL+0ufBBbI8/uzZWZhM8NB0rVf6NLG0hEDfNAvp+n4tnNl3Y56IvudY2uRh3TOpTlq/tXGy96B46dKiyYVtbW22zjAy9evXKqsFkja9bLMYRnUOc/t7071ZMnQKVUEzb15WBx+Tvc7JZ4LhGuoZNopSFSLZOskl92joFqj5q8/dWLhA0EOh3LW4LbhmquojL+GazO2N6AsJmQWDqx3TEIiMXBH0e2TXVdZVPZxvEiAtB/WkZUelXMmTjkKrPmPYzG5846M57XMZRkxNiurWE3/Vc9T/rRfcHH3yQ8f7atWv44IMPsGLFCvziF7/IypgoYLJA1jmOukaRNbDJva6hm+BMJiDT+vRDN5DY7paZHF3pSEzqU2ZvWN98nG9MTkCYOpI2u6pRdgpMHMxcOIemi2pd2X5p4opNgMJbT3HVsA1RcCJtxoVsT1fZPIft/GdjR9TJpd9gW5afb5fP3cko4veTpCoNuBJctV1cy+73OwUhW3+YjnEmp2B0RKWeg+LXp7yf2daz6t4kpj/Ba73orqioaHdt4sSJKC8vx69+9Svcf//9tllGCt0iRnUEyTZv3fU4YRJh937ml1aVzmTwy3bAjHpbmTx7Mk1cnXWdPlWTnW4XR9WPo9w3TJ7ZNLpuWo5fGdksvk2J2qJBd5JHtSORTbAy7kTJSTdx1nRpTec3v89ygc6xj8scKUOltyS2vkihn7Ky6Tuu1IutnarxX7cINLXBJECby2BeR5KL+dzUj1OVqWuTvP1Ot4yRI0di3759ucouFPz+liyJnzhsnCfVdT+i5jjaEmTnuCMcSRN7TNLFgTjukqmijaojWEF3y/wm0CjiN26Zjksm+rSNogcNtNmUETa2i0LVLr8quh43DQPB5swkUR3DbRd0NguVbH0Q1Y5j1OoxX6h2+01PN3p3uE02FeKMLgjrCtnM7ybzp6lfalKGqi+6SC4X20mC+Dy2Y6sM60X3pUuX2hVYX1+PZ555BrfccottdpFDN4mZ7D7E0WHwErQOkqgiSDrHXLcrFmRwc6XegyB7tjg666q/6TYJciWJm8Nps/NiWhdBNGO60x0Hsg3wmYxjcaovW6Kww21DtjtNqv4S1CH0y9PEB9LZEyVMfRXVAtl27LNx2gsBVT1Gvf8A6qCUlyB9w6Z8VRmqscHUvrDJ1r5sTpcEOZmRvMc0AG696C4pKfEd2AcNGoTXXnvNNrtI4ffFD6oopUmU0w+TyTPq2A4oNk6/7B7Tyd7vuu1xHVeI+gAaJjaLbdv6i/pukGpSDqKf9Dy96WwcS9OAWhywddhVfaqQHPV0xyWb/hBGn8qmzGwC2bYnTYKkNXHwo0iQ4IzOp7MJ9HvT+PkxcfwVgnRcC5CpyJXNfkEe0w07lW+s80miXue2wccgwUhd2aoxVpYmb8fLd+zYkfG+U6dO6Nu3L0aMGIEuXXJ2Wj0U0o+XyzBxWr3E0aHUYeNo6gYa053tIBOh65gM0rI0cT2aKsNvcej9zFSjHa3lXI4htnrS7ZKZ2KlzLlTpXR03bZ0em10g2+i6S5j8VrHJDlkY/camzGxOOpjaYXr6zqQ+4+7HmPgifveorvsFzgrBLwH8g2eqenGt/9nsNuvuM9WrjQ/sWr0GCUb7vTdNk5637L2JnXnf6Z42bZrtLU5h44wHnTRtnCtXsdntz9VxHdV1nbhcr3+T3dxCwWbgTBL19re1z2QcM52MZXmrNGy6M+RqND4bgoyNSWwj964Sx/5hezomF22t2yFT2em9x2RnKYoE8dNkO90ygsy/haDlIAsk07zCJmjgPhdrCRP/xXbXPGxsgtHp14OcOjSdX0xO8SWve//0Wkagrem6ujqsWrUKH330EQBg9OjRWLRoEUaNGhUku8jgF6WwGRiDTkpR6fTZIOv4NtFA08knyKQf1YEm1+TyqI3rZBOMcdXBlGHiFJoukAul/+QL076kOklQ6LgYqLadE3Mxz9kEzmR5uI7pzlkikdAuUEx3ImX3y/KK4/Fy059Qcp2gi22/kxWmG3UmNsTFd/FiOm76feZFt24xKT+JqX47GaVKY9OmTRgzZgwOHDiAiooKVFRU4ODBgxg7diw2bdpkm11kEUK0m4hkLxl+g7jN5y6QfAZZXSSve581+d7m+b1lpeeRbd7ee13Frx1kfTluk3wSWf9Iv667V/beVVSakD2jTFd+6bxpZLrXlRlHbMcUlYYLqd4Aed25VAfeZwjqN6Rf12nW1PdIz8e0n8a1D2bj26naTJZnXOux0DCdP/3uM83Tq2vVmOK6DyvDZj2l01bQNktP402bt9/pXrx4MZYuXYrly5dnXF+2bBkWL16MWbNm2WYZafwil7pG0UVL4hCBytVuvqo+ZdF4XbTZJtqn2+VzBZv2SKaN49+D+qHSo2kk1DR9VAmyS22qGb9dR9PdcVfr04tq59WmHmX3xWHOCEIudn/DxnTekt0ne29zr8kOrul8683TpbawRfeMJnWkqz/iJqZ9I5u8vXmZ+MKy8cV1veq0ZhN0MPX3s/EdZVjvdNfX1+ORRx5pd/3hhx9GfX19ICOiQnqkwhsJVu2S2UYsXY5w+kXIVelk7/3qUxcRluWp+tw04hWX6GBcniOX+PU9U1zZYdTpLV0rsjTe6zZ9SZeX3y6SStM2zxYFsnWwZGOj7Fmj3h+zRfZ8qnk46sjmNdtdl47Sgm6ud60PmvouJvfqfBS/8daLa/VHPsNmx1WV3ttPdONdtrr3lhHFedQEk/WADt1awq8M2Xoj+crbt5dPnz4d7777LkaMGJFxfdeuXbjrrrtss3MO2eSY/lncIkzpmO4MqqJQsvyC1pOuTL+03jQm9kUZk2f1pjX94geXSA+cyXYW/KLBru/i6Pq+n85k73XjmKp827FQ1w66Z3EBXZ2o+p5r/TDfxLE+dGOQClk9mM7Dfjs+qt0dl1A9Y/rnSVS+SPrcYYJfHerGgThjo9soajzdZwiqOW86P2z6qK5sXf1FqX7T0bW/qY/hl0amZxv/X5bG9HsZrBfd3/zmN7FkyRIcOHAAd955JwBgz5492LhxI2pra/HnP/85I61LpP9Od5CGlGGyUI2iAFTPZyoML6oJx3bA0Tn0fvUa1YEo28Wfqq6COg4uovqNX9XCU4YrQZggjorO+bPRjs1EqLoeRYcrW2TPYjKe6dqoUL6sKIlqbO9IbB1D1We2/SM9GBOUIHXnyliYxHR8M/FFbAMifv6iqow4fpGaai5WEcV+ZTL36a6bBJRt8/TLx/U51NZHt9lw8t6jW3ybjLO2Y3FCWLZMp05mJ9ITiQRaW1utjAmL9AEvSMTD9V2ybLB91mwinrZC8iunkNomia4eTX4XN+r4OS02i8S4kcvnM4kG2+4AFRKm84QqaFhIGk5/Ftd1ahMcyMafMA2cBcnL1bq3xUZvXkz8RlXd+/V9V4nTs2RDNidYktgGxsMORuaCbAKa6Z+nE1THNuuU5Hck6fq99U53W1ub7S3O4Hc01S/iEbQzEPXCOFtBqBYDul0F19A57LJrhYiqX7nmYJo65qoxKptTE+nv08dG02BlIfXJoLv7fnUkq6+4fxliVPuJjQ6z1ayq/CS6EyY2ZdC/aY/pwimI31gIuN53ggTPZKh8NJMAt0kZLmO70x0kb9OdbdU6xTum5vV3uuOMrEJNHCGbXXJvOlcHIy+2USjVLpnuWJbJfa7Uq+2kpDti41c3frtjcXPYTaPrueoXHe1M6DSRyzJkE5Ff3zOdxFzRYy6wnQ9MPo+zs+USudShbgxR5ZmrE2YmgTPXtGsTnJd9ZnuCwMQeWR5xJKrjlem8nc38brMTqyuXJ8ns2sK07oOcLsrm5AIQcNG9bds2bNu2DQ0NDe12vv/whz8EyTJyqCJMNoO4ijgIxDbwoBpEdAOMaUAkyNGQsNsiaPlBdryjOhHmCl10WOVk2bZD2P0miWk/trHXdPfMZqe7ELE9BaDKw5tX3IJmrmMSnNeNv0EWyKYLY1neUQ9UB5mnbYP2fulNdxqD+DVxn4eB6Poc2fjoprvRsvR+2PpoQXxd17F5xnz4Q968vXnk7YvUamtrsXz5ckycOBFlZWWRE1M2+H3xg2zHJv1a0N2dQhBMEKHIrgcZKHWLUtfrXrfjnX4tTlo1wWRicr39daie3fbomsrJCOqcmiwS4tJGpvOEyVxDoomJzrxpbTXipzfTY6om+jM9rdaRfdFmwZINpr5bkN1zXVvEkTiOW7aBF9Wz6+YE08V3enrX6zrI7rPJ5yZ52tR/0Hq2XnSvXr0aa9euxZw5cwIVGGXSj9uaHCuyFV/cFnwqghzXMO3wNpFFk0WpqZ1RRDVo6BysOP5kWHrgzMS5caWddZg+h1//8H5mujDOxnE3TedS+5g6SLlwtm2j6yQYQecD1Y637cLOZtyyddr9xoN87A7lk3zYE3QM9Kt/nQ8ihIitjqPWV3JJ0M22dGx3tGX3x2lNka0v4Kc5WdvYnCzQBQNMsV50X716FVOmTLG9zQn8fjLMJJJkOmnGQRBegkaGZfebECQq5U0TNSc/6CLFZAdA9j6O+P1Nt59jFEct+qEaq4I4Cenp0p0N20W/6WQXlbYKEkX33mua3i+NLI84OupRImjf81tse9+bLuhk9/nlodtNzeWOd9QwDcabfG56ksDkc9uTDoWAi33LNhil62+quVh3XZZn+j2u1G2uSV8gp1/T3QPY7Wx705p+R5LZ73+lMW/ePLz66qu2tzlHcpc0kUhkvLxCSX95Sb/HRQHInsvkHl2dJEnWjclLl7c3vV+5UW0LU7u8dSH73O/lTRPX3/j106zKsY2D02PzHLq03s916U3GRF1/ldkQFa0GGTdMxxzVuGbbFnHBlec0nef88PYL3fzml79ubvSmk80FNvZFFdX8r/rc77l0c6g3naosE7vjOhfLiKofJkMXbJWtFUzHfVmeQW0Ncm/U9a0jvR1keNvIts1U5ZpivdN95coVvPjii3j77bcxbtw4FBUVZXy+YsUK2yxDRxVxSg6G6cfOZQNk8t7k58l/XT3Gq7I/WR+6yUL37Omf66JE3rK8fwrg93mu2sL0eTsK7/N4604VdbONArpA8hnS21fW5k1NTalrrms0ie450vuvrA/baDWd9DHRm7dMm7LrSVxuF+9Y4dWod05J4nddljbuGjZp/yiNyX5jjN/1dLz2e9vaz/eQlSvrJzL7guCaJmX9Q6a79M9U82o63jaRad0vD78y4qbjqGMzhtiON15t2uyMytYhunkziJ3eMvLZbrkYs3V5+NWr6TOpxnFZucl7kv/qNJwQlir/yle+Is8skcD27dttsosEH3/8MQYNGhS2GYSEwtmzZzFw4MCwzcgKapgUMtQwIe5DHRPiNjoNWy+640hbWxvq6upw22234ezZs0a/8xslLl26hEGDBjlpO+C2/S7bLoTAp59+ivLycnTqZP2XJpHCdQ0Dbvcll20H3LWfGo4WrvYjwG3bAbftp46jg8v9CHDbfpdtN9VwoN/pjhudOnXCTTfdBADo2bOnc42dxGXbAbftd9X2uHwRU1w0DLhtv8u2A27aTw1HD5ftd9l2wF37qeNo4bLtgNv2u2p7Tn+n+/777zdKt3nzZtMsCSGEEEIIIYSQWGO86I5LFI4QQgghhBBCCOkojBfda9asyacdoVNcXIxly5ahuLg4bFOscdl2wG37XbY9brjeFi7b77LtgPv2xwXX28Fl+122HXDf/jjhclu4bDvgtv0u224Kv0iNEEIIIYQQQgjJE25/TSIhhBBCCCGEEBJhuOgmhBBCCCGEEELyBBfdhBBCCCGEEEJInuCiG8ALL7yAoUOH4nOf+xwmT56MvXv3hm1SO5599ll88YtfxA033IB+/frhvvvuQ11dXUaa6dOnI5FIZLwWLlwYksWZPPPMM+1sGzVqVOrzK1euoLq6Gn369EGPHj0wa9YsnD9/PkSLMxk6dGg7+xOJBKqrqwFEu+4LARc0DLitY2qY5BsXdOyyhgG3dUwNRx8XNAy4rWOXNQwUto4LftG9YcMGPPXUU1i2bBkOHjyIiooK3H333WhoaAjbtAx27tyJ6upq7NmzB2+99RauXbuGqqoq/Pe//81IN3/+fNTX16dezz33XEgWt+f222/PsG3Xrl2pz5588kn85S9/wcaNG7Fz5078+9//Nv5t+I5g3759Gba/9dZbAIDZs2en0kS57uOMKxoG3NcxNUzyhSs6dl3DgLs6poajjSsaBtzXsasaBgpcx6LAmTRpkqiurk69b21tFeXl5eLZZ58N0So9DQ0NAoDYuXNn6tq0adNETU1NeEYpWLZsmaioqPD9rLGxURQVFYmNGzemrn300UcCgNi9e3cHWWhHTU2NGD58uGhraxNCRLvu446rGhbCLR1TwySfuKpjlzQsRLx0TA1HC1c1LIRbOo6ThoUoLB0X9E731atXceDAAcycOTN1rVOnTpg5cyZ2794domV6mpqaAAC9e/fOuL5u3TqUlpZizJgxWLp0KVpaWsIwz5djx46hvLwcw4YNw/e+9z2cOXMGAHDgwAFcu3Ytox1GjRqFwYMHR7Idrl69ildeeQXf//73kUgkUtejXPdxxWUNA+7pmBom+cBlHbumYSAeOqaGo4XLGgbc03EcNAwUno67hG1AmFy4cAGtra3o379/xvX+/fvjX//6V0hW6Wlra8MTTzyBL33pSxgzZkzq+ne/+10MGTIE5eXlOHLkCJYsWYK6ujps3rw5RGs/Y/LkyVi7di1GjhyJ+vp61NbW4q677sLRo0dx7tw5dO3aFSUlJRn39O/fH+fOnQvHYAWvv/46GhsbMXfu3NS1KNd9nHFVw4B7OqaGSb5wVceuaRiIj46p4WjhqoYB93QcFw0Dhafjgl50u0p1dTWOHj2a8TccALBgwYLU/8eOHYuysjJ89atfxYkTJzB8+PCONjODe++9N/X/cePGYfLkyRgyZAj++Mc/olu3biFaZs/vf/973HvvvSgvL09di3Ldk2jimo6pYUIycU3DQHx0TA2TXOGajuOiYaDwdFzQx8tLS0vRuXPndt/qd/78eQwYMCAkq9QsWrQIW7duxY4dOzBw4EBl2smTJwMAjh8/3hGmWVFSUoJbb70Vx48fx4ABA3D16lU0NjZmpIliO5w+fRpvv/025s2bp0wX5bqPEy5qGIiHjqlhkitc1HEcNAy4qWNqOHq4qGEgHjp2UcNAYeq4oBfdXbt2xYQJE7Bt27bUtba2Nmzbtg2VlZUhWtYeIQQWLVqELVu2YPv27bj55pu19xw6dAgAUFZWlmfr7GlubsaJEydQVlaGCRMmoKioKKMd6urqcObMmci1w5o1a9CvXz98/etfV6aLct3HCZc0DMRLx9QwyRUu6ThOGgbc1DE1HD1c0jAQLx27qGGgQHUc7ve4hc9rr70miouLxdq1a8WHH34oFixYIEpKSsS5c+fCNi2Dxx9/XPTq1Uu88847or6+PvVqaWkRQghx/PhxsXz5crF//35x8uRJ8ac//UkMGzZMTJ06NWTLP+PHP/6xeOedd8TJkyfFe++9J2bOnClKS0tFQ0ODEEKIhQsXisGDB4vt27eL/fv3i8rKSlFZWRmy1Zm0traKwYMHiyVLlmRcj3rdxx1XNCyE2zqmhkk+cUXHLmtYCPd1TA1HF1c0LITbOnZdw0IUro4LftEthBCrVq0SgwcPFl27dhWTJk0Se/bsCdukdgDwfa1Zs0YIIcSZM2fE1KlTRe/evUVxcbEYMWKE+OlPfyqamprCNfz/eeCBB0RZWZno2rWruOmmm8QDDzwgjh8/nvr88uXL4gc/+IG48cYbxec//3nx7W9/W9TX14docXvefPNNAUDU1dVlXI963RcCLmhYCLd1TA2TfOOCjl3WsBDu65gajjYuaFgIt3XsuoaFKFwdJ4QQomP21AkhhBBCCCGEkMKioP+mmxBCCCGEEEIIySdcdBNCCCGEEEIIIXmCi25CCCGEEEIIISRPcNFNCCGEEEIIIYTkCS66CSGEEEIIIYSQPMFFNyGEEEIIIYQQkie46CaEEEIIIYQQQvIEF92EEEIIIYQQQkie4KK7gJk7dy7uu+++0MqfM2cOfvnLX4ZWvgkPPvggfv3rX4dtBiG+UMN6qGESZahhPdQwiTrUsR7qGEgIIUTYRpDck0gklJ8vW7YMTz75JIQQKCkp6Rij0jh8+DBmzJiB06dPo0ePHtr006dPx/jx4/H888/n37g0jh49iqlTp+LkyZPo1atXh5ZNChtqODdQwyQsqOHcQA2TMKGOcwN1DHQJ2wCSH+rr61P/37BhA55++mnU1dWlrvXo0cNInPli1apVmD17dqg2mDBmzBgMHz4cr7zyCqqrq8M2hxQQ1HBuoIZJWFDDuYEaJmFCHecG6hiAILFnzZo1olevXu2uP/roo+Jb3/pW6v20adPEokWLRE1NjSgpKRH9+vUTL774omhubhZz584VPXr0EMOHDxd//etfM/L5xz/+Ie655x7RvXt30a9fP/Hwww+L//znP1J7rl+/Lnr16iW2bt2acf2FF14QI0aMEMXFxaJfv35i1qxZKTsBZLxOnjxpVPa0adNEdXW1qK6uFj179hR9+vQRP/vZz0RbW5u23CS1tbXiy1/+srKOCckn1DA1TNyGGqaGiftQx9RxNvBvukkGL730EkpLS7F371788Ic/xOOPP47Zs2djypQpOHjwIKqqqjBnzhy0tLQAABobGzFjxgx84QtfwP79+/HGG2/g/Pnz+M53viMt48iRI2hqasLEiRNT1/bv348f/ehHWL58Oerq6vDGG29g6tSpAICVK1eisrIS8+fPR319Perr6zFo0CDjsl966SV06dIFe/fuxcqVK7FixQr87ne/05abZNKkSdi7dy/+97//5aSOCckn1DA1TNyGGqaGiftQx9RxO8Je9ZP8YxOZS49AXb9+XXTv3l3MmTMnda2+vl4AELt37xZCCPHzn/9cVFVVZeR79uxZAUDU1dX52rNlyxbRuXPnjOjYpk2bRM+ePcWlS5d875k2bZqoqanJuGZS9rRp08To0aMzylqyZIkYPXq0UblCCHH48GEBQJw6dUqahpB8Qg1Tw8RtqGFqmLgPdUwdZwN3ukkG48aNS/2/c+fO6NOnD8aOHZu61r9/fwBAQ0MDgM++wGHHjh2pv2np0aMHRo0aBQA4ceKEbxmXL19GcXFxxpdTfO1rX8OQIUMwbNgwzJkzB+vWrUtF/2SYln3nnXdmlFVZWYljx46htbXVqNxu3boBgNYeQqIANUwNE7ehhqlh4j7UMXXshYtukkFRUVHG+0QikXEtKba2tjYAQHNzM77xjW/g0KFDGa9jx461O1aSpLS0FC0tLbh69Wrq2g033ICDBw9i/fr1KCsrw9NPP42Kigo0NjZKbQ1StheTci9evAgA6Nu3r1GehIQJNUwNE7ehhqlh4j7UMXXshYtukhV33HEH/vnPf2Lo0KEYMWJExqt79+6+94wfPx4A8OGHH2Zc79KlC2bOnInnnnsOR44cwalTp7B9+3YAQNeuXdHa2hqo7Pfffz/jvj179uCWW25B586dteUCn/3MwcCBA1FaWhqskgiJMNQwIW5DDRPiPtRx/OGim2RFdXU1Ll68iIceegj79u3DiRMn8Oabb+Kxxx5rJ+okffv2xR133IFdu3alrm3duhW/+c1vcOjQIZw+fRovv/wy2traMHLkSADA0KFD8f777+PUqVO4cOEC2trajMs+c+YMnnrqKdTV1WH9+vVYtWoVampqjMoFgHfffRdVVVX5qD5CQocaJsRtqGFC3Ic6jj9cdJOsKC8vx3vvvYfW1lZUVVVh7NixeOKJJ1BSUoJOneTda968eVi3bl3qfUlJCTZv3owZM2Zg9OjRWL16NdavX4/bb78dAPCTn/wEnTt3xm233Ya+ffvizJkzxmU/8sgjuHz5MiZNmoTq6mrU1NRgwYIFRuVeuXIFr7/+OubPn5+P6iMkdKhhQtyGGibEfajj+JMQQoiwjSCFx+XLlzFy5Ehs2LABlZWVeStn+vTpGD9+PJ5//vlA9//2t7/Fli1b8Le//S23hhHiONQwIW5DDRPiPtSxO3Cnm4RCt27d8PLLL+PChQthm6KkqKgIq1atCtsMQiIHNUyI21DDhLgPdewOXcI2gBQu06dPD9sELfPmzQvbBEIiCzVMiNtQw4S4D3XsBjxeTgghhBBCCCGE5AkeLyeEEEIIIYQQQvIEF92EEEIIIYQQQkie4KKbEEIIIYQQQgjJE1x0E0IIIYQQQggheYKLbkIIIYQQQgghJE9w0U0IIYQQQgghhOQJLroJIYQQQgghhJA8wUU3IYQQQgghhBCSJ7joJoQQQgghhBBC8sT/AZJosqlb1UTDAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Inspect the generated data\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "8kybZ97vTV6Q" + }, + "id": "8kybZ97vTV6Q" + }, + { + "cell_type": "markdown", + "source": [ + "The objective of this section is to gain a deeper understanding of how the data generation function operates and to closely examine the generated output. This exploration will help us intuitively grasp what the dataset represents and how it encodes auditory nerve responses to stimuli with varying **Interaural Phase Differences (IPDs).** Let's generate a set of data and plot them with more details:" + ], + "metadata": { + "id": "E91lRqrehiIX" + }, + "id": "E91lRqrehiIX" + }, + { + "cell_type": "code", + "source": [ + "# To experiment with different envelope powers, modify the value in the function arguments.\n", + "# This approach avoids altering the globally defined `envelope_power` variable, ensuring consistency elsewhere in the code.\n", + "ipd, spikes, theta = random_ipd_input_signal(1, envelope_power=10)\n", + "\n", + "i = 0 # Select the index of the IPD sample to analyze or visualize.ipd, spikes, theta = random_ipd_input_signal(1, envelope_power=10)\n", + "\n", + "# Plot for each ear the input signal and the spike transformed signal in the first auditory nerf fiber of each ear\n", + "fig, ax = plt.subplots(2,2, figsize=(10, 4))\n", + "ax[0,0].set_title('Sound arriving at right ear')\n", + "ax[0,0].plot(0.5*(1+np.sin(theta[i,:,0])),color='blue', label='input sound wave')\n", + "ax[0,0].plot((0.5*(1+np.sin(theta[i,:,0])))**envelope_power,color='blue', linestyle='--', label='envelop pow applied')\n", + "\n", + "index = np.argmin(np.abs(theta[i, :, 0] - (np.pi/2 + (2 * np.pi if theta[0, 0, 0] > np.pi/2 else 0))))\n", + "ax[0,0].axvline(x=index, color='r', linestyle='--') # Plot a vertical dashed line at this position\n", + "ax[0,0].legend()\n", + "ax[0,1].set_title('Right ear spiking \\n 1st auditory nerf fiber')\n", + "ax[0,1].imshow(spikes[i, :, [0]].T, aspect='auto', interpolation='nearest', cmap='Blues')\n", + "\n", + "ax[1,0].set_title('Sound arriving at left ear')\n", + "ax[1,0].plot(0.5*(1+np.sin(theta[i,:,100])),color='orange')\n", + "ax[1,0].plot((0.5*(1+np.sin(theta[i,:,100])))**envelope_power,color='orange',linestyle='--')\n", + "\n", + "index = np.argmin(np.abs(theta[i, :, 100] - (np.pi/2 + (2 * np.pi if theta[0, 0, 100] > np.pi/2 else 0))))\n", + "ax[1,0].axvline(x=index, color='r', linestyle='--') # Plot a vertical dashed line at this position\n", + "ax[1,0].set_xlabel('Time (steps)')\n", + "\n", + "ax[1,1].set_title('Left ear spiking \\n 1st auditory nerf fiber')\n", + "ax[1,1].imshow(spikes[i, :, [100]].T, aspect='auto', interpolation='nearest', cmap='Oranges')\n", + "ax[1,1].set_xlabel('Time (steps)')\n", + "\n", + "plt.tight_layout()\n", + "\n", + "\n", + "\n", + "# Plot the spike transformed signal in all auditory nerf fibers, where each\n", + "# fiber adds an increasing delay Create the figure and axes\n", + "fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(3, 3)) # Two vertically stacked subplots\n", + "\n", + "# Plot the upper half with blue colormap\n", + "ax1.set_title(f'True IPD = {int(ipd[i]*180/np.pi)} deg')\n", + "ax1.imshow(spikes[i, :, : anf_per_ear].T, aspect='auto', interpolation='nearest', cmap='Blues')\n", + "# Customize the appearance of the axis\n", + "ax1.set_ylabel(\"Rigth Ear \\n nerf fibers\", fontsize=9) # Add label with a custom font size\n", + "ax1.tick_params(left=True, labelleft=True, bottom=False, labelbottom=False) # Hide ticks but keep the label\n", + "\n", + "# Plot the lower half with orange colormap\n", + "ax2.imshow(spikes[i, :, anf_per_ear:].T, aspect='auto', interpolation='nearest', cmap='Oranges')\n", + "ax2.set_ylabel(\"Left Ear \\n nerf fibers\", fontsize=9) # Add label with a custom font size\n", + "ax2.tick_params(left=True, labelleft=True, bottom=True, labelbottom=True) # Hide ticks but keep the label\n", + "ax2.set_xlabel(\"Time (step)\", fontsize=9) # Add label with a custom font size\n", + "\n", + "# Adjust spacing to remove gaps between the plots\n", + "plt.subplots_adjust(hspace=0)\n", + "\n", + "# Show the final result\n", + "plt.show()\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 700 + }, + "id": "stdqcA2L8yc7", + "outputId": "a3c9f78e-9bd5-4129-b297-4edf3571cdc6" + }, + "id": "stdqcA2L8yc7", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAGFCAYAAADzW9DBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmaklEQVR4nOzdd1hT1xsH8G8Ie4kggqCCIhbcFhc4wIm71L1BBevAuvdPwYl71G1bxVkVq9bWvaAO3IqKigvUWhGQPWQk5/fHaQJhJpER8P08Tx7Dzbn3nhyIN+8957xHwBhjIIQQQgghhBBCiMLUyroChBBCCCGEEEJIeUVBNSGEEEIIIYQQoiQKqgkhhBBCCCGEECVRUE0IIYQQQgghhCiJgmpCCCGEEEIIIURJFFQTQgghhBBCCCFKoqCaEEIIIYQQQghREgXVhBBCCCGEEEKIkiioJoQQQgghhBBClERBNSGEEEIIqRBcXFzg4uKi9L4NGjQo3gpVQB4eHrC2tpb+HBERAYFAgNWrVxe6X2BgIAQCAQIDA0u2goSUAQqqCSGEEEKISvL394dAIJA+1NXVYWlpCQ8PD7x//75M6vTvv//C19cXDx48KJPzE0JUj3pZV4AQQgghhJDCLFq0CLVq1cLnz59x48YN+Pv74+rVq3j8+DG0tbWl5c6dO1fidfn333+xcOFCWFtbo0mTJiV+PlXz888/QywWK7xfu3btkJaWBk1NzRKoFSFli4JqQgghhBCi0rp164ZmzZoBADw9PVGlShWsWLECJ06cwIABA6TlvtaALSsrC2KxuFTev4aGhlL7qampydwAIaQioeHfhBBCCCGkXGnbti0A4NWrVzLb85tT/ebNG/Tu3Rt6enqoWrUqpkyZgrNnzxY4v/fJkydo3749dHV1YWlpiZUrV0pfCwwMRPPmzQEAI0eOlA5L9/f3L7S+79+/x6hRo2BmZgYtLS3Ur18fO3fulCmTkZGBBQsWwMHBAZUqVYKenh7atm2Ly5cvy5TLOYd5/fr1sLGxgZaWFp48eVLg+c+fP482bdrAyMgI+vr6+OabbzB37lyZ9yUQCHDo0CHMnTsX5ubm0NPTQ+/evfHu3TuZY+WeU50fxhjGjBkDTU1NHD16VOYcOdtcMo+9sDaXUPT3SEhpop5qQgghhBBSrkRERAAAKleuXGi5lJQUdOjQAR8+fMCkSZNgbm6OAwcO5AlUJeLi4tC1a1f06dMHAwYMwJEjRzBr1iw0bNgQ3bp1g729PRYtWoQFCxZgzJgx0uDeycmpwDp8/PgRrVq1gkAggLe3N0xNTXH69GmMHj0aiYmJmDx5MgAgMTERv/zyCwYPHgwvLy8kJSXh119/haurK27dupVnqPmuXbvw+fNnjBkzBlpaWjA2Ns73/KGhoejZsycaNWqERYsWQUtLCy9fvsS1a9fylF26dCkEAgFmzZqFqKgorF+/Hp06dcKDBw+go6NTaFtLiEQijBo1CocOHcKxY8fQo0ePQssX1eaA4r9HQkodI4QQQgghRAXt2rWLAWAXLlxg0dHR7N27d+zIkSPM1NSUaWlpsXfv3smUd3Z2Zs7OztKf16xZwwCw48ePS7elpaUxOzs7BoBdvnxZZl8AbM+ePdJt6enpzNzcnPXt21e67fbt2wwA27Vrl1zvYfTo0axatWosJiZGZvugQYNYpUqVWGpqKmOMsaysLJaeni5TJi4ujpmZmbFRo0ZJt4WHhzMAzNDQkEVFRRV5/nXr1jEALDo6usAyly9fZgCYpaUlS0xMlG4/fPgwA8A2bNgg3ebu7s6srKzy1GfVqlUsMzOTDRw4kOno6LCzZ8/mew5l2lyR3yMhZYGGfxNCCCGEEJXWqVMnmJqaokaNGujXrx/09PRw4sQJVK9evdD9zpw5A0tLS/Tu3Vu6TVtbG15eXvmW19fXx7Bhw6Q/a2pqokWLFnj9+rVS9WaM4ffff0evXr3AGENMTIz04erqioSEBNy7dw8AIBQKpXOixWIxYmNjkZWVhWbNmknL5NS3b1+YmpoWWQcjIyMAwB9//FFkgrERI0bAwMBA+nO/fv1QrVo1nDp1qsjzZGRkoH///vjrr79w6tQpdOnSpch9APnaXNHfIyGljYJqQgghhBCi0jZv3ozz58/jyJEj6N69O2JiYqClpVXkfm/evIGNjQ0EAoHM9jp16uRbvnr16nnKVq5cGXFxcUrVOzo6GvHx8dixYwdMTU1lHiNHjgQAREVFScvv3r0bjRo1gra2NkxMTGBqaoqTJ08iISEhz7Fr1aolVx0GDhyI1q1bw9PTE2ZmZhg0aBAOHz6cb4Bta2sr87NAIECdOnWkw+0L4+fnh+PHj+PIkSMKrRUuT5sr+nskpLTRnGpCCCGEEKLSWrRoIc3+7ebmhjZt2mDIkCEICwuDvr5+sZ1HKBTmu50xptTxJIHrsGHD4O7unm+ZRo0aAQD27dsHDw8PuLm5YcaMGahatSqEQiH8/PzyJGQDIPccZx0dHfz999+4fPkyTp48iTNnzuDQoUPo0KEDzp07V+B7VpSrqyvOnDmDlStXwsXFRe5M38Xd5oSUBQqqCSGEEEJIuSEJNNu3b49NmzZh9uzZBZa1srLCkydPwBiT6eV8+fKl0ufP3VtaGFNTUxgYGEAkEqFTp06Flj1y5Ahq166No0ePypzDx8dH6bpKqKmpoWPHjujYsSPWrl2LZcuWYd68ebh8+bJMvV68eCGzH2MML1++lAb+hWnVqhXGjh2Lnj17on///jh27BjU1Ysn1CiJ3yMhxYmGfxNCCCGEkHLFxcUFLVq0wPr16/H58+cCy7m6uuL9+/c4ceKEdNvnz5/x888/K31uPT09AEB8fHyRZYVCIfr27Yvff/8djx8/zvN6dHS0TFlAtof25s2bCA4OVrquABAbG5tnmySTeHp6usz2PXv2ICkpSfrzkSNH8OHDB2kW7qJ06tQJBw8exJkzZzB8+PAi53DLqyR+j4QUJ+qpJoQQQggh5c6MGTPQv39/+Pv7Y+zYsfmW+eGHH7Bp0yYMHjwYkyZNQrVq1bB//37p0GRFep0lbGxsYGRkhG3btsHAwAB6enpo2bJlgXOcly9fjsuXL6Nly5bw8vJCvXr1EBsbi3v37uHChQvSoLdnz544evQovv/+e/To0QPh4eHYtm0b6tWrh+TkZIXrKbFo0SL8/fff6NGjB6ysrBAVFYUtW7agevXqaNOmjUxZY2NjtGnTBiNHjsTHjx+xfv161KlTR6GEYG5ubti1axdGjBgBQ0NDbN++Xem6S5TE75GQ4kRBNSGEEEIIKXf69OkDGxsbrF69Gl5eXvnOzdXX18elS5cwceJEbNiwAfr6+hgxYgScnJzQt29fuef95qShoYHdu3djzpw5GDt2LLKysrBr164Cg2ozMzPcunULixYtwtGjR7FlyxaYmJigfv36WLFihbSch4cHIiMjsX37dpw9exb16tXDvn37EBAQgMDAQIXrKdG7d29ERERg586diImJQZUqVeDs7IyFCxeiUqVKMmXnzp2Lhw8fws/PD0lJSejYsSO2bNkCXV1dhc45bNgwJCUlYfz48TA0NMSqVauUrj9QMr9HQoqTgFEWAEIIIYQQ8hVZv349pkyZgn/++QeWlpZlXZ0yFxgYiPbt2yMgIAD9+vUr6+rIjX6PRFXQnGpCCCGEEFJhpaWlyfz8+fNnbN++Hba2thSIlSP0eySqjIZ/E0IIIYSQCqtPnz6oWbMmmjRpgoSEBOzbtw/Pnj3D/v37y7pqRAH0eySqjIJqQgghhBBSYbm6uuKXX37B/v37IRKJUK9ePRw8eBADBw4s66oRBdDvkagymlNNCCGEEEIIIYQoieZUE0IIIYQQQgghSqKgmhBCCCGEEEIIURIF1YQUwNraGh4eHmVaB39/fwgEAkRERCi8ryrUv7QEBgZCIBAotY6nZN8jR44Uf8UIIYR8FXx9fSEQCGS2fU3XYUUlJyfD09MT5ubmEAgEmDx5coFls7KyMHPmTNSoUQNqampwc3MDAAgEAvj6+krLSX4HMTExJVt5QvJBQTUpUY8ePUK/fv1gZWUFbW1tWFpaonPnzti4cWNZV42ogGXLluH48eNlXQ25HThwAOvXry/rahBCSLmydetW9O/fHzVr1oRAIPiiQHPLli3w9/cvtrqVpidPnsDX11epG+UVzbJly+Dv749x48Zh7969GD58eIFld+7ciVWrVqFfv37YvXs3pkyZUoo1JUQ+lP2blJjr16+jffv2qFmzJry8vGBubo53797hxo0b2LBhAyZOnFjWVVR5w4cPx6BBg6ClpaXwvmFhYVBTU+37ZsuWLUO/fv2kd52V1a5dO6SlpUFTU7N4KlaAAwcO4PHjx4XeUSeEECJrxYoVSEpKQosWLfDhw4cvOtaWLVtQpUqVctEDnPs6/OTJEyxcuBAuLi6wtrYuu4qpgEuXLqFVq1bw8fGRq6ylpSXWrVsnsz0tLQ3q6hTKENVAf4mkxCxduhSVKlXC7du3YWRkJPNaVFRU2VRKhYjFYmRkZEBbWzvPaykpKdDT04NQKIRQKFTq+MoE4uXN58+foampCTU1tXzb8Wsg+VshhBBVFRQUJO2l1tfXL+vqlJrSug6npqZCV1e3VM71JXJ+74mKikK9evXk2i8qKirP90gAZXbdLy/tTUqXandjkXLt1atXqF+/fr7/EVatWlXm56ysLCxevBg2NjbQ0tKCtbU15s6di/T0dJlyuefPSOSetySZi3zt2jVMnToVpqam0NPTw/fff4/o6GiZfRljWLJkCapXrw5dXV20b98eoaGhcr/P1atXw8nJCSYmJtDR0YGDg0O+83MFAgG8vb2xf/9+1K9fH1paWjhz5oy0rkFBQRg/fjyqVq2K6tWry7wPyVCxnj17onbt2vnWw9HREc2aNSuWNhGLxfD19YWFhYW0TZ48eSL3/DB52kQgECAlJQW7d++GQCAockigZO7zwYMH8b///Q+WlpbQ1dVFYmJigXOqN2/ejNq1a0NHRwctWrTAlStX4OLiAhcXlzzHF4vFWLp0KapXrw5tbW107NgRL1++lL7u4uKCkydP4s2bN9L6ytPTsG/fPjg4OEBHRwfGxsYYNGgQ3r17J1PmypUr0qGRWlpaqFGjBqZMmYK0tDSZch4eHtDX18erV6/QvXt3GBgYYOjQoUXWgRBCypKVlVWe+cb5iYyMxMiRI1G9enVoaWmhWrVq+O6776TXQGtra4SGhiIoKEj6/3B+/5/nJM/1KCIiAgKBIN9h5fl977h69SqaN28ObW1t2NjYYPv27fmeO+c109/fH/379wcAtG/fXlr/nNetLVu2SL8fWFhYYMKECYiPj5c5pouLCxo0aIC7d++iXbt20NXVxdy5c+Hu7o4qVaogMzMzTz26dOmCb775ptB2khz3yZMnaN++PXR1dWFpaYmVK1fmKZueng4fHx/UqVNHes2aOXNmvt/Z8vveIxAIEB4ejpMnT0rbIb8h8ZLfy+XLlxEaGpqnzQr6ThgTE4MBAwbA0NAQJiYmmDRpEj5//pynnDzX54Lam5DcqKealBgrKysEBwfj8ePHaNCgQaFlPT09sXv3bvTr1w/Tpk3DzZs34efnh6dPn+LYsWNK12HixImoXLkyfHx8EBERgfXr18Pb2xuHDh2SllmwYAGWLFmC7t27o3v37rh37x66dOmCjIwMuc6xYcMG9O7dG0OHDkVGRgYOHjyI/v3746+//kKPHj1kyl66dAmHDx+Gt7c3qlSpAmtrazx48AAAMH78eJiammLBggVISUnJ91wDBw7EiBEjcPv2bTRv3ly6/c2bN7hx4wZWrVpVLG0yZ84crFy5Er169YKrqytCQkLg6uqa70VJ2TbZu3cvPD090aJFC4wZMwYAYGNjU+SxFy9eDE1NTUyfPh3p6ekFDvneunUrvL290bZtW0yZMgURERFwc3ND5cqVpTctclq+fDnU1NQwffp0JCQkYOXKlRg6dChu3rwJAJg3bx4SEhLwzz//SIegFdXjsnTpUsyfPx8DBgyAp6cnoqOjsXHjRrRr1w7379+X3nAKCAhAamoqxo0bBxMTE9y6dQsbN27EP//8g4CAAJljZmVlwdXVFW3atMHq1avpbjkhpMLo27cvQkNDMXHiRFhbWyMqKgrnz5/H27dvYW1tjfXr12PixInQ19fHvHnzAABmZmaFHlORa7Q8Hj16hC5dusDU1BS+vr7IysqCj49PkfVo164dfvzxR/z000+YO3cu7O3tAUD6r6+vLxYuXIhOnTph3LhxCAsLw9atW3H79m1cu3YNGhoa0mN9+vQJ3bp1w6BBgzBs2DCYmZlBT08Pe/bswdmzZ9GzZ09p2cjISFy6dEmuYdZxcXHo2rUr+vTpgwEDBuDIkSOYNWsWGjZsiG7dugHgN6B79+6Nq1evYsyYMbC3t8ejR4+wbt06PH/+PE+elNzfe6pVq4a9e/diypQpqF69OqZNmwYAMDU1zVMfU1NT7N27F0uXLkVycjL8/Pxk2qwgAwYMgLW1Nfz8/HDjxg389NNPiIuLw549e6Rl5L0+F9TehOTBCCkh586dY0KhkAmFQubo6MhmzpzJzp49yzIyMmTKPXjwgAFgnp6eMtunT5/OALBLly5JtwFgPj4+ec5lZWXF3N3dpT/v2rWLAWCdOnViYrFYun3KlClMKBSy+Ph4xhhjUVFRTFNTk/Xo0UOm3Ny5cxkAmWMWJDU1VebnjIwM1qBBA9ahQweZ7QCYmpoaCw0NldkuqWubNm1YVlZWvq+Fh4czxhhLSEhgWlpabNq0aTLlVq5cyQQCAXvz5s0Xt0lkZCRTV1dnbm5uMufw9fUt9jbR09OT63iMMXb58mUGgNWuXTvP8SWvXb58mTHGWHp6OjMxMWHNmzdnmZmZ0nL+/v4MAHN2ds6zr729PUtPT5du37BhAwPAHj16JN3Wo0cPZmVlJVd9IyIimFAoZEuXLpXZ/ujRI6auri6zPff7YYwxPz+/PL9Td3d3BoDNnj1brjoQQoiqKej//bi4OAaArVq1qtD969evL/N/eFHkuR6Fh4czAGzXrl159s/9vcPNzY1pa2vL/N/85MkTJhQKWe6v1bmvwwEBATLXKgnJd5EuXbowkUgk3b5p0yYGgO3cuVO6zdnZmQFg27ZtkzmGSCRi1atXZwMHDpTZvnbtWiYQCNjr16/zvLecJMfds2ePdFt6ejozNzdnffv2lW7bu3cvU1NTY1euXJHZf9u2bQwAu3btmnRbQd97GONt06NHj0LrlLNu9evXz7M99+/Gx8eHAWC9e/eWKTd+/HgGgIWEhDDGFLs+F9TehORGw79JiencuTOCg4PRu3dvhISEYOXKlXB1dYWlpSVOnDghLXfq1CkAwNSpU2X2l9y9PHnypNJ1GDNmjMyQs7Zt20IkEuHNmzcAgAsXLiAjIwMTJ06UKadIIiodHR3p87i4OCQkJKBt27a4d+9enrLOzs4FziHy8vIqcv60oaEhunXrhsOHD4MxJt1+6NAhtGrVCjVr1iyyvkW1ycWLF5GVlYXx48fL7KdIYjlF2kRR7u7uMsfPz507d/Dp0yd4eXnJJDEZOnQoKleunO8+I0eOlOn1btu2LQDg9evXStXz6NGjEIvFGDBgAGJiYqQPc3Nz2Nra4vLly9KyOd9PSkoKYmJi4OTkBMYY7t+/n+fY48aNU6pOhBCiqnR0dKCpqYnAwEDExcUV63ElvvR6JBKJcPbsWbi5uclcb+3t7eHq6qp0HSXfRSZPniyT2MzLywuGhoZ5vgdpaWlh5MiRMtvU1NQwdOhQnDhxAklJSdLt+/fvh5OTE2rVqlVkPfT19TFs2DDpz5qammjRooXMdTAgIAD29vaws7OTubZ16NABAGSubUDh33tKyoQJE2R+lnx/kXzfVOT6DOTf3oTkRkE1KVHNmzfH0aNHERcXh1u3bmHOnDlISkpCv3798OTJEwB86LKamhrq1Kkjs6+5uTmMjIykwZ4ycgeZkoBKcsGWHNvW1lamnKmpaYHBV25//fUXWrVqBW1tbRgbG8PU1BRbt25FQkJCnrKFXdTkueABfAj4u3fvEBwcDIDPXb979y4GDhwo1/7ytknu34exsXGJtImi5Gmngt6Durp6gfOgi2oXRb148QKMMdja2sLU1FTm8fTpU5lkfW/fvoWHhweMjY2hr68PU1NTODs7A0CeNlNXV893+DohhJRnWlpaWLFiBU6fPg0zMzO0a9cOK1euRGRk5BcdtzivR9HR0UhLS8vznQFAkXOWCyO5ZuU+hqamJmrXrp3ne5ClpWW+U59GjBiBtLQ06bS5sLAw3L17t9DlqnKqXr16nrnvlStXlrkOvnjxAqGhoXmua3Xr1gWQNxGtvN9tilPu34+NjQ3U1NSk87YVuT4DBbc3ITnRnGpSKjQ1NdG8eXM0b94cdevWxciRIxEQECAzx0eeJCYFEYlE+W4vqOc3Zy/vl7hy5Qp69+6Ndu3aYcuWLahWrRo0NDSwa9cuHDhwIE/5wnpYi+p9lejVqxd0dXVx+PBhODk54fDhw1BTU5MmQCmKqrWJouRtJ0UVd7uIxWIIBAKcPn0632NL5mOLRCJ07twZsbGxmDVrFuzs7KCnp4f379/Dw8MDYrFYZj8tLS2VXyqNEEKUMXnyZPTq1QvHjx/H2bNnMX/+fPj5+eHSpUto2rSpwseT93pU0PePgr5blLWCroP16tWDg4MD9u3bhxEjRmDfvn3Q1NTEgAED5DquPNdBsViMhg0bYu3atfmWrVGjhlx1LU25f7/yXp8lVOE9ENVHQTUpdZIM1ZK1Kq2srCAWi/HixQuZ5BMfP35EfHw8rKyspNsqV66cJxNmRkaG0uteSo794sULmaza0dHRcvVQ/v7779DW1sbZs2dlls7YtWuXUvWRh56eHnr27ImAgACsXbsWhw4dQtu2bWFhYVEsx5e0ycuXL2XuMH/69KnY2+RLbqQUJud7aN++vXR7VlYWIiIi0KhRI6WOq0h9bWxswBhDrVq1pHfw8/Po0SM8f/4cu3fvxogRI6Tbz58/r1QdCSGkPLOxscG0adMwbdo0vHjxAk2aNMGaNWuwb98+AIr9Pyzv9UgyMin394vcPcSmpqbQ0dHBixcv8pwrLCysyPoUVHfJNSssLEzmu0hGRgbCw8PRqVOnIo8tMWLECEydOhUfPnzAgQMH0KNHD7lHmcnDxsYGISEh6NixY4ldw7/UixcvZL6/vHz5EmKxWDpSTd7rMyGKoO4OUmIuX76cby+fZE6LZJhT9+7dAQDr16+XKSe5C5ozO6eNjQ3+/vtvmXI7duxQ+m5yp06doKGhgY0bN8rUNXddCiIUCiEQCGTOHxERkSf7ZXEbOHAg/v33X/zyyy8ICQmRe+i3PDp27Ah1dXVs3bpVZvumTZvk2l+RNtHT08vzJaY4NGvWDCYmJvj555+RlZUl3b5///4vmqunp6cn95DBPn36QCgUYuHChXk+B4wxfPr0CUB2z0DOMowxbNiwQel6EkJIeZOamppnhQkbGxsYGBjILNWkyHVD3uuRoaEhqlSpkuf7xZYtW/Icz9XVFcePH8fbt2+l258+fYqzZ88WWR89PT0AeYP3Tp06QVNTEz/99JPMteDXX39FQkKCQlnKBw8eDIFAgEmTJuH169cyc6SLw4ABA/D+/Xv8/PPPeV5LS0srcPWS0rR582aZnzdu3AgA0gzm8l6fCVEE9VSTEjNx4kSkpqbi+++/h52dHTIyMnD9+nUcOnQI1tbW0qQPjRs3hru7O3bs2IH4+Hg4Ozvj1q1b2L17N9zc3GR6Gj09PTF27Fj07dsXnTt3RkhICM6ePYsqVaooVUdTU1NMnz4dfn5+6NmzJ7p374779+/j9OnTch2zR48eWLt2Lbp27YohQ4YgKioKmzdvRp06dfDw4UOl6iQPyRrF06dPh1AoRN++fYvt2GZmZpg0aRLWrFmD3r17o2vXrggJCZG2SVF3phVpEwcHB1y4cAFr166FhYUFatWqhZYtW37xe9DU1ISvry8mTpyIDh06YMCAAYiIiIC/vz9sbGyUvrvu4OCAQ4cOYerUqWjevDn09fXRq1evfMva2NhgyZIlmDNnjnQ5LwMDA4SHh+PYsWMYM2YMpk+fDjs7O9jY2GD69Ol4//49DA0N8fvvvxdroh5CCClLf/75J0JCQgAAmZmZePjwIZYsWQIA6N27Nxo1aoTnz5+jY8eOGDBgAOrVqwd1dXUcO3YMHz9+xKBBg6THcnBwwNatW7FkyRLUqVMHVatWlSbJyk2R65GnpyeWL18OT09PNGvWDH///TeeP3+e55gLFy7EmTNn0LZtW4wfPx5ZWVnYuHEj6tevX+R1v0mTJhAKhVixYgUSEhKgpaWFDh06oGrVqpgzZw4WLlyIrl27onfv3ggLC8OWLVvQvHlzhQJjU1NTdO3aFQEBATAyMlJq2bDCDB8+HIcPH8bYsWNx+fJltG7dGiKRCM+ePcPhw4dx9uxZ6YjEshIeHi79/hIcHIx9+/ZhyJAhaNy4MQD5r8+EKKSUs42Tr8jp06fZqFGjmJ2dHdPX12eampqsTp06bOLEiezjx48yZTMzM9nChQtZrVq1mIaGBqtRowabM2cO+/z5s0w5kUjEZs2axapUqcJ0dXWZq6sre/nyZYHLR92+fVtm/9xLL0mOuXDhQlatWjWmo6PDXFxc2OPHj/McsyC//vors7W1ZVpaWszOzo7t2rVLuqxDTgDYhAkT8uxfUF1zviZZUiunoUOHSpfIys+XtElWVhabP38+Mzc3Zzo6OqxDhw7s6dOnzMTEhI0dO7aQ1uDkbZNnz56xdu3aMR0dnSKX65LUMyAgoMDXci9T8tNPPzErKyumpaXFWrRowa5du8YcHBxY165dizxufkusJCcnsyFDhjAjIyMGQK7ltX7//XfWpk0bpqenx/T09JidnR2bMGECCwsLk5Z58uQJ69SpE9PX12dVqlRhXl5eLCQkJM/53d3dmZ6eXpHnJIQQVSJZDjC/h+T/uJiYGDZhwgRmZ2fH9PT0WKVKlVjLli3Z4cOHZY4VGRnJevTowQwMDPIskZgfea9HqampbPTo0axSpUrMwMCADRgwgEVFReW7lGdQUBBzcHBgmpqarHbt2mzbtm35HjO/7xE///wzq127tnQJrpzXrU2bNjE7OzumoaHBzMzM2Lhx41hcXJzM/gUtL5XT4cOHGQA2ZsyYQsvJc1x3d/c817qMjAy2YsUKVr9+faalpcUqV67MHBwc2MKFC1lCQoK0XEHfexgr2SW1njx5wvr168cMDAxY5cqVmbe3N0tLS8uzvzzXZ3namxDGGBMwVkzZiQghFVp8fDwqV66MJUuWYN68eWVdHaWIxWKYmpqiT58++Q5dI4QQQsq7P/74A25ubvj777+ly0MSQkoWzakmhOSRlpaWZ5tknrmLi0vpVkZJnz9/zjNXas+ePYiNjS0374EQQghR1M8//4zatWujTZs2ZV0VQr4aNKeaEJLHoUOH4O/vj+7du0NfXx9Xr17Fb7/9hi5duqB169ZlXT253LhxA1OmTEH//v1hYmKCe/fu4ddff0WDBg3kXn6MEEIIKS8OHjyIhw8f4uTJk9iwYYPKZucmpCKi4d+EkDzu3buHmTNn4sGDB0hMTISZmRn69u2LJUuW5Fm/UVVFRETgxx9/xK1btxAbGwtjY2N0794dy5cvR9WqVcu6eoQQQkixEggE0NfXx8CBA7Ft2zaoq1PfGSGlhYJqQgghpIKKjY3FxIkT8eeff0JNTQ19+/bFhg0bCr055uLigqCgIJltP/zwA7Zt21bS1SWEEELKJQqqCSGEkAqqW7du+PDhA7Zv347MzEyMHDkSzZs3x4EDBwrcx8XFBXXr1sWiRYuk23R1dWFoaFgaVSaEEELKnXIxLkQsFuPff/+FgYEBzQ8hhBBSLjHGkJSUBAsLC6iplXye0KdPn+LMmTO4ffu2dN3YjRs3onv37li9ejUsLCwK3FdXVxfm5uZynys9PR3p6enSn8ViMWJjY2FiYkLXbUIIIeWSQtftMlrKSyHv3r0rcH1DetCDHvSgBz3K0+Pdu3elcu389ddfmZGRkcy2zMxMJhQK2dGjRwvcz9nZmVWpUoWZmJiw+vXrs9mzZ7OUlJRCzyVZH5Ye9KAHPehBj4r2kOe6rXBP9d9//41Vq1bh7t27+PDhA44dOwY3N7dC9wkMDMTUqVMRGhqKGjVq4H//+x88PDzkPqeBgQEA4N27d1/38LP0dGDSJP58wwZAS6ts60MIIURuiYmJqFGjhvSaVtIiIyPzJOVTV1eHsbExIiMjC9xvyJAhsLKygoWFBR4+fIhZs2YhLCwMR48eLXCfOXPmYOrUqdKfExISULNmTbwMfwcDBa7bNV2my11W4m3gaoX3UeY88pCnLrnPXVr75Keo4+R3DGXam5QtZf5+Suq4xfEZL6nPb1Hnze/c9Hmo2JISE1GnlnzXbYWD6pSUFDRu3BijRo1Cnz59iiwfHh6OHj16YOzYsdi/fz8uXrwIT09PVKtWDa6urnKdUzJ0zNDQ8OsOqgGgkHlwhBBCVN+XDoeePXs2VqxYUWiZp0+fKn38MWPGSJ83bNgQ1apVQ8eOHfHq1SvY2Njku4+Wlha08rnRa6DgdVsg1FS4vsp8L1DmPPKQpy65z11a++SnqOPkd4yv/ntYOaTM309JHbc4PuMl9fkt6rz5nZs+D18Hea7bCgfV3bp1Q7du3eQuv23bNtSqVQtr1qwBANjb2+Pq1atYt26d3EE14bKygNBQ4PVrQCzm2xISgJgYwNUVqF8foNUTyNcqIwN4+BC4cIF/ViR0dICuXQE7O0AoLLv6EVJcpk2bVuRor9q1a8Pc3BxRUVEy27OyshAbG6vQfOmWLVsCAF6+fFlgUE0IIYR8zUo8BAsODkanTp1ktrm6umLy5MkF7pM74UliYmJJVU+lZWQAp08Dx48D168DL18waLNUAEAqdAFk3zWZNQtQUwNsbQFHR8DNDejWDdAsnZt5hJS6tDTgzz+BkyeBBw+Ap0+BzMz8y06fzgPqBg2Ali2B778HOnWim1CkfDI1NYWpqWmR5RwdHREfH4+7d+/CwcEBAHDp0iWIxWJpoCyPBw8eAACqVaumVH0JIYSQiq7Ev1JGRkbCzMxMZpuZmRkSExORlpYGHR2dPPv4+flh4cKFJV01lcQYcO0asG8fcPgwEBeX/ZouUpECvrZoZ8dkfBbqITYWCAsDRCLeex0Wxh/+/oCxMTBgADBsGODkBFACVlLeicVAYCD/fAQEAMnJsq9ra/Ne6pzBcmYm/3yIREBICH/s2AFUrQoMGsQ/H82bl+rbIKRU2Nvbo2vXrvDy8sK2bduQmZkJb29vDBo0SJr5+/379+jYsSP27NmDFi1a4NWrVzhw4AC6d+8OExMTPHz4EFOmTEG7du3QqFGjMn5HhBBCiGoq+TU9lDBnzhwkJCRIH+/evSvrKpWKoCAe/LZtC2zfLhtQa2sDvXpm/3z+PHDlCh8O/vkz79F2c+PlJGJjgW3bgDZtgNatgb//LrW3QkixYoz/jX/7LdCxI7BrV3ZA3bIl8McfQHg4nw6Rns57sSWP1FTg2DFg8mQeiHt7A6amQFQU8NNPQIsW/Ji3bpXpWySkROzfvx92dnbo2LEjunfvjjZt2mDHjh3S1zMzMxEWFobUVD4KSlNTExcuXECXLl1gZ2eHadOmoW/fvvjzzz/L6i0QQgghKq/Ee6rNzc3x8eNHmW0fP36EoaFhvr3UQMEJTyqqe/eAuXOBs2f5z9ragK4uD4oFAmD2bGDePEAPwH8d1TLU1fmc0a5dgZQUYOlSYPlyPhS8VSseSAQHA87OfEj4smVAkyal+AYJ+QLXrwNz5mTfFNLR4Z+L1FT+t//990Dv3gXvr6nJbzhJFino148/79wZMDTkn5lLl3hw3qcPsGQJYG9fwm+KkFJibGyMA4UkuLS2tgZjTPpzjRo1EBQUVBpVI4QQQiqMEu+pdnR0xMWLF2W2nT9/Ho6OjiV9apWXmsp7zRwceECtrg6MH88Tka1bB1hZ8d7rZcsAPT35jqmnx8sHBvL5prt3A69eAePG8eOfPg00bQpMnMjPT4iqSkgAPDyyR1loafFRHJLe52++AW7c4PkElFG1Kj+Hmhq/4aSmBhw9yuddz53LcxoQQgghhBBSFIWD6uTkZDx48ECauCQ8PBwPHjzA27dvAfCh2yNGjJCWHzt2LF6/fo2ZM2fi2bNn2LJlCw4fPowpU6YUzzsop27f5sHt5s3858GD+VzPzZuBatWA4cP50O62bZU7frt2QN26/Hm1akCdOsCiRXwOKQBs2sSH0t658+XvhZDiFhQENGrEbwqpqQGensC0aXzKAwCMHctHePyXe0lhHTsCjx4BvXrx4PnqVWDNGuC77/i8bT8/3nMdGlp874kQQgghhFRMCgfVd+7cQdOmTdG0aVMAwNSpU9G0aVMsWLAAAPDhwwdpgA0AtWrVwsmTJ3H+/Hk0btwYa9aswS+//PLVLqeVlcWDW0dH4PlzwMICOHeOL4nVqxcQEcHLCQTy904X5eJFHpDMmwd07w6cOcMD7bAwXo9Fi2SXICKkrKSnAzNmAO3bA2/fArVr815qHx9g/XpeZvFiYOtWPkXiS5ia8sz67u48idmMGcCoUcDvvwMmJjyjuIMDHzUiWcKOEEIIIYSQ3BQOql1cXMAYy/Pw9/cHAPj7+yMwMDDPPvfv30d6ejpevXpV5PqaFVV8PJ/T7OPDv8QPGsR7y6KjgZEj+bDv/5qxWHXowIeVM8aH08bGAo8f88zgWVm8Pt278/oRUlY+fgRcXIDVq/nfqpcXD2xbtwaqVwdOneIB9f/+V3znVFMDfv0VGDKEfxb69ePDyh8/5p+J9HRg6lSgf3+aLkEIIYQQQvKnktm/K6JXr3iv8IULvAd6/37gt9/4sNPhw3kQ8cMPPMAtkFDIv/X368efy0kgADZu5EGKWMzPd+0acPAgX5pIV5dnE3dy4oE9IaXt8WM+3PrGDcDIiGfz3rFDtjfa2bl4A2oJoZAPM+/fH5gyBahXDzA3B/76i2fP19Tkc63btQP+/bf4z08IIYQQQso3CqpLwdWrPGB49gywtOQ/DxkCvHzJA1yxmPdUb9lSxFrS2to8lXdAgOzaWXJQU+MBgmSo6/DhPIAeOpTXx9ISePqU1/PatS97v4Qo4swZfkPnzRs+9//mTZ7N+8EDoGHD0pn3r67Ob3ItX579GRQI+I2uixf5cPC7d/nn4790EoQQQgghhACgoLrEHTnCkyJ9+sTnZ966xZezSkvjHc6JiXx46/btPPAtSWpqvPfP0ZFnPe7Xj69x3bQpD2S+/RaIieHDxX//vWTrQgjAh1736AEkJfGe4Bs3eIK9+Hj+9/n0KV8irjQIhdkBdVoasHIlHxLepg3/fNjZAf/8w38+d6506kQIIYQQQlQfBdUl6OBBPm86I4OvpRsUxBOTAcD8+Tzbd9WqwKFDgIZG6dRJUxM4fJgnKhs2jC9TBPCe6r//5uv3ZmQAAwfycoSUlO3beVZvsZiPoDh/nvcIM8ZHbrx6xZeV+/XX0q0XY3zN91mz+NJaAGBjw9d679iRr2vduzfvYSeEEEIIIYSC6hKyfz8fWi0S8eRgAQGy2bxnzgQ6dwYOHOABrVxSUnhXmkDAnyupenXgxQueETzncHM9Pd6zPmIEr/fgwXxILCHFbfNmviwWAEyeDOzaxW/4AHxpq+PH+c8BAYCxcenWTSDg67gDwKpVvC4An+t96hRfdis9nf978mTp1o0QQgghhKgeCqpLwN69PDAVi4HRo3lPW+68YlWrAmfP8p6vspAzwE9O5r2CAK/nzp28p1As5r3Z+/aVTR1JxbRxI+DtzZ9PmwasXZt9c+fKFWD2bP58/XqgefMyqSL69ePBPsBvikk+H5KRHn36ZI9A+fPPsqkjIYQQQghRDRRUF7MDB/hQVrEYGDOGz2GWzJXOzOTZvyUKTUpWSl6+5IFLv368fgAPrH/5JXto7ogR1GNNisfmzcCPP/Lns2bxnmDJ5yAlJTuR3tCh2T3ZZWXlSp5ALSGBr18tWataU5NP7ejfn39m+valHmtCCCGEkK8ZBdXF6Nw5HhQwBowbB2zdKpt8bMUKPuRbMrRUFRgYAFFRPKPxypXZ29XU+JzXH37g70cy55UQZQUEZP/tz50L+PnJ3lhKTeXLWdWoIUcm/FKgoZG95Nzff/PPQ87XDhzgORMyM3mAffNm2dWVEEIIIYSUHQqqi8mdO3xIaFYWXy5r0ybZgDo0FFi0iD93ciqbOubHzAzYsIE/X7QIePIk+zU1NR7cSAKHPn34skKEKOryZT6VgDFgwgRgyZK8QbOpKR9KffMmYGhYNvXMrVYtHvwDPAt5enr2a+rqwJ49QLduPFt4jx5AWFjZ1JMQQgghhJQdCqqLwYsXQPfufPhqp0486VLOgFok4nOrMzOBXr14kKpKhg7l9c/I4PUUibJfU1MD/P353O/kZF5OMr+UEHmEhGRnle/bl9/EyRlQM5b9XCDgmelVibc3H6p+40Z2tnwJDQ3eA9+8OV82z9UV+PffsqknIYQQQggpGxRUf6GPH/kX6ehovs7z0aPZWYwlNmzI7n3burXsh7XmJhDwoa2Ghjxw2LhR9nUtLf6+mjblQ8VdXfn7JqQoERF8earERMDZmQ+nzp20b8ECngwsNrYsalg0NTVg+XKeNT8/enp8TrWtLfDmDX+/CQmlW0dCCCGEEFJ2KKj+Ap8/8x648HCgdm2+3I6BgWyZly+B//2PP1+zRoHls/IjFPKu4u7d80YmX6h6dZ40CuDzXXP3Rhsa8vdXqxZ/7fvvZYfCEpJbUhIfmREZCTRsyJem0taWLfPgAR9evXs3n7dcHpw7x99TTqamPJu/uTnw6BEfjZJzxAchhBBCCKm4KKhWEmM8O/GNG0DlysCZM3x+cu4yEyfy+ZYdO/Kh1V9EW5t3iZ08mTc6KQZeXkD79kDbtvm/bm7O36eRERAczN9/zqG7hEhIlmN7/JgP5z59mv/d5C4zdiwPPvv14zeoVJ2fHx+pMWNG3tdq1eIfTR0d/jmZNav060cIIYQQQkofBdVKWreO964JhXzdWlvb/Mt5eQF166rmsO/cBAKeKOrMGcDGJv8ydesChw5lz7WWJDkjJKcFC4ATJ/jUgePH8x+hsXcvnxahrw/89FOpV1EpXbrwz8m+fcC1a3lf//Zb/v8CwEemSJ4TQgghhJCKi4JqJZw+nd1TtW4dT06WH4GAZ8x++rTgoFvV6OkVHfx36QKsXcufT5vGh70SInHwIM+UDfD1zlu0yFsmMTG7J3fBAtVLTlYQB4fsESc//pj/EO/+/fl7Avha9cHBpVc/QgghhBBS+tTLugLlTVgYMHgwH7rq6ckzA+cnK4svuQPIZgL/IikpQNWq/HlUFI+AS0hMDJ8LbmOT/1DXH38EHj4Edu4EBg4Ebt3ivdjk63b3LjBqFEPlylmYMkWEfv147oHc1q/nMxhcXPha6PmVUVW+vnzax6dPwP79wIABecvMmsWzgJ8/z6eAHDnCp0+Qik0oFEJdXR0CVR+WRAghhJBiRUG1AlJSeM9zQgLQpg2weXP+vbr//MNfnzOHD/8utqAaAFJTi/FgBTtzhmcE19PjS25ZWMi+LhDwNazDwvgw2D59+FDeEozziYqLjQW8vDIwY8YHODunwtycJ/HLTSwGHB15D3bVqsD796Vf1y/1yy9AXBz/bL96lf9nfPLk7DXew8P5R5dirYpPV1cX1apVg2buZSAIIYQQUmFRUC0nxniP2pMnfKjqkSN5l86SmDmTL62zZw8f/lkeDRnCg+bgYP5+9u3LW0ZLi7dD06ZAaCgwbhyfQ0qBw9dHLAZGjhRjypRw2NoKUbeuBXR0NAvssbOy4kPAjY1LuaLFRCzmmf0zMnhistw3nSRq1ODlxGJerrwMcyeKY4whIyMD0dHRCA8Ph62tLdSK9Y4qIYQQQlQVBdVy2r6dD/UUCnmirtyZviWuXAF++40Hlhs3lt8AU02NJ49q0YK/77Fjee97bubmvD06dOCJp9q0Kb83Eojyli8H7t/PwLhxYtStWwPGxrpF7qOvXwoVK0HW1rwH2sio4GT82tp8ub2XL/lw8UqVyu+NBFI0HR0daGho4M2bN8jIyIB2CazSQAghhBDVQ7fR5XDnDjBpEn++YkXBS06JxcDUqfy5pyfPBFyeNWuWnZRp2rSCl89q1w5Ytow/nziRz6slX49Ll4D58/mNGBMTQFc3//9WxGI+daKiLMNmaMjX3y4qSDYyyp5PHRFRvuaPE8VR7zQhhBDy9aGrfxFiY/kauhkZfB1dSdCcn0OHeACurw8sXlxqVSxRixfzedK3bvGlwwoyfTrQuzdvp379+HxTUvG9f5+duK9Pn8J7n2NigBcvgNevS69+JU3e+MnSEjAw4O306lX+WcMJIYQQQkj5REF1IRgDRo3i86NtbIBduwoezp2eDsydy5/PmlXw8PDyxtycz6kGeC99Qb2MknWra9XivXGjRlWcHkmSP5GIJ7GLigIaNeK91YWV/fdf/tzAoHTqV1oYA6Kj+Q2Dgv7mBQI+DFxDA0hLA969K906EkIIIYSQkkNBdSG2bAH++IMnJAsI4MM4C3LpEg8mLSwK783+ImpqgLMzf5TiEMNp0/gNg3PnCp8jXrkybycNDeD4cWDbtlKrIikDy5YBQUG8dzoggCfiKkhkJF9mTlsbqFKl9OooDxcXF0yePFnp/UUinvE/IYHPmy6IhgYPrAHeax8bq/QpVYKvry+aNGlS1tUghBBCCClzFFQXICSEB5MAsHIlz3BdmG7dgHv3gF9/BXSLztGkHB0dIDCQPwqLYIqZnh6wdKl8wZCDA+/RBoApU4BHj0q2bqRsXL3K12sG+M2nwtYoz8jgQTXAh0Gr2pTTo0ePYvEXzNdQV8/O6v3vv3yId0EMDLLLzpnji8aNmyh9XkIIIYQQohpU7OutakhJ4evLpqcDPXsCP/4o335NmwJdu5Zs3coaY3yYa2EmTeI3GdLTeTuW0tLapJTExfEl18RiYNgwYPjwwsv/+y//u9HXL3y0R1kxNjaGwReOSa9alY9oycgAPn4svKyFBW8LxvhnpLAgnBBCCCGEqD4KqvMxeTLw7BnvUSpsHjXAh32+elVqVStTSUlA58484/GbNwWXk8yvNjfn63pPmVJqVSQljDGe2f7dO6BOHd5LXZiUFF42LY1PD0hN5dtK+qHIfP7cw7+tra2xbNkyjBo1CgYGBqhZsyZ27NghfT0iIgICgQAHDx6Ek5MTtLW10ahRA0REBAHgvfK//uoPo1x3EI4fPw6BQACBALhyxR8//7wQYWEhEAoFEAgE8Pf3z7d+gYGBaNGiBfT09GBkZITWrVvjTY4P4NatW2FjYwNNTU1888032Lt3b566PnjwQLotPj4eAoEAgYGB0uMLBAJcvHgRzZo1g66uLpycnBAWFiZTj+XLl8PMzAwGBgYYPXo0PheRxrxZs2ZYvXq19Gc3NzdoaGggOTkZAPDPP/9AIBDg5cuXAIC9e/eiWbNmMDAwgLm5OYYMGYKoqCgAgFgsRvXq1bF161aZc9y/fx9qamrS9oiPj4enpydMTU1haGiIDh06ICQkpNB6EkIIIYR8KQqqcwkIAH75hQfS+/cXPeR59mzA3h7I8Z275KSkAKam/JGSUgonlKWvz3vV0tMLT0oF8J67fft4O+7YARw5Ujp1JCVrxw7g6FE+P/jgwaKTjiUn8yXX2rXjN1n09Uvn8aWjI9asWYNmzZrh/v37GD9+PMaNG5cnyJwxYwamTZuG+/fvw9HREcOG9UJGxieIREB8fOHHHzZsICZMmIbatevj9OkPeP78AwYOHJinXFZWFtzc3ODs7IyHDx8iODgYY8aMgeC/O33Hjh3DpEmTMG3aNDx+/Bg//PADRo4cicuXLyv8nufNm4c1a9bgzp07UFdXx6hRo6SvHT58GL6+vli2bBnu3LmDatWqYUsRd1ScnZ2lgTtjDFeuXIGRkRGuXr0KAAgKCoKlpSXq1KkDAMjMzMTixYsREhKC48ePIyIiAh4eHgD4MlWDBw/GgQMHZM6xf/9+tG7dGlZWVgCA/v37IyoqCqdPn8bdu3fx7bffomPHjogt7xPYCSGEEKLSKKjO4d07YMwY/nzOHKB9+8LLh4QABw4AmZl8TedSERPDH2VAIODzywEeMD98WHj5jh35TQeAt+s//5Rs/UjJevYse9SBnx+fP1+UwpbYUmXdu3fH+PHjUadOHcyaNQtVqlTJE6h6e3ujb9++sLe3x9atW1GpUiVcuPArAD6qozA6OjqoUkUfWlrqqFLFHKmp5tDQyJsnITExEQkJCejZsydsbGxgb28Pd3d31KxZEwCwevVqeHh4YPz48ahbty6mTp2KPn36yPQQy2vp0qVwdnZGvXr1MHv2bFy/fl3aG71+/XqMHj0ao0ePxjfffIMlS5agXr16hR7PxcUFV69ehUgkwsOHD6GpqYmhQ4fK9JA7OztLy48aNQrdunVD7dq10apVK/z00084ffq0tGd76NChuHbtGt6+fQuA914fPHgQQ4cOBQBcvXoVt27dQkBAAJo1awZbW1usXr0aRkZGOEJ39QghhBBSgiio/o9YDLi78x6mFi2ykzAVZs4cPsx00CDg229LuoaqoVkzoH9//r7nzCm6/MKFfJ+4OMDDg+aPllcZGXz5rLQ0oFMn+Yf06+ry3urSfnxpssBGjRpJnwsEApibm0uHIks4OjpKn6urq6NZs2YID38Kc3PeKy8PTU2eET0zk0+pyD1s3djYGB4eHnB1dUWvXr2wYcMGfPjwQfr606dP0bp1a5l9WrdujadPn8r5TrPlfM/V/sumJnnPT58+RcuWLWXK53z/+Wnbti2SkpJw//59BAUFwdnZGS4uLtKgOigoCC4uLtLyd+/eRa9evVCzZk0YGBhIA25JEN2kSRPY29tLe6uDgoIQFRWF/v37AwBCQkKQnJwMExMT6OvrSx/h4eF49bXM0SGEEEJImaCg+j9r1gCXL/NM1/v28eGthQkKAk6f5pl/vyBxcLm0ZAkgFAKnTgF//114WQ0NPoxeVxe4eBFYt6506kiKl48Pz25vbAzs3l10Bu/4eD63mDH+mSrtR2F5EOShkes/AIFAALGcd4SqVwd0ddXAckXImZmZ+ZavVYvXNy4u/yW5du3aheDgYDg5OeHQoUOoW7cubty4IVdd1P77ReWsS0H1yPmeJcPL5X3P+TEyMkLjxo0RGBgoDaDbtWuH+/fv4/nz53jx4oU0cE5JSYGrqysMDQ2xf/9+3L59G8eOHQMAZGRkSI85dOhQaVB94MABdO3aFSYmJgCA5ORkVKtWDQ8ePJB5hIWFYcaMGUq/D0IIIYSQolBQDeD+fWDePP58/XrA1rbw8owBs2bx52PG8IRNX5O6dXmyKoC3Q1FJoerWzQ6m587lw+ZJ+REUlL1M2s8/8+zVhWGMD/X/55+iM2GXZzkD26ysLNy9exf29vYAAFNTUyQlJSE+Pjv3Qc5kYQCgqakJkUgEPb3sNn37Fsgv/1fTpk0xZ84cXL9+HQ0aNJAGlvb29rh27ZpM2WvXrkmHZpuamgKATO927nrIw97eHjdv3pTZJk9g7+zsjMuXL+Pvv/+Gi4sLjI2NYW9vj6VLl6JatWqo+99abM+ePcOnT5+wfPlytG3bFnZ2dnlGBgDAkCFD8PjxY9y9exdHjhyRDv0GgG+//RaRkZFQV1dHnTp1ZB5VVG1xdEIIIYRUKF99UJ2Wxoe1ZmYC330HjB5d9D7HjwM3b/Le16ISdlVUCxbwpbI/fcpeg7gwXl5A796yw4iJ6ouPB0aM4IHyyJFAnz5F7xMXxwNDdXWesK6i2rx5M44dO4Znz55hwoQJiIuLkyb3atmyJXR0dDFu3FyEhLzCgQMH8mT3tra2Rnh4OB48eAB19RhoaqZDLAbCw7NvVIWHh2POnDkIDg7GmzdvcO7cObx48UIavM+YMQP+/v7YunUrXrx4gbVr1+Lo0aOYPn06AD53u1WrVli+fDmePn2KoKAg/O9//1P4vU6aNAk7d+7Erl278Pz5c/j4+CA0NLTI/VxcXHD27Fmoq6vDzs5Oum3//v0y86lr1qwJTU1NbNy4Ea9fv8aJEyfyXTvc2toaTk5OGD16NEQiEXr37i19rVOnTnB0dISbmxvOnTuHiIgIXL9+HfPmzcOdO3cUfs+EEEIIIfL66oPqWbOAp0/5HEhJ1u+iREfzBExTp8o/d7KisbAAAgOB0FC+9FhRBALevmZmfB9JAjOi2ry9ee+pjQ2wYUPR5RkDJB2M1arxaQIV1fLly7F8+XI0btwYV69exYkTJ6Q9osbGxli3bh+uXTuFVq0a4rfffoNvrkQNffv2RdeuXdG+fXtUrWqKmzd/g1DIE/tLOpZ1dXXx7Nkz9O3bF3Xr1sWYMWMwYcIE/PDDDwD4MlUbNmzA6tWrUb9+fWzfvh27du2Smau8c+dOZGVlwcHBAZMnT8aSJUsUfq8DBw7E/PnzMXPmTDg4OODNmzcYN25ckfu1bdsWYrFYJoB2cXGBSCSSqaOpqSn8/f0REBCAevXqYfny5QUmWxs6dChCQkLw/fffQ0cnO7mbQCDAqVOn0K5dO4wcORJ169bFoEGD8ObNG5iZmSn8ngkhhBBC5CVguSf+qaDExERUqlQJCQkJMDQ0LLbjnjsHuLry56dPA127yr9vdDRPMFTUkkLFKi2Nr00E8MnMOnmzBau606eB7t358/PnedIropoOHeJJ+NTUgKtXgSLyUuHz58948CAc6uq1oKmpjQYNip57XR5FRESgVq1auH//Ppo0aVJguYwM4PFjnpzPxoav012UT594TzXAl+rT0yueOpPS8/nzZ4SHh6NWrVrQ1taWea2krmWqSPJeP35S7L1Wbu6t8Lnibm9SeB9lziMPeeqS+9yltU9+ijpOfsdQpr1J2VLm76ekjlscn/GS+vwWdd78zk2fh4otMTERZibyXbcr4Fde+cTG8uGsADBhgmIBNcCXii7VgBrgQfTt2/yhQgF1Rgawfbt8Q7q7dQMkHVweHnyoMFE9799n/57mzSs6oAaAhAQgMZE/t7ComAG1IjQ1+cgMgLenPLcvjY2zg+/wcEAkKrn6EUIIIYSQ4qHU197NmzfD2toa2traaNmyJW7dulVgWX9/fwgEAplH7rv3pY0xHjD8+y9PoiVZe7ko+/cDly6VbN3KI1dXYOxYYJOcN+tWreLJ4N6/5zc0iGphDBg1it/wcHCQP2/Azz/zXlktLeC/hMxfPTMzPrf882f5lpcXCAArK541//Nn/hkhpDgoct0GgICAANjZ2UFbWxsNGzbEqVOnSqmmhBBCSPmjcFB96NAhTJ06FT4+Prh37x4aN24MV1fXfDO1ShgaGuLDhw/Sx5s3b76o0l/qt9+Aw4f5fM99++Rb0zY2lgeAHTsCZ8+WfB3LEw8P/u+yZfL1POvpAXv38vb/7Tfg4MESrR5R0JYtfGqEtrZ8y8tJfP89H0BhZvblS1qpMmtrazDGCh36LaGunp1z4N9/5et5Vlfny2wBfH56QoLydSUEUPy6ff36dQwePBijR4/G/fv34ebmBjc3Nzx+/LiUa04IIYSUDwoH1WvXroWXlxdGjhyJevXqYdu2bdDV1cXOnTsL3EcgEMDc3Fz6KMukMe/eAePH8+cLFgDNm8u3n58f/3LbsGEZzgNOTQWsrfkjNbWMKpHXsGFAgwY8U/Ty5fLt07IlIElCPG4c9cipimfPAMmSvqtWAf8lbJaLjQ3P9l3Bp4oqzNSUDwUXieT/2BoaZmdOj4gAsrJKrHrkK6DodXvDhg3o2rUrZsyYAXt7eyxevBjffvstNsk7HIkQQgj5yigUVGdkZODu3bvolCOqVFNTQ6dOnRAcHFzgfsnJybCyskKNGjXw3XffFbkUS3p6OhITE2UexWXiRB4ct2jB10yWx7t3wMaN/Pny5WWY0Zgx4M0b/lCh/HJCIb/pAAA//cTXJ5bHvHn8pkZ8PJ/fLhaXWBWJHDIzgeHD+dz4Ll2ybz4VhX5vhVNTA2rX5jeeFMnDYGnJRwtkZqrcR56UI8pct4ODg2XKA4Crq2uh1/mSvG4TQgghqk6hoDomJgYikShPT7OZmRkiC1is+JtvvsHOnTvxxx9/YN++fRCLxXBycsI/hURefn5+qFSpkvRRo0YNRapZqDVrgM6d+fBjdXX59vHxAdLTAWdnnmiL5NWjB9C2LZ8HmmvloAJpaPDfg44OzwS+eXOJVpEUYckS4M4dnihr5075E4317w94emYvpUXy0tfnvdWKEAr5MHCBgE+riI0tmbqRik2Z63ZkZKRC5YGSvW4TQgghqq7E8/M6OjpixIgRaNKkCZydnXH06FGYmppi+/btBe4zZ84cJCQkSB/v3r0rtvrY2PD5onXrylc+NBTYvZs/X7GiYs8V/RICAW8fANi1C3jyRL79vvkGkCxHO3MmXzOclL4bN4ClS/nzbdt4L6k8rl0Djh7lv/Pk5JKrX0WSlMQz5stDTy97Tvbbt/zmHiGqqCSv24QQQoiqUyiorlKlCoRCIT5+/Ciz/ePHjzA3N5frGBoaGmjatClevnxZYBktLS0YGhrKPMrKrFl8eGufPnweMCmYoyPg5saHDsub3Argc6pdXXkv97Bh8gccpHikpPBh3yIRMHQoMGCAfPsxlj3/etQoPsSZFO79eyAsTLEcAtWq8eBaJOLzq2kYOFGEMtdtc3Nzha/zqnTdJoQQQkqbQkG1pqYmHBwccPHiRek2sViMixcvwlGehWwBiEQiPHr0CNUk3S8qjDFgxAjeqy2ZM0wKd+AAcPo0XzJLXgIBH25sbAzcuwcsXlxy9SN5TZ8OvHwJVK8u/7JoAHDkCBAczLPnL1xYcvWrSIyM+L+fPsmftEwg4MPA1dR4LzcNsy9d5T1ngDLXbUdHR5nyAHD+/Hm5r/OEEELI10bh4d9Tp07Fzz//jN27d+Pp06cYN24cUlJSMHLkSADAiBEjMGfOHGn5RYsW4dy5c3j9+jXu3buHYcOG4c2bN/D09Cy+d1FCBALea/f0qfzDxb92OjrK7WdhAUhmBCxbBly/Xnx1IgU7dYoP9wb4NAdJ0FeU9HQ+igPgvdUWFiVSvQpHT4/fPAJ4AsScvc4uLi6YPHlyvvtpawOSKar//MOTyZGieXh4wM3NTfpzYW2cn0+f+BSgnFMb/P39YSTvB0VFKHrdnjRpEs6cOYM1a9bg2bNn8PX1xZ07d+Dt7V1Wb4EQQghRaXKm6so2cOBAREdHY8GCBYiMjESTJk1w5swZaVKTt2/fQi1HhqO4uDh4eXkhMjISlStXhoODA65fv4569eoV37soAYxlz5+WN2FTiRMIAEm7qfjk7qgo3nvp5MSHFMujXz8+/HvfPj4c+cEDxbIlE8VERfGs6wAweTLQoYP8+27aBISH86HJkiHgRD6WljzxWFISX4lA3visShWeKT8hAXj9GrC3V6H/m8qJo0ePQkPOuSnp6Xweu0gEJCbyZHPllaLXbScnJxw4cAD/+9//MHfuXNja2uL48eNo0KBBWb0FQgghRKUpHFQDgLe3d4F3rAMDA2V+XrduHdatW6fMacpMSgrQpg0wZgzg5SV/lvASp6vLu03KgT17gC1bgD/+AL7/nlddHps2AVeu8KDhxx95AixS/BgDRo/mgXWDBopNbxCJsnu3lyzhva9EflpagJkZEBnJe50NDeULjgUCvkR9aCjvqX7/Prv3msjHWDJMoAiM8ZtGIhEPpsvBbKUiKXLdBoD+/fujf//+JVwrQgghpGKgfo58rFnDe0lXreJfqojivL0BKyv+xX/tWvn3q1SJL7Olpgb4+/N5u6T4bd8O/PUXX+Zp/34+vFheQiFw+zawciXg7i7fPikpBT8+f5a/bO5hz/mVUZRYLIafnx9q1aoFHR0dNG7cGEdy/OEFBgZCIBDg4sWLaNasGXR1deHk5ISwsDAAwPPnzyEQCPDs2TOZ465btw42NjbSnx8/foxu3bpBX18fDg5m8PUdjsjIGMTE5F+vuLg4jBgxApUrV4auri66deuGiIgXsLbmr//yCx+GfPz4cdja2kJbWxuurq6FZl2OiIiAQCDAwYMH4eTkBG1tbTRo0ABBQUEy5YKCgtCiRQtoaWmhWrVqmD17NrKysgAAf/31F4yMjCD67z/HBw8eQCAQYPbs2dL9PT09MWzYsALrsXbtWjRs2BB6enqoUaMGxo8fj+QcY6wlQ6wLe2++vr5o0qQJtm/fjho1akBXVxcDBgxAQkJCgefNPfw7PT0d06dPh6WlJfT09NCyZUsEBgYiMpIP+VZTA65c8YeVVU3o6uri+++/x6dPnwo8PiGEEEK+ThRU5/LhAw8WAGD5ct6rRBSnrZ3d+7l8Oe+Vk1fbtoDk+/mYMYplSiZFCwsDpk7lz5cvBxo1UvwYRkZ82LdQKF95ff2CH337ypatWrXgsrnXibe2zltGUX5+ftizZw+2bduG0NBQTJkyBcOGDcsTaM6bNw9r1qzBnTt3oK6ujlGjRgEA6tati2bNmmH//v0y5ffv348hQ4YAAOLj49GhQwc0bdoUd+7cwZkzZ5Cc/BFz5w4oMFO+h4cH7ty5gxMnTiA4OBiMMXTv3h16epkwNeVlUlJSsWTJUuzZswfXrl1DfHw8Bg0aVOR7njFjBqZNm4b79+/D0dERvXr1kgaL79+/R/fu3dG8eXOEhIRg69at+PXXX7FkyRIAQNu2bZGUlIT79+8D4AF4lSpVZHo7g4KC4OLiUuD51dTU8NNPPyE0NBS7d+/GpUuXMHPmTJkyqampWLq08Pf28uVLHD58GH/++SfOnDmD+/fvY/z48UW+fwlvb28EBwfj4MGDePjwIfr374+uXbvixo0XAIDo6JsYO3Y0vL298eDBA7Rv317aDoQQQgghEhRU5zJ3Lu/tatUKULmRb6mpQP36/CFv6uAyNGgQ0KIFb8+5cxXb18cHcHDgc0/d3ct/Bl5VkZHB57inpQGdOgGTJim2f1BQxVrSKT09HcuWLcPOnTvh6uqK2rVrw8PDA8OGDcN2Sea8/yxduhTOzs6oV68eZs+ejevXr+Pzf93sQ4cOxW+//SYt+/z5c9y9exdD/0sosGnTJjRt2hTLli2DnZ0dmjZtij17duL27cuIjn6ep14vXrzAiRMn8Msvv6Bt27Zo3Lgx9u/fj/fv3+P48eOoXp0vW5eVlYk5czahVStHODg4YPfu3bh+/Tpu3bpV6Pv29vZG3759YW9vj61bt6JSpUr49ddfAQBbtmxBjRo1sGnTJtjZ2cHNzQ0LFy7EmjVrIBaLUalSJTRp0kQaRAcGBmLKlCm4f/8+kpOT8f79e7x8+RLOzs4Fnn/y5Mlo3749rK2t0aFDByxZsgSHDx+WKZOZmYlNmzbB0bHg9/b582fs2bMHTZo0Qbt27bBx40YcPHgQkXLcxXv79i127dqFgIAAtG3bFjY2NpgyZTqaNGmDEyd2oXJlYPfuDejatStmzpyJunXr4scff4Srq2uRxyaEEELI14WC6hyCg/mQYwBYv14Fc4ExBjx5wh/lILIRCHg7Anxu9M2b8u8rGZasqwtcvKjYEHJSMB8f4O5dnoHa31+xRFenTgEuLkDXrorf5EhOLvjx+++yZaOiCi57+rRs2YiIvGUU8fLlS6SmpqJz587Q19eXPvbs2YNXr17JlG2Uo0tfsiRg1H/rWw0aNAgRERG4ceMGAN5L/e2338LOzg4AEBISgsuXL8uco149/lru8wDA06dPoa6ujpYtW0q3mZiY4JtvvsHTp08hFAKmpoBQqI4aNZpDMiLZzs4ORkZGePr0aaHvO+fSSOrq6mjWrJl0n6dPn8LR0RGCHP8Btm7dGsnJyfjnn38AAM7OzggMDARjDFeuXEGfPn1gb2+Pq1evIigoCBYWFrAtZF29CxcuoGPHjrC0tISBgQGGDx+OT58+ITXHzUJ1dXU0b95c+nN+761mzZqwtLSUeV9isVg6NL8wjx49gkgkQt26daW/E0NDfdy5E4R//30FKyveFjl/B7nbjhBCCCEEUDJRWUUkEvF5wAAwahSQ63sUUZKjI+DhwQO4BQuAs2fl3/ebb4B164AffuA93S4uQLNmJVTRr8CFC8CKFfz5jh08C7W8Pn/mieMAPlxc0azTiiQzK6my+ZHM4z158qRMcAYAWrnmfuTMGi0JOMX/3V0wNzdHhw4dcODAAbRq1QoHDhzAuHHjZM7Tq1cvrJD8AnIwN6+GmBjexorcK9PSyr7x9/Ytbwtll7RTlIuLC3bu3ImQkBBoaGjAzs4OLi4uCAwMRFxcXKG91BEREejZsyfGjRuHpUuXwtjYGFevXsXo0aORkZEBXXmzGn6h5ORkCIVC3L17F0KhEPHxfJkzAGjQQF91ElQSQgghROVRT/V/rl0D7t/nc0UVyYRMirZ8OR9mfOCA4vt6efE5t5mZfDh5UlLx1+9rEBXFlyljjN+kyD2PuShr1wKvXvEsyAsWlEwdy0K9evWgpaWFt2/fok6dOjKPGgqm1h46dCgOHTqE4OBgvH79Wmb+77fffovQ0FBYW1vnOY+Ghh7evOF/4+npvLy9vT2ysrJwM8fwjk+fPiEsLExmOcKsrCy8eXMHYjHPmP/0aRji4+Nhb29faF0lPeqSY9y9e1e6j729vXQOt8S1a9dgYGCA6tWrA8ieV71u3TppAC0JqgMDAwudT3337l2IxWKsWbMGrVq1Qt26dfHvv//mKZeVlYU7d+5Ifw4Ly/ve3r59K7PvjRs3oKamhm+++abQ9w8ATZs2hUgkQlRUFGrUqAOhsA5q1KiD5s3rwNbWXNoWN3MNscnZdoQQQgghAAXVUu3a8YzGv/zCEyWR4mNmxoeBm5govq9AAPz8M1CzJg/qFMhBRP4jFvPRApGRfDq+okPp377lS2cBwOrVFWvtcAMDA0yfPh1TpkzB7t278erVK9y7dw8bN27E7t27FTpWnz59kJSUhHHjxqF9+/awsLCQvjZhwgTExsZi8ODBuH37Nl69eoWzZ89i5MiRUFcXSZdsSk7mo2ZsbW3x3XffwcvLC1evXkVISAiGDRsGS0tLfPfdd9LjamhoYNWqiXj69Cbu3buLoUM90KpVK7Ro0aLQum7evBnHjh3Ds2fPMGHCBMTFxUkTr40fPx7v3r3DxIkT8ezZM/zxxx/w8fHB1KlTpWsZV65cGY0aNcL+/fulAXS7du1w7949PH/+vNCe6jp16iAzMxMbN27E69evsXfvXmyTrNGWg4aGBiZOnIibN2/i7t278PDI+960tbXh7u6OkJAQXLlyBT/++CMGDBgAc3Pzwn9Z4Anmhg4dihEjRmD79qN4+zYcr17dwp49fjh58iQA4Mcff8SZM2ewevVqvHjxAps2bcKZM2eKPDYhhBBCvi4UVOfg4KB4Dx5RDGN8uTJFVK7Me7mFQmDfPr7kFpHfhg18LrK2NnDwoPxrhktMm8YTm7VtCwweXDJ1LEuLFy/G/Pnz4efnB3t7e3Tt2hUnT55ErVq1FDqOgYEBevXqhZCQEGmCMgkLCwtcu3YNIpEIXbp0QcOGDTF58mQYGRlBTU0N5uZ8SL1IlJ0pf9euXXBwcEDPnj3h6OgIxhhOnTolMwxdV1cXs2fPwoIFQ+Dp2RoaGvrYseNQkXVdvnw5li9fjsaNG+Pq1as4ceIEqlSpAgCwtLTEqVOncOvWLTRu3Bhjx47F6NGj8b///U/mGM7OzhCJRNKg2tjYGPXq1YO5uXmhPcWNGzfG2rVrsWLFCjRo0AD79++HXz7Dg3R1dTFr1iwMGTIErVu3hr6+Pg4dkn1vderUQZ8+fdC9e3d06dIFjRo1wpYtW4p8/xK7du2Cm9sIrFgxDf36fYMpU9xw585t1KxZEwDQqlUr/Pzzz9iwYQMaN26Mc+fO5WkHQgghhBABY6qf8SoxMRGVKlVCQkICDA0Ni/XYoaE8i27dusV62JKRkpK9ZlBy8pdPKC1l6elA797A+fN8VICDg2L7L1kCzJ/P3/a9e+Xkd1bG7t7l89ozM4GtW4GxYxXb/8IFoHNnfkPj3r3Cl9/6/PkzwsPDUatWLWgrsvA1AcAz3b96xUdn1K9f9Nrh/v7+mDx5MuLj4wHw+cAfPwLq6kC9ejzZX24RERGoVasW7t+/jyZNmhT7eyguud9bfnx9fXH8+HE8UPQuXQ6JicDz/5Kv167NE/h9qcI+ByV5LVM1kvf68ZNi77Vyc2+FzxV3e5PC+yhzHnnIU5fc5y6tffJT1HHyO4Yy7U3KljJ/PyV13OL4jJfU57eo8+Z3bvo8VGyJiYkwM5Hvuv1V91RnZvLlhRo0AHKt5qKaBALAyoo/VC41edG0tPgQcMb4XOnMTMX2nzOHJytLSeHLnaWllUg1K4y4ON5OmZlAnz58LrWiKlUC7O35sHtl1rMm8jMyAgwN+efjzRvFE/xbWvJRCFlZfH41LUNXuIwMIDycP69SpXgCakIIIYR8nb7qoHrFCiAkhH+RLWQKoOrQ1eVrCEVEKD6GV0WsXcu/vN6/D6xapdi+QiFfZqtqVeDhQ2DChJKpY0UgmUcdHg7UqsVzBShzH6Z5c/67Wras2KtIcpHcM1NT4wn5UlIU219Njfe2CoV8IMv79yVTz4qAMX7jITOTZ0xXMCcdIYQQQoiMrzaofvIEWLyYP9+wgSfTIiXP3Dx77eqFC4EiltPNw8KCzwtWU+NrX+/cWexVrBBWrwZOnOCjA44c4fPSFSESZT/X0sqedUBKlpYWD6zt7Ipucw8PjzzDo7W1AWtr/vzjRz5aISdra2swxlR66DeQ/3vLzdfXV+mh3+/f8xsPamqAjQ2/EUEIIYQQoqyvMqgWifha1BkZQM+ewJAhZV2jr8uwYUD37rz9R4+WDeDk0b59djbqCRMUT3xW0QUF8XW9AWDjRuDbbxXbPz0daNGCj+TIyir++pHCmZh82U2MypWzbxJGRPD1r0m2+PjsZHDW1kXPXSeEEEIIKcpXGVRv2ADcvMmHfW/bVo6mJ6el8fG4zZuX6wnFAgFvdwMDIDiYB36KmjWL3xD5/Bno149/USY8WBg0iN+oGDEC8PRU/BiLF/OkZOvW8UROiioHuQ/Ljc+fgYQExfeztOSBuUjEk58peuOqokpPz55HbWZWMvOo6e+fEEII+fp8dUF1eDggWRFl9Wr+5bPcEIuBO3f4o5xnIapRg7d/nTqKZwEH+LDN3bt5T9OrV7z3+2sPHNLT+ZJwkZFAw4Y827eiN4zu3weWL+fPN29WLOiQLPWUmpqq2ElJvpKT+eoEr1/zUR2KkMyvVlfn99+USXxW0YhEwMuX/F99/ZL7v1/y959z6TNCCCGEVGzqZV2B0lajBuDrC1y5olwvHik+Xl7A8OE8UZAyjI2B338HWrcGTp7kQ55XrCjeOpYXjPEM3dev84zdR44onssuJYVPhRCJeO+/omu2C4VCGBkZISoqCgBfZ1hQboaBqB6hkM+x/vyZ3ziytlb8JkmNGnwIeGwsD7CrVi2Jmqo+xoC3b/kNBnV1nptB0RsVRZ+DITU1FVFRUTAyMoKQJmoTQgghX42vLqhWVwdmzgRmzChHw74rKIFANqCOjOSJzBTx7beAvz8f8rxyJe+hHTasWKtZLvz0E0/apqbGl4dTZg1vb2/g2TMecGzZolw9zP/7BUoCa/JlxGLg0ycgJoYPA69USfFjiEQ8qI6JAaKjy+3CAV8kPj57GL25eclmRjcyMpJ+DgghhBDydfjqgmoJCqhVy5YtwLRpvIe1Rw/F9h04EHj0CFi6lI8+sLUFWrYsmXqqonPngKlT+fM1a4AuXRQ/xt69/OaEmhpw4ABgaqpcXQQCAapVq4aqVasiU9GFyEm+Hj0C5s3jPdd79yqeeA7gmfZ/+w3Q0+PZ821ti7+equrMGWDyZP7cz4+vdV9SNDQ0qIeaEEII+Qp9tUE1US3PnvFhru7uPJt39eqK7b9oEfD4MfDHH8D33wO3b5ez+fJKev6c31QQi4GRI4FJk5Q7TloaoKnJg7fiWLNdKBRScFFMhgwBTp/ma7QPGsTnvZuYKHaMRYuAGzeAwEDAzQ24dUvxY5RH9+7x9ktL4zftBg8u6xoRQgghpCL66hKVEdW0ahXvgfv0iX8JVnQpJzU13ovXoAHw4QPQrVvFzwgeGQl07crfp5OTconJJMaM4cHavHnFWkVSDAQC/ru1tQXevcte510RGhpAQABQqxZPfNarF1DR88lFRPBRL2lp/HPyteZbIIQQQkjJo6C6vKlShT8qGC0t4NAhvszWlSt8ySxFGRgAf/7J50w+esR75CrqGr2JiXyt7/BwwMYGOHqUt6EiGAPi4rJ/rlePDzEmqsfAgM+VX7AA8PFR7hhVqgB//cXXsQ4O5r3eFXUd8uhowNU1OxP+b78p/rctEvFpFZIluAghhBBCCkJBdXmip8e/LUZH8+cVTJ06wK+/8udr1/IlnRRlbc3nUBoaAkFBFXOprfR0oE8f3rNctSpw9ixfc1dRS5YATZsCT54Ufx1J8WvShM+NVv+CSTv16vEbT9ra/N+xYyveUlspKXwN++fPgZo1+f8HRkaKH+fJE2D7dj4HOz29uGtJCCGEkIqEgmqiUvr35wnHAODHH3ngqKjGjYHjx/kc4d9/5/OMK0rgIBYDHh7AxYt8rd1Tp3hPtaL27uW9nm/e8F5LUr5kZACjRwN//634vq1b82Rlamr8JpayPd+qKDOT/x8imTN+9izPZq+Mhg15+65fr/goEEIIIYR8XSioJipnzhy+hvXChbx3Thnt2/PAUSDgPd7z55f/wFos5steHTzIeyuPHgUcHBQ/zuXLPCAD+DB7yXNSfqxcyZdQc3PjSf4U9d13fJ42ACxezEeGlHdZWTzR4enTfKm+v/4C7OwUP07OpPUODjzxISGEEEJIYSioLk/S0vhYRBcX/ryCEgj4sMv//e/Llj4bMICv3wzw3u9588pvYC0WA+PGZScj270b6NxZ8eOEhvIgITOTZw1ftqz460pK3rRpQKtWfE589+587rCixozhWcElx1u1qnjrWJqysvhUj99+4zecAgJ4+yjq5k2+xvutW8VfR0IIIYRUXBRUlydiMZ8oHBTEn1dgOYPplBSeVOn5c8WP4+2dnS3Zz4/3zJa3wFos5gHQjh18yO7u3TxDuqLu3eP3YxIS+BBgybrUpPzR0QFOnABq1+aJtJydeWZwRc2fD/j68uczZ/LPSHmTmcmXyjp0iGc5//13xde6B3iCxM6dedbwlSuLvZqEEEIIqcDoKzVRedOm8S/M7doBDx8qvv+kScDGjfz5qlXA9OnlJ7AWifjw7F9/zV42bPhw5Y41dy4QEwM0a8YDMm3t4q0rKV2mpsC5czwZ1/PnQNu2wMuXih/Hxye7x3ruXJ7ArrzIyOAjLo4c4TkUjh4FevdW/DjnzvFs4UlJ/MaTv39x15QQQgghFRkF1UTlLVrE51Z//Mi/8CozNNPbG9iyhT9fuxbw9ORfyFVZaioPGPz9+XJA+/cr10Mt8dtvwA8/8CRnxsbFVk1ShmxsgKtX+ZDlN294D60yy2TNn5+dIHD+fL6UlKpnzU9I4AH0sWM8kdixYzzrt6KOHePrdqel8fXtT53iSQAJIYQQQuRFQTVReVWr8uRajo58DmnHjvyLr6LGjcseQr1zJ9C1KxAbW/z1LQ4fPvAhvb//zoe0/vYbHwKvqGvXsnvlK1cGtm3jy42RiqNGDZ6lumVL/vet7JJbc+dmD3tet47PvU9OLr56FqfwcMDJiWf31tUF/viDzy1XBGO8vfr35zfY+vXjqwbo6JRIlQkhhBBSgVFQTcoFIyM+RLNDB/5Fv0cPYPZs2Uy98vDy4uvz6utnB+ovXpRIlZUWEgK0aAHcucOXBbp4kX/xV8Tnz/wmQps2wM8/l0w9ieowM+NLozk7Z2979Ejx1AszZvDs8lpa/HPSpo1yc7VL0vXr/AbCkyd8uawrV/jQbWVcuMB75D08+I0rTc1irSohhBBCvhIUVJNyQ7Ius7c3/3nfPiAxUfHjdO/Ov5hL5qK2asWX4VEFhw/zJGL//MOXA7p5k8+VVcSLF/w9bdvGE74pkxmalD85k/uFhfEbRt26AVFRih1n4EAgMJCPEAkJ4QGsMuthFzfGgF9+4TfWoqOBpk35VJBvv1XueAIBv+G0eTPPWaBsDz8hhBBCCAXV5Y2uLn98pbS0eNKxgACevMzEhG/PylKsV65hQx6wtmjBh4B37857dlNSSqbeRYmP50sCDRzI69CxIw/8bWzkP0ZWFl9y69tveTBkagqcOQMsWFBi1SYq6ulT/nk4d47nIzhyRLHkfK1a8c9HgwZ8KoKLC88Onp5eUjUuXFQUX5Pby4vXwc2N91BbWsp/jPR0YPVqYMSI7LaoVAkYP56y4BNCCCHky9BXifJET49HXCkp/PlXrF8/3qMrsXkz71G7ckX+Y5ib89XJJk/mP2/bxnu/bt4s1qoW6eJFHuTv388Tks2fz3vOK1eW/xg3b/Lgafx4Pjy+XTvgwQOgS5eSqjVRZW5uwO3bgL09D4r79+dDw+/ckf8Y1tb8xo6nJw9CV60CmjdXLgP/lzhxggf3J07w4dkrVvBcA/L+F8gYzwpevz4f3r53L5+DTQghhBBSXCioJuVeVhZfi/rOHR5M9u/P12SWh7Y2T8p04QJQvTofOu3kxIPTDx9KtNqIiADc3YFOnfhw7zp1eCbnRYt4cjJFaGnxOabGxrwn/+JFPt+UfL3q1+eB9YIFPPnWlSs8KJ49W/5jGBjwIdJ//MFHPjx6xI8xbRrw6VPJ1R3gQ9j79we++44P927YkL+fmTPl61lmjOdNaN8e6NsXePWK30j79Vfllt0ihBBCCCkIBdWk3FNX5z21P/zAv2wfOQI4OPAv/7/+Kt+Q7o4decAwdCgfNrt1Kx96PXcuH5pdnKKieO/4N98Ae/bwbWPH8p7lVq2K3j8hgffMz5yZva1JE55g6uVLPuec5ocSgPfmLlzIA9Rhw/i2SpWyX8/M5EntitK7N/D4Mf83I4MvS1e7NrB4cfFnCP/nH2DMGH5T4MgRPvd5xgweUDdqJN8xPnzgOQk6dOCjUbS1gf/9j980GzWKhnsTQgghpHgp9dVi8+bNsLa2hra2Nlq2bIlbRSwcHBAQADs7O2hra6Nhw4Y4pcx6SIR/++3Rgz/k+Sb8FalalQ/ffvCALz2locF7rj09ZXvmCptXamTEk58FBvIkT2lpgJ8fUKsWMGkS/1KvyLzUnMRi3gs9diwP1jds4MFJx4482dLWrQUPZ2UMePaM90D37s17oL29eWDz/n12uQEDFBsyTr4eNWrwYc83bwKjR2dvP3qU/z0NGsRvQL19W/AxqlblS06dPs1v4iQm8l7w2rV50BsSovznQyTioytGjgRsbXnvuEjE148OCeFLfWlp5b8vY/yG2NGj2dvMzXkwrq/PP3NhYfwGAK0/TQghhJCSoHB/1qFDhzB16lRs27YNLVu2xPr16+Hq6oqwsDBUrVo1T/nr169j8ODB8PPzQ8+ePXHgwAG4ubnh3r17aNCgQbG8ia+GSJS9QLNIVLZ1UVENG/KlcaKjAX9/YPt23jMl8eefPEBu0gSoV48/7Ox4YFGlCg/GnZ35+s5//sl7qkNDgZ9+4g9bW2DIED6fu1EjvpRRfhgD/v2Xzz+9cgU4cAB48yb79WbNeMDeqVP2towMXm9j4+y1cn/+mfc05gyeAV7vsWNpzWmimBYtZH8+fpyv/X7oEH8AfBpC48b8b2zqVH6zCeB/0wIBX9+9SxeeqX7+fD46YvVq/mjQABg8mI+4aNSIf6bywxhfquvhQ34T67ff+OdFok0bYPly2bwJAB/l8fo1T8T25Al/3LvHM9zr6gI9e/J51wIBT2Zobc2HsBNCCCGElCSFg+q1a9fCy8sLI0eOBABs27YNJ0+exM6dOzE7n8l6GzZsQNeuXTFjxgwAwOLFi3H+/Hls2rQJ27Zty/cc6enpSM+RZjZRmXWTyFfN1JT3nk2fLrvU0PnzfC5zRAQPKHK7do3PqRYI+LBxS0seuP7zD//S/+IFD3IlqlblyaCSkrKXrsrK4kPGMzJkj21gwBOs1arFA+2FC4FZs/jw2ehoHtwAfB6oiwt/zhgPqLW0eKDRuTN/NG0q+74IUca+fcCECfxzcf48HzXx8iV//P47//uU8PDg9/SqVOE9vjo6vJfaxIR/PqKj+RDxefOy99HR4cPNcw63zszkmbhz/7euocHzGlha8v1mzQJSU4FLl7ID+9mzgV278r4PHR2eTyEmJjuXQMOGxdFChBBCCCFFUyiozsjIwN27dzFnzhzpNjU1NXTq1AnBwcH57hMcHIypU6fKbHN1dcXx/CKa//j5+WFhzsiFECXlDjz9/HjiI0kv19OnfGhodDQfop2zZ+35c74kUWGiouRbB3j+fGDOHP7lf/t2HsDkRyiUncPdowcPslu2zO69JqS4CIX8Zk2bNvwmT0ICcOMG/1x8+CA7JSEykgetMTH5HysqimfoPnmS/30nJ/MpFGlp+ZdXV+c3pNLSeBCfmQmEh/NHTsnJ2UG1pSUPvO3s+L716vHe8ebNCx4eTgghhBBS0hQKqmNiYiASiWCWa8yrmZkZnj17lu8+kZGR+ZaPlHTr5WPOnDkygXhiYiJq1KihSFUJyZe+Ph9ynXPYNcAD6tjY7C/vAPD997xXOS2Nj7bP+QB4cB4by3uvX7zg854B3itXtSofGq6pybf165cdFLdvz+e36urybXp6vGe9alU+Jzpnr56lpWJr8RLyJSpVAlxd+SO3Awd4oB0Tw3uQJQ/J58PEhM/XHj0a+OsvPhdaEojnnGstFPIpGI0b80D4/Hk+xUIo5A91df7ZkDwka9EDfF704sUl3w4V0ebNm7Fq1SpERkaicePG2LhxI1rkng/wH39/f+loNAktLS18plwehBBCSL5UMkewlpYWtKjbgZQiNbW88z8bNZIv23AB30sLVLcufxBSnpiYyAa4henZkz/kIZnSQEqOorlQAMDQ0BBhYWHSnwU034QQQggpkELZv6tUqQKhUIiPHz/KbP/48SPMzc3z3cfc3Fyh8oQQQggpPjlzodSrVw/btm2Drq4udu7cWeA+AoEA5ubm0kfuEWeEEEIIyaZQT7WmpiYcHBxw8eJFuLm5AQDEYjEuXrwIb2/vfPdxdHTExYsXMXnyZOm28+fPw9HRUe7zsv/GDn71CctyLricmEgZwAkhpByRXMOYsmuPKUGZXCgAkJycDCsrK4jFYnz77bdYtmwZ6tevX2D53AlGExISAABJCl63mSij6EK5KPPdQJnzyEOeuuQ+d2ntk5+ijpPfMb7672LlkDJ/PyV13OL4jJfU57eo8+Z3bvo8VGxJily3mYIOHjzItLS0mL+/P3vy5AkbM2YMMzIyYpGRkYwxxoYPH85mz54tLX/t2jWmrq7OVq9ezZ4+fcp8fHyYhoYGe/TokdznfPfuHQNAD3rQgx70oEe5f7x7907RS6/S3r9/zwCw69evy2yfMWMGa9GiRb77XL9+ne3evZvdv3+fBQYGsp49ezJDQ8NC6+3j41Pm7UoPetCDHvSgR0k85LluKzyneuDAgYiOjsaCBQsQGRmJJk2a4MyZM9KhYW/fvoVajkxLTk5OOHDgAP73v/9h7ty5sLW1xfHjxxVao9rCwgLv3r2DgYFBsczrkiQ+e/fuHQxpoV+FUNt9GWq/L0Pt92Wo/b7Ml7YfYwxJSUmwkKz7paIcHR1lRpM5OTnB3t4e27dvx+ICMsXlTjAqFosRGxsLDQ0N1KxZk/7mSgB9nksOtW3JobYtOdS2xU+R67ZSicq8vb0LHO4dGBiYZ1v//v3Rv39/ZU4FgA9Vq169utL7F8TQ0JD+6JREbfdlqP2+DLXfl6H2+zJf0n6VKlUq5toUTplcKLlpaGigadOmePnyZYFl8kswamRkJB0aSX9zJYfatuRQ25YcatuSQ21bvOS9biuUqIwQQggh5UfOXCgSklwo8uY2EYlEePToEapVq1ZS1SSEEELKNZVcUosQQgghxWPq1Klwd3dHs2bN0KJFC6xfvx4pKSnStahHjBgBS0tL+Pn5AQAWLVqEVq1aoU6dOoiPj8eqVavw5s0beHp6luXbIIQQQlTWVxlUa2lpwcfHh9bCVgK13Zeh9vsy1H5fhtrvy5TX9lM0F0pcXBy8vLwQGRmJypUrw8HBAdevX0e9evUUPnd5bbPygNq25FDblhxq25JDbVu2BIyV4toehBBCCCGEEEJIBUJzqgkhhBBCCCGEECVRUE0IIYQQQgghhCiJgmpCCCGEEEIIIURJFFQTQgghhBBCCCFKoqCaEEIIIYQQQghR0lcXVG/evBnW1tbQ1tZGy5YtcevWrbKukkry8/ND8+bNYWBggKpVq8LNzQ1hYWEyZT5//owJEybAxMQE+vr66Nu3Lz5+/FhGNVZdy5cvh0AgwOTJk6XbqO2K9v79ewwbNgwmJibQ0dFBw4YNcefOHenrjDEsWLAA1apVg46ODjp16oQXL16UYY1Vh0gkwvz581GrVi3o6OjAxsYGixcvRs7FHqj9sv3999/o1asXLCwsIBAIcPz4cZnX5Wmr2NhYDB06FIaGhjAyMsLo0aORnJxciu9C9dD19svRtbj00LW6eNE1vOTQNV5Fsa/IwYMHmaamJtu5cycLDQ1lXl5ezMjIiH38+LGsq6ZyXF1d2a5du9jjx4/ZgwcPWPfu3VnNmjVZcnKytMzYsWNZjRo12MWLF9mdO3dYq1atmJOTUxnWWvXcunWLWVtbs0aNGrFJkyZJt1PbFS42NpZZWVkxDw8PdvPmTfb69Wt29uxZ9vLlS2mZ5cuXs0qVKrHjx4+zkJAQ1rt3b1arVi2WlpZWhjVXDUuXLmUmJibsr7/+YuHh4SwgIIDp6+uzDRs2SMtQ+2U7deoUmzdvHjt69CgDwI4dOybzujxt1bVrV9a4cWN248YNduXKFVanTh02ePDgUn4nqoOut8WDrsWlg67VxYuu4SWLrvGq6asKqlu0aMEmTJgg/VkkEjELCwvm5+dXhrUqH6KiohgAFhQUxBhjLD4+nmloaLCAgABpmadPnzIALDg4uKyqqVKSkpKYra0tO3/+PHN2dpZeqKntijZr1izWpk2bAl8Xi8XM3NycrVq1SrotPj6eaWlpsd9++600qqjSevTowUaNGiWzrU+fPmzo0KGMMWq/wuQOquVpqydPnjAA7Pbt29Iyp0+fZgKBgL1//77U6q5K6HpbMuhaXPzoWl386Bpesugar5q+muHfGRkZuHv3Ljp16iTdpqamhk6dOiE4OLgMa1Y+JCQkAACMjY0BAHfv3kVmZqZMe9rZ2aFmzZrUnv+ZMGECevToIdNGALWdPE6cOIFmzZqhf//+qFq1Kpo2bYqff/5Z+np4eDgiIyNl2rBSpUpo2bIltSEAJycnXLx4Ec+fPwcAhISE4OrVq+jWrRsAaj9FyNNWwcHBMDIyQrNmzaRlOnXqBDU1Ndy8ebPU61zW6HpbcuhaXPzoWl386Bpesugar5rUy7oCpSUmJgYikQhmZmYy283MzPDs2bMyqlX5IBaLMXnyZLRu3RoNGjQAAERGRkJTUxNGRkYyZc3MzBAZGVkGtVQtBw8exL1793D79u08r1HbFe3169fYunUrpk6dirlz5+L27dv48ccfoampCXd3d2k75fd5pjYEZs+ejcTERNjZ2UEoFEIkEmHp0qUYOnQoAFD7KUCetoqMjETVqlVlXldXV4exsfFX2Z50vS0ZdC0ufnStLhl0DS9ZdI1XTV9NUE2UN2HCBDx+/BhXr14t66qUC+/evcOkSZNw/vx5aGtrl3V1yiWxWIxmzZph2bJlAICmTZvi8ePH2LZtG9zd3cu4dqrv8OHD2L9/Pw4cOID69evjwYMHmDx5MiwsLKj9CCmn6FpcvOhaXXLoGl6y6Bqvmr6a4d9VqlSBUCjMk7Xx48ePMDc3L6NaqT5vb2/89ddfuHz5MqpXry7dbm5ujoyMDMTHx8uUp/bkQ8aioqLw7bffQl1dHerq6ggKCsJPP/0EdXV1mJmZUdsVoVq1aqhXr57MNnt7e7x9+xYApO1En+f8zZgxA7Nnz8agQYPQsGFDDB8+HFOmTIGfnx8Aaj9FyNNW5ubmiIqKknk9KysLsbGxX2V70vW2+NG1uPjRtbrk0DW8ZNE1XjV9NUG1pqYmHBwccPHiRek2sViMixcvwtHRsQxrppoYY/D29saxY8dw6dIl1KpVS+Z1BwcHaGhoyLRnWFgY3r59+9W3Z8eOHfHo0SM8ePBA+mjWrBmGDh0qfU5tV7jWrVvnWTbm+fPnsLKyAgDUqlUL5ubmMm2YmJiImzdvUhsCSE1NhZqa7H/vQqEQYrEYALWfIuRpK0dHR8THx+Pu3bvSMpcuXYJYLEbLli1Lvc5lja63xYeuxSWHrtUlh67hJYuu8SqqrDOllaaDBw8yLS0t5u/vz548ecLGjBnDjIyMWGRkZFlXTeWMGzeOVapUiQUGBrIPHz5IH6mpqdIyY8eOZTVr1mSXLl1id+7cYY6OjszR0bEMa626cmYUZYzarii3bt1i6urqbOnSpezFixds//79TFdXl+3bt09aZvny5czIyIj98ccf7OHDh+y7776j5SL+4+7uziwtLaXLbRw9epRVqVKFzZw5U1qG2i9bUlISu3//Prt//z4DwNauXcvu37/P3rx5wxiTr626du3KmjZtym7evMmuXr3KbG1tv/olteh6++XoWly66FpdPOgaXrLoGq+avqqgmjHGNm7cyGrWrMk0NTVZixYt2I0bN8q6SioJQL6PXbt2ScukpaWx8ePHs8qVKzNdXV32/fffsw8fPpRdpVVY7gs1tV3R/vzzT9agQQOmpaXF7Ozs2I4dO2ReF4vFbP78+czMzIxpaWmxjh07srCwsDKqrWpJTExkkyZNYjVr1mTa2tqsdu3abN68eSw9PV1ahtov2+XLl/P9/87d3Z0xJl9bffr0iQ0ePJjp6+szQ0NDNnLkSJaUlFQG70Z10PX2y9G1uHTRtbr40DW85NA1XjUJGGOstHvHCSGEEEIIIYSQiuCrmVNNCCGEEEIIIYQUNwqqCSGEEEIIIYQQJVFQTQghhBBCCCGEKImCakIIIYQQQgghREkUVBNCCCGEEEIIIUqioJoQQgghhBBCCFESBdWEEEIIIYQQQoiSKKgmhBBCCCGEEEKUREE1IYQQQgghhBCiJAqqCSGEEEIIIYQQJVFQTQghhBBCCCGEKImCakIIIYQQQgghREkUVBNCCCGEEEIIIUqioJoQQgghhBBCCFESBdWEEEIIIYQQQoiSKKgmhBBCCCGEEEKUREE1IYQQQgghhBCiJAqqCSGEEELIV+3jx4/o168fTExMIBAIsH79+rKuUpkTCATw9fWV/uzr6wuBQICYmJhC9/Pw8IC1tXXJVo4QFUNBNSGEEEIIKVf8/f0hEAhw586dYjnelClTcPbsWcyZMwd79+5F165dcerUKZmgkhBCCqJe1hUghBBCCCGkLF26dAnfffcdpk+fLt22adMmbN68+asNrNPS0qCurnio8PPPP0MsFpdAjQhRXdRTTQghhBBCvmpRUVEwMjIq62oUKSUlpdTOpa2trVRQraGhAS0trRKoESGqi4JqQgghhBBSIb1//x6jRo2CmZkZtLS0UL9+fezcuVP6umQYOWMMmzdvhkAggEAggIeHBzZv3gwA0m0CgaDI850+fRpt27aFnp4eDAwM0KNHD4SGhsqUefjwITw8PFC7dm1oa2vD3Nwco0aNwqdPn2TKSeYwP3nyBEOGDEHlypXRpk2bAs+dmZmJhQsXwtbWFtra2jAxMUGbNm1w/vx5aRkPDw/o6+vj9evXcHV1hZ6eHiwsLLBo0SIwxmSOl3tOdX7evHmDOnXqoEGDBvj48aP0HDnnVEdEREAgEGD16tXYsWMHbGxsoKWlhebNm+P27dt5jhkQEIB69epBW1sbDRo0wLFjx2ieNlF5NPybEEIIIYRUOB8/fkSrVq0gEAjg7e0NU1NTnD59GqNHj0ZiYiImT56Mdu3aYe/evRg+fDg6d+6MESNGAABsbGzw77//4vz589i7d69c59u7dy/c3d3h6uqKFStWIDU1FVu3bkWbNm1w//59aVB4/vx5vH79GiNHjoS5uTlCQ0OxY8cOhIaG4saNG3mC9/79+8PW1hbLli3LE/jm5OvrCz8/P3h6eqJFixZITEzEnTt3cO/ePXTu3FlaTiQSoWvXrmjVqhVWrlyJM2fOwMfHB1lZWVi0aJHc7fvq1St06NABxsbGOH/+PKpUqVJo+QMHDiApKQk//PADBAIBVq5ciT59+uD169fQ0NAAAJw8eRIDBw5Ew4YN4efnh7i4OIwePRqWlpZy14uQMsEIIYQQQggpR3bt2sUAsNu3bxdYZvTo0axatWosJiZGZvugQYNYpUqVWGpqqnQbADZhwgSZchMmTGDyflVOSkpiRkZGzMvLS2Z7ZGQkq1Spksz2nOeV+O233xgA9vfff0u3+fj4MABs8ODBctWhcePGrEePHoWWcXd3ZwDYxIkTpdvEYjHr0aMH09TUZNHR0dLtAJiPj0+e+kRHR7OnT58yCwsL1rx5cxYbG5vnHFZWVtKfw8PDGQBmYmIiU/aPP/5gANiff/4p3dawYUNWvXp1lpSUJN0WGBjIAMgckxBVQ8O/CSGEEEJIhcIYw++//45evXqBMYaYmBjpw9XVFQkJCbh3716xne/8+fOIj4/H4MGDZc4lFArRsmVLXL58WVpWR0dH+vzz58+IiYlBq1atACDfOo0dO1auOhgZGSE0NBQvXrwosqy3t7f0uaQnPyMjAxcuXChy38ePH8PZ2RnW1ta4cOECKleuLFf9Bg4cKFO2bdu2AIDXr18DAP799188evQII0aMgL6+vrScs7MzGjZsKNc5CCkrNPybEEIIIYRUKNHR0YiPj8eOHTuwY8eOfMtERUUV2/kkgWyHDh3yfd3Q0FD6PDY2FgsXLsTBgwfz1CEhISHPvrVq1ZKrDosWLcJ3332HunXrokGDBujatSuGDx+ORo0ayZRTU1ND7dq1ZbbVrVsXAJ//XJRevXrBzMwMZ8+elQl+i1KzZk2ZnyUBdlxcHAA+PxsA6tSpk2ffOnXqFOtNEEKKGwXVhBBCCCGkQpEs6TRs2DC4u7vnWyZ3sFkc59u7dy/Mzc3zvJ4zi/aAAQNw/fp1zJgxA02aNIG+vj7EYjG6du2a71JUOXu2C9OuXTu8evUKf/zxB86dO4dffvkF69atw7Zt2+Dp6ankO8urb9++2L17N/bv348ffvhB7v2EQmG+21kh88QJKS8oqCaEEEIIIRWKqakpDAwMIBKJ0KlTJ6WOIU+2bwkbGxsAQNWqVQs9X1xcHC5evIiFCxdiwYIF0u3yDNmWh7GxMUaOHImRI0ciOTkZ7dq1g6+vr0xQLRaL8fr1a2nvNAA8f/4cAOTKsL1q1Sqoq6tj/PjxMDAwwJAhQ4ql7lZWVgCAly9f5nktv22EqBKaU00IIYQQQioUoVCIvn374vfff8fjx4/zvB4dHV3kMfT09AAA8fHxRZZ1dXWFoaEhli1bhszMzALPJ+mtzd07u379+iLPUZTcS3Lp6+ujTp06SE9Pz1N206ZN0ueMMWzatAkaGhro2LFjkecRCATYsWMH+vXrB3d3d5w4ceKL6w4AFhYWaNCgAfbs2YPk5GTp9qCgIDx69KhYzkFISaGeakIIIYQQUi7t3LkTZ86cybN90qRJWL58OS5fvoyWLVvCy8sL9erVQ2xsLO7du4cLFy4gNja20GM7ODgAAH788Ue4urpCKBRi0KBB+ZY1NDTE1q1bMXz4cHz77bcYNGgQTE1N8fbtW5w8eRKtW7fGpk2bYGhoiHbt2mHlypXIzMyEpaUlzp07h/Dw8C9ui3r16sHFxQUODg4wNjbGnTt3cOTIEZmkZACgra2NM2fOwN3dHS1btsTp06dx8uRJzJ07F6ampnKdS01NDfv27YObmxsGDBiAU6dOFTifXBHLli3Dd999h9atW2PkyJGIi4vDpk2b0KBBA5lAmxBVQ0E1IYQQQggpl7Zu3Zrvdg8PD1SvXh23bt3CokWLcPToUWzZsgUmJiaoX78+VqxYUeSx+/Tpg4kTJ+LgwYPYt28fGGMFBtUAMGTIEFhYWGD58uVYtWoV0tPTYWlpibZt22LkyJHScgcOHMDEiROxefNmMMbQpUsXnD59GhYWFoo3QA4//vgjTpw4gXPnziE9PR1WVlZYsmQJZsyYIVNOKBTizJkzGDduHGbMmAEDAwP4+PjIDEeXh4aGBo4cOYJu3brhu+++w4ULF9CyZcsveg+9evXCb7/9Bl9fX8yePRu2trbw9/fH7t27ERoa+kXHJqQkCRhlByCEEEIIIaTC8/DwwJEjR8pdr2+TJk1gamqK8+fPl3VVCMkXzakmhBBCCCGElLnMzExkZWXJbAsMDERISAhcXFzKplKEyIGGfxNCCCGEEELK3Pv379GpUycMGzYMFhYWePbsGbZt2wZzc3OMHTu2rKtHSIEoqCaEEEIIIYSUucqVK8PBwQG//PILoqOjoaenhx49emD58uUwMTEp6+oRUiCaU00IIYQQQgghhCiJ5lQTQgghhBBCCCFKoqCaEEIIIYQQQghREgXVhCjI2toaHh4eZVoHf39/CAQCREREKLyvKtS/OEVEREAgEMDf31+p/V+8eIEuXbqgUqVKEAgEOH78eLHWjxBCSMXn6+sLgUAgs62iXW+LU3JyMjw9PWFubg6BQIDJkycXWDYrKwszZ85EjRo1oKamBjc3NwCAQCCAr6+vtJzkdxATE1OylSckHxRUkzLx6NEj9OvXD1ZWVtDW1oalpSU6d+6MjRs3lnXViApYtmxZqQW37u7uePToEZYuXYq9e/eiWbNmOHDgANavX18q5yeEkIpu69at6N+/P2rWrAmBQPBFgeaWLVuUvola1p48eQJfX1+lbohXNMuWLYO/vz/GjRuHvXv3Yvjw4QWW3blzJ1atWoV+/fph9+7dmDJlSinWlBD5UPZvUuquX7+O9u3bo2bNmvDy8oK5uTnevXuHGzduYMOGDZg4cWJZV1HlDR8+HIMGDYKWlpbC+4aFhUFNTbXvpy1btgz9+vWT3o0uKWlpaQgODsa8efPg7e0t3X7gwAE8fvy40DvnhBBC5LNixQokJSWhRYsW+PDhwxcda8uWLahSpUq56AHOfb198uQJFi5cCBcXF1hbW5ddxVTApUuX0KpVK/j4+MhV1tLSEuvWrZPZnpaWBnV1CmWIaqC/RFLqli5dikqVKuH27dswMjKSeS0qKqpsKqVCxGIxMjIyoK2tnee1lJQU6OnpQSgUQigUKnV8ZQLxiio6OhoA8vwdqiLJ754QQsqboKAgaS+1vr5+WVen1JTW9TY1NRW6urqlcq4vkfP7TVRUFOrVqyfXflFRUflep/P7nlQaykt7k9Kl2t1VpEJ69eoV6tevn+9/kFWrVpX5OSsrC4sXL4aNjQ20tLRgbW2NuXPnIj09XaZc7nk1ErnnM0nmIl+7dg1Tp06Fqakp9PT08P3330sDLAnGGJYsWYLq1atDV1cX7du3R2hoqNzvc/Xq1XBycoKJiQl0dHTg4OCAI0eO5CknEAjg7e2N/fv3o379+tDS0sKZM2ekdQ0KCsL48eNRtWpVVK9eXeZ9SIaQ9ezZE7Vr1863Ho6OjmjWrFmxtIlYLIavry8sLCykbfLkyRO5543J0yYCgQApKSnYvXs3BAKB0kMFnz17hn79+sHY2Bja2tpo1qwZTpw4IX3d19cXVlZWAIAZM2ZAIBDA2toaLi4uOHnyJN68eSM9vzw9Cvv27YODgwN0dHRgbGyMQYMG4d27dzJlrly5Ih0CqaWlhRo1amDKlClIS0uTKefh4QF9fX28evUK3bt3h4GBAYYOHapwGxBCiCqwsrLKM984P5GRkRg5ciSqV68OLS0tVKtWDd999530WmdtbY3Q0FAEBQVJ/392cXEp9JjyXHcKy82R3/eLq1evonnz5tDW1oaNjQ22b9+e77lzXhv9/f3Rv39/AED79u2l9Q8MDJSW37Jli/R7gIWFBSZMmID4+HiZY7q4uKBBgwa4e/cu2rVrB11dXcydOxfu7u6oUqUKMjMz89SjS5cu+OabbwptJ8lxnzx5gvbt20NXVxeWlpZYuXJlnrLp6enw8fFBnTp1pNeymTNn5vvdLL/vNwKBAOHh4Th58qS0HfIbEi/5vVy+fBmhoaF52qyg734xMTEYMGAADA0NYWJigkmTJuHz5895yslz3S6ovQnJjXqqSamzsrJCcHAwHj9+jAYNGhRa1tPTE7t370a/fv0wbdo03Lx5E35+fnj69CmOHTumdB0mTpyIypUrw8fHBxEREVi/fj28vb1x6NAhaZkFCxZgyZIl6N69O7p374579+6hS5cuyMjIkOscGzZsQO/evTF06FBkZGTg4MGD6N+/P/766y/06NFDpuylS5dw+PBheHt7o0qVKrC2tsaDBw8AAOPHj4epqSkWLFiAlJSUfM81cOBAjBgxArdv30bz5s2l29+8eYMbN25g1apVxdImc+bMwcqVK9GrVy+4uroiJCQErq6u+V6slG2TvXv3wtPTEy1atMCYMWMAADY2NnIdXyI0NBStW7eGpaUlZs+eDT09PRw+fBhubm74/fff8f3336NPnz4wMjLClClTMHjwYHTv3h36+vrQ09NDQkIC/vnnH+lQs6J6VpYuXYr58+djwIAB8PT0RHR0NDZu3Ih27drh/v370htIAQEBSE1Nxbhx42BiYoJbt25h48aN+OeffxAQECBzzKysLLi6uqJNmzZYvXo13RUnhFR4ffv2RWhoKCZOnAhra2tERUXh/PnzePv2LaytrbF+/XpMnDgR+vr6mDdvHgDAzMys0GMqci2Wx6NHj9ClSxeYmprC19cXWVlZ8PHxKbIe7dq1w48//oiffvoJc+fOhb29PQBI//X19cXChQvRqVMnjBs3DmFhYdi6dStu376Na9euQUNDQ3qsT58+oVu3bhg0aBCGDRsGMzMz6OnpYc+ePTh79ix69uwpLRsZGYlLly7JNcw6Li4OXbt2RZ8+fTBgwAAcOXIEs2bNQsOGDdGtWzcA/OZ67969cfXqVYwZMwb29vZ49OgR1q1bh+fPn+fJh5L7+021atWwd+9eTJkyBdWrV8e0adMAAKampnnqY2pqir1792Lp0qVITk6Gn5+fTJsVZMCAAbC2toafnx9u3LiBn376CXFxcdizZ4+0jLzX7YLam5A8GCGl7Ny5c0woFDKhUMgcHR3ZzJkz2dmzZ1lGRoZMuQcPHjAAzNPTU2b79OnTGQB26dIl6TYAzMfHJ8+5rKysmLu7u/TnXbt2MQCsU6dOTCwWS7dPmTKFCYVCFh8fzxhjLCoqimlqarIePXrIlJs7dy4DIHPMgqSmpsr8nJGRwRo0aMA6dOggsx0AU1NTY6GhoTLbJXVt06YNy8rKyve18PBwxhhjCQkJTEtLi02bNk2m3MqVK5lAIGBv3rz54jaJjIxk6urqzM3NTeYcvr6+xd4menp6ch2PMcbCw8MZALZr1y7pto4dO7KGDRuyz58/S7eJxWLm5OTEbG1t8+y7atUqmWP26NGDWVlZyXX+iIgIJhQK2dKlS2W2P3r0iKmrq8tsz/3+GWPMz88vz+/I3d2dAWCzZ8+Wqw6EEFJeFPT/e1xcXL7/H+dWv3595uzsLPf55Lnu5Hcdkcj9/cLNzY1pa2vL/J/95MkTJhQKWe6v1bmvtwEBAQwAu3z5skw5yXeOLl26MJFIJN2+adMmBoDt3LlTus3Z2ZkBYNu2bZM5hkgkYtWrV2cDBw6U2b527VomEAjY69ev87y3nCTH3bNnj3Rbeno6Mzc3Z3379pVu27t3L1NTU2NXrlyR2X/btm0MALt27Zp0W0HfbxjjbdOjR49C65SzbvXr18+zPffvxsfHhwFgvXv3lik3fvx4BoCFhIQwxhS7bhfU3oTkRsO/Sanr3LkzgoOD0bt3b4SEhGDlypVwdXWFpaWlzPDcU6dOAQCmTp0qs7/krubJkyeVrsOYMWNkhqK1bdsWIpEIb968AQBcuHABGRkZmDhxokw5RRJX6ejoSJ/HxcUhISEBbdu2xb179/KUdXZ2LnBukZeXV5Hzpw0NDdGtWzccPnwYjDHp9kOHDqFVq1aoWbNmkfUtqk0uXryIrKwsjB8/XmY/RRLLKdImyoqNjcWlS5cwYMAAJCUlISYmBjExMfj06RNcXV3x4sULvH//vtjOd/ToUYjFYgwYMEB6rpiYGJibm8PW1haXL1+Wls35/lNSUhATEwMnJycwxnD//v08xx43blyx1ZMQQlSZjo4ONDU1ERgYiLi4uGI9rsSXXndEIhHOnj0LNzc3meuqvb09XF1dla6j5DvH5MmTZRKbeXl5wdDQMM/3HS0tLYwcOVJmm5qaGoYOHYoTJ04gKSlJun3//v1wcnJCrVq1iqyHvr4+hg0bJv1ZU1MTLVq0wOvXr6XbAgICYG9vDzs7O5lrXocOHQBA5poHFP79pqRMmDBB5mfJ9xTJ90pFrttA/u1NSG4UVJMy0bx5cxw9ehRxcXG4desW5syZg6SkJPTr1w9PnjwBwIcuq6mpoU6dOjL7mpubw8jISBrsKSN3kFm5cmUAkF7IJce2tbWVKWdqaiotW5S//voLrVq1gra2NoyNjWFqaoqtW7ciISEhT9nCLnbyXAgBPgT83bt3CA4OBsDnrt+9excDBw6Ua3952yT378PY2LhE2kRZL1++BGMM8+fPh6mpqcxDMvytOBPivXjxAowx2Nra5jnf06dPZc719u1beHh4wNjYGPr6+jA1NYWzszMA5GkDdXV16Rx6Qgip6LS0tLBixQqcPn0aZmZmaNeuHVauXInIyMgvOm5xXneio6ORlpaW57sBgCLnLBdGcn3NfQxNTU3Url07z/cdS0tLaGpq5jnOiBEjkJaWJp0eFxYWhrt37xa6XFVO1atXzzP3vXLlyjI3OV68eIHQ0NA817u6desCyHt9lfc7THHK/fuxsbGBmpqadN62ItdtoOD2JiQnmlNNypSmpiaaN2+O5s2bo27duhg5ciQCAgJk5v7Ik9ykICKRKN/tBfX85uzl/RJXrlxB79690a5dO2zZsgXVqlWDhoYGdu3ahQMHDuQpn/NOuiKv5dSrVy/o6uri8OHDcHJywuHDh6GmpiZNjFIUVWsTZYnFYgDA9OnTC+w5yH1j4EvPJxAIcPr06XzbUDIfWyQSoXPnzoiNjcWsWbNgZ2cHPT09vH//Hh4eHtJ6S2hpaan80meEEFKcJk+ejF69euH48eM4+//27juuyrJ/4PjnHPYGRUAUF5q4ByriTi132bCyUrPUn6WlWT1p87Gl1ZNpNiwb1qOmlWlPSzP3wK24cY8UcCCigKxz/f64BERBzsEzGN/363W/vDnnHl9uOVx87/u6vteSJbz66qtMmjSJ5cuX06JFC4uPZ267U9TfGUX9DeFoRf1d0LBhQyIjI5k9ezaDBw9m9uzZuLq68sADD5h1XHP+DjCZTDRp0oQpU6YUum1YWJhZsdrT9f+/5rbbuUrD9yBKP0mqRamRW6E6dw7LmjVrYjKZOHjwYIGiFImJiSQnJ+dVbgZ9J/X6CpmZmZklng8z99gHDx4sUFX77NmzZnVLW7BgAe7u7ixZsqTAlBrffPNNieIxh5eXF3379uXHH39kypQpzJ8/n44dOxIaGmqV4+dek0OHDhW483z+/HmrX5NbuZGS+//l4uJC9+7dS3QMS84fHh6OUoratWvn3akvzK5duzhw4ADffvstgwcPznt96dKlJYpRCCHKo/DwcJ577jmee+45Dh48SPPmzfnggw+YPXs2YNnvZ3PbndzeVtf/HXH9E+IqVarg4eHBwYMHbzhXXFxcsfEUFXtu+xoXF1fgb47MzEyOHj1qUVs2ePBgxo0bR3x8PHPnzqVPnz5m9yYzR3h4OLGxsXTr1u2W2mpbOnjwYIG/Uw4dOoTJZMqbycPcdlsIS8hjEGF3K1asKPTpZ+5Yl9zuT7179wZg6tSpBbbLvTt6bdXO8PBwVq9eXWC7L774osR3mbt3746LiwvTp08vEOv1sRTFyckJg8FQ4PzHjh27oSqmtT344IOcPn2aL7/8ktjYWLO7fpujW7duODs789lnnxV4/eOPPzZrf0uuiZeX1w1/3JgrKCiILl268Pnnnxd6U+X6acIKk1sB3Bz33nsvTk5OTJw48Yafa6UU58+fB/KfAFy7jVKKadOmmXUeIYQoz9LS0m6YSSI8PBwfH58CUzVZ0j6Y2+74+voSGBh4w98Rn3766Q3H69GjB4sWLeLEiRN5r+/bt48lS5YUG4+XlxdwY/LevXt3XF1d+eijjwq0EV999RUXL160qEr5wIEDMRgMjBkzhiNHjhQYI20NDzzwAKdOnWLmzJk3vJeenl7kLCX29MknnxT4evr06QB5FczNbbeFsIQ8qRZ29/TTT5OWlsY999xDREQEmZmZrF+/nvnz51OrVq28YhDNmjVjyJAhfPHFFyQnJ9O5c2c2bdrEt99+S//+/bn99tvzjjls2DBGjhzJfffdxx133EFsbCxLliwhMDCwRDFWqVKF559/nkmTJtG3b1969+7N9u3b+fPPP806Zp8+fZgyZQo9e/bk4Ycf5syZM3zyySfUrVuXnTt3ligmc+TOafz888/j5OTEfffdZ7VjBwcHM2bMGD744APuuusuevbsSWxsbN41Ke6OtSXXJDIykr///pspU6YQGhpK7dq1iYqKMjvWTz75hA4dOtCkSROGDx9OnTp1SExMJCYmhn/++YfY2Nib7h8ZGcn8+fMZN24crVu3xtvbm379+hW6bXh4OG+99RYTJkzg2LFj9O/fHx8fH44ePcrChQsZMWIEzz//PBEREYSHh/P8889z6tQpfH19WbBggVUL8gghRGn066+/5v3ezcrKYufOnbz11lsA3HXXXTRt2pQDBw7QrVs3HnjgARo2bIizszMLFy4kMTGRhx56KO9YkZGRfPbZZ7z11lvUrVuXoKCgvCJZ17Ok3Rk2bBiTJ09m2LBhtGrVitWrV3PgwIEbjjlx4kQWL15Mx44deeqpp8jOzmb69Ok0atSo2Pa9efPmODk58e6773Lx4kXc3Nzo2rUrQUFBTJgwgYkTJ9KzZ0/uuusu4uLi+PTTT2ndurVFiXGVKlXo2bMnP/74I/7+/iWaNuxmBg0axA8//MDIkSNZsWIF7du3Jycnh/379/PDDz+wZMmSvJ6HjnL06NG8v1NiYmKYPXs2Dz/8MM2aNQPMb7eFsIidq40Lof7880/1+OOPq4iICOXt7a1cXV1V3bp11dNPP60SExMLbJuVlaUmTpyoateurVxcXFRYWJiaMGFCgamSlNJTSbz44osqMDBQeXp6qh49eqhDhw4VOX3U5s2bC+y/YsWKG6a5yMnJURMnTlRVq1ZVHh4eqkuXLmr37t03HLMoX331lapXr55yc3NTERER6ptvvsmb7uFagBo1atQN+xcV67Xv5U6pda1HHnkkb4qswtzKNcnOzlavvvqqCgkJUR4eHqpr165q3759qnLlymrkyJE3uRqauddk//79qlOnTsrDw6PY6bqKmgrl8OHDavDgwSokJES5uLioatWqqb59+6qffvrphn2vn8Ll8uXL6uGHH1b+/v4KMGt6rQULFqgOHTooLy8v5eXlpSIiItSoUaNUXFxc3jZ79+5V3bt3V97e3iowMFANHz5cxcbG3hD/kCFDlJeXV7HnFEKIsiB3msDCltzffefOnVOjRo1SERERysvLS/n5+amoqCj1ww8/FDhWQkKC6tOnj/Lx8VFAsdNrmdvupKWlqSeeeEL5+fkpHx8f9cADD6gzZ84UOmXnqlWrVGRkpHJ1dVV16tRRM2bMKPSYhf29MHPmTFWnTp28KbiubWM//vhjFRERoVxcXFRwcLB68skn1YULFwrsX9T0Utf64YcfFKBGjBhx0+3MOe6QIUNuaAMzMzPVu+++qxo1aqTc3NxUQECAioyMVBMnTlQXL17M266ov2+Usu2UWnv37lX333+/8vHxUQEBAWr06NEqPT39hv3NabfNud5CKKWUQSkrVSESQlRIycnJBAQE8NZbb/Hyyy87OhwhhBCiQvvll1/o378/q1evpmPHjo4OR4gKQcZUCyHMlp6efsNruePMu3TpYt9ghBBCCHGDmTNnUqdOHTp06ODoUISoMGRMtRDCbPPnz2fWrFn07t0bb29v1q5dy/fff8+dd95J+/btHR2eEEIIUWHNmzePnTt38vvvvzNt2rRSW51biPJInlQLIczWtGlTnJ2dee+99xg7dixr1qxhzJgxLFiwwNGhCSEKkZSUxCOPPIKvry/+/v488cQTXL58+ab7dOnSBYPBUGAZOXKknSIWQpTUwIEDmT59Ok888QRPPfWUo8MRokKRMdVCCCFEOdWrVy/i4+P5/PPPycrKYujQobRu3Zq5c+cWuU+XLl247bbbeOONN/Je8/T0xNfX1x4hCyGEEGWOdP8WQgghyqF9+/axePFiNm/enDfFzfTp0+nduzf/+c9/CA0NLXJfT09PQkJC7BWqEEIIUaaViaTaZDJx+vRpfHx8ZHyIEEKIMkkpxaVLlwgNDcVotP3oq5iYGPz9/QvMGdu9e3eMRiMbN27knnvuKXLfOXPmMHv2bEJCQujXrx+vvvoqnp6eRW6fkZFBRkZG3tcmk4mkpCQqV64s7bYQQogyyZJ2u0wk1adPnyYsLMzRYQghhBC37OTJk1SvXt3m50lISCAoKKjAa87OzlSqVImEhIQi93v44YepWbMmoaGh7Ny5kxdffJG4uDh+/vnnIveZNGkSEydOtFrsQgghRGlhTrttcVK9evVq3n//fbZu3Up8fDwLFy6kf//+N91n5cqVjBs3jj179hAWFsYrr7zCY489ZvY5fXx8AP0NlfkxXRkZMGaMXp82DdzcHBuPEEIIu0hJSSEsLCyvTSup8ePH8+677950m3379pX4+CNGjMhbb9KkCVWrVqVbt24cPnyY8PDwQveZMGEC48aNy/v64sWL1KhRg5MHYvG9yfc7qWO9gsdZc7DEcd/suNcr7DwliaUk53GUwmItTfEJ+ynu57akSvKZuX4fc35OzfmsWuM8wrGs8f98q+fOMCk+PGIyq922OKlOTU2lWbNmPP7449x7773Fbn/06FH69OnDyJEjmTNnDsuWLWPYsGFUrVqVHj16mHXO3K5jvr6+ZT+pBrhJgRghhBDl2612h37uueeKvTFdp04dQkJCOHPmTIHXs7OzSUpKsmi8dFRUFACHDh0qMql2c3PDrZCbxL4+Pvj6Fv3HiJtTwWtxs20tcf1xb4irkPOUJJaSnMdRCou1NMUn7Ke4n9uSKsln5vp9zPk5Neezao3zCMeyxv+ztc5tTrttcVLdq1cvevXqZfb2M2bMoHbt2nzwwQcANGjQgLVr1/Lhhx8WmVRfPzYrJSXF0jBLj8xkOL8JLu7Vy+XDcOUs+DeGKh3Aoyp4Vgf/ZuDk6uhohbCvjPNwfjOkx0NmEmSchSuJkJ6oPyOVWoFPXfBvCsYyMVpFCJurUqUKVapUKXa76OhokpOT2bp1K5GRkQAsX74ck8mUlyibY8eOHQBUrVq1RPEKIYQQ5Z3N/0qNiYmhe/fuBV7r0aMHY8eOLXKfMj02y5QDZ1dD/FKIXwwXthd8XwEZQOIuOPY95N74MLpCcHcI7QWhPXUiIUR5Y8qCxBWQ8Dec/gMu7il62/g/89ed3CGkp/5shPYEr5q2j1WIMq5Bgwb07NmT4cOHM2PGDLKyshg9ejQPPfRQXuXvU6dO0a1bN7777jvatGnD4cOHmTt3Lr1796Zy5crs3LmTZ599lk6dOtG0aVMHf0dCCCFE6WTzpDohIYHg4OACrwUHB5OSkkJ6ejoeHh437HP92KzccWilWuZFOPI1xE2H1KOFbGAAF19QgfDoYf3S4n7AWUjeBTmpEP+HXrYCQZ0h4jmo1gcMtq8SK4RNZZyHQ1/AgU8g/dSN73vVhsBocK8CGUlwZpV+Ym262mMl5wqcWqQXgKo9oMHzENwNpLKwEEWaM2cOo0ePplu3bhiNRu677z4++uijvPezsrKIi4sjLS0NAFdXV/7++2+mTp1KamoqYWFh3HfffbzyyiuO+haEEEKIUq9U9qcsamxWqZQeD3sm64Q6+7J+zbUSVO2lEwO3StB8MoR0B6MLpKYC3nq7Dt+DlxccmQXbntPdX3OdWaUX3/o6ua49RLqHi7In9TjseQeOfqcTY0B3z1B6tXIbaDYJgjrd2L1bKf35OjYbdr8F2Zfy949fohf/pjq5rvkwGJ3s9E0JUXZUqlSJuTep41GrVi2UUnlfh4WFsWrVKnuEJoQQQpQbNk+qQ0JCSExMLPBaYmIivr6+hT6lLjNM2XDgY9j5Wv4f+x6h0OgVqDMEnD0hPQHcg4t/klbnMQi7D/a+B/s/gJx0MLqBwQlS4mDTCIibCq1nQFBHW39nQty6nAzY9x/Y87b+eQb9WbiSCCioFAlN39JPnIv6fBgM4BkKDf8F4cN0cp6ZBI1fgf1T4fBXkLwTYgbrr9t8DpVbFX4sIYQQQgghbMTm/Yqjo6NZtmxZgdeWLl1KdHS0rU9tO2fXweJI2PasTqgrtYKQOyD9tB5D7XT1ZoFHiPldU118oNmb0O+g7gZrygCVDXWGglsVXeTs706w4XG4cs5235sQtyp+KfzRFHa+ohPqoM7QfTW0nAoYoMlE6LFZj4029/PhVgla/geivgLvOtDqI+i5TX8+XPzhwjZY0ga2PK2HYgghhBBCCGEnFifVly9fZseOHXnVQI8ePcqOHTs4ceIEoMdDDx48OG/7kSNHcuTIEf71r3+xf/9+Pv30U3744QeeffZZ63wH9mTK0t20l3bQT8hcA6DlFHD2goSl+slypRa3NsbTsxp0XQbV79FPq+uPhX5xUPfqvKFHvoHfI+DkQqt8S0JYTc4V2DgCVtwJlw7oJ9PRs6HbCt3DotZD0Gc3NHmt5J+R3P2y0yBmkO5W3vg1qPUIoHTvkd8b6MReCCGEEEIIO7A4qd6yZQstWrSgRYsWAIwbN44WLVrw2muvARAfH5+XYAPUrl2b33//naVLl9KsWTM++OADvvzyS7PnqC410k7B311g/xT9dZ3HoddOOPmzHvvs7AOdf4d6T976uZw9oMOP0GMjBDTVyXubz+GOdeDfRBd9WnMvbH9Rd0MXwtEuHYa/2sHhmYABbnsaemzR457T4/O382tonfMZnMGvAagc2D4OAttB16XgU0+fb0UP2P02KJN1zieEEEIIIUQRLB5T3aVLlwJFTa43a9asQvfZvn37jRuXFQl/w7qH9Ry6Lr7QdhZUvxvWPwJn14KLH3RfBQHNrHdOo5NOGnIlbdfjUXtuhR3jdXK/7z1I2gztvgeP4KKPJYQtnVwEGx6DrIvgFgjt5kLw7bCqn55WLmUf9Nhk3SrdTq76c+gRCnsnw9an9U2tXrGw9Rk4/KXufn5+I0R/B67+1ju3EEIIIYQQ15C5moqzfxosv1Mn1AHN9TjOsHtg56twfJ5+YtbxZ/MTaicnuP9+vTiZWa04eZfucr5uIJzfAi0/gPbzdbfzxBWwuKV+XQh7Ugp2TYQ19+iEOrAd9NquK91vGaUTaicPaP2pbaa9Mhig2Tu614gywdoH4PJhiJoJUV/q4ROnftX1Dy7utf75hRBCCCGEQJLqoikFOybAtrGAgvAn4I714BOu3w9sB87e+o/3kK7mH9fdHX78US/u7ubt49tQJyqmDFh9N1w+CjUf0MWefCN0gbRlt0PCcku/SyFKxpQDm5+CXf/WX9d/FrqvBM/qsO99PSc1Bmj/PVRubbs4DAZo/RkEddFFA1f1hfRE/Xm9cx141YLLR2BpRzi3yXZxCCGEEEKICkuS6sKYsmHjMN2tFPQ8um1m6rHOuar1gX6H9PRZtmZ0gnZz9JPyjLM6cci8qLuH99gEwd30HNkre0kBM2F7ORmw7iE4NAO4mtRGTtHzsJ9cCDte1NtFTtXDJGzNyRU6LtDjqZUJMs/r1ytFQs8tUDlKT8W1vKseyiGEEEIIIYQVSVJ9vex0WHMfHPkaDEb9JLrReP1ELOO8nns6lz3HMbt4Q+df9RjSi3v13NVK6am4uvwOYfeCKRPW3g+Hv7ZfXKJiyUqBlb3h5E9gdIUOP0C9kfq91JN6yjfQhcrqP2O/uNwqQZc/9U2ma4uhuVWGrn/rKe+yU2FlHzixwH5xCSGEEEKIck+S6mvlZOjxoaf+p8djdligu5GCTmA3DoM/mtza067UVJ2gGwx63RKe1aHjQj2O+8QPcGyOft3JTY+xDn9CP6nb+ATEfVzyGIUoTNZlWNELEpfroQ9d/oQa9+e/n5MGXmFQuY0e929vPuF6bvhcpiz9b+4NqRoD9I2ndQ/A0dn2j08IIYQQQpRLklTnMmXpLq3xS8DJE25fAmH9898//BX8syi/wrGjBLbR8/KCTqxzGZ11F/UGz+uvtz4Nh7+xf3yifMpO1+P5z60HF3899/T1tQR86+snxR0X6q7gjqIUHJoJvzWAK2f1a05uukp++HB942nDYzJUQgghhBBCWIUk1aCLLsUM1kmz0Q06/w+CO+e/n3IAto7R683e0WObHanRBGj7jU5ermUwQPP3dNEogE3D4MSP9o9PlC85V4cV5D6hvn0xVG5V8P1cTu7gGWr/GK9lyoS4aboS+KbhOskGXZugzQyoM1TPb73uQTi9xLGxCiGEEEKIMk+SamXS45PzpsdaACHd8t83ZcH6R3XX1uCuEDHOcbHmMjpDncd0knA9g0F3vQ0fpr+3dQ/Dqd/tHqIoJ0zZsP5hOP2Hnh6ry+8QGJX/fnYaLGkFu9/SN6dKAyc3XdjP6AL//KLrI+QyGHWPjhoD9Gd7zT1wZrXjYhVCCCGEEGWeJNU7XswvStb+e13V+1p7JkHSZnANgOhv9XalSXYabB0LF3bmv2YwQOsZUHMgqGxdeC1xlcNCFGWUUrB5JJxcoIuSdVoEQZ0KbhP7sp5H/eBnemhEaRHQDJq+pde3joFLh/PfMzpB9GwI7Q056bCyLyRtc0ycQgghhBCizCtlGaKdHZwB+/6j16O+Llh0CSDlIOx5W6+3+lQXCittdozXXV03DS/4pNDopG8CVLtLz2+95h5IiXNcnKLs2TtZ1xIwGHWV76p3Fnw/aRsc+EivR32tK3CXJhHP6ZsA2al6Tu3cbuCgp+Hq8FPB+a1TTzosVCGEEEIIUXZV3KT69GLYMlqvN3mj8Pmm3QP1+MvQ3lDzQfvGZ66G48HZB85vgsNfFnzP6ALt50HltpB5QU8ndOWcY+IUZcuxeRD7kl6P/OjG+aZNObDp//QQg5oPQ2gP+8dYHKMTtPlS10lI+OvG+gLOHvrpu18jSI+HVf0g65JDQhVCCCGEEGVXxUyqL8TC2gG6WFHtIdD4lcK3cw3QhY06/aK7VFuDkxP07q0Xp0LGRFvKMxSaXe3mumM8XDlT8P3cxMGrli7ctOYePXWYEEU5u05XxwZd9O62UTduc/AzSNoCLn6OmT7LXL71dGE/gxEuHbzxfVc/PU7cPQiSY2HdQD2OXAghhBBCCDNVvKQ67bTu6pl9GYJvhzZf3Jgw52QU7CpqdLbe+d3d4fff9eLubp1j1nsKAlpAVjJsf+HG9z2CdeLg4gtn1+r5tq/9/oTIdemwnjrLlAHV+0OL92/cJu10/lPs5pMKzg1dGjV8EXpuh8YvF/6+V03o9D9dufz077CtFBQjFEIIIYQQZUbFS6o3DYe0f8A3Qlf6dnK9cZutY2FFz4LFjUozo7MuTIYBjn5XeFEyv4Z6DKnBCY7Nhr2T7B6mKOWyLsPquyDjPFRqBe1mF15h/vwmUFlQOQrq/p/947SUkzsENL35NoFREP1fvX5guq63IIQQQgghhBkqXlLd+jMI7qaf3LoG3Pj+uY1w6HM9BjPtH/vHV1KBbfITnB3/KvxJdNU7oPWnej32FT2uXAjQPy8bhsLFveBRVc/V7uxV+LZh/aHPHmg7q/RVwy9O8h7YPFqPBb9ejfuh2dWbTVufgbMx9o1NCCGEEEKUSWXsL2Ir8KoB3f4G7zo3vqdMsOVpQEHtwRDc2frnT00FLy+9pKZa99jN34E6j+sn8EWNAa87Qi8oPf/w5SPWjUGUTfveg5M/6eJ2HRboxPpmvOuAX4R9YrOW7DT4uxMc/ERXNS9Mwxfz57Beex+kJ9g3RiGEEEIIUeZUvKT6Zo7N1XNSO3tD83dtd560NL1Ym2sAtP2q+Km/Ij/SXXczL8Dqe3WyISqu+L+uqfQ9HapEF77diQVl++mts2d+UcKdr0BWyo3bGAx6ejC/hroi+NoBkJNp3ziFEEIIIUSZIkl1ruxUXT0boNFLpb/4kjmKegrt5AYdf8qveLxphBQuq6guH4V1D+leGuHDrvZiKERGkq5HsLQdxC+1b4zWVG8U+NTTVfL3TC58Gxdv6Lgwv7Df9ufsG6MoPS7shPWPQuZFR0cihBBCiFJMkupc+/4D6ad0JeCIZx0dza0xZcHaB+DX2yB5d+HbeFaH9j9cLVw2Bw58Yt8YhePlZMCa+3WPhcptoNXHRQ8b2P2G3s6vsa6aX1Y5ueZXNN8/BS4fK3w739uuKVz2MRydY5fwRCmSdUn3VDg2R9epEEIIIYQogiTVAKYcOLlQrzd/T1cLLsuMLvrJo8qBbc8V/RQ6uHN+grH9OUjaar8YheNtfwEubAO3yroyvJNb4dulxOXfdGk5xbpTzDlCtbv0jQFTBsROKHq76ndBo6vdxTf/n74OomJQCjaNhEsHwKMaNH3b0REJIYQQohSTpBr0tEE9NuknUzUGODoa62j+LhhddRXz+JtU+a4/Vs9HbMrUT7elm2PFcGKBnjoKoO134BVW9LbbngeVDaF9dQX5ss5g0DcHMMDxeXBuU9HbNvk3BHXRw0PWPgDZ6XYKUjjU4a/g+Fzdk6f9PHAPdHREQgghhCjFJKnO5eQKtR8tuvtrWeMTDvWf0evbntNdwgtjMEDbr3W398tH9LhZGV9dvl0+Ahsf1+sN/gXVehe9bfxSOP0bGJyh5X/sE589BDTXwzxafqjXi2J0gnZzwK0KJO+EbWV8aIgo3oWdsPVpvd7sbQjq4Nh4hBBCCFHqVeykWik4+XPRCactGI3QubNejDa+/I1eBrdASNkHh2YWvZ1rALSfrxOnEz/CoRm2jUs4Tk4GrH1QV74ObAfN3ip6W2XSXcQB6j0FvvXtE6O9tPwAIsbqG2o34xkK7WYDBj2H/fH59ohOOELWZVj3AORcgaq9oMELjo5ICCGEEGVAxU6qT/8Ja+6Dxa3BlG2fc3p4wMqVevHwsO25XP1191WA3RN14Z2iBEZB86vVkLc+Cxd22DY24Rg7xkPSFnCtBO2/1+Pvi6KU7u3g1wiavGa/GB3BlH3zm2tV74RGV8dfbxwOlw7ZJy5hX1tG6bHzHtUg+lswVOwmUgghhBDmqbh/MZhyYMeLer3qnWW/+FJR6o4A77r6KfSlAzffNmKcHjdryoB1A2X+6vLm9J8QN1Wvt50FXjVuvr3RCcIfh967dDGz8ur0YvijMRwspodGk4lQpSNkX4J1D9u3h4uwvWNz4eh3OpFu/z24V3F0REIIIYQoIypuUn3sv3BxN7j4Q8Pxjo7Gdowu0Pl/0O8gVIq8+bYGA7T9BjyqQsp+2DbOPjEK20tPhA2P6fXbRkP1fjff/tpx9eWlzkBRUo/rp5O739Dd4otidNbjq138IWkz7HzdbiEKG7t8FDY/qdcbvQJBHR0bjxBCCCHKlIqZVGenw85X9Xqjl8Ctkv3OnZoKVaroJTXVPuf0awDOnuZt6x4I0d/p9UOfw8lFNgtL2IlSsGEoXDmj55lu/t7Nt89MhsWRcORb3aOjvAt/Anxug4xzer76m/EKg6ir9Qn2TobElTYPT9iYKRvWP3q1zkA0NH7V0REJIYQQooypmEn1gY8h7R/wDIP6T9v//OfO6cXeTDlw9L/FjwcN6Q4NntfrG5+AtFO2j03YzoHpEP8nGN10t1bnYsby730XLmzX/1IBKsEbnaH5JL2+7wNIT7j59jXu14k4CmIGQUaSzUMUNrT7LTi3Hlx8dU+E8joUSAghhBA2U/GS6owk2POOXm/6Jji5OzYee9o2FmIGQ+zLxW/b9G0IaAGZSRAzRFeCFmXPhZ35FbxbfgD+jW++fdo/+eOum0+uOAlG9XugchTkpOlu4MVpORV86unrtWmETENXVp1ZC3ve1OutZ4B3bcfGI4QQQogyqeIl1VkXoVJL8G8CtR51dDT2FT4MMMCJH+D85ptv6+Sqn2o6eULiMtg/xS4hCivKuQLrHwZTpi5AV++p4vfZ9W+9X5UOUK2YcdflicEALa52iz/0BaQUU9TPxTu/evrJBXDkG9vHKKwrKwViHtU3DGsPhloDHR2REEIIIcqoipdUe9eGrn9Dt5W6unFFEtAs/0bCjvHFP13zrQ+RU/V67MtwIdam4Qkr2/ESXNwD7kHQ9qviC45d3JefHDZ/t/wXKLteUCd980Hl6ErQxakUCU2vzvO9dQxcOmzb+IR1bXlGF6nzqgWtpjs6GiGEEEKUYRUvqQadLNizOFlp0uxNMLpC4nJIWFr89uHDoNpd+mnn+kf0U0xR+iX8DXEf6vWor3ViXZzYl/VTu+p3Q5V2to2vtGrxHnT5A5qYWdk74jmdjGdf1uOr7TXfvbg1J36Co1fnoY7+rx5PLYQQQghRQhUzqa7IvGrmdwPeMb74sdIGg6527B6kn3rueMn2MYpbk5EEMY/p9bojoVqf4ve5uB/+WaiTjGbv2DS8Us2vAYT2Mv8pvdFJV8t38YVzMboiuCjd0k7Bpv/T6w3HQ1AHx8YjhBBCiDJPkmp7MxqhVSu9GB10+Ru9DM4+usLz8R+K3949CKK+0utxH0LCMtvGJ0pOKT3fbvopXUirZTFTROXyi4Dua6DZZPBraNsYy4qMJN0lvjheNaHVx3p910Q4v8W2cYmSUyY9vVxmEgS0hMYy17gQQgghbp0k1fbm4QGbN+vFo5ipjWzFPRAavACV24J3LfP2qdYX6l59uhMzBDIv2Cw8cQuOzdGF6AxOenogZy/z9w3qAA1fsF1sZUnCMvhfHT3kwZzK97UehRoDQGXr4lfZabaPUVjuwMd62IuTh/58OLk6OiIhhBBClAMlSqo/+eQTatWqhbu7O1FRUWzatKnIbWfNmoXBYCiwuLtXoGmsSqtG4+HO9RDY1vx9Wn6gn36mn4LNZlSSFvaVegK2jNLrjV+Hyq2L30eZip+XuSLyb6avjbm9OQwGPSWTRyikxOVPYyZKj4v7YMeLer3F+7p3RgViSbsN8OOPPxIREYG7uztNmjThjz/+sFOkQgghRNljcVI9f/58xo0bx+uvv862bdto1qwZPXr04MyZM0Xu4+vrS3x8fN5y/PjxWwpaWIHRxfLqzs5eED1bPwU9Pg+OzbNNbMJyygQbHtPTBFVuC40mmLff8Xn6ieyeSTYNr8zJ7c0BsPMVyMksfh+3StB2ll4/+CmcXmKz8ISFcjJh/aO60GLVHuZNL1eOWNpur1+/noEDB/LEE0+wfft2+vfvT//+/dm9e7edIxdCCCHKBouT6ilTpjB8+HCGDh1Kw4YNmTFjBp6ennz99ddF7mMwGAgJCclbgoODb3qOjIwMUlJSCizlRloa1Kqll7RS0EU08yLEvgL7PjBv+8A20OgVvb75SV30Rzhe3DRIXKHnFW/3XzA6F79PToau+J2TDhQzvVpFFPEsuAfD5cNweKZ5+1S9A257Wq9vHAoZ520XnzDf7jfhwjZwraSr4Vew6eIsbbenTZtGz549eeGFF2jQoAFvvvkmLVu25OOPPy7yHOW63RZCCCGKYVFSnZmZydatW+nevXv+AYxGunfvTkxMTJH7Xb58mZo1axIWFsbdd9/Nnj17bnqeSZMm4efnl7eEhYVZEmbpphQcP66X4uaJtof4xbDnbdj1b7hSdG+DAhq/DJVaQ1ayLvpjzphTYTvJe2DH1SfTLaeAT13z9jv4KaQe012W64+1VXRll4s3NH5Nr++aCFmXzNuv+WTwjYD0eH3jqTR8ziuyszGw92pF+zYzwDPUsfHYWUna7ZiYmALbA/To0eOm7Xy5breFEEKIYliUVJ87d46cnJwbnjQHBweTkFD4uMz69evz9ddf88svvzB79mxMJhPt2rXjn3/+KfI8EyZM4OLFi3nLyZMnLQlTWKLGAKjUSs+zu+sN8/YxuuinoU4euujPgU9sG6MoWk6mLoxlyoDQ3lB3hHn7ZSbD7rf0etM3wNnTZiGWaXWH6zoCGWdh3/vm7ePsqec+NjjDiR/h2FzbxiiKlnUZYgbrG3+5xeTMkXYatj4LV87aNj47KEm7nZCQYNH2IO22EEKIis3m1b+jo6MZPHgwzZs3p3Pnzvz8889UqVKFzz//vMh93Nzc8PX1LbAIGzEYocV7ev3Q55BywLz9fOvrYj8AO/5l3tRDwvp2vQ4XdoBbZT3tmbndWvdO1tMK+TWE2kNsGmKZZnTRT54NTpCdav5+lVvlP+XeMgpSJcFwiO3PweVD4BkGraabv9+uf0PcVIgZZKvIyh1pt4UQQlRkFiXVgYGBODk5kZiYWOD1xMREQkJCzDqGi4sLLVq04NChQ5acWthS8O0Q2kdPBxT7kvn71XtKF/3JuXK1CJAZxZyE9ZxZA3vf1ettvgAP8z6DpJ6A/VP1evN3zRt/XZFVvwf6HdDV7y3RaAJUjoKsi7BhiAyTsLd/foVDX+j1trPA1d+8/S7uhSNf6fXcGyNlWEna7ZCQkFtq54UQQoiKxqKk2tXVlcjISJYtW5b3mslkYtmyZURHR5t1jJycHHbt2kXVqlUti1TYVvPJ+qn1yQV6DKI5DAZd9Me1ki4CtHuibWMU+bJSrj5FU1DnMQi71/x9z2/U/wZ10jdTxM0ZDOBdx/L9jM7QbrYuHpe4AvZ/aP3YROGunIFNw/R6xDgI6Wr+vjvG6xsg1ftDlXY2Cc+eStJuR0dHF9geYOnSpWa380IIIURFY3H373HjxjFz5ky+/fZb9u3bx5NPPklqaipDhw4FYPDgwUyYkD+dzxtvvMFff/3FkSNH2LZtG48++ijHjx9n2LBh1vsuxK3zbwx19P8hO18xfz/PUGhztSv/3slwZq31YxM32vIMpB4Hr1oQOc2yfWsM0E9eW39e4aog37Lk3bD7bfO396kLkVP1euxLcGGnTcIS11AKNg7TibV/E2hmwf/XmdVw6lfd3b9Z+ZlmztJ2e8yYMSxevJgPPviA/fv38+9//5stW7YwevRoR30LQgghRKlmcb/PBx98kLNnz/Laa6+RkJBA8+bNWbx4cV5RkxMnTmA05ufqFy5cYPjw4SQkJBAQEEBkZCTr16+nYcOG1vsuyhKDAXK/99KW0DSZqP8gbfK6ZfvVuF+Pyz36rX562jsWXGQ8nc2cWKCvtcGoC2KV5Fp71bB+XOXdlbOwOBJMmVClPQR3MW+/8GFw6jc49T9Y/wj03AxO7jYNtUI7/KVOjI2uED3b/GutTLDtOb0ePgz8ImwXo51Z2m63a9eOuXPn8sorr/DSSy9Rr149Fi1aROPGjR31LQghhBClWokGU44ePbrIO9YrV64s8PWHH37Ihx9Kt8c8np5QzJRiDuNZDdp+VbJ9W30EZ1bpKZq2joG231g1NHFV2mnYdLXCd8PxENTB/H3PrNYVqctBl1aHcK8C4U/Awc9g27PQYwsYnYrfz2CAqJnwxwa4uFvPDW7p+GxhnkuH9P8NQLN3IKCp+fsemwNJW8DZB5r82ybhOZIl7TbAgAEDGDDAzGrpQgghRAVn8+rfogxLjzd/Wxffq9MIGeHILP00VViXMsGGx3TV7oCW0NiCHgU5mbpL7NL2cOx7m4VY7jWZCC5+uuL6EQtuHLkH6foDAPunQMKym28vLGfK0gUTs1N18cWIZy3bP7Q31BulE2pzi/4JIYQQQiBJtShM1iVY+wD8Wh/Si56X9AZBHaDBi3p903CZRsja9k/V84I7eVwtgOVq/r4HPoZLB8E9GKr1tVmI5Z57lfynmLEvQeZF8/et1gfq/p9ejxkMV85ZPbwKbddEXYTPxV9X+zZY2Ly5VYbWH0ODcbaITgghhBDlmCTV9paWBo0a6SUtzdHRFM7ZSxfByr6ku6paoulEqNQaMi/o8dWmHNvEWNEkbYfY8Xq95Yfg18D8fa+chd1v6PVm74CLj/Xjq0huG6Xnac84C3vesmzflh+AbwSkn9bVqZWyTYwVTeIq2POOXo/6wrKaAdnp8v8ghBBCiFsiSbW9KQV79+qltP4hZzBCy6l6/cg3kLTV/H2NLtB+rk7Mz6yCfe/ZJMQKJTsN1j+su7dW7w91R1i2/85X9VzJAS10QTlxa4wu+sYGQNw0PY7XXM5e0G6uLqL1zy/58yiLksu8ADGPoqeXe1xXt7fEhsdgRQ9IOWCL6IQQQghRAUhSLQpXJRpqPQIoXXjMkhsAPnWh1Sd6feercG6jTUKsMLaNg5T94BEKUV9aVjX+wk44PFOvR04zr7CWKF5oL6j5MDR/D7xqWrZvpRZ6XnjQRbUu7rV+fBWFUrBxBKT9Az71LJ9e7swaOPEDJC6DnCu2iVEIIYQQ5Z4k1aJozSeDkyecXQfHLSxuVXsw1HwIVI5+ypp1yTYxlncnF8KhzwEDRH+nx32aS5lgy2j9b40BENTRZmFWSO3nQMRY/eTaUvXHQNUekJMO6x6WhK6kjnwDJ3/SVe3bzQEXb/P3NWXpzwdA+HDLKoULIYQQQlxDkmpRNM/qetom0E9LM5PN39dggNaf6ad4l4/AppGlt7t7aXX5GGx4XK83eB5Cull4AIPuKu5VG1q8b+3oxLWy0y1LjA1GXUzLrQokx8L2F2wWWrmVvCc/KW76JlRubdn+cR9B8k5wrQRNLRwbL4QQQghxDUmqxc01/JcuymR00cmxJVz99fhRgxMcnwuHSzgHdkWUkwnrHoKsZKgcBc3etvwYBgPUfhT6HbS8i7IwX+Iq+KMp7H7Tsv08QiD6W71+4GOZhs4S2amw7gH9pD/kDv17yhKpJ2Dna3q9xfvgHmj9GIUQQghRYUhSLW7OyQ06LoI+e6FSS8v3r9IuPyHc+jQk77JqeOVW7Ev50wO1n2d5F+Nrn5rKOGrbykyCy4dg73v66aklQntBg6sJ4cbHLb9xVVFteVqPRXcPgej/Wj591tZnICcNqnSEOo/ZJEQhhBBCVBySVNubwQA1a+rFkoJTjuQXcWvTMDV4Aar20one2gGQddl6sZVHp36D/R/o9bbfgHcty/ZPXAX/qwPH51s9NFGI6v2h2l2gsmHzSD2G3RLN3oLAdpCVAmsfhJwMm4RZbhz9rx5LbTDqmQY8gi3bP/OCrvRtcNZDVCxNyIUQQgghriN/TdibpyccO6YXT09HR2MZZdJduA98atl+BqMusuVRDVLiYPOTMr66KKknIebqtFe3PQNh/S3bPydTX9/0eEhcYfXwRCEMBmg1XU+XdXYtHP7asv2NLro3gmslSNoC2y3sylyRXNyvf74BGr8GwbdbfgzXAOi1A7r+Bf6NrBqeEEIIISomSaqF+U7/ARuHwfbn4fJRy/Z1D9SJg8EJjs2Gw1/aJsayLCdDP8nPTIJKkdCiBHN8750MKfvAPQiaT7J+jKJwXjV0sSzQRcfSEy3cP+ya8dUfwYmfrBtfeZB1Gdbep8dTB98OjV4p+bGcXEuWkAshhBBCFEKSamG+0D76D9GcdF2V2tJurkEd8qvsbhkt81dfb+szehy1awB0+EGPZ7dE0tb8YlktP9THEfZz29MQ0EIXl9tcgmr31frqoRIAGx6zfHx2eaYUbBiqx1F7VNXTZ1laKyBxBex6A0zZtolRCCGEEBWWJNX2lp4OrVvrJT3d0dFYxmCANl/obq5nVsL+KZYfo+G/oPo9YMqENfdZ/kSvvDr0JRz6AjDoiunedSzbPzsd1g/S43rD7oOaA20SprgJo7MeA2900TecSjL3dLN3ILirfhq75h7LprErz/b9R89HbXSBDj/pxNoSmRf1sIpdr8M+mV5OCCGEENYlSbW9mUywZYteTBY+6S0NfOrqp6AAsS/DhZ2W7W8wQvQs8I2A9FO6u7Mpy+phlinnNsGWUXq96ZsQ2tPyY8S+dLXbdzC0nlF2iuCVNwHNoOdW6LQInD0s39/orIdJeNaASwev3igpg78nrClhGcSO1+stp+oZBSy19RlIO6lvVt32tFXDE0IIIYSQpFpYLnyYrnZsyoSYRy1/IufiezXp8IGza2Db8zYJs0y4ckaPEzVlQvW7odEEy4+hlO6SDxD1lcy562j+TQre1LC0G7h7Fej0Mxjd4PRvustyRZV6HNY9qG8s1HkM6j1p+TFO/gxHv8svmOjibfUwhRBCCFGxSVItLGcwQNRMXQzr4h5IXGn5MXzrQ7vZev3AR3BkljUjLBtyrsCaeyHtH/C5Tf/BX5LpfQwGaDMDeu+Ean2sH6comcxkWP8o7C1BwbhKkXqoBcDuiXByoVVDKxOyLsGquyDjPAS0hFafWt4DIz0BNv2fXm/wL6jS3vpxCiGEEKLCk6RalIx7EETPhu5rStZdGaD6XdD4db2+aUTFmgJKKdjwBJxdBy5++sm9i6/lx7i26JJ/E6uGKG7R6T/h2BzY+Tqc32z5/nUG53dVXv8InN9i3fhKM1M2rHsIknfqIQ2dfra8O70pB2IGQ8Y58G8GTSbaJlYhhBBCVHiSVIuSq3pHycY3XqvJa1DzIT2uevW9cHGfdWIr7Xb9G47PBYMzdFwAfg0sP8a+92F5Nyn2VlrVfAjC7tfF49bcW7L/p5ZToGpP3b1/VV/dHboi2PasnsLPyQM6/Q+8alp+jIu79U0rJ0/dK8bJ1fpxCiGEEEIgSbWwlov7YM0AyE6zbD+DUVdMrtJeT0W0so8eZ1yeHf0v7L46TrbNDAjpZvkx4pdC7AQ4sxpO/27d+IR1GAwQ9aUe6pD2jy7Kl5Np2TGMztBhPvg3hSuJ+vORedE28ZYWcR/BgY/1evR/IbBNyY4T0Ax6bNCF3/wbWy8+IYQQQojrSFLtCIGBeikvTNmwqp+e8mbjE5YXZnJyh46LwDscUo/qcZTZZWy6MXMlrtLXCKDhixD+hOXHuHxUd41VJqjzONQZat0YhfW4+umfbRffq0X5nrX8GC6+0OV38AjVNQzW3l9+K+b/82v+NWr+LtS4z/JjXPv7x78JVO9nndiEEEIIIYogSbW9eXnB2bN68fJydDTWYXSGtl/rrszH5+k5ZS3lHghd/gDXSnB+o04cLH2qV9qd36xvPpiy9FzSzd6x/BjZaborcWYSVGoNrT+R6bNKO78IaDcHMMDBT/Wc5JbyrA6df9NzxCf8redcNuVYPVSHSlyhn+Yrk77Z1OAFy4+RmQx/d9bdvoUQQggh7ESSamEdQZ0gcppejx0Pp36z/Bi+t0GnX/Q4ytN/wPqHCxbiKsuSd8OKnpB9CYK66G6tllb6NmXrglUXdoBbFT0W28ndFtEKa6vWF5q+AR5Vwa9RyY5RqQV0+PHqzavvYfP/lZ85rM9tuHrDKUNP19f6M8tvFuVcgTX36R4BMY+Vn98dQgghhCj1JKkW1lPvST2HtTLBmvshYZnlxwjqoCthG13h5ALYMLTsJw6XDsHyO/TT5cpR0Pl/llcyBtj+AvyzSM9f3PEn8AqzeqjChhq9BL1ioUp0yY8R2gvaz9U3ZA5/BVvHWj7corS5sBNW9ILsVAjupseQG10sO4YpC9Y+AInLwdkbOvyge9AIIYQQQtiBJNX2lp4OXbroJb2cjRs2GKD1p1D9bv3EadVdJZsGqOqd+o9igxMcmw2bnyy7iUPqCVjeHa4k6GJTt/8JLj4lO9Zto8Gnnn5aGdTJunEK2zMYwb1K/tdn1upeB5aqMQCivtHrB6brgnVl9fOREgcr7tBFCgPbQedfLO99YcrR3eFP/ar37fybfqovhBBCCGEncivf3kwmWLUqf728MbpA+/k6oTZd0ZWPS6L63Xoe7PUPw6EvdNLQ+jMwOlk3XltKidNPqNNOgs9tcPtf4BpQ8uP5hEPv3TI1UHlwNgZW9ABnT+i+CvwaWrZ/ncGQk6ZvOO19V/fmaP5u2Rpfn7RdX4OMsxDQXBdjc7awzoRS+hoc/17/7un4MwR3tkm4QgghhBBFkSfVwvqc3KDTQuhyC09lAWo9dLUAmhEOz4R1D+hxk2VB0lZY2kEn1L71oevf4BFs2TGUCWJfhlPXTJklCXX54NdQz02ecU73ZCjJ/Oz1RkLLD/X6vvdh4+NlZxzxmdWwrMvVhLrF1RtO/pYf59gc/bvBYNTF4EJ7WTtSIYQQQohiSVItbMPZUy+5drwEJ3+2/Dh1HtPdnY2uev8VvUr/PL2JK+Hv23XCVKkVdF9j+fjn7HRY+yDseQfW3AMpB20SqnAQVz+4fYme8ik9Hv6Khvi/LD9OxFiI+loPlTgyS1eGt3SueHv751f9hDorRQ9j6LaiYLd4S9R8EELuhDZf6m7xQgghhBAOIEm1sL1Tv8PeSboy7553LB//GXYv3L4YnH3gzEr9hCvttC0ivXXH5+dX+Q6+HbottzxhSE/U3+PJn3SX1qivwLeeTcIVDuRWGbougyodIOsirOwNcR9bfpzwodBxoR5PfOpXWHEnZJy3frzWcOgLfZMo54qu8t1lsb7BYIm00/lP5I0uuk5BuMzVLoQQQgjHkaRa2F7VHnDbM3o99mWIGayfxFoi+HY99tQ9SBd3WtxSz2tbWpiyYOuzsO4hXaSten8977al3d+TtsNfUXB+k56zu+vfUHuQTUIWpYB7lav/x0NA5cDWp0vWo6N6P7h9Kbj46Tma/2wJ5zZZP96Syk6HDU/Apv/T32ftIXpKOEur4J9dpz/7257Nf83SqemEEEIIIaxM/hoRtmd0hlbTrs49e7Wi95/N4cway45TqQXcsV5X0b6SqMei7pnk+Cm30k7Dstshbqr+uuEE3WXd0irGu9+CJW0g9Th414U7N0iV74rAyQ3afqMLjVW7C6rdXbLjBHWAO9bqn520E/B3B/3k29GVwS8fgaXt4cjV+gjN3tG1EiyZ8io7DbY9B0s76s/+mdWQdcl2MQshhBBCWECSakfw9NRLRVNvpB5H6h4Clw7A351g15uWHcMnHO6M0WOtlQliX4JV/eDKGZuEXKzTf+onZ2fXgYuvnmO7+TslnyNXZUPY/dBjg3T5rkgMBmj4L13gL7fCfdYlfaPFkl4d/o2h5xYIu+9q74mnYd1AyEy2Sdg3pRSc+AkWt4IL28EtUBckazTBsqfLZ9bqm3D7pwBKP+W+Y+2tFUEUQgghhLAiSartzcsLUlP14mXh9DHlQUg36LsXwp/QX1dubfkxnD31k72or/TT4NN/wK/14eBnes5ae0g7DWsf0ONgryTqglM9t+qpwMx1+Ric25j/dcMXofPv0PFHPd5WVDzXJps7JsDOV+GPpnBsnvk/265+uqdEyw/B4Awn5sNv9eHId/Z7an35KKzqC2sHQOYFqBwFPbfpz7+5rpzR80//3QkuHQSPanpIRfQsSaiFEEIIUapIUi3szzUAor6EPnsgtGf+6/s/hLiPzK9eHP647iId0ByykmHzU/BXWzi/xRZRa6ZsiJsOv0XAiR91d/aI53QcPnXNO8alQ7Dhcfi1np4GKbf7utEFqvW2XeyibKnaQyeSlw/B+oE6MT40E3Iyit/XYNCVwbuvBt8InaBuGKIL4CXvtl3MOZmwZzL83kjf7DK6QuPXdD0ESyvgO3nC6d8BBXUev/r7QqbMEkIIIUTpI0m1cBy/hvnrmcmw69+wdQz8UhO2PA2Jq4p/OhfQDHpshsiPdPfrpC16XPLqe/W4S2s9mcu6DPun6UR46zO6unflKP10uuV/Ck4fVpiMJDj8FSzvcfWp4Te6q7dHqH5PiOtV76cTySZv6J4Llw/DphHwv9qw9z3zjlElGnrFQrNJOkk9s1p3pV73sHULmWUmw953dWyxEyAnHYK6QO+d0HSiHjd+M1fO6J4mq+/N/8y7eEPrz6HHJmj7leVVwoUQQggh7KRESfUnn3xCrVq1cHd3Jyoqik2bbv7H2Y8//khERATu7u40adKEP/74o0TBlgtXrkCfPnq5csXR0ZQeTh66UJNXbT2/84GP9VO1RaGwaeTNi5oZnaH+09A3Dmo9Cij4ZyH83VmPdz4yS3dBtZRScCFWd8NdFAbbxkLqMZ3gtP4U7link/rixH0EPwfDxmGQ8Jd+Mh3aW48N77oU3AMtj01UDK5+0ORVuPu47s7tUU3Pa52ekL9N5kU9ldvlI4XfRHJyhUbjoe8+qH6Prr59/HtdZX5JNBz7Xs8ZbSll0r1Ctj6rPx87xkP6afCoCm2/1dPJ+dYvfN+sS7p6/57JsPwOWFhV9zT5ZyGcveazXuO+kg0REUIIIYSwI4urKc2fP59x48YxY8YMoqKimDp1Kj169CAuLo6goKAbtl+/fj0DBw5k0qRJ9O3bl7lz59K/f3+2bdtG48aNrfJNlCk5OZB7UyHHTuN/ywInN13ILHwYxC+Gkwvgn1/0E6xDn4N3bQjqqLdNiYN9H4BXDfCsobuVugbo6YQip0KDF+Dgp3D0Oz391oaheqxqQEs9pjOoC3jV1NNzuQbo90xZOlFJj9fjNxP+gvi/4Mo1yYtPPYgYB7UHAwbdLTczWc8JnHZcj5FOPa6LsDV9A6r11fv5NdRPpf2bQo0H9CJFyIQlnL10d+56T+ou0b4N8t87F6OncgN9wyegJXjX0T/jnjX058arhl46/KA/Ewc/gWNz4fwGWL9BD2Oo3AaCu0FwZ/AMA7cq4OqvPx85GfqzkB4PKfv1ZyNhqb4Blsuvsf58VO8Ppiv6c5qVrLfxb6rPD3Dk24LDHnJVagU1H9Td1YUQQgghyhCLk+opU6YwfPhwhg4dCsCMGTP4/fff+frrrxk/fvwN20+bNo2ePXvywgsvAPDmm2+ydOlSPv74Y2bMmFHoOTIyMsjIyB83mJJSgqcoomwyOutktFpfnegmroBTv+s/9nMl74LDM4s+RpvPoc0MPXXP9hf0k2pl0l3Dk7bobqp5DLrbeNbFoo9ncNZJx22jdeIPkLhST6NVlLPr85PqoC7QZx/4SbIgbpGTG4Tde92LCiq1huRYfYMnYWnBt9vNzU9o/1moC+xh0OOdja66ToDK0cn5uRjY89Z1xzfocxTG2RtCukNAK9j9b50sb3z8xu3afAF1h+t1n9v059EzDALbQuW2usCfT7hFl0IIIYQQorSwKKnOzMxk69atTJgwIe81o9FI9+7diYmJKXSfmJgYxo0bV+C1Hj16sGjRoiLPM2nSJCZOnGhJaKI8MrpA1Tv1ci3fCGjyb0g9oZ8Mp/+ju8BmXdRjOV2ujr10qwTV79Lz4xZJXZNQG4FC5rxW2XrJuaa7vmsAuPjrJ3muATpB8KoF3rX0v5Wjrvk+nCWhFrYT2ksvORmQvFMvqcf15yPtBPjelr9tZu7PugJTIQXPAtvp3iEZZ67pEl5EQt3gBWj2tv6cxi/Vn5FcBqP+HLr468+Hk0f+e5VbQf9T4Bl6C9+0EEIIIUTpYVFSfe7cOXJycggODi7wenBwMPv37y90n4SEhEK3T0hIKHR7gAkTJhRIxFNSUggLs7ByrCi//BvrpTA5mbryca7gbtBnL6Cujjc15Y87NWXpJ38GJz2HrtFNd+MGwHB1eqOr/xpdC05zFdAMBpRgnLYQtuLkpscf32wMcp3H9JNuU+Y1SxZ5nw/P6vkFwdLP6Kff2an6Z9/F75rPllEnxUYX/WVQR50oG111HM5eRc9FbXSRhNoBPvnkE95//30SEhJo1qwZ06dPp02bNoVuO2vWrLzeaLnc3Ny4InVAhBBCiEJZ3P3bHtzc3HBzK6ZarBCFcXIt+LWLN/g1KHzbwrg2sW48QpQmRmfdg8McHkHgcYd52zq5S6JcillaCwXA19eXuLi4vK8N196sFEIIIUQBFlX/DgwMxMnJicTExAKvJyYmEhISUug+ISEhFm0vhBBCCOu5thZKw4YNmTFjBp6ennz9ddFDYwwGAyEhIXnL9T3OhBBCCJHPoifVrq6uREZGsmzZMvr37w+AyWRi2bJljB49utB9oqOjWbZsGWPHjs17benSpURHR5t9XnW1u265KFiWmpq/npIiFcCFEKKCyG3DVGFTn9lISWqhAFy+fJmaNWtiMplo2bIl77zzDo0aNSpy++sLjF68qMfvp1y6dNP4MnIKXouUlJtvb67rj3u9ws5TklhKch5HKSzW0hSfsJ/ifm5LqiSfmev3Mefn1JzPqjXOIxzLGv/Pt3ruDJP+16x2W1lo3rx5ys3NTc2aNUvt3btXjRgxQvn7+6uEhASllFKDBg1S48ePz9t+3bp1ytnZWf3nP/9R+/btU6+//rpycXFRu3btMvucJ0+eVOhqObLIIosssshSppeTJ09a2vSW2KlTpxSg1q9fX+D1F154QbVp06bQfdavX6++/fZbtX37drVy5UrVt29f5evre9O4X3/9dYdfV1lkkUUWWWSxxWJOu23xmOoHH3yQs2fP8tprr5GQkEDz5s1ZvHhxXtewEydOYDTm9ypv164dc+fO5ZVXXuGll16iXr16LFq0yKI5qkNDQzl58iQ+Pj5WGdeVW/js5MmT+Pr63vLxKhK5drdGrt+tket3a+T63ZpbvX5KKS5dukRoaOkefx4dHV2gN1m7du1o0KABn3/+OW+++Wah+1xfYNRkMpGUlISLiws1atSQnzkbkM+z7ci1tR25trYj19b6LGm3S1SobPTo0UV29165cuUNrw0YMIABAwaU5FSA7qpWvXr1Eu9fFF9fX/mhKyG5drdGrt+tket3a+T63ZpbuX5+fn5WjubmSlIL5XouLi60aNGCQ4cOFblNYQVG/f3987q8y8+c7ci1tR25trYj19Z25Npal7nttkWFyoQQQghRdlxbCyVXbi0Uc2ub5OTksGvXLqpWrWqrMIUQQogyrVROqSWEEEII6xg3bhxDhgyhVatWtGnThqlTp5Kampo3F/XgwYOpVq0akyZNAuCNN96gbdu21K1bl+TkZN5//32OHz/OsGHDHPltCCGEEKVWhUyq3dzceP3112Uu7BKQa3dr5PrdGrl+t0au360pq9fP0looFy5cYPjw4SQkJBAQEEBkZCTr16+nYcOGFp+7rF6zskCure3ItbUduba2I9fWsQxK2XFuDyGEEEIIIYQQohyRMdVCCCGEEEIIIUQJSVIthBBCCCGEEEKUkCTVQgghhBBCCCFECUlSLYQQQgghhBBClFCFS6o/+eQTatWqhbu7O1FRUWzatMnRIZVKkyZNonXr1vj4+BAUFET//v2Ji4srsM2VK1cYNWoUlStXxtvbm/vuu4/ExEQHRVx6TZ48GYPBwNixY/Nek2tXvFOnTvHoo49SuXJlPDw8aNKkCVu2bMl7XynFa6+9RtWqVfHw8KB79+4cPHjQgRGXHjk5Obz66qvUrl0bDw8PwsPDefPNN7m2LqVcv3yrV6+mX79+hIaGYjAYWLRoUYH3zblWSUlJPPLII/j6+uLv788TTzzB5cuX7fhdlD7S3t46aYvtR9pq65I23HakjS+lVAUyb9485erqqr7++mu1Z88eNXz4cOXv768SExMdHVqp06NHD/XNN9+o3bt3qx07dqjevXurGjVqqMuXL+dtM3LkSBUWFqaWLVumtmzZotq2bavatWvnwKhLn02bNqlatWqppk2bqjFjxuS9Ltfu5pKSklTNmjXVY489pjZu3KiOHDmilixZog4dOpS3zeTJk5Wfn59atGiRio2NVXfddZeqXbu2Sk9Pd2DkpcPbb7+tKleurH777Td19OhR9eOPPypvb281bdq0vG3k+uX7448/1Msvv6x+/vlnBaiFCxcWeN+ca9WzZ0/VrFkztWHDBrVmzRpVt25dNXDgQDt/J6WHtLfWIW2xfUhbbV3ShtuWtPGlU4VKqtu0aaNGjRqV93VOTo4KDQ1VkyZNcmBUZcOZM2cUoFatWqWUUio5OVm5uLioH3/8MW+bffv2KUDFxMQ4KsxS5dKlS6pevXpq6dKlqnPnznkNtVy74r344ouqQ4cORb5vMplUSEiIev/99/NeS05OVm5ubur777+3R4ilWp8+fdTjjz9e4LV7771XPfLII0opuX43c31Sbc612rt3rwLU5s2b87b5888/lcFgUKdOnbJb7KWJtLe2IW2x9UlbbX3ShtuWtPGlU4Xp/p2ZmcnWrVvp3r173mtGo5Hu3bsTExPjwMjKhosXLwJQqVIlALZu3UpWVlaB6xkREUGNGjXkel41atQo+vTpU+AagVw7c/zvf/+jVatWDBgwgKCgIFq0aMHMmTPz3j969CgJCQkFrqGfnx9RUVFyDYF27dqxbNkyDhw4AEBsbCxr166lV69egFw/S5hzrWJiYvD396dVq1Z523Tv3h2j0cjGjRvtHrOjSXtrO9IWW5+01dYnbbhtSRtfOjk7OgB7OXfuHDk5OQQHBxd4PTg4mP379zsoqrLBZDIxduxY2rdvT+PGjQFISEjA1dUVf3//AtsGBweTkJDggChLl3nz5rFt2zY2b958w3ty7Yp35MgRPvvsM8aNG8dLL73E5s2beeaZZ3B1dWXIkCF516mwz7NcQxg/fjwpKSlERETg5ORETk4Ob7/9No888giAXD8LmHOtEhISCAoKKvC+s7MzlSpVqpDXU9pb25C22PqkrbYNacNtS9r40qnCJNWi5EaNGsXu3btZu3ato0MpE06ePMmYMWNYunQp7u7ujg6nTDKZTLRq1Yp33nkHgBYtWrB7925mzJjBkCFDHBxd6ffDDz8wZ84c5s6dS6NGjdixYwdjx44lNDRUrp8QZZS0xdYlbbXtSBtuW9LGl04Vpvt3YGAgTk5ON1RtTExMJCQkxEFRlX6jR4/mt99+Y8WKFVSvXj3v9ZCQEDIzM0lOTi6wvVxP3WXszJkztGzZEmdnZ5ydnVm1ahUfffQRzs7OBAcHy7UrRtWqVWnYsGGB1xo0aMCJEycA8q6TfJ4L98ILLzB+/HgeeughmjRpwqBBg3j22WeZNGkSINfPEuZcq5CQEM6cOVPg/ezsbJKSkirk9ZT21vqkLbY+aattR9pw25I2vnSqMEm1q6srkZGRLFu2LO81k8nEsmXLiI6OdmBkpZNSitGjR7Nw4UKWL19O7dq1C7wfGRmJi4tLgesZFxfHiRMnKvz17NatG7t27WLHjh15S6tWrXjkkUfy1uXa3Vz79u1vmDbmwIED1KxZE4DatWsTEhJS4BqmpKSwceNGuYZAWloaRmPBX+9OTk6YTCZArp8lzLlW0dHRJCcns3Xr1rxtli9fjslkIioqyu4xO5q0t9YjbbHtSFttO9KG25a08aWUoyul2dO8efOUm5ubmjVrltq7d68aMWKE8vf3VwkJCY4OrdR58sknlZ+fn1q5cqWKj4/PW9LS0vK2GTlypKpRo4Zavny52rJli4qOjlbR0dEOjLr0uraiqFJy7YqzadMm5ezsrN5++2118OBBNWfOHOXp6almz56dt83kyZOVv7+/+uWXX9TOnTvV3XffLdNFXDVkyBBVrVq1vOk2fv75ZxUYGKj+9a9/5W0j1y/fpUuX1Pbt29X27dsVoKZMmaK2b9+ujh8/rpQy71r17NlTtWjRQm3cuFGtXbtW1atXr8JPqSXt7a2Ttti+pK22DmnDbUva+NKpQiXVSik1ffp0VaNGDeXq6qratGmjNmzY4OiQSiWg0OWbb77J2yY9PV099dRTKiAgQHl6eqp77rlHxcfHOy7oUuz6hlquXfF+/fVX1bhxY+Xm5qYiIiLUF198UeB9k8mkXn31VRUcHKzc3NxUt27dVFxcnIOiLV1SUlLUmDFjVI0aNZS7u7uqU6eOevnll1VGRkbeNnL98q1YsaLQ33dDhgxRSpl3rc6fP68GDhyovL29la+vrxo6dKi6dOmSA76b0kPa21snbbF9SVttPdKG24608aWTQSml7P10XAghhBBCCCGEKA8qzJhqIYQQQgghhBDC2iSpFkIIIYQQQgghSkiSaiGEEEIIIYQQooQkqRZCCCGEEEIIIUpIkmohhBBCCCGEEKKEJKkWQgghhBBCCCFKSJJqIYQQQgghhBCihCSpFkIIIYQQQgghSkiSaiEc7LHHHqN///4OO/+gQYN45513HHZ+czz00EN88MEHjg5DCCGEkHbbDNJui4rGoJRSjg5CiPLKYDDc9P3XX3+dZ599FqUU/v7+9gnqGrGxsXTt2pXjx4/j7e1d7PZdunShefPmTJ061fbBXWP37t106tSJo0eP4ufnZ9dzCyGEqDik3bYOabdFRePs6ACEKM/i4+Pz1ufPn89rr71GXFxc3mve3t5mNYq2Mn36dAYMGODQGMzRuHFjwsPDmT17NqNGjXJ0OEIIIcopabetQ9ptUdFI928hbCgkJCRv8fPzw2AwFHjN29v7hm5kXbp04emnn2bs2LEEBAQQHBzMzJkzSU1NZejQofj4+FC3bl3+/PPPAufavXs3vXr1wtvbm+DgYAYNGsS5c+eKjC0nJ4effvqJfv36FXj9008/pV69eri7uxMcHMz9998P6O5uq1atYtq0aRgMBgwGA8eOHTPr3F26dGH06NGMHj0aPz8/AgMDefXVV7m2o0xR583Vr18/5s2bZ9H1F0IIISwh7Xb+9yTtthDmk6RaiFLo22+/JTAwkE2bNvH000/z5JNPMmDAANq1a8e2bdu48847GTRoEGlpaQAkJyfTtWtXWrRowZYtW1i8eDGJiYk88MADRZ5j586dXLx4kVatWuW9tmXLFp555hneeOMN4uLiWLx4MZ06dQJg2rRpREdHM3z4cOLj44mPjycsLMzsc3/77bc4OzuzadMmpk2bxpQpU/jyyy+LPW+uNm3asGnTJjIyMqxyjYUQQghrkXZb2m1RwSkhhF188803ys/P74bXhwwZou6+++68rzt37qw6dOiQ93V2drby8vJSgwYNynstPj5eASomJkYppdSbb76p7rzzzgLHPXnypAJUXFxcofEsXLhQOTk5KZPJlPfaggULlK+vr0pJSSl0n86dO6sxY8YUeM2cc3fu3Fk1aNCgwLlefPFF1aBBA7POq5RSsbGxClDHjh0rchshhBDCWqTdlnZbCHPJk2ohSqGmTZvmrTs5OVG5cmWaNGmS91pwcDAAZ86cAXThkhUrVuSN9fL29iYiIgKAw4cPF3qO9PR03NzcChRlueOOO6hZsyZ16tRh0KBBzJkzJ++uelHMPXfbtm0LnCs6OpqDBw+Sk5Nj1nk9PDwAio1HCCGEsDdpt6XdFhWbJNVClEIuLi4FvjYYDAVey23kTCYTAJcvX6Zfv37s2LGjwHLw4MEbumPlCgwMJC0tjczMzLzXfHx82LZtG99//z1Vq1bltddeo1mzZiQnJxcZa0nOfT1zzpuUlARAlSpVzDqmEEIIYS/Sbku7LSo2SaqFKAdatmzJnj17qFWrFnXr1i2weHl5FbpP8+bNAdi7d2+B152dnenevTvvvfceO3fu5NixYyxfvhwAV1dXcnJySnTujRs3Fthvw4YN1KtXDycnp2LPC7qoSvXq1QkMDCzZRRJCCCFKCWm3hShfJKkWohwYNWoUSUlJDBw4kM2bN3P48GGWLFnC0KFDb2hMc1WpUoWWLVuydu3avNd+++03PvroI3bs2MHx48f57rvvMJlM1K9fH4BatWqxceNGjh07xrlz5zCZTGaf+8SJE4wbN464uDi+//57pk+fzpgxY8w6L8CaNWu48847bXH5hBBCCLuSdluI8kWSaiHKgdDQUNatW0dOTg533nknTZo0YezYsfj7+2M0Fv0xHzZsGHPmzMn72t/fn59//pmuXbvSoEEDZsyYwffff0+jRo0AeP7553FycqJhw4ZUqVKFEydOmH3uwYMHk56eTps2bRg1ahRjxoxhxIgRZp33ypUrLFq0iOHDh9vi8gkhhBB2Je22EOWLQalrJpwTQlQo6enp1K9fn/nz5xMdHW2z83Tp0oXmzZszderUEu3/2WefsXDhQv766y/rBiaEEEKUIdJuC1E6yZNqISowDw8PvvvuO86dO+foUG7KxcWF6dOnOzoMIYQQwqGk3RaidHJ2dABCCMfq0qWLo0Mo1rBhwxwdghBCCFEqSLstROkj3b+FEEIIIYQQQogSku7fQgghhBBCCCFECUlSLYQQQgghhBBClJAk1UIIIYQQQgghRAlJUi2EEEIIIYQQQpSQJNVCCCGEEEIIIUQJSVIthBBCCCGEEEKUkCTVQgghhBBCCCFECUlSLYQQQgghhBBClND/A/J1CJYsCZ7gAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATkAAAE7CAYAAACmKfb6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQd0lEQVR4nO2deXwURfr/P7lJyEnuYxJuCJcRhMgdBAyCICIrKGDQXeVIUECXa4kcIgH16yKCAq4cLiACC6K4Iqcgh6hoCAEJCUcSAuHInUASkvTvD37pzSQ9PVU13ZOZnnq/XnnBdNc1XdNPP/Uc1XaCIAjgcDgcjWLf2APgcDgcNeFCjsPhaBou5DgcjqbhQo7D4WgaLuQ4HI6m4UKOw+FoGi7kOByOpuFCjsPhaBou5DgcjqbhQo7DsUKuXbsGOzs7bNy4sbGHYvFwIWfl2NnZEf39+OOPjTrOmJgYdOrUSe9Y8+bN9cYYEBCAvn37Yvfu3Q3q1paxt7eHp6cn2rVrhwkTJuDAgQPm/Boix44dw4gRI6DT6dCkSRMEBQVhyJAhOHHihF65e/fuYfXq1XjyyScRHBwMDw8PPProo/j0009RXV3dKGO3NRwbewAc0/j3v/+t9/mLL77AgQMHGhyPjIw057CIiYqKwptvvgkAuHHjBtauXYtRo0bh008/xeTJk8VyYWFhSEpKAgCUlZUhIyMDu3btwubNm/H8889j8+bNcHJyMtu4L126BHt7e0yePBlBQUEoKCjA5s2b0a9fP3z33XcYMmQIAODKlSuYNm0aBg4ciJkzZ8LT0xM//PADpk6dip9//hmbNm0y25htFoGjKeLj4wWSaS0rKzPDaP5H//79hY4dO+odi4iIEIYNG6Z37ObNm0LTpk2Ftm3bytYVBEGoqqoSpk6dKgAQZs2apc7AKSgrKxMCAwOF2NhY8didO3eE1NTUBmVffvllAYCQnp7O1NfVq1cFAMKGDRtYh2sz8OWqDVC7VDxz5gz69esHNzc3zJs3D8DD5e7ChQsb1GnevDkmTpyod6ywsBDTp0+HTqeDi4sLWrdujeXLl6OmpkaxsQYFBSEyMhJXr141WtbBwQErV65Ehw4dsGrVKhQVFSk2Dhbc3Nzg7++PwsJC8Zifnx86duzYoOyzzz4LAPjzzz+NtltYWIiJEyfCy8sL3t7eiIuL0+ujLhcvXsTo0aPRrFkzNGnSBI899hi++eabBuVSUlLQv39/uLq6IiwsDEuWLMGGDRtgZ2eHa9euEX1fa4EvV22EvLw8PPXUUxg7dizGjx+PwMBAqvr37t1D//79kZOTg0mTJiE8PBwnT57E3LlzcfPmTaxYsUKRcT548ADZ2dnw9fUlKu/g4IAXXngBiYmJOH78OIYNGyb7He7du0fUpo+PD1H/xcXFqKysxN27d/HFF18gNTVVfIDIkZubC+ChEJRDEAQ888wzOH78OCZPnozIyEjs3r0bcXFxDcqeP38evXv3RmhoKObMmYOmTZti+/btGDlyJP7zn/+IgjUnJwcDBgyAnZ0d5s6di6ZNm+Jf//oXXFxciL6z1dHYqiRHWaSWq/379xcACGvWrGlQHoCwYMGCBscjIiKEuLg48fM777wjNG3aVLh06ZJeuTlz5ggODg5CVlaW7LgMLVeffPJJ4c6dO8KdO3eEs2fPCmPHjhUACNOmTZOtW5fdu3cLAISPPvpIdgwLFiwQABj9i4iIkG2nLrGxsWI9Z2dnYdKkScL9+/dl61RUVAgdOnQQWrRoITx48EC27Ndffy0AEN577z3xWFVVldC3b98Gy9WBAwcKnTt3FsrLy8VjNTU1Qq9evYQ2bdqIx6ZNmybY2dkJf/zxh3gsLy9PaNasmQBAuHr1KtmXtxK4JmcjuLi44OWXX2auv2PHDvTt2xc+Pj64e/eueHzQoEFYtmwZjh07hnHjxlG3u3//fvj7+4ufHRwcMGHCBCxfvpy4DXd3dwBASUmJbLmXXnoJffr0Mdqeq6srcd/Lli3Dm2++iezsbGzatAmVlZWoqqqSrZOQkIALFy7gu+++g6Oj/C343//+F46OjpgyZYp4zMHBAdOmTcNPP/0kHsvPz8fhw4exePFilJSU6F2L2NhYLFiwADk5OQgNDcW+ffvQs2dPREVFiWWaNWuGcePG4eOPPyb+7tYCF3I2QmhoKJydnZnrp6enIyUlRU8g1eX27dtM7UZHR2PJkiWws7ODm5sbIiMj4e3tTdVGaWkpAMDDw0O2XMuWLdGyZUumcRqirqAYP348unbtiokTJ2Lnzp2S5d9//3189tlneOeddzB06FCj7WdmZiI4OFgU5LW0a9dO73NGRgYEQUBiYiISExMl27p9+zZCQ0ORmZmJnj17NjjfunVro+OxRriQsxFotBMADWK4ampqMHjwYMyaNUuyfNu2bZnG5efnh0GDBjHVrSU1NRWA8Zu0tLRUFIhyODg4GBTmcjg7O2PEiBFYtmwZ7t+/3+Cab9y4EbNnz8bkyZMxf/586vblqHX+vPXWW4iNjZUso1UhZgwu5GwcHx+fBp66yspK3Lx5U+9Yq1atUFpaarJAUprq6mps3boVbm5uRpeiH3zwARYtWmS0zYiICGYP4/379yEIAkpKSvSE3J49e/C3v/0No0aNwurVq4nbi4iIwKFDh1BaWqqnzaWlpemVq9VQnZycjM5RREQEMjIyGhyXOqYFuJCzcVq1aoVjx47pHVu3bl0DTe7555/HwoUL8cMPPzTQFAoLC+Hu7m7UvqQ01dXVeP311/Hnn39izpw58PT0lC2vpE3u9u3bCAgI0DtWWFiI//znP9DpdHrnjh07hrFjx6Jfv37YsmUL7O3JI7eGDh2KdevW4dNPP8Xf//53AA+/d33bWUBAAGJiYrB27VpMmzYNwcHBeufv3LkjaqexsbFYvXo1kpOTxeV2fn4+tmzZQjwua4ILORvnb3/7GyZPnoznnnsOgwcPxtmzZ/HDDz80CG34+9//jm+++QZPP/00Jk6ciG7duqGsrAznzp3Dzp07ce3aNaPhEKZQVFSEzZs3A3gYClKb8XD58mWMHTsW77zzjtE2lLTJPfXUUwgLC0N0dDQCAgKQlZWFDRs24MaNG/jqq6/EcpmZmRgxYgTs7OwwevRo7NixQ6+dLl26oEuXLgb7GT58OHr37o05c+bg2rVr6NChA3bt2iUZE7h69Wr06dMHnTt3xquvvoqWLVvi1q1bOHXqFK5fv46zZ88CAGbNmoXNmzdj8ODBmDZtmhhCEh4ejvz8fNjZ2SlyjSyGxnbvcpTFUAiJoRCM6upqYfbs2YKfn5/g5uYmxMbGChkZGQ1CSARBEEpKSoS5c+cKrVu3FpydnQU/Pz+hV69ewgcffCBUVlbKjos048FQXdQJ8XB3dxfatGkjjB8/Xti/f7/R+mqwatUqoU+fPoKfn5/g6Ogo+Pv7C8OHDxeOHTumV+7IkSOy4SpS4Tv1ycvLEyZMmCB4enoKXl5ewoQJE4Q//vhDMuPh8uXLwksvvSQEBQUJTk5OQmhoqPD0008LO3fu1Cv3xx9/CH379hVcXFyEsLAwISkpSVi5cqUAQMjNzTX18lgUdoLA37vK4XCA6dOnY+3atSgtLYWDg0NjD0cxeFoXh2OD3L9/X+9zXl4e/v3vf6NPnz6aEnAAt8lxODZJz549ERMTg8jISNy6dQuff/45iouLDcbYWTNcyHE4NsjQoUOxc+dOrFu3DnZ2dujatSs+//xz9OvXr7GHpjiatsmtXr0a77//PnJzc/HII4/g448/Ro8ePRp7WBwOx4xo1ib31VdfYebMmViwYAF+//13PPLII4iNjWVOP+JwONaJZjW56OhodO/eHatWrQLwMO1Fp9Nh2rRpmDNnTiOPjsPhmAtN2uQqKytx5swZzJ07Vzxmb2+PQYMG4dSpU5J1KioqUFFRIX6uqalBfn4+fH19tRccyeFYOcL/T50LCQkxmkGiSSF39+5dVFdXN9gYMjAwEBcvXpSsk5SURJTXyOFwLIfs7GyEhYXJltGkkGNh7ty5mDlzpvi5qKgI4eHhcO4Qh+yfVorHw2PeMthG1o8f6H2WKltbRq4dWmjbrD9OW6b2mkldE6lzNOXrzgfNHLHOj1R/1ozctS4pLkbrFjqj22sBGrXJVVZWws3NDTt37sTIkSPF47V74+/Zs8doG8XFxfDy8sKtvCLZxG+f7gni/wt+XWW03brlSerVlidpm7Qea5vWDu1ckbRVt536cyt1rvaY3O9Aapy0c2Ztc0z7ey0uLkagrxeKiuTvT0Cj3lVnZ2d069YNhw4dEo/V1NTg0KFDkpsFcjgc7aJJTQ54GEISFxeHtWvXokePHlixYgW2b9+OixcvEr3EpVaTc+n8Kgp/X0fUp9yTvH4Z0nNST/z67ZNohyTtaBW566qmpkuqtZtjbpTUYi0B766voeLcZ0SanGaFHACsWrVKDAaOiorCypUrER0dTVS37nI1YuD/3r4kJzxYBQuJcJSC5EaV608JIaxlaK5vXeQePvXLGGuTxpShNUEmB81yVdNCzhRIbXKk0NhkSOpLtUF7M5L0q3VotWBWoVO/Pq1NjqMPF3IKQKrJ1YVE0yEROlJY0o/dWjU6JYWVFHJOApqHDa3jgXY5bm2Y6njgQs4AhjQ5miUIq0AjhaQ/LfzIWaERDLRaV2OhhJlDC3AhpwAsy1USO5jUOUNlpMrb4lJGKWeNGmE4cv2w2mSNlScZn9ahcTxoMoSEw+FwauEZD5SwLhHqP92VCCKuf06JJ7olagdyY5E6R7KMZ13K1h6j1axplr6kWpslzZEayM1D1o8fIND3M6J2+HLVAKZ4V0nsO6TOCVa7myUKq8bC1LAYWoeFVFkaZ4YtzxnpteY2OQUw5F2VgzX0QKo8aR9K92dtNxiNZ1HOa1kXVoeDueMkbRku5BSgbsaDnYOzeJzGpV8XkvACU288WwwvMAesWhdroLhc+1wDfAjPeFAAY3FyptpWaMuzeldtWaCZqiGZ6l0lHQvPQKGHa3IKoPYuJKQhBKYugWnrafnGYc0ykcLUGDolBa4S5S0Rue9g87uQcDgcTi1ckzOAEsHAUrAGivK8VGUDoVmXsqamZ8m1Q2KT5TyE2+QUwJiQUzJPlcYpoTZasgGZGrahpnNJri3uJDIOzXKVBwMrSP0fJGsaEkngr6H2SfqTO0cbeGvJ0MQmmtqHsX5ovKSkGqBSIUvWNq+0cE3OAMbi5GiXJDTahFw9JZayWv9R18fUWDgllrJc6CgL1+QUJDzmLdmdgVm1NWNtsJRRMrDV0mFZVtPOR20ZJR9kcv2baiKwJQ86zYuguCZnACU2zVQjvIAvSdSBVHuuX17JBxmfK2mkrmvmoaU8hITD4XAAM2ty69evR48ePdCpUyecPXsWEyZMgJOTEzZu3IjOnTsTt5OUlIRdu3bh4sWLcHV1Ra9evbB8+XK0a9dOLBMTE4OjR4/q1Zs0aRLWrFlD1IexTTNpvWTGyhqCJtXLljUAEg2XdjlHi1JhIkqGylgbpN/dYkNIWrZsidOnT8Pf3x9DhgxBly5d4O7ujiNHjuDIkSPE7QwZMgRjx45F9+7dUVVVhXnz5iE1NRUXLlxA06ZNATwUcm3btsXixYvFem5ubsRLT7Xi5GpRI4WH1s4jV0YLmOqYUTPkREmTBC1aeChabFqXp6cniouLUV5ejsDAQNy+fRuOjo7w9/dHfn4+c7t37txBQEAAjh49in79+gF4KOSioqKwYsUKpjaVzl01V/qP0mhJq2B1zCjxYDG1vC0/rKSwWO+qj48P0tPTkZqaim7dusHFxQXl5eWoqakxqd2ioiIAQLNmzfSOb9myBZs3b0ZQUBCGDx+OxMREuLm5SbZRUVGBiooK8XNxcTGAht5Vmh+dEh7Nxg4UteYbhyZujbVNtTUypTzvtoxZhdwbb7yBqKgoAMCmTZsAAMePH0dkZCRzmzU1NZg+fTp69+6NTp06icdffPFFREREICQkBCkpKZg9ezbS0tKwa9cuyXaSkpKwaNGiBsezfvxA7zONHUxOILGGHigBq3C0tmUOjUalhI2Opk0lYhtNDQa2Fcy6XC0rK8ONGzfg4OCAli1bAgAuXbqEyspKPQFFw5QpU/D999/j+PHjCAsLM1ju8OHDGDhwIDIyMtCqVasG56U0OZ1Op9rOwHLnWINPlUjFsmRBxpoLqmTbNHFySlxDS54PtZH77ha5XK2uroafnx+Ki4vh5OQkHm/bti1zmwkJCdi7dy+OHTsmK+AAIDo6GgAMCjkXFxe4uLgQ900bJ0WjpbFmStCeU6K8OTFVM5LTrGk1KymU0sS1Frjd2FDFyVVVVSE6Ohrl5eXUHTk4OKB169YmORhqEQQBCQkJ2L17Nw4fPowWLVoYrZOcnAwACA4ONrl/DodjPVAvVyMiIpCWloYmTZpQd7Z69Wp8+eWXmD17NnQ6Hezt/ydju3TpQtzO1KlTsXXrVuzZs0cvNs7Lywuurq64fPkytm7diqFDh8LX1xcpKSmYMWMGwsLCGsTOGYJ0F5K6sC5zjLXDUQ81Qklo2q5bjjZ32ZZRNYRkzZo1SElJwfLly+Hh4UE1sLpCTW8Qdnaorq4mbsfOzk7y+IYNGzBx4kRkZ2dj/PjxSE1NRVlZGXQ6HZ599lnMnz9f8Tg5JXaFYPWgqhlCoMWbSknbmqnXhz/kHsJ6HVUVcj4+PigpKYEgCPDw8NATXEosRS0F0l1I6kITO8eq5RkbA4dtHlidPSR9GKunlJdUa95VuYe4qkJObrnXv39/ojZycnKQnZ2Nxx9/nKZrs2IsrasW2h8yrVHZVK2CNlNCCzdHfeScREo4HEhg9a6TLGVthbrfnSZB36whJDdv3sTYsWNx4sQJNGnSBKWlpdi+fTsOHDiAzz4jexu2uTDFJkfreSWBRICZSwMw11KWRniby46lZr+0wtiWUT2tKzMzEydPnsTdu3dRt/rrr78uW2/kyJFiPmlwcDAKCgqQl5eH7t2748qVK7TDUBWW7c/VDPg19UduSxoArfZqDLmHlRJ9sKZ12TKqxsnt3LkTEyZMQPv27XH+/Hl07NgRqamp6NOnj1Ehd+LECezcuROOjo6i88DX1xd5eXm0w+BwOBwiqIXcwoULsWnTJjz//PPw8fHBH3/8gfXr1+PPP/80WtfLywv5+fkICAgQj12/fh2BgYG0wzAbxnYGltOQaDUANb15arWlJjQaWd0yhrRmuTLm1sjr1icZJyvWMtdSyM1D5qGlxO1QL1c9PT1RVFQEOzs7+Pj4oKCgAFVVVQgLC0Nubq5s3bfffhunTp3Chx9+iH79+uH06dOYOXMmevXqhXnzGnowGxOWdzzUP1cXGqeEEgZya/xRq4WSDiFTY+eksGZBZE7qXnOhupJ4PzlqTa5Zs2bIz8+Hr68vQkNDkZycDF9fX6IsiLfffhvz5s1Dr169UFZWhm7dumHy5MmYNWsW7TAaDRovmdw5JTQH1tg7LUAjGEy9rqy2Nf4QUo+sHz9AoC+Zs5JayI0ZMwb79+/HCy+8gL/+9a+IiYmBo6Mjxo4da7wzR0e89957eO+993D37l34+voaDOy1FMJj3oKdg7P4mdVgTQKJV1ZLuahSkDpIlPICs+a8kqCEU8JWtDzaufLu+hpx2yaHkJw4cQLFxcUYMmQIkcAqLi7G3r17kZOTg7CwMAwdOhReXl6mDEEVjC1Xa1EjTo50aUoTsqA17yqLl1MJG6k5vOM8rUsfqe/eKDsDFxQUwMfHR7bMiRMnMGLECAQGBiIiIgJZWVnIzc3FN998g969eysxDMWoFXIunV+VdDyYGgslhy3+kNVAzgxQH1ohp2QQMavGZ8u/E5p3PBDvQlLXIwoAsbGxep8jIiKMthEfH4+lS5fiwoUL+P7773H+/HksW7YMU6dOJR0Gh8PhUEGsyXl4eKCkpET8XOuAMHTeUBtFRUV6+a7V1dXw9vY2WtfckKZ1SUHrnCAxWPOAUXpoMkJINSZTNSvWrAYlsyi0AI0mR+x4MGZvI7HHDRo0CPv27cPQoUPFY/v378fgwYNJh2F2jMXJsdp55CD9QdZvi/Qm1qKdh+TBQGrUlrsurNfOHClmUljb3KphO6b2rtIyc+ZM8f/NmjXD6NGj8cQTTyAiIgKZmZk4fPgwXnzxRbWHYRKsthbaMBNaew/Nk1/uhtUCJNoW7TUkqafETUkTBkNbz9ogtU+qEkJSWVmJlStXip/Ly8v1Pj948ECyXkFBgd7nMWPGAADu3bsHf39/jBkzxuS3dalJ1o8fEG+1VIucUKSNk6Ppl6VcY6CEYDBVMyK51qzxjrT92XK8IyvhMW8RlyW2ycXExBhdktK8INrSYUnQr3+uLqZmNdBqHNZ2M5gjs4P1+tDa62i1PC2ZDUyF9CFAY5NTfaulkpIScQfh2neZSkH7Riy1MRRCwpqeRVK/fjvG6tmaBkArpEwVHqbaT5W0g3JBqI9Fva0rJCRE9Jx6e3s30AYFQaDe/pzD4XBIUV3IXbhwQfz/1atXFWlz4cKFDV4E3a5dO1y8eBHAQ3vhm2++iW3btqGiogKxsbH45JNPmHY7MfRyaSmUshORnmNdHlkbSi3npeqRQJvxoGSmhBY0OKW+Q/0EfVJUF3LR0dG4ceMGAGDRokVYv369Iu127NgRBw8eFD87Ov7vq8yYMQPfffcdduzYAS8vLyQkJGDUqFE4ceIEU1+sXlLWflidC9Z8I8ihZg4rTbqdXNu0Y5JqwxbnjxVVE/RpqaioQGlpKdzd3bFz507FhJyjoyOCgoIaHC8qKsLnn3+OrVu34oknngDw8C1ekZGR+PnnnxV7rwSrl9TUQGEOOUp5UOXOyWlrSghAW5t/UjumnH2/PqoLueeeew7NmzdHeHg47t+/j65du0qW+/3336naTU9PR0hICJo0aYKePXsiKSkJ4eHhOHPmDB48eIBBgwaJZdu3b4/w8HCcOnXKoJCrqKhARUWF+LnuRaT1oMndAEouZbSOUstxVm1NyeUxSXC2lmD1LNNmgpBALeTOnz+PadOm4cyZMygtLQUg7zxYt24d4uLicOXKFbz22mt44403TBow8HAJvHHjRrRr1w43b97EokWL0LdvX6SmpiI3NxfOzs7w9vbWqxMYGCi7qWdSUlIDO18tcoKMFBqtgjaLQg5rWwrR3hxyZWluoLrtsdrdaLzrjZkpYQ6UiOeUezDQ7AxMLeTi4uLQrVs3LFmyBE2bNiWq07t3b/Tu3RuFhYWIi4uj7bIBTz31lPj/Ll26IDo6GhEREdi+fTtcXV2Z2pw7d65edkZxcTF0Ol2D/eRYYU3BMfXHraWbg1UwKJlKZ6ivum0o+SCytvljhTYtj2a5yrT9eWFhoV6SvSXQvXt3DBo0CIMHD8bAgQNRUFCgp81FRERg+vTpmDFjBlF7aiXo09YzNb5KCmvVDqSgtZvVr8d6jhUtXHNTkdPWSQOvVdlqqZZevXrphYVYAqWlpbh8+TKCg4PRrVs3ODk54dChQ+L5tLQ0ZGVloWfPno04Sg6H0xgQaXJ1c1Rzc3OxefNmjB8/voF309grCZXirbfewvDhwxEREYEbN25gwYIFSE5OxoULF+Dv748pU6bgv//9LzZu3AhPT09MmzYNAHDy5EniPpTeGViqPA1KeOpsBRJNlcYTTltPrr6paN1hURe5eVR8Z+ABAwYYHZCdnR0OHz7c4PiqVauQkPBwsBkZGWjdurXRtowxduxYHDt2DHl5efD390efPn3w7rvvolWrVgD+Fwz85Zdf6gUDS4WcGKJuWlddmxzNj5tULTeH7cgakXMusAgy0jI0HnQpTBWAtiTI6kN6z2QeWmr+7c8N4eX1cCDAQ3sejcGwMTEk5OQgsS/QBK8aK68l21otrPmpdTE0D0o6LljHJoeW5rEupnqbDcXJqZa72rlzZ5w7d67B8aioKCQnJzc4HhYWhqVLl6JTp06oqqrCt99+Cym5OmLECNqhmA0lY3doJ9xWUrdqUTJYljZch6Y/WueEFueKFFM95lK/fZq0LmpNztA25/W3Q6/l9OnTmD9/Pq5evYpr165Bp9M1HISdHa5cuUIzDNUxZJNjXVqyeuzU8K5aG0o9WOpCYz6gnUcltXWO6ZocsZCrjSH75JNPGrx45sqVK7h+/Tp+++032TaCg4Nx8+ZNku4aHWP7yZFAm7qlhiDTknA0VTCQ2shoAo2NtUUzLi3MESu010CV5WrtDr81NTV6u/3a29ujQ4cO+PDDD2XrV1VVITw8HOXl5WjSpAlptxwOh2MS1MvVjz/+WAzJoCUiIgJpaWlWIeRIvau0XjJTA4T50/4hSl8H0rmi6dfc4SXWDO3vW9WdgbOysiSPu7i4GN2vbc2aNUhJScHy5cvF3YItFRbvai1qLjdt0ZajlHeUNqZRDtoYOhLBqWTOqyVBc11I7Z+q2ORqsbe3F3f3rU3Mr8XZ2RmjR4/GypUr4ePj06Cuj48PSkpKIAgCPDw89FLDpJwWjYkpQk4KpVKNpNrk6GPIpkYb8CsHf5CpA+l3V1WTW79+PXbv3o0FCxYgPDwcmZmZWLJkCYYNG4bOnTtj3rx50Ol0+OKLLxrUPXr0qMF2+/fvTzMM1VHbu2rLhms1bmKSIFJSTY413lGpAGWto8QDW1Uh16pVKyQnJ+stN4uKitC1a1dcvnwZN27cQNeuXWW3NbIGlM54qH9OCu5d1Yd17IbmhjY2UQ4SDdBcy05rmWOlwqgAuowH6mDgwsJC3L9/X0/IlZeXo7CwEAAQFBSEe/fuSdZ98OABlixZgi1btuDOnTsoKirCvn37cPnyZcTHx9MOxeIxNdCUpQ1Tx2BJsAb6muqsobGf0aLGfFjzHNdCe11p3rtKvQvJX/7yFzz99NPYvXs3fv31V+zatQvPPPMMRo8eDQA4duyYmENan1mzZuH48eNYs2aNaMuLjIzE2rVraYfB4XA4RFAvVysrK/HOO+/gyy+/xI0bNxASEoIXXngB8+fPh4uLC+7cuYPq6mrJZPiwsDCcO3cOPj4+ehkS3t7eoiZoKZhik6N9KmnhSawmauQ+1j8nBatTQq4ta1laqgGtB9VQfcDCEvTrEhISgqtXr8LFxUUUcqWlpYiMjER2dra5hkGEoZdL12KqvY11SWqpnjdLunlZxsLqXFDCiG5J104OU22kSppjFHc8lJSUiDY4uV1EjHU2fvx4hISE4L333hOFXGJiInJychR7i5dSkGpytMZsU3/IPJSEHFYtoT5K5K5aiyBTCiUf4qbmrhI5HkJDQ0Xh5u3trRcbB8i/yKYu//znPzFixAj4+/ujuLgYoaGh0Ol02Lt3L8kwLBLa5YuSP3ZbuWGkkPNkGpoT0huv/s3FWo82G0ZLkIZP1f/uUtfCkHeVFCIhd/78efH/V69eJW68Pv7+/jh16hR+/fVXZGZmQqfToXv37hb3voi61H+RDUmYgFRZpZayWrshTNV+aJaNSmY8SLVT2z7JHKmh5Vs6rMHuhjQ5UhSzyeXk5CA0NFSJpiwCYxkPrEsgS4qvshVYl/i0Gln9trlpQVlYHQ/UKlReXh5qamrEz7m5uZg2bRratGljtG5OTg5eeeUVPPLII2jZsqXeH4fD4agBcTDwmTNnMGrUKFy/fh1+fn7YtWsXUlJSMGvWLAwYMEDy/Q71GT9+PNzc3DB79mzid7ZK0bx5c2RmZjY4PnXqVKxevRoxMTENUsgmTZqENWvWMPdZC00IiRJpRPXb0rotRwpWRw6N3U6JFDwpGx7J2LQ0j6baI5UyI9SFeLk6YMAA9OjRA3FxcfjXv/6Fbdu2ITQ0FOvWrcOjjz5K1Jmnpyfu3r0LZ2fTEt5rY/FqSU1NxeDBg3HkyBHExMQgJiYGbdu2xeLFi8Uybm5uVJtfkm6aKecNkoJWWLF6CBv7xmnMsRgSYLRzVb+sVB+sgpebJPSh/e6qbJp57tw5HDhwAI6Ojnj33Xfx0Ucf4cyZMwgODiZtAh07dkRubi7Cw8OJ60jh7++v93nZsmVo1aqVXpK/m5sb1du5DFHf8SB3c7AGncpB84O3pJtD7bHQOIBIkNPySO1ulnT9rQ2S61n3HM07HoiFXGVlJRwdHxZ3dXWFl5cXlYADgFGjRmHEiBGIj49vsPcc64tsKisrsXnzZsycOVMvtGXLli3YvHkzgoKCMHz4cCQmJsLNzc1gOxUVFaioqBA/1/XekHj3ALrlCutS1pYxNQSE1aNJOlemamJammslVipy57J+/ACBvp8RjYVKyNV9yXRFRYXeZ8D4y6U/+eQTAMDSpfoxLnZ2dsxC7uuvv0ZhYSEmTpwoHnvxxRcRERGBkJAQpKSkYPbs2UhLS8OuXbsMtpOUlIRFixY1OJ714wfUXjLWSdXSj1wOWu2HVrDQaM2sDxhar6pcm1pcprI+xEnr0SToE9vkYmJiGgQB6zVk4OXSahMbGwtnZ2d8++23BsscPnwYAwcOREZGhsHNA6Q0OZ1OZ3CrJTl4MKj5sKQMBFNtctaMmtdaqr6q+8lZEpmZmWjZsqW4E4ohysrK4O7ujn379iE2NpaobWO5q1Jo9QdsKuYWKIY0AFpbqRrjVaNta4YkEN7UtC7LTTUgYMOGDQgICMCwYcNky9W+9JrWhsjhcKwfYpucpVFTU4MNGzYgLi5OdIgAwOXLl7F161YMHToUvr6+SElJwYwZM9CvXz906dKFup+sHz/Q+0yTncAK6VPeWjRHmpxOOUif8obaZ7WVyZUnnWva8paMkuYYc/x2rXa5un//fsTGxiItLQ1t27YVj2dnZ2P8+PFITU1FWVkZdDodnn32WcyfP58pTo5m+3NWw3N9SOO5LF24NRY03m0Sz6sSc20tDyRLQu6a2YxNTk0MBQOz3EBSx5SICNf6DaOUYCB5QNAKK2PlaNC6AFTjoUEj5Kx2uWpO1A4JqF+eNP1IiygpxGlCT0iXq3LCkdW7amvCkXS8cteaJk6Oa3IGIH3vKuuShC9JlUVJOyhNXisrtqyRs+ausnpXuZAzgDGbnBTmSN3S6s1hqm1Mrk0lYXWi0DistDSvUtA+4KXOqbrVEofD4VgT3CbHSGOFAijxlG9sjYFUI5NL+SFpkwbSJSnN0stQ+7aO3FyzOiXk4EKOEdY4KSnM7VywlhuOxDYmB4ln2tSEeyXtddYyL+ZCbv69u75G3A4XcgSo7Xmz5R83S1CvsXr1kZorNeynNLF3tgSr9qsU3PFgAEOvJKyFNfCX9cduyzeJFCzxaqyxcPya06NGKBCPk1OJ8Ji39BL0acILWCdaqh73xulDE3rAqu2RtGWuBH9LgnYZT1JPbo5NvY5ckzOAKZqcVn/caqBkPmstJJocqzFbqXknfQA29oOM9kHNKvRpBaBQXUmsyfEQEg6Ho2m4JmcA0txVVluOVoN6zQVLVoISS0sajcMWTQysAdu0pgQaTY4LOQMYWq6a6tXjDgd9SOyYptrkDNWR6t+Uc1p3WKj5W6S9V7jjQUXqT4aaBlOl2rBkWNOkaqHRzkicE8bGoPWHjhym2k1JHHJqXFeuyRnA0PbnNPmUpOdoDLpav7lYhY2cBkhyzZXIYOHCUR4S7VeOuvV4gr4CGLPJ0dxcdeE/dvXtkUqleHHPuToo8fDny1WFMVfEPO1YrPWGY80EMFVrJrWfki5rDfXHIcdUcwUJPISEw+FoGk0vV1evXo33338fubm5eOSRR/Dxxx+jR48eRHVZQkhYYQmHsAWU8nyyhjVIoabdzRbnmjWDiIeQAPjqq6/w0ksvYc2aNYiOjsaKFSuwY8cOpKWlISAgwGh90hfZNOYP0hLGQEJjhR6wel7VEGRat9Oymh1YH0T8RTYAoqOj0b17d6xa9fBC1dTUQKfTYdq0aZgzZ47R+gUFBWjWrBkc246FvaOL4uO78N2SBsc6DJtv8JyWqP2eAPt3rdtGfeq3KXVd6x+TGhNJPdIxan1O5SC5ZlLzaWgeAaCmqgJVl7YhPz8fPj4+8gMQNEhFRYXg4OAg7N69W+/4Sy+9JIwYMUKyTnl5uVBUVCT+HT58WADA//gf/7Pgv19++cWoPNCkd/Xu3buorq5GYGCg3vHAwEBcvHhRsk5SUhIWLVrU4Hj2pbPw9PD4X7m+bQz2O/endP02JcrWlpFrh7S8XH/1z2kBue9Hck7qmtBeV0NlpPpRco7lvoPWkfruC3u3xj+v1KB169ZG62tyuXrjxg2Ehobi5MmT6Nmzp3h81qxZOHr0KE6fPt2gTkVFBSoqKsTPxcXF0Ol0mNPaAS4Odg3KL/z95sN/uwYTjYmmfG3ZxqB2fI05hsag7rzUn6u614Lm+pC2yaFn7iNBWJZRbbtxcn5+fnBwcMCtW7f0jt+6dQtBQUGSdVxcXODi0tD2NvendHh6/k+Tqy+kpH6srD9kKUFYvw25c5JtUo5FizefnLAiKS8nrGT7lRGOtG2yzotWhercn9KxLLglUVlNxsk5OzujW7duOHTokHispqYGhw4d0tPsOByO9tGkJgcAM2fORFxcHB577DH06NEDK1asQFlZGV5++WWqdpL6tkHS2dwGx0meurIamYxWYW7t0Jqh1dLEMpTLTZp2xDERzj/NmGix9LmW+10rpYVq0iZXy6pVq8Rg4KioKKxcuRLR0dFEdWvj5IzZ5ORgXXaSnpMbixaXKaZeM+IlO6GdtUE9FcwHWofVxllRLRDb5DQt5EyhVsgV3byiZ5OrD6tthfZG4jeFPCTzQKo9k5yTm0fahw4XfPTYvONBSZL6ttHT5GiWnYbKGTunhOOB3zhk105qaUnUtoxwIxV8ROcITBmWTmMLeC7kCFByAiRvABV+BNZ4M7BAc+1oPcysgk9uLPX7IK0v159cm5YAq4BXCi7kKCFZrohlKZc5xtqQ+kyKpToeTI07M1bOaJusGhaJIFNSoyNwVFjqHJuKqdqeJkNIOBwOpxbueDCAMccDzdLEUDlDsEbKs/bLNQBltETWrAZrWXZaEjSOBy7kDGAohITEuKyG55Q7EsgxdP2VSM+SastQOTUegJyHFBeXwCu4JRdyplBXk/swpq3BcqRPfaU8oUpoXdYmME0dL4lgUeOhpVUNmRVWDVeqPBdyCmAsGJgWkqUMf8qzY2pOL234D6vgJGmTz7lxuJBTgLpCrm5aF2ugrxpalxoJ3VqC1dbFmvEg26aNaN1KIvcg4hkPCkBqk2NVvanDC7iWJwmNQ0bJkB4ll16GytK0rxVIvzuNJsdDSDgcjqbhmpwBWJarNCiRDqYlaENkaBwHNP1L1WcN+JZqny9b5SHV5HjuqsKQxq2ZKgBll7Ia/ZFTLeNIBQrDNaKdR9ZlJ6uZwprnXc40oFRGjxxcyDFCNGFyGoAKKUrWCLNmwyLIFLCDkrSllJCkKWfJmPodpAQ9zc7AXMgZYe5P6XpxciRJ30o+rdX4kWtBO6CBRFixCh3mZS5jVotUG9Y2j+YeL7fJGYAlTk7NgF8SD6E1Y+7votRGCyRt047FlmD97jytSwGMhZCInxUIPeC5i/LQhoCwBOWS2s9I6pFgS2EirIJM7vrP/PESDyHhcDgcwMw2ufXr16NHjx7o1KkTzp49iwkTJsDJyQkbN25E586didtJSkrCrl27cPHiRbi6uqJXr15Yvnw52rVrJ5aJiYnB0aNH9epNmjQJa9asMek7qGk/U8pAq0RbloTctaaxt6nh7GHWLjU0P8ZQyrnE6oQzq5BbsmSJ+GLn2bNnY8iQIXB3d8frr7+OI0eOELdz9OhRxMfHo3v37qiqqsK8efPw5JNP4sKFC2jatKlY7tVXX8XixYvFz25ubtRjNvTeVUuyu9iKTUdySUmZ7la/DIkAlTUtKCjITI0VtGbUtDmb1Sbn6emJ4uJilJeXIzAwELdv34ajoyP8/f2Rn5/P3O6dO3cQEBCAo0ePol+/fgAeanJRUVFYsWIFU5vm3GrJUDscckjmgzVtjtXuSooW55vVe0w6DzS5q2bV5Hx8fJCeno7U1FR069YNLi4uKC8vR01NjUntFhUVAQCaNWumd3zLli3YvHkzgoKCMHz4cCQmJhrU5ioqKlBRUSF+Li4uBmA4hIQENSPfTWlDi8jeOATzoEQwsK1o1CTQmhjUDJ8yqyb34YcfIjExEQCwadMmjB49GgcPHkRiYiJOnTrF1GZNTQ1GjBiBwsJCHD9+XDy+bt06REREICQkBCkpKZg9ezZ69OiBXbt2SbazcOFCLFq0qMFxQ/vJqfGUZ71x+M1FhpLBwHL1TdVY5Nqyloec2uO02BCSsrIy3LhxAw4ODmjZ8mG08qVLl1BZWYlOnToxtTllyhR8//33OH78OMLCwgyWO3z4MAYOHIiMjAy0atWqwXkpTU6n0ym+XOWCTB1IQkhotTWifintZ6Yuqy0Bc9iXJc/VzXiwRCFXXV0Nd3d3FBcXw8nJSZE2ExISsGfPHhw7dgwtWrSQLVtWVgZ3d3fs27cPsbGxRtsmfceDubH0G6CxoBUecrGJNBqcEpkL9fvlc/wQq4uTc3BwQOvWrU1yMNQiCAISEhKwe/duHD582KiAA4Dk5GQAQHCwtnNBORyOPmZdrq5evRpffvklZs+eDZ1OB3v7/8nYLl26ELczdepUbN26FXv27NGLjfPy8oKrqysuX76MrVu3YujQofD19UVKSgpmzJiBsLCwBrFzhjD0jgca7UAOraZnmRvZUBCKTBI1dgdRUsvTAqxhIlJlLHb787pCTW8Qdnaorq4mbsfOTjqXdMOGDZg4cSKys7Mxfvx4pKamoqysDDqdDs8++yzmz59v9ILUQprWJQWr3cWSYu8sAaVtlbT5qVLn5Po1NT9ZC5jrN0kj5MwaQmJqqEgtxuSyTqcj1tiMYTAY2MSQBalzrGhV2BEJC8qwBJJ6NGVY0WrAryVm7VAJuaqqKqxduxZ//etf0aRJE+ZOc3JykJ2djccff5y5DXOR1LcNsXdVrozJN5yU5mBlN4CSKCXYlUrvkmqLOXnfhudVDaiEnKOjI/7xj38gPj6eqbObN29i7NixOHHiBJo0aYLS0lJs374dBw4cwGeffcbUptoY0uRMhTRFiaQNWwxMZX0w1D9H24es5siYTqaluaK95qzaclLfNsRlqW1yY8aMwauvvopBgwZRDQoARo4cibZt22Lx4sUIDg5GQUEB8vLy0L17d1y5coW6PTUx9nJp2hACkqBOLf3YSaGJKaSNO2MdB2u8I02bWg0vUdJWKR6TmA+aEBJqm5yHhwdGjhyJJ598EuHh4XrOhA8//FC27okTJ7Bz5044OjqKzgNfX1/k5eXRDoPD4XCIoNbkXn75ZYPnNmzYIFu3devWOHnyJAICAtCsWTPk5+fj+vXreOKJJ3Dp0iWaYaiOsbd1mZpkTKvl2QpKfHdDGpiS4T7Gytk6JBkoppyj0eTMGkLy9ttv49SpU/jwww/Rr18/nD59GjNnzkSvXr0wb948cw2DCJbtz+WQmzCSevzm0odlCaRExgPJPNrifMhh6lK7UePkSkpK9MI5jHVWu/fbp59+irKyMjRt2hSTJ09GUlISHB0t6506pMHAcrDGXhkrZ6uokWCvZDusApcjjdw9o6qQy8zMxKuvvorjx4/rJbQDoArovXv3Lnx9fQ0G9jY2LPvJ1YfU+KrGk87abibWQGjxs4IBuKZ6XuXatJb5UAOlfueAysvVp59+Gk2bNsXcuXPRv39/HDt2DAsXLsSwYcPwt7/9zWj94uJi7N27Fzk5OQgLC8PQoUPh5eVFMwSzQOpd1TumwpLSlsNESFAyvU6uTaXali2v0flUUrjVQrNpJrWQ8/X1RWZmJtzd3eHt7Y3CwkLk5eWhb9++uHDhgmzdEydOYMSIEQgMDERERASysrKQm5uLb775Br1796YZhuqY8kpCUx0PHHpYQ0BYU/A45LDmEMvZP1XdGdjBwQEuLi4AHtrg8vPz4eXlhezsbKN14+PjsXTpUkyaNEk89tlnn2Hq1Kk4e/Ys7VA4HA7HKNSa3JNPPok333wTsbGxGDduHO7fvw83Nzekp6eLL6kxhIeHB4qKivRi66qrq+Ht7Y2SkhK2b6AShkJIajHVJsedDMrAGtLD3B9j6haJN1dLIUTMKW2EGrmqwcCff/65mGj/0UcfYe7cuSguLsamTZuM1h00aBD27duHoUOHisf279+PwYMH0w7DrLCGe9AuoUjGYK0/ehaUzg6gNRHIpW5JpeKRPMgk+5EZp9YhmgeJc3MfCSLug1rI6XQ68f9+fn5Gc05nzpwp/r9Zs2YYPXo0nnjiCURERCAzMxOHDx/Giy++SDsMs6JkEKmpeZRah1gwmKj9mGq3qz8OqX5tZc6kIPaSm+GaEQu5mTNn6qVtbdq0CXFxceLnMWPG4KuvvmpQr6CgQO/zmDFjAAD37t2Dv78/xowZo9gWTGow96d0RfJT65fhSEN7c5jjeirpFbRpwUepPbMG0NeH2CZX+87UWmrTsgydt3aMhZDUouSP1haXpCSY6iWVaodVk2PNQNH63Jrj+6keJ+fh4aHnHPDx8dHT0gwJuZKSEnh4PNyqSE4Iku7Yay6MhZDQhCAYQ6s/fKUhFTasAduG+qNN+eIanDRKZqyo4nion5lAmqkQEhIiCkdvb+8G9QRBoN7+nMPhcEihcjzUzVUVBEH8LKcM1g0Qvnr1KuMw9ZF6EXS7du1w8eJFAEB5eTnefPNNbNu2DRUVFYiNjcUnn3yCwMBARfo3Oj6FPHccfSSXgRSOHEn7KeMyV7J9AgeFkqlf1vZ7odaaZezfxcXkIWfEQq60tBTe3t7iZ0EQxM+12pgU0dHRuHHjBgBg0aJFWL9+PfHg5OjYsSMOHjwofq6b4D9jxgx899132LFjB7y8vJCQkIBRo0bhxIkTivRNCrV6boO2HDlYdhrROyYT0lO/jGSbUjY5OS+5mefIVn4TUt9TlZ2BMzMzjZaJiIhocKxuGphSzomFCxfi66+/Ft+lWpeioiL4+/tj69atGD16NADg4sWLiIyMxKlTp4jfK0HqeNAbl0KpQloIBmWFOhSE4lqzxjuSlJUak1ZzVxtL41Q9rUtKgJHw3HPPoXnz5ggPD8f9+/fRtWtXyXK///47Vbvp6ekICQlBkyZN0LNnTyQlJSE8PBxnzpzBgwcP9LZnb9++PcLDw2WFXEVFhd6uKnWFMekPmTSeigVruQFMhTph3sS4Q1M3VWCNoWPtzxKgFt4KP6wAumBgs2yaeeLECVy5cgWvvfYa1qxZI1mmbsydMb7//nuUlpaiXbt2uHnzJhYtWoScnBykpqbi22+/xcsvv9xgG6gePXpgwIABWL58uWSbUnY+ACi6eUX2lYSsHiPa6HtbxFQBRNIOSXu2rFmbG9L7yWJfLv3xxx9j2rRpirdbWFiIiIgIfPjhh3B1dWUSclKanE6nayDkamFOz+ICUBJTl0CsApHZSaSgA8HWUCK43mK3P1eT7t27Y9CgQRg8eDAGDhyIgoICPUdJREQEpk+fjhkzZhC1V9cmR/pyaZJUI1NvAFvWKlgDcOXKsLbNkUft3z6NkLOXPSvBl19+KXl827ZttE0pRmlpKS5fvozg4GB069YNTk5OOHTokHg+LS0NWVlZ6NmzZ6ONkcPhNA7UmpwhD2n9NC81eeuttzB8+HBERETgxo0bWLBgAZKTk3HhwgX4+/tjypQp+O9//4uNGzfC09NTXCKfPHmSuA/S7c/VtuVofenDGj9m6nLV1H5J++HIQ7NxRX3Hg+Le1VrBVjcIuJbLly/DyclJst6qVauQkJAAAMjIyEDr1q1JuzTI9evX8cILLyAvLw/+/v7o06cPfv75Z/j7+wMA/vnPf8Le3h7PPfecXjCwGpDuQsG6dNLSjcMcWqGQTU0JL7ncmEjMFVpHjYcybQhQfYg1OXt7e4MBv/b29liwYAHmz5/f4JyXlxeKiooAWFcSvzFNTvxsJm1NqxqdUkKKqC9KTdBcuahanVsSWMN9FI+TO3v2LK5evQpBEBAdHY1ffvlFPGdvbw9/f380adJEsm5YWBiWLl2KTp06oaqqCt9++61kGtiIESNIhtLosHrjxHOMT3mt3gBKGKHrt2NojkyNVTQ2Dpp4MKn0JS1Aa1owNRaRBCJNrq4G1qZNG6SnpxN3cPr0acyfPx9Xr17FtWvX9DbdFAdhZ4crV65QDFt9jL13VQpbfiKTQLtsNLUtqrGZOXrfGjE1k0PyHOODSPG3dYWEhGDnzp3o1KkTwsLCkJOTI6mNGessODgYN29ax4/DlHc8UEfta+jGYRVWsmUo7V+G6rGmdaktlFnbbGxINTKlhGPd+jTBwETL1UWLFmHQoEFisGzd+DOAbLukqqoqhIeHo7y83ODSlsPhcJSG2PFQVVWFmzdvIjIyEufPn5csYyy/NSIiAmlpaVYh5AwFA9dC4pWzRQ+qGqiZDSHbjok5l7YMq5ZH6gBSNeMhOTkZUVFRNFVE1qxZg5SUFCxfvlzcLdhSMeXl0uJnufASFSLCrRGa78x6PaXq0JwzVM7YmGwZUuHPOkc0cXJMaV0bNmzAli1bcPv2baSkpODo0aO4desWnn/+edl6Pj4+Yoydh4eH3vtXzRVITIqxtC7xswI/bC3aa+QwVVjpladwPLAKORLPrWR/KtusLBnWh7hFaHLvvvsuvvrqK7z++ut46623UFhYiEuXLmHcuHH49ddfZesePXrU4Ln+/fvTDEN1WDQ5ObT0A1YTWucAa9tKadZck3sIiyPIULn65aXKKO5drUuLFi3w008/ISwsTHyZTU1NDfz8/CxOGzMFY5tmqukl5TeOPqba1Ei0AyW0i/rnbBlaIUd7zVRdrgYEBODmzZtwcHAQ81UrKirQvHlzo+EhDx48wJIlS7BlyxbcuXMHRUVF2LdvHy5fvoz4+HiaYagO1+QsB1MDTGmFpFJLS/6wegjJXNHOMY0mR70LyeOPP94gD3T9+vXo3bu30bqzZs3C8ePHsWbNGjFFLDIyEmvXrqUdBofD4RBBrclduXIFAwcORLNmzXDu3Dk89thjuHXrFg4ePIgWLVrI1g0LC8O5c+fg4+Ojt2uJt7c3CgsLmb+EGhjLeLCV4F5LhTWImKQ+q8ODBC38NmizTVijB+SuvyrvXa2lZcuWuHDhAr777jsxTevpp59G06ZNjdatqamBm5ub3rHS0lKLDidJ6ttGOuNBoZxLU9qyRKzlJiZZJtUvK9mODecgK/HdaWIa64eQkEIt5ADA1dVVfBMWAFRWVqJly5ZG80+feOIJJCYm4r333hOPLV++HIMHD2YZhlmY+5N0nq6SicimagyWJFjMNQaa68mqtVnC9bREWNOzqOuZaFutRZHtzysqKuDq6oqamhrZcnfu3MGIESOQkZGBgoICBAYGQqfTYe/evfDz8zN1GIpiKHdV1ac8XwIrEkJiaI5Yc1dJ+2c1sNsKVrNcNYShvebq4u/vj1OnTuHXX39FZmYmdDodunfvrhcUbInQPuXVSCOyyZuCMa2qfn01kvdpz8mNSYuBwsTXkzG+zuyvJKyoqICbm5tsgr61wfIiGxp4eMFDaIzYtMGkJPXUEDBa1ciV0lRps1rqlwVU2IUEAFauXGnwXFVVFVEbOTk5SExMxJkzZ1BSUqJ3ztL2k+NwONqAWJMbMGCA0TJHjhwx2oabmxvGjRvXwBv7zDPPkAwDANC8eXNkZmY2OD516lSsXr0aMTExDVLIJk2aZPDF1lIYy3iQw9yagxYgceSwtil+ZrSfsgavcqRRInfZYt+76unpibt378LZ2dmkdu7cuaO3NE5NTcXgwYNx5MgRxMTEICYmBm3btsXixYvFMm5ubkYvRl1IhZy5lyRaXebSxlex2nLk+jNUT8l8WmsRhEqOkzaurkEZAzY5xd/WpQQdO3ZEbm4uwsPDTWqn9q1ctSxbtgytWrXSS/J3c3NDUBC5cbKiokLcFBSAwRfuyN5UMqELSgWPWvrNUQutvYb2YUHrMTU4Tin7EoUGyNqfpaNGsDPt/MvVm/tTOpYFtyQak1k1uffffx9btmxBfHw8AgMD9c6xvsimsrISISEhmDlzJubNmwcAiImJwfnz5yEIAoKCgjB8+HAkJiY2CESuy8KFC7Fo0aIGx2kS9MVzVvK0tiSUjKJnzS+t3zZNGY4+tM4FWi3PYperhtK+THmRzfbt2/Hiiy8iKysLISEhAIB169YhIiICISEhSElJwezZs9GjRw/s2rXLYDtSmpxOpzMYJ6dULJVkPY0uSWkxVViJ5xjj5KTaJtJK+UNOD1OD5KXqqbrVkqURGxsLZ2dnfPvttwbLHD58GAMHDkRGRgZatWpF1K6x967yH7L6sIYsGBJmJGUMlec0RImMHlYaJRi4McjMzMTBgwdlNTQAiI6OBgAqIVfL3J/S9RP05TQGLvgkUcpLSiqkTE0HInFmsEbva+m3QfzdVVj+0wQDW3aqgRE2bNiAgIAADBs2TLZccnIygIevRORwOLaF1WpyNTU12LBhA+Li4uDo+L+vcfnyZWzduhVDhw6Fr68vUlJSMGPGDPTr1w9dunSh7sfgLiQKPuVpsEZ7Hc04lVza0NiCqENQKB1P1jJXJCipxaqhNdfHaoXcwYMHkZWVhVdeeUXvuLOzMw4ePIgVK1agrKwMOp0Ozz33HObPn6/KOJS4KakM7FZ4s7CmZ1HdAJT1DZWVPEf5YLFmz7tSqWym2k/l+qDF6h0PamHsvask2HLoAa3XmaSebH8KBgobaodjHNbAX9rfBI131Wo1OXOR1LeNpHdV/EzqYbIxr6ypmkDdY1JtEgkyhdK6SMdrqF/SNm0F1swHVriQo0SpCHuOPrRR8DRtkixpSerrHSOx89ngXBPFjxJeT5o25eDLVQOQvq3L1LAIU9rQIkpoVIa0LNqgXtJx0oxXC9AGQtMGwDc4J1GPJnfVqkNIOBwOxxh8uUoJlcdOQc1BSxCnV1Gk0OnVU8GrakofWoFZ61XIjs0KF3KM0OYscuH2P1gNz6amZSkhXG35YUVzPWVta4zxh6xwIccI0e4VjPFAtgiN/c3YOZokermxsIY82Aq03mraoGClrjF3PBjA2KaZtFH0Wr8paIzLrDmotG0ya3IU34FrecahCQWSq1cXHienIjTami39yIk8mYzpVZL9UcTJmRyKQhkmYivzrkQmiDkeDFzIGcFY7irtj1zrT3kijU4uqFdBeybrslPrc0QC6zxKnjNRAEr1QbMzMA8h4XA4mobb5Axgzk0zbU1zUDI/VeocS7/c7GAaSgVVk9rraIKBuZAzAMvLpfnNQf9jN1XgkTgeWPNMbTmrgQTieDeFvNx161vs27qsEaVtchxpWINypcrQXH9WexGH3iYn+UBiDK6ngQs5SljDGjjqQOI4YHZAcG1dFlItmGQeWAPESeDLVQMY20+Oe+zYYU3PIrXXkPRDU4+2X61C891Z7Z9S5aTK2NTbutTCUDCwLf64WZALktUrRyDI6pc11Jax/rhzQX2IMoEoNTmp+aR5WxcPIeFwOJqG2+QIoF0Sca1AGhqNTrI+az2CgFaenqUMpjpySFcANPDlqgH4ctU4SuTm0uzcQmvolhqnwXHweTUJ1tAqGgHGGkLChZwBioqK4O3tjexLZ7F6aNcG5+f+lN4Io7Jukvq2ASB97WrP1aW2nFQ9qfLG6kudYx2vrVD32sldB6XmQ66/uufi//s7dG0fQWFhIby8vGT75ULOANevX4dOp2vsYXA4HBmys7MRFhYmW4YLOQPU1NQgLS0NHTp0QHZ2tlGV2JIoLi6GTqezunED1jt2ax03YJ1jFwQBJSUlCAkJgb29vP+UOx4MYG9vj9DQUACAp6en1Ux+Xax13ID1jt1axw1Y39iNLVNr4SEkHA5H03Ahx+FwNA0XcjK4uLhgwYIFcHFxaeyhUGGt4wasd+zWOm7AusdOAnc8cDgcTcM1OQ6Ho2m4kONwOJqGCzkOh6NpuJDjcDiahgs5A6xevRrNmzdHkyZNEB0djV9++aWxh9SApKQkdO/eHR4eHggICMDIkSORlpamV6a8vBzx8fHw9fWFu7s7nnvuOdy6dauRRizNsmXLYGdnh+nTp4vHLHncOTk5GD9+PHx9feHq6orOnTvjt99+E88LgoC3334bwcHBcHV1xaBBg5Ce3rj5r9XV1UhMTESLFi3g6uqKVq1a4Z133kFdv6MljlsRBE4Dtm3bJjg7Owvr168Xzp8/L7z66quCt7e3cOvWrcYemh6xsbHChg0bhNTUVCE5OVkYOnSoEB4eLpSWloplJk+eLOh0OuHQoUPCb7/9Jjz++ONCr169GnHU+vzyyy9C8+bNhS5dughvvPGGeNxSx52fny9EREQIEydOFE6fPi1cuXJF+OGHH4SMjAyxzLJlywQvLy/h66+/Fs6ePSuMGDFCaNGihXD//v1GG/e7774r+Pr6Cnv37hWuXr0q7NixQ3B3dxc++ugjix63EnAhJ0GPHj2E+Ph48XN1dbUQEhIiJCUlNeKojHP79m0BgHD06FFBEAShsLBQcHJyEnbs2CGW+fPPPwUAwqlTpxprmCIlJSVCmzZthAMHDgj9+/cXhZwlj3v27NlCnz59DJ6vqakRgoKChPfff188VlhYKLi4uAhffvmlOYYoybBhw4RXXnlF79ioUaOEcePGCYJgueNWAr5crUdlZSXOnDmDQYMGicfs7e0xaNAgnDp1qhFHZpyioiIAQLNmzQAAZ86cwYMHD/S+S/v27REeHm4R3yU+Ph7Dhg3TGx9g2eP+5ptv8Nhjj+Evf/kLAgIC8Oijj+Kzzz4Tz1+9ehW5ubl6Y/fy8kJ0dHSjjr1Xr144dOgQLl26BAA4e/Ysjh8/jqeeegqA5Y5bCXiCfj3u3r2L6upqBAYG6h0PDAzExYsXG2lUxqmpqcH06dPRu3dvdOrUCQCQm5sLZ2dneHt765UNDAxEbm7D1yyak23btuH333/Hr7/+2uCcJY/7ypUr+PTTTzFz5kzMmzcPv/76K15//XU4OzsjLi5OHJ/U76cxxz5nzhwUFxejffv2cHBwQHV1Nd59912MGzcOACx23ErAhZxGiI+PR2pqKo4fP97YQzFKdnY23njjDRw4cABNmjRp7OFQUVNTg8ceewxLly4FADz66KNITU3FmjVrEBcX18ijM8z27duxZcsWbN26FR07dkRycjKmT5+OkJAQix63EvDlaj38/Pzg4ODQwJN369YtBAUFNdKo5ElISMDevXtx5MgRvQ0Eg4KCUFlZicLCQr3yjf1dzpw5g9u3b6Nr165wdHSEo6Mjjh49ipUrV8LR0RGBgYEWOW4ACA4ORocOHfSORUZGIisrCwDE8Vna7+fvf/875syZg7Fjx6Jz586YMGECZsyYgaSkJACWO24l4EKuHs7OzujWrRsOHTokHqupqcGhQ4fQs2fPRhxZQwRBQEJCAnbv3o3Dhw+jRYsWeue7desGJycnve+SlpaGrKysRv0uAwcOxLlz55CcnCz+PfbYYxg3bpz4f0scNwD07t27QZjOpUuXEBERAQBo0aIFgoKC9MZeXFyM06dPN+rY792712BzSQcHB9TU1ACw3HErQmN7PiyRbdu2CS4uLsLGjRuFCxcuCK+99prg7e0t5ObmNvbQ9JgyZYrg5eUl/Pjjj8LNmzfFv3v37ollJk+eLISHhwuHDx8WfvvtN6Fnz55Cz549G3HU0tT1rgqC5Y77l19+ERwdHYV3331XSE9PF7Zs2SK4ubkJmzdvFsssW7ZM8Pb2Fvbs2SOkpKQIzzzzTKOHYsTFxQmhoaFiCMmuXbsEPz8/YdasWRY9biXgQs4AH3/8sRAeHi44OzsLPXr0EH7++efGHlIDAEj+bdiwQSxz//59YerUqYKPj4/g5uYmPPvss8LNmzcbb9AGqC/kLHnc3377rdCpUyfBxcVFaN++vbBu3Tq98zU1NUJiYqIQGBgouLi4CAMHDhTS0tIaabQPKS4uFt544w0hPDxcaNKkidCyZUvhH//4h1BRUSGWscRxKwHfaonD4WgabpPjcDiahgs5DoejabiQ43A4moYLOQ6Ho2m4kONwOJqGCzkOh6NpuJDjcDiahgs5DoejabiQ4zQaS5cuxQsvvGDWPidPnoxPPvnErH0CwLVr19C+fXtUVFSYvW9bh2c8cFTD3d1d/P/9+/fh6OgIJycnAEDfvn3x/fffm3U8GRkZGDBgAC5fvgxnZ2fZsjExMRg5cqTeeydM5eWXX0ZUVBTeeOMNxdrkGIdrchzVKC0tFf/69u2L5cuXi5/NLeAAYM2aNRgzZoxRAacWcXFxWLVqVaP0bctwIcdpNBYuXIiRI0eKn+3s7LBq1Sp06NABTZs2xYQJE1BQUIAxY8bA09MTjz76qN7uzKWlpUhISEB4eDgCAgLw0ksviVvAS/HNN9/giSeeED/n5+fj2WefhY+PD7y9vdGtWzdkZmbizTffxE8//YTZs2fD3d1d3CJcrr9r167Bzs4On332GZo3bw5fX19MnToVlZWVYn+9e/fG9evX8eeffyp1CTkEcCHHsSj27NmD48ePIz09Hfv370f//v0xbdo05OfnIyoqCrNmzRLLvvLKK8jPz0dKSgquXr2KBw8eICEhQbLde/fuIT09He3btxePffDBB6iqqkJOTg7y8vLw+eefw8PDA//3f/+np3nWap0k/e3evRvJyck4d+4cTp48KW5KCQBOTk5o3bo1kpOTFbxiHGNwIcexKN566y00a9YMISEh6N+/Pzp27Ig+ffrA0dERf/nLX/D7778DAO7cuYP//Oc/WL16Nby9vdG0aVMsXrwYX331Faqrqxu0W1BQAADw9PQUjzk5OSEvLw/p6elwcHBAVFSU+BKg+pD2t3DhQnh7eyMkJARz587Fv//9b712PD09xbFwzAN/xwPHoqj7IhU3Nze9l9m4ubmhtLQUwMPlYU1NTYPdkO3t7ZGbm4vQ0FC94z4+PgAe7nbr5+cH4OGW4OXl5Xj++edRVFSEMWPGYNmyZXB1dW0wLmP91VK7Q3Dt/3NycvTKFxcXi2PhmAeuyXGsEp1OB3t7e9y4cQOFhYXiX3l5eQMBBzwUkG3atNGz6bm7u2P58uVIS0vDqVOncOjQITG8pP5W4aT9ZWZmiv/PysrSO/fgwQNkZGQgKipKqcvAIYALOY5VEhQUhJEjRyIhIQF3794F8PC1ert37zZYZ/jw4Thy5Ij4ee/evbh06RJqamrg6ekJJycnODo+XNwEBgbi8uXL1P0tXrwYhYWFuHHjBpKSksRX/gHAyZMnERoaisjISNMvAIcYLuQ4VsvGjRvh7e2N7t27w9PTE3379sWZM2cMlp80aRK2bduGBw8eAHgYNzdkyBB4eHigQ4cO6NmzJ6ZMmQIAmD59Og4ePAhvb288/fTTxP0988wziIqKQqdOnRAdHY158+aJ57744gvEx8crfRk4RuDBwBybYtKkSYiKihKFmVJcu3YNLVq0QEFBQYOXYgMPl7FDhgxBcnIyXFxcFO2bIw8XchyOAhgTcpzGgy9XORyOpuGaHIfD0TRck+NwOJqGCzkOh6NpuJDjcDiahgs5DoejabiQ43A4moYLOQ6Ho2m4kONwOJqGCzkOh6Np/h834JI9ra146gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "##### **Key Observations:**\n", + "\n", + "1. **Examining the Input Signal and Spike Train for a Single IPD:**\n", + " - For a specific IPD, the input signal and its corresponding transformed spike train are plotted for the **first auditory nerve fiber of each ear**.\n", + " - The **IPD** is applied to the left ear, causing a **phase shift** in its spike pattern relative to the right ear. This phase shift is critical for encoding spatial auditory information.\n", + "\n", + "2. **Effect of `envelope_power`:**\n", + " - Values of `envelope_power` greater than 1 introduce a **nonlinearity** to the signal, sharpening the envelope of the stimulus.\n", + " - Sharper envelopes make the patterns more distinguishable, which can potentially help the neural network in learning to classify the IPDs more accurately.\n", + "\n", + "3. **Spike Train Visualization for All Nerve Fibers:**\n", + " - For a selected IPD value, the spike trains of all auditory nerve fibers are displayed:\n", + " - The **first 100 rows (blue)** correspond to the right ear.\n", + " - The **next 100 rows (orange)** correspond to the left ear.\n", + " - **Phase Delays by Fiber Index**:\n", + " - Nerve fibers with **higher indices** introduce **stronger phase delays**. This is modeled to reflect how real auditory nerve fibers respond differently based on their spatial distribution.\n", + " - The **IPD application** to the left ear introduces a phase shift in its fibers relative to the right ear's fibers." + ], + "metadata": { + "id": "W7iEqftShXbi" + }, + "id": "W7iEqftShXbi" + }, + { + "cell_type": "markdown", + "source": [ + "---\n", + "---\n", + "## Classification Approach\n", + "\n", + "---\n", + "---\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "DFlMjrfZih-O" + }, + "id": "DFlMjrfZih-O" + }, + { + "cell_type": "markdown", + "id": "177a735f", + "metadata": { + "id": "177a735f" + }, + "source": [ + " The objective is to take the input spike data and infer the **Interaural Phase Difference (IPD)** using a neural network. To achieve this, we will:\n", + "\n", + " 1. **Discretize the IPD range** into categories (segments). \n", + " 2. **Train a neural network** to predict the category (segment) to which the input belongs.\n", + "\n", + " This classification approach simplifies the continuous IPD estimation problem by transforming it into a discrete class prediction task, making it computationally efficient and suitable for neural network-based learning.\n", + "\n", + " ---\n", + "\n", + " ### **Step 1. Discretizing the IPD Range**\n", + "\n", + " To prepare the data for classification, we divide the continuous IPD range $[- \\pi/2, \\pi/2]$ into $N_c$ equal-width segments. Each segment corresponds to a class, effectively mapping the continuous IPD into discrete categories.\n", + "\n", + " For a given angle $\\phi$, the **class index** is calculated as:\n", + " $$\n", + " \\text{Class Index} = \\text{floor} \\left( \\frac{(\\phi + \\pi/2) \\cdot N_c}{\\pi} \\right)\n", + " $$\n", + "\n", + " #### **Here:**\n", + " - $N_c$: Number of classes (or segments). \n", + " - $\\phi$: Continuous IPD value to be discretized. \n", + "\n", + " ---\n", + "\n", + " ### **Step 2. Neural Network Prediction**\n", + "\n", + " The neural network takes the **input spike data** and outputs a **probability vector** $\\mathbf{y}$ of length $N_c$, where: \n", + " - Each element $y_i$ represents the network’s confidence that the input belongs to class $i$. \n", + " - The predicted class is the index of the maximum value in $\\mathbf{y}$: \n", + " $$\n", + " i_{\\text{est}} = \\text{argmax}_i \\, y_i\n", + " $$\n", + "\n", + " ---\n", + "\n", + " ### **Step 3. Reconstructing the IPD**\n", + "\n", + " To reconstruct the continuous IPD value $\\phi$ from the predicted class index $i_{\\text{est}}$, we compute the midpoint of the corresponding segment: \n", + " $$\n", + " \\phi_i = a + \\left(i + \\frac{1}{2}\\right) \\frac{(b - a)}{N_c}\n", + " $$\n", + "\n", + " #### **Here:**\n", + " - $a = -\\pi/2$ and $b = \\pi/2$ are the bounds of the IPD range. \n", + "\n", + " ---" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f817078", + "metadata": { + "id": "3f817078", + "outputId": "ec9f0a43-7900-4d02-952a-aef22390bebe", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Number of classes = 12\n" + ] + } + ], + "source": [ + "# classes at 15 degree increments\n", + "num_classes = 180//15\n", + "print(f'Number of classes = {num_classes}')\n", + "\n", + "def discretise(ipds):\n", + " \"\"\"\n", + " Discretize Interaural Phase Differences (IPDs) to generate class labels.\n", + "\n", + " The function maps IPDs, which are continuous values in the range (-pi/2, pi/2),\n", + " to discrete classes in the range [0, num_classes-1]. The resulting discrete values\n", + " are suitable for classification tasks.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A tensor containing continuous IPD values. The values should be in the range (-pi/2, pi/2).\n", + "\n", + " Returns\n", + " -------\n", + " Tensor\n", + " A tensor containing the classification of IPD values, in the range [0, num_classes-1].\n", + "\n", + " Notes\n", + " -----\n", + " - Assumes the input `ipds` is a PyTorch tensor.\n", + " - `num_classes` should be defined in the surrounding scope.\n", + " - The output tensor will have the same shape as the input `ipds`.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipds = torch.tensor([-np.pi/2, 0, np.pi/2])\n", + " >>> ipd_indices = discretise(ipds)\n", + " \"\"\"\n", + " return ((ipds+np.pi/2)*num_classes/np.pi).long() # assumes input is tensor\n", + "\n", + "def continuise(ipd_indices): # convert indices back to IPD midpoints\n", + " \"\"\"\n", + " This function maps IPD indices, which are discrete values in the range [0, num_classes-1],\n", + " back to continuous IPD values. The resulting continuous values are suitable for\n", + " representing the midpoints of the original IPD ranges in the continuous domain.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd_indices : array-like\n", + " An array or tensor of IPD indices, which are discrete values obtained from\n", + " discretizing continuous IPDs into `num_classes` bins by the function discretise(ipds).\n", + "\n", + " Returns\n", + " -------\n", + " array-like\n", + " An array or tensor of continuous IPD midpoints, corresponding to the provided\n", + " `ipd_indices`. The midpoints are computed based on the assumed discretization\n", + " strategy, and are in the range (-pi/2, pi/2).\n", + "\n", + " Notes\n", + " -----\n", + " - `num_classes` should be defined in the surrounding scope and should be the same\n", + " value that was used for discretization.\n", + " - The input `ipd_indices` and the output will have the same shape.\n", + " - The output type (e.g., NumPy array, PyTorch tensor) will match the input type.\n", + " \"\"\"\n", + " return (ipd_indices+0.5)/num_classes*np.pi-np.pi/2" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Let's test these two functions and display the found classes and the midpoints in a table\n" + ], + "metadata": { + "id": "33amh8o4i1DB" + }, + "id": "33amh8o4i1DB" + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "\n", + "ipds, spikes, _ = random_ipd_input_signal(num_samples=10)\n", + "ipd_indices = discretise(ipds)\n", + "classes_ipd_midpoints = continuise(ipd_indices)\n", + "\n", + "data = {'ipds':ipds,\n", + " 'classes':ipd_indices,\n", + " 'classes_ipd_midpoints':classes_ipd_midpoints}\n", + "data_df = pd.DataFrame(data)\n", + "data_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "Lmfd4Zm2Z94a", + "outputId": "c178fe11-9892-4961-dc22-d22997bab9bc" + }, + "id": "Lmfd4Zm2Z94a", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ipds classes classes_ipd_midpoints\n", + "0 -0.115562 5 -0.130900\n", + "1 -0.737785 3 -0.654499\n", + "2 0.239584 6 0.130900\n", + "3 -1.261090 1 -1.178097\n", + "4 -1.454595 0 -1.439897\n", + "5 0.980046 9 0.916298\n", + "6 -0.171898 5 -0.130900\n", + "7 -0.274938 4 -0.392699\n", + "8 -0.512133 4 -0.392699\n", + "9 0.220898 6 0.130900" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ipdsclassesclasses_ipd_midpoints
0-0.1155625-0.130900
1-0.7377853-0.654499
20.23958460.130900
3-1.2610901-1.178097
4-1.4545950-1.439897
50.98004690.916298
6-0.1718985-0.130900
7-0.2749384-0.392699
8-0.5121334-0.392699
90.22089860.130900
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "data_df", + "summary": "{\n \"name\": \"data_df\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"ipds\",\n \"properties\": {\n \"dtype\": \"float32\",\n \"num_unique_values\": 10,\n \"samples\": [\n -0.5121333599090576,\n -0.7377848625183105,\n 0.9800459742546082\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"classes\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2,\n \"min\": 0,\n \"max\": 9,\n \"num_unique_values\": 7,\n \"samples\": [\n 5,\n 3,\n 9\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"classes_ipd_midpoints\",\n \"properties\": {\n \"dtype\": \"float32\",\n \"num_unique_values\": 7,\n \"samples\": [\n -0.13089966773986816,\n -0.6544985175132751,\n 0.9162980318069458\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# The neural network" + ], + "metadata": { + "id": "TJG99F49h4m2" + }, + "id": "TJG99F49h4m2" + }, + { + "cell_type": "markdown", + "source": [ + "We will now set up two types of neural network models and train them to solve the sound localization classification task. These models will allow us to explore different computational approaches to neural processing:\n", + "\n", + "1. **Artificial Neural Network (ANN)**: \n", + " - This network uses continuously operating neurons. Each neuron functions as a *leaky integrator*, meaning its membrane potential integrates incoming inputs over time but naturally decays back to its resting potential with a specific time constant. \n", + " - Unlike biological neurons, ANN neurons do not produce action potentials (spikes); instead, their activity remains continuous, making them mathematically simpler to model. \n", + " - These neurons operate under differentiable dynamics, enabling us to train the network using standard backpropagation techniques, as in traditional machine learning models.\n", + "\n", + "2. **Spiking Neural Network (SNN)**: \n", + " - In this model, we incorporate neurons that emit *spikes* when their membrane potential crosses a fixed threshold. After firing a spike, the membrane potential is reset to its resting state, mimicking the behavior of biological neurons. \n", + " - This spiking mechanism introduces a time-sensitive aspect to the computation, enabling the network to potentially detect coincident inputs more effectively than an ANN. \n", + "\n", + "By comparing the performance of these two models, we will explore whether the spiking mechanism in the SNN offers advantages for solving tasks that require precise timing, such as sound localization. \n", + "\n", + "Before diving into the implementation, let’s start with some general background to build intuition and motivation for this approach." + ], + "metadata": { + "id": "VxTwe_n3vBTr" + }, + "id": "VxTwe_n3vBTr" + }, + { + "cell_type": "markdown", + "source": [ + "## Background:" + ], + "metadata": { + "id": "bxucf5IKyLwc" + }, + "id": "bxucf5IKyLwc" + }, + { + "cell_type": "markdown", + "source": [ + "In this section, we will introduce the fundamentals of artificial neural networks (ANNs) and how they are trained. Neural networks are a class of machine learning models that mimic the structure and function of biological neural systems, using interconnected layers of computational units (neurons) to process data. These models are particularly effective for tasks involving complex, non-linear patterns, such as sound localization." + ], + "metadata": { + "id": "sLHyKiv-8WVt" + }, + "id": "sLHyKiv-8WVt" + }, + { + "cell_type": "markdown", + "source": [ + "### ### **Slide 1: Anatomy of a Single Neuron in an ANN**\n", + "\n", + "\n" + ], + "metadata": { + "id": "INmyCJMW8cfM" + }, + "id": "INmyCJMW8cfM" + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "![Screenshot 2024-11-18 at 02.24.55.png]()" + ], + "metadata": { + "id": "H_w0n9sD3ZKH" + }, + "id": "H_w0n9sD3ZKH" + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "1. **Inputs and Weights**: \n", + " - Each neuron receives inputs ($x_1, x_2, \\ldots$) representing features of the data, such as sound frequency or amplitude in our sound localization task.\n", + " - Each input is assigned a weight ($w_{11}, w_{21}, \\ldots$), which determines its contribution to the neuron’s output. These weights are learned during training.\n", + "\n", + "2. **Summation**: \n", + " - The neuron calculates a weighted sum of its inputs: \n", + " $$\n", + " z = \\sum w_i x_i\n", + " $$\n", + " This summation is a linear operation, forming the basis for the neuron’s computation.\n", + "\n", + "3. **Activation Function**: \n", + " - To capture complex, non-linear relationships, the weighted sum is passed through an activation function ($f(z)$), such as Sigmoid or ReLU (Rectified Linear Unit). \n", + " - The activation function introduces non-linearity, allowing the network to model intricate patterns in the data.\n", + "\n", + "4. **Prediction**: \n", + " - The output of the neuron, $y'$, represents the prediction or decision of the network for this step. It will be compared to the actual value ($y$) during training.\n", + "\n", + "5. **Loss Function**: \n", + " - To measure how far off the prediction ($y'$) is from the true value ($y$), a loss function is used. For example, the Mean Squared Error (MSE) calculates the average squared difference between $y$ and $y'$: \n", + " $$\n", + " L = \\frac{1}{2}(y' - y)^2\n", + " $$\n", + "\n", + "6. **Training the ANN: Backpropagation and Weight Updates**: \n", + " - Network training aims to minimize the error between the prediction and the true value. This is achieved by minimizing the loss function using gradient descent.\n", + " - During training, the network adjusts the weights by calculating the gradient of the loss function with respect to each weight ($\\partial L / \\partial w$). \n", + " - During training, the network updates its weights to reduce the error between its predictions and the true values. This is done by calculating the gradient of the loss function with respect to each weight ($\\partial L / \\partial w$). The gradient tells us the direction and magnitude of the change needed in the weight to minimize the loss function.\n", + "\n", + " To control how much the weights are adjusted in each step, a **learning rate** ($\\eta$) is introduced. The learning rate is a small positive value that determines the step size for weight updates. Combining the gradient and the learning rate, the weight update rule can be written as:\n", + "\n", + " $$\n", + " w_{\\text{new}} = w_{\\text{old}} - \\eta \\frac{\\partial L}{\\partial w}\n", + " $$\n", + "\n", + " Here:\n", + " - $w_{\\text{new}}$: The updated weight.\n", + " - $w_{\\text{old}}$: The current weight before the update.\n", + " - $\\eta$: The learning rate.\n", + " - $\\frac{\\partial L}{\\partial w}$: The gradient of the loss function with respect to the weight.\n", + "\n", + " The learning rate plays a crucial role in training:\n", + " - If $\\eta$ is too large, the updates may overshoot the optimal weights, causing the training process to diverge.\n", + " - If $\\eta$ is too small, the updates will be very slow, and the training may take a long time to converge.\n", + "\n", + " By iteratively adjusting the weights using this rule, the network gradually reduces the loss function, improving its predictions over time. This process is known as **gradient descent**.\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "tXGMrKFu9C2G" + }, + "id": "tXGMrKFu9C2G" + }, + { + "cell_type": "markdown", + "source": [ + "### **Slide 2: Multi-Layer Networks**" + ], + "metadata": { + "id": "RbbnjUqN_mGv" + }, + "id": "RbbnjUqN_mGv" + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "![Screenshot 2024-11-18 at 02.26.03.png]()" + ], + "metadata": { + "id": "wBNMiqoI4XVv" + }, + "id": "wBNMiqoI4XVv" + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "This slide expands the single-neuron concept into a multi-layer network, introducing the idea of layers:\n", + "\n", + "1. **Input Layer**: \n", + " - The input layer receives raw data ($x_1, x_2, x_3, x_4$), which are features relevant to the task at hand.\n", + "\n", + "2. **Hidden Layers**: \n", + " - Hidden layers are composed of multiple interconnected neurons. Each layer processes the data and extracts features at increasingly abstract levels. \n", + " - The combination of weighted summation, activation functions, and interconnected neurons enables the network to approximate complex functions.\n", + "\n", + "3. **Output Layer**: \n", + " - The output layer produces the final predictions ($y_1, y_2, \\ldots$) based on the processed information from the hidden layers. \n", + " - The number of neurons in the output layer corresponds to the number of classes or outputs in the task (e.g., e.g., in our case, the classes represent the segments of the interaural phase difference, which are related to the angles of sound source localization).\n", + "\n", + "4. **Non-Linearity and Power of Deep Networks**: \n", + " - By stacking multiple layers, the network gains the capacity to model highly non-linear and intricate relationships in data, which are essential for tasks like sound localization.\n" + ], + "metadata": { + "id": "Cyr6_4dW_YGj" + }, + "id": "Cyr6_4dW_YGj" + }, + { + "cell_type": "markdown", + "id": "2b857913", + "metadata": { + "id": "2b857913" + }, + "source": [ + "## Implementation 1: Membrane only (no spiking) neural network (ANN)\n", + "\n", + "Before we get to spiking, we're going to warm up with a non-spiking network that shows some of the features of the full model but without any coincidence detection, it can't do the task. We basically create a neuron model that has everything except spiking, so the membrane potential dynamics are there and it takes spikes as input. The neuron model we'll use is just the LIF model we've already seen. We'll use a time constant $\\tau$ of 20 ms, and we pre-calculate a constant $\\alpha=\\exp(-dt/\\tau)$ so that updating the membrane potential $v$ is just multiplying by $\\alpha$ (as we saw in the first notebook). We store the input spikes in a vector $s$ of 0s and 1s for each time step, and multiply by the weight matrix $W$ to get the input, i.e. $v\\leftarrow \\alpha v+Ws$.\n", + "\n", + "We initialise the weight matrix $W$ uniformly with bounds proportionate to the inverse square root of the number of inputs (fairly standard, and works here).\n", + "\n", + "The output of this will be a vector of $N_c$ (``num_classes``) membrane potential traces. We sum these traces over time and use this as the output vector (the largest one will be our prediction of the class and therefore the IPD).\n", + "\n", + "![Membrane only architecture](https://github.com/neural-reckoning/cosyne-tutorial-2022/blob/main/arch-membrane.png?raw=1)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Functions to construct the model and calculte output form input samples\n", + "\n", + "1. **The `init_weight_matrix()` function**: \n", + " - This function initializes the weight matrix, which defines the connections between neurons in the network. By specifying all the synaptic connections, it sets up the neural network's architecture. \n", + " - The implementation is done using PyTorch, where vectors and matrices are represented as **tensors**. Tensors are more than simple arrays; they also store information about gradients, enabling efficient computations during backpropagation and optimization. \n", + " - ```\n", + " W = nn.Parameter(torch.empty((input_size, num_classes), device=device, dtype=dtype, requires_grad=True))\n", + " ```\n", + "\n", + " - Each element of W represents a weight associated with a specific connection between an input unit and an output neuron.\n", + " - The element in the i-th row and j-th column corresponds to the weight connecting the i-th input to the j-th output neuron.\n", + " - If you need to visualize the weight matrix or any output vector, remember to **detach** the tensor first. Detaching removes the gradient-tracking capabilities, converting the tensor into a plain array suitable for visualization or further non-gradient-based processing: \n", + " \n", + "\n", + "\n", + " ```\n", + " numpy_array = tensor_A.detach().numpy()\n", + " ```\n", + "\n", + "\n", + "\n", + "2. **The `membrane_only(input_spikes, W, tau=20*ms)` function**: \n", + " - This function simulates the neural network's activity by calculating its output for a given input configuration. It models how the network processes input spikes using the defined weight matrix (`W`) and a membrane time constant (`tau`), capturing the temporal dynamics of the neurons." + ], + "metadata": { + "id": "fdyjjx9X0C7w" + }, + "id": "fdyjjx9X0C7w" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c7c60d9", + "metadata": { + "id": "7c7c60d9" + }, + "outputs": [], + "source": [ + "# Weights and uniform weight initialisation\n", + "def init_weight_matrix():\n", + " \"\"\"\n", + " Initialize a weight matrix for a neural network layer using uniform distribution.\n", + "\n", + " The function initializes a weight matrix, `W`, with dimensions `(input_size, num_classes)`.\n", + " The matrix is initialized using a uniform distribution over `[-bound, bound]`, where\n", + " `bound` is computed as the inverse of the square root of the fan-in (number of input units).\n", + "\n", + " This initialization method helps in achieving faster convergence during training by\n", + " setting initial weights in a range that's inversely proportional to the square root\n", + " of the number of input units.\n", + "\n", + " Returns\n", + " -------\n", + " W = nn.Parameter\n", + " A tensor representing the initialized weight matrix. The tensor has the attribute\n", + " `requires_grad=True`, indicating that gradients will be computed with respect to this tensor\n", + " during the backward pass.\n", + "\n", + " Notes\n", + " -----\n", + " - `input_size` and `num_classes` should be defined in the surrounding scope.\n", + " - The tensor is moved to the device specified by the `device` variable and has the data type\n", + " specified by the `dtype` variable. Both `device` and `dtype` should be defined in the surrounding scope.\n", + " - The `requires_grad=True` argument in `nn.Parameter` ensures that gradients are computed for\n", + " this tensor, enabling learning of its values during optimization.\n", + "\n", + " Examples\n", + " --------\n", + " >>> W = init_weight_matrix()\n", + " >>> print(W.shape)\n", + " (input_size, num_classes)\n", + " \"\"\"\n", + " # Note that the requires_grad=True argument tells PyTorch that we'll be computing gradients with\n", + " # respect to the values in this tensor and thereby learning those values. If you want PyTorch to\n", + " # learn some gradients, make sure it has this on.\n", + " W = nn.Parameter(torch.empty((input_size, num_classes), device=device, dtype=dtype, requires_grad=True))\n", + " fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W) # corresponds to the number of input units\n", + " bound = 1 / np.sqrt(fan_in)\n", + " nn.init.uniform_(W, -bound, bound)\n", + " return W\n", + "\n", + "# Run the simulation\n", + "def membrane_only(input_spikes, W, tau=20*ms):\n", + " \"\"\"\n", + " Run a simulation of a membrane potential dynamic in response to input spikes.\n", + "\n", + " This function simulates the evolution of membrane potential `v` across time, given a batch of\n", + " input spike trains `input_spikes` and synaptic weight matrix `W`. The membrane potential is\n", + " updated at each time step based on the previous potential, the input spikes, and the synaptic weights,\n", + " with an exponential decay parameterized by `tau`.\n", + "\n", + " Parameters\n", + " ----------\n", + " input_spikes : Tensor\n", + " A 3D tensor representing a batch of input spike trains.\n", + " Shape: (batch_size, duration_steps, input_size)\n", + " W : Tensor\n", + " A 2D tensor representing the synaptic weight matrix.\n", + " Shape: (input_size, num_classes)\n", + " tau : float, optional\n", + " The time constant for the exponential decay of the membrane potential, in seconds.\n", + " Default is 20 ms.\n", + "\n", + " Returns\n", + " -------\n", + " v_rec : Tensor\n", + " A 3D tensor containing the recorded membrane potentials for each batch, time step, and class.\n", + " Shape: (batch_size, duration_steps, num_classes)\n", + "\n", + " Notes\n", + " -----\n", + " - `batch_size`, `num_classes`, `duration_steps`, `device`, and `dtype` should be defined in the\n", + " surrounding scope or passed as arguments.\n", + " - `input_spikes` should be a binary tensor, where `input_spikes[b, t, i]` is 1 if there is a spike\n", + " from input neuron `i` at time `t` in batch `b`, and 0 otherwise.\n", + " - `W` should contain synaptic weights such that `W[i, j]` is the weight from input neuron `i` to\n", + " output neuron `j`.\n", + "\n", + " Examples\n", + " --------\n", + " >>> input_spikes = torch.tensor([[[1, 0], [0, 1], [1, 1]]], dtype=dtype, device=device)\n", + " >>> W = torch.tensor([[0.5, -0.5], [-0.5, 0.5]], dtype=dtype, device=device)\n", + " >>> v_rec = membrane_only(input_spikes, W)\n", + " >>> print(v_rec.shape)\n", + " (1, 3, 2)\n", + " \"\"\"\n", + " # Input has shape (batch_size, duration_steps, input_size)\n", + " v = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n", + " # v_rec will store the membrane in each time step\n", + " v_rec = [v]\n", + " # Batch matrix multiplication all time steps\n", + " # Equivalent to matrix multiply input_spikes[b, :, :] x W for all b, but faster\n", + " h = torch.einsum(\"abc,cd->abd\", (input_spikes, W)) # Note h corresponds to z in Background Slide 1\n", + " # precalculate multiplication factor\n", + " alpha = np.exp(-dt/tau)\n", + " # Update membrane and spikes one time step at a time\n", + " for t in range(duration_steps - 1):\n", + " v = alpha*v + h[:, t, :] # (batch_size, time step, number of output neurons). The batch size indicates how many input samples are processed in parallel\n", + " v_rec.append(v)\n", + " # return the recorded membrane potentials stacked into a single tensor\n", + " v_rec = torch.stack(v_rec, dim=1) # (batch_size, duration_steps, num_classes)\n", + " return v_rec" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Let's visualize the initialization of the weigth matrix\n" + ], + "metadata": { + "id": "GmcK8IqvLMNg" + }, + "id": "GmcK8IqvLMNg" + }, + { + "cell_type": "code", + "source": [ + "W=init_weight_matrix();\n", + "plt.figure\n", + "plt.hist(W.detach().numpy().ravel(), bins='auto',rwidth=0.9); # detach the tensor from the gradient calculation -> transform it to a numpy array -> unravel the 2D array into a 1D one\n", + "plt.xlabel('Weigth value')\n", + "plt.ylabel('Counts')\n", + "plt.title('Distribution of initialized weights')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 490 + }, + "id": "3Z8ZZ9tMNEnj", + "outputId": "b9d44362-9eb4-4bc7-ae9d-4ecf4637c1eb" + }, + "id": "3Z8ZZ9tMNEnj", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Distribution of initialized weights')" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBuklEQVR4nO3deVxUZf//8fcgMLiwiBuSqLiWuaaFlmthbmmW3aZRt3qbWl+11BajLJcyrEwts7zrV9hmli3WXWm5gCuaG5lWJt64pCylCeICCtfvDx/O3QioDMsMx9fz8TiPh+c615zzOReDvj1znTM2Y4wRAACARXm5uwAAAIDSRNgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtjBFWvKlCmy2WxlcqyuXbuqa9eujvX4+HjZbDZ9+umnZXL8oUOHqn79+mVyLFdlZWXp/vvvV0hIiGw2m8aNG1do3/r162vo0KEuHefCn8XFFGfcLqzx/M88Pj7epf25qijnW5psNpumTJni8mvHjBlTsgXhikLYgSUsWLBANpvNsfj5+Sk0NFQ9evTQq6++quPHj5fIcQ4fPqwpU6YoMTGxRPZXkjy5tsvx/PPPa8GCBXrwwQf1/vvv67777iuT45b3ccP/bNiwQVOmTNGxY8fcXQo8jLe7CwBK0rRp0xQeHq4zZ84oNTVV8fHxGjdunGbNmqWvvvpKLVu2dPSdNGmSnnjiiSLt//Dhw5o6darq16+v1q1bX/brvv/++yIdxxUXq+2tt95SXl5eqddQHKtWrVL79u01efLkS/bdvXu3vLxc+7/ahT+Lshq3zp0769SpU/L19S2R/ZU3p06dkrd36f6Ts2HDBk2dOlVDhw5VUFBQqR4L5QthB5bSq1cvtWvXzrEeHR2tVatW6bbbblO/fv30yy+/qGLFipIkb2/vUv/L9+TJk6pUqZLb/4Hz8fFx6/EvR3p6upo1a3ZZfe12u8vHKcrPoiTHzcvLS35+fiW2v/LmSj53uB8fY8Hybr75Zj399NPav3+/PvjgA0d7QXN2li9fro4dOyooKEhVqlRR06ZN9eSTT0o6N+fi+uuvlyQNGzbM8ZHZggULJJ2bG9G8eXNt3bpVnTt3VqVKlRyvLWzeRG5urp588kmFhISocuXK6tevnw4ePOjUp7D5KX/f56VqK2juyYkTJ/TII48oLCxMdrtdTZs21cyZM2WMcep3fr7EkiVL1Lx5c9ntdl177bVatmxZwQN+gfT0dA0fPly1atWSn5+fWrVqpXfffdex/fxcluTkZH3zzTeO2vft21foPi8ck/MfY65fv14TJkxQjRo1VLlyZd1xxx36448/SnTcZs6cqRtvvFHVqlVTxYoV1bZt28uae3XhnJ0LP3r9+3Lhe+WDDz5Q27ZtVbFiRQUHB2vQoEH53ieS9Oabb6phw4aqWLGibrjhBq1du/aSdUnSnXfeqeuuu86prW/fvrLZbPrqq68cbZs2bZLNZtPSpUsdbceOHdO4ceMc76NGjRrphRdeyHdFrKA5O/Hx8WrXrp38/PzUsGFD/fvf/77oXLqLvQenTJmixx57TJIUHh6e7310sd9tWB9XdnBFuO+++/Tkk0/q+++/14gRIwrss2vXLt12221q2bKlpk2bJrvdrqSkJK1fv16SdM0112jatGl65plnNHLkSHXq1EmSdOONNzr2ceTIEfXq1UuDBg3Svffeq1q1al20runTp8tms2nixIlKT0/XnDlzFBkZqcTERMcVqMtxObX9nTFG/fr1U1xcnIYPH67WrVvru+++02OPPaZDhw5p9uzZTv3XrVunzz//XP/3f/8nf39/vfrqqxowYIAOHDigatWqFVrXqVOn1LVrVyUlJWnMmDEKDw/X4sWLNXToUB07dkwPP/ywrrnmGr3//vsaP3686tSpo0ceeUSSVKNGjcs+//PGjh2rqlWravLkydq3b5/mzJmjMWPG6OOPPy6RcZOkV155Rf369VNUVJRycnK0aNEi/eMf/9DXX3+tPn36XHatnTt31vvvv+/Utn//fk2aNEk1a9Z0tE2fPl1PP/20Bg4cqPvvv19//PGH5s6dq86dO2v79u2Oj2vefvttjRo1SjfeeKPGjRun//73v+rXr5+Cg4MVFhZ20Vo6deqkL7/8UpmZmQoICJAxRuvXr5eXl5fWrl2rfv36SZLWrl0rLy8v3XTTTZLOXbns0qWLDh06pFGjRqlu3brasGGDoqOjlZKSojlz5hR6zO3bt6tnz56qXbu2pk6dqtzcXE2bNq3Qn/ul3oN33nmnfvvtN3300UeaPXu2qlevLunc++hSv9u4AhjAAmJjY40ks3nz5kL7BAYGmjZt2jjWJ0+ebP7+KzB79mwjyfzxxx+F7mPz5s1GkomNjc23rUuXLkaSmT9/foHbunTp4liPi4szksxVV11lMjMzHe2ffPKJkWReeeUVR1u9evXMkCFDLrnPi9U2ZMgQU69ePcf6kiVLjCTz3HPPOfW76667jM1mM0lJSY42ScbX19ep7ccffzSSzNy5c/Md6+/mzJljJJkPPvjA0ZaTk2M6dOhgqlSp4nTu9erVM3369Lno/v7e9+9jcv7nHxkZafLy8hzt48ePNxUqVDDHjh1ztBVn3Iwx5uTJk07rOTk5pnnz5ubmm2++aI3nf+ZxcXEFntOpU6dM27ZtTWhoqElJSTHGGLNv3z5ToUIFM336dKe+P/30k/H29na05+TkmJo1a5rWrVub7OxsR78333zTSHI634KcH4Nvv/3WGGPMjh07jCTzj3/8w0RERDj69evXz+l36NlnnzWVK1c2v/32m9P+nnjiCVOhQgVz4MABR5skM3nyZMd63759TaVKlcyhQ4ccbXv27DHe3t7mwn+aLvc9+NJLLxlJJjk52en1l/O7DWvjYyxcMapUqXLRu7LO/w/5yy+/dHlSqt1u17Bhwy67/z//+U/5+/s71u+66y7Vrl1b3377rUvHv1zffvutKlSooIceesip/ZFHHpExxuljCkmKjIxUw4YNHestW7ZUQECA/vvf/17yOCEhIRo8eLCjzcfHRw899JCysrK0evXqEjib/xk5cqTTRyCdOnVSbm6u9u/fX2LH+PsVt7/++ksZGRnq1KmTtm3bVqz9/t///Z9++uknffbZZwoJCZEkff7558rLy9PAgQP1559/OpaQkBA1btxYcXFxkqQtW7YoPT1dDzzwgNOcpKFDhyowMPCSx27Tpo2qVKmiNWvWSDp3BadOnTr65z//qW3btunkyZMyxmjdunWOq1+StHjxYnXq1ElVq1Z1qi8yMlK5ubmO/V0oNzdXK1asUP/+/RUaGupob9SokXr16lXga1x9D0ol87uN8o2wgytGVlaWU7C40N13362bbrpJ999/v2rVqqVBgwbpk08+KdJfjldddVWRJsA2btzYad1ms6lRo0YXna9SEvbv36/Q0NB843HNNdc4tv9d3bp18+2jatWq+uuvvy55nMaNG+e7c6qw4xTXhXVWrVpVki5ZZ1F8/fXXat++vfz8/BQcHKwaNWrojTfeUEZGhsv7/Pe//63Y2FjNnTtX7du3d7Tv2bNHxhg1btxYNWrUcFp++eUXpaenS/rfOF74fvLx8VGDBg0uefwKFSqoQ4cOjjk+a9euVadOndSxY0fl5uZq48aN+vnnn3X06FGnsLNnzx4tW7YsX22RkZGS5KjvQunp6Tp16pQaNWqUb1tBbZLr70GpZH63Ub4xZwdXhN9//10ZGRmF/kUqnfsf+5o1axQXF6dvvvlGy5Yt08cff6ybb75Z33//vSpUqHDJ4xRlns3lKmyyZm5u7mXVVBIKO465YDKzu5V2nefnr3Tu3Fmvv/66ateuLR8fH8XGxmrhwoUu7fOHH37Qww8/rPvvv18jR4502paXl+eYEFzQuVWpUsWlYxakY8eOmj59uk6fPq21a9fqqaeeUlBQkJo3b661a9c65p/9Pezk5eWpe/fuevzxxwvcZ5MmTUqsvuL8bEvidxvlG2EHV4TzE0F79Ohx0X5eXl665ZZbdMstt2jWrFl6/vnn9dRTTykuLk6RkZEl/sTlPXv2OK0bY5SUlOT0PKCqVasW+JC0/fv3O/2vvSi11atXTytWrNDx48edru78+uuvju0loV69etqxY4fy8vKcru6U9HGKoyjj9tlnn8nPz0/fffed0+3vsbGxLh37jz/+0F133aXWrVtr3rx5+bY3bNhQxhiFh4dfNDicH8c9e/bo5ptvdrSfOXNGycnJatWq1SVr6dSpk3JycvTRRx/p0KFDjlDTuXNnR9hp0qSJ06T7hg0bKisry3El53LVrFlTfn5+SkpKyretoLbLdbGf5aV+t2FtfIwFy1u1apWeffZZhYeHKyoqqtB+R48ezdd2/iFz2dnZkqTKlStLUok9ofW9995zmkf06aefKiUlxWneQsOGDbVx40bl5OQ42r7++ut8tx4XpbbevXsrNzdXr732mlP77NmzZbPZCp03UVS9e/dWamqq091QZ8+e1dy5c1WlShV16dKlRI5THEUZtwoVKshmsyk3N9fRtm/fPi1ZsqTIx83NzdWgQYOUk5Ojzz77rMCPP++8805VqFBBU6dOzXcFwxijI0eOSJLatWunGjVqaP78+U7vkwULFlz2ezUiIkI+Pj564YUXFBwcrGuvvVbSuRC0ceNGrV692umqjiQNHDhQCQkJ+u677/Lt79ixYzp79myBx6pQoYIiIyO1ZMkSHT582NGelJSUb75YURT2s7yc321YG1d2YClLly7Vr7/+qrNnzyotLU2rVq3S8uXLVa9ePX311VcXfbDZtGnTtGbNGvXp00f16tVTenq6Xn/9ddWpU0cdO3aUdC54BAUFaf78+fL391flypUVERGh8PBwl+oNDg5Wx44dNWzYMKWlpWnOnDlq1KiR0+3x999/vz799FP17NlTAwcO1N69e/XBBx84TdYsam19+/ZVt27d9NRTT2nfvn1q1aqVvv/+e3355ZcaN25cvn27auTIkfr3v/+toUOHauvWrapfv74+/fRTrV+/XnPmzLnoHKqyUpRx69Onj2bNmqWePXvqnnvuUXp6uubNm6dGjRppx44dRTru/PnztWrVKj3wwAOOicbn1apVS927d1fDhg313HPPKTo6Wvv27VP//v3l7++v5ORkffHFFxo5cqQeffRR+fj46LnnntOoUaN088036+6771ZycrJiY2Mva86OJFWqVElt27bVxo0bHc/Ykc5d2Tlx4oROnDiRL+w89thj+uqrr3Tbbbdp6NChatu2rU6cOKGffvpJn376qfbt2+e4BfxCU6ZM0ffff6+bbrpJDz74oCN8N2/e3OWv7mjbtq0k6amnntKgQYPk4+Ojvn37XtbvNizOXbeBASXp/K3H5xdfX18TEhJiunfvbl555RWnW5zPu/DW85UrV5rbb7/dhIaGGl9fXxMaGmoGDx6c77baL7/80jRr1sxxi+z5W5a7dOlirr322gLrK+zW848++shER0ebmjVrmooVK5o+ffqY/fv353v9yy+/bK666ipjt9vNTTfdZLZs2ZJvnxerraBbqI8fP27Gjx9vQkNDjY+Pj2ncuLF56aWXnG7dNubcbb+jR4/OV1Nht8RfKC0tzQwbNsxUr17d+Pr6mhYtWhR4m3dJ3Hp+4aMHCrrdu7jj9vbbb5vGjRsbu91urr76ahMbG5vvvVRQjRfWcv41BS0X1vfZZ5+Zjh07msqVK5vKlSubq6++2owePdrs3r3bqd/rr79uwsPDjd1uN+3atTNr1qwp8HwL89hjjxlJ5oUXXnBqb9SokZFk9u7dm+81x48fN9HR0aZRo0bG19fXVK9e3dx4441m5syZJicnx9FPF9x6bsy537k2bdoYX19f07BhQ/P//t//M4888ojx8/Nz6leU9+Czzz5rrrrqKuPl5eW4Df1yf7dhXTZjPGyGIQDgitW/f3/t2rUr33w2oDiYswMAcItTp045re/Zs0fffvttgV+tAhQHV3YAAG5Ru3ZtDR06VA0aNND+/fv1xhtvKDs7W9u3b8/3zCCgOJigDABwi549e+qjjz5Samqq7Ha7OnTooOeff56ggxLHlR0AAGBpzNkBAACWRtgBAACW5tY5OzExMfr888/166+/qmLFirrxxhv1wgsvqGnTpo4+p0+f1iOPPKJFixYpOztbPXr00Ouvv+70yPIDBw7owQcfVFxcnKpUqaIhQ4YoJiZG3t6Xd3p5eXk6fPiw/P39S/zrAAAAQOkwxuj48eMKDQ3N94XDF3Z0mx49epjY2Fizc+dOk5iYaHr37m3q1q1rsrKyHH0eeOABExYWZlauXGm2bNli2rdvb2688UbH9rNnz5rmzZubyMhIs337dvPtt9+a6tWrm+jo6Muu4+DBg4U+3IuFhYWFhYXFs5eDBw9e9N95j5qg/Mcff6hmzZpavXq1OnfurIyMDNWoUUMLFy7UXXfdJencFwhec801SkhIUPv27bV06VLddtttOnz4sONqz/z58zVx4kT98ccfBX7fzIUyMjIUFBSkgwcPKiAgoFTPEQAAlIzMzEyFhYXp2LFjCgwMLLSfR916npGRIenc9wVJ0tatW3XmzBmnb6S9+uqrVbduXUfYSUhIUIsWLZw+1urRo4cefPBB7dq1S23atMl3nOzsbKcvfzv/RYwBAQGEHQAAyplLTUHxmAnKeXl5GjdunG666SY1b95ckpSamipfX18FBQU59a1Vq5ZSU1Mdff4edM5vP7+tIDExMQoMDHQsYWFhJXw2AADAU3hM2Bk9erR27typRYsWlfqxoqOjlZGR4VgOHjxY6scEAADu4REfY40ZM0Zff/211qxZozp16jjaQ0JClJOTo2PHjjld3UlLS1NISIijzw8//OC0v7S0NMe2gtjtdtnt9hI+CwAA4IncemXHGKMxY8boiy++0KpVqxQeHu60vW3btvLx8dHKlSsdbbt379aBAwfUoUMHSVKHDh30008/KT093dFn+fLlCggIULNmzcrmRAAAgMdy65Wd0aNHa+HChfryyy/l7+/vmGMTGBioihUrKjAwUMOHD9eECRMUHBysgIAAjR07Vh06dFD79u0lSbfeequaNWum++67Ty+++KJSU1M1adIkjR49mqs3AADAvd+NVdjs6djYWA0dOlTS/x4q+NFHHzk9VPDvH1Ht379fDz74oOLj41W5cmUNGTJEM2bMuOyHCmZmZiowMFAZGRncjQUAQDlxuf9+e9RzdtyFsAMAQPlzuf9+e8zdWAAAAKWBsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACzNI74IFNZW/4lvyvyY+2b0KfNjAgA8E1d2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApfFQQeAK4I4HO0o83BGAZ+DKDgAAsDTCDgAAsDTCDgAAsDTm7AAAUEaYP+ceXNkBAACWRtgBAACWRtgBAACWRtgBAACWxgRlACgj7piceqVPTAUkruwAAACLI+wAAABLI+wAAABLI+wAAABLI+wAAABL424sAECZ4Y40uANXdgAAgKURdgAAgKW5NeysWbNGffv2VWhoqGw2m5YsWeK03WazFbi89NJLjj7169fPt33GjBllfCYAAMBTuTXsnDhxQq1atdK8efMK3J6SkuK0vPPOO7LZbBowYIBTv2nTpjn1Gzt2bFmUDwAAygG3TlDu1auXevXqVej2kJAQp/Uvv/xS3bp1U4MGDZza/f398/UFAACQytGcnbS0NH3zzTcaPnx4vm0zZsxQtWrV1KZNG7300ks6e/bsRfeVnZ2tzMxMpwUAAFhTubn1/N1335W/v7/uvPNOp/aHHnpI1113nYKDg7VhwwZFR0crJSVFs2bNKnRfMTExmjp1ammXDAAAPEC5CTvvvPOOoqKi5Ofn59Q+YcIEx59btmwpX19fjRo1SjExMbLb7QXuKzo62ul1mZmZCgsLK53CAQCAW5WLsLN27Vrt3r1bH3/88SX7RkRE6OzZs9q3b5+aNm1aYB+73V5oEAJgTTzMDrhylYs5O2+//bbatm2rVq1aXbJvYmKivLy8VLNmzTKoDAAAeDq3XtnJyspSUlKSYz05OVmJiYkKDg5W3bp1JZ37iGnx4sV6+eWX870+ISFBmzZtUrdu3eTv76+EhASNHz9e9957r6pWrVpm5wEAADyXW8POli1b1K1bN8f6+Xk0Q4YM0YIFCyRJixYtkjFGgwcPzvd6u92uRYsWacqUKcrOzlZ4eLjGjx/vNB8HAIDz+DjzyuTWsNO1a1cZYy7aZ+TIkRo5cmSB26677jpt3LixNEoDAAAWUS7m7AAAALiKsAMAACyNsAMAACyNsAMAACytXDxUECjvuAMEANyHKzsAAMDSuLIDoExwdQuAu3BlBwAAWBphBwAAWBofY10B+PgAAHAl48oOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNJ6gjCsCT5EG+D3AlYsrOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNL4biwAAK4gV+J3pHFlBwAAWBphBwAAWJpbw86aNWvUt29fhYaGymazacmSJU7bhw4dKpvN5rT07NnTqc/Ro0cVFRWlgIAABQUFafjw4crKyirDswAAAJ7MrWHnxIkTatWqlebNm1don549eyolJcWxfPTRR07bo6KitGvXLi1fvlxff/211qxZo5EjR5Z26QAAoJxw6wTlXr16qVevXhftY7fbFRISUuC2X375RcuWLdPmzZvVrl07SdLcuXPVu3dvzZw5U6GhoSVeMwAAKF88fs5OfHy8atasqaZNm+rBBx/UkSNHHNsSEhIUFBTkCDqSFBkZKS8vL23atMkd5QIAAA/j0bee9+zZU3feeafCw8O1d+9ePfnkk+rVq5cSEhJUoUIFpaamqmbNmk6v8fb2VnBwsFJTUwvdb3Z2trKzsx3rmZmZpXYOAADAvTw67AwaNMjx5xYtWqhly5Zq2LCh4uPjdcstt7i835iYGE2dOrUkSrykK/F5BgAAeBKP/xjr7xo0aKDq1asrKSlJkhQSEqL09HSnPmfPntXRo0cLnecjSdHR0crIyHAsBw8eLNW6AQCA+5SrsPP777/ryJEjql27tiSpQ4cOOnbsmLZu3eros2rVKuXl5SkiIqLQ/djtdgUEBDgtAADAmtz6MVZWVpbjKo0kJScnKzExUcHBwQoODtbUqVM1YMAAhYSEaO/evXr88cfVqFEj9ejRQ5J0zTXXqGfPnhoxYoTmz5+vM2fOaMyYMRo0aBB3YgEAAEluvrKzZcsWtWnTRm3atJEkTZgwQW3atNEzzzyjChUqaMeOHerXr5+aNGmi4cOHq23btlq7dq3sdrtjHx9++KGuvvpq3XLLLerdu7c6duyoN998012nBAAAPIxbr+x07dpVxphCt3/33XeX3EdwcLAWLlxYkmUBAAALKVdzdgAAAIqKsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACzNrWFnzZo16tu3r0JDQ2Wz2bRkyRLHtjNnzmjixIlq0aKFKleurNDQUP3zn//U4cOHnfZRv3592Ww2p2XGjBllfCYAAMBTuTXsnDhxQq1atdK8efPybTt58qS2bdump59+Wtu2bdPnn3+u3bt3q1+/fvn6Tps2TSkpKY5l7NixZVE+AAAoB7zdefBevXqpV69eBW4LDAzU8uXLndpee+013XDDDTpw4IDq1q3raPf391dISEip1goAAMqncjVnJyMjQzabTUFBQU7tM2bMULVq1dSmTRu99NJLOnv2rHsKBAAAHsetV3aK4vTp05o4caIGDx6sgIAAR/tDDz2k6667TsHBwdqwYYOio6OVkpKiWbNmFbqv7OxsZWdnO9YzMzNLtXYAAOA+5SLsnDlzRgMHDpQxRm+88YbTtgkTJjj+3LJlS/n6+mrUqFGKiYmR3W4vcH8xMTGaOnVqqdYMAAA8g8d/jHU+6Ozfv1/Lly93uqpTkIiICJ09e1b79u0rtE90dLQyMjIcy8GDB0u4agAA4Ck8+srO+aCzZ88excXFqVq1apd8TWJiory8vFSzZs1C+9jt9kKv+gAAAGtxa9jJyspSUlKSYz05OVmJiYkKDg5W7dq1ddddd2nbtm36+uuvlZubq9TUVElScHCwfH19lZCQoE2bNqlbt27y9/dXQkKCxo8fr3vvvVdVq1Z112kBAAAP4taws2XLFnXr1s2xfn7+zZAhQzRlyhR99dVXkqTWrVs7vS4uLk5du3aV3W7XokWLNGXKFGVnZys8PFzjx493mscDAACubG4NO127dpUxptDtF9smSdddd502btxY0mUBAAAL8fgJygAAAMVB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbmUtjZtm2bfvrpJ8f6l19+qf79++vJJ59UTk5OiRUHAABQXC6FnVGjRum3336TJP33v//VoEGDVKlSJS1evFiPP/54iRYIAABQHC6Fnd9++02tW7eWJC1evFidO3fWwoULtWDBAn322WclWR8AAECxuBR2jDHKy8uTJK1YsUK9e/eWJIWFhenPP/8sueoAAACKyaWw065dOz333HN6//33tXr1avXp00eSlJycrFq1apVogQAAAMXhUtiZPXu2tm3bpjFjxuipp55So0aNJEmffvqpbrzxxhItEAAAoDi8XXlRq1atnO7GOu+ll16St7dLuwQAACgVLl3ZadCggY4cOZKv/fTp02rSpEmxiwIAACgpLoWdffv2KTc3N197dna2fv/992IXBQAAUFKK9JnTV1995fjzd999p8DAQMd6bm6uVq5cqfDw8JKrDgAAoJiKFHb69+8vSbLZbBoyZIjTNh8fH9WvX18vv/xyiRUHAABQXEUKO+efrRMeHq7NmzerevXqpVIUAABASXHp1qnk5OSSrgMAAKBUuHyf+MqVK7Vy5Uqlp6c7rvic98477xS7MAAAgJLgUtiZOnWqpk2bpnbt2ql27dqy2WwlXRcAAECJcCnszJ8/XwsWLNB9991X0vUAAACUKJees5OTk8PXQgAAgHLBpbBz//33a+HChSVdCwAAQIlz6WOs06dP680339SKFSvUsmVL+fj4OG2fNWtWiRQHAABQXC5d2dmxY4dat24tLy8v7dy5U9u3b3csiYmJl72fNWvWqG/fvgoNDZXNZtOSJUucthtj9Mwzz6h27dqqWLGiIiMjtWfPHqc+R48eVVRUlAICAhQUFKThw4crKyvLldMCAAAW5NKVnbi4uBI5+IkTJ9SqVSv961//0p133plv+4svvqhXX31V7777rsLDw/X000+rR48e+vnnn+Xn5ydJioqKUkpKipYvX64zZ85o2LBhGjlyJB+zAQAAScV4zk5J6NWrl3r16lXgNmOM5syZo0mTJun222+XJL333nuqVauWlixZokGDBumXX37RsmXLtHnzZrVr106SNHfuXPXu3VszZ85UaGhomZ0LAADwTC6FnW7dul302TqrVq1yuaDzkpOTlZqaqsjISEdbYGCgIiIilJCQoEGDBikhIUFBQUGOoCNJkZGR8vLy0qZNm3THHXcUuO/s7GxlZ2c71jMzM4tdLwAA8EwuhZ3WrVs7rZ85c0aJiYnauXNnvi8IdVVqaqokqVatWk7ttWrVcmxLTU1VzZo1nbZ7e3srODjY0acgMTExmjp1aonUCQAAPJtLYWf27NkFtk+ZMqVcTA6Ojo7WhAkTHOuZmZkKCwtzY0UAAKC0uHQ3VmHuvffeEvterJCQEElSWlqaU3taWppjW0hIiNLT0522nz17VkePHnX0KYjdbldAQIDTAgAArKlEw05CQoLjLqniCg8PV0hIiFauXOloy8zM1KZNm9ShQwdJUocOHXTs2DFt3brV0WfVqlXKy8tTREREidQBAADKN5c+xrrwNnFjjFJSUrRlyxY9/fTTl72frKwsJSUlOdaTk5OVmJio4OBg1a1bV+PGjdNzzz2nxo0bO249Dw0NVf/+/SVJ11xzjXr27KkRI0Zo/vz5OnPmjMaMGaNBgwZxJxYAAJDkYtgJDAx0Wvfy8lLTpk01bdo03XrrrZe9ny1btqhbt26O9fPzaIYMGaIFCxbo8ccf14kTJzRy5EgdO3ZMHTt21LJly5yuHn344YcaM2aMbrnlFnl5eWnAgAF69dVXXTktAABgQS6FndjY2BI5eNeuXWWMKXS7zWbTtGnTNG3atEL7BAcH8wBBAABQqGI9VHDr1q365ZdfJEnXXnut2rRpUyJFAQAAlBSXwk56eroGDRqk+Ph4BQUFSZKOHTumbt26adGiRapRo0ZJ1ggAAOAyl+7GGjt2rI4fP65du3bp6NGjOnr0qHbu3KnMzEw99NBDJV0jAACAy1y6srNs2TKtWLFC11xzjaOtWbNmmjdvXpEmKAMAAJQ2l67s5OXlycfHJ1+7j4+P8vLyil0UAABASXEp7Nx88816+OGHdfjwYUfboUOHNH78eN1yyy0lVhwAAEBxuRR2XnvtNWVmZqp+/fpq2LChGjZsqPDwcGVmZmru3LklXSMAAIDLXJqzExYWpm3btmnFihX69ddfJZ17mnFkZGSJFgcAAFBcRbqys2rVKjVr1kyZmZmy2Wzq3r27xo4dq7Fjx+r666/Xtddeq7Vr15ZWrQAAAEVWpLAzZ84cjRgxosBvCQ8MDNSoUaM0a9asEisOAACguIoUdn788Uf17Nmz0O233nqr0zeQAwAAuFuRwk5aWlqBt5yf5+3trT/++KPYRQEAAJSUIoWdq666Sjt37ix0+44dO1S7du1iFwUAAFBSihR2evfuraefflqnT5/Ot+3UqVOaPHmybrvtthIrDgAAoLiKdOv5pEmT9Pnnn6tJkyYaM2aMmjZtKkn69ddfNW/ePOXm5uqpp54qlUIBAABcUaSwU6tWLW3YsEEPPvigoqOjZYyRJNlsNvXo0UPz5s1TrVq1SqVQAAAAVxT5oYL16tXTt99+q7/++ktJSUkyxqhx48aqWrVqadQHAABQLC49QVmSqlatquuvv74kawEAAChxLn03FgAAQHlB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm8WGnfv36stls+ZbRo0dLkrp27Zpv2wMPPODmqgEAgKfwdncBl7J582bl5uY61nfu3Knu3bvrH//4h6NtxIgRmjZtmmO9UqVKZVojAADwXB4fdmrUqOG0PmPGDDVs2FBdunRxtFWqVEkhISFlXRoAACgHPP5jrL/LycnRBx98oH/961+y2WyO9g8//FDVq1dX8+bNFR0drZMnT150P9nZ2crMzHRaAACANXn8lZ2/W7JkiY4dO6ahQ4c62u655x7Vq1dPoaGh2rFjhyZOnKjdu3fr888/L3Q/MTExmjp1ahlUDAAA3K1chZ23335bvXr1UmhoqKNt5MiRjj+3aNFCtWvX1i233KK9e/eqYcOGBe4nOjpaEyZMcKxnZmYqLCys9AoHAABuU27Czv79+7VixYqLXrGRpIiICElSUlJSoWHHbrfLbreXeI0AAMDzlJs5O7GxsapZs6b69Olz0X6JiYmSpNq1a5dBVQAAwNOViys7eXl5io2N1ZAhQ+Tt/b+S9+7dq4ULF6p3796qVq2aduzYofHjx6tz585q2bKlGysGAACeolyEnRUrVujAgQP617/+5dTu6+urFStWaM6cOTpx4oTCwsI0YMAATZo0yU2VAgAAT1Muws6tt94qY0y+9rCwMK1evdoNFQEAgPKi3MzZAQAAcAVhBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJpHh50pU6bIZrM5LVdffbVj++nTpzV69GhVq1ZNVapU0YABA5SWlubGigEAgKfx6LAjSddee61SUlIcy7p16xzbxo8fr//85z9avHixVq9ercOHD+vOO+90Y7UAAMDTeLu7gEvx9vZWSEhIvvaMjAy9/fbbWrhwoW6++WZJUmxsrK655hpt3LhR7du3L+tSAQCAB/L4Kzt79uxRaGioGjRooKioKB04cECStHXrVp05c0aRkZGOvldffbXq1q2rhISEi+4zOztbmZmZTgsAALAmjw47ERERWrBggZYtW6Y33nhDycnJ6tSpk44fP67U1FT5+voqKCjI6TW1atVSamrqRfcbExOjwMBAxxIWFlaKZwEAANzJoz/G6tWrl+PPLVu2VEREhOrVq6dPPvlEFStWdHm/0dHRmjBhgmM9MzOTwAMAgEV59JWdCwUFBalJkyZKSkpSSEiIcnJydOzYMac+aWlpBc7x+Tu73a6AgACnBQAAWFO5CjtZWVnau3evateurbZt28rHx0crV650bN+9e7cOHDigDh06uLFKAADgSTz6Y6xHH31Uffv2Vb169XT48GFNnjxZFSpU0ODBgxUYGKjhw4drwoQJCg4OVkBAgMaOHasOHTpwJxYAAHDw6LDz+++/a/DgwTpy5Ihq1Kihjh07auPGjapRo4Ykafbs2fLy8tKAAQOUnZ2tHj166PXXX3dz1QAAwJN4dNhZtGjRRbf7+flp3rx5mjdvXhlVBAAAyptyNWcHAACgqAg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0jw67MTExOj666+Xv7+/atasqf79+2v37t1Ofbp27Sqbzea0PPDAA26qGAAAeBqPDjurV6/W6NGjtXHjRi1fvlxnzpzRrbfeqhMnTjj1GzFihFJSUhzLiy++6KaKAQCAp/F2dwEXs2zZMqf1BQsWqGbNmtq6das6d+7saK9UqZJCQkLKujwAAFAOePSVnQtlZGRIkoKDg53aP/zwQ1WvXl3NmzdXdHS0Tp48edH9ZGdnKzMz02kBAADW5NFXdv4uLy9P48aN00033aTmzZs72u+55x7Vq1dPoaGh2rFjhyZOnKjdu3fr888/L3RfMTExmjp1almUDQAA3KzchJ3Ro0dr586dWrdunVP7yJEjHX9u0aKFateurVtuuUV79+5Vw4YNC9xXdHS0JkyY4FjPzMxUWFhY6RQOAADcqlyEnTFjxujrr7/WmjVrVKdOnYv2jYiIkCQlJSUVGnbsdrvsdnuJ1wkAADyPR4cdY4zGjh2rL774QvHx8QoPD7/kaxITEyVJtWvXLuXqAABAeeDRYWf06NFauHChvvzyS/n7+ys1NVWSFBgYqIoVK2rv3r1auHChevfurWrVqmnHjh0aP368OnfurJYtW7q5egAA4Ak8Ouy88cYbks49OPDvYmNjNXToUPn6+mrFihWaM2eOTpw4obCwMA0YMECTJk1yQ7UAAMATeXTYMcZcdHtYWJhWr15dRtUAAIDyqFw9ZwcAAKCoCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSLBN25s2bp/r168vPz08RERH64Ycf3F0SAADwAJYIOx9//LEmTJigyZMna9u2bWrVqpV69Oih9PR0d5cGAADczBJhZ9asWRoxYoSGDRumZs2aaf78+apUqZLeeecdd5cGAADcrNyHnZycHG3dulWRkZGONi8vL0VGRiohIcGNlQEAAE/g7e4CiuvPP/9Ubm6uatWq5dReq1Yt/frrrwW+Jjs7W9nZ2Y71jIwMSVJmZmaJ15eXfbLE93kpF56Hu2tw9/E9oYYr8fieUIMnHd8TanD38T2hhivx+J5QQ2n8+/r3/RpjLt7RlHOHDh0yksyGDRuc2h977DFzww03FPiayZMnG0ksLCwsLCwsFlgOHjx40axQ7q/sVK9eXRUqVFBaWppTe1pamkJCQgp8TXR0tCZMmOBYz8vL09GjR1WtWjXZbLaLHi8zM1NhYWE6ePCgAgICin8CVxDGznWMnesYO9cwbq5j7FxX1LEzxuj48eMKDQ29aL9yH3Z8fX3Vtm1brVy5Uv3795d0LrysXLlSY8aMKfA1drtddrvdqS0oKKhIxw0ICOBN7CLGznWMnesYO9cwbq5j7FxXlLELDAy8ZJ9yH3YkacKECRoyZIjatWunG264QXPmzNGJEyc0bNgwd5cGAADczBJh5+6779Yff/yhZ555RqmpqWrdurWWLVuWb9IyAAC48lgi7EjSmDFjCv3YqiTZ7XZNnjw538dguDTGznWMnesYO9cwbq5j7FxXWmNnM+ZS92sBAACUX+X+oYIAAAAXQ9gBAACWRtgBAACWRtgBAACWRti5DEePHlVUVJQCAgIUFBSk4cOHKysr66KvGTVqlBo2bKiKFSuqRo0auv322wv9ri4rK+rYHT16VGPHjlXTpk1VsWJF1a1bVw899JDj+8uuJK68795880117dpVAQEBstlsOnbsWNkU62bz5s1T/fr15efnp4iICP3www8X7b948WJdffXV8vPzU4sWLfTtt9+WUaWepSjjtmvXLg0YMED169eXzWbTnDlzyq5QD1SUsXvrrbfUqVMnVa1aVVWrVlVkZOQl36NWVpSx+/zzz9WuXTsFBQWpcuXKat26td5///0iH5OwcxmioqK0a9cuLV++XF9//bXWrFmjkSNHXvQ1bdu2VWxsrH755Rd99913Msbo1ltvVW5ubhlV7RmKOnaHDx/W4cOHNXPmTO3cuVMLFizQsmXLNHz48DKs2jO48r47efKkevbsqSeffLKMqnS/jz/+WBMmTNDkyZO1bds2tWrVSj169FB6enqB/Tds2KDBgwdr+PDh2r59u/r376/+/ftr586dZVy5exV13E6ePKkGDRpoxowZhX4Vz5WiqGMXHx+vwYMHKy4uTgkJCQoLC9Ott96qQ4cOlXHl7lfUsQsODtZTTz2lhIQE7dixQ8OGDdOwYcP03XffFe3AJfJtnBb2888/G0lm8+bNjralS5cam81mDh06dNn7+fHHH40kk5SUVBpleqSSGrtPPvnE+Pr6mjNnzpRGmR6puGMXFxdnJJm//vqrFKv0DDfccIMZPXq0Yz03N9eEhoaamJiYAvsPHDjQ9OnTx6ktIiLCjBo1qlTr9DRFHbe/q1evnpk9e3YpVufZijN2xhhz9uxZ4+/vb959993SKtFjFXfsjDGmTZs2ZtKkSUU6Lld2LiEhIUFBQUFq166doy0yMlJeXl7atGnTZe3jxIkTio2NVXh4uMLCwkqrVI9TEmMnSRkZGQoICJC3t2WegXlJJTV2VpeTk6OtW7cqMjLS0ebl5aXIyEglJCQU+JqEhASn/pLUo0ePQvtbkSvjhnNKYuxOnjypM2fOKDg4uLTK9EjFHTtjjFauXKndu3erc+fORTo2YecSUlNTVbNmTac2b29vBQcHKzU19aKvff3111WlShVVqVJFS5cu1fLly+Xr61ua5XqU4ozdeX/++aeeffbZS358YzUlMXZXgj///FO5ubn5vhqmVq1ahY5TampqkfpbkSvjhnNKYuwmTpyo0NDQfKHb6lwdu4yMDFWpUkW+vr7q06eP5s6dq+7duxfp2Fds2HniiSdks9kuuhR3QnFUVJS2b9+u1atXq0mTJho4cKBOnz5dQmfgPmUxdpKUmZmpPn36qFmzZpoyZUrxC/cAZTV2ADzTjBkztGjRIn3xxRfy8/Nzdznlgr+/vxITE7V582ZNnz5dEyZMUHx8fJH2ceV8LnCBRx55REOHDr1onwYNGigkJCTfxKmzZ8/q6NGjl5ykFxgYqMDAQDVu3Fjt27dX1apV9cUXX2jw4MHFLd+tymLsjh8/rp49e8rf319ffPGFfHx8ilu2RyiLsbuSVK9eXRUqVFBaWppTe1paWqHjFBISUqT+VuTKuOGc4ozdzJkzNWPGDK1YsUItW7YszTI9kqtj5+XlpUaNGkmSWrdurV9++UUxMTHq2rXrZR/7ig07NWrUUI0aNS7Zr0OHDjp27Ji2bt2qtm3bSpJWrVqlvLw8RUREXPbxjDEyxig7O9vlmj1FaY9dZmamevToIbvdrq+++spS//sp6/ed1fn6+qpt27ZauXKl+vfvL0nKy8vTypUrC/1i4A4dOmjlypUaN26co2358uXq0KFDGVTsGVwZN5zj6ti9+OKLmj59ur777junuXhXkpJ63+Xl5RX939IiTWe+QvXs2dO0adPGbNq0yaxbt840btzYDB482LH9999/N02bNjWbNm0yxhizd+9e8/zzz5stW7aY/fv3m/Xr15u+ffua4OBgk5aW5q7TcIuijl1GRoaJiIgwLVq0MElJSSYlJcWxnD171l2n4RZFHTtjjElJSTHbt283b731lpFk1qxZY7Zv326OHDnijlMoE4sWLTJ2u90sWLDA/Pzzz2bkyJEmKCjIpKamGmOMue+++8wTTzzh6L9+/Xrj7e1tZs6caX755RczefJk4+PjY3766Sd3nYJbFHXcsrOzzfbt28327dtN7dq1zaOPPmq2b99u9uzZ465TcJuijt2MGTOMr6+v+fTTT53+Tjt+/Li7TsFtijp2zz//vPn+++/N3r17zc8//2xmzpxpvL29zVtvvVWk4xJ2LsORI0fM4MGDTZUqVUxAQIAZNmyY05s0OTnZSDJxcXHGGGMOHTpkevXqZWrWrGl8fHxMnTp1zD333GN+/fVXN52B+xR17M7fMl3Qkpyc7J6TcJOijp0xxkyePLnAsYuNjS37EyhDc+fONXXr1jW+vr7mhhtuMBs3bnRs69KlixkyZIhT/08++cQ0adLE+Pr6mmuvvdZ88803ZVyxZyjKuJ1/v124dOnSpewL9wBFGbt69eoVOHaTJ08u+8I9QFHG7qmnnjKNGjUyfn5+pmrVqqZDhw5m0aJFRT6mzRhjinYtCAAAoPy4Yu/GAgAAVwbCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgAAsDTCDgC3i4+Pl81m07Fjx4q9L5vNpiVLlhR7P+XluAAujbAD4LLNnz9f/v7+Onv2rKMtKytLPj4++b6U73yA2bt37yX3e+ONNyolJUWBgYGXXcuUKVPUunXry+4P4MpF2AFw2bp166asrCxt2bLF0bZ27VqFhIRo06ZNOn36tKM9Li5OdevWVcOGDS+5X19fX4WEhMhms5VK3QCubIQdAJetadOmql27tuLj4x1t8fHxuv322xUeHq6NGzc6tXfr1k3SuW8pjomJUXh4uCpWrKhWrVrp008/dep74cdYb731lsLCwlSpUiXdcccdmjVrloKCgiRJCxYs0NSpU/Xjjz/KZrPJZrNpwYIFjtf++eefuuOOO1SpUiU1btxYX331VaHn9OSTTxb4TfKtWrXStGnTJEmbN29W9+7dVb16dQUGBqpLly7atm1bofss6HwSExNls9m0b98+R9u6devUqVMnVaxYUWFhYXrooYd04sSJQvcLwDWEHQBF0q1bN8XFxTnW4+Li1LVrV3Xp0sXRfurUKW3atMkRdmJiYvTee+9p/vz52rVrl8aPH697771Xq1evLvAY69ev1wMPPKCHH35YiYmJ6t69u6ZPn+7Yfvfdd+uRRx7Rtddeq5SUFKWkpOjuu+92bJ86daoGDhyoHTt2qHfv3oqKitLRo0cLPFZUVJR++OEHp4/bdu3apR07duiee+6RJB0/flxDhgzRunXrtHHjRjVu3Fi9e/fW8ePHXRxFae/everZs6cGDBigHTt26OOPP9a6des0ZswYl/cJoBDF//5SAFeSt956y1SuXNmcOXPGZGZmGm9vb5Oenm4WLlxoOnfubIwxZuXKlUaS2b9/vzl9+rSpVKmS2bBhg9N+hg8fbgYPHmyM+d+33f/111/GGGPuvvtu06dPH6f+UVFRJjAw0LE+efJk06pVq3z1STKTJk1yrGdlZRlJZunSpYWeU6tWrcy0adMc69HR0SYiIqLQ/rm5ucbf39/85z//cTruF198UeD5GGPM9u3bjSSTnJzsOP+RI0c67Xft2rXGy8vLnDp1qtBjAyg6ruwAKJKuXbvqxIkT2rx5s9auXasmTZqoRo0a6tKli2PeTnx8vBo0aKC6desqKSlJJ0+eVPfu3VWlShXH8t577xU6eXn37t264YYbnNouXL+Yli1bOv5cuXJlBQQEKD09vdD+UVFRWrhwoSTJGKOPPvpIUVFRju1paWkaMWKEGjdurMDAQAUEBCgrK0sHDhy47Jou9OOPP2rBggVOY9KjRw/l5eUpOTnZ5f0CyM/b3QUAKF8aNWqkOnXqKC4uTn/99Ze6dOkiSQoNDVVYWJg2bNiguLg43XzzzZLO3a0lSd98842uuuoqp33Z7fZSqdHHx8dp3WazKS8vr9D+gwcP1sSJE7Vt2zadOnVKBw8edPpYbMiQITpy5IheeeUV1atXT3a7XR06dFBOTk6B+/PyOvf/SGOMo+3MmTNOfbKysjRq1Cg99NBD+V5ft27dS58kgMtG2AFQZN26dVN8fLz++usvPfbYY472zp07a+nSpfrhhx/04IMPSpKaNWsmu92uAwcOOILRpTRt2lSbN292artw3dfXV7m5ucU8k3Pq1KmjLl266MMPP9SpU6fUvXt31axZ07F9/fr1ev3119W7d29J0sGDB/Xnn38Wur8aNWpIklJSUlS1alVJ5yYo/911112nn3/+WY0aNSqRcwBQOMIOgCLr1q2bRo8erTNnzjgFmC5dumjMmDHKyclxTE729/fXo48+qvHjxysvL08dO3ZURkaG1q9fr4CAAA0ZMiTf/seOHavOnTtr1qxZ6tu3r1atWqWlS5c63Zpev359JScnKzExUXXq1JG/v3+xrhRFRUVp8uTJysnJ0ezZs522NW7cWO+//77atWunzMxMPfbYY6pYsWKh+2rUqJHCwsI0ZcoUTZ8+Xb/99ptefvllpz4TJ05U+/btNWbMGN1///2qXLmyfv75Zy1fvlyvvfaay+cBoADunjQEoPxJTk42kszVV1/t1L5v3z4jyTRt2tSpPS8vz8yZM8c0bdrU+Pj4mBo1apgePXqY1atXG2MKntD75ptvmquuuspUrFjR9O/f3zz33HMmJCTEsf306dNmwIABJigoyEgysbGxxhjnicLnBQYGOrYX5q+//jJ2u91UqlTJHD9+3Gnbtm3bTLt27Yyfn59p3LixWbx4salXr56ZPXu2o8+Fx123bp1p0aKF8fPzM506dTKLFy92mqBsjDE//PCD6d69u6lSpYqpXLmyadmypZk+ffpF6wRQdDZj/vahMgB4qBEjRujXX3/V2rVr3V0KgHKGj7EAeKSZM2eqe/fuqly5spYuXap3331Xr7/+urvLAlAOcWUHgEcaOHCg4uPjdfz4cTVo0EBjx47VAw884O6yAJRDhB0AAGBpPFQQAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABYGmEHAABY2v8Ho9UZPjeqnLwAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "id": "20840c40", + "metadata": { + "id": "20840c40" + }, + "source": [ + "### Training\n", + "\n", + "We train this by dividing the input data into batches and computing gradients across batches. In this notebook, batch and data size is small so that it can be run on a laptop in a couple of minutes, but normally you'd use larger batches and more data. Let's start with the data.\n", + "\n", + "\n", + "\n", + "### Training follows the following algorithm:\n", + "\n", + "1. Shuffle the training data and divide them into batches. This is done by the function: **data_generator(discretise(ipds), spikes)**. Note that this function outputs with every execution a new set of batches after shuffling the input data.\n", + "2. Calculate the network output for every input value in the batch. Compute the loss for each point and then find the average loss across the entire batch. Here we use as loss function the Negative Log likelihood Loss function: **loss_fn = nn.NLLLoss()**. Note: This loss function computes the average loss accross the input batch by default.\n", + "3. To update the weights, calculate the gradient of the average loss function with respect to the model parameters, which is equivalent to computing the average of the individual gradients from the points in the batch. This is done by the function: **loss.backward()**\n", + "4. Update the weights according to the formular: w_new = w_old - lr * avg_i(dL_i/dw), where lr represents the learning rate. This is done by the function: **optimizer.step()**\n", + "5. Once all batches have been processed, begin a new epoch of the training process. Shuffle the data, define a new set of batches, and repeat the training." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc5fdc4f", + "metadata": { + "id": "fc5fdc4f" + }, + "outputs": [], + "source": [ + "# Parameters for training. These aren't optimal, but instead designed\n", + "# to give a reasonable result in a small amount of time for the tutorial!\n", + "if my_computer_is_slow:\n", + " batch_size = 64\n", + " n_training_batches = 64\n", + "else:\n", + " batch_size = 128\n", + " n_training_batches = 128\n", + "n_testing_batches = 32\n", + "num_samples = batch_size*n_training_batches\n", + "\n", + "# NOTE 1:A batch is a subset of the training dataset used for a single update of the model parameters.\n", + "# Rather than updating model parameters after processing each individual data point (stochastic gradient descent),\n", + "# batches allow the network to update parameters after processing a group of data points.\n", + "# This approach is called mini-batch gradient descent and is more computationally efficient than stochastic gradient descent.\n", + "# The size of a batch, known as the batch size, is an important hyperparameter and can affect\n", + "# the model's training dynamics and performance.\n", + "\n", + "# NOTE2 : Small batch sizes improve generalization through noisier gradients and\n", + "# require less memory, making them ideal for limited resources, but they may\n", + "# lead to slower computation and less stable convergence due to noisier gradient\n", + "# updates. Conversely, large batch sizes enhance computational efficiency and stability\n", + "# of gradient estimates due to better GPU utilization, but they demand more memory and\n", + "# might result in poorer generalization due to the risk of converging to sharp minima\n", + "# that don't generalize well on unseen data.\n", + "\n", + "\n", + "\n", + "\n", + "# Generator function iterates over the data in batches\n", + "# We randomly permute the order of the data to improve learning\n", + "def data_generator(ipds, spikes):\n", + " \"\"\"\n", + " Generate batches of data, iterating over IPDs and spikes in a randomized order.\n", + "\n", + " This generator function yields shuffled batches of interaural phase differences (IPDs) and spikes,\n", + " facilitating mini-batch gradient descent training of a model. The order of the data is randomized\n", + " to improve learning, mitigating the risk of the model memorizing the order of the training data\n", + " (overfitting) and helping the model generalize better to unseen data.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A 1D tensor of IPD values.\n", + " Shape: (n_samples, )\n", + " spikes : Tensor\n", + " A 3D tensor representing a batch of input spike trains.\n", + " Shape: (n_samples, duration_steps, input_size)\n", + "\n", + " Yields\n", + " ------\n", + " spike_batch : Tensor\n", + " A 3D tensor containing a batch of input spike trains.\n", + " Shape: (batch_size, duration_steps, input_size)\n", + " ipd_batch : Tensor\n", + " A 1D tensor containing a batch of IPD values.\n", + " Shape: (batch_size, )\n", + "\n", + " Notes\n", + " -----\n", + " - `batch_size` should be defined in the surrounding scope or passed as an argument.\n", + " - Ensure that `ipds` and the first dimension of `spikes` have the same size.\n", + " - The generator yields `spike_batch` and `ipd_batch` which are randomly shuffled batches of `spikes` and `ipds` respectively.\n", + " \"\"\"\n", + " perm = torch.randperm(spikes.shape[0])\n", + " spikes = spikes[perm, :, :]\n", + " ipds = ipds[perm]\n", + " n, _, _ = spikes.shape\n", + " n_batch = n//batch_size\n", + " for i in range(n_batch):\n", + " spike_batch = spikes[i*batch_size:(i+1)*batch_size, :, :] # spike_batch\n", + " ipd_batch = ipds[i*batch_size:(i+1)*batch_size] # ipd_batch\n", + " yield spike_batch, ipd_batch # yield means that at each function call the function returns the next result of the loop interation" + ] + }, + { + "cell_type": "markdown", + "id": "6d0c463c", + "metadata": { + "id": "6d0c463c" + }, + "source": [ + "Now we run the training. We generate the training data, initialise the weight matrix, set the training parameters, and run for a few epochs, printing the training loss as we go. We use the all-powerful Adam optimiser, softmax and negative log likelihood loss." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7fb79463", + "metadata": { + "id": "7fb79463", + "outputId": "81348d5c-5004-4d3a-ca22-e2d2a2bb99ec", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 683 + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n", + "Epoch 1: loss=5.96144\n", + "Epoch 2: loss=3.25891\n", + "Epoch 3: loss=2.98991\n", + "Epoch 4: loss=2.69476\n", + "Epoch 5: loss=2.53694\n", + "Epoch 6: loss=2.46820\n", + "Epoch 7: loss=2.36351\n", + "Epoch 8: loss=2.23314\n", + "Epoch 9: loss=2.05013\n", + "Epoch 10: loss=2.03256\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEH0lEQVR4nO3deXxU9b3/8fdkm4SQTBJCFiAEMEDCngBiAFdQVKyi3eTiD+0V+9CCQn3YW7F6RbkarZdWe2lR3LBVStUKWjeKqCACFQwgi+yQBbKwJDNJIEOSmd8fSQamJEMSkpxZXs/H4zzInDkz85kG69vvOZ/PMTmdTqcAAADg84KMLgAAAADtg2AHAADgJwh2AAAAfoJgBwAA4CcIdgAAAH6CYAcAAOAnCHYAAAB+gmAHAADgJ0KMLqCzORwOHT16VFFRUTKZTEaXAwAA4JHT6VRFRYV69OihoCDPa3IBF+yOHj2qlJQUo8sAAABolYKCAvXq1cvjMQEX7KKioiTV/48THR1tcDUAAACe2Ww2paSkuDKMJwEX7BpPv0ZHRxPsAACAz2jJJWQ0TwAAAPgJgh0AAICfINgBAAD4CYIdAACAnyDYAQAA+AmCHQAAgJ8g2AEAAPgJw4PdkSNHdMcdd6hbt26KiIjQ0KFDtXnzZo+v+fLLL5WVlSWz2ay0tDQtWbKkc4oFAADwYoYGu7KyMo0bN06hoaH65JNPtGvXLi1YsECxsbHNvubQoUOaPHmyrr76am3dulVz5szRjBkztHLlyk6sHAAAwPuYnE6n06gPf/jhh/X111/rq6++avFrfv3rX+ujjz7Sjh07XPtuv/12lZeX69NPP73g6202mywWi6xWK3eeAAAAXq812cXQFbsPPvhAo0aN0o9//GMlJCQoMzNTL7/8ssfXbNiwQRMnTnTbN2nSJG3YsKEjSwUAAPB6hga7gwcPatGiRerfv79Wrlyp++67Tw888IDeeOONZl9TXFysxMREt32JiYmy2Ww6ffr0ecfb7XbZbDa3DQAAwB+FGPnhDodDo0aN0tNPPy1JyszM1I4dO/Tiiy/qzjvvbJfPyMnJ0RNPPNEu7wUAAODNDF2xS05O1qBBg9z2ZWRkKD8/v9nXJCUlqaSkxG1fSUmJoqOjFRERcd7xc+fOldVqdW0FBQXtUzwAAICXMXTFbty4cdqzZ4/bvr179yo1NbXZ12RnZ+vjjz9227dq1SplZ2c3ebzZbJbZbL74Ylthe6FV//juqPrFR+r2S3t36mcDAIDAZeiK3S9/+Utt3LhRTz/9tPbv36+lS5dq8eLFmjlzpuuYuXPnavr06a7H9957rw4ePKj/+q//0u7du/WnP/1Jb7/9tn75y18a8RWatPOoVYvXHtT7W48aXQoAAAgghga70aNHa/ny5frrX/+qIUOGaP78+Xr++ec1bdo01zFFRUVup2b79u2rjz76SKtWrdLw4cO1YMECvfLKK5o0aZIRX6FJWan1c/i2FZarts5hcDUAACBQGDrHzgidMcfO4XBq+BP/VIW9Vh89MF6De1g65HMAAID/85k5dv4qKMikEb1jJEm5+eWG1gIAAAIHwa6DZPauPx27Jb/M4EoAAECgINh1kKyGFbstrNgBAIBOQrDrIJkp9St2h45X6WTVGYOrAQAAgYBg10EsXUJ1SfdISZyOBQAAnYNg14GyGq6zyyXYAQCATkCw60CN8+y4zg4AAHQGgl0Halyx21ZQrjpHQI0LBAAABiDYdaD+CV0VZQ5R1Zk67SmuMLocAADg5wh2HSgoyKThKTGSuM4OAAB0PIJdB8ty3YGCYAcAADoWwa6DZTY0UGylgQIAAHQwgl0Hy2oYVHzweJXKGFQMAAA6EMGug7kNKi7gdCwAAOg4BLtOkNk4qDiv3NhCAACAXyPYdQLuQAEAADoDwa4TZKXGSGJQMQAA6FgEu07QPyFKXRsGFe8tYVAxAADoGAS7ThAcZNIIBhUDAIAORrDrJJmNg4ppoAAAAB2EYNdJGhsotrBiBwAAOgjBrpM0rtgxqBgAAHQUgl0niekSpn4Ng4q3FpQbWwwAAPBLBLtOxDw7AADQkQh2nYhgBwAAOhLBrhM1Xme3NZ9BxQAAoP0R7DrRgEQGFQMAgI5DsOtEwUEmDU+xSJK25JcbWwwAAPA7BLtOxnV2AACgoxDsOhnBDgAAdBSCXSdrvGfswWNVKj/FoGIAANB+CHadLDYyTP3i6wcVc50dAABoTwQ7A2Ry31gAANABCHYGyEqNkSTlsmIHAADaEcHOAI0NFFsLGFQMAADaD8HOAAMSoxQZFqxKe632lTKoGAAAtA9Dg928efNkMpnctvT09GaPX7JkyXnHh4eHd2LF7aN+UHGMJCk3r9zQWgAAgP8IMbqAwYMH67PPPnM9DgnxXFJ0dLT27NnjemwymTqsto6U1TtW6w+c0Jb8Mv3HmN5GlwMAAPyA4cEuJCRESUlJLT7eZDK16nhvdbaBgs5YAADQPgy/xm7fvn3q0aOH+vXrp2nTpik/P9/j8ZWVlUpNTVVKSopuueUW7dy5s5MqbV+ZKfUNFAcYVAwAANqJocFuzJgxWrJkiT799FMtWrRIhw4d0uWXX66KiqYbCgYOHKjXXntN77//vt588005HA6NHTtWhYWFzX6G3W6XzWZz27xBbGSY+jYOKi4oN7YYAADgF0xOp9Nr5m2Ul5crNTVVv/vd73T33Xdf8PiamhplZGRo6tSpmj9/fpPHzJs3T0888cR5+61Wq6Kjoy+65ovx4Ntb9V7uET1wTZoevG6gobUAAADvZLPZZLFYWpRdDD8Ve66YmBgNGDBA+/fvb9HxoaGhyszM9Hj83LlzZbVaXVtBQUF7lXvRGufZMagYAAC0B68KdpWVlTpw4ICSk5NbdHxdXZ22b9/u8Xiz2azo6Gi3zVswqBgAALQnQ4PdQw89pDVr1ujw4cNav369br31VgUHB2vq1KmSpOnTp2vu3Lmu45988kn985//1MGDB5Wbm6s77rhDeXl5mjFjhlFf4aIMTIpSl4ZBxftLK40uBwAA+DhDx50UFhZq6tSpOnHihLp3767x48dr48aN6t69uyQpPz9fQUFns2dZWZnuueceFRcXKzY2ViNHjtT69es1aNAgo77CRQkOMml4rxhtOHhCufllGpgUZXRJAADAh3lV80RnaM0FiJ3huZW79ccvDujHI3vpuR8PN7ocAADgZXy2eSIQnW2gYFAxAAC4OAQ7g2X2Pjuo2HqqxuBqAACALyPYGSzObVAxq3YAAKDtCHZeIDMlRhLz7AAAwMUh2HmBzNT607FbuM4OAABcBIKdF8jqHSNJ2ppfLgeDigEAQBsR7LzAwMT6QcUV9lrtP8agYgAA0DYEOy8QEhyk4b1iJEm5eZyOBQAAbUOw8xKZDadjmWcHAADaimDnJc4OKi43thAAAOCzCHZeonHFbn9pJYOKAQBAmxDsvES3rmb16dZFkrS1sNzYYgAAgE8i2HkR1+lYGigAAEAbEOy8CA0UAADgYhDsvEhmw4rd1gIGFQMAgNYj2HmR9KSGQcXVDCoGAACtR7DzIiHBQRrWyyKJ+8YCAIDWI9h5mbMNFOXGFgIAAHwOwc7LZLoGFbNiBwAAWodg52UaO2P3lVbKeppBxQAAoOUIdl4mvqtZqY2DigvKjS0GAAD4FIKdF2JQMQAAaAuCnRfKajgdu4UVOwAA0AoEOy/U2ECxJb+MQcUAAKDFCHZeKD0pShGh9YOKDzCoGAAAtBDBzgudO6iYsScAAKClCHZeKiuVQcUAAKB1CHZeqrEzdksBK3YAAKBlCHZe6txBxbZqBhUDAIALI9h5qfiuZvWO6yKnU9qaX250OQAAwAcQ7LxY4zw7GigAAEBLEOy8mKuBghU7AADQAgQ7L9bYQLGVQcUAAKAFCHZeLD0pSuGhQbJV1+rgcQYVAwAAzwh2Xqx+UHGMJObZAQCACyPYebnG07E0UAAAgAsxNNjNmzdPJpPJbUtPT/f4mnfeeUfp6ekKDw/X0KFD9fHHH3dStcagMxYAALSU4St2gwcPVlFRkWtbt25ds8euX79eU6dO1d13360tW7ZoypQpmjJlinbs2NGJFXeuxs5YBhUDAIALMTzYhYSEKCkpybXFx8c3e+wLL7yg66+/Xr/61a+UkZGh+fPnKysrSwsXLuzEijvXuYOKtxWUG10OAADwYoYHu3379qlHjx7q16+fpk2bpvz8/GaP3bBhgyZOnOi2b9KkSdqwYUNHl2moxtuL0UABAAA8MTTYjRkzRkuWLNGnn36qRYsW6dChQ7r88stVUVHR5PHFxcVKTEx025eYmKji4uJmP8Nut8tms7ltvoYGCgAA0BIhRn74DTfc4Pp52LBhGjNmjFJTU/X222/r7rvvbpfPyMnJ0RNPPNEu72WUxmC3pWFQcVCQyeCKAACANzL8VOy5YmJiNGDAAO3fv7/J55OSklRSUuK2r6SkRElJSc2+59y5c2W1Wl1bQUFBu9bcGdKTzx1UXGV0OQAAwEt5VbCrrKzUgQMHlJyc3OTz2dnZWr16tdu+VatWKTs7u9n3NJvNio6Odtt8Tei5g4o5HQsAAJphaLB76KGHtGbNGh0+fFjr16/XrbfequDgYE2dOlWSNH36dM2dO9d1/OzZs/Xpp59qwYIF2r17t+bNm6fNmzdr1qxZRn2FTtPYQLGFYAcAAJph6DV2hYWFmjp1qk6cOKHu3btr/Pjx2rhxo7p37y5Jys/PV1DQ2ew5duxYLV26VI8++qgeeeQR9e/fXytWrNCQIUOM+gqdxtVAQWcsAABohsnpdDqNLqIz2Ww2WSwWWa1Wnzote6zCrtFPfSaTSdr2+HWKDg81uiQAANAJWpNdvOoaOzSve5RZKXERDCoGAADNItj5kLNjT8qNLQQAAHglgp0PyUyJkURnLAAAaBrBzodkpZ5dsXM4AurSSAAA0AIEOx+SkRyt8NAgWU/XMKgYAACch2DnQ0KDgzSsZ4wkTscCAIDzEex8TGZqjCQaKAAAwPkIdj4mM6XxOjtW7AAAgDuCnY/Jalix21NSoYrqGmOLAQAAXoVg52MSosLVK7ZxULHV6HIAAIAXIdj5INd9YzkdCwAAzkGw80FZvWMkcZ0dAABwR7DzQZmNtxYrKJfTyaBiAABQj2DngzKSo2UOCVL5KQYVAwCAswh2PigsJEjDelkkSbl5nI4FAAD1CHY+6mwDRbmxhQAAAK9BsPNRruvsaKAAAAANCHY+qrEzdm9JhSrttcYWAwAAvALBzkclRIerZ0yEHE5pW0G50eUAAAAvQLDzYVmpDdfZ0UABAABEsPNpjadjuQMFAACQCHY+LYtBxQAA4BwEOx927qDiQwwqBgAg4BHsfFhYSJCG9mwYVMw8OwAAAh7Bzse5Gii4zg4AgIBHsPNxrgYKOmMBAAh4BDsf19hAwaBiAABAsPNx5w4q/o5BxQAABDSCnR/IZJ4dAAAQwc4vNJ6OpTMWAIDARrDzA42dsVvyyxhUDABAACPY+YFBDYOKyxhUDABAQCPY+YFzBxVv4XQsAAABi2DnJ2igAAAABDs/QQMFAAAg2PmJxgaKPcU2BhUDABCgCHZ+IpFBxQAABDyvCXbPPPOMTCaT5syZ0+wxS5YskclkctvCw8M7r0gv13id3RaCHQAAASnE6AIkadOmTXrppZc0bNiwCx4bHR2tPXv2uB6bTKaOLM2nZPaO1YffFSk3jwYKAAACkeErdpWVlZo2bZpefvllxcbGXvB4k8mkpKQk15aYmNgJVfqGrHNW7BhUDABA4DE82M2cOVOTJ0/WxIkTW3R8ZWWlUlNTlZKSoltuuUU7d+70eLzdbpfNZnPb/NXgHhaFhQTpZNUZHT5xyuhyAABAJzM02C1btky5ubnKyclp0fEDBw7Ua6+9pvfff19vvvmmHA6Hxo4dq8LCwmZfk5OTI4vF4tpSUlLaq3yvc+6gYk7HAgAQeAwLdgUFBZo9e7beeuutFjdAZGdna/r06RoxYoSuvPJKvffee+revbteeumlZl8zd+5cWa1W11ZQUNBeX8ErnT0dS7ADACDQGNY88e2336q0tFRZWVmufXV1dVq7dq0WLlwou92u4OBgj+8RGhqqzMxM7d+/v9ljzGazzGZzu9Xt7TJ7x0o6pNy8cqNLAQAAncywYDdhwgRt377dbd/PfvYzpaen69e//vUFQ51UHwS3b9+uG2+8saPK9DmNd6DYXWxTlb1WkWavaHwGAACdwLB/60dFRWnIkCFu+yIjI9WtWzfX/unTp6tnz56ua/CefPJJXXbZZUpLS1N5ebmee+455eXlacaMGZ1ev7dKsoSrhyVcR63V2lZYrrGXxBtdEgAA6CSGd8V6kp+fr6KiItfjsrIy3XPPPcrIyNCNN94om82m9evXa9CgQQZW6X0yG24vtoX7xgIAEFBMzgAbeGaz2WSxWGS1WhUdHW10OR3i1XWHNP/DXZqQnqBX7xptdDkAAOAitCa7ePWKHdomk0HFAAAEJIKdHxrcI1phwfWDivMYVAwAQMAg2Pkhc0iwhvSsX6rNzWeeHQAAgYJg56cax54Q7AAACBwEOz+V1dAZy6BiAAACB8HOTzU2UOwutunUmVpjiwEAAJ2CYOenki0RSraEy+GUthVYjS4HAAB0AoKdH+M6OwAAAgvBzo+55tkR7AAACAgEOz/maqDIZ1AxAACBgGDnx84dVJx/kkHFAAD4O4KdHzOHBGswg4oBAAgYBDs/52qgYJ4dAAB+j2Dn5+iMBQAgcBDs/FxWaowkaXdxBYOKAQDwcwQ7P5dsiVBSdLjqHE59V8igYgAA/BnBLgA0rtpxOhYAAP9GsAsANFAAABAYCHYBILMh2G3JL2NQMQAAfoxgFwCG9KwfVHyCQcUAAPg1gl0AMIcEa1CP+kHFW/LLjS0GAAB0GIJdgGCeHQAA/o9gFyDojAUAwP8R7AJE44rd90UMKgYAwF8R7AJEjxgGFQMA4O8IdgEks3eMJE7HAgDgrwh2ASTLNc+u3NhCAABAhyDYBZDGBgoGFQMA4J/aFOwKCgpUWFjoevzNN99ozpw5Wrx4cbsVhvY3uIdFocEmHa88o4KTp40uBwAAtLM2Bbv/+I//0BdffCFJKi4u1rXXXqtvvvlGv/nNb/Tkk0+2a4FoP+GhwRrcwyKJ6+wAAPBHbQp2O3bs0KWXXipJevvttzVkyBCtX79eb731lpYsWdKe9aGdMagYAAD/1aZgV1NTI7PZLEn67LPPdPPNN0uS0tPTVVRU1H7Vod01dsbSQAEAgP9pU7AbPHiwXnzxRX311VdatWqVrr/+eknS0aNH1a1bt3YtEO0rK7VxULFNp8/UGVwNAABoT20Kds8++6xeeuklXXXVVZo6daqGDx8uSfrggw9cp2jhnXpYwpUYbVatw6nvCsuNLgcAALSjkLa86KqrrtLx48dls9kUGxvr2v/zn/9cXbp0abfi0P5MJpOyesfqkx3Fys0v15h+rLACAOAv2rRid/r0adntdleoy8vL0/PPP689e/YoISGhXQtE+6OBAgAA/9SmYHfLLbfoz3/+sySpvLxcY8aM0YIFCzRlyhQtWrSoTYU888wzMplMmjNnjsfj3nnnHaWnpys8PFxDhw7Vxx9/3KbPC2TnNlAwqBgAAP/RpmCXm5uryy+/XJL07rvvKjExUXl5efrzn/+sP/zhD61+v02bNumll17SsGHDPB63fv16TZ06VXfffbe2bNmiKVOmaMqUKdqxY0dbvkbAGtKzcVCxXYVlDCoGAMBftCnYnTp1SlFRUZKkf/7zn7rtttsUFBSkyy67THl5ea16r8rKSk2bNk0vv/yy2/V6TXnhhRd0/fXX61e/+pUyMjI0f/58ZWVlaeHChW35GgErPDRYgxhUDACA32lTsEtLS9OKFStUUFCglStX6rrrrpMklZaWKjo6ulXvNXPmTE2ePFkTJ0684LEbNmw477hJkyZpw4YNzb7GbrfLZrO5bZCyGk7H5uYR7AAA8BdtCnb//d//rYceekh9+vTRpZdequzsbEn1q3eZmZktfp9ly5YpNzdXOTk5LTq+uLhYiYmJbvsSExNVXFzc7GtycnJksVhcW0pKSovr82dnGyjKjS0EAAC0mzYFux/96EfKz8/X5s2btXLlStf+CRMm6Pe//32L3qOgoECzZ8/WW2+9pfDw8LaU0SJz586V1Wp1bQUFBR32Wb6ksYGCQcUAAPiPNs2xk6SkpCQlJSWpsLBQktSrV69WDSf+9ttvVVpaqqysLNe+uro6rV27VgsXLpTdbldwcPB5n1lSUuK2r6SkRElJSc1+jtlsdt3+DGf1jIlQQpRZpRV2bT9i1aV944wuCQAAXKQ2rdg5HA49+eSTslgsSk1NVWpqqmJiYjR//nw5HI4WvceECRO0fft2bd261bWNGjVK06ZN09atW88LdZKUnZ2t1atXu+1btWqV61QwWq5xULFEAwUAAP6iTSt2v/nNb/Tqq6/qmWee0bhx4yRJ69at07x581RdXa2nnnrqgu8RFRWlIUOGuO2LjIxUt27dXPunT5+unj17uq7Bmz17tq688kotWLBAkydP1rJly7R582YtXry4LV8j4GWlxujTncU0UAAA4CfaFOzeeOMNvfLKK7r55ptd+4YNG6aePXvqF7/4RYuCXUvk5+crKOjsouLYsWO1dOlSPfroo3rkkUfUv39/rVix4ryAiJY5t4HC6XTKZDIZXBEAALgYJmcbbj0QHh6u7777TgMGDHDbv2fPHo0YMUKnT3vv0FubzSaLxSKr1drq0Sz+prqmTkMeX6lah1Nf/dfVSonjPr8AAHib1mSXNl1jN3z48CaHAi9cuPCCd4+A9wgPDdbgHvV/QbjODgAA39emU7G//e1vNXnyZH322WeuxoUNGzaooKCAe7f6mMzesdpWaNWW/HLdMqKn0eUAAICL0KYVuyuvvFJ79+7VrbfeqvLycpWXl+u2227Tzp079Ze//KW9a0QHykqlMxYAAH/RpmvsmrNt2zZlZWWprs57B95yjZ27wrJTGv/sFwoJMmnHE5MUHnr+mBkAAGCcDr/GDv6jZ0yEukeZVetw6rtCq9HlAACAi0CwC3D1g4pjJElbOB0LAIBPI9iBO1AAAOAnWtUVe9ttt3l8vry8/GJqgUHONlAwqBgAAF/WqmBnsVgu+Pz06dMvqiB0vqE9LQoJMulYhV2FZacZVAwAgI9qVbB7/fXXO6oOGCg8NFiDekTru0KrcvPLCHYAAPgorrGDpLPX2W3JLze2EAAA0GYEO0iSMumMBQDA5xHsIOnsit3OozZV13jvgGkAANA8gh0kSb1izw4q3n6EQcUAAPgigh0k1Q8qzkyJkSTl5nE6FgAAX0Swg0vjPDsaKAAA8E0EO7icewcKp9NpcDUAAKC1CHZwGdarflBxaYVdR8pPG10OAABoJYIdXBoHFUv1txcDAAC+hWAHNzRQAADguwh2cONqoCgoN7YQAADQagQ7uGlsoNh11MqgYgAAfAzBDm56xUYovqtZNXVO7WBQMQAAPoVgBzcmk0lZDfeNzeW+sQAA+BSCHc6T2TjPLq/c2EIAAECrEOxwnnNX7BhUDACA7yDY4TzDesW4BhUftVYbXQ4AAGghgh3OExEWrIzkhkHFzLMDAMBnEOzQJBooAADwPQQ7NKlxUDG3FgMAwHcQ7NCkzBQGFQMA4GsIdmhSSlyE4ruGqabOqZ1HGVQMAIAvINihSSaTiXl2AAD4GIIdmtV431gaKAAA8A0EOzSLQcUAAPgWgh2aNbSXRcFBJpXYGFQMAIAvMDTYLVq0SMOGDVN0dLSio6OVnZ2tTz75pNnjlyxZIpPJ5LaFh4d3YsWBpUtYiDKSoyRJWzgdCwCA1zM02PXq1UvPPPOMvv32W23evFnXXHONbrnlFu3cubPZ10RHR6uoqMi15eXldWLFgSeLBgoAAHxGiJEf/oMf/MDt8VNPPaVFixZp48aNGjx4cJOvMZlMSkpK6ozyoPpg9+cNeTRQAADgA7zmGru6ujotW7ZMVVVVys7Obva4yspKpaamKiUl5YKre5Jkt9tls9ncNrRc44rdTgYVAwDg9QwPdtu3b1fXrl1lNpt17733avny5Ro0aFCTxw4cOFCvvfaa3n//fb355ptyOBwaO3asCgsLm33/nJwcWSwW15aSktJRX8UvpcRFqFskg4oBAPAFJqfBcyzOnDmj/Px8Wa1Wvfvuu3rllVe0Zs2aZsPduWpqapSRkaGpU6dq/vz5TR5jt9tlt9tdj202m1JSUmS1WhUdHd1u38OfzXhjsz77vkSPTs7QjMv7GV0OAAABxWazyWKxtCi7GHqNnSSFhYUpLS1NkjRy5Eht2rRJL7zwgl566aULvjY0NFSZmZnav39/s8eYzWaZzeZ2qzcQZaXG6LPvS7jODgAAL2f4qdh/53A43FbYPKmrq9P27duVnJzcwVUFNjpjAQDwDYau2M2dO1c33HCDevfurYqKCi1dulRffvmlVq5cKUmaPn26evbsqZycHEnSk08+qcsuu0xpaWkqLy/Xc889p7y8PM2YMcPIr+H3hjUMKi62Veto+Wn1iIkwuiQAANAEQ4NdaWmppk+frqKiIlksFg0bNkwrV67UtddeK0nKz89XUNDZRcWysjLdc889Ki4uVmxsrEaOHKn169e36Ho8tF2XsBClJ0Vp51GbcvPLCHYAAHgpw5snOltrLkDEWY+t2KG/bMzT3eP76rGbCNIAAHSW1mQXr7vGDt4pKzVGkmigAADAixHs0CKuQcVHbLLXMqgYAABvRLBDi/SO66JukWE6U+fQjiPcvQMAAG9EsEOLmEwmZfaOkSRt4XQsAABeiWCHFstsnGdHsAMAwCsR7NBijdfZbckvN7YQAADQJIIdWmx4Sv2g4iJrtYqsp40uBwAA/BuCHVqscVCxxO3FAADwRgQ7tEpjAwXX2QEA4H0IdmiVLBooAADwWgQ7tAqDigEA8F4EO7RKarcuimsYVLzzKIOKAQDwJgQ7tIrJZFJW43V2eZyOBQDAmxDs0GqZzLMDAMArEezQanTGAgDgnQh2aLXhvWIUZJKKrNW6e8kmbThwQk6n0+iyAAAIeAQ7tFqkOUQzr06TySSt3l2qqS9v1A8WrtOKLUdUU+cwujwAAAKWyRlgSy02m00Wi0VWq1XR0dFGl+PTDh6r1KvrDunvuYWqrqkPdMmWcN01to9uv7S3LBGhBlcIAIDva012Idjhop2sOqO3NubpjQ15Ol5plyRFhgXrp6N762fj+iglrovBFQIA4LsIdh4Q7DpOdU2dPth6VK+sO6i9JZWSpCCTdMPQZM0Y39fVTQsAAFqOYOcBwa7jOZ1Ordl7TK+uO6Sv9h137R+VGqsZl/fTtYMSFRxkMrBCAAB8B8HOA4Jd5/q+yKZXvjqkD7YdUU1d/V+11G5ddPf4vvrRyF7qEhZicIUAAHg3gp0HBDtjlNiq9cb6w3rrX/mynq6RJFkiQjVtTG/dNbaPEqLDDa4QAADvRLDzgGBnrFNnavXut4V6dd0h5Z04JUkKDTbp5uE9NePyvspI5ncCAMC5CHYeEOy8Q53DqVW7SvTKVwe1+Zx7zl7eP14zLu+nK/rHy2TiOjwAAAh2HhDsvM+W/DK98tUhfbKjSI6Gv40DErtqxvh+uiWzh8whwcYWCACAgQh2HhDsvFfByVN6/evD+tumfFWdqZMkxXc1687sVN1xWapiI8MMrhAAgM5HsPOAYOf9rKdrtOybfC1Zf1hF1mpJUnhokH6Y1Ut3j++rft27GlwhAACdh2DnAcHOd9TUOfTRd0V6+auD2nnUJkkymaQJ6Ym65/K+urRvHNfhAQD8HsHOA4Kd73E6ndp48KRe+eqgVu8ude0f1suiGZf30w1DkhQaHGRghQAAdByCnQcEO9+2v7RSr647pPdyC2WvdUiSesZE6K6xffTTS1MUHR5qcIUAALQvgp0HBDv/cKLSrjc35uvPGw7rRNUZSVJXc4huH52in43vq54xEQZXCABA+yDYeUCw8y/VNXVaseWIXll3SPtLKyVJwUEm3Tg0Wfdc3lfDesUYWyAAABeJYOcBwc4/ORxOrdl7TC9/dVDrD5xw7b+0T5xmXN5XEzMSFRREowUAwPcQ7Dwg2Pm/nUetevWrQ/pg21HVNkw87hsfqf8c31c/yuqliDAGHgMAfAfBzgOCXeAotlZryfrDWvqvPNmqayVJMV1CdceYVE0fm6qEqHCDKwQA4MJak10MnRGxaNEiDRs2TNHR0YqOjlZ2drY++eQTj6955513lJ6ervDwcA0dOlQff/xxJ1ULX5NkCdfDN6Rrw9wJevwHg5QSF6HyUzVa+MV+jX/mC/3qnW3aU1xhdJkAALQbQ1fs/vGPfyg4OFj9+/eX0+nUG2+8oeeee05btmzR4MGDzzt+/fr1uuKKK5STk6ObbrpJS5cu1bPPPqvc3FwNGTKkRZ/Jil3gqnM49c+dxXr5q4PKzS937b9iQHfdc3lfjU+LZ+AxAMDr+PSp2Li4OD333HO6++67z3vupz/9qaqqqvThhx+69l122WUaMWKEXnzxxRa9P8EOkvRtXple+eqgVu4sVsNleEpPitLd4/vq5hE9ZA7hOjwAgHfwmVOx56qrq9OyZctUVVWl7OzsJo/ZsGGDJk6c6LZv0qRJ2rBhQ7Pva7fbZbPZ3DZgZGqsFt0xUl8+dLXuGttHXcKCtbu4Qr969ztd/uwX+uMX+1V+6ozRZQIA0CqGB7vt27era9euMpvNuvfee7V8+XINGjSoyWOLi4uVmJjoti8xMVHFxcXNvn9OTo4sFotrS0lJadf64dt6d+uieTcP1oaHJ+jX16crMdqs0gq7nlu5R9k5n+vJf+xSqa3a6DIBAGgRw4PdwIEDtXXrVv3rX//SfffdpzvvvFO7du1qt/efO3eurFaraysoKGi394b/sHQJ1X1XXaKv/usa/e4nw5WRHK3TNXV67etDGv/bLzTvg50qsp42ukwAADwKMbqAsLAwpaWlSZJGjhypTZs26YUXXtBLL7103rFJSUkqKSlx21dSUqKkpKRm399sNstsNrdv0fBbYSFBui2rl27N7Km1+47rD6v36du8soaxKfn6yeheuu+qNG5ZBgDwSoav2P07h8Mhu93e5HPZ2dlavXq1275Vq1Y1e00e0FYmk0lXDuiud+/N1tIZY3Rp3zidqXPozY35uuq5LzT3ve9UcPKU0WUCAODG0BW7uXPn6oYbblDv3r1VUVGhpUuX6ssvv9TKlSslSdOnT1fPnj2Vk5MjSZo9e7auvPJKLViwQJMnT9ayZcu0efNmLV682MivAT9mMpk0Ni1eY9PitfHgCf1h9T6tP3BCf/2mQG9vLtRtmT018+o09YmPNLpUAACMDXalpaWaPn26ioqKZLFYNGzYMK1cuVLXXnutJCk/P19BQWcXFceOHaulS5fq0Ucf1SOPPKL+/ftrxYoVLZ5hB1yMy/p102X9umnz4ZP6w+f7tXbvMb3zbaH+nluoKSN6auY1abqke1ejywQABDCvm2PX0Zhjh/ayJb9M//f5fn2+u1SSZDJJPxjWQ7OuSdOAxCiDqwMA+AufHlDc0Qh2aG/bC636w+f7tGpXfWOPySTdOCRZs65JU0Yyf8cAABeHYOcBwQ4dZedRqxZ+vl+f7Dg7V3HS4ETdf01/DelpMbAyAIAvI9h5QLBDR9tdbNPCz/fro+1Favyna2JGgu6/pr+Gp8QYWhsAwPcQ7Dwg2KGz7C+t0MLP9+uDbUdd96O9amB33X9Nf41MjTW2OACAzyDYeUCwQ2c7eKxSf/zigFZsPaK6hoQ3Pi1eD0zor0v7xhlcHQDA2xHsPCDYwSh5J6r0py8O6O+5haptCHiX9YvTAxP6K7tfN5lMJoMrBAB4I4KdBwQ7GK3g5CktWnNA72wuUE1d/T9+l/apD3jj0gh4AAB3BDsPCHbwFkfLT+vFNQe07JsCnalzSJKyesfogQn9deWA7gQ8AIAkgp1HBDt4m2JrtV5ae0BL/5Uve219wBvey6IHJvTXNekJBDwACHAEOw8IdvBWpRXVenntQf1lY56qa+oD3uAe0XpgQn9dm5GooCACHgAEIoKdBwQ7eLvjlXa98tUh/XnDYZ06UydJSk+K0v3X9NcNQ5IIeAAQYAh2HhDs4CtOVp3Ra+sOacn6w6q010qS+id01axr0nTTsB4KJuABQEAg2HlAsIOvsZ6q0WtfH9JrXx9SRXV9wOvXPVKzrk7TzcN7KCQ4yOAKAQAdiWDnAcEOvspWXaM3vj6sV9YdkvV0jSQptVsXzbw6Tbdm9lQoAQ8A/BLBzgOCHXxdRXWN/rIxTy+vPaiyU/UBLyUuQjOvStNtWb0UFkLAAwB/QrDzgGAHf1Flr9Vb/8rT4rUHdbzyjCSpZ0yE7rvqEv14VC+ZQ4INrhAA0B4Idh4Q7OBvTp+p09Jv8vXimgM6VmGXJCVFh+u+qy7RT0enKDyUgAcAvoxg5wHBDv6quqZOf9tUoEVfHlCxrVqSlBBl1s+v6KdpY1IVEUbAAwBfRLDzgGAHf2evrdM7mwu16MsDOlJ+WpIU3zVM91zeT3dclqpIc4jBFQIAWoNg5wHBDoHiTK1D7+UW6o9f7lfByfqAF9slVDMu76fp2amKCg81uEIAQEsQ7Dwg2CHQ1NQ5tGLLEf3xi/06fOKUJMkSEaq7x/fVndl9ZOlCwAMAb0aw84Bgh0BVW+fQP747qv/7fL8OHquSJIUEmTQiJUZj0+I17pJuyuwdy7gUAPAyBDsPCHYIdHUOpz7aXqQ/fbFfu4sr3J6LCA3WpX3jND4tXmPTuikjKZp70wKAwQh2HhDsgLMKTp7S1/uP6+sDJ7R+/3GdqDrj9nxcZJiyL+mmcZfEa3xavHp362JQpQAQuAh2HhDsgKY5HE7tKamoD3r7j+tfh07q1Jk6t2N6xUZo3CXxGtc/XmMv6ab4rmaDqgWAwEGw84BgB7TMmVqHthWW6+v9x7V+/wnl5pep1uH+fxfpSVEalxavcWnddGnfburKKBUAaHcEOw8IdkDbVNlr9c3hk1q//7jW7T+h74tsbs+f24gxPi1eI1JiaMQAgHZAsPOAYAe0jxOVdm04eKLh1O0J5Z885fZ8l7Bgje5DIwYAXCyCnQcEO6Bj0IgBAB2DYOcBwQ7oeDRiAED7Idh5QLADOh+NGADQdgQ7Dwh2gPFa2ohRH/RoxAAQ2Ah2HhDsAO/TkkaMS/vG1Z+6TYtXelIUjRgAAgbBzgOCHeD9WtqIMT4tXuMuoREDgH8j2HlAsAN8S0sbMerHqtCIAcD/EOw8INgBvq01jRjZ/bqpT3wXJVsiFEkzBgAf5TPBLicnR++99552796tiIgIjR07Vs8++6wGDhzY7GuWLFmin/3sZ277zGazqqurW/SZBDvAv1yoEaORJSJUyZZw9YyJUHJMuJItEfU/W8LVIyZCidHhNGgA8EqtyS6G/ifsmjVrNHPmTI0ePVq1tbV65JFHdN1112nXrl2KjIxs9nXR0dHas2eP67HJxEXUQKCKNIfo6oEJunpggiT3Rowt+eU6Un5aFdW1sp6ukfV0jXYXVzT5PiaT1L2rWckxEerZEPzOBsEI9bCEK76rmaYNAF7N0GD36aefuj1esmSJEhIS9O233+qKK65o9nUmk0lJSUkdXR4AH9Stq1k3Deuhm4b1cO2rqK5RkbVaR8tP62h5tYqs9X8eLT9d/7O1WmdqHSqtsKu0wq5tBU2/d2iwSUmW81f7ejQEwR4xEYoOD+E/NgEYxqsuOrFarZKkuLg4j8dVVlYqNTVVDodDWVlZevrppzV48OAmj7Xb7bLb7a7HNlvTp2kA+K+o8FBFhYdqQGJUk887nU6dqDqjovJqHbWebgh8jUGw/ucSW7Vq6pwqOHlaBSdPN/tZkWHB9St8Dat89YGvPgA2BsHw0OCO+qoAApzXNE84HA7dfPPNKi8v17p165o9bsOGDdq3b5+GDRsmq9Wq//3f/9XatWu1c+dO9erV67zj582bpyeeeOK8/VxjB6A1auscKqmwq6j8tI40hL36n+tXAIus1Tr5b2NZmhMXGXZ2tc8S7hYEe8REKCHKrJBgrvcDUM9nmifOdd999+mTTz7RunXrmgxozampqVFGRoamTp2q+fPnn/d8Uyt2KSkpBDsA7e70mTpXyDtSfrp+BbD8tI5az64A/vuolqYEmaTEaPdVPlcAbFgBjIsM45QvECB8pnmi0axZs/Thhx9q7dq1rQp1khQaGqrMzEzt37+/yefNZrPMZmZaAeh4EWHB6te9q/p179rk806nU7bTta7TvUcbVv1cP1tPq9haf8q3yFqtImvz3f7mkCAlW8LVJz5SA5OilJ4UpQGJUUpL6CpzCKd6gUBlaLBzOp26//77tXz5cn355Zfq27dvq9+jrq5O27dv14033tgBFQJA+zGZTLJ0CZWlS6gykpv+r26Hw6njlXbX6V63ho+Gx8cq7LLXOnT4xCkdPnFKX+455np9cJBJfeMjNTAxSgOTGrbEKPWO60JHLxAADA12M2fO1NKlS/X+++8rKipKxcXFkiSLxaKIiAhJ0vTp09WzZ0/l5ORIkp588klddtllSktLU3l5uZ577jnl5eVpxowZhn0PAGgvQUEmJUSHKyE6XJnNHHOm1qESW7UKy07rwLFK7Smu0J7iCu0utslWXav9pZXaX1qpj7YXuV4TERqsAYldNaAh8KUnRWtAUld172rmlC7gRwwNdosWLZIkXXXVVW77X3/9dd11112SpPz8fAUFnb2IuKysTPfcc4+Ki4sVGxurkSNHav369Ro0aFBnlQ0AhgoLCVJKXBelxHVR9iXdXPudTqdKbHbtLrZpb0mFdjcEvn2llTpdU6dthVZtK7S6vVdcZJj76l7DKd2u3KkD8Ele0zzRWbjzBIBAU1vnUN7JU66VvT3FFdpTUqHDJ6rU3L8BesVGKP2coJeeFK1+3SMVSrcu0Ol8siu2sxDsAKDe6TN12l9aed4KX2mFvcnjQ4NN6hff1e3avYFJUeoVG8HpXKADEew8INgBgGdlVWe0p6Txur0K7S2p0N7iClXYa5s8vqs5RP0Tu9av8CVGaWBStAYmRSkuMqyTKwf8E8HOA4IdALSe0+nUkfLTbit7e4ordOBYpWrqmv7XSPcos2sMS+NIlv4JUYoIYxwL0BoEOw8IdgDQfmrqHDp0vOqcztz6Fb78k6eaPN5kklLjupxzKrd+da9Pty7cbQNoBsHOA4IdAHS8Kntt/Sncc1b49pZU6Hhl07ddCwsJUlr3rmcbNhpW+JKiw7l+DwGPYOcBwQ4AjHO80u7Wnbu7pEL7SiqavdWaJSJUw1NilJkSo8zeMRqREqOYLly7h8BCsPOAYAcA3sXhcKqw7PR53bkHj1epznH+v6L6xUdqRO/GsBergUlRjGGBXyPYeUCwAwDfYK+t097iSm0tKNOW/HJtLSjXweNV5x0XHhqkoT0tyuwdq8yUGI3oHaNkS4QBFQMdg2DnAcEOAHxXWdUZbS0s19b8cm0pKNfW/DLZqs8fw5IUHe46dZvZO1ZDe1roxoXPIth5QLADAP/hcDh16ESVtuSXa0t+mbYWlGt3ccV5p3CDg0xKT4pqCHuxyuwdo77dIhUURGMGvB/BzgOCHQD4t1NnarW90KqtBeX1ga+gTCW28++mQWMGfAXBzgOCHQAEniLrabdVve8KrbLXOs47jsYMeCOCnQcEOwBATZ1Du4sqXI0ZWwrKdYjGDHgpgp0HBDsAQFMaGzMaO3A9NWaMaDh9S2MGOgPBzgOCHQCgJRwOpw4er2q4Vq9+ZW9PCY0Z6HwEOw8IdgCAtmpszKgftVKu3PwylVbQmIGORbDzgGAHAGgvTqdTRdZqt1W97UdozED7Ith5QLADAHSkxsaMLQVlrkHKnhozxl4Sr2sHJWpwj2iZTJy+xfkIdh4Q7AAAne3cxowt+WXaVlB+XmNGsiVcEzMSNXFQoi7rFydzCA0ZqEew84BgBwAwWmNjxrd5J/X57lKt3Xtcp2vqXM9HhgXryoHdNTEjUVcPTFBsJNfnBTKCnQcEOwCAt6muqdP6A8e1alepVn9f4taQERxk0qjUWF07KFETMxLVJz7SwEphBIKdBwQ7AIA3czic2n7Eqs++L9GqXSXaXVzh9nxaQldNzEjUtYMSNCIlVsGMVfF7BDsPCHYAAF9ScPKUVn9folXfl+hfB0+q9pw5et0iw3RNeoImDkrU5f3j1SUsxMBK0VEIdh4Q7AAAvsp6ukZr9h7TZ7tK9MWeUlWc04BhDgnS+LR4TRyUqAnpCUqIDjewUrQngp0HBDsAgD+oqXNo06GTWtVwyraw7LTb88NTYnRtRv1q3sDEKEap+DCCnQcEOwCAv3E6ndpTUqHPdpVo1fel2lZQ7vZ8SlxE/XV5GYka3TeOwcg+hmDnAcEOAODvSm3VWr27VJ/tKtG6/cfd7oQRFR6iqwfWr+RdOaC7LBGhBlaKliDYeUCwAwAEklNnarVu33Gt2lWiz3eX6kTVGddzIUEmjekXp2szEjUhI1EpcV0MrBTNIdh5QLADAASqOodTWwvKtGpXqT77vkT7Syvdnk9PinLNyxva06IgRql4BYKdBwQ7AADqHTpeVT9KZVeJNh0+qXMmqSghyqwJDfPyxl4Sr/BQbnFmFIKdBwQ7AADOV1Z1Rl/sqV/JW7PnmKrOnL3FWURosK4YEK+JGYm6Jj1B3bqaDaw08BDsPCDYAQDgmb22ThsPntRnu0r02fclKrJWu54zmaSRvWM1seGUbVpCVwMrDQwEOw8IdgAAtJzT6dTOozatagh5O4/a3J7vFx/pCnlZvWMUwiiVdkew84BgBwBA2x0tP91wi7NSbThwXDV1Z2NEbJdQXZ2eoGszEnX5gO7qauYWZ+2BYOcBwQ4AgPZRUV2jr/Yd12e7SvT5nlKVn6pxPRcWHKTsS7rp0r5xigwLVlhIsMwhQQoLCTrnz2DXY/O/PW78kxVAgp1HBDsAANpfbZ1Dm/PKGu5+UaK8E6fa5X2DTGoy8P17UGwuGP57gGz6cXOvP/s4JMhk2G3ZfCbY5eTk6L333tPu3bsVERGhsWPH6tlnn9XAgQM9vu6dd97RY489psOHD6t///569tlndeONN7boMwl2AAB0LKfTqQPHKrVqV6n2lVTIXufQmVqH7LUOnamta/jTcc6fdW6Pax3et+ZkMqk+8AUHyRwa3PBn/eOr0xP06+vTO+yzW5NdDD35vWbNGs2cOVOjR49WbW2tHnnkEV133XXatWuXIiMjm3zN+vXrNXXqVOXk5Oimm27S0qVLNWXKFOXm5mrIkCGd/A0AAMC/M5lMSkuIUlpCVJteX+dwnhf47E0EwOaC4fmv83BcnUP2Gse//Vm//9zrB51OqbrGoeoah1Rd61ZvRrL3LBR51anYY8eOKSEhQWvWrNEVV1zR5DE//elPVVVVpQ8//NC177LLLtOIESP04osvXvAzWLEDAAAt4XA4XYHPXlfXbADsFmnWoB4dlyl8ZsXu31mtVklSXFxcs8ds2LBBDz74oNu+SZMmacWKFU0eb7fbZbfbXY9tNluTxwEAAJwrKMik8KDghrtuhBpdTot4TauJw+HQnDlzNG7cOI+nVIuLi5WYmOi2LzExUcXFxU0en5OTI4vF4tpSUlLatW4AAABv4TXBbubMmdqxY4eWLVvWru87d+5cWa1W11ZQUNCu7w8AAOAtvOJU7KxZs/Thhx9q7dq16tWrl8djk5KSVFJS4ravpKRESUlJTR5vNptlNnNPOwAA4P8MXbFzOp2aNWuWli9frs8//1x9+/a94Guys7O1evVqt32rVq1SdnZ2R5UJAADgEwxdsZs5c6aWLl2q999/X1FRUa7r5CwWiyIiIiRJ06dPV8+ePZWTkyNJmj17tq688kotWLBAkydP1rJly7R582YtXrzYsO8BAADgDQxdsVu0aJGsVquuuuoqJScnu7a//e1vrmPy8/NVVFTkejx27FgtXbpUixcv1vDhw/Xuu+9qxYoVzLADAAABz6vm2HUG5tgBAABf0prs4jVdsQAAALg4BDsAAAA/QbADAADwEwQ7AAAAP0GwAwAA8BMEOwAAAD9BsAMAAPATBDsAAAA/YegtxYzQOI/ZZrMZXAkAAMCFNWaWltxTIuCCXUVFhSQpJSXF4EoAAABarqKiQhaLxeMxAXdLMYfDoaNHjyoqKkomk6nDPsdmsyklJUUFBQXcusxH8Tv0bfz+fB+/Q9/H77B9OJ1OVVRUqEePHgoK8nwVXcCt2AUFBalXr16d9nnR0dH8ZfZx/A59G78/38fv0PfxO7x4F1qpa0TzBAAAgJ8g2AEAAPgJgl0HMZvNevzxx2U2m40uBW3E79C38fvzffwOfR+/w84XcM0TAAAA/ooVOwAAAD9BsAMAAPATBDsAAAA/QbDrAH/84x/Vp08fhYeHa8yYMfrmm2+MLgktlJOTo9GjRysqKkoJCQmaMmWK9uzZY3RZuAjPPPOMTCaT5syZY3QpaIUjR47ojjvuULdu3RQREaGhQ4dq8+bNRpeFFqqrq9Njjz2mvn37KiIiQpdcconmz5/folti4eIQ7NrZ3/72Nz344IN6/PHHlZubq+HDh2vSpEkqLS01ujS0wJo1azRz5kxt3LhRq1atUk1Nja677jpVVVUZXRraYNOmTXrppZc0bNgwo0tBK5SVlWncuHEKDQ3VJ598ol27dmnBggWKjY01ujS00LPPPqtFixZp4cKF+v777/Xss8/qt7/9rf7v//7P6NL8Hl2x7WzMmDEaPXq0Fi5cKKn+FmYpKSm6//779fDDDxtcHVrr2LFjSkhI0Jo1a3TFFVcYXQ5aobKyUllZWfrTn/6k//mf/9GIESP0/PPPG10WWuDhhx/W119/ra+++sroUtBGN910kxITE/Xqq6+69v3whz9URESE3nzzTQMr83+s2LWjM2fO6Ntvv9XEiRNd+4KCgjRx4kRt2LDBwMrQVlarVZIUFxdncCVorZkzZ2ry5Mlu/zzCN3zwwQcaNWqUfvzjHyshIUGZmZl6+eWXjS4LrTB27FitXr1ae/fulSRt27ZN69at0w033GBwZf4v4O4V25GOHz+uuro6JSYmuu1PTEzU7t27DaoKbeVwODRnzhyNGzdOQ4YMMboctMKyZcuUm5urTZs2GV0K2uDgwYNatGiRHnzwQT3yyCPatGmTHnjgAYWFhenOO+80ujy0wMMPPyybzab09HQFBwerrq5OTz31lKZNm2Z0aX6PYAc0Y+bMmdqxY4fWrVtndClohYKCAs2ePVurVq1SeHi40eWgDRwOh0aNGqWnn35akpSZmakdO3boxRdfJNj5iLfffltvvfWWli5dqsGDB2vr1q2aM2eOevTowe+wgxHs2lF8fLyCg4NVUlLitr+kpERJSUkGVYW2mDVrlj788EOtXbtWvXr1MroctMK3336r0tJSZWVlufbV1dVp7dq1Wrhwoex2u4KDgw2sEBeSnJysQYMGue3LyMjQ3//+d4MqQmv96le/0sMPP6zbb79dkjR06FDl5eUpJyeHYNfBuMauHYWFhWnkyJFavXq1a5/D4dDq1auVnZ1tYGVoKafTqVmzZmn58uX6/PPP1bdvX6NLQitNmDBB27dv19atW13bqFGjNG3aNG3dupVQ5wPGjRt33pihvXv3KjU11aCK0FqnTp1SUJB7xAgODpbD4TCoosDBil07e/DBB3XnnXdq1KhRuvTSS/X888+rqqpKP/vZz4wuDS0wc+ZMLV26VO+//76ioqJUXFwsSbJYLIqIiDC4OrREVFTUeddERkZGqlu3blwr6SN++ctfauzYsXr66af1k5/8RN98840WL16sxYsXG10aWugHP/iBnnrqKfXu3VuDBw/Wli1b9Lvf/U7/+Z//aXRpfo9xJx1g4cKFeu6551RcXKwRI0boD3/4g8aMGWN0WWgBk8nU5P7XX39dd911V+cWg3Zz1VVXMe7Ex3z44YeaO3eu9u3bp759++rBBx/UPffcY3RZaKGKigo99thjWr58uUpLS9WjRw9NnTpV//3f/62wsDCjy/NrBDsAAAA/wTV2AAAAfoJgBwAA4CcIdgAAAH6CYAcAAOAnCHYAAAB+gmAHAADgJwh2AAAAfoJgBwAA4CcIdgBgMJPJpBUrVhhdBgA/QLADENDuuusumUym87brr7/e6NIAoNVCjC4AAIx2/fXX6/XXX3fbZzabDaoGANqOFTsAAc9sNispKclti42NlVR/mnTRokW64YYbFBERoX79+undd991e/327dt1zTXXKCIiQt26ddPPf/5zVVZWuh3z2muvafDgwTKbzUpOTtasWbPcnj9+/LhuvfVWdenSRf3799cHH3zQsV8agF8i2AHABTz22GP64Q9/qG3btmnatGm6/fbb9f3330uSqqqqNGnSJMXGxmrTpk1655139Nlnn7kFt0WLFmnmzJn6+c9/ru3bt+uDDz5QWlqa22c88cQT+slPfqLvvvtON954o6ZNm6aTJ0926vcE4AecABDA7rzzTmdwcLAzMjLSbXvqqaecTqfTKcl57733ur1mzJgxzvvuu8/pdDqdixcvdsbGxjorKytdz3/00UfOoKAgZ3FxsdPpdDp79Ojh/M1vftNsDZKcjz76qOtxZWWlU5Lzk08+abfvCSAwcI0dgIB39dVXa9GiRW774uLiXD9nZ2e7PZedna2tW7dKkr7//nsNHz5ckZGRrufHjRsnh8OhPXv2yGQy6ejRo5owYYLHGoYNG+b6OTIyUtHR0SotLW3rVwIQoAh2AAJeZGTkeadG20tERESLjgsNDXV7bDKZ5HA4OqIkAH6Ma+wA4AI2btx43uOMjAxJUkZGhrZt26aqqirX819//bWCgoI0cOBARUVFqU+fPlq9enWn1gwgMLFiByDg2e12FRcXu+0LCQlRfHy8JOmdd97RqFGjNH78eL311lv65ptv9Oqrr0qSpk2bpscff1x33nmn5s2bp2PHjun+++/X//t//0+JiYmSpHnz5unee+9VQkKCbrjhBlVUVOjrr7/W/fff37lfFIDfI9gBCHiffvqpkpOT3fYNHDhQu3fvllTfsbps2TL94he/UHJysv76179q0KBBkqQuXbpo5cqVmj17tkaPHq0uXbrohz/8oX73u9+53uvOO+9UdXW1fv/73+uhhx5SfHy8fvSjH3XeFwQQMExOp9NpdBEA4K1MJpOWL1+uKVOmGF0KAFwQ19gBAAD4CYIdAACAn+AaOwDwgKtVAPgSVuwAAAD8BMEOAADATxDsAAAA/ATBDgAAwE8Q7AAAAPwEwQ4AAMBPEOwAAAD8BMEOAADATxDsAAAA/MT/B8r2wQmBKvacAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Training parameters\n", + "nb_epochs = 10 # is quick, it won't have converged.\n", + "# Note: An epoch is one complete pass through the entire training dataset.\n", + "# During an epoch, the neural network processes every example in the dataset once.\n", + "# Completing an epoch means that every data point has been used for calculating the loss and updating the model parameters.\n", + "# Multiple epochs are usually required for the network to converge to an optimal set of parameters.\n", + "\n", + "lr = 0.01 # learning rate\n", + "\n", + "# Generate the training data\n", + "ipds, spikes, _ = random_ipd_input_signal(num_samples) # num_samples = batch_size*n_training_batches\n", + "\n", + "# Initialise a weight matrix\n", + "W = init_weight_matrix()\n", + "\n", + "# Optimiser and loss function\n", + "optimizer = torch.optim.Adam([W], lr=lr)\n", + "log_softmax_fn = nn.LogSoftmax(dim=1)\n", + "loss_fn = nn.NLLLoss() # negative log likelihood loss. Note: This loss function computes the average loss accross the input batch by default.\n", + "\n", + "print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + "loss_hist = []\n", + "plt.figure\n", + "for e in range(nb_epochs):\n", + " local_loss = []\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n", + " # Run network\n", + " output = membrane_only(spike_batch, W) # our function to calculate the forward path from input to output\n", + " #output = torch.abs(output)\n", + " # Compute cross entropy loss\n", + " m = torch.sum(output, 1)*0.01 # Sum the output over the time dimension. Note: We want loss for epoch 1 to be about -np.log(1/num_classes), multiply m by a constant to get this\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # The softmax function transforms the output of a neural network's final layer into a probability\n", + " # distribution over multiple classes in such a way that increasing the score of one class\n", + " # decreases the probabilities of the other classes. It does this by exponentiating each logit\n", + " # and then normalizing these values so that they sum to 1. This is important because it ensures that\n", + " # the predicted values for each class sum up to 1.0. This probability distribution allows us to\n", + " # interpret the network's output as the likelihood of each class being the correct class.\n", + " # Training Objective: The training process aims to increase the probability of the correct class.\n", + " # As the model updates its weights to increase the probability (and hence the log probability) of the\n", + " # correct class, the softmax function inherently decreases the probabilities of the other classes due\n", + " # to the normalization step.\n", + " # Using it with the negative log likelihood loss encourages the model to increase the log probability\n", + " # of the correct class.\n", + " # Interpretability: The softmax function's output can be interpreted as class probabilities, which is\n", + " # valuable not only for making predictions but also for understanding the model's confidence in those\n", + " # predictions. This can be useful for post-processing or decision-making based on the network's output\n", + " # probabilities.\n", + "\n", + " # Update gradients\n", + " optimizer.zero_grad() # set previous gradients to zero\n", + " loss.backward() # calculate the gradient of the loss with respect to all model parameters\n", + " optimizer.step() # update the weights according to the calculated gradients : new_model_parameter=old_model_parameter−learning rate×gradient_with_respect_to_model_parameter\n", + "\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n", + "\n", + "# Plot the loss function over time\n", + "plt.plot(loss_hist)\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### FYI: Explaination of the used loss function" + ], + "metadata": { + "id": "YUQ4R9XhvVS7" + }, + "id": "YUQ4R9XhvVS7" + }, + { + "cell_type": "markdown", + "source": [ + "In the above training we used the folloz loss function that we minimized to train hte network:\n", + "\n", + "```\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + "```\n", + "\n", + "Let`s go step-by-step to see how this works:\n", + "\n", + "- m:\n", + "This is the model’s output for a batch of data, often referred to as logits. Logits are raw scores produced by the model, which are not yet normalized into probabilities.\n", + "- log_softmax_fn(m):\n", + "Converts the logits into normalized log-probabilities using the log-softmax function.\n", + " 1.\tSoftmax is first applied to normalize the logits into probabilities:\n", + " $$\n", + " \\text{Softmax}(x_i) = \\frac{\\exp(x_i)}{\\sum_{j} \\exp(x_j)}\n", + " $$\n", + "\n", + " The probabilities of all output neurons sum up to 1.\n", + "\n", + " 2.\tThe natural logarithm (log) is then applied to these probabilities to make them log-scaled:\n", + " $$\n", + " \\text{LogSoftmax}(x_i) = \\log(\\text{Softmax}(x_i)) = x_i - \\log\\left(\\sum_j \\exp(x_j)\\right)\n", + " $$\n", + "\n", + "- ipd_batch:\n", + "Contains the ground truth labels for the batch, which are indices representing the true class of each sample.\n", + "\n", + "- nn.NLLLoss():\n", + "The Negative Log-Likelihood Loss function computes then negative log-probability of the true class for each sample:\n", + "$$\n", + "\\text{Loss} = -\\log(\\text{Predicted Probability of True Class})\n", + "$$\n", + "This ensures the loss value decreases as the model predicts higher probabilities for the true class.\n", + "\n", + "- Overall Loss:\n", + "The total loss is the mean (or sum, depending on configuration) of the individual sample losses across the batch." + ], + "metadata": { + "id": "_rrLV1tbRgtw" + }, + "id": "_rrLV1tbRgtw" + }, + { + "cell_type": "code", + "source": [ + "# @title\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "def softmax(x):\n", + " e_x = np.exp(x - np.max(x)) # subtract max(x) for numerical stability\n", + " return e_x / e_x.sum(axis=0)\n", + "\n", + "def log_softmax(x):\n", + " return np.log(softmax(x))\n", + "\n", + "# Create a range of values\n", + "x = np.linspace(-2, 2, 10)\n", + "\n", + "# Calculate softmax and log_softmax\n", + "y_softmax = softmax(x)\n", + "y_log_softmax = log_softmax(x)\n", + "\n", + "# Create plots\n", + "plt.figure(figsize=(12, 5))\n", + "\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(x, y_softmax, label='Softmax', color='blue',marker='o')\n", + "plt.title('Softmax Function')\n", + "plt.xlabel('x')\n", + "plt.ylabel('Softmax(x)')\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(x, y_log_softmax, label='LogSoftmax', color='red',marker='o')\n", + "plt.title('LogSoftmax Function')\n", + "plt.xlabel('x')\n", + "plt.ylabel('LogSoftmax(x)')\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n", + "x = [0.5, 1.5, 0.2]\n", + "print(softmax(x))\n", + "print(-np.log(softmax(x)))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 435 + }, + "id": "FVsx8p7cvHhj", + "outputId": "ff28e287-25cd-4ece-b05a-2287dc8cb2b1" + }, + "id": "FVsx8p7cvHhj", + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHqElEQVR4nOzdeVhUZRvH8e+ArCKKiguK4lKiueZu7htqmfvW4q5tbqGlVu6aS1aWuZX7VpZSvZmpZGKWpqWZZWpp7guaGwkKCOf948QkAgoIDMz8PtfFNXPOnHnmvmd833m651kshmEYiIiIiIiIiIiIZCEnWwcgIiIiIiIiIiKOR0UpERERERERERHJcipKiYiIiIiIiIhIllNRSkREREREREREspyKUiIiIiIiIiIikuVUlBIRERERERERkSynopSIiIiIiIiIiGQ5FaVERERERERERCTLqSglIiIiIiIiIiJZTkUpEckUb7zxBqVLl8bZ2ZmqVavaOhyHFRAQQO/evW0dhoiIiGSB8PBwOnfuTIECBbBYLMyaNcvWITmksLAwLBYLYWFhtg5FJNtTUUpE+PXXX+ncuTMlS5bE3d2dYsWK0aJFC2bPnp2u9jZv3szLL7/MI488wpIlS3j99dc5e/Ys48ePZ9++fRkbfBY5fvw4Fosl2b86derYNLYdO3Ywfvx4rl69atM4REREcqKlS5disVj46aefsvR14+PjWb58ObVr1yZ//vzkyZOHBx98kJ49e/LDDz+kq80XX3yRTZs2MXr0aFasWEGrVq3YsGED48ePz9jgs9D48eNT7IPNnz/fprHNnTuXpUuX2jQGkZwul60DEBHb2rFjB02aNKFEiRIMGDCAIkWKcOrUKX744QfeeecdBg8enOY2v/nmG5ycnFi0aBGurq4A/PTTT0yYMIGAgIAcPXKqR48etGnTJtE5X19fG0Vj2rFjBxMmTKB3797ky5cv0WOHDx/GyUm/P4iIiGQ3Q4YMYc6cObRr144nn3ySXLlycfjwYb766itKly6drh+9vvnmG9q1a8eIESOs59577z3mzJmTowtTAPPmzcPLyyvRudq1a9soGtPcuXMpWLBgklHpDRs25MaNG9Z+sIikTEUpEQc3ZcoU8ubNy48//pikoHHhwoV0tXnhwgU8PDzs8ov44Ycf5qmnnrJ1GKnm5uZm6xBERETkDuHh4cydO5cBAwbw/vvvJ3ps1qxZXLx4MV3tXrhwIUl/zl507tyZggUL2jqMVHFycsLd3d3WYYjkCPr5XMTBHT16lIceeijZDkyhQoUSHd+6dYtJkyZRpkwZ3NzcCAgI4JVXXiE6Otp6jcViYcmSJURGRlqHVi9dupSaNWsC0KdPn0TnARo3bkzFihXZv38/jRo1wtPTk7Jly7J27VoAtm3bRu3atfHw8KBcuXJ8/fXXieI6ceIEzz//POXKlcPDw4MCBQrQpUsXjh8/br3GMAyaNGmCr69vomJbTEwMlSpVokyZMkRGRt7PW0njxo1p3LhxkvO9e/cmICDAepwwFXDmzJm8//771vezZs2a/Pjjj0mef+jQIbp27Yqvr6/1PXj11VcBc0j7Sy+9BECpUqWs721C7smtKfXXX3/RpUsX8ufPj6enJ3Xq1OHLL79MdE3CWggff/wxU6ZMoXjx4ri7u9OsWTOOHDmS/jdJREQkh/r5559p3bo13t7eeHl50axZs2Sn2SX0Zzw8PChevDiTJ09myZIlib6fjx07hmEYPPLII0meb7FYkvTB7vXdnTAF0TAM5syZY+0P9O7dmzlz5ljbTfiDxP2ROXPmULp0aTw9PWnZsiWnTp3CMAwmTZpE8eLF8fDwoF27dly+fDlRXJ9//jmPPvoofn5+uLm5UaZMGSZNmkRcXJz1moMHD+Lh4UHPnj0TPfe7777D2dmZkSNHpuFTSCohj+Sm0VkslkQjxBKmAh45csQ6wjxv3rz06dOHqKioJM9fuXIltWrVwtPTEx8fHxo2bMjmzZsBs4914MABtm3bZn1fE/qBKa0p9cknn1C9enU8PDwoWLAgTz31FGfOnEl0Te/evfHy8uLMmTO0b98eLy8vfH19GTFiRKL3VcReaKSUiIMrWbIkO3fu5LfffqNixYp3vbZ///4sW7aMzp07M3z4cHbt2sXUqVM5ePAgn376KQArVqzg/fffZ/fu3SxcuBCABx54gIkTJzJ27FgGDhxIgwYNAKhXr5617StXrvDYY4/RvXt3unTpwrx58+jevTurVq1i2LBhPPvsszzxxBO88cYbdO7cmVOnTpEnTx4AfvzxR3bs2EH37t0pXrw4x48fZ968eTRu3Jjff/8dT09PLBYLixcvpnLlyjz77LOEhIQAMG7cOA4cOEBYWBi5c+e+5/sVFRXF33//nehc3rx5cXFxSeU7/p/Vq1fzzz//8Mwzz2CxWJgxYwYdO3bkr7/+sra3f/9+GjRogIuLCwMHDiQgIICjR4/yxRdfMGXKFDp27Mgff/zBhx9+yNtvv239BTGlKYXh4eHUq1ePqKgohgwZQoECBVi2bBmPP/44a9eupUOHDomunzZtGk5OTowYMYJr164xY8YMnnzySXbt2pXmfEVERHKqAwcO0KBBA7y9vXn55ZdxcXFhwYIFNG7c2PrjGcCZM2do0qQJFouF0aNHkzt3bhYuXJhk5HLJkiUBs0jRpUsXPD09U3zt1Hx3N2zYkBUrVvD000/TokULawGoTJkynD17ltDQUFasWJFs+6tWrSImJobBgwdz+fJlZsyYQdeuXWnatClhYWGMHDmSI0eOMHv2bEaMGMHixYutz126dCleXl4EBwfj5eXFN998w9ixY4mIiOCNN94AoHz58kyaNImXXnqJzp078/jjjxMZGUnv3r0JDAxk4sSJqfoM7iyIOTs74+Pjk6rn3qlr166UKlWKqVOnsnfvXhYuXEihQoWYPn269ZoJEyYwfvx46tWrx8SJE3F1dWXXrl188803tGzZklmzZjF48GC8vLysPxYWLlw4xddcunQpffr0oWbNmkydOpXw8HDeeecdvv/+e37++edEPxDHxcURFBRE7dq1mTlzJl9//TVvvvkmZcqU4bnnnktXziLZliEiDm3z5s2Gs7Oz4ezsbNStW9d4+eWXjU2bNhkxMTGJrtu3b58BGP379090fsSIEQZgfPPNN9ZzvXr1MnLnzp3ouh9//NEAjCVLliSJoVGjRgZgrF692nru0KFDBmA4OTkZP/zwg/X8pk2bkrQTFRWVpM2dO3cagLF8+fJE5xcsWGAAxsqVK40ffvjBcHZ2NoYNG5byG/SvY8eOGUCyf1u3brXm0ahRoyTP7dWrl1GyZMkkbRUoUMC4fPmy9fznn39uAMYXX3xhPdewYUMjT548xokTJxK1GR8fb73/xhtvGIBx7NixJK9dsmRJo1evXtbjYcOGGYCxfft267l//vnHKFWqlBEQEGDExcUZhmEYW7duNQCjfPnyRnR0tPXad955xwCMX3/99a7vl4iISE6xZMkSAzB+/PHHFK9p37694erqahw9etR67uzZs0aePHmMhg0bWs8NHjzYsFgsxs8//2w9d+nSJSN//vxJvqt79uxpAIaPj4/RoUMHY+bMmcbBgweTvHZqv7sNwzAA44UXXkj0/BdeeMFI7j/7Evojvr6+xtWrV63nR48ebQBGlSpVjNjYWOv5Hj16GK6ursbNmzet55Lrgz3zzDOGp6dnouvi4uKM+vXrG4ULFzb+/vtv44UXXjBy5cp11/c8wbhx45LtfyX0rRLySK6PCRjjxo1L0lbfvn0TXdehQwejQIEC1uM///zTcHJyMjp06JDo/TWMxH2whx56KNm+X0I/KqGPGBMTYxQqVMioWLGicePGDet169evNwBj7Nix1nO9evUyAGPixImJ2qxWrZpRvXr1ZN8jkZxM0/dEHFyLFi3YuXMnjz/+OL/88gszZswgKCiIYsWK8b///c963YYNGwAIDg5O9Pzhw4cDJJn+lVZeXl50797delyuXDny5ctH+fLlEy1imXD/r7/+sp7z8PCw3o+NjeXSpUuULVuWfPnysXfv3kSvM3DgQIKCghg8eDBPP/00ZcqU4fXXX091nAMHDiQ0NDTRX5UqVdKcL0C3bt0S/cKXMIIsIbeLFy/y7bff0rdvX0qUKJHouQlD79Nqw4YN1KpVi/r161vPeXl5MXDgQI4fP87vv/+e6Po+ffokWhvszhhFRETsXVxcHJs3b6Z9+/aULl3aer5o0aI88cQTfPfdd0RERACwceNG6tatm2hTl/z58/Pkk08maXfJkiW89957lCpVik8//ZQRI0ZQvnx5mjVrlmhKV1q/u9OqS5cu5M2b13qc0Nd66qmnyJUrV6LzMTExiWK7vQ/2zz//8Pfff9OgQQOioqI4dOiQ9TEnJyeWLl3K9evXad26NXPnzmX06NHUqFEj1XGuW7cuUf9r1apV6coX4Nlnn0103KBBAy5dumT9HD/77DPi4+MZO3Zskg1j0tMH++mnn7hw4QLPP/98orWmHn30UQIDA5PtRycXo/pfYo9UlBIRatasSUhICFeuXGH37t2MHj2af/75h86dO1s7OidOnMDJyYmyZcsmem6RIkXIly8fJ06cuK8YihcvnuRLPm/evPj7+yc5B+Z0vwQ3btxg7Nix+Pv74+bmRsGCBfH19eXq1atcu3YtyWstWrSIqKgo/vzzT5YuXZqoQ3UvDzzwAM2bN0/0l96h43cWmhLaScgtoeNxr2mVaXHixAnKlSuX5Hz58uWtj6clRhEREXt38eJFoqKiUvz+jI+P59SpU4D5PXpnXwlI9pyTkxMvvPACe/bs4e+//+bzzz+ndevWfPPNN4l+qEvrd3da3fldn9DXSk0f7MCBA3To0IG8efPi7e2Nr6+vdUOYO/tgZcqUYfz48fz444889NBDjBkzJk1xNmzYMFH/K7n1uFLrXv2bo0eP4uTkRIUKFdL9GrdL+IyS+xwDAwOTfIbu7u5JlmLw8fFR/0vskopSImLl6upKzZo1ef3115k3bx6xsbF88sknia5J7wide3F2dk7TecMwrPcHDx7MlClT6Nq1Kx9//DGbN28mNDSUAgUKEB8fn+S5YWFh1sXZf/311wyI3pTSe5PSopSpyc3WckKMIiIiOV2BAgV4/PHH2bBhA40aNeK7776772JTaqW3D3b16lUaNWrEL7/8wsSJE/niiy8IDQ21rsuUXB8sYZHws2fPcunSpYwIP839L8j+/ZuU4hOxRypKiUiyEoZTnzt3DjAX5IyPj+fPP/9MdF14eDhXr161LtiZkswqZgGsXbuWXr168eabb9K5c2datGhB/fr1uXr1apJrz507x+DBg2nZsiWPPfYYI0aMyLBOn4+PT7Kvmd72E6YI/Pbbb3e9Li3vbcmSJTl8+HCS8wlD7O/1OYqIiDgaX19fPD09U/z+dHJyso4qKlmyZLK71KZl59rk+mD3892dWX2wsLAwLl26xNKlSxk6dCiPPfbYXUeQz58/n9DQUKZMmUJMTAzPPPNMhsSR8Hp39sHup39XpkwZ4uPj7zk1MrXvbcJnlNznePjwYfW/xKGpKCXi4LZu3Zrsr0IJa0glDDNu06YNALNmzUp03VtvvQWYc+LvJmFnu+SKNvfL2dk5SQ6zZ89O9heyAQMGEB8fz6JFi3j//ffJlSsX/fr1y5BfxsqUKcOhQ4e4ePGi9dwvv/zC999/n672fH19adiwIYsXL+bkyZOJHrs93rS8t23atGH37t3s3LnTei4yMpL333+fgICADBumLiIiYi+cnZ1p2bIln3/+OcePH7eeDw8PZ/Xq1dSvXx9vb28AgoKC2LlzJ/v27bNed/ny5STrH50/fz7ZgkdMTAxbtmxJtGTC/X53Z1YfLGE0z+19kpiYGObOnZvk2mPHjvHSSy/RqVMnXnnlFWbOnMn//vc/li9fft9xeHt7U7BgQb799ttE55OLI7Xat2+Pk5MTEydOTDLi684+WGre1xo1alCoUCHmz59vHa0P8NVXX3Hw4MF79qNF7Fmue18iIvZs8ODBREVF0aFDBwIDA4mJiWHHjh2sWbOGgIAA+vTpA0CVKlXo1asX77//vnW49u7du1m2bBnt27enSZMmd32dMmXKkC9fPubPn0+ePHnInTs3tWvXplSpUvedw2OPPcaKFSvImzcvFSpUYOfOnXz99dcUKFAg0XVLlizhyy+/ZOnSpRQvXhwwi1dPPfUU8+bN4/nnn7+vOPr27ctbb71FUFAQ/fr148KFC8yfP5+HHnrIunBmWr377rvUr1+fhx9+mIEDB1KqVCmOHz/Ol19+ae3wVq9eHYBXX32V7t274+LiQtu2ba2d0NuNGjWKDz/8kNatWzNkyBDy58/PsmXLOHbsGOvWrUuymKeIiIijWLx4MRs3bkxyfujQoUyePJnQ0FDq16/P888/T65cuViwYAHR0dHMmDHDeu3LL7/MypUradGiBYMHDyZ37twsXLiQEiVKcPnyZevImtOnT1OrVi2aNm1Ks2bNKFKkCBcuXODDDz/kl19+YdiwYRQsWBC4/+/uhH7CkCFDCAoKwtnZOdGaVelVr149fHx86NWrF0OGDMFisbBixYokP/QZhkHfvn3x8PBg3rx5ADzzzDOsW7eOoUOH0rx5c/z8/O4rlv79+zNt2jT69+9PjRo1+Pbbb/njjz/S3V7ZsmV59dVXmTRpEg0aNKBjx464ubnx448/4ufnx9SpUwHzvZ03bx6TJ0+mbNmyFCpUiKZNmyZpz8XFhenTp9OnTx8aNWpEjx49CA8P55133iEgIIAXX3wx3bGK5Hg22fNPRLKNr776yujbt68RGBhoeHl5Ga6urkbZsmWNwYMHG+Hh4YmujY2NNSZMmGCUKlXKcHFxMfz9/Y3Ro0cn2vLXMMytbHPnzp3ktT7//HOjQoUKRq5cuRJt3duoUSPjoYceSnJ9yZIljUcffTTJee7Y7vjKlStGnz59jIIFCxpeXl5GUFCQcejQIaNkyZJGr169DMMwjFOnThl58+Y12rZtm6S9Dh06GLlz5zb++uuvFN+nhO2G33jjjRSvMQzDWLlypVG6dGnD1dXVqFq1qrFp0yajV69e1m2L79UWd2xdbBiG8dtvvxkdOnQw8uXLZ7i7uxvlypUzxowZk+iaSZMmGcWKFTOcnJwSbTl9+3uQ4OjRo0bnzp2t7dWqVctYv359omsStjL+5JNPkn0fktt2WUREJCdasmSJAaT4d+rUKcMwDGPv3r1GUFCQ4eXlZXh6ehpNmjQxduzYkaS9n3/+2WjQoIHh5uZmFC9e3Jg6darx7rvvGoBx/vx5wzAMIyIiwnjnnXeMoKAgo3jx4oaLi4uRJ08eo27dusYHH3xgxMfHJ2ozNd/dhpG0j2QYhnHr1i1j8ODBhq+vr2GxWIyE/wRMqT+SUh8g4X368ccfree+//57o06dOoaHh4fh5+dnvPzyy8amTZsMwNi6dathGIbxzjvvGICxbt26RO2dPHnS8Pb2Ntq0aZPiZ2MYhjFu3DgDMC5evJjiNVFRUUa/fv2MvHnzGnny5DG6du1qXLhwIUm/KqW2EnJL6D8lWLx4sVGtWjXDzc3N8PHxMRo1amSEhoZaHz9//rzx6KOPGnny5DEAo1GjRonew4T3IMGaNWus7eXPn9948sknjdOnTye6JqV+dELsIvbGYhjZZDU3EREREREROzRs2DAWLFjA9evXtYi1iMhtNE9DREREREQkg9y4cSPR8aVLl1ixYgX169dXQUpE5A5aU0pERERERCSD1K1bl8aNG1O+fHnCw8NZtGgRERERjBkzxtahiYhkOypKiYiIiIiIZJA2bdqwdu1a3n//fSwWCw8//DCLFi2iYcOGtg5NRCTb0ZpSIiIiIiIiIiKS5bSmlIiIiIiIiIiIZDkVpUREREREREREJMtpTalkxMfHc/bsWfLkyYPFYrF1OCIiImIDhmHwzz//4Ofnh5OTfsdLLfWjREREJLX9KBWlknH27Fn8/f1tHYaIiIhkA6dOnaJ48eK2DiPHUD9KREREEtyrH6WiVDLy5MkDmG+et7d3hrYdGxvL5s2badmyJS4uLhnadnajXO2Po+QJytUeOUqeoFwzSkREBP7+/tZ+gaSO+lEZQ7naH0fJE5SrPXKUPEG5ZpTU9qNUlEpGwlBzb2/vTOlMeXp64u3t7RD/wJWrfXGUPEG52iNHyROUa0bTFLS0UT8qYyhX++MoeYJytUeOkico14x2r36UFkgQEREREREREZEsp6KUiIiIiIiIiIhkORWlREREREREREQky2lNqfsQFxdHbGxsmp4TGxtLrly5uHnzJnFxcZkUWfZg61xdXFxwdnbO8tcVERGRe1M/6u4cIVf11UREREWpdDAMg/Pnz3P16tV0PbdIkSKcOnXK7hdOzQ655suXjyJFitj9ey0iIpJTqB+VOo6Sa758+ShQoICtwxARERtRUSodEjpShQoVwtPTM00dhfj4eK5fv46XlxdOTvY9e9KWuRqGQVRUFBcuXACgaNGiWfr6IiIikjz1o1LH3nO9va9mryPBRETk3lSUSqO4uDhrRyo9v+rEx8cTExODu7u7XXYwbmfrXD08PAC4cOEChQoV0vBwERERG1M/KvUcIdeEvlp4eLhdjwYTEZGU2ec3XCZKWPvA09PTxpFIaiR8Tmlds0JEREQynvpRcqeEfwv68VBExDGpKJVO+jUnZ9DnJCIikv3o+1kS6N+CiIhjU1FKRERERERERESynIpSkibvv/8+/v7+ODk5MWvWLFuHIyIiIimYMmUK9erVw9PTk3z58qXqOYZhMHbsWIoWLYqHhwfNmzfnzz//zNxAJUONHz+ewoULY7FY+Oyzz2wdjoiIyF2pKGUjcXEQFgYffmjeZsWmIxcvXuS5556jRIkSuLm5UaRIEYKCgvj+++9T9fyIiAgGDRrEyJEjOXPmDAMHDqRx48YMGzYscwMXERFJRlwcbNtm4dtvi7FtmyVLvktzkpiYGLp06cJzzz2X6ufMmDGDd999l/nz57Nr1y5y585NUFAQN2/ezMRI08EGHanevXvTvn37TGv/2LFjPPHEE/j5+eHu7k6JEiV44oknOHToUKrbOHjwIBMmTGDBggWcO3eO1q1bExAQoB8SRUQkqbg4LNu2Uezbb7Fs25Y1RYlkaPc9G/jiCxdeecXC6dP/nSteHN55Bzp2zLzX7dSpEzExMSxbtozSpUsTHh7Oli1buHTpUqqef/LkSWJjY3n00UcpWrRo5gUqIiJyDyEhMHQonD6dC6jBW29lzXdpTjJhwgQAli5dmqrrDcNg1qxZvPbaa7Rr1w6A5cuXU7hwYT777DO6d++eWaGmicsXX2B55RWyvCOViWJjY2nRogXlypUjJCSEokWLcvLkST7//HOuXr2a6naOHj0KQLt27bRWk4iIpOzfjlSu06epAdiyI6WRUlksJAR69fJM1I8COHMGOnc2H88MV69eZfv27UyfPp0mTZpQsmRJatWqxejRo3n88ccBs+jUrl07vLy88Pb2pmvXroSHhwNmh7ZSpUoAlC5dGovFQu/evdm2bRvvvPMOFosFi8XC8ePHCQsLw2KxsGnTJho2bEju3Llp2rQpFy5c4KuvvqJ8+fJ4e3vzxBNPEBUVZY1x48aN1K9fn3z58lGgQAEee+wxa+cKzI6xl5dXomkEzz//PIGBgYnaERER+xYSYn5nZvV3qb07duwY58+fp3nz5tZzefPmpXbt2uzcudOGkd0mJATPXr2y3Ye/bds2atWqhZubG0WLFmXUqFHcunXL+vg///zDk08+Se7cuSlatChvv/12otHmBw4c4OjRo8ydO5c6depQsmRJHnnkEV577TXq1KljbefXX3+ladOmeHh4UKBAAQYOHMj169cBc9pe27ZtAXBycsJisdC4cWNOnDjBiy++aO2rgdmvy5cvH+vXr6dcuXJ4enrSuXNnoqKiWLZsGQEBAfj4+DBkyBDibvvlfMWKFdSoUYM8efJQpEgRnnjiCS5cuGB9fOLEifj5+SX6wfPRRx+lSZMmxMfHZ/wbLyIiaZfNOlIaKZUBDANSUxOJi4OhQy0YBkDiX68MAywW81ff5s0hNbvienqaz0kNLy8vvLy8+Oyzz6hTpw5ubm6JHo+Pj7cWpLZt28atW7d44YUX6NatG2FhYXTr1g1/f3+aN2/O7t278ff3x8PDgz/++IOKFSsyceJEAHx9fTl+/DhgdkxmzJiBr68v3bt3p2vXrri5ubF69WquX79Ohw4dmD17NiNHjgQgMjKS4OBgKleuzPXr1xk7diwdOnRg3759ODk50bNnT9avX8+TTz7Jjh072LRpEwsXLmTnzp3aWlpExEGY36X8+12aWMJ36bBh0K5d6r5L5T/nz58HoHDhwonOFy5c2PpYcqKjo4mOjrYeR0REAObon9jY2ETXxsbGYhgG8fHxZpEitZ0oMKcZ/PvhJ+n+GAaGxQJDhmA0bZrxHSnMkWQJsd/uzJkztGnThl69erF06VIOHTrEM888g5ubG+PGjQPgxRdf5Pvvv+ezzz6jcOHCjBs3jr1791KlShXi4+MpUKAATk5OfPLJJwwdOhRnZ2eMf/+RJ7xmZGQkQUFB1KlTh127dnHhwgUGDhzICy+8wJIlSwgODqZEiRL069ePM2fOAODq6kq1atUYMGAA/fv3B7C+91FRUbzzzjusXr2af/75h86dO9O+fXtrseqvv/6iS5cu1K1bl27dugHmZz1hwgTKlSvHhQsXGDFiBL169eLLL78EYPTo0WzcuJF+/foREhLC3Llz2bFjBz///LP1te8UHx9vzfXOfy/2JiE/e88TlKs9cpQ8wc5zjYsj15Ahd/8uHTqUW23a3HdHKrXvn4pSGSAqCry8Unt1yp0fwzCLlXnzpq6l69chd+7UXZsrVy6WLl3KgAEDmD9/Pg8//DCNGjWie/fuVK5cmS1btvDrr79y7Ngx/P39AXNk0kMPPcSPP/5IzZo1KVCgAGAWnooUKQKYnR1PT0/r8e0mTpxIzZo18fb2pl+/fowePZqjR49SunRpADp37szWrVutRalOnTolev7ixYvx9fXl999/p2LFigAsWLCAypUrM2TIEEJCQhg/fjzVq1dP3ZsgIiI53vbtSX/Yu51hwKlT5nWNG2dZWFlm1KhRTJ8+/a7XHDx4kMDAwCyKCKZOnWqdKni7zZs3J/nRKFeuXBQpUoTr168TExMDkZHkK148Q+KwGAacOYPFxydV1189fTr1HSnMzvWtW7esRbcEs2bNolixYkyZMgWLxYKfnx8jR45kwoQJDB06lMjISJYvX84HH3xAzZo1rc+pUKECMTExREREkCdPHqZNm8a4ceOYOHEiVatWpUGDBnTp0oWAgAAAli1bxo0bN5g9eza5c+emRIkSTJs2jR49evDqq69SqFAh64+Ot7/vFosFFxcX67mIiAhu3rxJbGwsM2bMoFSpUgC0bduWjz/+mMOHD+Pl5UXx4sVp0KABmzdvpnXr1oDZd0tQsGBBpkyZQtOmTTl79ixe/3aG586dS8OGDQkODub999/nnXfeIV++fEnetwQxMTHWNctCQ0NT/XnkZI6SJyhXe+QoeYJ95lrg11+p/+8PF8mx/FuU2DVzJpf+nSmVXqmdzaSilAPp1KkTjz76KNu3b+eHH37gq6++YsaMGSxcuJCIiAj8/f2tBSmAChUqkC9fPg4ePGjtRKVF5cqVrfcLFy6Mp6entSCVcG737t3W4z///JOxY8eya9cu/v77b+uvaSdPnrQWpXx8fFi0aBFBQUHUq1ePUaNGpTkuERHJuc6dy9jrcprhw4fTu3fvu15z+3dtWiT8wBQeHp5o7cjw8HCqVq2a4vNGjx5NcHCw9TihT9GyZUu8vb0TXXvz5k1OnTqFl5cX7u7uNh3O5u3tnaailIuLC7ly5UqS019//UW9evXIe9uvis2aNeOll14iIiKCK1euEBsbS6NGjazP9fb2ply5cri6ulrPDR8+nIEDBxIWFsauXbv44osveOutt/j0009p2bIlx48fp2rVqok+mxYtWhAfH8/Zs2cpW7YsHh4e/+X2LycnJ9zd3ROdc3d3x9PTkypVqljP+fv7ExAQgJ+fn/Wcn58fV69etT53z549TJgwgf3793PlyhVrX+3q1avW51WuXJkZM2bw3HPP0bVrV/r163fX9/XmzZvmv4V/83Fxcbnr9TlZbGwsoaGhdp8nKFd75Ch5gn3naknhB4I71SlZEqNNm/t6rZR+jLiTilIZwNPTHLV0L99+C6n5XDdsgIYNU/e6aeXu7k6LFi1o0aIFY8aMoX///owbN47hw4envbF7uP1/wAm/0t3OYrEkGsbdtm1bSpYsyQcffICfnx/x8fFUrFjR/CX1Nt9++y3Ozs6cO3eOyMhI8uTJk+Gxi4hI9pTafTbsdT8OX19ffH19M6XtUqVKUaRIEbZs2WItQkVERLBr16677uDn5uaWZFkAMPsBd373x8XFYbFYcHJywsnJyRxqnppOFGR4R8opjdP3EtZkcnJyuuf5hPvWPO+4f/tzbz+XN29e2rVrR7t27Zg0aRItWrRg6tSptGrVyroe1N1e5/bju72Ok5MTLi4uqTpnGAZOTk5ERkbSunVrgoKCWLVqFb6+vpw8eZKgoCBu3bqV6Hnfffcdzs7OnDhxgvj4eHLlSvk/ORLWv4Lk/83YI0fJE5SrPXKUPMEOczUM+OGHVF2ay98f7jP31L53Wug8A1gs5g9t9/pr2RKKFzewWJJZCOPfdvz9zetS015GbKpSoUIFIiMjKV++PKdOneLUqVPWx37//XeuXr1KhQoVUny+q6trogUw0+vSpUscPnyY1157jWbNmlG+fHmuXLmS5LodO3Ywffp0vvjiC7y8vBg0aNB9v7aIiOQcDRqYm8OkJOG7tEGDrIspuzp58iT79u3j5MmTxMXFsW/fPvbt22ddGBsgMDCQTz/9FDALF8OGDWPy5Mn873//49dff6Vnz574+fnRvn37zAkytZ2ofztSRvHi5noXKbWV1R0poHz58uzcudO6LhLA999/T548eShevDilS5fGxcWFH3/80fr4tWvX+OOPP+7x1lh44IEHiIyMtL7OL7/8Yj1OeB0nJyfKlSuXYjsZ1Vc7dOgQly5dYtq0aTRo0IDAwMBEi5wnWLNmDSEhIYSFhXHy5EkmTZp0368tIiL36fp16NED5s69+3U26EipKJWFnJ3h7bfNDsudhamEftGsWZkzkv3SpUs0bdqUlStXsn//fo4dO8Ynn3zCjBkzaNeuHc2bN6dSpUo8+eST7N27l927d9OzZ08aNWpEjRo1Umw3ICCAXbt2cfz48URT7tLKx8eHAgUK8P7773PkyBG++eabRFMBwNy55umnn2bIkCG0bt2aVatWsWbNGtauXZuu1xQRkZzH2RlSWlIps79Lc5qxY8dSrVo1xo0bx/Xr16lWrRrVqlXjp59+sl5z+PBhrl27Zj1++eWXGTx4MAMHDqRmzZpcv36djRs3WqdX2ZSzM8bbbwMkLUxl0Yd/7do1a3Ev4W/gwIGcOnWKwYMHc+jQIT7//HPGjRtHcHAwTk5O5MmTh169evHSSy+xdetWDhw4QL9+/RKNENq3bx/t2rVj7dq1/P777xw5coRFixaxatUq6y7JTz75JO7u7vTq1YvffvuNrVu3MnjwYJ5++ukki9PfLiAggG+//ZYzZ87w999/pzv3EiVK4OrqyuzZs/nrr7/43//+l6TgdPr0aZ577jmmT59O/fr1WbJkCa+//jo/pPKXeRERyQR//AF16sCaNZArF/TrZ35v2ui79E4qSmWxjh1h2bIoihVLfL54cVi71nw8M3h5eVG7dm3efvttGjZsSMWKFRkzZgwDBgzgvffew2Kx8Pnnn+Pj40PDhg1p3rw5pUuXZs2aNXdtd8SIETg7O1OhQgXrMO70cHJy4qOPPmLPnj1UrFiRF198kTfeeCPRNUOHDiV37ty8/vrrAFSqVInXX3+dZ555xrrLjIiI2L+EzVzu7C9l9ndpTrN06VLrjnG3/zW+bQV4wzASrVFlsViYOHEi58+f5+bNm3z99dc8+OCDWR98Sjp2JGrZMrK8I/WvsLAwa3Ev4W/SpEls2LCB3bt3U6VKFZ599ln69evHa6+9Zn3eW2+9Rd26dXnsscdo3rw5jzzyCOXLl7cW+4oXL05AQAATJkygdu3aPPzww8yePZtRo0bxyiuvAObi5Zs2beLy5cvUrFmTzp0706xZM9577727xjxx4kSOHz9OmTJl7mvqp6+vL0uXLuWTTz6hQoUKTJs2jZkzZ1ofT/i3VKtWLetI9qCgIJ577jmeeuqpRCP0REQki3z2GdSoAQcOmGsbbNsGCxea35k2+i69k8UwkttU2bFFRESQN29erl27luwCnceOHaNUqVLp+tUwPj6eiIgIcuf25vvvnTh3zvy30aCB/f2qm5Crt7d3krUNssr9fl6pFRsby4YNG2jTpo19zTu+g6PkCcrVHjlKnmD/uTZsaO6uN2kS1Klzi6++2kfr1lVp0iRXhn6X3q0/ICnLin6Ud+7cOH3/PTm1IxUZGUmxYsV48803U1wIPDv0o7LCzZs3+euvvzh27BgtW7a0y//PSmDv/998O+VqfxwlT7CTXOPiYMwYmDrVPG7QAD7+GP7d1CThmltbt7Lvq6+o2ro1uZo0ydDv0tT2o7TQuY04O9vnVtUiIiKZ6Y8/zIKUkxP06QOFChlERp6hUaMqOakmIfcrh3Wkfv75Zw4dOkStWrW4du0aEydOBKBdu3Y2jkxEROzO33+b60d9/bV5/OKL5toHdxbYnJ0xGjXiTGQkVRo1stmPOypKiYiISI6xaJF527q1Oeo8YSqfSHY3c+ZMDh8+jKurK9WrV2f79u0ULFjQ1mGJiIg9+ekn6NQJTp4ET0+z49S9u62juisVpURERCRHiI2FZcvM+/372zYWkbSoVq0ae/bssXUYIiJizxYtghdegOhoeOAB+PRTeOghW0d1T9ligvqcOXMICAjA3d2d2rVrs3v37hSvDQkJoUaNGuTLl4/cuXNTtWpVVqxYkeia3r17Y7FYEv21atUqs9MQERGRTLRhA4SHQ+HC8Oijto5GREREJBu4eRMGDDB/sYuOhnbt4Mcfc0RBCrLBSKk1a9YQHBzM/PnzqV27NrNmzSIoKIjDhw9TqFChJNfnz5+fV199lcDAQFxdXVm/fj19+vShUKFCBAUFWa9r1aoVS5YssR67ubllST4iIiKSORYuNG979ky6LIKIiIiIwzlxAjp3NqftOTnB5MkwcqR5P4eweaRvvfUWAwYMoE+fPlSoUIH58+fj6enJ4sWLk72+cePGdOjQgfLly1OmTBmGDh1K5cqV+e677xJd5+bmRpEiRax/Pj4+GRp3fHx8hrYnmUOfk4iIfTh71hwpBdC3r21jkfun72dJkPBvQRuCi4ik0ddfQ/XqZkGqQAHYuBFGj85RBSmw8UipmJgY9uzZw+jRo63nnJycaN68OTt37rzn8w3D4JtvvuHw4cNMnz490WNhYWEUKlQIHx8fmjZtyuTJkylQoECy7URHRxMdHW09joiIAMytIGPvWEE1YTrgmTNn8PX1xcXFBYvFkuqcDcMgJiaGGzdupOl5OZEtczUMg9jYWC5evGj9zO78LDNSQtuZ+RrZgaPkCcrVHjlKnmCfuS5e7ER8vDOPPBJPmTJx1gXOMzNXe3r/sgtXV1ecnJw4e/Ysvr6+uLq6pqmPEB8fT0xMDDdv3sQph3W608rec03oJ168eBEnJyfi4uJsHZKISM5gGOZueq++CvHxZmFq3TooWdLWkaWLTYtSf//9N3FxcRQuXDjR+cKFC3Po0KEUn3ft2jWKFStGdHQ0zs7OzJ07lxYtWlgfb9WqFR07dqRUqVIcPXqUV155hdatW7Nz506ck9nmcOrUqUyYMCHJ+c2bN+Pp6ZnkvJOTE/ny5ePatWt2X1jKyQzDICoqimvXrnH48OEsec3Q0NAseR1bc5Q8QbnaI0fJE+wn1/h4mDOnGeDFww/vY8OGU0muyYxco6KiMrxNR+fk5ESpUqU4d+4cZ8+eTfPzDcPgxo0beHh42H0fzFFy9fT0xM/PL8v6aiIiOdq1a9C7N3z2mXncrx+89x64u9syqvti8zWl0iNPnjzs27eP69evs2XLFoKDgyldujSNGzcGoPttWx5WqlSJypUrU6ZMGcLCwmjWrFmS9kaPHk1wcLD1OCIiAn9/f1q2bIm3t3eyMRiGQVxcHHFxcWkabnzr1i127NhBvXr1yJUrR779qWbLXC0WC87Ozjg7O2dJRy42NpbQ0FBatGiBix0vdOIoeYJytUeOkifYX67btlk4fz4XefIYTJxYidy5K1kfy8xcE0ZOS8ZydXWlRIkS3Lp1K82jY2JjY/n2229p2LChXfzbvhtHyNXZ2ZlcuXJx69YtW4ciIpL9HTgAHTvCH3+Aq6tZjBowwNZR3TebVkUKFiyIs7Mz4eHhic6Hh4dTpEiRFJ/n5ORE2bJlAahatSoHDx5k6tSp1qLUnUqXLk3BggU5cuRIskUpNze3ZBdCd3FxyfBOQGxsLLdu3cLLy8tuOxgJHCnXBJnxbyY7cpQ8QbnaI0fJE+wn12XLzNsePSzky5d8PpmRqz28d9mVxWJJ12fm7OzMrVu3cHd3t/vPx5FyFRGRe1izxhwVFRkJ/v7mdL2aNW0dVYaw6QR1V1dXqlevzpYtW6zn4uPj2bJlC3Xr1k11O/Hx8YnWhLrT6dOnuXTpEkWLFr2veEVERCRrXb0Ka9ea9/v1s2koIiIiIlkrNhaCg6F7d7Mg1awZ7NljNwUpyAbT94KDg+nVqxc1atSgVq1azJo1i8jISPr06QNAz549KVasGFOnTgXM9Z9q1KhBmTJliI6OZsOGDaxYsYJ58+YBcP36dSZMmECnTp0oUqQIR48e5eWXX6Zs2bIEBQXZLE8RERFJu9Wr4eZNqFjRrvpfIiIiIncXHg5du8K335rHo0bB5MmQzDrZOZnNi1LdunXj4sWLjB07lvPnz1O1alU2btxoXfz85MmTiXYciYyM5Pnnn+f06dN4eHgQGBjIypUr6datG2AOdd6/fz/Lli3j6tWr+Pn50bJlSyZNmpTsFD0RERHJvhYtMm/79wc7XutZRERE5D87dkCXLnD2LOTJY65l0KGDraPKFDYvSgEMGjSIQYMGJftYWFhYouPJkyczefLkFNvy8PBg06ZNGRmeiIiI2MDPP8PeveZank89ZetoRERERDKZYcDcufDii+bUvQoVICQEypWzdWSZxqZrSomIiIikJGGUVPv2UKCATUMRERERyVxRUdCzJwwaZBakunSBXbvsuiAF2WSklIiIiMjtbtyAVavM+1rgXEREROza0aPQsSPs32+uGTVjhjlaygHWLlBRSkRERLKdTz81d94rWRKaN7d1NCIiIiKZ5MsvzXUKrl6FQoVgzRpo3NjWUWUZTd8TERGRbGfhQvO2Tx9wUm9FRERE7E18PIwfD489Zhak6tSBPXscqiAFGiklIiIi2czRo7B1qzlivU8fW0cjIiIiksEuXzZHR331lXn8wgvw1lvm7i4ORkUpERERyVaWLDFvW7aEEiVsG4uIiIhIhtq3z1w/6tgxcHeHBQvMBc4dlAbEi4iISLZx69Z/RSktcC4iIiJ2ZflyqFvXLEiVKgU7dzp0QQpUlBIREZFsZNMmOHsWChSAxx+3dTQiIiIiGSAmxpyi16sX3LwJbdqY60dVrWrryGxORSkRERHJNhYtMm979gQ3N9vGIiIiInLfzpyBRo1g7lzzeNw4+OIL8PGxbVzZhNaUEhERkWwhPNzso4Gm7omIiIgdCAuDbt3gwgXIlw9WroRHH7V1VNmKRkqJiIhItrB8ubmmVO3a8NBDto5GREREJJ0MA958E5o3NwtSVarATz+pIJUMjZQSERERmzOM/6buaZSUiIiI5FjXr5udmY8/No+fesrcYc/T07ZxZVMqSomIiIjN7dgBhw9D7tzQvbutoxERERFJh8OHoUMHOHgQcuWCWbPg+efBYrF1ZNmWilIiIiJicwsXmrddu0KePLaNRURERCTNQkKgd2/45x/w84NPPoF69WwdVbanNaVERETEpiIi/hvhrql7IiIikqPcugWjRkGnTmZBqmFD2LNHBalU0kgpERERsak1ayAqCgID1X8TERGRHOTiRejRA7ZsMY+Dg2HaNHBxsW1cOYiKUiIiImJTCVP3+vXTkgsiIiKSDcXFwfbtcO4cFC0KDRqYo6E6d4ZTp8xFMRctgm7dbB1pjqOilIiIiNjMb7/B7t3mWqA9e9o6GhEREZE7hITA0KFw+vR/53x8zKl6t27BAw/Ap5/CQw/ZLsYcTEUpERERsZlFi8zbxx+HQoVsG4uIiIhIIiEh5mgow0h8/soV87ZWLdi8GfLmzfrY7IQWOhcRERGbiI6G5cvN+1rgXERERLKVuDhzhNSdBanbnTsHXl5ZF5MdUlFKREREbOLzz+HyZShWDIKCbB2N/ZkyZQr16tXD09OTfPnypeo5vXv3xmKxJPpr1apV5gYqIiKSDVm++y7xlL3knDplrjUl6abpeyIiImITCVP3evcGZ2ebhmKXYmJi6NKlC3Xr1mVRwpudCq1atWLJkiXWYzc3t8wIT0REJHs7dy5jr5NkqSglIiIiWe7ECQgNNe/37WvbWOzVhAkTAFi6dGmanufm5kaRIkUyISIREZEcxNs7ddcVLZq5cdg5FaVEREQkyy1ZYi7R0LQplC5t62jkdmFhYRQqVAgfHx+aNm3K5MmTKVCgQIrXR0dHEx0dbT2OiIgAIDY2ltjY2AyNLaG9jG43O1Ku9sdR8gTlao8cJU8wc8xz4gRO774LgAFYkrnOsFigWDFu1akDOfR9yczPNbVtqiglIiIiWSouzixKgRY4z25atWpFx44dKVWqFEePHuWVV16hdevW7Ny5E+cU5lhOnTrVOirrdps3b8bT0zNT4gxNGGbnAJSr/XGUPEG52iNHyLPY9u00fO89nKKjifb2xjUiIklhygAwDH588knObdpkm0AzUGZ8rlFRUam6TkUpERERyVJbtsDJk+DjAx072jqanGXUqFFMnz79rtccPHiQwMDAdLXfvXt36/1KlSpRuXJlypQpQ1hYGM2aNUv2OaNHjyY4ONh6HBERgb+/Py1btsQ7tVMfUik2NpbQ0FBatGiBi4tLhrad3ShX++MoeYJytUcOkWdsLE6jR+P87wipuCZNcFq1irjt23EODoYzZ/67tnhx4t58k2odOlDNRuFmhMz8XBNGTt+LilIiIiKSpRYuNG+ffBLc3W0bS04zfPhwevfufddrSmfgfMjSpUtTsGBBjhw5kmJRys3NLdnF0F1cXDLtP1wys+3sRrnaH0fJE5SrPbLbPM+fh65drTvp/dGpE6VWrsTF3d0836mT+di5c1C0KJYGDchlR7u0ZMbnmtr2VJQSERGRLPP33/DZZ+Z9Td1LO19fX3x9fbPs9U6fPs2lS5coqkVcRUTEXn3/PXTpYhac8uTh1uLFHHRxodTtRSdnZ2jc2GYh2jMnWwcgIiIijmPlSnMt0OrVoWpVW0dj306ePMm+ffs4efIkcXFx7Nu3j3379nH9+nXrNYGBgXz66acAXL9+nZdeeokffviB48ePs2XLFtq1a0fZsmUJCgqyVRoiIiKZwzBg9myz2HTuHFSoAD/9hNGuna0jcygaKSUiIiJZwjD+m7qnUVKZb+zYsSxbtsx6XK2auerF1q1bafzvr72HDx/m2rVrADg7O7N//36WLVvG1atX8fPzo2XLlkyaNCnZ6XkiIiI5VlQUDBwIq1aZx926mZ0UL68cu5NeTqWilIiIiGSJ3bvhwAFzHakePWwdjf1bunQpS5cuves1hmFY73t4eLDJDnYQEhERuasjR8w1ovbvN6flvfEGDBsGFss9nyoZT0UpERERyRKLFpm3XbpAvnw2DUVEREQc0fr18NRTcO0aFCoEH38MjRrZOiqHpjWlREREJNNdvw4ffmje19Q9ERERyVJxcTB2LLRtaxak6taFvXtVkMoGNFJKREREMt0nn5iFqbJloWFDW0cjIiIiDuPyZXjySdi40Tx+4QV46y1wdbVtXAKoKCUiIiJZIGHqXt++WrJBREREssjPP0PHjnD8OHh4wIIF8PTTto5KbqPpeyIiIpKpDh6E77831xLt1cvW0YiIiIhDWLYM6tUzC1KlS8POnSpIZUMqSomIiEimWrzYvG3TBvz8bBuLiIiI2LnoaHjuOejdG27eNDsgP/0EVarYOjJJhopSIiIikmliY2H5cvO+FjgXERGRTHX6tLl4+fz55noB48fDF1+Aj4+tI5MUaE0pERERyTTr18OFC1CkiPlDpYiIiEim2LoVunWDixchXz5YtUqdjxxAI6VEREQk0yxcaN726gUuLraNRUREROyQYcDMmdC8uVmQqlIF9uxRQSqHyBZFqTlz5hAQEIC7uzu1a9dm9+7dKV4bEhJCjRo1yJcvH7lz56Zq1aqsWLEi0TWGYTB27FiKFi2Kh4cHzZs3588//8zsNEREROQ2Z878t/ty3762jUVERETs0D//QNeu8NJLEB9vLmS+Y4e5sLnkCDYvSq1Zs4bg4GDGjRvH3r17qVKlCkFBQVy4cCHZ6/Pnz8+rr77Kzp072b9/P3369KFPnz5s2rTJes2MGTN49913mT9/Prt27SJ37twEBQVx8+bNrEpLRETE4S1davYPGzaEBx+0dTQiIiJiVw4dglq1YO1aczj23LnmjnuenraOTNLA5kWpt956iwEDBtCnTx8qVKjA/Pnz8fT0ZHHCVj13aNy4MR06dKB8+fKUKVOGoUOHUrlyZb777jvAHCU1a9YsXnvtNdq1a0flypVZvnw5Z8+e5bPPPsvCzERERBxXfDwsWmTe1wLnIiIikqHWrYOaNc3ClJ8fbNtm7rhnsdg6MkkjmxalYmJi2LNnD82bN7eec3Jyonnz5uzcufOezzcMgy1btnD48GEaNmwIwLFjxzh//nyiNvPmzUvt2rVT1aaIiIjcv7AwOHYMvL2hc2dbRyMiIiJ24dYtGDnS7Fxcv27utLd3L9Sta+vIJJ1suvve33//TVxcHIULF050vnDhwhw6dCjF5127do1ixYoRHR2Ns7Mzc+fOpUWLFgCcP3/e2sadbSY8dqfo6Giio6OtxxEREQDExsYSGxub9sTuIqG9jG43O1Ku9sdR8gTlao8cJU/IHrl+8IEz4ES3bnG4uMSTWaFkZq6O8G9FREQkx7hwAXr0gG++MY+HD4dp0yCXTcsacp9y5KeXJ08e9u3bx/Xr19myZQvBwcGULl2axo0bp6u9qVOnMmHChCTnN2/ejGcmzUcNDQ3NlHazI+VqfxwlT1Cu9shR8gTb5Xr9ugvr1gUBUK7cd2zYcDXTXzMzco2KisrwNkVERCQddu+GTp3g9GnInRsWLzYXOJccz6ZFqYIFC+Ls7Ex4eHii8+Hh4RQpUiTF5zk5OVG2bFkAqlatysGDB5k6dSqNGze2Pi88PJyiRYsmarNq1arJtjd69GiCg4OtxxEREfj7+9OyZUu8vb3Tm16yYmNjCQ0NpUWLFrjY+d7YytX+OEqeoFztkaPkCbbPde5cJ2JjnalUyWDw4HqZurxDZuaaMHJaREREbMQw4IMPYPBgiIkxd0759FOoUMHWkUkGsWlRytXVlerVq7Nlyxbat28PQHx8PFu2bGHQoEGpbic+Pt46/a5UqVIUKVKELVu2WItQERER7Nq1i+eeey7Z57u5ueHm5pbkvIuLS6Z15jOz7exGudofR8kTlKs9cpQ8wTa5GgYsWWLe79/fgqtr1rx+ZuTqKP9OREREsqUbN+CFF/7rWHToYG7tm8EDR8S2bD59Lzg4mF69elGjRg1q1arFrFmziIyMpE+fPgD07NmTYsWKMXXqVMCcalejRg3KlClDdHQ0GzZsYMWKFcybNw8Ai8XCsGHDmDx5Mg888AClSpVizJgx+Pn5WQtfIiIikjn27oVffgE3N3jqKVtHIyIiIjnS8ePmdL29e8HJCV5/HV5+Wbvr2SGbF6W6devGxYsXGTt2LOfPn6dq1aps3LjRulD5yZMncXL6b5PAyMhInn/+eU6fPo2HhweBgYGsXLmSbt26Wa95+eWXiYyMZODAgVy9epX69euzceNG3N3dszw/ERERR7JokXnboQPkz2/bWERERCQH2rQJnngCLl+GggXhww+heXNbRyWZxOZFKYBBgwalOF0vLCws0fHkyZOZPHnyXduzWCxMnDiRiRMnZlSIIiIicg83bsDq1eb9fv1sG4uIiIjkMPHx5oiosWPN9QBq1oS1a6FECVtHJpkoWxSlREREJOdbtw6uXYOAAGja1NbRiIiISI5x9Sr07AlffGEeDxgA774Lmu1k91SUEhERkQyxcKF527evufyDiIiIyD39+it07AhHjpiLUs6ZoyHXDkRFKREREblvR47Atm3m+qO9e9s6GhEREckRPvwQ+veHqChzmt66dVCjhq2jkiyk3zFFRETkvi1ebN4GBYG/v21jERERkWwuNhaGDjUXNI+KghYtYM8eFaQckIpSIiIicl9u3YKlS837/fvbNBQRERHJ7s6dMxeffPdd8/iVV+Crr8yd9sThaPqeiIiI3JevvjL7l76+0LatraMRERERm4uLg+3bzQ5C0aLQoAE4O8N330GXLnD+PHh7w/Ll0K6draMVG1JRSkRERO7LokXm7dNPg6urbWMRERERGwsJMafmnT7937nixaFlS7MIdesWPPSQed2DD9ouTskWVJQSERGRdDt3DtavN+9roxwREREHFxICnTuDYSQ+f/r0fwtQdu9ubtmbO3fWxyfZjopSIiIikm7Ll5sj9OvWhQoVbB2NiIiI2ExcnDlC6s6C1O3y5YMVKyCXShFi0kLnIiIiki6G8d+PnholJSIi4uC2b088ZS85V6+a60qJ/EtFKREREUmX776DP/4ALy/o1s3W0YiIiIhNnTuXsdeJQ1BRSkRERNJl4ULztls3szAlIiIiDqxo0Yy9ThyCilIiIiKSZteuwSefmPc1dU9ERETInRucnVN+3GIBf39o0CDrYpJsT0UpERERSbOPPoIbN8zFzevUsXU0IiIiYlNLlpjFprg489hiSfx4wvGsWXcvXInDUVFKRERE0ixh6l6/fkn7nSIiIuIgoqPh2Wehb1/z/mOPwbJlUKxY4uuKF4e1a6FjR9vEKdmWilIiIiKSJvv3w08/gYsLPP20raOR5Bw/fpx+/fpRqlQpPDw8KFOmDOPGjSMmJuauz7t58yYvvPACBQoUwMvLi06dOhEeHp5FUYuISI5y6hQ0bAgLFpi/UE2cCJ9/Dj17wvHjsHUrrF5t3h47poKUJCuXrQMQERGRnGXRIvP28cfB19e2sUjyDh06RHx8PAsWLKBs2bL89ttvDBgwgMjISGbOnJni81588UW+/PJLPvnkE/LmzcugQYPo2LEj33//fRZGLyIi2d4330D37nDxIvj4wKpV0Lr1f487O0PjxjYLT3IOFaVEREQk1W7ehBUrzPv9+9s2FklZq1ataNWqlfW4dOnSHD58mHnz5qVYlLp27RqLFi1i9erVNG3aFIAlS5ZQvnx5fvjhB+po8TARETEMeOMNGDUK4uOhalVYtw5Kl7Z1ZJJDqSglIiIiqfbZZ3Dlirl5TosWto5G0uLatWvkz58/xcf37NlDbGwszZs3t54LDAykRIkS7Ny5M8WiVHR0NNHR0dbjiIgIAGJjY4mNjc2g6LG2efutPVOu9sdR8gTlao9iY2PJFRWFpWtXc4oeEP/008S99x54eIAd5e8onylkbq6pbVNFKREREUm1hKl7vXtr85yc5MiRI8yePfuuU/fOnz+Pq6sr+fLlS3S+cOHCnD9/PsXnTZ06lQkTJiQ5v3nzZjw9PdMd892EhoZmSrvZkXK1P46SJyhXe+J16hQNp08n1+nTxOfKxa/9+3M8KMhcL8pO2ftnervMyDUqKipV16koJSIiIqly7Bh8/bW5lmnfvraOxjGNGjWK6dOn3/WagwcPEhgYaD0+c+YMrVq1okuXLgwYMCDDYxo9ejTBwcHW44iICPz9/WnZsiXe3t4Z+lqxsbGEhobSokULXFxcMrTt7Ea52h9HyROUq72xrFuH8+jRWK5fJ97Pj/g1a6hQuzYVbB1YJnGEzzRBZuaaMHL6XlSUEhERkVRZssS8bdYMAgJsGorDGj58OL17977rNaVvW9fj7NmzNGnShHr16vH+++/f9XlFihQhJiaGq1evJhotFR4eTpEiRVJ8npubG25ubknOu7i4ZFpnPjPbzm6Uq/1xlDxBueZ4t27BK6+Ya0gBFytWJN/GjbgUK2bjwLKGXX6mKciMXFPbnopSIiIick9xcf8Vpfr1s20sjszX1xffVG55eObMGZo0aUL16tVZsmQJTk5Od72+evXquLi4sGXLFjp16gTA4cOHOXnyJHXr1r3v2EVEJAe5cMHcXe/f6XlxwcHsfOQRWhcqZOPAxN7cvXciIiIiAoSGwunTkD8/tG9v62jkXs6cOUPjxo0pUaIEM2fO5OLFi5w/fz7R2lBnzpwhMDCQ3bt3A5A3b1769etHcHAwW7duZc+ePfTp04e6detq5z0REUeyaxdUr24WpLy84JNPiJ82DUOLSUom0EgpERERuaeFC83bp54Cd3fbxiL3FhoaypEjRzhy5AjFixdP9JhhGIC5jsThw4cTLUT69ttv4+TkRKdOnYiOjiYoKIi5c+dmaewiImIjhgELFsCQIeZueuXKwaefQvnydrW7nmQvGiklIiIid3XxIvzvf+Z9Td3LGXr37o1hGMn+JQgICMAwDBo3bmw95+7uzpw5c7h8+TKRkZGEhITcdT0pERGxEzduQJ8+8NxzZgGqY0fYvdssSIlkIhWlRERE5K5WrDD7pzVqQOXKto5GREREMtSxY/DII7BsGTg5wfTpsHYtZPAOqiLJ0fQ9ERERSZFh/Dd1r39/28YiIiIiGWzjRnjiCbhyBQoWhDVroGlTW0clDkQjpURERCRFP/wABw+Ch4e5CY+IiIjYgfh4mDQJ2rQxC1K1asHevSpISZbTSCkRERFJ0aJF5m2XLpA3r21jERERkQxw9So8/TSsX28eP/MMvPMOuLnZNCxxTCpKiYiISLL++Qc++si8r6l7IiIidmD/fnMR86NHzSLUvHnmAuciNqKilIiIiCTr448hMhIefBDq17d1NCIiInJfVq2CAQPMnfZKloR166B6dVtHJQ5Oa0qJiIhIshKm7vXtCxaLbWMRERGRdIqJgSFD4KmnzIJUy5awZ48KUpItqCglIiIiSfz+O+zcCc7O0KuXraMRERGRdDl71ly8fPZs8/i112DDBihQwLZxifxL0/dEREQkiYRRUo89BkWK2DYWERERSYft26FrVzh/Hry9YcUKePxxW0clkohGSomIiEgiMTGwfLl5v18/28YiIiIiaWQY5m56TZuaBamKFeGnn1SQkmxJRSkRERFJ5Isv4O+/oWhRaN3a1tGIiIhIqkVGwpNPwrBhcOsW9OgBP/wADzxg68hEkqXpeyIiIpLIwoXmbe/ekEs9BRERkZzhzz+hY0f47TfzC3zmTHOBc+1WItmYupoiIiJideoUbNpk3u/b17axiIiISCr973/w9NMQEWEuBvnxx9Cgga2jErknTd8TERERq6VLzaUoGjWCsmVtHY2IiIjcVVycuaNeu3ZmQeqRR2DvXhWkJMfQSCkREREBID4eFi827/fvb9tYRERE5B4uXYInnoDNm83jIUPMKXsuLraNSyQNssVIqTlz5hAQEIC7uzu1a9dm9+7dKV77wQcf0KBBA3x8fPDx8aF58+ZJru/duzcWiyXRX6tWrTI7DRERkRztm2/g+HHImxc6dbJ1NCIiIpKiPXugenWzIOXhAatWmTvuqSAlOYzNi1Jr1qwhODiYcePGsXfvXqpUqUJQUBAXLlxI9vqwsDB69OjB1q1b2blzJ/7+/rRs2ZIzZ84kuq5Vq1acO3fO+vfhhx9mRToiIiI51qJF5u0TT5j9WxEREcmGFi82p+mdOAFlypi76z3xhK2jEkkXmxel3nrrLQYMGECfPn2oUKEC8+fPx9PTk8UJ8wfusGrVKp5//nmqVq1KYGAgCxcuJD4+ni1btiS6zs3NjSJFilj/fHx8siIdERGRHOnSJQgJMe9r6p6IiEg2FB0NzzwD/fqZ99u2hZ9+gsqVbR2ZSLrZdE2pmJgY9uzZw+jRo63nnJycaN68OTt37kxVG1FRUcTGxpI/f/5E58PCwihUqBA+Pj40bdqUyZMnU6BAgWTbiI6OJjo62nocEREBQGxsLLGxsWlN664S2svodrMj5Wp/HCVPUK72yFHyhPTluny5EzExzlSpYlCp0i1yytuUmZ+rI/xbERGRHOLUKXNu/Y8/gsUCEyfCK6+Ak83HmYjcF5sWpf7++2/i4uIoXLhwovOFCxfm0KFDqWpj5MiR+Pn50bx5c+u5Vq1a0bFjR0qVKsXRo0d55ZVXaN26NTt37sTZ2TlJG1OnTmXChAlJzm/evBlPT880ZpU6oaGhmdJudqRc7Y+j5AnK1R45Sp6Q+lwNA955pzGQl1q1fmXDhmOZGVamyIzPNSoqKsPbFBERSbMtW6B7d/j7b/DxgdWrQWsmi53I0bvvTZs2jY8++oiwsDDc3d2t57t37269X6lSJSpXrkyZMmUICwujWbNmSdoZPXo0wcHB1uOIiAjrWlXe3t4ZGnNsbCyhoaG0aNECFztfhE652h9HyROUqz1ylDwh7bn+9JOFEydy4eZmMHlyeXx8ymdBlBkjMz/XhJHTIiIimS4uDrZvh3PnoGhRaNDAHAU1Y4Y5Iio+HqpVg3XroFQpW0crkmFsWpQqWLAgzs7OhIeHJzofHh5OkSJF7vrcmTNnMm3aNL7++msq32MObenSpSlYsCBHjhxJtijl5uaGm5tbkvMuLi6Z9h8umdl2dqNc7Y+j5AnK1R45Sp6Q+lyXLTNvO3WyUKhQznxvMuNzdZR/JyIiYmMhITB0KJw+/d85Pz8oXhwSdprv3RvmztVOJGJ3bDoB1dXVlerVqydapDxh0fK6deum+LwZM2YwadIkNm7cSI0aNe75OqdPn+bSpUsULVo0Q+IWERGxF1FRkLBBbb9+to1FRETE4YSEQOfOiQtSAGfPmgUpZ2eYP9/ccU8FKbFDNl8VLTg4mA8++IBly5Zx8OBBnnvuOSIjI+nTpw8APXv2TLQQ+vTp0xkzZgyLFy8mICCA8+fPc/78ea5fvw7A9evXeemll/jhhx84fvw4W7ZsoV27dpQtW5agoCCb5CgiIpJdrV0LERHmTIDGjW0djYiIiAOJizNHSBlGytcULGhui2uxZF1cIlnI5mtKdevWjYsXLzJ27FjOnz9P1apV2bhxo3Xx85MnT+J0244C8+bNIyYmhs6dOydqZ9y4cYwfPx5nZ2f279/PsmXLuHr1Kn5+frRs2ZJJkyYlO0VPRETEkS1caN7266cNfERERLLU9u1JR0jdKTzcvE6/HImdsnlRCmDQoEEMGjQo2cfCwsISHR8/fvyubXl4eLBp06YMikxERMR+/fGH2c91cjKXqhAREZEsdO5cxl4nkgPpN1EREREHtXixeduqFRQrZttYREREHE5q1zzW2shix7LFSCkRERHJWrGxsHSpeb9/f5uGIiIi4ngMAw4cuPs1Fou5A1+DBlkTk4gNqCglIiLigDZsMJepKFQIHnvM1tGIiIg4kBs34LnnYNmy/85ZLIkXPE9Y2HzWLHMHPhE7pel7IiIiDmjRIvO2Z09wcbFtLCIiIg7jr7+gXj2zIOXkBG+8YW6Fe+c8+uLFzfMdO9omTpEsopFSIiIiDubsWfjyS/N+v362jUVERMRhfPUVPPkkXLkCvr6wZg00aWI+1r69ufvIuXPmGlINGmiElDgEFaVEREQczLJlEB8PjzwCgYG2jkZERMTOxcfD5Mkwfrw5Ra9WLXMUlL//f9c4O0PjxraKUMRmVJQSERFxAHFx5g+wZ8/Ce++Z5zRKSkREJJNduQJPP/3fEOVnnzXXiXJzs2lYItmFilIiIiJ2LiQEhg6F06f/O2exgKur7WISERGxe/v3Q4cO5jpS7u4wbx707m3rqESyFRWlRERE7FhICHTunHhDHzCPn34aPDy0hqqIiEiGW7kSBg40d9oLCDC/kKtVs3VUItmOdt8TERGxU3Fx5gipOwtStxs2zLxO7Mvx48fp168fpUqVwsPDgzJlyjBu3DhiYmLu+rzGjRtjsVgS/T377LNZFLWIiB2IiYHBg81ffm7cgKAg+OknFaREUqCRUiIiInbqu+8siabs3ckw4NQpc60pra1qXw4dOkR8fDwLFiygbNmy/PbbbwwYMIDIyEhmzpx51+cOGDCAiRMnWo89PT0zO1wREftw9ix06QI7dpjHY8bAuHHaRU/kLlSUEhERsVPnzmXsdZJztGrVilatWlmPS5cuzeHDh5k3b949i1Kenp4UKVIks0MUEbErlu3b4YknIDwc8uaFFSugbVtbhyWS7akoJSIiYqeKFs3Y6yRnu3btGvnz57/ndatWrWLlypUUKVKEtm3bMmbMmLuOloqOjiY6Otp6HBERAUBsbCyxsbH3H/htEtrL6HazI+VqfxwlT3CwXGNiKP2//+G8bBnExWFUrMitjz+GsmXBjvJ3qM9UuWZo2/eiopSIiIidql/foHhxUpzCZ7FA8eLQoEHWxuVo4uPj2bZtG9u3b+fEiRNERUXh6+tLtWrVaN68Of7+/pkew5EjR5g9e/Y9R0k98cQTlCxZEj8/P/bv38/IkSM5fPgwISEhKT5n6tSpTJgwIcn5zZs3Z9rUv9DQ0ExpNztSrvbHUfIE+8/V+cYNqs6ZQ6XvvgPgVMOG/PL888T98Qf88YeNo8sc9v6Z3k653p+oqKhUXaeilIiIiJ1ydoa33zaXt7iTxWLezpqlpS4yy40bN3jzzTeZN28ely9fpmrVqvj5+eHh4cGRI0f47LPPGDBgAC1btmTs2LHUqVPnnm2OGjWK6dOn3/WagwcPEhgYaD0+c+YMrVq1okuXLgwYMOCuzx04cKD1fqVKlShatCjNmjXj6NGjlClTJtnnjB49muDgYOtxREQE/v7+tGzZEm9v73vmlBaxsbGEhobSokULXFxcMrTt7Ea52h9HyRMcJNc//iBX165Yfv+deGdnbk2fTpHBgymS8AVrZxziM/2Xcs0YCSOn70VFKRERETt28aJ5a7Ek3oWveHGzINWxo03CcggPPvggdevW5YMPPkixs3fixAlWr15N9+7defXVV+9ZNBo+fDi9e/e+6zWlS5e23j979ixNmjShXr16vP/++2nOoXbt2oA50iqlopSbmxtubm5Jzru4uGRaZz4z285ulKv9cZQ8wY5z/fxz6NkTIiIwihbl+yFDqDNkiH3mege7/UyToVzvv83UUFFKRETETl24AK+8Yt6fNQsqVzYXNS9a1JyypxFSmWvz5s2UL1/+rteULFmS0aNHM2LECE6ePHnPNn19ffH19U3V6585c4YmTZpQvXp1lixZgpOTU6qed7t9+/YBUFQLj4mIQFycuaPe1KnmcYMG3Fq5kss//2zbuERyMBWlRERE7NQrrzhz9SpUqwYvvKAiVFa7V0Hqdi4uLimOREqPM2fO0LhxY0qWLMnMmTO5mDBkDqw76505c4ZmzZqxfPlyatWqxdGjR1m9ejVt2rShQIEC7N+/nxdffJGGDRtSuXLlDItNRCRH+vtvc3e9hLV3hg2DGTPM+ypKiaRb2n8yExERkWzv4MH8LF9ufs3PnauClK2NHz+e+Pj4JOevXbtGjx49Mvz1QkNDOXLkCFu2bKF48eIULVrU+pcgNjaWw4cPWxcidXV15euvv6Zly5YEBgYyfPhwOnXqxBdffJHh8YmI5Cg//QTVq5sFKU9PWL3aXLTRQaZ2iWQmjZQSERGxM7duwYIF5siW/v0hFetnSyZbtGgRmzdvZuXKldY1n8LCwujZs6d15FJG6t279z3XngoICMC4baExf39/tm3bluGxiIjkaIsWmcONo6OhbFkICYFKlWwdlYjd0EgpEREROzNvnhPHj+clf37DuuyF2Nb+/fspXrw4VatW5YMPPuCll16iZcuWPP300+zYscPW4YmIyJ1u3oSBA81fd6Kj4fHHzRFTKkiJZCiNlBIREbEj587B+PHmb06TJ8dRsKC+6rMDHx8fPv74Y1555RWeeeYZcuXKxVdffUWzZs1sHZqIiNzp5Eno1MksQlksMHkyjBoF6dgwQkTuTv+rEhERsSMjRsA//1h44IEr9O1r3PsJkmVmz57NO++8Q48ePShdujRDhgzhl19+sXVYIiJyu6+/hocfNgtS+fPDxo3mVrYqSIlkCv0vS0RExE5s3WquvWqxGDzzzC/qP2cjrVq1YsKECSxbtoxVq1bx888/07BhQ+rUqcOMhN2bRETEdgwDpk2DoCC4dMlc2HzPHmjZ0taRidg1dVdFRETsQEyMuQ4rwDPPxFO27DXbBiSJxMXFsX//fjp37gyAh4cH8+bNY+3atbz99ts2jk5ExMFFRJjT9UaPhvh46NsXvvsOAgJsHZmI3UvzQhNXr17l008/Zfv27Zw4cYKoqCh8fX2pVq0aQUFB1KtXLzPiFBERkbuYNQsOHgRfX5gwIZ6dO20dkdwuNDQ02fOPPvoov/76axZHIyIiVgcOQMeO8Mcf4OoK770HAwbYOioRh5HqkVJnz56lf//+FC1alMmTJ3Pjxg2qVq1Ks2bNKF68OFu3bqVFixZUqFCBNWvWZGbMIiIicptTp2DCBPP+G2+Aj49t4xGTYaRuTa+CBQtmciQiIpKsjz+G2rXNgpS/P2zfroKUSBZL9UipatWq0atXL/bs2UOFChWSvebGjRt89tlnzJo1i1OnTjFixIgMC1RERESSFxwMUVFQvz707Am3btk6IgF46KGHGDt2LB07dsTV1TXF6/7880/eeustSpYsyahRo7IwQhERB3XrFowcCW+9ZR43awYffmgONxaRLJXqotTvv/9OgQIF7nqNh4cHPXr0oEePHly6dOm+gxMREZG727wZ1q4FZ2eYM8fcuVqyh9mzZzNy5Eief/55WrRoQY0aNfDz88Pd3Z0rV67w+++/891333HgwAEGDRrEc889Z+uQRUTsX3g4dOsG27aZxyNHwuTJkCvNK9uISAZI9f/y7lWQSmAYBhaLJdXXi4iISPpER8OgQeb9wYOhcmXbxiOJNWvWjJ9++onvvvuONWvWsGrVKk6cOMGNGzcoWLAg1apVo2fPnjz55JP4aM6liEjm27kTOneGs2chTx5YutRcT0pEbCZd5eDevXszZ84ccufOnej88ePHefrpp9m+fXuGBCciIiIpe+MN+PNPKFr0vzWlJPupX78+9evXt3UYIiKOyzBg3jwYNgxiY6F8eQgJgcBAW0cm4vBSvdD57X755RcqV67Mztu29lm2bBlVqlTRYp0iIiJZ4NgxmDLFvP/mm+Dtbdt4JP2ioqJsHYKIiP2KioJeveCFF8yCVJcusHu3ClIi2US6ilK7d++mY8eONG7cmFdeeYWuXbsyaNAgZs6cyaeffprRMYqIiMgdhg6FmzehSRPo3t3W0ci9NGvWjDNnziQ5v2vXLqpWrZr1AYmIOIK//oJ69WDFCnPxxZkzYc0a8PKydWQi8q90Td9zcXHhjTfewNPTk0mTJpErVy62bdtG3bp1Mzo+ERERucMXX5h/Li5a3DyncHd3p3LlysydO5du3boRHx/PxIkTef3113n++edtHZ6IiP3ZsAGefBKuXoVChcxiVOPGto5KRO6QrqJUbGwso0aNYs6cOYwePZrvvvuOjh07smjRItq0aZPRMYqIiMi/oqJgyBDzfnCwuSyGZH9ffvklc+bMoW/fvnz++eccP36cEydOsH79elq2bGnr8ERE7Ed8PEycaP4ZBtSpA598AsWL2zoyEUlGuopSNWrUICoqirCwMOrUqYNhGMyYMYOOHTvSt29f5s6dm9FxioiICDB1Khw/bvatX3vN1tFIWrzwwgucPn2a6dOnkytXLsLCwqhXr56twxIRyZni4mD7djh3ztzxo0EDiIiAp54yR0kBPP88vP02uLraNlYRSVG6i1Lvvvuudfc9i8XCyJEjadmyJU8//XSGBigiIiKmP/+EGTPM+7NmaUmMnOTKlSv079+fLVu2sGDBArZt20bLli2ZMWOGpu+JiKRVSIi5uOLp0/+dK1zYvA0PB3d3WLAAeva0TXwikmrpKkotWrQo2fPVqlVjz5499xWQiIiIJGUYMHgwxMRAUBB07GjriCQtKlasSKlSpfj5558pVaoUAwYMYM2aNTz//PN8+eWXfPnll7YOUUQkZwgJgc6dzS/G24WHm7eFCsGmTaBNJERyhFTvvhcZGZmq69zc3NJ0vYiIiNxbSIjZx3Z1hdmztbh5TvPss8/y7bffUqpUKeu5bt268csvvxATE2PDyEREcpC4OHOE1J0Fqdu5uEClSlkXk4jcl1QXpcqWLcu0adM4d+5citcYhkFoaCitW7fm3XffzZAARUREHN316zBsmHl/5Eh44AGbhiPpMGbMGJyckna7ihcvTmhoqA0iEhHJgbZvTzxlLzlnzpjXiUiOkOqiVFhYGD/++COlSpWidu3avPDCC0yZMoU333yT1157jY4dO+Ln50ffvn1p27YtL7/8cqqDmDNnDgEBAbi7u1O7dm12796d4rUffPABDRo0wMfHBx8fH5o3b57kesMwGDt2LEWLFsXDw4PmzZvz559/pjoeERGR7GTSJLMPXqoUjB5t62jkfkRFRXHo0CH279+f6E9ERFLhLgMk0nWdiNhcqteUKleuHOvWrePkyZN88sknbN++nR07dnDjxg0KFixItWrV+OCDD2jdujXOzs6pDmDNmjUEBwczf/58ateuzaxZswgKCuLw4cMUKlQoyfVhYWH06NGDevXq4e7uzvTp02nZsiUHDhygWLFiAMyYMYN3332XZcuWUapUKcaMGUNQUBC///477u7uqY5NRETE1n7/Hd56y7z/7rvg4WHbeCR9Ll68SJ8+ffjqq6+SfTwuLi6LIxIRyYGKFEnddUWLZm4cIpJh0rzQeYkSJRg+fDjDhw/PkADeeustBgwYQJ8+fQCYP38+X375JYsXL2bUqFFJrl+1alWi44ULF7Ju3Tq2bNlCz549MQyDWbNm8dprr9GuXTsAli9fTuHChfnss8/o3r17hsQtIiKS2QwDXngBbt2Ctm3hscdsHZGk17Bhw7h69Sq7du2icePGfPrpp4SHhzN58mTefPNNW4cnIpL9Xb8Oc+fe/RqLBYoXhwYNsiYmEblvqZ6+d7ubN2+m+Njd1py6U0xMDHv27KF58+b/BeTkRPPmzdm5c2eq2oiKiiI2Npb8+fMDcOzYMc6fP5+ozbx581K7du1UtykiIpIdfPghhIWZO1u/846to5H78c033/DWW29Ro0YNnJycKFmyJE899RQzZsxg6tSptg5PRCR7O3wYateGtWshYX2+O3f8SDieNQvSMHNHRGwrzSOlAB5++GFWr15N1Tu22Vy3bh3PPvssFy9eTFU7f//9N3FxcRQuXDjR+cKFC3Po0KFUtTFy5Ej8/PysRajz589b27izzYTH7hQdHU10dLT1OCIiAoDY2FhiY2NTFUdqJbSX0e1mR8rV/jhKnqBc7VFOyzMiAoYPzwVYGDUqjuLF40lt6Dkt1/uRmblmZJuRkZHWZQl8fHy4ePEiDz74IJUqVWLv3r0Z9joiInbn00+hVy/45x/w84NPPoHz581d+G5f9Lx4cbMg1bGjzUIVkbRLV1GqcePG1KlThwkTJjBy5EgiIyN54YUX+Pjjj5kyZUpGx5iiadOm8dFHHxEWFnZfa0VNnTqVCRMmJDm/efNmPD097yfEFDnSTjvK1f44Sp6gXO1RTslz0aKKnD9fBj+/6zz00FY2bIhPcxs5JdeMkBm5RkVFZVhb5cqV4/DhwwQEBFClShUWLFhAQEAA8+fPp6jWPhERSSouDl57DaZNM48bNoQ1a/5bV6pdO3OXvXPnzDWkGjTQCCmRHChdRam5c+fy6KOP0r9/f9avX8+5c+fw8vJi9+7dVKxYMdXtFCxYEGdnZ8LDwxOdDw8Pp8g9FrGbOXMm06ZN4+uvv6Zy5crW8wnPCw8PT9TJCw8PTzKyK8Ho0aMJDg62HkdERODv70/Lli3x9vZOdT6pERsbS2hoKC1atMDFxSVD285ulKv9cZQ8Qbnao5yU5/79sGGD+RX9wQfutGjRKk3Pz0m53q/MzDVh5HRGGDp0qHWJg3HjxtGqVStWrVqFq6srS5cuzbDXERGxCxcvwhNPwNdfm8fBwWZx6vb/n3d2hsaNbRKeiGScdBWlAFq3bk3Hjh2ZN28euXLl4osvvkhTQQrA1dWV6tWrs2XLFtq3bw9AfHw8W7ZsYdCgQSk+b8aMGUyZMoVNmzZRo0aNRI+VKlWKIkWKsGXLFmsRKiIigl27dvHcc88l256bmxtubm5Jzru4uGRaZz4z285ulKv9cZQ8Qbnao+yeZ3y8OSMhLg46d4Y2bdL9VZ3tc81ImZFrRrb31FNPWe9Xr16dEydOcOjQIUqUKEHBggUz7HVERHK8H3+ETp3g1CnInRsWLYJu3WwdlYhkknT1dI8ePcoTTzzB+fPn2bRpE9u2bePxxx9n6NChTJkyJU2duODgYHr16kWNGjWoVasWs2bNIjIy0robX8+ePSlWrJh1EdDp06czduxYVq9eTUBAgHWdKC8vL7y8vLBYLAwbNozJkyfzwAMPUKpUKcaMGYOfn5+18CUiIpJdLV8O339v9sPfftvW0Uhm8fT05OGHH7Z1GCIi2cvChea2szEx8MAD5npSDz1k66hEJBOlqyhVtWpVHn30UTZt2kS+fPlo0aIFbdq0oWfPnoSGhvLzzz+nuq1u3bpx8eJFxo4dy/nz56latSobN260LlR+8uRJnJz+2yRw3rx5xMTE0Llz50TtjBs3jvHjxwPw8ssvExkZycCBA7l69Sr169dn48aN97XulIiISGa7cgVeftm8P3asuWar2AfDMFi7di1bt27lwoULxMcnXiMsJCTERpGJiGQDN2/CoEHmqCiA9u1h6VLIm9eWUYlIFkj3mlJPP/10onP16tXj559/ZtiwYWlub9CgQSlO1wsLC0t0fPz48Xu2Z7FYmDhxIhMnTkxzLCIiIrby6qvmMhrly0M6vk4lGxs2bBgLFiygSZMmFC5cGMudW5mLiDiqEyfM+eo//QROTjBlivkLzW0DE0TEfqWrKHVnQSpBnjx5WJRQ3RYREZFU++knmD/fvD93Lri62jYeyVgrVqwgJCSENm3a2DoUEZHsIzQUevSAS5egQAH46CNo3tzWUYlIFkr/6qnA77//zsmTJ4mJibGes1gstG3b9r4DExERcRTx8fD882AY5mZD2kzI/uTNm5fSpUvbOgwRkewhPh6mT4fXXjPv16gB69ZBiRK2jkxEsli6ilJ//fUXHTp04Ndff8VisWAYBoB1KHpcXFzGRSgiImLnFi40Nxvy9oaZM20djWSG8ePHM2HCBBYvXoyHh4etwxERsZ1r16BXL/j8c/O4f3+YPRu0/q+IQ0rXRN2hQ4dSqlQpLly4gKenJwcOHODbb7+lRo0aSdaAEhERkZT9/TeMHm3enzgRiha1bTySObp27cqVK1coVKgQlSpV4uGHH070JyLiEA4cgFq1zIKUmxt88IH5p4KUiMNK10ipnTt38s0331CwYEGcnJxwcnKifv36TJ06lSFDhqRp9z0RERFHNmoUXL4MVaqYu2CLferVqxd79uzhqaeeyrKFzh9//HH27dvHhQsX8PHxoXnz5kyfPh0/P78Un3Pz5k2GDx/ORx99RHR0NEFBQcydO9e6K7KISLqtWQN9+0JUlDlNb906c9qeiDi0dBWl4uLiyJMnDwAFCxbk7NmzlCtXjpIlS3L48OEMDVBERMRe7dz53+7Xc+ZArvta6VGysy+//JJNmzZRv379LHvNJk2a8Morr1C0aFHOnDnDiBEj6Ny5Mzt27EjxOS+++CJffvkln3zyCXnz5mXQoEF07NiR77//PsviFhE7ExsLI0fC22+bx82bw4cfQsGCto1LRLKFdHV/K1asyC+//EKpUqWoXbs2M2bMwNXVlffff1+LeIqIiKTCrVvm4uYAvXvDI4/YNBzJZP7+/nh7e2fpa7744ovW+yVLlmTUqFG0b9+e2NhYXFxcklx/7do1Fi1axOrVq2natCkAS5YsoXz58vzwww/UqVMny2IXETtx/jw89RR8+615PHo0TJoEzs62jUtEso10FaVee+01IiMjAZg4cSKPPfYYDRo0oECBAqxZsyZDAxQREbFH8+bBvn2QL5+5AZHYtzfffJOXX36Z+fPnExAQkOWvf/nyZVatWkW9evWSLUgB7Nmzh9jYWJrfth17YGAgJUqUYOfOnSkWpaKjo4mOjrYeR0REABAbG0tsbGwGZoG1vYxuNztSrvbHUfIEM0efQ4dwfu45OHcOI08e4hYvxmjXztxtLz7e1iFmGEf5XB0lT1CuGd32vaSrKBUUFGS9X7ZsWQ4dOsTly5fx8fHJkjUSREREcrLz581dsAFefx0KFbJtPJL5nnrqKaKioihTpgyenp5JCkOXL1/OlNcdOXIk7733HlFRUdSpU4f169eneO358+dxdXUlX758ic4XLlyY8+fPp/i8qVOnMmHChCTnN2/ejKenZ7pjv5vQ0NBMaTc7Uq72x+7zNAxKbdhA/cWLcYqLI8Lfn92jRhHp4gIbNtg6ukxj95/rvxwlT1Cu9ysqKipV12XY6hX58+fPqKZERETs2ssvQ0SEub7rwIG2jkaywttvv50hP9yNGjWK6fcYWnfw4EECAwMBeOmll+jXrx8nTpxgwoQJ9OzZk/Xr12foj4ijR48mODjYehwREYG/vz8tW7bM8CmLsbGxhIaG0qJFixRHfNkL5Wp/HCLPqCicn38ep9WrAbjVuTMe779PIy8vGweWeRzic8Vx8gTlmlESRk7fS7qKUjdv3mT27Nls3bqVCxcuEH/H8Mu9e/emp1kRERG79+23sGIFWCwwd66W1XAUvXv3zpB2hg8ffs+2bl/fs2DBghQsWJAHH3yQ8uXL4+/vzw8//EDdunWTPK9IkSLExMRw9erVRKOlwsPDKVKkSIqv5+bmhpubW5LzLi4umdaZz8y2sxvlan/sNs+jR6FjR9i/H8PZmd969SJw3jxcXF1tHVmWsNvP9Q6Okico14xoMzXSVZTq168fmzdvpnPnztSqVUtT9kRERFIhNva/xc0HDoSaNW0bj2QdZ2dnzp07R6E75mpeunSJQoUKERcXl6p2fH198fX1TVcMCT8i3r7+0+2qV6+Oi4sLW7ZsoVOnTgAcPnyYkydPJlvEEhGxWr/eXND82jUoVIi41av56/p1AvXfiSJyD+kqSq1fv54NGzbwiLYKEhERSbV334UDB6BAAXMtKXEchmEkez46OhrXTBhFsGvXLn788Ufq16+Pj48PR48eZcyYMZQpU8ZaYDpz5gzNmjVj+fLl1KpVi7x589KvXz+Cg4PJnz8/3t7eDB48mLp162rnPRFJXnw8TJgAEyeax3XrwiefYBQqZNfrR4lIxklXUapYsWLkyZMno2MRERGxW2fOwPjx5v3p00FLMTqGd999FwCLxcLChQvxum1dlbi4OL799lvr+k8ZydPTk5CQEMaNG0dkZCRFixalVatWvPbaa9apdrGxsRw+fDjRQqRvv/02Tk5OdOrUiejoaIKCgpg7d26GxyciduDyZXN01FdfmccvvABvvQWurubQYBGRVEhXUerNN99k5MiRzJ8/n5IlS2Z0TCIiInYnOBiuXzd/RO7Tx9bRSFZ5++23AXOk1Pz583G+bRExV1dXAgICmD9/foa/bqVKlfjmm2/uek1AQECSEVzu7u7MmTOHOXPmZHhMImJHfv4ZOnWCY8fAwwMWLICnn7Z1VCKSA6WrKFWjRg1u3rxJ6dKls3RbYxERkZzo66/h44/Byclc3NzJydYRSVb43//+x+HDh3F1daVJkyaEhITg4+Nj67BERO7P8uXwzDNw8yaULg0hIVCliq2jEpEcKl1FqR49enDmzBlef/11ChcurIXORUREUhAdbc5oAPO2alWbhiNZqEOHDpw/fx5fX1++/fZbYjWdRURyspgYePFF89cVgDZtYOVKULFdRO5DuopSO3bsYOfOnVRRRVxEROSu3noL/vgDCheGSZNsHY1kJV9fX3744Qfatm2LYRj6EU9Ecq7Tp6FLF/jhB7BYYNw4GDNGQ39F5L6lqygVGBjIjRs3MjoWERERu3LixH+FqJkzIW9e28YjWevZZ5+lXbt2WCwWLBYLRYoUSfHauLi4LIxMRCQNwsKgWze4cAHy5YNVq8xRUiIiGSBdRalp06YxfPhwpkyZQqVKlZKsKeXt7Z0hwYmIiORkw4bBjRvQsCE8+aSto5GsNn78eLp3786RI0d4/PHHWbJkCfny5bN1WCIiqWMY5nDfkSMhLs5cNyokxFxHSkQkg6SrKNWqVSsAmjVrluh8wtB0/donIiKObsMG+OwzcHaGOXPM2Q7ieAIDAwkMDGTcuHF06dIFT09PW4ckInJv//wD/frBJ5+Yx08/DfPng/4/TEQyWLqKUlu3bs3oOEREROzGjRsweLB5f9gwqFjRpuFINjBu3DgALl68yOHDhwEoV64cvr6+tgxLRCSpw4ehQwc4eBBcXOCdd+DZZ/XriohkinQVpUqVKoW/v3+SBTsNw+DUqVMZEpiIiEhONX06/PUX+PmZa8GKREVFMWjQIFasWGEdUe7s7EzPnj2ZPXu2RlCJSPYQEgK9e5sjpfz8YO1aqFvX1lGJiB1L13YJpUqV4uLFi0nOX758mVKlSt13UCIiIjnV0aMwbZp5/+23IU8e28Yj2cOLL77Itm3b+N///sfVq1e5evUqn3/+Odu2bWP48OG2Dk9EHN2tWzBqFHTqZBakGjWCvXtVkBKRTJeukVIpbWt8/fp13N3d7zsoERGRnMgwzGl70dHQvLm5e7YIwLp161i7di2NGze2nmvTpg0eHh507dqVefPm2S44EXFsFy9C9+7wzTfmcXCwOeQ3V7r+U1FEJE3S9P80wcHBAFgsFsaMGZNoqHlcXBy7du2iatWqGRqgiIhITvH55/DVV+YSHO+9p+U35D9RUVEULlw4yflChQoRFRVlg4hExOHExcH27XDuHBQtCg0awJ490LkznDoFuXPD4sXQtautIxURB5KmotTPP/8MmCOlfv31V1xdXa2Pubq6UqVKFUaMGJGxEYqIiOQAkZEwdKh5/6WXoFw528Yj2UvdunUZN24cy5cvt44qv3HjBhMmTKCupseISGYLCTG/pE6f/u+cj485Ve/WLXjwQfj0U6hQwXYxiohDSnVR6t1332XDhg14eHjQp08f3nnnHby9vTMzNhERkRxjyhQ4eRJKlIBXX7V1NJLdvPPOOwQFBVG8eHGqVKkCwC+//IK7uzubNm2ycXQiYtdCQszRUIaR+PyVK+ZtrVoQGgr6bzsRsYFUL3QeHBzMP//8A8Dy5cu5efNmpgUlIiKSkxw6BDNnmvffeQe0kZrcqWLFivz5559MnTqVqlWrUrVqVaZNm8aff/7JQw89ZOvwRMRexcWZI6TuLEjd7tw5c+qeiIgNpHqklJ+fH+vWraNNmzYYhsHp06dTLEyVKFEiwwIUERHJzgwDBg2C2Fho0wbatbN1RJJdeXp6MmDAAFuHISKOZPv2xFP2knPqlHndbRsxiIhklVQXpV577TUGDx7MoEGDsFgs1KxZM8k1CbvyxcXFZWiQIiIi2dXHH8OWLeDmBu++q8XNJbE//viDq1evUqtWLeu5LVu2MHnyZCIjI2nfvj2vvPKKDSMUEbt27lzGXiciksFSXZQaOHAgPXr04MSJE1SuXJmvv/6aAgUKZGZsIiIi2do//5g7ZwOMHg1lytg2Hsl+Ro4cSaVKlaxFqWPHjtG2bVsaNGhA5cqVmTp1Kp6engwbNsy2gYqIfcqTJ3XXFS2auXGIiKQgTbvv5cmTh4oVK7JkyRIeeeQR3NzcMisuERGRbG/8eDh71ixGjRxp62gkO/rpp594+eWXrcerVq3iwQcftC5uXrlyZWbPnq2ilIhkvN9+g3v9f4vFAsWLQ4MGWRKSiMidUr3Q+e169eqFm5sbe/bsYeXKlaxcuZK9e/dmdGwiIiLZ1m+/mYuaA8yeDe7uto1Hsqe///6b4sWLW4+3bt1K27ZtrceNGzfm+PHjNohMROzaRx9B7dpw9CgULGieu3N+ecLxrFng7Jyl4YmIJEhXUerChQs0bdqUmjVrMmTIEIYMGUKNGjVo1qwZFy9ezOgYRUREshXDgBdeMDc16tABWre2dUSSXeXPn59z/67VEh8fz08//USdOnWsj8fExGDcbVcsEZG0iI2FF1+EHj0gKgpatICDB2HdOihWLPG1xYvD2rXQsaNtYhURIZ1FqcGDB/PPP/9w4MABLl++zOXLl/ntt9+IiIhgyJAhGR2jiIhItrJyJXz7LXh4wNtv2zoayc4aN27MpEmTOHXqFLNmzSI+Pp7Gt+1w9fvvvxMQEGCz+ETEjpw/D82amSOfAF55Bb76yhwp1bEjHD8OW7fC6tXm7bFjKkiJiM2laU2pBBs3buTrr7+mfPny1nMVKlRgzpw5tGzZMsOCExERyW6uXoURI8z7Y8ZAyZI2DUeyuSlTptCiRQtKliyJs7Mz7777Lrlz57Y+vmLFCpo2bWrDCEXELnz/PXTpYu6i5+0Ny5dDu3aJr3F2htuK4iIi2UG6ilLx8fG4uLgkOe/i4kJ8fPx9ByUiIpJdjRkDFy5AuXIwfLito5HsLiAggIMHD3LgwAF8fX3x8/NL9PiECRMSrTklIpImhgHvvWduBXvrFjz0EISEwIMP2joyEZFUSdf0vaZNmzJ06FDOnj1rPXfmzBlefPFFmjVrlmHBiYiIZCd798Lcueb9OXPA1dW28UjOkCtXLqpUqZKkIAVQpUoVChQoYIOoRCTHi4yEp5+GIUPMglS3bvDDDypIiUiOkq6RUu+99x6PP/44AQEB+Pv7A3Dy5EkqVarEypUrMzRAERGR7CA+Hp5/3rzt1s1ctkMktYKDg5M9b7FYcHd3p2zZsrRr1478+fNncWQikiMdOWKuB/Xrr+a0vJkzYejQpDvsiYhkc+kqSvn7+7N3716+/vprDh06BJhrSmmUlIiI2KvFi2HXLvDygjfftHU0ktP8/PPP7N27l7i4OMqVKwfAH3/8gbOzM4GBgcydO5fhw4fz3XffUaFCBRtHKyLZ2vr18NRTcO0aFC4MH38MDRvaOioRkXRJ0/S9nTt3sn79esD8Za9FixZ4e3vz5ptv0qNHDwYOHEh0dHSaApgzZw4BAQG4u7tTu3Ztdu/eneK1Bw4coFOnTgQEBGCxWJiVsLPEbcaPH4/FYkn0FxgYmKaYRERE4uIgLAw+/BA+/xxGjjTPT5iQdFdtkXtp164dzZs35+zZs+zZs4c9e/Zw+vRpWrRoQY8ePThz5gwNGzbkxRdftHWoIpJdxcXB2LHQtq1ZkKpXz5xXroKUiORgaSpKTZw4kQMHDliPf/31VwYMGECLFi0YNWoUX3zxBVOnTk11e2vWrCE4OJhx48axd+9eqlSpQlBQEBcuXEj2+qioKEqXLs20adMoUqRIiu0+9NBDnDt3zvr33XffpT5JERFxeCEhEBAATZrAE09A+/Zw+TL4+8PgwbaOTnKiN954g0mTJuHt7W09lzdvXsaPH8+MGTPw9PRk7Nix7Nmzx4ZRiki2dfkyPPYYTJpkHg8aBFu3QjJr1YmI5CRpKkrt27cv0RS9jz76iFq1avHBBx8QHBzMu+++y8cff5zq9t566y0GDBhAnz59qFChAvPnz8fT05PFixcne33NmjV544036N69O25ubim2mytXLooUKWL9K1iwYOqTFBERhxYSAp07w+nTSR87dQq++CLrY5Kc79q1a8n+6Hbx4kUiIiIAyJcvHzExMVkdmohkdz//DNWrw8aN4OEBK1bA7NnabUNE7EKa1pS6cuUKhQsXth5v27aN1q1bW49r1qzJqVOnUtVWTEwMe/bsYfTo0dZzTk5ONG/enJ07d6YlrCT+/PNP/Pz8cHd3p27dukydOpUSJUqkeH10dHSiaYcJncPY2FhiY2PvK5Y7JbSX0e1mR8rV/jhKnqBc7VFq8oyLgyFDcmEYAEkXi7VYDIYOhTZtbuHsnEmBZgBH+Uwhc3PNyDbbtWtH3759efPNN6lZsyYAP/74IyNGjKB9+/YA7N69mwe1a5aI3G7ZMnj2Wbh5E0qXNn85qVLF1lGJiGSYNBWlChcuzLFjx/D39ycmJoa9e/cyYcIE6+P//PMPLi4uqWrr77//Ji4uLlGRK+E1EhZPT4/atWuzdOlSypUrx7lz55gwYQINGjTgt99+I0+ePMk+Z+rUqYnySLB582Y8PT3THcvdhIaGZkq72ZFytT+OkicoV3t0tzx//bUAZ87UT/Fxw7Bw+jTMnLmLSpUuZUZ4GcpRPlPInFyjoqIyrK0FCxbw4osv0r17d27dugWYI7t79erF22+/DUBgYCALFy7MsNcUkRwsOhqGDYP5883jRx81R0j5+Ng0LBGRjJamolSbNm0YNWoU06dP57PPPsPT05MGDRpYH9+/fz9lypTJ8CDT4vaRW5UrV6Z27dqULFmSjz/+mH79+iX7nNGjRyfaqjkiIgJ/f39atmyZaO2HjBAbG0toaCgtWrRIdQEvp1Ku9sdR8gTlao9Sk2dEROq20i5Zsg5t2hgZGV6GcpTPFDI314SR0xnBy8uLDz74gLfffpu//voLgNKlS+Pl5WW9pmrVqhn2eiKSg50+bc4j37ULLBYYPx5eew2c0rTyiohIjpCmotSkSZPo2LEjjRo1wsvLi2XLluF621zmxYsX07Jly1S1VbBgQZydnQkPD090Pjw8/K6LmKdVvnz5ePDBBzly5EiK17i5uSW7RpWLi0umdeYzs+3sRrnaH0fJE5SrPbpbnv7+qWvD3z8XOeGtcpTPFDIn18x477y8vMifP7/1vohIIlu3QrducPEi5MsHq1fDbT+6i4jYmzSV2wsWLMi3337LlStXuHLlCh06dEj0+CeffMK4ceNS1ZarqyvVq1dny5Yt1nPx8fFs2bKFunXrpiWsu7p+/TpHjx6laNGiGdamiIjYpwYNwNc35cctFrNwddsgYZFUiY+PZ+LEieTNm5eSJUtSsmRJ8uXLx6RJk4iPj7d1eCJia4YBM2dC8+ZmQapqVdizRwUpEbF7aRoplSBv3rzJnk/45S+1goOD6dWrFzVq1KBWrVrMmjWLyMhI+vTpA0DPnj0pVqwYU6dOBczF0X///Xfr/TNnzrBv3z68vLwoW7YsACNGjKBt27aULFmSs2fPMm7cOJydnenRo0d6UhUREQeydy/880/yj1n+ndk3axbZepFzyZ5effVVFi1axLRp03jkkUcA+O677xg/fjw3b95kypQpNo5QRGzmn3+gb19Yu9Y87tkT5s2DTFrbVkQkO7HpxORu3boxc+ZMxo4dS9WqVdm3bx8bN260Ln5+8uRJzp07Z73+7NmzVKtWjWrVqnHu3DlmzpxJtWrV6N+/v/Wa06dP06NHD8qVK0fXrl0pUKAAP/zwA753++lbREQc3m+/QatW5gZHFStCsWKJHy9e3PzvhY4dbROf5GzLli1j4cKFPPfcc1SuXJnKlSvz/PPP88EHH7B06dJMec3HH3+cEiVK4O7uTtGiRXn66ac5e/bsXZ/TuHFjLBZLor9nn302U+ITEeDQIahVy/yCcXGBuXNh6VIVpETEYaRrpFRGGjRoEIMGDUr2sbCwsETHAQEBGMbdF5b96KOPMio0ERFxEEeOQIsWcPky1K4NoaHmfw9s3w7nzkHRouaUPY2QkvS6fPkygYGBSc4HBgZy+fLlTHnNJk2a8Morr1C0aFHOnDnDiBEj6Ny5Mzt27Ljr8wYMGMDEiROtx5m1E7GIw1u3Dnr3huvXzV9C1q6FOnVsHZWISJayeVFKRETElk6fNpfwOH8eKlWCDRsgTx7zscaNbRqa2JEqVarw3nvv8e677yY6/95771G5cuVMec0XX3zRer9kyZKMGjWK9u3bExsbe9dF3D09PTN00xkRucOtW/Dqq/DGG+Zx48bw0Ufw72wRERFHoqKUiIg4rAsXzILUiRPwwAOweTOkcXlEkVSZMWMGjz76KF9//bV1Q5edO3dy6tQpNmzYkOmvf/nyZVatWkW9evXuuavgqlWrWLlyJUWKFKFt27aMGTPmrqOloqOjiY6Oth5HREQAEBsbS2xsbMYk8K+E9jK63exIudqf2NhYXK9exal1a9i2DYC44GDiJ0+GXLnAjvJ3lM8UHCdXR8kTlGtGt30vKkqJiIhDunoVgoLg8GFzR72vvwYNDpHM0qhRI/744w/mzJnDoUOHAOjYsSMDBw5k8uTJNMikLR1HjhzJe++9R1RUFHXq1GH9+vV3vf6JJ56gZMmS+Pn5sX//fkaOHMnhw4cJCQlJ8TlTp05lwoQJSc5v3rw506b+hYaGZkq72ZFytR8+f/xB4+nTcb50iVvu7vw8eDBnH3nE/EXETtn7Z3o7R8nVUfIE5Xq/oqKiUnWdilIiIuJwrl+HNm1g3z4oVMgsSJUoYeuoxN75+fkl2WXvl19+YdGiRbz//vupamPUqFFMnz79rtccPHjQun7VSy+9RL9+/Thx4gQTJkygZ8+erF+/HkvCdpJ3GDhwoPV+pUqVKFq0KM2aNePo0aOUKVMm2eeMHj2a4OBg63FERAT+/v60bNkSb2/vVOWVWrGxsYSGhtKiRYt7jvjK6ZSrHTEMnBYuxOm117DExBD/4IMYH39M1QoVqGrr2DKJ3X+mt3GUXB0lT1CuGSVh5PS9qCglIiIO5eZNcwe9nTshXz5zUfMHH7R1VCKpM3z4cHr37n3Xa0qXLm29X7BgQQoWLMiDDz5I+fLl8ff354cffrBOIbyX2rVrA3DkyJEUi1Jubm64ubklOe/i4pJpnfnMbDu7Ua453I0b8MILsGQJAGfr1MF3/XpcChSwcWBZwy4/0xQ4Sq6Okico14xoMzVUlBIREYdx65aFJ5905uuvIXdu+OoryKQ1pkUyha+vL76+vul6bnx8PECi9Z/uZd++fQAULVo0Xa8p4tCOH4dOnWDvXnByIm7SJH6sUIE2GTyCUEQkJ3OydQAiIiJZIT4eZs+uxhdfOOHmBv/7n3beFvu1a9cu3nvvPfbt28eJEyf45ptv6NGjB2XKlLGOkjpz5gyBgYHs3r0bgKP/b+/O46Is9z6OfwdkcTc3wMRcj1ZqlqQHyy1NyOpoqKlZLsfUSsvtqbST+TLrsdVosaxTWlamRyN7TouKmKVJWqhlZp40zRUyO4q5AML9/HEFiCwOODP3LJ/368UL7nuuuef3c8S5/N3XsmuXZs6cqbS0NO3Zs0f/93//p6FDh6pLly5u2yEQ8FsrVkjt25uCVN260sqVyrv/fqmUqbMAEKgYKQUA8HuWJY0fH6TPP49WpUqWlixx6Lrr7I4KgSAhIaHMx48ePeqW161SpYqSkpI0ffp0nThxQlFRUYqPj9fDDz9cMNUuJydHO3bsKFiINDQ0VKtWrVJiYqJOnDih6Oho9evXTw8//LBbYgT8Ul6e9L//Kz3yiPnwufpqaelSs3BhAOzkBQDlRVEKAOD3pk6VXn01WA6HpXnzcnXzzXz8wTNq1qx53seHDh3q8tdt06aNVq9eXWabxo0by7KsguPo6Gh9/uc29QAq4OhRaehQ6d//NsejR0svvCCVsOYaAMCgVw4A8GuzZkn5m5Xddde3GjTocnsDQkCZ/+fixgD83NatZheNnTtNEerll6W//93uqADA61GUAgD4rZdekh56yPz85JO5atnyF0kUpQAALvTee9Kdd0onT0qXXCK9/75ZTwoAcF4sdA4A8EtvvSXde6/5edo0aeLEPHsDAgD4l5wcafx46bbbTEHq+uultDQKUgBQDhSlAAB+5/33C2dNjB8vzZhhbzwAAD9z6JB03XVmzShJ+sc/pE8/lerUsTcuAPAxTN8DAPiVFSukwYPNBkgjRkizZ7MDNwDAhdatkwYMkNLTpRo1pLfflv72N7ujAgCfRFEKAOA31q2TbrnFzKgYMED65z+lIMYEAwAqIjdXWrvWjIqKipKuvdYsYD55snTmjNS6tZSUJLVoYXekAOCzKEoBAPzCpk3SjTdKp05JN9wgvfOOFBxsd1QAAJ+UlGTmf+/fX3iuShWzdpQkDRokvf66VLWqPfEBgJ+gKAUA8Hk//CD16iVlZkpdukhLl0qhoXZHBQDwSUlJUv/+kmUVPZ9fkBoxQnrjDeaGA4ALMKkBAODTdu82Gx4dOSLFxEj//re5mQ0AQLnl5poRUucWpM62apVZuBAAcMEoSgEAfNaBA1KPHtLBg9Lll0vLl5s1ZwEAqJC1a4tO2SvJvn2mHQDgglGUAgD4pN9+MyOkdu+WmjWTkpPZiRsAcIEOHXJtOwBAmShKAQB8zrFjUlyctH27dPHFZiZFVJTdUQEAfN7x486140MHAFyChc4BAD7l5EnpppvMbnt165qCVOPGdkcFAPB58+dL995bdhuHQ2rYUOrc2TMxAYCfY6QUAMBnZGVJCQnSunVSzZrSypVSq1Z2RwUA8GlZWdJdd0l//7uUnS21b2+KT+furpd/nJgoBQd7PEwA8EcUpQAAPuHMGWnIEGnFCrO73scfS1deaXdUAACftm+f1KWL9Oqrpuj06KPSxo3S0qVmfvjZGjY05xMS7IkVAPwQ0/cAAF4vL0+6807p/fel0FBp2TLpmmvsjgoA4NNWr5YGDZIOH5YuukhauFCKjzePJSRIffqYXfYOHTJrSHXuzAgpAHAxilIAAK9mWdKECdJbb5n/CyxebHbdAwCgQixLeuYZacoUc9fjyivNXY8mTYq2Cw6WunWzJUQACBQUpQAAXm3aNOnFF83Pb74p9e1rZzQAAJ+WmSmNGCElJZnj4cOll1+WKle2NSwACFQUpQAAXuupp6THHzc/z5kj3X67vfEAAHzY9u1mWt6PP0ohIdILL0hjxhRf0BwA4DEUpQAAXmnuXOnBB83PTzwh3XOPvfEAAHzY0qVmhNQff5gFzN9/X+rY0e6oACDgsfseAMDrvPNOYRFq6tTC4hQAAOVy5oz0wAPSgAGmINW9u7RpEwUpAPASFKUAAF7lww/NEh+WJY0dWzh9DwCAcvn1V6lXL+npp83x/fdLK1dK9evbGxcAoADT9wAAXmPVKunWW6XcXGnoULPcB0t9AADKbcMGqX9/af9+qVo1af58cwwA8CqMlAIAeIX166U+faTsbOmWW6Q33pCC+JQCAJSHZZlFCTt3NgWpVq2kjRspSAGAl6K7DwCw3ZYtUu/e0smTZqbFe+9JlRjLCwAoj1OnzGLmd98t5eRI/fqZgtSll9odGQCgFHT5AQC22rHDFKKOHZOuuUZKSpLCwuyOCgDgU3bvNkWozZvNMNsnnpD+53+YAw4AXo6iFADANnv2SD17SocPS1ddJX38sVS1qt1RAQB8yvLl0m23Sf/9r1SvnrRokXTddXZHBQBwAtP3AAC2OHTIFKTyl/xYvlyqWdPuqAAAPiMvT5o508z//u9/pQ4dpLQ0ClIA4EMYKQUA8LgjR8yUvV27pCZNzK579erZHRUAwGccPSrdcYf00UfmeMwY6fnnmf8NAD6GohQAwKOOH5duuEH6/nspKsoUpC6+2O6oAAA+47vvpIQEc2cjLEx65RWzwDkAwOdQlAIAeMypU9LNN0tffy3VqSMlJ0tNm9odFQDAZ7z7rjRqlPlAueQSszvGVVfZHRUAoIJYUwoA4BHZ2VL//tLnn0vVq0srVkiXX253VAAAn5CdLd13n3T77aYgFRdn1o+iIAUAPs32otScOXPUuHFjhYeHq2PHjtq4cWOpbbdt26Z+/fqpcePGcjgcSkxMvOBrAgDcLzfXLP3xySdS5cpml7327e2OCgDgEw4eNIuXv/iiOZ42zXyQ1Kljb1wAgAtma1Fq8eLFmjRpkqZPn65NmzbpiiuuUFxcnH799dcS2588eVJNmzbVE088ocjISJdcEwDgXnl50ujR0r/+JYWEmJkWnTvbHRUAwCesXWvuYnz5pdmi9f/+T3r0USk42O7IAAAuYGtRavbs2Ro1apRGjBihyy67THPnzlWVKlU0b968EttfffXVevrppzVo0CCFlbKzRnmvCQBwH8uSJk+W5s2TgoKk996T4uPtjgoA4PUsS0pMlLp3l9LTpdatzYKEN99sd2QAABeybaHz7OxspaWlaerUqQXngoKC1LNnT6Wmpnr0mllZWcrKyio4zszMlCTl5OQoJyenQrGUJv96rr6uNyJX/xMoeUrkWhG5udK6dQ4dOmR21bv2WkuPPx6kxERzN/u1187ob3+zZNcfKe+pf3Jnrv7y55eVlaWOHTvq22+/1ebNm9WuXbtS254+fVqTJ0/WokWLlJWVpbi4OL388suKiIjwXMDAiRNmMfP33jPHt90mvfaaVLWqvXEBAFzOtqLUb7/9ptzc3GKdnIiICP34448eveasWbM0Y8aMYudXrlypKlWqVCiW80lOTnbLdb0RufqfQMlTIldnpaZG6fXX2+jIkcoF56pUydbJk6Ygdeed36lu3d365JMLDvOC8Z76J3fkevLkSZdf0w4PPPCAGjRooG+//fa8bSdOnKiPP/5YS5YsUc2aNTVu3DglJCToyy+/9ECkgKSffpISEqTvv5cqVZKefVa6917J4bA7MgCAG9hWlPImU6dO1aRJkwqOMzMzFR0drV69eqlGjRoufa2cnBwlJyfr+uuvV0hIiEuv7W3I1f8ESp4SuZbHBx849NRTwbKsoudPngyVJA0cmKuXX75U0qUuiLbieE/9kztzzR857cs+/fRTrVy5Uu+//74+/fTTMtseO3ZMb7zxhhYuXKjrrrtOkjR//nxdeuml+uqrr/TXv/7VEyEjgDn+/W9pxAgpM1OKjJSWLJGuvdbusAAAbmRbUapu3boKDg5WRkZGkfMZGRmlLmLurmuGhYWVuEZVSEiI2zrz7ry2tyFX/xMoeUrkej65uWbNqHMLUmdbvz5YQUHBXrMmLe+pf3JHrr7+Z5eRkaFRo0Zp2bJlTo38TktLU05Ojnr27FlwrlWrVmrUqJFSU1NLLUqxDIJ7BFSup0+r1bvvqtKSJZKkvGuuUe7ChWYuuB/lH1DvKbn6nUDJUyJXV1/7fGwrSoWGhqp9+/ZKSUlR3759JUl5eXlKSUnRuHHjvOaaAIDSrV0r7d9fdpt9+0y7bt08EhIASZZlafjw4brrrrsUExOjPXv2nPc56enpCg0NVa1atYqcj4iIUHp6eqnPYxkE9/L3XEMyMxUze7ZabtkiSdp1003aNny4rM2bpc2b7Q3OTfz9PT0bufqfQMlTItcL5ewyCLZO35s0aZKGDRummJgYdejQQYmJiTpx4oRGjBghSRo6dKguvvhizZo1S5JZyPyHH34o+PnAgQPasmWLqlWrpubNmzt1TQCA6xw65Np2AMo2ZcoUPfnkk2W22b59u1auXKnjx48X2fzFXVgGwT0CItdNm1Rp/Hg5fvlFZ8LClDt3rhoNGaJGdsflJgHxnv6JXP1PoOQpkaurOLsMgq1FqYEDB+rw4cN65JFHlJ6ernbt2mn58uUFC5Xv3btXQUFBBe0PHjyoK6+8suD4mWee0TPPPKOuXbtqzZo1Tl0TAOA6UVGubQegbJMnT9bw4cPLbNO0aVOtXr1aqampxZYniImJ0ZAhQ/TWW28Ve15kZKSys7N19OjRIqOlWAbBXn6b67x50j33SFlZspo31xfjxqnzkCH+mes5/PY9LQG5+p9AyVMiV1dc0xm2L3Q+bty4UqfW5Rea8jVu3FhWWQuXOHFNAIBrnDwpJSWV3cbhkBo2lDp39kxMgL+rV6+e6tWrd952L7zwgh577LGC44MHDyouLk6LFy9Wx44dS3xO+/btFRISopSUFPXr10+StGPHDu3du1exsbGuSQDIypLuu0967TVzfPPNOvPGGzq+fr29cQEAbGF7UQoA4Hu++koaNkz6z38KzzkcRRc8z9+9OzFRXrPIORAoGjUqOgGqWrVqkqRmzZqpYcOGkqQDBw6oR48eWrBggTp06KCaNWtq5MiRmjRpkmrXrq0aNWro3nvvVWxsLDvvwTX27ZP69ZO+/tp8SMycKU2danbNAAAEpKDzNwEAwMjKkh56SLrmGlOQatBA+vRT6f33pYsvLtq2YUNp6VIpIcGeWAGULScnRzt27CiyEOlzzz2nm266Sf369VOXLl0UGRmppPMNiQSckZIiXXWVKUjVrm0+PP7xDymI/44AQCBjpBQAwClbtkhDh0pbt5rj22+XXnhBuugic9ynj9ll79Ahs4ZU586MkAK8RUlLIJR0Ljw8XHPmzNGcOXM8GR78mWVJTz1l7mjk5ZnC1PvvS40b2x0ZAMALUJQCAJTpzBnpiSekGTPMz/XqSXPnFh8BFRwsdetmS4gAAG+Qm1v07sQVV0gjR0offGAeHzFCmjNHqlzZ3jgBAF6DohQAoFTbt5u1o77+2hwnJEivvCLVr29vXAAAL5OUJI0fL+3fX3iuUiVzNyM0VHrxRWnUqMIFBwEAEEUpAEAJcnOl5583sy2ysqRataSXXpJuu43/TwAAzpGUJPXvX3S3C8kUpCTp0Uel0aM9HxcAwOuxsiAAoIhdu6Tu3aXJk01BKj5e+v57acgQClIAgHPk5poRUucWpPI5HGbKHjvsAQBKQFEKACDJ/H9i7lyzBMjatVK1atJrr0mffFJ8Zz0AACSZD4yzp+ydy7KkfftMOwAAzsH0PQCADh8O1403BmvVKnPctas0f77UpIm9cQEAvNyhQ65tBwAIKBSlACCAWZa0YIFD48dfp5MngxQebnbau/deKYixtACAsliWtHGjc22jotwbCwDAJ1GUAoAAlZEhjRkjffih+Sjo0CFPCxYEqWVLmwMDAHi/U6eku++W3nqr7HYOh9SwodS5s2fiAgD4FO6DA0AAWrJEuvxy6cMPpZAQS3fc8YPWrMmlIAUAOL+ff5Y6dTIFqaAgaehQU3w6dzeM/OPERCk42ONhAgC8H0UpAAggv/8uDR4s3XqrdOSIWdQ8NfWM+vX7SZUYOwsAOJ9PP5ViYqQtW6R69aRVq0xxaunS4rtiNGxozick2BIqAMD78V8QAAgQH38s3XmnlJ5ublhPnSpNm2ZuZJe1cRIAAMrLk2bOlGbMMGtJdexoCk4NG5rHExKkPn3MLnuHDpk1pDp3ZoQUAKBMFKUAwM9lZkoTJ0rz5pnjVq2kBQukq682xzk59sUGAPAB//2vdMcd5u6GZNaSeu45KSysaLvgYKlbN4+HBwDwXRSlAMCPrV4tjRgh7d1rRkRNnCg99phUubLdkQEAfMK335pRUD//LIWHS3PnSsOG2R0VAMBPUJQCAD904oQ0ZYr00kvmuGlT6c032fwIAFAO77wjjR5tdtpr3FhKSpKuvNLuqAAAfoSFzgHAz6xfL7VrV1iQuvtuc6ObghQAwCnZ2dK995ope6dOSfHxUloaBSkAgMtRlAIAP3H6tPTgg6b4tHOnWXt2xQrp5ZelatXsjg4A4BMOHpS6dy+8s/HII9JHH0m1a9sbFwDALzF9DwD8wKZN0tCh0rZt5njYMCkxUapVy86oAAA+5YsvpFtvlTIypJo1zfS9m26yOyoAgB9jpBQA+LCcHLM7d8eOpiBVv760bJlZP4qCFADAKZZldtO77jpTkGrbVvrmGwpSAAC3Y6QUAPiobdvM6KhNm8xx//7SK69IdevaGxcAwIf88Yd0553S4sXmeMgQ6bXXpCpV7I0LABAQGCkFAD4mN1d6+mnpqqtMQeqii6T33pP+9S8KUgCAcvjPf6S//tUUpCpVkl58UXr7bQpSAACPYaQUAPiQnTvNelHr15vjG280N7QbNLA3LgCAj/nwQzPcNjNTioqSliyRrrnG7qgAAAGGkVIA4APy8qQ5c6QrrjAFqerVpTfekP79bwpSAIByyM2VHnpI6tvXFKQ6dzbDbilIAQBswEgpAPBye/dKf/+7lJJijq+7Tpo3T7rkEnvjAgD4mN9+k267TUpONscTJ0pPPimFhNgbFwAgYDFSCgC8lGVJ8+dLbdqYglTlyma5j+RkClIAgHL65hupfXvzIVKlilmMcPZsClIAAFsxUgoAvNChQ9Lo0dJHH5nj2FjprbekFi3sjQsA4IPeeEMaO1bKyjIfJElJUuvWdkcFAABFKQCwS26utHatKUBFRZllPYKDzSZI99wj/f67FBoqzZwpTZ5sHgMAwGmnT0v33iu9/ro57tPH3OGoWdPeuAAA+BNFKQCwQVKSNH68tH9/4bkGDaTGjQt31rvySmnBAm5mAwAqYO9eqV8/M23P4ZAee0yaMkUKYvUOAID3oCgFAB6WlCT172/WjDrbwYPmKyhImjZN+sc/WOoDAFABq1ZJgwZJR45IdepICxdKvXrZHRUAAMVwqwQAPCg314yQOrcgdbZ69UxRioIUAKBcLEt64gkpLs4UpNq3l9LSKEgBALwWRSkA8KC1a4tO2StJRoZpBwCA0zIzzXS9qVOlvDxp5Ehp3Tq2awUAeDWm7wGAh1iW9PnnzrU9dMi9sQAA/Mi2bVJCgvSf/5gdMl56SRo1yu6oAAA4L4pSAOBm2dnS0qVSYqL09dfOPScqyq0hAQD8xeLFZlTUiRNSdLT0/vvS1VfbHRUAAE6hKAUAbnL4sPTqq9LLLxeOfAoNlSpVkk6dKnldKYdDathQ6tzZs7ECAHxMTo704IPSc8+Z4x49pPfeMwsTAgDgI1hTCgBcbOtW6c47zQ3radNMQSoyUpo506wn9fbbpp3DUfR5+ceJiVJwsEdDBgD4kowMqWfPwoLUlCnS8uUUpAAAPoeRUgDgArm50scfS88/L61eXXg+JkaaMEEaMMCMkpLMsh9Ll5pd+M5e9LxhQ1OQSkjwZOQAAJ+yfr35UDl4UKpeXXrrLemWW+yOCgCACmGkFABcgMxMU4hq2VLq08cUpIKDzf8X1q2TNm6UhgwpLEjlS0iQ9uyRPvtMWrjQfN+9m4IUANfLyspSu3bt5HA4tGXLljLbduvWTQ6Ho8jXXXfd5ZlAUTbLkubMkbp1MwWpyy4zCxVSkAIA+DBGSgFABezaJb34ojRvnnT8uDlXq5Y0erQ0dqzUqNH5rxEcbP5vAQDu9MADD6hBgwb69ttvnWo/atQoPfroowXHVapUcVdocNbJk9KYMdI775jjAQPMB1C1avbGBQDABfKKkVJz5sxR48aNFR4ero4dO2rjxo1ltl+yZIlatWql8PBwtWnTRp988kmRx4cPH17sLl98fLw7UwAQACzLjGjq00dq0cKMkDp+XGrVSnrlFTMV78knnStIAYAnfPrpp1q5cqWeeeYZp59TpUoVRUZGFnzVqFHDjRHivHbtkmJjTUEqOFh69lmz4x4FKQCAH7B9pNTixYs1adIkzZ07Vx07dlRiYqLi4uK0Y8cO1a9fv1j79evXa/DgwZo1a5ZuuukmLVy4UH379tWmTZvUunXrgnbx8fGaP39+wXFYWJhH8gHgf06fNlPsnn9e+u67wvPx8Wa9qOuvl4K8osQPAIUyMjI0atQoLVu2rFyjnd5991298847ioyM1M0336xp06aV+fysrCxlZWUVHGdmZkqScnJylJOTU/EESpB/PVdf1xvl5OQo4ptvVGn4cOnoUVn16yt34UJZXbpIZ87YHZ5LBcr7Gih5SuTqjwIlT4lcXX3t87G9KDV79myNGjVKI0aMkCTNnTtXH3/8sebNm6cpU6YUa//8888rPj5e999/vyRp5syZSk5O1ksvvaS5c+cWtAsLC1NkZKRnkgDgl37/PVzTpwfp9delw4fNuSpVpGHDpPvuMyOkAMAbWZal4cOH66677lJMTIz27Nnj1PNuu+02XXLJJWrQoIG+++47Pfjgg9qxY4eSkpJKfc6sWbM0Y8aMYudXrlzptql/ycnJbrmu18jLU8vFi/XXxYslSb+3bKmvH3hAp//4QzpnhoA/8fv39U+BkqdErv4oUPKUyPVCnTx50ql2thalsrOzlZaWpqlTpxacCwoKUs+ePZWamlric1JTUzVp0qQi5+Li4rRs2bIi59asWaP69evroosu0nXXXafHHntMderUcXkOAPzPN99Is2cHa8mS63XmjBkCFR0t3XuvdOed0kUX2RwggIA1ZcoUPfnkk2W22b59u1auXKnjx48X6WM5Y/To0QU/t2nTRlFRUerRo4d27dqlZs2alficqVOnFumbZWZmKjo6Wr169XL51L+cnBwlJyfr+uuvV0hIiEuvbYvcXDnWrZMOHZKiomRde6107JiChw9X0PLlkqScMWNU/dlndd25O2b4Eb97X0sRKHlK5OqPAiVPiVxdJX/k9PnYWpT67bfflJubq4iIiCLnIyIi9OOPP5b4nPT09BLbp6enFxzHx8crISFBTZo00a5du/TQQw/phhtuUGpqqoKDg4tdk2Hn7kGu/sef8zxzRlq2zKEXXwxSamqQ8pfci43N1X33WerTx1KlP//F9Lf0/fl9PVug5CmRq6uv7U0mT56s4cOHl9mmadOmWr16tVJTU4stXxATE6MhQ4borbfecur1OnbsKEnauXNnqUWpsLCwEpdJCAkJcVtn3p3X9pikJGn8eLMgYb6ICLOA4a+/ygoP1+YxY9Tm6ad9P1cn+cX76oRAyVMiV38UKHlK5OqKazrD9ul77jBo0KCCn9u0aaO2bduqWbNmWrNmjXr06FGsPcPO3Ytc/Y8/5Xn8eIiSky/RJ5800W+/md/3SpXydM01B3TzzT+refOjkqSVK20M0kP86X0tS6DkKZHrhXJ22Lkn1atXT/Xq1TtvuxdeeEGPPfZYwfHBgwcVFxenxYsXFxSanLFlyxZJUlRUVLljRRmSkqT+/U0B6mwZGeZ7/fo689FH2nfwoNp4PjoAADzG1qJU3bp1FRwcrIz8D+A/ZWRklLoeVGRkZLnaS+aOYd26dbVz584Si1IMO3cPcvU//pTn9u3SnDlBevvtIJ065ZAk1atnadSoPI0Zk6e6desoOXmTX+R6Pv70vpYlUPKUyNVVnB127o0anbMNaLU/d2pr1qyZGjZsKEk6cOCAevTooQULFqhDhw7atWuXFi5cqN69e6tOnTr67rvvNHHiRHXp0kVt27b1eA5+KzfXjJA6tyB1tpAQqU0b6eBBz8UFAIANbC1KhYaGqn379kpJSVHfvn0lSXl5eUpJSdG4ceNKfE5sbKxSUlI0YcKEgnPJycmKjY0t9XX279+vI0eOlHqXj2Hn7kWu/sdX88zLk1asMLvorVhReP6KK8z/DwYPdig8PFhScMEUPV/NtSICJddAyVMiV1dc05/l5ORox44dBSPCQkNDtWrVKiUmJurEiROKjo5Wv3799PDDD9scqZ9Zu7bolL2SHDhg1poCAMDP2T59b9KkSRo2bJhiYmLUoUOHgo5Q/m58Q4cO1cUXX6xZs2ZJksaPH6+uXbvq2Wef1Y033qhFixbpm2++0WuvvSZJ+uOPPzRjxgz169dPkZGR2rVrlx544AE1b95ccXFxtuUJwD5//CEtWCC98IK0Y4c553BIffqYYlTXruYYAPxV48aNZZ0zMufcc9HR0fr88889HVrgOXTI+XYuHrEPAIC3sb0oNXDgQB0+fFiPPPKI0tPT1a5dOy1fvrxgMfO9e/cqKCiooH2nTp20cOFCPfzww3rooYfUokULLVu2TK1bt5YkBQcH67vvvtNbb72lo0ePqkGDBurVq5dmzpxZ4mgoAP7rl1+kOXOkf/5TOnrUnKteXRo50uyk17SpreEBAAJRGUtOFBEVJZ044d5YAACwme1FKUkaN25cqdP11qxZU+zcgAEDNGDAgBLbV65cWSvOnpcDIKBYlvTll2aKXlKSmbInSc2aSffdJw0fzo1nAIBNjh+XXn657DYOh9Swoaxrry061xwAAD/kFUUpAHBGbq5ZiuPQIXMDuXNnKTjYPJadLS1ebIpRaWmFz+nRw0zR6927sC0AAB63Y4d0yy1mp42gIHPXxOEouuB5/lzyxEQ+tAAAAYGiFACfkJRkiktnrw3bsKH06KPSvn3SK69I6enmfFiYdMcdZmRUG/bSBgDYLSnJDNU9flxq0EBassR8aJX0wZaYKCUkqGDHDQAA/BhFKQBeLylJ6t+/+O7Z+/dLf/974XGDBtI990ijR0v16nk2RgAAijlzRnr4YenJJ81xly5mWG/+ulJ9+pQ+BBgAgABAUQqAV8vNNTeSzy1InS00VJo3TxowwPwMAIDtDh+WBg2SVq82x5MmSU88IYWEFLYJDpa6dbMlPAAAvAFFKQBeKzdXevXVojMbSpKdLV18MQUpAICX2LjRDPHdt0+qWlV64w1p4EC7owIAwOtQlALgVQ4eNJsNrVghJSdLv//u3PMOHXJvXAAAnJdlSf/8p3TvveaOyV/+YuagX3653ZEBAOCVKEoBsFVWlrRunSlCLV8ubd1a9PGqVaUTJ85/nago98QHAIBTTp+Wxo4188klqW9f6c03pZo17YwKAACvRlEKgMft3GkKUMuXS599Jp08WfiYwyHFxEjx8VJcnPm5eXPpwIGS15VyOMxmRZ07ey5+AACK2LPHTNdLS5OCgqTHH5ceeMD8DAAASkVRCoDbHT9uik/5o6F+/rno45GRpgAVFyddf71Ut27Rx59/3vT1HY6ihSmHw3xPTGSzIgCATVaulAYPNvPN69SRFi2Seva0OyoAAHwCRSkALmdZ0rffFhahvvxSyskpfDwkRLr2WlOEio+X2rYtLDCVJCFBWrrU7MJ39qLnDRuaglRCgttSAQCgZHl50qxZ0rRp5oMvJkZ6/32pUSO7IwMAwGdQlALgEr/9ZhYmX77c3DROTy/6eNOmpgAVH292v65evXzXT0iQ+vSR1q41i5pHRZkpe4yQAgB43LFj0rBh0ocfmuM775RefFEKD7c3LgAAfAxFKQAVcuaMtGGDKUKtWCF9803RqXVVq0rduxeOhmre/MJfMzjYFLQAALDN999Lt9xiFkgMC5NeeskUpQAAQLlRlALgtH37pOTkRnrrrWCtXm1uFJ+tbdvCItQ115i+OgAAfmPRImnkSLNDR6NGZrpeTIzdUQEA4LMoSgEo1alTZrpc/mioH34IkXRlweO1a5uFyePjpV69pAYN7IsVAAC3yckxu+klJprjnj2l994rvjMHAAAoF4pSgB/LzS3fGkyWJe3YUViEWrNGOn268PGgIEstWvxXAwfWVO/ewYqJYU0nAICfS0+Xbr3VfKBK0tSp0syZfAACAOACFKUAP5WUVPJudc8/X3S3umPHpJSUwp3y9u4tep2LLzYjoeLipK5dzyg1da169+6tkBA64wAAP/fll9KAAebuTvXq0oIFUt++dkcFAIDfoCgF+KGkJKl//6ILj0vSgQPm/BNPmJkIy5dLqalmRFW+0FCpa9fCtaEuu0xyOMxjOTmeywEAANtYllnAfNIks7PHZZdJH3wg/eUvdkcGAIBfoSgF+JncXDNC6tyClFR47sEHi55v2bKwCNW1q1SlivvjBADAK504IY0ZI737rjkeOFB6/XWpWjV74wIAwA9RlAL8iGVJy5YVnbJXmmuuke64wxSjGjd2d2QAAPiAnTvNHPetW82aUU8/LU2YUDhkGAAAuBRFKcBHnTwp/fCD9N13Rb+OHHHu+WPHSoMHuzdGAAB8xkcfSbffbhZbrF9f+te/zPBhAADgNhSlAC+Xlyf98kvx4tPOneaxczkcJU/dO1dUlOtjBQDA5+TmSjNmmB31JCk2VlqyxOz0AQAA3IqiFOBFjh0zMwbOLj59/710/HjJ7evVk664QmrbVmrTxnz/y1+kSy81i5qXVJxyOMwufJ07uzcXAAC83u+/S0OGmJ0/JDOMePZss+sHAABwO4pSgA3OnJF++qmw8JRfiPrll5Lbh4ZKl19eWHjK/4qIKLn988+bXfbOHTWVvyRGYqJZKgMAgIC1ebNZP2rPHqlyZenVV81iiwAAwGMoSgFu9uuvxYtP27ZJWVklt4+OLlp4attWatFCCglx/jUTEqSlS80ufGcvet6woSlIJSRcUEoAAPi2t96S7rpLOn1aatpUSkoyQ48BAIBHUZQCzpKbK61dKx06ZNZc6tzZ+RFF2dlB2rxZ+vHHotPvMjJKbl+1avGRT61bSxdd5JpcEhKkPn0qng8AAH4nK8vspjd3rjnu3Vt65x3XffgCAIByoSgF/CkpqeSRRc8/X3RkkWVJ+/YVXfvp228raceOG5WXF1Tsug6H1Lx50eJTmzZSkyZSUPHmLhUcLHXr5t7XAADAJ+zfb+a2b9hgPpynT5emTXP/hzEAACgVRSlApiDVv3/xhcEPHJD69ZPGjJEqVSosQh07du4VHJIcuugiS1dc4Siy8Pjll5tRUQAAwCaffSYNHCgdPizVqiW9+64ZJQUAAGxFUQoB7+hR6Z57St6pLv/cq68WPV+pktnhLr/wdNllZ3T4cIpuv/06hYaWY/EnAADgPpYlPfus9OCDUl6eWTcqKcmsIwUAAGxHUQp+LTvbjNbft8987d1b9Pu+faYo5YyBA6WbbjJFqFatiu4WnZNj6ZNPThfsbgcAAGx2/Lj097+bnT8ks7Pe3LlSlSr2xgUAAApQlILPysszi4iXVmzau9c8XtIIqIro00caPNg11wIAAG7044/SLbeY7yEhZoHIu+4Sd48AAPAuFKVwQS5kt7qyWJZZt6m0YtO+fWYEVE7O+a8VFiY1aiRFR5uv/J/zv+/ZI9144/mvExV1wWkBAAB3e/99afhw6Y8/pAYNzEip2Fi7owIAACWgKIUKc3a3upKcOmWeV1KxKf/7H3+cP4agINPfLKnYlP9z3bpl3xht2dLEfeBAyaOqHA7zeOfO548HAADY5MwZ6R//kJ56yhx37SotXixFRNgbFwAAKBVFKVRIWbvV9e9vFgZv2dKhdesaaPv2IB08WLTgdPiwc69Tp07pxaboaFOQqnSBf4uDg00hrX9/U4A6O6f8YlZiomtGgAEAADf49Vczx371anM8ebL0xBMX3kkAAABuxSe1B+XmSp9/7tAXX1ysqlUd6t7ddwod2dnSkSPS77+bft/o0WXvVjd6tGT+el1d6jWrVi292NSokRmd5Km1SBMSzOj+kkZ+JSaef+QXAADepnHjxvrll1+KnJs1a5amTJlS6nNOnz6tyZMna9GiRcrKylJcXJxefvllRXjDaKPcXDk+/1wXf/GFHFWrqqAjtXGj1K+f+QCvWlWaN0+69Va7owUAAE6gKOUhhVPdKkmK0ezZzk91c6W8PLNWU36B6ciRkr/OfcyZqXTnioiwVKfOEbVtW1uNGwcVK0BddJF3rTeakGAWM3fHGlkAANjh0Ucf1ahRowqOq1evXmb7iRMn6uOPP9aSJUtUs2ZNjRs3TgkJCfryyy/dHWrZ/uxIVdq/XzGSCjpSN94ozZ9v7p795S/SBx9Il11mb6wAAMBpFKU84HxT3ZYurVhh6tSp8heXfv/dFKYqIijIFJJCQqT09PO3f/rpXNWo8aV69+6tkJCgir2ohwUHS9262R0FAACuUb16dUVGRjrV9tixY3rjjTe0cOFCXXfddZKk+fPn69JLL9VXX32lv/71r+4MtXSldaT27zfrBUhmp70335Rq1PB4eAAAoOIoSrlZbq4ZIVXaVDeHwzx+zTWFI5icKS4dOWKKUhVVtapZr6lOHal27cKfz/06+7FatUxhas0aM2L+fKKipBMnKh4jAAC4ME888YRmzpypRo0a6bbbbtPEiRNVqZR1ltLS0pSTk6OePXsWnGvVqpUaNWqk1NTUUotSWVlZysrKKjjOzMyUJOXk5CjHmW1yy5Kbq0r33SdZlkoaXG1JUs2aOvPuu2b9qAt9PS+S/2d3wX+GPiBQcg2UPCVy9UeBkqdErq6+9vlQlHKztWuLrlF0Lssyjzt5E7OY4ODyF5fq1JHCwir2epKZ0ubMbnXXXmtpxYqKvw4AAKi4++67T1dddZVq166t9evXa+rUqTp06JBmz55dYvv09HSFhoaqVq1aRc5HREQovYwh0rNmzdKMGTOKnV+5cqWqXODikHW2btW1Bw6U+rhDko4d04Znn9WRNm0u6LW8VXJyst0heEyg5BooeUrk6o8CJU+JXC/UyZMnnWpHUcrNDh1yvm2NGuUvLtWo4fl1mditDgAAe0yZMkVPPvlkmW22b9+uVq1aadKkSQXn2rZtq9DQUI0ZM0azZs1S2IXcnTrH1KlTi7xWZmamoqOj1atXL9W4wOl0jj9HXZ3PXy+5RFbv3hf0Wt4mJydHycnJuv766xUSEmJ3OG4VKLkGSp4SufqjQMlTIldXyXTyM5yilJtFRTnXLjlZOmu0vNdzZre6ABjtCACAR02ePFnDhw8vs03Tpk1LPN+xY0edOXNGe/bsUcuWLYs9HhkZqezsbB09erTIaKmMjIwy16UKCwsrscgVEhJy4R3c6GinmlWKjjaLXvohl/w5+ohAyTVQ8pTI1R8FSp4Subrims6gKOVmzk51c2aNJm/DbnUAAHhWvXr1VK9evQo9d8uWLQoKClL9+vVLfLx9+/YKCQlRSkqK+vXrJ0nasWOH9u7dq9jY2ArHfEGc7Uh17uz52AAAwAXzii3R5syZo8aNGys8PFwdO3bUxo0by2y/ZMkStWrVSuHh4WrTpo0++eSTIo9blqVHHnlEUVFRqly5snr27KmffvrJnSmUKn+qm1R8mp0/THXL361u8GDz3VfzAADAn6SmpioxMVHffvutfv75Z7377ruaOHGibr/9dl100UWSpAMHDqhVq1YF/a6aNWtq5MiRmjRpkj777DOlpaVpxIgRio2NtW/nPX/vSAEAEOBsL0otXrxYkyZN0vTp07Vp0yZdccUViouL06+//lpi+/Xr12vw4MEaOXKkNm/erL59+6pv3776/vvvC9o89dRTeuGFFzR37lxt2LBBVatWVVxcnE6fPu2ptIrIn+p28cVFzzdsaM4nJNgSFgAA8FNhYWFatGiRunbtqssvv1yPP/64Jk6cqNdee62gTU5Ojnbs2FFkIdLnnntON910k/r166cuXbooMjJSSUlJdqRQiI4UAAB+y/bpe7Nnz9aoUaM0YsQISdLcuXP18ccfa968eZoyZUqx9s8//7zi4+N1//33S5Jmzpyp5ORkvfTSS5o7d64sy1JiYqIefvhh9enTR5K0YMECRUREaNmyZRo0aJDnkjtL/lS3zz47o08/3aIbbmin7t0rcWMPAAC43FVXXaWvvvqqzDaNGzeWdc6UuPDwcM2ZM0dz5sxxZ3jl92dH6sxnn2nLp5+q3Q03qFL37oyQAgDAx9lalMrOzlZaWpqmTp1acC4oKEg9e/ZUampqic9JTU0tssOLJMXFxWnZsmWSpN27dys9PV09z1o1vGbNmurYsaNSU1NLLEplZWUpKyur4Dh/lficnBzluHi17k6dcnTixAF16nSZ8vIs5eW59PJeJf/PztV/ht4oUHINlDwlcvVHgZKnRK6uvja8RHCwrK5ddeDECV3RtSsFKQAA/ICtRanffvtNubm5ioiIKHI+IiJCP/74Y4nPSU9PL7F9enp6weP550prc65Zs2ZpxowZxc6vXLlSVapUcS6ZckpOTnbLdb0RufqfQMlTIld/FCh5SuR6oc6e1gYAAADXs336njeYOnVqkdFXmZmZio6OVq9evVSjRg2XvlZOTo6Sk5N1/fXX+/32kuTqfwIlT4lc/VGg5CmRq6vkj5wGAACAe9halKpbt66Cg4OVkZFR5HxGRoYiIyNLfE5kZGSZ7fO/Z2RkKCoqqkibdu3alXjNsLAwhYWFFTsfEhLits68O6/tbcjV/wRKnhK5+qNAyVMiV1dcEwAAAO5j6+57oaGhat++vVJSUgrO5eXlKSUlRbGxsSU+JzY2tkh7yQzZz2/fpEkTRUZGFmmTmZmpDRs2lHpNAAAAAAAAeJbt0/cmTZqkYcOGKSYmRh06dFBiYqJOnDhRsBvf0KFDdfHFF2vWrFmSpPHjx6tr16569tlndeONN2rRokX65ptvCrY4djgcmjBhgh577DG1aNFCTZo00bRp09SgQQP17dvXrjQBAAAAAABwFtuLUgMHDtThw4f1yCOPKD09Xe3atdPy5csLFirfu3evgoIKB3R16tRJCxcu1MMPP6yHHnpILVq00LJly9S6deuCNg888IBOnDih0aNH6+jRo7r22mu1fPlyhYeHezw/AAAAAAAAFGd7UUqSxo0bp3HjxpX42Jo1a4qdGzBggAYMGFDq9RwOhx599FE9+uijrgoRAAAAAAAALmTrmlIAAAAAAAAITBSlAAAAAAAA4HEUpQAAAAAAAOBxFKUAAAAAAADgcV6x0Lm3sSxLkpSZmenya+fk5OjkyZPKzMxUSEiIy6/vTcjV/wRKnhK5+qNAyVMiV1fJ7wfk9wvgHPpRrkGu/idQ8pTI1R8FSp4SubqKs/0oilIlOH78uCQpOjra5kgAAIDdjh8/rpo1a9odhs+gHwUAAPKdrx/lsLj9V0xeXp4OHjyo6tWry+FwuPTamZmZio6O1r59+1SjRg2XXtvbkKv/CZQ8JXL1R4GSp0SurmJZlo4fP64GDRooKIgVD5xFP8o1yNX/BEqeErn6o0DJUyJXV3G2H8VIqRIEBQWpYcOGbn2NGjVq+P1f8Hzk6n8CJU+JXP1RoOQpkasrMEKq/OhHuRa5+p9AyVMiV38UKHlK5OoKzvSjuO0HAAAAAAAAj6MoBQAAAAAAAI+jKOVhYWFhmj59usLCwuwOxe3I1f8ESp4SufqjQMlTIlf4r0B6v8nV/wRKnhK5+qNAyVMiV09joXMAAAAAAAB4HCOlAAAAAAAA4HEUpQAAAAAAAOBxFKUAAAAAAADgcRSl3GzPnj0aOXKkmjRposqVK6tZs2aaPn26srOzy3ze6dOnNXbsWNWpU0fVqlVTv379lJGR4aGoK+7xxx9Xp06dVKVKFdWqVcup5wwfPlwOh6PIV3x8vHsDvUAVydOyLD3yyCOKiopS5cqV1bNnT/3000/uDdQFfv/9dw0ZMkQ1atRQrVq1NHLkSP3xxx9lPqdbt27F3tO77rrLQxE7b86cOWrcuLHCw8PVsWNHbdy4scz2S5YsUatWrRQeHq42bdrok08+8VCkF648ub755pvF3r/w8HAPRlsxX3zxhW6++WY1aNBADodDy5YtO+9z1qxZo6uuukphYWFq3ry53nzzTbfH6QrlzXXNmjXF3lOHw6H09HTPBFxBs2bN0tVXX63q1aurfv366tu3r3bs2HHe5/ny7yqKoh91fvSjvBv9qEK+/G8z/aiS+WI/KlD6UJLv9KMoSrnZjz/+qLy8PL366qvatm2bnnvuOc2dO1cPPfRQmc+bOHGi/v3vf2vJkiX6/PPPdfDgQSUkJHgo6orLzs7WgAEDdPfdd5frefHx8Tp06FDB13vvveemCF2jInk+9dRTeuGFFzR37lxt2LBBVatWVVxcnE6fPu3GSC/ckCFDtG3bNiUnJ+ujjz7SF198odGjR5/3eaNGjSrynj711FMeiNZ5ixcv1qRJkzR9+nRt2rRJV1xxheLi4vTrr7+W2H79+vUaPHiwRo4cqc2bN6tv377q27evvv/+ew9HXn7lzVWSatSoUeT9++WXXzwYccWcOHFCV1xxhebMmeNU+927d+vGG29U9+7dtWXLFk2YMEF33nmnVqxY4eZIL1x5c823Y8eOIu9r/fr13RSha3z++ecaO3asvvrqKyUnJysnJ0e9evXSiRMnSn2OL/+uojj6Uc6hH+W96EcZvvxvM/2okvlqPypQ+lCSD/WjLHjcU089ZTVp0qTUx48ePWqFhIRYS5YsKTi3fft2S5KVmprqiRAv2Pz5862aNWs61XbYsGFWnz593BqPuzibZ15enhUZGWk9/fTTBeeOHj1qhYWFWe+9954bI7wwP/zwgyXJ+vrrrwvOffrpp5bD4bAOHDhQ6vO6du1qjR8/3gMRVlyHDh2ssWPHFhzn5uZaDRo0sGbNmlVi+1tvvdW68cYbi5zr2LGjNWbMGLfG6QrlzbU8v7/eSpL1wQcflNnmgQcesC6//PIi5wYOHGjFxcW5MTLXcybXzz77zJJk/fe///VITO7y66+/WpKszz//vNQ2vvy7CufQjyqKfhT9KDvQj6If5Q/9qEDqQ1mW9/ajGCllg2PHjql27dqlPp6WlqacnBz17Nmz4FyrVq3UqFEjpaameiJEj1uzZo3q16+vli1b6u6779aRI0fsDsmldu/erfT09CLvac2aNdWxY0evfk9TU1NVq1YtxcTEFJzr2bOngoKCtGHDhjKf++6776pu3bpq3bq1pk6dqpMnT7o7XKdlZ2crLS2tyPsRFBSknj17lvp+pKamFmkvSXFxcV79/kkVy1WS/vjjD11yySWKjo5Wnz59tG3bNk+E61G++p5eiHbt2ikqKkrXX3+9vvzyS7vDKbdjx45JUpmfoYH4vgYa+lHF0Y/yTvSjCvnqv830o0rnq+9pRfl6H0ry3n5UJbddGSXauXOnXnzxRT3zzDOltklPT1doaGixOfYRERE+MXe1vOLj45WQkKAmTZpo165deuihh3TDDTcoNTVVwcHBdofnEvnvW0RERJHz3v6epqenFxuaWqlSJdWuXbvMuG+77TZdcsklatCggb777js9+OCD2rFjh5KSktwdslN+++035ebmlvh+/PjjjyU+Jz093efeP6liubZs2VLz5s1T27ZtdezYMT3zzDPq1KmTtm3bpoYNG3oibI8o7T3NzMzUqVOnVLlyZZsic72oqCjNnTtXMTExysrK0uuvv65u3bppw4YNuuqqq+wOzyl5eXmaMGGCrrnmGrVu3brUdr76uwrn0I8qjn6U976n9KMK+eq/zfSjShco/Sh/6ENJ3t2PYqRUBU2ZMqXEBc/O/jr3H6oDBw4oPj5eAwYM0KhRo2yKvPwqkmt5DBo0SH/729/Upk0b9e3bVx999JG+/vprrVmzxnVJOMHdeXoTd+c6evRoxcXFqU2bNhoyZIgWLFigDz74QLt27XJhFnCX2NhYDR06VO3atVPXrl2VlJSkevXq6dVXX7U7NFRQy5YtNWbMGLVv316dOnXSvHnz1KlTJz333HN2h+a0sWPH6vvvv9eiRYvsDgUuQD+KfpQvox+FstCP8i/+0IeSvLsfxUipCpo8ebKGDx9eZpumTZsW/Hzw4EF1795dnTp10muvvVbm8yIjI5Wdna2jR48WucuXkZGhyMjICwm7Qsqb64Vq2rSp6tatq507d6pHjx4uu+75uDPP/PctIyNDUVFRBeczMjLUrl27Cl3zQjiba2RkZLFFHM+cOaPff/+9XH8XO3bsKMnc4W7WrFm543W1unXrKjg4uNhOTGX9jkVGRparvbeoSK7nCgkJ0ZVXXqmdO3e6I0TblPae1qhRw2/u7pWlQ4cOWrdund1hOGXcuHEFCwSf7y6zr/6uBhr6UUXRjyob/Sj6UXahH1W6QO5H+VIfSvL+fhRFqQqqV6+e6tWr51TbAwcOqHv37mrfvr3mz5+voKCyB6i1b99eISEhSklJUb9+/SSZ1f737t2r2NjYC469vMqTqyvs379fR44cKdLp8AR35tmkSRNFRkYqJSWloPOUmZmpDRs2lHuHHVdwNtfY2FgdPXpUaWlpat++vSRp9erVysvLK+ggOWPLli2S5PH3tDShoaFq3769UlJS1LdvX0lmSGtKSorGjRtX4nNiY2OVkpKiCRMmFJxLTk625XeyPCqS67lyc3O1detW9e7d242Rel5sbGyxLW594T11lS1btnjN72RpLMvSvffeqw8++EBr1qxRkyZNzvscX/1dDTT0o9yHfpT70Y+iH0U/KrD7Ub7Qh5J8qB/ltiXUYVmWZe3fv99q3ry51aNHD2v//v3WoUOHCr7ObtOyZUtrw4YNBefuuusuq1GjRtbq1autb775xoqNjbViY2PtSKFcfvnlF2vz5s3WjBkzrGrVqlmbN2+2Nm/ebB0/frygTcuWLa2kpCTLsizr+PHj1v/8z/9Yqamp1u7du61Vq1ZZV111ldWiRQvr9OnTdqVxXuXN07Is64knnrBq1aplffjhh9Z3331n9enTx2rSpIl16tQpO1JwWnx8vHXllVdaGzZssNatW2e1aNHCGjx4cMHj5/793blzp/Xoo49a33zzjbV7927rww8/tJo2bWp16dLFrhRKtGjRIissLMx68803rR9++MEaPXq0VatWLSs9Pd2yLMu64447rClTphS0//LLL61KlSpZzzzzjLV9+3Zr+vTpVkhIiLV161a7UnBaeXOdMWOGtWLFCmvXrl1WWlqaNWjQICs8PNzatm2bXSk45fjx4wW/i5Ks2bNnW5s3b7Z++eUXy7Isa8qUKdYdd9xR0P7nn3+2qlSpYt1///3W9u3brTlz5ljBwcHW8uXL7UrBaeXN9bnnnrOWLVtm/fTTT9bWrVut8ePHW0FBQdaqVavsSsEpd999t1WzZk1rzZo1RT4/T548WdDGn35XURz9KPpR+ehH0Y+yC/0o/+pHBUofyrJ8px9FUcrN5s+fb0kq8Svf7t27LUnWZ599VnDu1KlT1j333GNddNFFVpUqVaxbbrmlSAfMWw0bNqzEXM/OTZI1f/58y7Is6+TJk1avXr2sevXqWSEhIdYll1xijRo1quAfeW9V3jwty2xnPG3aNCsiIsIKCwuzevToYe3YscPzwZfTkSNHrMGDB1vVqlWzatSoYY0YMaJIp/Hcv7979+61unTpYtWuXdsKCwuzmjdvbt1///3WsWPHbMqgdC+++KLVqFEjKzQ01OrQoYP11VdfFTzWtWtXa9iwYUXa/+tf/7L+8pe/WKGhodbll19uffzxxx6OuOLKk+uECRMK2kZERFi9e/e2Nm3aZEPU5ZO/Ze+5X/m5DRs2zOratWux57Rr184KDQ21mjZtWuR31puVN9cnn3zSatasmRUeHm7Vrl3b6tatm7V69Wp7gi+H0j4/z36f/O13FUXRj6IflY9+FP0oO9GP8p9+VKD0oSzLd/pRjj+DBQAAAAAAADyG3fcAAAAAAADgcRSlAAAAAAAA4HEUpQAAAAAAAOBxFKUAAAAAAADgcRSlAAAAAAAA4HEUpQAAAAAAAOBxFKUAAAAAAADgcRSlAAAAAAAA4HEUpQAAAAAAAOBxFKUAAAAAAADgcRSlAAAAAAAA4HEUpQDgT4cPH1ZkZKT+93//t+Dc+vXrFRoaqpSUFBsjAwAA8G70owBUhMOyLMvuIADAW3zyySfq27ev1q9fr5YtW6pdu3bq06ePZs+ebXdoAAAAXo1+FIDyoigFAOcYO3asVq1apZiYGG3dulVff/21wsLC7A4LAADA69GPAlAeFKUA4BynTp1S69attW/fPqWlpalNmzZ2hwQAAOAT6EcBKA/WlAKAc+zatUsHDx5UXl6e9uzZY3c4AAAAPoN+FIDyYKQUAJwlOztbHTp0ULt27dSyZUslJiZq69atql+/vt2hAQAAeDX6UQDKi6IUAJzl/vvv19KlS/Xtt9+qWrVq6tq1q2rWrKmPPvrI7tAAAAC8Gv0oAOXF9D0A+NOaNWuUmJiot99+WzVq1FBQUJDefvttrV27Vq+88ord4QEAAHgt+lEAKoKRUgAAAAAAAPA4RkoBAAAAAADA4yhKAQAAAAAAwOMoSgEAAAAAAMDjKEoBAAAAAADA4yhKAQAAAAAAwOMoSgEAAAAAAMDjKEoBAAAAAADA4yhKAQAAAAAAwOMoSgEAAAAAAMDjKEoBAAAAAADA4yhKAQAAAAAAwOMoSgEAAAAAAMDj/h/VZyEAwxbp4gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[0.2242605 0.60960324 0.16613626]\n", + "[1.49494696 0.49494696 1.79494696]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The sum over the y_softmax is really one:" + ], + "metadata": { + "id": "E9Un66eGehnS" + }, + "id": "E9Un66eGehnS" + }, + { + "cell_type": "code", + "source": [ + "# @title\n", + "sum(y_softmax)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SvCbN3-2vO-O", + "outputId": "733b93d5-546e-42e3-d50b-731960db2ce4" + }, + "id": "SvCbN3-2vO-O", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1.0" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Analysis function definition\n", + "\n", + "We define an analysis function that\n", + "- creates a test data set\n", + "- runs the model in a forward path to estimated the IPDs of this test set\n", + "- computes the training and test accuracy by comparing estimated to the true IPD values\n", + "- plots histograms and confusion matrices to understand the errors it's making." + ], + "metadata": { + "id": "UnzJFNQw5Gmt" + }, + "id": "UnzJFNQw5Gmt" + }, + { + "cell_type": "code", + "source": [ + "def analyse(ipds, spikes, label, run, plot_analysis=1):\n", + " \"\"\"\n", + " Analyse the performance of a classifier on interaural phase difference (IPD) data.\n", + "\n", + " This function evaluates the accuracy and error of a classifier by comparing its\n", + " output with true IPD values. It computes the mean and standard deviation of the\n", + " classifier's accuracy and the absolute error in degrees. Additionally, it can\n", + " generate histograms and a confusion matrix to visualize the results.\n", + "\n", + " Parameters:\n", + " ipds (array): Array of true IPD values.\n", + " spikes (array): Array of spike data corresponding to the IPDs.\n", + " label (str): Label for the data, used in plot titles.\n", + " run (callable): Function that runs the classifier on a batch of spike data.\n", + " plot_analysis (bool, optional): If True, plot histograms and confusion matrix.\n", + "\n", + " Returns:\n", + " tuple: Tuple containing mean and standard deviation of classifier accuracy,\n", + " and mean and standard deviation of absolute error in degrees.\n", + " \"\"\"\n", + " # Initialize lists to store batch-wise accuracies, true IPD values, and estimated IPD values.\n", + " accs = [] # Stores accuracy for each batch\n", + " ipd_true = [] # Stores the true IPD values\n", + " ipd_estimated = [] # Stores the estimated IPD values\n", + "\n", + " # Initialize the confusion matrix for classifier evaluation\n", + " confusion = np.zeros((num_classes, num_classes))\n", + "\n", + " # Iterate over batches of data (spikes and corresponding IPDs) generated randomly\n", + " for spike_batch, ipd_batch in data_generator(ipds, spikes): #Generate batches of data, iterating over IPDs and spikes in a randomized order.\n", + " # Discretize the IPD values in the batch by mapping them to their respective classes\n", + " ipd_class_batch = discretise(ipd_batch)\n", + "\n", + " # Run the neural network classifier on the spike batch\n", + " output = run(spike_batch)\n", + "\n", + " # Aggregate the network's output over the time dimension\n", + " m = torch.sum(output, 1)\n", + "\n", + " # Use argmax to select the class with the highest score\n", + " _, ipd_class_batch_estimated = torch.max(m, 1)\n", + " # Note: We don’t use softmax(m) in the forward path but only torch.max(m) because:\n", + " # - The task only requires class estimated, not probabilities.\n", + " # - torch.max is sufficient to identify the estimated class index.\n", + " # - Softmax would add unnecessary computational cost without affecting the correctness of the predictions.\n", + "\n", + "\n", + " # Update the confusion matrix with true and estimated class values\n", + " for i, j in zip(ipd_class_batch.detach().cpu().numpy(), ipd_class_batch_estimated.detach().cpu().numpy()): # update the confusion matrix\n", + " confusion[j, i] += 1\n", + " # This code updates a confusion matrix by counting occurrences of true and predicted class pairs for a batch of data:\n", + " # confusion[j, i] += 1:\n", + " # - Increments the matrix cell at (j, i):\n", + " # - j: Predicted class.\n", + " # - i: True class.\n", + " # - Tracks how often class i is predicted as class j.\n", + "\n", + "\n", + " # Append the original IPD values to the true IPD list\n", + " ipd_true.append(ipd_batch) # creates a list of arrays\n", + "\n", + " # Convert the argmax predictions back to continuous values and append to estimated IPDs\n", + " ipd_estimated.append(continuise(ipd_class_batch_estimated.detach().cpu().numpy()))\n", + "\n", + " # Calculate batch accuracy by comparing predictions to labels\n", + " tmp = np.mean((ipd_class_batch == ipd_class_batch_estimated).detach().cpu().numpy()) # compare to labels\n", + " accs.append(tmp) # Append batch accuracy to the list\n", + "\n", + " # Flatten the lists of true and estimated IPDs into single arrays\n", + " ipd_true = np.hstack(ipd_true) # connetecates the arrays in the list horizontally to create a single flattened array\n", + " ipd_estimated = np.hstack(ipd_estimated)\n", + "\n", + " # Compute absolute errors in degrees between true and estimated IPDs\n", + " abs_errors_deg = abs(ipd_true-ipd_estimated)*180/np.pi\n", + "\n", + " # Calculate mean and standard deviation of the classifier accuracy in percentage\n", + " classifier_accuracy_mean = 100*np.mean(accs) # in percent\n", + " classifier_accuracy_std = 100*np.std(accs) # in percent\n", + "\n", + " # Calculate mean and standard deviation of the absolute error in degrees\n", + " absolute_error_mean = np.mean(abs_errors_deg) # in degree\n", + " absolute_error_std = np.std(abs_errors_deg) # in degree\n", + "\n", + " # Print results for the classifier's accuracy and absolute error\n", + " print(f\"{label} classifier accuracy: {100*np.mean(accs):.1f}%\")\n", + " print(f\"{label} absolute error: {np.mean(abs_errors_deg):.1f} deg \\n\")\n", + "\n", + " # If visualization is requested, plot the results\n", + " if plot_analysis:\n", + " plt.figure(figsize=(10, 4), dpi=100)\n", + "\n", + " # Plot histograms of true and estimated IPDs\n", + " plt.subplot(121)\n", + " plt.hist(ipd_true*180/np.pi, bins=num_classes, label='True')\n", + " plt.hist(ipd_estimated*180/np.pi, bins=num_classes, label='Estimated')\n", + " plt.xlabel(\"IPD\")\n", + " plt.yticks([])\n", + " plt.legend(loc='best')\n", + " plt.title(label)\n", + "\n", + " # Normalize the confusion matrix and plot it\n", + " plt.subplot(122)\n", + " confusion /= np.sum(confusion, axis=0)[np.newaxis, :]\n", + " ConfusionMatrix = plt.imshow(confusion, interpolation='nearest', aspect='auto', origin='lower', extent=(-90, 90, -90, 90))\n", + " plt.xlabel('True IPD')\n", + " plt.ylabel('Estimated IPD')\n", + " plt.title('Confusion matrix')\n", + " plt.tight_layout()\n", + "\n", + " # Add a color bar with the label \"Probability\"\n", + " cbar = plt.colorbar(ConfusionMatrix) # Add color bar\n", + " cbar.set_label('Probability') # Set the label for the color bar\n", + " plt.tight_layout()\n", + "\n", + " # Return the computed metrics\n", + " return classifier_accuracy_mean, classifier_accuracy_std, absolute_error_mean, absolute_error_std\n" + ], + "metadata": { + "id": "yfDApdFJ4P4J" + }, + "id": "yfDApdFJ4P4J", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Analysis of the network performance" + ], + "metadata": { + "id": "GBS35vYF50ld" + }, + "id": "GBS35vYF50ld" + }, + { + "cell_type": "markdown", + "source": [ + "By using our analysis function we run the model on a test data set that is different from the training data set and plot the analysis results." + ], + "metadata": { + "id": "mO4zONYp4igO" + }, + "id": "mO4zONYp4igO" + }, + { + "cell_type": "code", + "source": [ + "print(f\"Chance accuracy level: {100*1/num_classes:.1f}% \\n\")\n", + "run_func = lambda x: membrane_only(x, W)\n", + "analyse(ipds, spikes, 'Train', run=run_func)\n", + "ipds_test, spikes_test, _ = random_ipd_input_signal(batch_size*n_testing_batches)\n", + "analyse(ipds_test, spikes_test, 'Test', run=run_func)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 909 + }, + "id": "X0PN9wdeqGm7", + "outputId": "f6d427d3-bffa-4462-a158-0cbb7218b858" + }, + "id": "X0PN9wdeqGm7", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Chance accuracy level: 8.3% \n", + "\n", + "Train classifier accuracy: 28.7%\n", + "Train absolute error: 19.5 deg \n", + "\n", + "Test classifier accuracy: 22.7%\n", + "Test absolute error: 21.6 deg \n", + "\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(22.65625, 5.496580968543081, 21.590408188264117, 16.698834029736815)" + ] + }, + "metadata": {}, + "execution_count": 19 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmTUlEQVR4nO3deVxU9f7H8feAMIAKorK4IKCWS+aSJhcztygsraxuaZtoXsvUTLFcWhStxLSMFpesxCy9eStbLU1R82dSeu1qmktZmpaCSwouATpzfn94mdsE6BxkGBhez8fjPC7ne77nfD+HyfvlM9/v+R6LYRiGAAAAAABAmfPxdAAAAAAAAHgrkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3ISkGwAAAAAANyHpBgAAAADATUi6AQAAAABwE5JuoBIbMGCAYmJiPB0GAACl8uOPP+q6665TSEiILBaLPvzwwzK9/t69e2WxWDR//vwyva43iImJ0YABAzwdBlAlkHQDbmCxWFza1qxZ4+lQAQBV3E8//aQHHnhAjRs3VkBAgIKDg3XVVVfpxRdf1B9//OHWtpOSkrR161Y988wzeuutt9ShQwe3tueNtm/frpSUFO3du9fToQAogcUwDMPTQQDe5u2333baX7BggVasWKG33nrLqfzaa69VREREqds5c+aM7Ha7rFZrqa8BAKi6li5dqttvv11Wq1X9+/dXq1atVFBQoHXr1un999/XgAEDNHfuXLe0/ccffygoKEiPP/64nn76abe0YRiG8vPz5efnJ19fX7e04Wnvvfeebr/9dq1evVrdunVz+bz8/Hz5+PjIz8/PfcEBkCRV83QAgDe65557nPa//vprrVixokj5X50+fVpBQUEut0NHCQAorT179qhfv36Kjo7WqlWrVK9ePcexYcOGaffu3Vq6dKnb2j98+LAkqVatWm5rw2KxKCAgwG3Xr2wMw1BeXp4CAwP5wh4oR0wvBzykW7duatWqlTZt2qQuXbooKChIjz32mCTpo48+Uq9evVS/fn1ZrVY1adJETz31lGw2m9M1/vpMd+Gza88995zmzp2rJk2ayGq16sorr9TGjRvL8/YAABXctGnTdPLkSb3xxhtOCXehpk2b6uGHH3bsnz17Vk899ZSjb4mJidFjjz2m/Px8p/NiYmLUu3dvrVu3Th07dlRAQIAaN26sBQsWOOqkpKQoOjpakvToo4/KYrE4+rOS1itJSUmRxWJxKluxYoU6d+6sWrVqqUaNGmrWrJmjL5VKfqZ71apVuvrqq1W9enXVqlVLN998s3bs2FFse7t379aAAQNUq1YthYSEaODAgTp9+nTJv9j/Kuznv/vuO3Xt2lVBQUFq2rSp3nvvPUnSl19+qbi4OAUGBqpZs2ZauXKl0/m//PKLhg4dqmbNmikwMFB16tTR7bff7jSNfP78+br99tslSd27dy/y+FrhZ7F8+XJ16NBBgYGBevXVVx3HCp/pNgxD3bt3V1hYmA4dOuS4fkFBgS6//HI1adJEp06duuA9AygeSTfgQUePHtX111+vtm3bKi0tTd27d5d0rhOtUaOGkpOT9eKLL6p9+/aaMGGCxo0b59J1Fy1apOnTp+uBBx7Q008/rb179+rWW2/VmTNn3Hk7AIBK5JNPPlHjxo3VqVMnl+r/4x//0IQJE3TFFVfohRdeUNeuXZWamqp+/foVqbt79279/e9/17XXXqvnn39eoaGhGjBggL7//ntJ0q233qoXXnhBknTnnXfqrbfeUlpamqn4v//+e/Xu3Vv5+fmaPHmynn/+ed1000366quvznveypUrlZiYqEOHDiklJUXJyclav369rrrqqmKfi77jjjt04sQJpaam6o477tD8+fM1adIkl2I8duyYevfurbi4OE2bNk1Wq1X9+vXT4sWL1a9fP91www2aOnWqTp06pb///e86ceKE49yNGzdq/fr16tevn1566SUNGTJEGRkZ6tatmyPp79Kli0aMGCFJeuyxx/TWW2/prbfeUosWLRzX2bVrl+68805de+21evHFF9W2bdsicVosFs2bN095eXkaMmSIo3zixIn6/vvvlZ6erurVq7t0zwCKYQBwu2HDhhl//efWtWtXQ5IxZ86cIvVPnz5dpOyBBx4wgoKCjLy8PEdZUlKSER0d7djfs2ePIcmoU6eO8fvvvzvKP/roI0OS8cknn5TB3QAAKrucnBxDknHzzTe7VH/z5s2GJOMf//iHU/kjjzxiSDJWrVrlKIuOjjYkGWvXrnWUHTp0yLBarcbo0aMdZYV91vTp052u+de+rdDEiROd+tIXXnjBkGQcPny4xLgL20hPT3eUtW3b1ggPDzeOHj3qKNuyZYvh4+Nj9O/fv0h79913n9M1b7nlFqNOnToltlmosJ9ftGiRo2znzp2GJMPHx8f4+uuvHeXLly8vEmdxfwtkZmYakowFCxY4yt59911DkrF69eoi9Qs/i2XLlhV7LCkpyans1VdfNSQZb7/9tvH1118bvr6+xsiRIy94rwDOj5FuwIOsVqsGDhxYpDwwMNDx84kTJ3TkyBFdffXVOn36tHbu3HnB6/bt21ehoaGO/auvvlqS9PPPP5dB1ACAyi43N1eSVLNmTZfqf/bZZ5Kk5ORkp/LRo0dLUpFnv1u2bOnoeyQpLCxMzZo1K9N+qPBZ8I8++kh2u92lcw4ePKjNmzdrwIABql27tqO8devWuvbaax33+Wd/HvmVzvWpR48edfwOz6dGjRpOMwGaNWumWrVqqUWLFoqLi3OUF/7859/Pn/8WOHPmjI4ePaqmTZuqVq1a+vbbb12423NiY2OVmJjoUt37779fiYmJeuihh3TvvfeqSZMmmjJlisttASgeSTfgQQ0aNJC/v3+R8u+//1633HKLQkJCFBwcrLCwMMcibDk5ORe8bqNGjZz2CxPwY8eOlUHUAIDKLjg4WJKcpjOfzy+//CIfHx81bdrUqTwyMlK1atXSL7/84lT+135IOtcXlWU/1LdvX1111VX6xz/+oYiICPXr10//+te/zpuAF8bZrFmzIsdatGihI0eOFHl2+WL61IYNGxZ5Dj0kJERRUVFFyv56zT/++EMTJkxQVFSUrFar6tatq7CwMB0/ftylvwUKxcbGulxXkt544w2dPn1aP/74o+bPn++U/AMoHVYvBzyouI7s+PHj6tq1q4KDgzV58mQ1adJEAQEB+vbbbzV27FiXvs0v6bUoBm8IBADoXNJdv359bdu2zdR5f00gS3Ix/VBJbfx1MdHAwECtXbtWq1ev1tKlS7Vs2TItXrxYPXr00BdffFFmrwi7mHsp6VxXrvnQQw8pPT1dI0eOVHx8vEJCQmSxWNSvXz+XR/al4v/WOJ81a9Y4FsfbunWr4uPjTZ0PoCiSbqCCWbNmjY4ePaolS5aoS5cujvI9e/Z4MCoAgLfp3bu35s6dq8zMzAsmVtHR0bLb7frxxx+dFunKzs7W8ePHHSuRl4XQ0FAdP368SPlfR9MlycfHR9dcc42uueYazZgxQ1OmTNHjjz+u1atXKyEhodj7kM4tLvZXO3fuVN26dSvMgmHvvfeekpKS9PzzzzvK8vLyivxuXP0ixBUHDx7UQw89pOuuu07+/v565JFHlJiYWKafL1AVMb0cqGAKv/3+87fdBQUFmjVrlqdCAgB4oTFjxqh69er6xz/+oezs7CLHf/rpJ7344ouSpBtuuEGSiqwwPmPGDElSr169yiyuJk2aKCcnR999952j7ODBg/rggw+c6v3+++9Fzi1cmfuvrzErVK9ePbVt21ZvvvmmU/K6bds2ffHFF477rAh8fX2LjKa//PLLRUb8C78kKO6LCrMGDx4su92uN954Q3PnzlW1atU0aNAgZsoBF4mRbqCC6dSpk0JDQ5WUlKQRI0bIYrHorbfeosMDAJSpJk2aaNGiRerbt69atGih/v37q1WrViooKND69ev17rvvOt7j3KZNGyUlJWnu3LmOx6A2bNigN998U3369HG88rIs9OvXT2PHjtUtt9yiESNG6PTp05o9e7YuvfRSpwXEJk+erLVr16pXr16Kjo7WoUOHNGvWLDVs2FCdO3cu8frTp0/X9ddfr/j4eA0aNEh//PGHXn75ZYWEhCglJaXM7uNi9e7dW2+99ZZCQkLUsmVLZWZmauXKlapTp45TvbZt28rX11fPPvuscnJyZLVa1aNHD4WHh5tqLz09XUuXLtX8+fPVsGFDSeeS/HvuuUezZ8/W0KFDy+zegKqGpBuoYOrUqaNPP/1Uo0eP1hNPPKHQ0FDdc889uuaaa1xefRQAAFfcdNNN+u677zR9+nR99NFHmj17tqxWq1q3bq3nn39egwcPdtR9/fXX1bhxY82fP18ffPCBIiMjNX78eE2cOLFMY6pTp44++OADJScna8yYMYqNjVVqaqp+/PFHp6T7pptu0t69ezVv3jwdOXJEdevWVdeuXTVp0iTHwmTFSUhI0LJlyzRx4kRNmDBBfn5+6tq1q5599lnTi46504svvihfX18tXLhQeXl5uuqqqxzvGP+zyMhIzZkzR6mpqRo0aJBsNptWr15tKun+9ddfNWrUKN14441KSkpylN999916//33NWbMGF1//fUV6vcDVCYWg+EzAAAAAADcgme6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANzEpfd02+12HThwQDVr1pTFYnF3TAAAVAiGYejEiROqX7++fHz4nrok/J0AABWLu/uvvLw8FRQUlOpcf39/BQQElHFEFZtLSfeBAwcUFRXl7lgAAKiQ9u/fr4YNG3o6jAqLvxMAoGJyR/+Vl5en2OgayjpkK9X5kZGR2rNnT5VKvF1KumvWrCnp3IcWHBzs1oAAAKgocnNzFRUV5egHUbzC309n3aBq8vNwNABQMp8Aq0fa/aPLZeXa3tmzedq4KtUt/VdBQYGyDtn0y6YYBdc0N4qee8Ku6PZ7VVBQQNL9V4VTxYKDg0m6AQBVDlOmz6/w91NNfqpmIekGUHH5WPw90m41P88kmO7sv2rUtKhGTXPXt6tq9qcuJd0AAAAAABSyGXbZDPPnVEUk3QAAAAAAU+wyZJe5rNtsfW9B0g0AAAAAMMUuu8yOW5s/wzuQdAOACTabTWfOnPF0GChD/v7+vA4MAACTbIYhm2Fu5NpsfW9B0g0ALjAMQ1lZWTp+/LinQ0EZ8/HxUWxsrPz9PbO4DgAAlRHTy11H0g0ALihMuMPDwxUUFMRq1l7CbrfrwIEDOnjwoBo1asTnCgAAyhxJNwBcgM1mcyTcderU8XQ4KGNhYWE6cOCAzp49Kz8/XncFAIAr7DJkY6TbJSTdAHABhc9wBwUFeTgSuEPhtHKbzUbSDQCAi5he7jqSbgBwEVOPvROfKwAA5rGQmutIugEAAAAAptj/u5k9pyriHSkAAHgpm82mJ598UrGxsQoMDFSTJk301FNPyfjTSINhGJowYYLq1aunwMBAJSQk6Mcff/Rg1ACAysD232e6zW5VESPdAHARYsYtLbe29k7t5XLdC02ZnjhxolJSUi4yIlR0zz77rGbPnq0333xTl112mf79739r4MCBCgkJ0YgRIyRJ06ZN00svvaQ333xTsbGxevLJJ5WYmKjt27crICDAw3cAAEDlR9IN4PxSQjzYdo7n2q7kDh486Ph58eLFmjBhgnbt2uUoq1GjhuNnwzBks9lUrRpdgrdZv369br75ZvXqde4Lm5iYGP3zn//Uhg0bJJ377NPS0vTEE0/o5ptvliQtWLBAERER+vDDD9WvXz+PxQ4AqNhsxrnN7DlVEdPLAcALRUZGOraQkBBZLBbH/s6dO1WzZk19/vnnat++vaxWq9atW6cBAwaoT58+TtcZOXKkunXr5ti32+1KTU11TFdu06aN3nvvvfK9ObisU6dOysjI0A8//CBJ2rJli9atW6frr79ekrRnzx5lZWUpISHBcU5ISIji4uKUmZlZ4nXz8/OVm5vrtAEAqhZ7KbeqiGENAKiixo0bp+eee06NGzdWaGioS+ekpqbq7bff1pw5c3TJJZdo7dq1uueeexQWFqauXbu6OWKYNW7cOOXm5qp58+by9fWVzWbTM888o7vvvluSlJWVJUmKiIhwOi8iIsJxrDipqamaNGmS+wIHAFR4dllkk7k3gNhN1vcWJN0AUEVNnjxZ1157rcv18/PzNWXKFK1cuVLx8fGSpMaNG2vdunV69dVXSboroH/9619auHChFi1apMsuu0ybN2/WyJEjVb9+fSUlJZX6uuPHj1dycrJjPzc3V1FRUWURMgCgkrAb5zaz51RFJN0AUEV16NDBVP3du3fr9OnTRRL1goICtWvXrixDQxl59NFHNW7cOMez2Zdffrl++eUXpaamKikpSZGRkZKk7Oxs1atXz3Fedna22rZtW+J1rVarrFarW2MHAFRstlKMdJut7y1IugGgiqpevbrTvo+Pj9OrpCTpzJkzjp9PnjwpSVq6dKkaNGjgVI8ErGI6ffq0fHycl2/x9fWV3X7uqbrY2FhFRkYqIyPDkWTn5ubqm2++0YMPPlje4QIA4JVIugEAkqSwsDBt27bNqWzz5s3y8/OTJLVs2VJWq1X79u1jKnklceONN+qZZ55Ro0aNdNlll+k///mPZsyYofvuu0/SuVfLjRw5Uk8//bQuueQSxyvD6tevX2RRPQAA/oyRbteRdAMAJEk9evTQ9OnTtWDBAsXHx+vtt9/Wtm3bHFPHa9asqUceeUSjRo2S3W5X586dlZOTo6+++krBwcEX9Yww3OPll1/Wk08+qaFDh+rQoUOqX7++HnjgAU2YMMFRZ8yYMTp16pTuv/9+HT9+XJ07d9ayZct4RzcA4LzshkV2w+RCaibrewuSbgCAJCkxMVFPPvmkxowZo7y8PN13333q37+/tm7d6qjz1FNPKSwsTKmpqfr5559Vq1YtXXHFFXrsscc8GDlKUrNmTaWlpSktLa3EOhaLRZMnT9bkyZPLLzAAQKXHSLfrLMZfH+ArRm5urkJCQpSTk6Pg4ODyiAtARZES4sG2czzX9p/k5eVpz549io2NZfTPC53v86X/c03h76mbblY1i5+nwwGAEvl4qB//o8fl5dre2TN5yvxiolv6r8L/z1+1LUo1avpc+IQ/OXnCrh6t9le5fpWRbgAAAKCKsnhoIcyz8Zd5pN09Q856pN3UKxaXa3unT9iU+YV72zBKMb3cYHo5AAAAAAAXxvRy15mbDwAAAAAAAFzGSDcAAAAAwBSb4SObYW4M13bB1cS8E0k3AAAAAMAUuyyym5w4bVfVzLpJugEAAAAApvBMt+tIugEAAAAAppRuejkj3QAAAAAAXNC56eXmRq7N1vcWrF4OAAAAAICbkHQDAFw2f/581apVy9NhmFIZYwYAoKKzy0c2k5vZhde8BdPLAeBipISUY1s5pk8ZMGCA3nzzzSLliYmJWrZs2XnPjYmJ0ciRIzVy5EhHWd++fXXDDTeYjsOs+fPna+TIkTp+/Ljb2wIAAObxTLfrSLoBwMv17NlT6enpTmVWq7VU1woMDFRgYGBZhAUAACoxeylGrqvqK8Oq5vg+AFQhVqtVkZGRTltoaKgMw1BKSooaNWokq9Wq+vXra8SIEZKkbt266ZdfftGoUaNksVhksZxb+OSvU7VTUlLUtm1bzZs3T40aNVKNGjU0dOhQ2Ww2TZs2TZGRkQoPD9czzzzjFNOMGTN0+eWXq3r16oqKitLQoUN18uRJSdKaNWs0cOBA5eTkONpOSUmRJOXn5+uRRx5RgwYNVL16dcXFxWnNmjVO154/f74aNWqkoKAg3XLLLTp69Kh7frEAAFRhNsNSqq00Zs6cqZiYGAUEBCguLk4bNmwose78+fMdfz8UbgEBAaW9zTLBSDcAVFHvv/++XnjhBb3zzju67LLLlJWVpS1btkiSlixZojZt2uj+++/X4MGDz3udn376SZ9//rmWLVumn376SX//+9/1888/69JLL9WXX36p9evX67777lNCQoLi4uIkST4+PnrppZcUGxurn3/+WUOHDtWYMWM0a9YsderUSWlpaZowYYJ27dolSapRo4Ykafjw4dq+fbveeecd1a9fXx988IF69uyprVu36pJLLtE333yjQYMGKTU1VX369NGyZcs0ceJEN/4WAQComgqf0zZ3jvmR7sWLFys5OVlz5sxRXFyc0tLSlJiYqF27dik8PLzYc4KDgx1/Q0hyDB54Ckk3AHi5Tz/91JG0FnrssccUEBCgyMhIJSQkyM/PT40aNVLHjh0lSbVr15avr69q1qypyMjI817fbrdr3rx5qlmzplq2bKnu3btr165d+uyzz+Tj46NmzZrp2Wef1erVqx1J95+fE4+JidHTTz+tIUOGaNasWfL391dISIgsFotT2/v27VN6err27dun+vXrS5IeeeQRLVu2TOnp6ZoyZYpefPFF9ezZU2PGjJEkXXrppVq/fv0Fn18HAAAV04wZMzR48GANHDhQkjRnzhwtXbpU8+bN07hx44o9569/Q3gaSTcAeLnu3btr9uzZTmW1a9fWqVOnlJaWpsaNG6tnz5664YYbdOONN6paNXNdQ0xMjGrWrOnYj4iIkK+vr3x8fJzKDh065NhfuXKlUlNTtXPnTuXm5urs2bPKy8vT6dOnFRQUVGw7W7dulc1m06WXXupUnp+frzp16kiSduzYoVtuucXpeHx8PEk3AABlzG74yG5yITX7fxdSy83NdSq3Wq3FrjdTUFCgTZs2afz48Y4yHx8fJSQkKDMzs8R2Tp48qejoaNntdl1xxRWaMmWKLrvsMlOxliWSbgDwctWrV1fTpk2LlNeuXVu7du3SypUrtWLFCg0dOlTTp0/Xl19+KT8/P5ev/9e6Foul2DK73S5J2rt3r3r37q0HH3xQzzzzjGrXrq1169Zp0KBBKigoKDHpPnnypHx9fbVp0yb5+vo6HfvrSD4AAHCvi5leHhUV5VQ+ceJEx/otf3bkyBHZbDZFREQ4lUdERGjnzp3FttGsWTPNmzdPrVu3Vk5Ojp577jl16tRJ33//vRo2bGgq3rJC0g0AVVhgYKBuvPFG3XjjjRo2bJiaN2+urVu36oorrpC/v79sNluZt7lp0ybZ7XY9//zzjtHwf/3rX051imu7Xbt2stlsOnTokK6++upir92iRQt98803TmVff/11GUYPAAAkyS6ZXhjN/t//3b9/v4KDgx3lpX2rSnHi4+MVHx/v2O/UqZNatGihV199VU899VSZtWMGSTcAeLn8/HxlZWU5lVWrVk2ffvqpbDab4uLiFBQUpLfffluBgYGKjo6WdG7a+Nq1a9WvXz9ZrVbVrVu3TOJp2rSpzpw5o5dfflk33nijvvrqK82ZM8epTkxMjE6ePKmMjAy1adNGQUFBuvTSS3X33Xerf//+ev7559WuXTsdPnxYGRkZat26tXr16qURI0boqquu0nPPPaebb75Zy5cvZ2o5AABuULpXhp2rHxwc7JR0l6Ru3bry9fVVdna2U3l2drbLz2z7+fmpXbt22r17t6lYyxKvDAMAL7ds2TLVq1fPaevcubNq1aql1157TVdddZVat26tlStX6pNPPnE8Hz158mTt3btXTZo0UVhYWJnF06ZNG82YMUPPPvusWrVqpYULFyo1NdWpTqdOnTRkyBD17dtXYWFhmjZtmiQpPT1d/fv31+jRo9WsWTP16dNHGzduVKNGjSRJf/vb3/Taa6/pxRdfVJs2bfTFF1/oiSeeKLPYAQDAOTbDp1SbGf7+/mrfvr0yMjIcZXa7XRkZGU6j2eeN02bT1q1bVa9ePVNtlyWLYRgXXLc9NzdXISEhysnJcekbCQBeJCXEg23neK7tP8nLy9OePXsUGxvr8fc8ouyd7/Ol/3NN4e+pm25WNYvr6wEA8DxLGU7rNeNsvGcWtdo35KxH2k294sNybe/0CZsGXLHFLf1X4f/nv7IpToE1zE2c/uPkWQ1v/42puBYvXqykpCS9+uqr6tixo9LS0vSvf/1LO3fuVEREhPr3768GDRo4vsCfPHmy/va3v6lp06Y6fvy4pk+frg8//FCbNm1Sy5YtTd9vWWB6OQAAAADAFLssssvsM93m35fdt29fHT58WBMmTFBWVpbatm2rZcuWORZX27dvn9MbU44dO6bBgwcrKytLoaGhat++vdavX++xhFtiejkAAF7tt99+0z333KM6deooMDBQl19+uf797387jhuGoQkTJqhevXoKDAxUQkKCfvzxRw9GDACoDMpjenmh4cOH65dfflF+fr6++eYbxcXFOY6tWbNG8+fPd+y/8MILjrpZWVlaunSp2rVrd7G3e1FIugEA8FLHjh3TVVddJT8/P33++efavn27nn/+eYWGhjrqTJs2TS+99JLmzJmjb775RtWrV1diYqLy8vI8GDkAoKIrfGWY2a0qYno5AABe6tlnn1VUVJTS09MdZbGxsY6fDcNQWlqannjiCd18882SpAULFigiIkIffvih+vXrV+4xAwAqB7thkd3sK8NM1vcWVfOrBgAAqoCPP/5YHTp00O23367w8HC1a9dOr732muP4nj17lJWVpYSEBEdZSEiI4uLilJmZWeJ18/PzlZub67QBAKoWeylGuc2+YsxbMNINAC6y2+2eDgFu4MJLPCqtn3/+WbNnz1ZycrIee+wxbdy4USNGjJC/v7+SkpIc728vXIymUERERJF3u/9ZamqqJk2a5NbYAY+xeGYkzuLv75F2fcPqeqTdI009s2p6nY8983t+4b07y7W9s2fyJG1xaxt2w0d2k89om63vLUi6AeAC/P395ePjowMHDigsLEz+/v6yeOiPMpQtwzB0+PBhWSwW+fl536uu7Ha7OnTooClTpkiS2rVrp23btmnOnDlKSkoq9XXHjx+v5ORkx35ubq6ioqIuOl4AALwRSTcAXICPj49iY2N18OBBHThwwNPhoIxZLBY1bNhQvr6+ng6lzNWrV6/IK1JatGih999/X5IUGRkpScrOzla9evUcdbKzs9W2bdsSr2u1WmX10Lt9AQAVg00W2Uy+AsxsfW9B0g0ALvD391ejRo109uxZ2Ww2T4eDMuTn5+eVCbckXXXVVdq1a5dT2Q8//KDo6GhJ5xZVi4yMVEZGhiPJzs3N1TfffKMHH3ywvMMFAFQiTC93HUk3ALiocAqyN05DhncaNWqUOnXqpClTpuiOO+7Qhg0bNHfuXM2dO1fSuf+mR44cqaefflqXXHKJYmNj9eSTT6p+/frq06ePZ4MHAFRoNpkfua6qwxYk3QAAeKkrr7xSH3zwgcaPH6/JkycrNjZWaWlpuvvuux11xowZo1OnTun+++/X8ePH1blzZy1btkwBAQEejBwAUNEx0u06km4AALxY79691bt37xKPWywWTZ48WZMnTy7HqAAAlZ3N8JHNZBJttr63qJp3DQAAAABAOWCkGwAAAABgiiGL7Caf6TZYvRwAAAAAgAtjernrSLoBAAAAAKbYDYvshrmRa7P1vQVJNwAAAADAFJt8ZDO5RJjZ+t6CpBsAAAAAYAoj3a6rml81AAAAAABQDhjpBgAAAACYYpeP7CbHcM3W9xYk3QAAAAAAU2yGRTaT08XN1vcWJN0AAAAAAFN4ptt1JN0AAAAAAFMMw0d2k+/dNnhPNwAAAAAAF2aTRTaZnF5usr63IOkGAAAAAJhiN8xPF7cbbgqmgiPphnkpIR5sO8dzbQMAAACASSTdAAAAAABT7KV4pttsfW9B0g0AAAAAMMUui+wmn9E2W99bkHQDAAAAAEzhPd2uI+kGAAAAAJjC9HLXkXQDAADg/Hx8PdKsb+1a5d9oreDyb1NSXuM6Hmn3t0EFHmm34LRn2vXL9vdIu/XX2sq3wTN2tzdhl8X86uVVdHp51fyqAQAAAACAcsBINwAAAADAFKMUC6kZVXSkm6QbAAAAAGCK3SjF9PIqupAa08sBAKgipk6dKovFopEjRzrK8vLyNGzYMNWpU0c1atTQbbfdpuzsbM8FCQCoFAoXUjO7VUVV864BAKhiNm7cqFdffVWtW7d2Kh81apQ++eQTvfvuu/ryyy914MAB3XrrrR6KEgBQWRSOdJvdqiKSbgAAvNzJkyd1991367XXXlNoaKijPCcnR2+88YZmzJihHj16qH379kpPT9f69ev19ddfezBiAEBFZ//vM91mt6qIpBsAAC83bNgw9erVSwkJCU7lmzZt0pkzZ5zKmzdvrkaNGikzM7O8wwQAwCuxkBoAAF7snXfe0bfffquNGzcWOZaVlSV/f3/VqlXLqTwiIkJZWVklXjM/P1/5+fmO/dzc3DKLFwBQObCQmusY6QYAwEvt379fDz/8sBYuXKiAgIAyu25qaqpCQkIcW1RUVJldGwBQOfBMt+sY6UblkhLiwbZzPNc2AJTCpk2bdOjQIV1xxRWOMpvNprVr1+qVV17R8uXLVVBQoOPHjzuNdmdnZysyMrLE644fP17JycmO/dzcXBJvAKhiGOl2HUk3AABe6pprrtHWrVudygYOHKjmzZtr7NixioqKkp+fnzIyMnTbbbdJknbt2qV9+/YpPj6+xOtarVZZrVa3xg4AqNhIul1H0g0AgJeqWbOmWrVq5VRWvXp11alTx1E+aNAgJScnq3bt2goODtZDDz2k+Ph4/e1vf/NEyACASsKQTK9GbrgnlAqPpBsAgCrshRdekI+Pj2677Tbl5+crMTFRs2bN8nRYAAB4DRZSAwCgClmzZo3S0tIc+wEBAZo5c6Z+//13nTp1SkuWLDnv89wAAEjlu5DazJkzFRMTo4CAAMXFxWnDhg0unffOO+/IYrGoT58+pWq3rJB0AwAAAABMKa+ke/HixUpOTtbEiRP17bffqk2bNkpMTNShQ4fOe97evXv1yCOP6Oqrry7tLZYZkm4AAAAAgCnllXTPmDFDgwcP1sCBA9WyZUvNmTNHQUFBmjdvXonn2Gw23X333Zo0aZIaN258MbdZJki6AQAAAACmXEzSnZub67Tl5+cX20ZBQYE2bdqkhIQER5mPj48SEhKUmZlZYmyTJ09WeHi4Bg0aVLY3XUok3QAAAAAAUwzDUqpNkqKiohQSEuLYUlNTi23jyJEjstlsioiIcCqPiIhQVlZWseesW7dOb7zxhl577bWyveGLwOrlAAAAAABT7LKYfmVYYf39+/crODjYUW61WsskphMnTujee+/Va6+9prp165bJNcsCSTcAAAAAoNwEBwc7Jd0lqVu3rnx9fZWdne1Unp2dXeybNn766Sft3btXN954o6PMbrdLkqpVq6Zdu3apSZMmFxm9eUwvBwAAAACYUh4Lqfn7+6t9+/bKyMj4X7t2uzIyMhQfH1+kfvPmzbV161Zt3rzZsd10003q3r27Nm/erKioqIu+79JgpBsAAAAAYMqfn9E2c45ZycnJSkpKUocOHdSxY0elpaXp1KlTGjhwoCSpf//+atCggVJTUxUQEKBWrVo5nV+rVi1JKlJenki6K6OUEE9HAAAAAKAKK83IdWleGda3b18dPnxYEyZMUFZWltq2batly5Y5Flfbt2+ffHwq9gRukm4AAAAAgCnlNdItScOHD9fw4cOLPbZmzZrznjt//vxStVmWSLoBAAAAAKYYpRjpLm3SXdmRdAMAAJjkExDgmXbr1PZIu7bIUI+0e7jNhVc3LmtHOtjKvU1J2tNnrkfavWtPd4+0+82GZh5pt/Y2wyPtBu3NKdf2ztryy7U9nB9JNwAAAADAFEOSYfI7DM985eF5JN0AAAAAAFPsssgikwupmazvLUi6AQBwI7vdrvnz52vJkiXau3evLBaLYmNj9fe//1333nuvLJaq+QcIAKByK8+F1Co7km6gMuA1cUClZBiGbrrpJn322Wdq06aNLr/8chmGoR07dmjAgAFasmSJPvzwQ0+HCQCAaXbDIks5vDLMG5B0AwDgJvPnz9fatWuVkZGh7t2dFytatWqV+vTpowULFqh///4eihAAgNIxjFI8011FH+qu2G8RBwCgEvvnP/+pxx57rEjCLUk9evTQuHHjtHDhQg9EBgAAygtJNwAAbvLdd9+pZ8+eJR6//vrrtWXLlnKMCACAslH4TLfZrSpiejkAAG7y+++/KyIiosTjEREROnbsWDlGBABA2WAhNdeRdAMA4CY2m03VqpXc1fr6+urs2bPlGBEAAGWDhdRcR9INAICbGIahAQMGyGq1Fns8Pz+/nCMCAKBssJCa60i6AQBwk6SkpAvWYeVyAEBldC7pNju93E3BVHAk3QAAuEl6erqnQ1BqaqqWLFminTt3KjAwUJ06ddKzzz6rZs2aOerk5eVp9OjReuedd5Sfn6/ExETNmjXrvM+jAwCqNp7pdh2rlwMA4EZ79+7Va6+9ppkzZ+r7778v9/a//PJLDRs2TF9//bVWrFihM2fO6LrrrtOpU6ccdUaNGqVPPvlE7777rr788ksdOHBAt956a7nHCgCAN2KkGwAAN1m9erV69+6tP/74Q5JUrVo1zZs3T/fcc0+5xbBs2TKn/fnz5ys8PFybNm1Sly5dlJOTozfeeEOLFi1Sjx49JJ0boW/RooW+/vpr/e1vfyu3WAEAlYfx383sOVURI90AALjJk08+qWuvvVa//fabjh49qsGDB2vMmDEejSknJ0eSVLt2bUnSpk2bdObMGSUkJDjqNG/eXI0aNVJmZqZHYgQAVHy8p9t1JN0AALjJtm3bNGXKFNWrV0+hoaGaPn26Dh06pKNHj3okHrvdrpEjR+qqq65Sq1atJElZWVny9/dXrVq1nOpGREQoKyur2Ovk5+crNzfXaQMAVDFGKbdKYPXq1WV6PZJuAADcJDc3V3Xr1nXsBwUFKTAw0DHaXN6GDRumbdu26Z133rmo66SmpiokJMSxRUVFlVGEAIBKozSj3JVkpLtnz55q0qSJnn76ae3fv/+ir8cz3QAAuNHy5csVEhLi2Lfb7crIyNC2bdscZTfddJPb4xg+fLg+/fRTrV27Vg0bNnSUR0ZGqqCgQMePH3ca7c7OzlZkZGSx1xo/frySk5Md+7m5uSTeAFDFePN7un/77Te99dZbevPNNzVp0iT16NFDgwYNUp8+feTv72/6eiTdAAC4UXHv6n7ggQccP1ssFtlsNre1bxiGHnroIX3wwQdas2aNYmNjnY63b99efn5+ysjI0G233SZJ2rVrl/bt26f4+Phir2m1WmW1Wt0WMwAAnlS3bl2NGjVKo0aN0rfffqv09HQNHTpUQ4cO1V133aVBgwapTZs2Ll+PpBsAADex2+2eDkHDhg3TokWL9NFHH6lmzZqO57RDQkIUGBiokJAQDRo0SMnJyapdu7aCg4P10EMPKT4+npXLAQAlqirv6b7iiisUGRmpOnXqaOrUqZo3b55mzZql+Ph4zZkzR5dddtkFr8Ez3QAAeLHZs2crJydH3bp1U7169Rzb4sWLHXVeeOEF9e7dW7fddpu6dOmiyMhILVmyxINRAwAqvMJntM1ulcSZM2f03nvv6YYbblB0dLSWL1+uV155RdnZ2dq9e7eio6N1++23u3QtRroBAHCTjz/+2KV67nym23DhAbqAgADNnDlTM2fOdFscAADv4s3PdD/00EP65z//KcMwdO+992ratGmOt35IUvXq1fXcc8+pfv36Ll2PpBsAADfp06fPBeu4+5luAADcojSvAKskSff27dv18ssv69Zbby1xDZO6deu6/Goxkm4AANykIjzTDQCAO3jzM90TJ05Up06dVK2ac7p89uxZrV+/Xl26dFG1atXUtWtXl65H0g0AAMqEb3BN+VrMv0rlovhVrT9ljODqHmk3PyzII+3+3rr8h8Xi2uwu9zYl6bKXh3qk3do7PTPT5tKfczzSrmXPbx5p1376dPm2Z5wp1/a8Tffu3XXw4EGFh4c7lefk5Kh79+6mZ6hVrZ4KAAAAAFA2Ksl0cbMMw5DFUnRU/ujRo6pe3fyXnyTdAAAAAABTvHF6+a233irp3HorAwYMcHqe22az6bvvvlOnTp1MX5ekG0DFlRLiwbY9M+0NAACgUvDChdRCQs797WkYhmrWrKnAwEDHMX9/f/3tb3/T4MGDTV+XpBsAAAAAYJLlv5vZcyqu9PR0SVJMTIweeeSRUk0lLw5JNwAAAADAHC8c6S40ceLEMr0eSTcAAG4QGhpa7CIsxfn999/dHA0AADifK664QhkZGQoNDVW7du3O24d/++23pq5N0g0AgBukpaU5fj569KiefvppJSYmKj4+XpKUmZmp5cuX68knn/RQhAAAXAQvG+m++eabHQun9enTp0yvTdINAIAbJCUlOX6+7bbbNHnyZA0fPtxRNmLECL3yyitauXKlRo0a5YkQAQAoPcNybjN7TgX15ynlZT293KdMrwYAAIpYvny5evbsWaS8Z8+eWrlypQciAgDg4hhG6baqiJFuAADcrE6dOvroo480evRop/KPPvpIderU8VBUAABcBC+bXu7OtVhIugEAcLNJkybpH//4h9asWaO4uDhJ0jfffKNly5bptdde83B0AACUgpdNL//zWixljaQbAAA3GzBggFq0aKGXXnpJS5YskSS1aNFC69atcyThAABUJhbj3Gb2nIrqz2uxlDWSbgAAykFcXJwWLlzo6TAAAEAxcnNzFRwc7Pj5fArruYqkGwCAcvDTTz8pPT1dP//8s9LS0hQeHq7PP/9cjRo10mWXXebp8AAAMMcLn+k+ePCgwsPDVatWrWKf7zYMQxaLRTabzdS1Wb0cAAA3+/LLL3X55Zfrm2++0fvvv6+TJ09KkrZs2VLmryUBAKBcFD7TbXYrhZkzZyomJkYBAQGKi4vThg0bSqy7ZMkSdejQQbVq1VL16tXVtm1bvfXWWxdsY9WqVapdu7YkafXq1Vq1alWRrbDcLEa6AQBws3Hjxunpp59WcnKyatas6Sjv0aOHXnnlFQ9GBgBAKZXTSPfixYuVnJysOXPmKC4uTmlpaUpMTNSuXbsUHh5epH7t2rX1+OOPq3nz5vL399enn36qgQMHKjw8XImJiSW207Vr12J/Lgsk3QAAuNnWrVu1aNGiIuXh4eE6cuSIByICAOAilVPSPWPGDA0ePFgDBw6UJM2ZM0dLly7VvHnzNG7cuCL1u3Xr5rT/8MMP680339S6devOm3T/1bFjx/TGG29ox44dkqSWLVtq4MCBjtFwM5heDgCAm9WqVUsHDx4sUv6f//xHDRo08EBEAABcJKOUmwkFBQXatGmTEhISHGU+Pj5KSEhQZmbmhUM0DGVkZGjXrl3q0qWLy+2uXbtWMTExeumll3Ts2DEdO3ZML730kmJjY7V27VpzNyFGugEAcLt+/fpp7Nixevfdd2WxWGS32/XVV1/pkUceUf/+/T0dHgAA5eqvq4NbrVZZrdYi9Y4cOSKbzaaIiAin8oiICO3cubPE6+fk5KhBgwbKz8+Xr6+vZs2apWuvvdbl+IYNG6a+fftq9uzZ8vX1lSTZbDYNHTpUw4YN09atW12+lsRINwAAbjdlyhQ1b95cUVFROnnypFq2bKkuXbqoU6dOeuKJJzwdHgAA5l3EQmpRUVEKCQlxbKmpqWUaWs2aNbV582Zt3LhRzzzzjJKTk7VmzRqXz9+9e7dGjx7tSLglydfXV8nJydq9e7fpeBjpBgDAzfz9/fXaa69pwoQJ2rp1q06ePKl27drpkksu8XRoDjNnztT06dOVlZWlNm3a6OWXX1bHjh09HRYAoIKyGOc2s+dI0v79+53edV3cKLck1a1bV76+vsrOznYqz87OVmRkZInt+Pj4qGnTppKktm3baseOHUpNTS3yvHdJrrjiCu3YsUPNmjVzKt+xY4fatGnj0jX+jKQbAAA3mzx5sh555BFFRUUpKirKUf7HH39o+vTpmjBhggejM78yLAAAF7OQWnBwsFPSXRJ/f3+1b99eGRkZ6tOnjyTJbrcrIyNDw4cPd7lZu92u/Pz889b57rvvHD+PGDFCDz/8sHbv3q2//e1vkqSvv/5aM2fO1NSpU11utxBJNwAAbjZp0iQNGTJEQUFBTuWnT5/WpEmTPJ50m10ZFgCA8pKcnKykpCR16NBBHTt2VFpamk6dOuXos/r3768GDRo4pqinpqaqQ4cOatKkifLz8/XZZ5/prbfe0uzZs8/bTtu2bWWxWGQY//smYcyYMUXq3XXXXerbt6+peyDpBgDAzQzDkMViKVK+ZcuWUr16pCwVrgw7fvx4R5mZlWEBAFWTRaWYXl6Kdvr27avDhw9rwoQJysrKUtu2bbVs2TLH4mr79u2Tj8//lio7deqUhg4dql9//VWBgYFq3ry53n777Qsmynv27ClFdK4h6QYAwE1CQ0NlsVhksVh06aWXOiXeNptNJ0+e1JAhQzwYYelWhs3Pz3eapvfXVWgBAChLw4cPL3E6+V8XSHv66af19NNPm24jOjq6NKG5hKQbAAA3SUtLk2EYuu+++zRp0iSFhIQ4jvn7+ysmJkbx8fEejLB0UlNTNWnSpCLlttwTslj8yjeYYmYQeLXfj3mk2YBfAj3SbrOvy/m/J0k5eed/7tNdGhZ845F2Zbd5plmPtFp1GMbZcmjkf6uRmzqnEtm+fbv27dungoICp/KbbrrJ1HVIugEAcJOkpCRJUmxsrDp16iQ/v/JPIC6kNCvDjh8/XsnJyY793NxcpwXiAABVwEUspFbR/fzzz7rlllu0detWp+e8C2es2WzmvqziPd0AALhZ165dHQl3Xl6ecnNznTZP+vPKsIUKV4YtaRTearU6Vp51dQVaAICXMUq5VQIPP/ywYmNjdejQIQUFBen777/X2rVr1aFDB1Pv+y7ESDcAAG52+vRpjRkzRv/617909OjRIsfNfmNe1i60MiwAAH91Me/prugyMzO1atUq1a1bVz4+PvLx8VHnzp2VmpqqESNG6D//+Y+p6zHSDQCAmz366KNatWqVZs+eLavVqtdff12TJk1S/fr1tWDBAk+Hp759++q5557ThAkT1LZtW23evNlpZVgAAIrw4pFum82mmjVrSjr3GNaBAwcknVtsbdeuXaavx0g3AABu9sknn2jBggXq1q2bBg4cqKuvvlpNmzZVdHS0Fi5cqLvvvtvTIZ53ZVgAAIrw4me6W7VqpS1btig2NlZxcXGaNm2a/P39NXfuXDVu3Nj09ap80h0zbqmnQ5Ak7Z3ay9MhAADc5Pfff3d00sHBwfr9998lSZ07d9aDDz7oydAAAMBfPPHEEzp16pQkafLkyerdu7euvvpq1alTR4sXLzZ9vSqfdAMA4G6NGzfWnj171KhRIzVv3lz/+te/1LFjR33yySeqVauWp8MDAMA0b36mOzEx0fFz06ZNtXPnTv3+++8KDQ11rGBuBkk3AABuNnDgQG3ZskVdu3bVuHHjdOONN+qVV17RmTNnNGPGDE+HBwCAeVXgPd2StH//fkm6qFdjknQDAOBmo0aNcvyckJCgnTt3atOmTWratKlat27twcgAACglL36m++zZs5o0aZJeeuklnTx5UpJUo0YNPfTQQ5o4caLjNaCuIukGAKCcRUdHKzo62tNhAABQat48vfyhhx7SkiVLNG3aNMXHx0s69xqxlJQUHT16VLNnzzZ1PZJuAADKwcaNG7V69WodOnRIdrvd6RhTzAEAlY4Xj3QvWrRI77zzjq6//npHWevWrRUVFaU777yTpBsAgIpmypQpeuKJJ9SsWTNFREQ4LcJSmgVZAACA+1itVsXExBQpj42Nlb+/v+nrkXQDAOBmL774oubNm6cBAwZ4OhQAAMpGKaaXV5aR7uHDh+upp55Senq6rFarJCk/P1/PPPOMhg8fbvp6JN0AUEox45Z6OgRJ0t6pvTwdAi7Ax8dHV111lafDAACg7HjZ9PJbb73VaX/lypVq2LCh2rRpI0nasmWLCgoKdM0115i+Nkk3AABuNmrUKM2cOVNpaWmeDgUAgLLhZUl3SEiI0/5tt93mtM8rwwCgCmPEveJ75JFH1KtXLzVp0kQtW7Ys8qqRJUuWeCgyAABKx9tWL09PT3fbtUm6AQBwsxEjRmj16tXq3r276tSpw+JpAABUAocPH9auXbskSc2aNVNYWFiprkPSDQCAm7355pt6//331asXswEAAKjoTp06pYceekgLFixwvObT19dX/fv318svv6ygoCBT1yPpBlzkySm8ewM81jSAMlC7dm01adLE02EAAFB2vOyZ7j9LTk7Wl19+qU8++cSxEOq6des0YsQIjR49mvd0AwA8g2fLS5aSkqKJEycqPT3d9LfjAABURN72TPefvf/++3rvvffUrVs3R9kNN9ygwMBA3XHHHSTdAOAN9gbc5bG2Y/IWeaxtb/XSSy/pp59+UkREhGJiYoospPbtt996KDIAAC5CJUmizTp9+rQiIiKKlIeHh+v06dOmr+expLuijIgAAOBuffr08XQIAACULS+eXh4fH6+JEydqwYIFCgg495znH3/8oUmTJik+Pt709RjpBoBi8MUgytLEiRM9HQIAAGXKm6eXp6WlqWfPnmrYsKHatGkjSdqyZYsCAgK0fPly09cj6a4gzPyBz6JaAAAAADzKi0e6L7/8cv34449auHChdu7cKUm68847dffddyswMND09Ui6AQBwg9q1a+uHH35Q3bp1FRoaet53c//+++/lGJn7nLq5g6r5le83w/nBPuXaXqGCEM+8a/2sh9bhi+zxq0faPbC2Ybm3GfHvM+XepiQFrdvlkXbt+fkeadfwULvAhZw5c0bNmzfXp59+qsGDB5fJNUm6AQBwgxdeeEE1a9Z0/Hy+pBsAgMrGW6eX+/n5KS8vr0yvSdINAIAbJCUlOX4eMGCA5wIBAMAdvHh6+bBhw/Tss8/q9ddfV7VqF58yk3QDAOBmvr6+OnjwoMLDw53Kjx49qvDwcNlsNg9FBgBAKXlx0r1x40ZlZGToiy++0OWXX67q1as7HV+yZImp63nmQSgAAKoQwyj+r4z8/Hz5+/u7pc29e/dq0KBBio2NVWBgoJo0aaKJEyeqoKDAqd53332nq6++WgEBAYqKitK0adPcEg8AwLsUTi83u1UGtWrV0m233abExETVr19fISEhTptZjHQDAOAmL730kiTJYrHo9ddfV40aNRzHbDab1q5dq+bNm7ul7Z07d8put+vVV19V06ZNtW3bNg0ePFinTp3Sc889J0nKzc3Vddddp4SEBM2ZM0dbt27Vfffdp1q1aun+++93S1wAAC/hhSPddrtd06dP1w8//KCCggL16NFDKSkppVqx/M9IugEAcJMXXnhB0rmR7jlz5sjX19dxzN/fXzExMZozZ45b2u7Zs6d69uzp2G/cuLF27dql2bNnO5LuhQsXqqCgQPPmzZO/v78uu+wybd68WTNmzCDpBgBUOc8884xSUlKUkJCgwMBAvfTSSzp8+LDmzZt3Udcl6QYAwE327NkjSerevbuWLFmi0NBQj8aTk5Oj2rVrO/YzMzPVpUsXpynuiYmJevbZZ3Xs2LES483Pz1f+n173k5ub676gAQAVkxeOdC9YsECzZs3SAw88IElauXKlevXqpddff10+PqV/MptnugEAcLPVq1c7JbA2m02bN2/WsWPHyi2G3bt36+WXX3b8ISFJWVlZioiIcKpXuJ+VlVXitVJTU52ebYuKinJP0ACACssbn+net2+fbrjhBsd+QkKCLBaLDhw4cFHXJekGAMDNRo4cqTfeeEPSuYS7S5cuuuKKKxQVFaU1a9aYuta4ceNksVjOu+3cudPpnN9++009e/bU7bffrsGDB1/0/YwfP145OTmObf/+/Rd9TQBAJWOUcqvAzp49q4CAAKcyPz8/nTlz5qKuy/RyAADc7N1339U999wjSfrkk0+0d+9e7dy5U2+99ZYef/xxffXVVy5fa/To0Rd873fjxo0dPx84cEDdu3dXp06dNHfuXKd6kZGRys7Odior3I+MjCzx+larVVar1eWYAQDepzQj1xV9pNswDA0YMMCpj8vLy9OQIUOcXhtm9pVhJN0AALjZ0aNHHUnsZ599pttvv12XXnqp7rvvPr344oumrhUWFqawsDCX6v7222/q3r272rdvr/T09CLPo8XHx+vxxx/XmTNn5OfnJ0lasWKFmjVr5vHnzwEAFZwXPtOdlJRUpKzwS/OLQdINAICbRUREaPv27apXr56WLVum2bNnS5JOnz7ttKJ5Wfrtt9/UrVs3RUdH67nnntPhw4cdxwq/ALjrrrs0adIkDRo0SGPHjtW2bdv04osvOlZdBwCgKklPT3fLdUm6AQBws4EDB+qOO+5QvXr1ZLFYlJCQIEn65ptv3Pae7hUrVmj37t3avXu3GjZs6HTMMM4NNYSEhOiLL77QsGHD1L59e9WtW1cTJkzgdWEAgAvzwpFudyHpBgDAzVJSUtSqVSvt379ft99+u+NZMV9fX40bN84tbQ4YMOCCz35LUuvWrfV///d/bokBAOC9LP/dzJ5TFZF0AwBQDv7+978XKSvu2TEAACoFRrpdxivDAABwkxtuuEE5OTmO/alTp+r48eOO/aNHj6ply5YeiAwAgIvjje/pdheSbgAA3GT58uXKz8937E+ZMkW///67Y//s2bPatWuXJ0IDAODilON7umfOnKmYmBgFBAQoLi5OGzZsKLHua6+9pquvvlqhoaEKDQ1VQkLCeeuXB5JuAADcpHDBspL2AQDA+S1evFjJycmaOHGivv32W7Vp00aJiYk6dOhQsfXXrFmjO++8U6tXr1ZmZqaioqJ03XXX6bfffivnyP+HpBsAAAAAYF45jHLPmDFDgwcP1sCBA9WyZUvNmTNHQUFBmjdvXrH1Fy5cqKFDh6pt27Zq3ry5Xn/9ddntdmVkZJQugDJA0g0AgJtYLBZZLJYiZQAAVHYX80x3bm6u0/bnR7H+rKCgQJs2bXK8alOSfHx8lJCQoMzMTJfiPH36tM6cOaPatWtf9D2XFquXAwDgJoZhaMCAAY5XhOXl5WnIkCGqXr26JJX4RwYAABXeRaxeHhUV5VQ8ceJEpaSkFKl+5MgR2Ww2RUREOJVHRERo586dLjU5duxY1a9f3ylxL28k3QAAuMlfXwl2zz33FKnTv3//8goHAIAyU5rVyAvr79+/X8HBwY7ywi+ny9rUqVP1zjvvaM2aNQoICHBLG64g6QYAwE3S09M9HQIAAO5xESPdwcHBTkl3SerWrStfX19lZ2c7lWdnZysyMvK85z733HOaOnWqVq5cqdatW5sMtGzxTDcAAAAAwJTyeE+3v7+/2rdv77QIWuGiaPHx8SWeN23aND311FNatmyZOnToUNpbLDOMdAMAgDJxsLshn8DyfS2a7ynPvIbN8PVMu40v98wrb7I/i7pwJTeou8dW7m1W/z6r3NuUJJuH1ngwCgo80i7gquTkZCUlJalDhw7q2LGj0tLSdOrUKQ0cOFDSuce0GjRooNTUVEnSs88+qwkTJmjRokWKiYlRVta5f9M1atRQjRo1PHIPJN0AAAAAAHMuYnq5GX379tXhw4c1YcIEZWVlqW3btlq2bJljcbV9+/bJx+d/E7hnz56tgoIC/f3vf3e6TkmLtZUHkm4AAAAAgDnllHRL0vDhwzV8+PBij61Zs8Zpf+/evaVrxI1IugEAAAAAplzM6uVVDUk3AAAAAMCcchzpruxIugEAAAAAplgMQxbDXBZttr634JVhAAAAAAC4CSPdAAAAAABzmF7uMpJuAAAAAIApLKTmOpJuAAAAAIA5jHS7jKQbAAAAAGAKI92uI+kGAAAAAJjDSLfLWL0cAAAAAAA3IekGAMDL5efnq23btrJYLNq8ebPTse+++05XX321AgICFBUVpWnTpnkmSABApVI4vdzsVhWRdAMA4OXGjBmj+vXrFynPzc3Vddddp+joaG3atEnTp09XSkqK5s6d64EoAQCVilHKrQrimW4AALzY559/ri+++ELvv/++Pv/8c6djCxcuVEFBgebNmyd/f39ddtll2rx5s2bMmKH777/fQxEDACqLqjpybRYj3QAAeKns7GwNHjxYb731loKCgoocz8zMVJcuXeTv7+8oS0xM1K5du3Ts2LESr5ufn6/c3FynDQBQxRhG6bYqiKQbAAAvZBiGBgwYoCFDhqhDhw7F1snKylJERIRTWeF+VlZWiddOTU1VSEiIY4uKiiq7wAEAlQLPdLuOpBsAgEpk3Lhxslgs59127typl19+WSdOnND48ePLPIbx48crJyfHse3fv7/M2wAAVHA80+0ynukGAKASGT16tAYMGHDeOo0bN9aqVauUmZkpq9XqdKxDhw66++679eabbyoyMlLZ2dlOxwv3IyMjS7y+1Wotcl0AAFA8km4AACqRsLAwhYWFXbDeSy+9pKefftqxf+DAASUmJmrx4sWKi4uTJMXHx+vxxx/XmTNn5OfnJ0lasWKFmjVrptDQUPfcAADAK1js5zaz51RFJN0AAHihRo0aOe3XqFFDktSkSRM1bNhQknTXXXdp0qRJGjRokMaOHatt27bpxRdf1AsvvFDu8QIAKpnSTBdnejkAAKhKQkJC9MUXX2jYsGFq37696tatqwkTJvC6MADABZVmYbSqupAaSTcAAFVATEyMjGJe1dK6dWv93//9nwciAgBUaqV5BVgVfWUYSTcAAAAAwBRGul1H0g0AxdgbcJenQwAAAIAXIOkGAABlwmKzyGKzlGubtZsfLdf2ClX3L/BIu9mfRXmk3do7z3ik3aBdR8q9zbP7D5R7m5Jk8SnffzsOVXS6L8oAC6m5jKQbAAAAAGAK08tdR9INAAAAADCHhdRcRtINAAAAADCFkW7XkXQDAAAAAMzhmW6X+Xg6AAAAAAAAvBUj3QAAAAAAU5he7jqSbgAAAACAOXbj3Gb2nCqIpBsAAAAAYA7PdLuMpBsAAAAAYIpFpZhe7pZIKj6SbgAAAACAObyn22WsXg4AAAAAgJsw0g0AAAAAMIXVy11H0g0AAAAAMIeF1FxG0g0AAAAAMMViGLKYfEbbbH1vQdINAAAAADDH/t/N7DlVEEk3AAAAAMAURrpdR9INAAAAADCHZ7pdxivDAAAAAABwE5JuAAAAAIA5hlG6rRRmzpypmJgYBQQEKC4uThs2bCix7vfff6/bbrtNMTExslgsSktLK+UNlh2SbgAAvNjSpUsVFxenwMBAhYaGqk+fPk7H9+3bp169eikoKEjh4eF69NFHdfbsWc8ECwCoNArf0212M2vx4sVKTk7WxIkT9e2336pNmzZKTEzUoUOHiq1/+vRpNW7cWFOnTlVkZORF3mXZ4JluAAC81Pvvv6/BgwdrypQp6tGjh86ePatt27Y5jttsNvXq1UuRkZFav369Dh48qP79+8vPz09TpkzxYOQAgAqvNCPXpRjpnjFjhgYPHqyBAwdKkubMmaOlS5dq3rx5GjduXJH6V155pa688kpJKva4J5B0AwDghc6ePauHH35Y06dP16BBgxzlLVu2dPz8xRdfaPv27Vq5cqUiIiLUtm1bPfXUUxo7dqxSUlLk7+/vidABAJWAxX5uM3uOJOXm5jqVW61WWa3WIvULCgq0adMmjR8/3lHm4+OjhIQEZWZmmo7ZU5heDgCAF/r222/122+/ycfHR+3atVO9evV0/fXXO410Z2Zm6vLLL1dERISjLDExUbm5ufr+++89ETYAoLK4iGe6o6KiFBIS4thSU1OLbeLIkSOy2WxO/ZQkRUREKCsry+23WFYY6QYAwAv9/PPPkqSUlBTNmDFDMTExev7559WtWzf98MMPql27trKysor9Q0bSef+Yyc/PV35+vmP/ryMWAACcz/79+xUcHOzYL26U25tU6qR7b8BdHms7Jm+Rx9oGAFRd48aN07PPPnveOjt27JDdfm4O3+OPP67bbrtNkpSenq6GDRvq3Xff1QMPPFDqGFJTUzVp0qQi5U0f26pqFr9SX7dU7J556atxpsAj7dbTLx5p11Nsng6gHBkmp+kCHncR7+kODg52SrpLUrduXfn6+io7O9upPDs7u8IskuYKppcDAFCJjB49Wjt27Djv1rhxY9WrV0+S8zPcVqtVjRs31r59+yRJkZGRxf4hU3isJOPHj1dOTo5j279/f1nfJgCggrMYRqk2M/z9/dW+fXtlZGQ4yux2uzIyMhQfH1/Wt+Q2lXqkGwCAqiYsLExhYWEXrNe+fXtZrVbt2rVLnTt3liSdOXNGe/fuVXR0tCQpPj5ezzzzjA4dOqTw8HBJ0ooVKxQcHOyUrP9VSQveAACqkHJavTw5OVlJSUnq0KGDOnbsqLS0NJ06dcqxmnn//v3VoEEDx3PhBQUF2r59u+Pn3377TZs3b1aNGjXUtGlT0+2XBZJuAAC8UHBwsIYMGaKJEycqKipK0dHRmj59uiTp9ttvlyRdd911atmype69915NmzZNWVlZeuKJJzRs2DCSagDA+RmSzD4WUYongvr27avDhw9rwoQJysrKUtu2bbVs2TLHGiT79u2Tj8//JnAfOHBA7dq1c+w/99xzeu6559S1a1etWbPGfABlgKQbAAAvNX36dFWrVk333nuv/vjjD8XFxWnVqlUKDQ2VJPn6+urTTz/Vgw8+qPj4eFWvXl1JSUmaPHmyhyMHAFR0pZkubrZ+oeHDh2v48OHFHvtrIh0TEyOjlO24C0k3AABeys/Pz/ENf0mio6P12WeflWNUAABULSTdAAAAAABzDJXimW63RFLhkXQDAAAAAMwpp4XUvAFJNwAAAADAHLskSynOqYJIugEAAAAAppTnQmqVHUk3AAAAAMAcppe7jKQbAAAAAGAOSbfLfC5cBQAAAAAAlAYj3QAAAAAAcxjpdhlJNwAAAADAHFYvdxlJNwAAAADAFFYvdx1JNwAAAADAHKaXu4ykGwAAAABgjt2QLCaTaHvVTLpZvRwAAAAAADdhpBsAAAAAYA7Ty11G0g0AAAAAMKkUSbdIugEAAAAAuDBGul1G0g0AAAAAMMduyPTIdRVdSI2kGwAAAABgjmE/t5k9pwpi9XIAAAAAANyEkW4AAAAAgDk80+0ykm4AAFAmDt/TRr7+AeXaZp1tf5Rre4X89x72SLv23495pF2joMAz7Xri+U+7rfzbBCojnul2GUk3AAAAAMAcRrpdRtINAAAAADDHUCmSbrdEUuGxkBoAAF7qhx9+0M0336y6desqODhYnTt31urVq53q7Nu3T7169VJQUJDCw8P16KOP6uzZsx6KGABQaRSOdJvdqiCSbgAAvFTv3r119uxZrVq1Sps2bVKbNm3Uu3dvZWVlSZJsNpt69eqlgoICrV+/Xm+++abmz5+vCRMmeDhyAAC8B9PLAQBO9gbc5bG2Y/IWeaxtb3PkyBH9+OOPeuONN9S6dWtJ0tSpUzVr1ixt27ZNkZGR+uKLL7R9+3atXLlSERERatu2rZ566imNHTtWKSkp8vf39/BdAAAqLLtdksn3btt5TzcAAPASderUUbNmzbRgwQKdOnVKZ8+e1auvvqrw8HC1b99ekpSZmanLL79cERERjvMSExOVm5ur77//3lOhAwAqA6aXu4yRbgAAvJDFYtHKlSvVp08f1axZUz4+PgoPD9eyZcsUGhoqScrKynJKuCU59gunoBcnPz9f+fn5jv3c3Fw33AEAoEJj9XKXMdINAEAlMm7cOFkslvNuO3fulGEYGjZsmMLDw/V///d/2rBhg/r06aMbb7xRBw8evKgYUlNTFRIS4tiioqLK6O4AAJWG3SjdVgUx0g0AQCUyevRoDRgw4Lx1GjdurFWrVunTTz/VsWPHFBwcLEmaNWuWVqxYoTfffFPjxo1TZGSkNmzY4HRudna2JCkyMrLE648fP17JycmO/dzcXBJvAKhiDMMuwzD3jLbZ+t6CpBsAgEokLCxMYWFhF6x3+vRpSZKPj/OkNh8fH9n/u5BNfHy8nnnmGR06dEjh4eGSpBUrVig4OFgtW7Ys8dpWq1VWq7W0twAA8AZGKUaumV4OAAC8RXx8vEJDQ5WUlKQtW7bohx9+0KOPPqo9e/aoV69ekqTrrrtOLVu21L333qstW7Zo+fLleuKJJzRs2DCSagAAyghJNwAAXqhu3bpatmyZTp48qR49eqhDhw5at26dPvroI7Vp00aS5Ovrq08//VS+vr6Kj4/XPffco/79+2vy5Mkejh4AUOGxernLmF4OAICX6tChg5YvX37eOtHR0frss8/KKSIAgNew2yWLyWe0eaYbAAAAAAAXGIYknul2BUk34KK9AXd5OgQAAACgQjDsdhkmR7pZvRwAAAAAAFcw0u0yFlIDAAAAAMBNGOkGAAAAAJhjNyQLI92uIOkGAAAAAJhjGJLMrl5eNZNuppcDAAAAAEwx7EapttKYOXOmYmJiFBAQoLi4OG3YsOG89d999101b95cAQEBuvzyyz3+akySbgAAAACAOYa9dJtJixcvVnJysiZOnKhvv/1Wbdq0UWJiog4dOlRs/fXr1+vOO+/UoEGD9J///Ed9+vRRnz59tG3btou941Jjenkp8fooAAAAAFWVYTdkmHym2yjF9PIZM2Zo8ODBGjhwoCRpzpw5Wrp0qebNm6dx48YVqf/iiy+qZ8+eevTRRyVJTz31lFasWKFXXnlFc+bMMd1+WWCkGwAAAABQ4RQUFGjTpk1KSEhwlPn4+CghIUGZmZnFnpOZmelUX5ISExNLrF8eXBrpLvxGIjc3t8watuefvuhr5JpdLQ8AUKGVSd9Qhn1V4bVK8818VVL4+7EV5JV722fPln+bkuRjz/dIu3ajwCPtGsYZD7XrgX97hq382wTK2Fmd+zfrzn9DZ41809PFC+P6a19ttVpltVqL1D9y5IhsNpsiIiKcyiMiIrRz585i28jKyiq2flZWlqlYy5JLSfeJEyckSVFRUW4NxqwQTwcAAChjd1z0FULSLj6Kvzpx4oRCQuh1SlL4d8KOt57ycCQAgD9zR//l7++vyMhIrcsq3eJkNWrUKJJXTpw4USkpKWUQXcXkUtJdv3597d+/XzVr1pTFYnF3TOUmNzdXUVFR2r9/v4KDgz0djlt4+z16+/1J3KM38Pb7k7z3Hg3D0IkTJ1S/fn1Ph1KheervBG/4784b7kHiPioa7qPi8NQ9uLP/CggI0J49e1RQULqZN4ZhFOkrihvllqS6devK19dX2dnZTuXZ2dmKjIws9pzIyEhT9cuDS0m3j4+PGjZs6O5YPCY4OLjS/kN2lbffo7ffn8Q9egNvvz/JO++REe4L8/TfCd7w35033IPEfVQ03EfF4Yl7cGf/FRAQoICAALddv5C/v7/at2+vjIwM9enTR5Jkt9uVkZGh4cOHF3tOfHy8MjIyNHLkSEfZihUrFB8f7/Z4S8Lq5QAAAACACik5OVlJSUnq0KGDOnbsqLS0NJ06dcqxmnn//v3VoEEDpaamSpIefvhhde3aVc8//7x69eqld955R//+9781d+5cj90DSTcAAAAAoELq27evDh8+rAkTJigrK0tt27bVsmXLHIul7du3Tz4+/3spV6dOnbRo0SI98cQTeuyxx3TJJZfoww8/VKtWrTx1C1U76bZarZo4cWKJzxB4A2+/R2+/P4l79Abefn9S1bhHVDze8N+dN9yDxH1UNNxHxeEN91ARDB8+vMTp5GvWrClSdvvtt+v22293c1Susxi8BwUAAAAAALfwuXAVAAAAAABQGiTdAAAAAAC4CUk3AAAAAABuUiWT7jVr1shisRS7bdy4UZK0d+/eYo9//fXXHo7edTExMUXinzp1qlOd7777TldffbUCAgIUFRWladOmeShac/bu3atBgwYpNjZWgYGBatKkiSZOnKiCggKnOpX9M5SkmTNnKiYmRgEBAYqLi9OGDRs8HVKppKam6sorr1TNmjUVHh6uPn36aNeuXU51unXrVuTzGjJkiIciNi8lJaVI/M2bN3ccz8vL07Bhw1SnTh3VqFFDt912m7Kzsz0YsTnF/X+KxWLRsGHDJFX+zw+Vh7f0497QT3tbf1yZ+lxv6Ve9pe+kj8T5VMnVyzt16qSDBw86lT355JPKyMhQhw4dnMpXrlypyy67zLFfp06dcomxrEyePFmDBw927NesWdPxc25urq677jolJCRozpw52rp1q+677z7VqlVL999/vyfCddnOnTtlt9v16quvqmnTptq2bZsGDx6sU6dO6bnnnnOqW5k/w8WLFys5OVlz5sxRXFyc0tLSlJiYqF27dik8PNzT4Zny5ZdfatiwYbryyit19uxZPfbYY7ruuuu0fft2Va9e3VFv8ODBmjx5smM/KCjIE+GW2mWXXaaVK1c69qtV+9//zY4aNUpLly7Vu+++q5CQEA0fPly33nqrvvrqK0+EatrGjRtls9kc+9u2bdO1117rtDpoZf/8UDl4Uz9e2ftpb+qPK1uf6039qjf0nfSROC8DRkFBgREWFmZMnjzZUbZnzx5DkvGf//zHc4FdpOjoaOOFF14o8fisWbOM0NBQIz8/31E2duxYo1mzZuUQXdmbNm2aERsb69j3hs+wY8eOxrBhwxz7NpvNqF+/vpGamurBqMrGoUOHDEnGl19+6Sjr2rWr8fDDD3suqIs0ceJEo02bNsUeO378uOHn52e8++67jrIdO3YYkozMzMxyirBsPfzww0aTJk0Mu91uGEbl//xQeVXWftxb++nK2h9X9j63svar3tp30kfiz6rk9PK/+vjjj3X06FENHDiwyLGbbrpJ4eHh6ty5sz7++GMPRHdxpk6dqjp16qhdu3aaPn26zp496ziWmZmpLl26yN/f31FW+I3usWPHPBHuRcnJyVHt2rWLlFfWz7CgoECbNm1SQkKCo8zHx0cJCQnKzMz0YGRlIycnR5KKfGYLFy5U3bp11apVK40fP16nT5/2RHil9uOPP6p+/fpq3Lix7r77bu3bt0+StGnTJp05c8bp82zevLkaNWpUKT/PgoICvf3227rvvvtksVgc5ZX980PlVJn7cW/spytjf+wNfW5l7le9re+kj8RfVcnp5X/1xhtvKDExUQ0bNnSU1ahRQ88//7yuuuoq+fj46P3331efPn304Ycf6qabbvJgtK4bMWKErrjiCtWuXVvr16/X+PHjdfDgQc2YMUOSlJWVpdjYWKdzIiIiHMdCQ0PLPebS2r17t15++WWnqWyV/TM8cuSIbDab4zMpFBERoZ07d3ooqrJht9s1cuRIXXXVVWrVqpWj/K677lJ0dLTq16+v7777TmPHjtWuXbu0ZMkSD0bruri4OM2fP1/NmjXTwYMHNWnSJF199dXatm2bsrKy5O/vr1q1ajmdExERoaysLM8EfBE+/PBDHT9+XAMGDHCUVfbPD5VXZe3HvbGfrqz9cWXvcytzv+qNfSd9JIrw9FB7WRo7dqwh6bzbjh07nM7Zv3+/4ePjY7z33nsXvP69995rdO7c2V3hu6Q091jojTfeMKpVq2bk5eUZhmEY1157rXH//fc71fn+++8NScb27dvdfi/FKc39/frrr0aTJk2MQYMGXfD6FeEzdNVvv/1mSDLWr1/vVP7oo48aHTt29FBUZWPIkCFGdHS0sX///vPWy8jIMCQZu3fvLqfIytaxY8eM4OBg4/XXXzcWLlxo+Pv7F6lz5ZVXGmPGjPFAdBfnuuuuM3r37n3eOpX980P584Z+3Fv66arWH1f2Pteb+lVv6DvpI/FXXjXSPXr0aKdvlIrTuHFjp/309HTVqVPHpW9a4+LitGLFiosJ8aKV5h4LxcXF6ezZs9q7d6+aNWumyMjIIqs/Fu5HRkaWSbxmmb2/AwcOqHv37urUqZPmzp17wetXhM/QVXXr1pWvr2+xn5GnPp+yMHz4cH366adau3at06hUceLi4iSdGzlp0qRJeYRXpmrVqqVLL71Uu3fv1rXXXquCggIdP37c6Rv7yvh5/vLLL1q5cuUFv52v7J8fyp839OPe0k9Xtf64Mve53tavVva+kz4SxfGqpDssLExhYWEu1zcMQ+np6erfv7/8/PwuWH/z5s2qV6/exYR40cze459t3rxZPj4+jhU44+Pj9fjjj+vMmTOO+1+xYoWaNWvmsSlrZu7vt99+U/fu3dW+fXulp6fLx+fCSxRUhM/QVf7+/mrfvr0yMjLUp08fSeemj2VkZGj48OGeDa4UDMPQQw89pA8++EBr1qwpMmWyOJs3b5akSvOZ/dXJkyf1008/6d5771X79u3l5+enjIwM3XbbbZKkXbt2ad++fYqPj/dwpOakp6crPDxcvXr1Om+9yv75ofx5Qz/uLf10VeuPK2Of6639amXvO+kjUSzPDrR71sqVK0uc5jV//nxj0aJFxo4dO4wdO3YYzzzzjOHj42PMmzfPA5Gat379euOFF14wNm/ebPz000/G22+/bYSFhRn9+/d31Dl+/LgRERFh3Hvvvca2bduMd955xwgKCjJeffVVD0buml9//dVo2rSpcc011xi//vqrcfDgQcdWqLJ/hoZhGO+8845htVqN+fPnG9u3bzfuv/9+o1atWkZWVpanQzPtwQcfNEJCQow1a9Y4fV6nT582DMMwdu/ebUyePNn497//bezZs8f46KOPjMaNGxtdunTxcOSuGz16tLFmzRpjz549xldffWUkJCQYdevWNQ4dOmQYxrnpf40aNTJWrVpl/Pvf/zbi4+ON+Ph4D0dtjs1mMxo1amSMHTvWqdwbPj9UPpW5H/eWftqb+uPK1ud6S7/qTX0nfSRKUqWT7jvvvNPo1KlTscfmz59vtGjRwggKCjKCg4ONjh07Or2uoKLbtGmTERcXZ4SEhBgBAQFGixYtjClTpjieEyu0ZcsWo3PnzobVajUaNGhgTJ061UMRm5Oenl7iM2aFKvtnWOjll182GjVqZPj7+xsdO3Y0vv76a0+HVColfV7p6emGYRjGvn37jC5duhi1a9c2rFar0bRpU+PRRx81cnJyPBu4CX379jXq1atn+Pv7Gw0aNDD69u3r9KzWH3/8YQwdOtQIDQ01goKCjFtuucXpD9PKYPny5YYkY9euXU7l3vD5ofKpzP24t/TT3tYfV6Y+11v6VW/qO+kjURKLYRhG+YypAwAAAABQtfCebgAAAAAA3ISkGwAAAAAANyHpBgAAAADATUi6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBvwoAEDBqhPnz6Ony0WiywWi/z9/dW0aVNNnjxZZ8+elSStWbPGcdzHx0chISFq166dxowZo4MHD3rwLgAAcJ/Cvq+kLSUlpdxi6datm0aOHOm0XxhHQECAWrZsqVmzZjmOz58/33Hc19dXoaGhiouL0+TJk5WTk1NucQPwLJJuoALp2bOnDh48qB9//FGjR49WSkqKpk+f7lRn165dOnDggDZu3KixY8dq5cqVatWqlbZu3eqhqAEAcJ+DBw86trS0NAUHBzuVPfLII466hmE4vqwuL4MHD9bBgwe1fft23XHHHRo2bJj++c9/Oo4Xxvvrr79q/fr1uv/++7VgwQK1bdtWBw4cKNdYAXgGSTdQgVitVkVGRio6OloPPvigEhIS9PHHHzvVCQ8PV2RkpC699FL169dPX331lcLCwvTggw96KGoAANwnMjLSsYWEhMhisTj2d+7cqZo1a+rzzz9X+/btZbVatW7dOqeZZIVGjhypbt26OfbtdrtSU1MVGxurwMBAtWnTRu+9957p+IKCghQZGanGjRsrJSVFl1xyiVPfXRhvvXr11KJFCw0aNEjr16/XyZMnNWbMmNL+WgBUIiTdQAUWGBiogoKCC9YZMmSIvvrqKx06dKicIgMAoOIYN26cpk6dqh07dqh169YunZOamqoFCxZozpw5+v777zVq1Cjdc889+vLLLy8qFlf67vDwcN199936+OOPZbPZLqo9ABVfNU8HAKAowzCUkZGh5cuX66GHHrpg/ebNm0uS9u7dq/DwcHeHBwBAhTJ58mRde+21LtfPz8/XlClTtHLlSsXHx0uSGjdurHXr1unVV19V165dTcdgs9n0z3/+U999953uv//+C9Zv3ry5Tpw4oaNHj9J3A16OpBuoQD799FPVqFFDZ86ckd1u11133eXSAjGGYUg6N4UNAICqpkOHDqbq7969W6dPny6SqBcUFKhdu3amrjVr1iy9/vrrKigokK+vr0aNGuXSI1/03UDVQdINVCDdu3fX7Nmz5e/vr/r166taNdf+ie7YsUOSFBMT48boAAComKpXr+607+Pj40hqC505c8bx88mTJyVJS5cuVYMGDZzqWa1WU23ffffdevzxxxUYGKh69erJx8e1pzd37Nih4OBg1alTx1R7ACofkm6gAqlevbqaNm1q6pw//vhDc+fOVZcuXRQWFuamyAAAqDzCwsK0bds2p7LNmzfLz89PktSyZUtZrVbt27evVFPJ/ywkJMR0333o0CEtWrRIffr0cTlJB1B5kXQDlcyhQ4eUl5enEydOaNOmTZo2bZqOHDmiJUuWeDo0AAAqhB49emj69OlasGCB4uPj9fbbb2vbtm2OqeM1a9bUI488olGjRslut6tz587KycnRV199peDgYCUlJZVZLIZhKCsrS4Zh6Pjx48rMzNSUKVMUEhKiqVOnllk7ACoukm6gkmnWrJksFotq1Kihxo0b67rrrlNycrIiIyM9HRoAABVCYmKinnzySY0ZM0Z5eXm677771L9/f23dutVR56mnnlJYWJhSU1P1888/q1atWrriiiv02GOPlWksubm5qlevniwWi4KDg9WsWTMlJSXp4YcfVnBwcJm2BaBishh/feAFAAAAAACUCR4iAQAAAADATUi6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3ISkGwAAAAAAN/l/dzGhig3q42oAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoiklEQVR4nO3de1xUdf7H8fcMysULiHLzgoBaXrK0NAm11JbE0spyW20t0cyy1FIs0y6CVmJaarpeuolZurmV1WalKWmuSZe1tTSVzdI0FVBT8AbIzPn94Y/ZJkDnIMPA8Ho+HufxYL7zPef7OUz55TPfy7EYhmEIAAAAAABUOKunAwAAAAAAwFuRdAMAAAAA4CYk3QAAAAAAuAlJNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk3AAAAAABuQtINAAAAAICbkHQDAADAI3788Uf17t1bQUFBslgsev/99yv0+nv37pXFYtGSJUsq9LreIDo6WkOHDvV0GECNQNINVAKLxeLSsWHDhotu6/Tp00pJSamQawEAvN9PP/2k+++/Xy1atJC/v78CAwPVrVs3vfjiizpz5oxb205MTNS2bdv07LPP6o033lDnzp3d2p432rFjh1JSUrR3715PhwKgDLU8HQBQE7zxxhtOr5cuXaq1a9eWKG/btu1Ft3X69GlNmTJFktSzZ8+Lvh4AwHt99NFHuuOOO+Tn56chQ4aoffv2Kiws1KZNm/Too4/qhx9+0Msvv+yWts+cOaOMjAw98cQTGj16tFvaiIqK0pkzZ1S7dm23XL8q2LFjh6ZMmaKePXsqOjra5fMyMzNltTL+BlQGkm6gEtx1111Or7/88kutXbu2RDkAAJVlz549GjRokKKiovTZZ5+pcePGjvdGjRql3bt366OPPnJb+4cPH5YkNWjQwG1tWCwW+fv7u+361Y1hGMrPz1dAQID8/Pw8HQ5QY/D1FlBF2O12zZkzR5dddpn8/f0VHh6u+++/X8eOHXOq9+9//1sJCQkKCQlRQECAYmJidM8990g6t3YtNDRUkjRlyhTHtPWUlJTKvh0AQBU3Y8YMnTx5Uq+99ppTwl2sVatWevjhhx2vi4qK9PTTT6tly5by8/NTdHS0Hn/8cRUUFDidFx0drX79+mnTpk3q0qWL/P391aJFCy1dutRRJyUlRVFRUZKkRx99VBaLxTFKO3To0FJHbFNSUmSxWJzK1q5dq+7du6tBgwaqV6+eWrdurccff9zxfllruj/77DNde+21qlu3rho0aKBbb71VO3fuLLW93bt3a+jQoWrQoIGCgoI0bNgwnT59uuxf7P/r2bOn2rdvr++//149evRQnTp11KpVK73zzjuSpM8//1yxsbEKCAhQ69attW7dOqfzf/nlFz344INq3bq1AgIC1KhRI91xxx1O08iXLFmiO+64Q5LUq1evEsvVij+LNWvWqHPnzgoICNBLL73keK94TbdhGOrVq5dCQ0OVk5PjuH5hYaEuv/xytWzZUqdOnbrgPQMoHUk3UEXcf//9evTRRx3r6IYNG6Zly5YpISFBZ8+elSTl5OSod+/e2rt3ryZOnKh58+Zp8ODB+vLLLyVJoaGhWrhwoSTptttu0xtvvKE33nhDt99+u8fuCwBQNX344Ydq0aKFunbt6lL9e++9V5MnT9ZVV12l2bNnq0ePHkpNTdWgQYNK1N29e7f+/Oc/64YbbtALL7yg4OBgDR06VD/88IMk6fbbb9fs2bMlSXfeeafeeOMNzZkzx1T8P/zwg/r166eCggJNnTpVL7zwgm655RZ98cUX5z1v3bp1SkhIUE5OjlJSUpSUlKTNmzerW7dupa6L/stf/qITJ04oNTVVf/nLX7RkyRLHMq4LOXbsmPr166fY2FjNmDFDfn5+GjRokFasWKFBgwbppptu0vTp03Xq1Cn9+c9/1okTJxznfvPNN9q8ebMGDRqkuXPnauTIkUpPT1fPnj0dSf91112nhx56SJL0+OOPO/r93y9Xy8zM1J133qkbbrhBL774ojp27FgiTovFosWLFys/P18jR450lCcnJ+uHH35QWlqa6tat69I9AyiFAaDSjRo1yvj9/37/+te/DEnGsmXLnOqtXr3aqfy9994zJBnffPNNmdc+fPiwIclITk52S+wAgOovNzfXkGTceuutLtXfunWrIcm49957ncofeeQRQ5Lx2WefOcqioqIMScbGjRsdZTk5OYafn58xfvx4R9mePXsMScbMmTOdrpmYmGhERUWViCE5Odmp75w9e7YhyTh8+HCZcRe3kZaW5ijr2LGjERYWZhw9etRR9t133xlWq9UYMmRIifbuuecep2vedtttRqNGjcpss1iPHj0MScby5csdZbt27TIkGVar1fjyyy8d5WvWrCkR5+nTp0tcMyMjw5BkLF261FH29ttvG5KM9evXl6hf/FmsXr261PcSExOdyl566SVDkvHmm28aX375peHj42OMHTv2gvcK4PwY6QaqgLfffltBQUG64YYbdOTIEcfRqVMn1atXT+vXr5f0v3Vvq1atcox+AwBgVl5eniSpfv36LtX/+OOPJUlJSUlO5ePHj5ekEmu/27Vrp2uvvdbxOjQ0VK1bt9bPP/9c7pj/qLhP/OCDD2S3210659ChQ9q6dauGDh2qhg0bOsqvuOIK3XDDDY77/L3fj/xK0rXXXqujR486fofnU69ePaeZAK1bt1aDBg3Utm1bxcbGOsqLf/797ycgIMDx89mzZ3X06FG1atVKDRo00LfffuvC3Z4TExOjhIQEl+red999SkhI0JgxY3T33XerZcuWmjZtmsttASgdSTdQBfz444/Kzc1VWFiYQkNDnY6TJ0861lf16NFDAwYM0JQpUxQSEqJbb71VaWlpJdbTAQBwPoGBgZLkNJ35fH755RdZrVa1atXKqTwiIkINGjTQL7/84lTevHnzEtcIDg4usU/JxRg4cKC6deume++9V+Hh4Ro0aJD+8Y9/nDcBL46zdevWJd5r27atjhw5UmLt8h/vJTg4WJJcupdmzZqVWIceFBSkyMjIEmV/vOaZM2c0efJkRUZGys/PTyEhIQoNDdXx48eVm5t7wbaLxcTEuFxXkl577TWdPn1aP/74o5YsWeKU/AMoH3YvB6oAu92usLAwLVu2rNT3izdHs1gseuedd/Tll1/qww8/1Jo1a3TPPffohRde0Jdffql69epVZtgAgGoqMDBQTZo00fbt202d98cEsiw+Pj6llhuGUe42bDab0+uAgABt3LhR69ev10cffaTVq1drxYoVuv766/Xpp5+WGYNZF3MvZZ3ryjXHjBmjtLQ0jR07VnFxcQoKCpLFYtGgQYNcHtmXZDpp3rBhg+PL/G3btikuLs7U+QBKIukGqoCWLVtq3bp16tatm0ud4zXXXKNrrrlGzz77rJYvX67Bgwfrrbfe0r333uvyH0QAgJqtX79+evnll5WRkXHBxCoqKkp2u10//vij0yZd2dnZOn78uGMn8ooQHBys48ePlyj/42i6JFmtVv3pT3/Sn/70J82aNUvTpk3TE088ofXr1ys+Pr7U+5DObS72R7t27VJISEiV2TDsnXfeUWJiol544QVHWX5+fonfTUX2+4cOHdKYMWPUu3dv+fr66pFHHlFCQkKFfr5ATcT0cqAK+Mtf/iKbzaann366xHtFRUWODvbYsWMlvlkv3oW0+FvpOnXqSFKpf7AAAFBswoQJqlu3ru69915lZ2eXeP+nn37Siy++KEm66aabJKnEDuOzZs2SJPXt27fC4mrZsqVyc3P1/fffO8oOHTqk9957z6neb7/9VuLcP/aJf9S4cWN17NhRr7/+ulM/uX37dn366aeO+6wKfHx8SvT58+bNKzHiX/wlQUX0+yNGjJDdbtdrr72ml19+WbVq1dLw4cNdGtUHUDZGuoEqoEePHrr//vuVmpqqrVu3qnfv3qpdu7Z+/PFHvf3223rxxRf15z//Wa+//roWLFig2267TS1bttSJEyf0yiuvKDAw0PGHQkBAgNq1a6cVK1bo0ksvVcOGDdW+fXu1b9/ew3cJAKhKWrZsqeXLl2vgwIFq27athgwZovbt26uwsFCbN2/W22+/7XiOc4cOHZSYmKiXX35Zx48fV48ePfT111/r9ddfV//+/dWrV68Ki2vQoEF67LHHdNttt+mhhx7S6dOntXDhQl166aVOG4hNnTpVGzduVN++fRUVFaWcnBwtWLBAzZo1U/fu3cu8/syZM3XjjTcqLi5Ow4cP15kzZzRv3jwFBQUpJSWlwu7jYvXr109vvPGGgoKC1K5dO2VkZGjdunVq1KiRU72OHTvKx8dHzz33nHJzc+Xn56frr79eYWFhptpLS0vTRx99pCVLlqhZs2aSziX5d911lxYuXKgHH3ywwu4NqGlIuoEqYtGiRerUqZNeeuklPf7446pVq5aio6N11113qVu3bpLk+CPnrbfeUnZ2toKCgtSlSxctW7bMaaOUV199VWPGjNG4ceNUWFio5ORkkm4AQAm33HKLvv/+e82cOVMffPCBFi5cKD8/P11xxRV64YUXNGLECEfdV199VS1atNCSJUv03nvvKSIiQpMmTVJycnKFxtSoUSO99957SkpK0oQJExQTE6PU1FT9+OOPTkn3Lbfcor1792rx4sU6cuSIQkJC1KNHD02ZMsWxMVlp4uPjtXr1aiUnJ2vy5MmqXbu2evTooeeee870pmPu9OKLL8rHx0fLli1Tfn6+unXr5njG+O9FRERo0aJFSk1N1fDhw2Wz2bR+/XpTSfevv/6qcePG6eabb1ZiYqKjfPDgwXr33Xc1YcIE3XjjjVXq9wNUJxaD+SIAAAAAALgFa7oBAAAAAHATkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3MSl53Tb7XYdPHhQ9evXl8VicXdMAABUCYZh6MSJE2rSpImsVr6nLgt/JwBA1eLu/is/P1+FhYXlOtfX11f+/v4VHFHV5lLSffDgQUVGRro7FgAAqqT9+/erWbNmng6jyuLvBAComtzRf+Xn5ysmqp6ycmzlOj8iIkJ79uypUYm3S0l3/fr1JZ370AIDA90aEAAAVUVeXp4iIyMd/SBKV/z76a6bVEu1PRwNAJTNp4Fnchl7VNNKba/IVqB/bZ/tlv6rsLBQWTk2/bIlWoH1zY2i552wK6rTXhUWFpJ0/1HxVLHAwECSbgBAjcOU6fMr/v3UUm3VspB0A6i6fCy+HmnX7uPnkXbd2X/Vq29Rvfrmrm9XzexPXUq6AQAAAAAoZjPsshnmz6mJSLoBAAAAAKbYZcguc1m32fregqQbAAAAAGCKXXaZHbc2f4Z3IOkGABNsNpvOnj3r6TBQgXx9fXkcGAAAJtkMQzbD3Mi12fregqQbAFxgGIaysrJ0/PhxT4eCCma1WhUTEyNfX89srgMAQHXE9HLXkXQDgAuKE+6wsDDVqVOH3ay9hN1u18GDB3Xo0CE1b96czxUAAFQ4km4AuACbzeZIuBs1auTpcFDBQkNDdfDgQRUVFal2bR53BQCAK+wyZKukke758+dr5syZysrKUocOHTRv3jx16dKl1LpLlizRsGHDnMr8/PyUn59frrYrAovYAOACitdw16lTx8ORwB2Kp5XbbDYPRwIAQPVRPL3c7GHWihUrlJSUpOTkZH377bfq0KGDEhISlJOTU+Y5gYGBOnTokOP45ZdfLuZWLxpJNwC4iKnH3onPFQAA84o3UjN7mDVr1iyNGDFCw4YNU7t27bRo0SLVqVNHixcvLvMci8WiiIgIxxEeHn4xt3rRSLoBAAAAAKbYy3lIUl5entNRUFBQahuFhYXasmWL4uPjHWVWq1Xx8fHKyMgoM7aTJ08qKipKkZGRuvXWW/XDDz9c5N1eHJJuAAC8lM1m01NPPaWYmBgFBASoZcuWevrpp2X8bqTBMAxNnjxZjRs3VkBAgOLj4/Xjjz96MGoAQHVg+/813WYPSYqMjFRQUJDjSE1NLbWNI0eOyGazlRipDg8PV1ZWVqnntG7dWosXL9YHH3ygN998U3a7XV27dtWvv/5asb8AE9hIDQAuQvTEjyqtrb3T+7pc90JTppOTk5WSknKREaGqe+6557Rw4UK9/vrruuyyy/Tvf/9bw4YNU1BQkB566CFJ0owZMzR37ly9/vrriomJ0VNPPaWEhATt2LFD/v7+Hr4DAIA32r9/vwIDAx2v/fz8KuzacXFxiouLc7zu2rWr2rZtq5deeklPP/10hbVjBkk3gPNLCfJg27mea7uaO3TokOPnFStWaPLkycrMzHSU1atXz/GzYRiy2WyqVYsuwdts3rxZt956q/r2PfeFTXR0tP7+97/r66+/lnTus58zZ46efPJJ3XrrrZKkpUuXKjw8XO+//74GDRrksdgBAFWbzTh3mD1HOrfR2e+T7rKEhITIx8dH2dnZTuXZ2dmKiIhwqc3atWvryiuv1O7du80FW4GYXg4AXuj3m4cEBQU5bSiya9cu1a9fX5988ok6deokPz8/bdq0SUOHDlX//v2drjN27Fj17NnT8dputys1NdUxXblDhw565513Kvfm4LKuXbsqPT1d//3vfyVJ3333nTZt2qQbb7xRkrRnzx5lZWU5rZULCgpSbGzsedfKFRQUlFiPBwCoWS5mTberfH191alTJ6Wnp/+vXbtd6enpTqPZ52Oz2bRt2zY1btzYZOsVh2ENAKihJk6cqOeff14tWrRQcHCwS+ekpqbqzTff1KJFi3TJJZdo48aNuuuuuxQaGqoePXq4OWKYNXHiROXl5alNmzby8fGRzWbTs88+q8GDB0uSYz2cmbVy0rn/DqZMmeK+wAEAVZ5dFtlk7gkgdpP1JSkpKUmJiYnq3LmzunTpojlz5ujUqVOOZ3EPGTJETZs2dawLnzp1qq655hq1atVKx48f18yZM/XLL7/o3nvvNd12RSHpBoAaaurUqbrhhhtcrl9QUKBp06Zp3bp1jm+XW7RooU2bNumll14i6a6C/vGPf2jZsmVavny5LrvsMm3dulVjx45VkyZNlJiYWO7rTpo0SUlJSY7XeXl5ioyMrIiQAQDVhN04d5g9x6yBAwfq8OHDmjx5srKystSxY0etXr3a8YXxvn37ZLX+bwL3sWPHNGLECGVlZSk4OFidOnXS5s2b1a5dO/ONVxCSbgCooTp37myq/u7du3X69OkSiXphYaGuvPLKigwNFeTRRx/VxIkTHWuzL7/8cv3yyy9KTU1VYmKiYz1cdna207S77OxsdezYsczr+vn5VeimNwCA6sdWjpFus/WLjR49WqNHjy71vQ0bNji9nj17tmbPnl2udtyFpBsAaqi6des6vbZarU6PkpKks2fPOn4+efKkJOmjjz5S06ZNneqRgFVNp0+fdvr2X5J8fHxkt59bVRcTE6OIiAilp6c7kuy8vDx99dVXeuCBByo7XAAAvBJJNwBAkhQaGqrt27c7lW3dulW1a9eWJLVr105+fn7at28fU8mriZtvvlnPPvusmjdvrssuu0z/+c9/NGvWLN1zzz2Szj1abuzYsXrmmWd0ySWXOB4Z1qRJkxKb6gEA8HuVOdJd3ZF0AwAkSddff71mzpyppUuXKi4uTm+++aa2b9/umDpev359PfLIIxo3bpzsdru6d++u3NxcffHFFwoMDLyoNcJwj3nz5umpp57Sgw8+qJycHDVp0kT333+/Jk+e7KgzYcIEnTp1Svfdd5+OHz+u7t27a/Xq1TyjGwBwXnbDIrthciM1k/W9BUk3AECSlJCQoKeeekoTJkxQfn6+7rnnHg0ZMkTbtm1z1Hn66acVGhqq1NRU/fzzz2rQoIGuuuoqPf744x6MHGWpX7++5syZozlz5pRZx2KxaOrUqZo6dWrlBQYAqPYY6XadxfjjAr5S5OXlKSgoSLm5uS49xByAF0kJ8mDbuZ5r+3fy8/O1Z88excTEMPrnhc73+dL/uab499RTt6qWpbanwwGAMvk08MzfNfaYZpXaXpGtQOu/m+6W/qv43/zPtkeqXn3rhU/4nZMn7Lq+/f4a168y0g0AAAB4mMVDG1Ja69W9cCU3OHN1S4+0u/d2jzSrPf1eqdT28k7YFXype9swyjG93GB6OQAAAAAAF8b0cteZmw8AAAAAAABcxkg3AAAAAMAUm2GVzTA3hmu74G5i3omkGwAAAABgil0W2U1OnLarZmbdJN0AAAAAAFNY0+06km4AAAAAgCnlm17OSDcAAAAAABd0bnq5uZFrs/W9BbuXAwAAAADgJiTdAACXLVmyRA0aNPB0GKZUx5gBAKjq7LLKZvIwu/Gat2B6OQBcjJSgSmwr1/QpQ4cO1euvv16iPCEhQatXrz7vudHR0Ro7dqzGjh3rKBs4cKBuuukm03GYtWTJEo0dO1bHjx93e1sAAMA81nS7jqQbALxcnz59lJaW5lTm5+dXrmsFBAQoICCgIsICAADVmL0cI9c19ZFhNXN8HwBqED8/P0VERDgdwcHBMgxDKSkpat68ufz8/NSkSRM99NBDkqSePXvql19+0bhx42SxWGSxnNv45I9TtVNSUtSxY0ctXrxYzZs3V7169fTggw/KZrNpxowZioiIUFhYmJ599lmnmGbNmqXLL79cdevWVWRkpB588EGdPHlSkrRhwwYNGzZMubm5jrZTUlIkSQUFBXrkkUfUtGlT1a1bV7GxsdqwYYPTtZcsWaLmzZurTp06uu2223T06FH3/GIBAKjBbIalXEdNxEg3ANRQ7777rmbPnq233npLl112mbKysvTdd99JklauXKkOHTrovvvu04gRI857nZ9++kmffPKJVq9erZ9++kl//vOf9fPPP+vSSy/V559/rs2bN+uee+5RfHy8YmNjJUlWq1Vz585VTEyMfv75Zz344IOaMGGCFixYoK5du2rOnDmaPHmyMjMzJUn16tWTJI0ePVo7duzQW2+9pSZNmui9995Tnz59tG3bNl1yySX66quvNHz4cKWmpqp///5avXq1kpOT3fhbBACgZipep23unJo50k3SDQBebtWqVY6ktdjjjz8uf39/RUREKD4+XrVr11bz5s3VpUsXSVLDhg3l4+Oj+vXrKyIi4rzXt9vtWrx4serXr6927dqpV69eyszM1Mcffyyr1arWrVvrueee0/r16x1J9+/XiUdHR+uZZ57RyJEjtWDBAvn6+iooKEgWi8Wp7X379iktLU379u1TkyZNJEmPPPKIVq9erbS0NE2bNk0vvvii+vTpowkTJkiSLr30Um3evPmC69cBAADchaQbALxcr169tHDhQqeyhg0b6tSpU5ozZ45atGihPn366KabbtLNN9+sWrXMdQ3R0dGqX7++43V4eLh8fHxktVqdynJychyv161bp9TUVO3atUt5eXkqKipSfn6+Tp8+rTp16pTazrZt22Sz2XTppZc6lRcUFKhRo0aSpJ07d+q2225zej8uLo6kGwCACmY3rLKb3EjNzkZqAABvVLduXbVq1apEecOGDZWZmal169Zp7dq1evDBBzVz5kx9/vnnql27tsvX/2Ndi8VSapndbpck7d27V/369dMDDzygZ599Vg0bNtSmTZs0fPhwFRYWlpl0nzx5Uj4+PtqyZYt8fHyc3vvjSD4AAHAvppe7jqQbAGqwgIAA3Xzzzbr55ps1atQotWnTRtu2bdNVV10lX19f2Wy2Cm9zy5YtstvteuGFFxyj4f/4xz+c6pTW9pVXXimbzaacnBxde+21pV67bdu2+uqrr5zKvvzyywqMHgAASJJdMr0xmt09oVR5JN0A4OUKCgqUlZXlVFarVi2tWrVKNptNsbGxqlOnjt58800FBAQoKipK0rlp4xs3btSgQYPk5+enkJCQComnVatWOnv2rObNm6ebb75ZX3zxhRYtWuRUJzo6WidPnlR6ero6dOigOnXq6NJLL9XgwYM1ZMgQvfDCC7ryyit1+PBhpaen64orrlDfvn310EMPqVu3bnr++ed16623as2aNUwtBwDADcr3yLCa+fCsmnnXAFCDrF69Wo0bN3Y6unfvrgYNGuiVV15Rt27ddMUVV2jdunX68MMPHeujp06dqr1796ply5YKDQ2tsHg6dOigWbNm6bnnnlP79u21bNkypaamOtXp2rWrRo4cqYEDByo0NFQzZsyQJKWlpWnIkCEaP368Wrdurf79++ubb75R8+bNJUnXXHONXnnlFb344ovq0KGDPv30Uz355JMVFjsAADjHZljLddREFsO48Gr2vLw8BQUFKTc3V4GBgZURF4CqIiXIg23neq7t38nPz9eePXsUExMjf39/T4eDCna+z5f+zzXFv6eeulW1LK7vBwDgfyx+fh5p11qvrkfaPXN1S4+0u/d2jzSrPf1eqdT28k7YFXzpz27pv4r/zf/bllgF1DM3cfrMySKN7vRVjetXmV4OAAAAADDFLovsMrum21x9b1Ezx/cBAKghDhw4oLvuukuNGjVSQECALr/8cv373/92vG8YhiZPnqzGjRsrICBA8fHx+vHHHz0YMQCgOmB6uetq5l0DAFADHDt2TN26dVPt2rX1ySefaMeOHXrhhRcUHBzsqDNjxgzNnTtXixYt0ldffaW6desqISFB+fn5HowcAFDVFT8yzOxREzG9HAAAL/Xcc88pMjJSaWlpjrKYmBjHz4ZhaM6cOXryySd16623SpKWLl2q8PBwvf/++xo0aFClxwwAqB7shkV2s48MM1nfW9TMrxoAAKgB/vnPf6pz58664447FBYWpiuvvFKvvPK/zXz27NmjrKwsxcfHO8qCgoIUGxurjIyMMq9bUFCgvLw8pwMAULPYyzHKXVMfGcZINwC4yG63ezoEuIELD/Gotn7++WctXLhQSUlJevzxx/XNN9/ooYcekq+vrxITEx3Pbw8PD3c6Lzw8vMSz3X8vNTVVU6ZMcWvsQE1jDfDM0zGMpmEeabfWqSKPtBvypWd+z93WjazU9orO5kty7yMz7YZVdpNrtM3W9xYk3QBwAb6+vrJarTp48KBCQ0Pl6+sri6VmTo/yNoZh6PDhw7JYLKpd2/sedWW329W5c2dNmzZNknTllVdq+/btWrRokRITE8t93UmTJikpKcnxOi8vT5GRkRcdLwAA3oikGwAuwGq1KiYmRocOHdLBgwc9HQ4qmMViUbNmzeTj4+PpUCpc48aN1a5dO6eytm3b6t1335UkRURESJKys7PVuHFjR53s7Gx17NixzOv6+fnJz0PPFAYAVA02WWQz+Qgws/W9BUk3ALjA19dXzZs3V1FRkWw2m6fDQQWqXbu2VybcktStWzdlZmY6lf33v/9VVFSUpHObqkVERCg9Pd2RZOfl5emrr77SAw88UNnhAgCqEaaXu46kGwBcVDwF2RunIcM7jRs3Tl27dtW0adP0l7/8RV9//bVefvllvfzyy5LO/Tc9duxYPfPMM7rkkksUExOjp556Sk2aNFH//v09GzwAoEqzyfzIdU0dtiDpBgDAS1199dV67733NGnSJE2dOlUxMTGaM2eOBg8e7KgzYcIEnTp1Svfdd5+OHz+u7t27a/Xq1fL398xmQwCA6oGRbteRdAMA4MX69eunfv36lfm+xWLR1KlTNXXq1EqMCgBQ3dkMq2wmk2iz9b1FzbxrAAAAAAAqASPdAAAAAABTDFlkN7mm22D3cgAAAAAALozp5a4j6QYAAAAAmGI3LLIb5kauzdb3FiTdAAAAAABTbLLKZnKLMLP1vQVJNwAAAADAFEa6XVczv2oAAAAAAKASMNINAAAAADDFLqvsJsdwzdb3FiTdAAAAAABTbIZFNpPTxc3W9xY186sGAAAAAEC5Fa/pNnuUx/z58xUdHS1/f3/Fxsbq66+/dum8t956SxaLRf379y9XuxWFpBsAAAAAYIphWGU3eRjleE73ihUrlJSUpOTkZH377bfq0KGDEhISlJOTc97z9u7dq0ceeUTXXntteW+xwpB0AwAAAABMsclSrsOsWbNmacSIERo2bJjatWunRYsWqU6dOlq8eHHZsdlsGjx4sKZMmaIWLVpczG1WCJJuAAAAAIApdqM8U8zPnZuXl+d0FBQUlNpGYWGhtmzZovj4eEeZ1WpVfHy8MjIyyoxt6tSpCgsL0/Dhwyv0nsuLpBsAAAAAUGkiIyMVFBTkOFJTU0utd+TIEdlsNoWHhzuVh4eHKysrq9RzNm3apNdee02vvPJKhcddXuxeDgAAAAAwpXidttlzJGn//v0KDAx0lPv5+VVITCdOnNDdd9+tV155RSEhIRVyzYpA0g0AAAAAMMUui+wm12gX1w8MDHRKussSEhIiHx8fZWdnO5VnZ2crIiKiRP2ffvpJe/fu1c033/y/Nu12SVKtWrWUmZmpli1bmoq5IjC9HAAAAABgSvFzus0eZvj6+qpTp05KT093lNntdqWnpysuLq5E/TZt2mjbtm3aunWr47jlllvUq1cvbd26VZGRkRd93+XBSDcAAAAAwJSLmV5uRlJSkhITE9W5c2d16dJFc+bM0alTpzRs2DBJ0pAhQ9S0aVOlpqbK399f7du3dzq/QYMGklSivDKRdAMAAJhl9fFMu3abR5q1VNB6S7N8ghtUeptG/bqV3qYkHbip5FTZypDXpsgj7Ua2OOyRdo9975nfc92DlTvB2Fbg/vbsOrcjudlzzBo4cKAOHz6syZMnKysrSx07dtTq1asdm6vt27dPVmvVnsBN0g0AAAAAqLJGjx6t0aNHl/rehg0bznvukiVLKj4gk0i6AQAAAACmGOXYSM0ox0i3NyDpBgAAAACYYjfKMb3cZH1vUbUnvwMAgAozffp0WSwWjR071lGWn5+vUaNGqVGjRqpXr54GDBhQ4tEsAAD8UfFGamaPmqhm3jUAADXMN998o5deeklXXHGFU/m4ceP04Ycf6u2339bnn3+ugwcP6vbbb/dQlACA6qJ4pNvsURORdAMA4OVOnjypwYMH65VXXlFwcLCjPDc3V6+99ppmzZql66+/Xp06dVJaWpo2b96sL7/80oMRAwCqOvv/r+k2e9REJN0AAHi5UaNGqW/fvoqPj3cq37Jli86ePetU3qZNGzVv3lwZGRmVHSYAAF6JjdQAAPBib731lr799lt98803Jd7LysqSr6+vGjRo4FQeHh6urKysMq9ZUFCggoICx+u8vLwKixcAUD2wkZrrGOkGAMBL7d+/Xw8//LCWLVsmf3//CrtuamqqgoKCHEdkZGSFXRsAUD2wptt1JN0AAHipLVu2KCcnR1dddZVq1aqlWrVq6fPPP9fcuXNVq1YthYeHq7CwUMePH3c6Lzs7WxEREWVed9KkScrNzXUc+/fvd/OdAACqGpJu1zG9HAAAL/WnP/1J27ZtcyobNmyY2rRpo8cee0yRkZGqXbu20tPTNWDAAElSZmam9u3bp7i4uDKv6+fnJz8/P7fGDgCo2phe7jqSbgAAvFT9+vXVvn17p7K6deuqUaNGjvLhw4crKSlJDRs2VGBgoMaMGaO4uDhdc801nggZAFBNGJLp3cgN94RS5ZF0AwBQg82ePVtWq1UDBgxQQUGBEhIStGDBAk+HBQCA1yDpBgCgBtmwYYPTa39/f82fP1/z58/3TEAAgGqJ6eWuI+kGAAAAAJhC0u06km4AAAAAgCkk3a4j6QYAAAAAmELS7TqSbgAAAACAKYZhkWEyiTZb31uQdAMAAAAATLHLYvqRYWbrewurpwMAAAAAAMBbMdINAAAAADCFNd2uI+kGAAAAAJjCmm7XkXQDAAAAAExhpNt1JN3VUUqQh9vP9Wz7AAAAADyKkW7XkXTDPE8m/ST8AAAAgMcZ5RjpJukGAAC4CJbavrJYalduo4a9ctv7fxY/P4+0aw1p6JF2j13T1CPt/nZZ5f+Bfm3C95XepiSF2I94pN0/h/zbI+0+/3OCR9r1Pe6ZpK/pxzmV2l6RrUA7K7VFnA9JNwAAAADAFEOSYZg/pyYi6QYAAAAAmGKXRRaZ3EjNZH1vQdINAIAb2e12LVmyRCtXrtTevXtlsVgUExOjP//5z7r77rtlsdTMP0AAANUbG6m5zurpAAAA8FaGYeiWW27RvffeqwMHDujyyy/XZZddpl9++UVDhw7Vbbfd5ukQAQAol+JHhpk9aiJGugEAcJMlS5Zo48aNSk9PV69evZze++yzz9S/f38tXbpUQ4YM8VCEAACUj2GUY013DV3UzUg3AABu8ve//12PP/54iYRbkq6//npNnDhRy5Yt80BkAACgspB0AwDgJt9//7369OlT5vs33nijvvvuu0qMCACAilG8ptvsURMxvRwAADf57bffFB4eXub74eHhOnbsWCVGBABAxWAjNdeRdAMA4CY2m021apXd1fr4+KioqKgSIwIAoGLYDYssJpNoNlIDAAAVyjAMDR06VH5+fqW+X1BQUMkRAQBQMdhIzXUk3QAAuEliYuIF67BzOQCgOjqXdJudXu6mYKo4km4AANwkLS3N0yEoNTVVK1eu1K5duxQQEKCuXbvqueeeU+vWrR118vPzNX78eL311lsqKChQQkKCFixYcN716ACAmo013a4j6Qaqg5QgT0cAoJz27t2rtWvXqrCwUD179tRll11Wqe1//vnnGjVqlK6++moVFRXp8ccfV+/evbVjxw7VrVtXkjRu3Dh99NFHevvttxUUFKTRo0fr9ttv1xdffFGpsQIA4I1IugEAcJP169erX79+OnPmjCSpVq1aWrx4se66665Ki2H16tVOr5csWaKwsDBt2bJF1113nXJzc/Xaa69p+fLluv766yWdG6Fv27atvvzyS11zzTWVFisAoPow/v8we05NxHO6AQBwk6eeeko33HCDDhw4oKNHj2rEiBGaMGGCR2PKzc2VJDVs2FCStGXLFp09e1bx8fGOOm3atFHz5s2VkZHhkRgBAFUfz+l2HUk3AABusn37dk2bNk2NGzdWcHCwZs6cqZycHB09etQj8djtdo0dO1bdunVT+/btJUlZWVny9fVVgwYNnOqGh4crKyur1OsUFBQoLy/P6QAA1DBGOY9qYP369RV6PaaXo3rx5NrmlFzPtQ2gWsrLy1NISIjjdZ06dRQQEKDc3Fw1atSo0uMZNWqUtm/frk2bNl3UdVJTUzVlypQKigoAUC2VZ+S6mox09+nTR82aNdOwYcOUmJioyMjIi7oeSTcAAG60Zs0aBQX97wtDu92u9PR0bd++3VF2yy23uD2O0aNHa9WqVdq4caOaNWvmKI+IiFBhYaGOHz/uNNqdnZ2tiIiIUq81adIkJSUlOV7n5eVd9B8kAIDqxZuf033gwAG98cYbev311zVlyhRdf/31Gj58uPr37y9fX1/T1yPpBgDAjUp7Vvf999/v+Nlischms7mtfcMwNGbMGL333nvasGGDYmJinN7v1KmTateurfT0dA0YMECSlJmZqX379ikuLq7Ua/r5+cnPz89tMQMA4EkhISEaN26cxo0bp2+//VZpaWl68MEH9eCDD+qvf/2rhg8frg4dOrh8PZJuAADcxG63ezoEjRo1SsuXL9cHH3yg+vXrO9ZpBwUFKSAgQEFBQRo+fLiSkpLUsGFDBQYGasyYMYqLi2PncgBAmWrKc7qvuuoqRUREqFGjRpo+fboWL16sBQsWKC4uTosWLXLpUaBspAYAgBdbuHChcnNz1bNnTzVu3NhxrFixwlFn9uzZ6tevnwYMGKDrrrtOERERWrlypQejBgBUeYalfEc1cfbsWb3zzju66aabFBUVpTVr1uhvf/ubsrOztXv3bkVFRemOO+5w6VqMdAMA4Cb//Oc/XarnzjXdhgsL6Pz9/TV//nzNnz/fbXEAALyLN6/pHjNmjP7+97/LMAzdfffdmjFjhuOpH5JUt25dPf/882rSpIlL1yPpBlB1eXK3eokd63HR+vfvf8E67l7TDQCAW5TnEWDlTLrnz5+vmTNnKisrSx06dNC8efPUpUuXUuuuXLlS06ZN0+7du3X27FldcsklGj9+vO6++26X29uxY4fmzZun22+/vcw9TEJCQlx+tBjTywEAcBO73X7Bg4QbAFAdFa/pNnuYtWLFCiUlJSk5OVnffvutOnTooISEBOXk5JRav2HDhnriiSeUkZGh77//XsOGDdOwYcO0Zs0al9tMTk7WHXfcUSLhLioq0saNGyVJtWrVUo8ePVy6HiPdAACgQviENpSPtXJ3NTeC6lVqe8UsZwo80u7ZJsEeabdWvmc2BSwK8Kn0NjfubVnpbUpSrVqe+QLuv/PbeaTdBjtPeKTdmGMHPdJu0d79ldqezThbqe2506xZszRixAgNGzZMkrRo0SJ99NFHWrx4sSZOnFiifs+ePZ1eP/zww3r99de1adMmJSQkuNRmr169dOjQIYWFhTmV5+bmqlevXqa/MGekGwAAAABgnmHyMKmwsFBbtmxRfHy8o8xqtSo+Pl4ZGRkXDs8wlJ6erszMTF133XUut2sYhiyWkqPyR48eVd26dV2+TjFGugEAAAAAplzMI8Py8vKcyv38/EpdO33kyBHZbDaFh4c7lYeHh2vXrl1ltpObm6umTZuqoKBAPj4+WrBggW644YYLxnf77bdLOrffytChQ51istls+v7779W1a9cLXuePSLoBAAAAAOZcxEZqkZGRTsXJyclKSUmpiKgkSfXr19fWrVt18uRJpaenKykpSS1atCgx9fyPgoLObeJrGIbq16+vgIAAx3u+vr665pprNGLECNPxkHQDAAAAAEyy/P9h9hxp//79CgwMdJSeb4dwHx8fZWdnO5VnZ2crIiKizFasVqtatWolSerYsaN27typ1NTUCybdaWlpkqTo6Gg98sgj5ZpKXmo8FXIVAAAAAEDNYXY99+9GxgMDA52OspJuX19fderUSenp6Y4yu92u9PR0xcXFuRyq3W5XQYHrG2AmJydXWMItMdINAIBbBAcHl7oJS2l+++03N0cDAED1lJSUpMTERHXu3FldunTRnDlzdOrUKcdu5kOGDFHTpk2VmpoqSUpNTVXnzp3VsmVLFRQU6OOPP9Ybb7yhhQsXnredq666Sunp6QoODtaVV1553j7822+/NXUPJN0AALjBnDlzHD8fPXpUzzzzjBISEhzfzGdkZGjNmjV66qmnPBQhAAAX4SLWdJsxcOBAHT58WJMnT1ZWVpY6duyo1atXOzZX27dvn6zW/03gPnXqlB588EH9+uuvCggIUJs2bfTmm29q4MCB523n1ltvdYy49+/f33yg52ExDOOCt56Xl6egoCDl5uY6zb2Hh6QEeTqCmikl14Nt85l7hCc/c1QJFdX/DRgwQL169dLo0aOdyv/2t79p3bp1ev/99y8yUs8q/j3FN7lftXhOt1t56jnd+SG+Hmn3YPfKf063T/NTld6m5LnndNd/r75H2vXUc7p9jnnm863s53QXGWe1wb7SLflb8b/5kfOnyBrgb+pc+5l87R+VXOPyStZ0AwDgZmvWrFGfPn1KlPfp00fr1q3zQEQAAFwcwyjfURMxvRwAADdr1KiRPvjgA40fP96p/IMPPlCjRo08FBUAABehkqaXVxZ37sVC0g0AgJtNmTJF9957rzZs2KDY2FhJ0ldffaXVq1frlVde8XB0AACUg2E5d5g9p4r6/V4sFY2kGwAANxs6dKjatm2ruXPnauXKlZKktm3batOmTY4kHACA6sRinDvMnlNVJSYmuu3aJN0AAFSC2NhYLVu2zNNhAACAUuTl5Tk2d8vLyztvXbObwJF0AwBQCX766SelpaXp559/1pw5cxQWFqZPPvlEzZs312WXXebp8AAAMMcL13QfOnRIYWFhatCgQanruw3DkMVikc1m7mkDJN0AALjZ559/rhtvvFHdunXTxo0b9cwzzygsLEzfffedXnvtNb3zzjueDhEAAHO8bE33Z599poYNG0qS1q9fX6HXJukGAMDNJk6cqGeeeUZJSUmqX/9/z8S9/vrr9be//c2DkQEAUE5eNtLdo0ePUn+uCCTdAAC42bZt27R8+fIS5WFhYTpy5IgHIgIA4CJ5WdL9R8eOHdNrr72mnTt3SpLatWunYcOGOUbDzbBWdHAAAMBZgwYNdOjQoRLl//nPf9S0aVMPRAQAwEUyynlUAxs3blR0dLTmzp2rY8eO6dixY5o7d65iYmK0ceNG09cj6QYAwM0GDRqkxx57TFlZWbJYLLLb7friiy/0yCOPaMiQIZ4ODwAA/M6oUaM0cOBA7dmzRytXrtTKlSv1888/a9CgQRo1apTp65F0AwDgZtOmTVObNm0UGRmpkydPql27drruuuvUtWtXPfnkk54ODwAA84o3UjN7VAO7d+/W+PHj5ePj4yjz8fFRUlKSdu/ebfp6JN0AALiZr6+vXnnlFf38889atWqV3nzzTe3atUtvvPGGU4fuSfPnz1d0dLT8/f0VGxurr7/+2tMhAQCqMItRvqM6uOqqqxxruX9v586d6tChg+nrsZEaAABuNnXqVD3yyCOKjIxUZGSko/zMmTOaOXOmJk+e7MHopBUrVigpKUmLFi1SbGys5syZo4SEBGVmZiosLMyjsQEAqigv20jt+++/d/z80EMP6eGHH9bu3bt1zTXXSJK+/PJLzZ8/X9OnTzd9bYthGBe89by8PAUFBSk3N1eBgYGmGylN9MSPKuQ6F2vv9L6eDsG8lCBPR1AzpeR6sG0+c4/w5GeOKqGi+j8fHx8dOnSoRAJ79OhRhYWFyWazXWyoFyU2NlZXX3214/FldrtdkZGRGjNmjCZOnHjB84t/T/FN7lctq5+7w3ViBNWr1PaKWc4UeKTds02CPdJufoivR9o92L3yZ4L4ND9V6W1KUq1anvl3oP579S9cyQ0a7DzhkXZ9jnnm8y3au79y2zPOaoN9ZYXmb8WK/81v/twzsgb4mzrXfiZf+x570i1xXSyr1SqLxaILpccWi8V0v81INwAAbmYYhiyWkuvYvvvuu3I9eqQiFRYWasuWLZo0aZKjzGq1Kj4+XhkZGR6MDABQlVlkfrp4VV7RvWfPHrddm6QbAAA3CQ4OlsVikcVi0aWXXuqUeNtsNp08eVIjR470YITSkSNHZLPZFB4e7lQeHh6uXbt2lXpOQUGBCgr+N9Kbl5fn1hgBAHC3qKgot12bpBsAADeZM2eODMPQPffcoylTpigo6H9LRXx9fRUdHa24uDgPRlg+qampmjJlSonyooNZkqV25QZzoHKb8zTLL796pN0Aj7QqXbKmkv97kmTx9cxUenuBZ5YsGJ5q1yOtSkUearfSGZWwXKE8u5FXk93Li+3YsUP79u1TYWGhU/ktt9xi6jok3QAAuEliYqIkKSYmRl27dlXt2pWfQFxISEiIfHx8lJ2d7VSenZ2tiIiIUs+ZNGmSkpKSHK/z8vKcNogDANQAXraR2u/9/PPPuu2227Rt2zandd7FM9bMrunmkWEAALhZjx49HAl3fn6+8vLynA5P8vX1VadOnZSenu4os9vtSk9PL3MU3s/PT4GBgU4HAKCGMcp5VAMPP/ywYmJilJOTozp16uiHH37Qxo0b1blzZ23YsMH09RjpBgDAzU6fPq0JEyboH//4h44ePVrifU/vXp6UlKTExER17txZXbp00Zw5c3Tq1CkNGzbMo3EBAKqu8jx3u7o8pzsjI0OfffaZQkJCZLVaZbVa1b17d6Wmpuqhhx7Sf/7zH1PXY6QbAAA3e/TRR/XZZ59p4cKF8vPz06uvvqopU6aoSZMmWrp0qafD08CBA/X8889r8uTJ6tixo7Zu3arVq1eX2FwNAAAHLx7pttlsql//3OP0QkJCdPDgQUnnNlvLzMw0fT1GugEAcLMPP/xQS5cuVc+ePTVs2DBde+21atWqlaKiorRs2TINHjzY0yFq9OjRGj16tKfDAABUF168prt9+/b67rvvFBMTo9jYWM2YMUO+vr56+eWX1aJFC9PXY6QbAAA3++233xyddGBgoH777TdJUvfu3bVx40ZPhgYAAP7gySeflN1ulyRNnTpVe/bs0bXXXquPP/5Yc+fONX09RroBAHCzFi1aaM+ePWrevLnatGmjf/zjH+rSpYs+/PBDNWjQwNPhAQBgmjev6U5ISHD83KpVK+3atUu//fabgoODHTuYm0HSDQCAmw0bNkzfffedevTooYkTJ+rmm2/W3/72N509e1azZs3ydHgAAJhXA57TLUn79++XpIt6NCZJNwAAbjZu3DjHz/Hx8dq1a5e2bNmiVq1a6YorrvBgZAAAlJMXr+kuKirSlClTNHfuXJ08eVKSVK9ePY0ZM0bJycmOx4C6iqQbAIBKFhUVpaioKE+HAQBAuXnz9PIxY8Zo5cqVmjFjhuLi4iSde4xYSkqKjh49qoULF5q6Hkk3AACV4JtvvtH69euVk5Pj2JylGFPMAQDVjhePdC9fvlxvvfWWbrzxRkfZFVdcocjISN15550k3QAAVDXTpk3Tk08+qdatWys8PNxpE5bybMgCAADcx8/PT9HR0SXKY2Ji5Ovra/p6JN0AALjZiy++qMWLF2vo0KGeDgUAgIpRjunl1WWke/To0Xr66aeVlpYmPz8/SVJBQYGeffZZjR492vT1SLoBoAzREz867/t7p/etpEiqhwv9vipLVfxcrFarunXr5ukwAACoOF42vfz22293er1u3To1a9ZMHTp0kCR99913Kiws1J/+9CfT1ybpBgDAzcaNG6f58+drzpw5ng4FAICK4WVJd1BQkNPrAQMGOL3mkWEAAFRhjzzyiPr27auWLVuqXbt2JR41snLlSg9FBgBA+Xjb7uVpaWluuzZJNwAAbvbQQw9p/fr16tWrlxo1asTmaQAAVAOHDx9WZmamJKl169YKDQ0t13VIugEAcLPXX39d7777rvr2rXrrzQEAgLNTp05pzJgxWrp0qeMxnz4+PhoyZIjmzZunOnXqmLoeSXcVYWYDor3+bgwEAFDhGjZsqJYtW3o6DAAAKo6Xren+vaSkJH3++ef68MMPHRuhbtq0SQ899JDGjx9v+jndVncECQAA/iclJUXJyck6ffq0p0MBAKBCFK/pNntUB++++65ee+013XjjjQoMDFRgYKBuuukmvfLKK3rnnXdMX4+RbgCo5qrKo7pQtrlz5+qnn35SeHi4oqOjS2yk9u2333ooMgAALkI1SaLNOn36tMLDw0uUh4WFlesLdJJuAADcrH///p4OAQCAiuXF08vj4uKUnJyspUuXyt//3NreM2fOaMqUKYqLizN9PZJuAKiKUoIuXOf/VfQ+D9H5yyv2glBycrKnQwAAoEJ52yPDfm/OnDnq06ePmjVrpg4dOkiSvvvuO/n7+2vNmjWmr0fSDQAAAAAwx4tHui+//HL9+OOPWrZsmXbt2iVJuvPOOzV48GAFBASYvh5JNwAAbtCwYUP997//VUhIiIKDg8/7bO7ffvutEiNzn5O3X61atSv3ERv5wZ555nl+Q8+0a3jqL7cOeR5ptmh3/UpvM+wbe6W3KUmB6bs80q5n7lYyCgo81DJwfmfPnlWbNm20atUqjRgxokKuSdINAIAbzJ49W/Xr13f8fL6kGwCA6sZbp5fXrl1b+fn5FXpNkm4AANwgMTHR8fPQoUM9FwgAAO7gxdPLR40apeeee06vvvqqatW6+JSZpBsAysmdj+qq6M3R4Fk+Pj46dOiQwsLCnMqPHj2qsLAw2Ww2D0UGAEA5eXHS/c033yg9PV2ffvqpLr/8ctWtW9fp/ZUrV5q6nrUigwMAACUZRul/ZRQUFMjX19ctbe7du1fDhw9XTEyMAgIC1LJlSyUnJ6uwsNCp3vfff69rr71W/v7+ioyM1IwZM9wSDwDAuxRPLzd7VAcNGjTQgAEDlJCQoCZNmigoKMjpMIuRbgAA3GTu3LmSJIvFoldffVX16tVzvGez2bRx40a1adPGLW3v2rVLdrtdL730klq1aqXt27drxIgROnXqlJ5//nlJUl5ennr37q34+HgtWrRI27Zt0z333KMGDRrovvvuc0tcAAAv4YUj3Xa7XTNnztR///tfFRYW6vrrr1dKSkq5diz/PZJuAADcZPbs2ZLOjXQvWrRIPj4+jvd8fX0VHR2tRYsWuaXtPn36qE+fPo7XLVq0UGZmphYuXOhIupctW6bCwkItXrxYvr6+uuyyy7R161bNmjWLpBsAUGXMnz9fM2fOVFZWljp06KB58+apS5cupdZ95ZVXtHTpUm3fvl2S1KlTJ02bNq3M+r/37LPPKiUlRfHx8QoICNDcuXN1+PBhLV68+KLiZ3o5AABusmfPHu3Zs0c9evTQd99953i9Z88eZWZmas2aNYqNja20eHJzc9WwYUPH64yMDF133XVOU9wTEhKUmZmpY8eOlXmdgoIC5eXlOR0AgBrGKOdh0ooVK5SUlKTk5GR9++236tChgxISEpSTk1Nq/Q0bNujOO+/U+vXrlZGRocjISPXu3VsHDhy4YFtLly7VggULtGbNGr3//vv68MMPtWzZMtntF/dwPZJuAADcbP369QoODna8ttls2rp163kT24q2e/duzZs3T/fff7+jLCsrS+Hh4U71il9nZWWVea3U1FSntW2RkZHuCRoAUGVV1pruWbNmacSIERo2bJjatWunRYsWqU6dOmWOPi9btkwPPvigOnbsqDZt2ujVV1+V3W5Xenr6Bdvat2+fbrrpJsfr+Ph4WSwWHTx40Hzgv1Pjp5e7c/dhAAAkaezYsbr88ss1fPhw2Ww2XXfddcrIyFCdOnW0atUq9ezZ0+VrTZw4Uc8999x56+zcudNprfiBAwfUp08f3XHHHRoxYkR5b8Nh0qRJSkpKcrzOy8sj8QaAmuYi1nT/cYaUn5+f/Pz8SlQvLCzUli1bNGnSJEeZ1WpVfHy8MjIyXGry9OnTOnv2rNNMr7IUFRXJ39/5ETK1a9fW2bNnXWqrLDU+6QYAwN3efvtt3XXXXZKkDz/8UHv37tWuXbv0xhtv6IknntAXX3zh8rXGjx9/wed+t2jRwvHzwYMH1atXL3Xt2lUvv/yyU72IiAhlZ2c7lRW/joiIKPP6Zf1xBACoOcozcl1c/49f1CYnJyslJaVE/SNHjshms5U6K2vXrl0utfnYY4+pSZMmio+Pv2BdwzA0dOhQpz4uPz9fI0eOdHpsmNlHhpF0AwDgZkePHnUksR9//LHuuOMOXXrppbrnnnv04osvmrpWaGioQkNDXap74MAB9erVS506dVJaWpqsVudVZXFxcXriiSd09uxZ1a5dW5K0du1atW7d2mk6PAAAJVzESPf+/fsVGBjoKHbXF7nTp0/XW2+9pQ0bNpQYwS5NYmJiibLiL80vBkk3AABuFh4erh07dqhx48ZavXq1Fi5cKOnclLff72hekQ4cOKCePXsqKipKzz//vA4fPux4r/gLgL/+9a+aMmWKhg8frscee0zbt2/Xiy++6Nh1HQAAdwgMDHRKussSEhIiHx+fUmdlnW9GliQ9//zzmj59utatW6crrrjCpbjS0tJcqmcWSTcAAG42bNgw/eUvf1Hjxo1lsVgcU9y++uortz2ne+3atdq9e7d2796tZs2aOb1nGOeGGoKCgvTpp59q1KhR6tSpk0JCQjR58mQeFwYAuLBKeE63r6+vOnXqpPT0dPXv31+SHJuijR49uszzZsyYoWeffVZr1qxR586dTQZZ8Ui6AQBws5SUFLVv31779+/XHXfc4ZhG5+Pjo4kTJ7qlzaFDh15w7bckXXHFFfrXv/7llhgAAN7L8v+H2XPMSkpKUmJiojp37qwuXbpozpw5OnXqlIYNGyZJGjJkiJo2barU1FRJ0nPPPafJkydr+fLlio6OdjyNo169eqpXr145Irh4JN0AAFSCP//5zyXKSls7BgBAtVAJI92SNHDgQB0+fFiTJ09WVlaWOnbsqNWrVzs2V9u3b5/TniULFy5UYWFhiX63rM3aKgNJNwAAbnLTTTfp73//u4KCgiSd29Bl5MiRatCggaRzG6xde+212rFjhwejBADAvIvZvdys0aNHlzmdfMOGDU6v9+7dW75G3Mh64SoAAKA81qxZo4KCAsfradOm6bfffnO8LioqUmZmpidCAwDg4hjlPGogkm4AANykeMOysl4DAADvx/RyAAAAAIB5fJfsEpJuAADcxGKxyGKxlCgDAKC6q8w13dUdSTfgouiJH3ms7b3+HmsawEUwDENDhw51PCIsPz9fI0eOVN26dSXJab03AADVSiXtXu4NSLoBAHCTPz4S7K677ipRZ8iQIZUVDgAAFYaRbteRdAMA4CZpaWmeDgEAAPdgpNtlJN0AAAAAAFMY6XYdSTcAAKgQhztL1kreg8La9FTlNvj/zh73zGYbkTGHPdLusXWNPdJu06/PVHqbvvt+q/Q2Jcl2Jt8j7RrsLQG4HUk3AAAAAMAcppe7jKQbAAAAAGAOSbfLSLoBAAAAAKawptt1JN0AAAAAAHMY6XYZSTcAAAAAwBSLYchimMuizdb3FlZPBwAAAAAAgLdipBsAAAAAYA7Ty11G0g0AAAAAMIWN1FxH0g0AAAAAMIeRbpeRdAMAAAAATGGk23Uk3QAAAAAAcxjpdhm7lwMAAAAA4CYk3QAAeLmCggJ17NhRFotFW7dudXrv+++/17XXXit/f39FRkZqxowZngkSAFCtFE8vN3vURCTdAAB4uQkTJqhJkyYlyvPy8tS7d29FRUVpy5YtmjlzplJSUvTyyy97IEoAQLVilPOogVjTDQCAF/vkk0/06aef6t1339Unn3zi9N6yZctUWFioxYsXy9fXV5dddpm2bt2qWbNm6b777vNQxACA6qKmjlybxUg3AABeKjs7WyNGjNAbb7yhOnXqlHg/IyND1113nXx9fR1lCQkJyszM1LFjx8q8bkFBgfLy8pwOAEANYxjlO2ogkm4AALyQYRgaOnSoRo4cqc6dO5daJysrS+Hh4U5lxa+zsrLKvHZqaqqCgoIcR2RkZMUFDgCoFljT7TqSbgAAqpGJEyfKYrGc99i1a5fmzZunEydOaNKkSRUew6RJk5Sbm+s49u/fX+FtAACqONZ0u4w13QAAVCPjx4/X0KFDz1unRYsW+uyzz5SRkSE/Pz+n9zp37qzBgwfr9ddfV0REhLKzs53eL34dERFR5vX9/PxKXBcAAJSOpBsAgGokNDRUoaGhF6w3d+5cPfPMM47XBw8eVEJCglasWKHY2FhJUlxcnJ544gmdPXtWtWvXliStXbtWrVu3VnBwsHtuAADgFSz2c4fZc2oikm4AALxQ8+bNnV7Xq1dPktSyZUs1a9ZMkvTXv/5VU6ZM0fDhw/XYY49p+/btevHFFzV79uxKjxcAUM2UZ7o408sBAEBNEhQUpE8//VSjRo1Sp06dFBISosmTJ/O4MADABZVnY7SaupEaSTcAADVAdHS0jFIe1XLFFVfoX//6lwciAgBUa+V5BFgNfWQYSTcAAAAAwBRGul3HI8MAAAAAAHATRroBAECFaHpZlmrVrdxHie39NaRS2ysWGnnMI+1mbSn7UW7uFPibZ4anztat/D9Vax/1zGcLVDtspOYykm4AAAAAgClML3cdSTcAAAAAwBw2UnMZSTcAAAAAwBRGul1H0g0AAAAAMIc13S5j93IAAAAAANyEkW4AAAAAgClML3cdSTcAAAAAwBy7ce4we04NRNINAAAAADCHNd0uI+kGAAAAAJhiUTmml7slkqqPpBsAyrDX/6+eDgEAAKBq4jndLmP3cgAAAAAA3ISRbgAAAACAKexe7jpGugEAAAAA5hjlPMph/vz5io6Olr+/v2JjY/X111+XWfeHH37QgAEDFB0dLYvFojlz5pSv0QpE0g0AAAAAMMViGOU6zFqxYoWSkpKUnJysb7/9Vh06dFBCQoJycnJKrX/69Gm1aNFC06dPV0RExMXeZoUg6QYAAAAAmGMv52HSrFmzNGLECA0bNkzt2rXTokWLVKdOHS1evLjU+ldffbVmzpypQYMGyc/Pz3yDbkDSDQAAAAAw5WJGuvPy8pyOgoKCUtsoLCzUli1bFB8f7yizWq2Kj49XRkZGpdxnRajWG6l58nE+0fnLPdY2AAAAAHhUedZo/3/9yMhIp+Lk5GSlpKSUqH7kyBHZbDaFh4c7lYeHh2vXrl0mG/ecap10AwAAAACql/379yswMNDxuqpMA3cXkm4AAAAAgDmGce4we46kwMBAp6S7LCEhIfLx8VF2drZTeXZ2dpXZJM0VrOkGAMCLffTRR4qNjVVAQICCg4PVv39/p/f37dunvn37qk6dOgoLC9Ojjz6qoqIizwQLAKg2ip/TbfYww9fXV506dVJ6erqjzG63Kz09XXFxcRV8R+7DSDcAAF7q3Xff1YgRIzRt2jRdf/31Kioq0vbt2x3v22w29e3bVxEREdq8ebMOHTqkIUOGqHbt2po2bZoHIwcAVHkXMdJtRlJSkhITE9W5c2d16dJFc+bM0alTpzRs2DBJ0pAhQ9S0aVOlpqZKOrf52o4dOxw/HzhwQFu3blW9evXUqlUr0+1XBJJuAAC8UFFRkR5++GHNnDlTw4cPd5S3a9fO8fOnn36qHTt2aN26dQoPD1fHjh319NNP67HHHlNKSop8fX09EToAoBqw2M8dZs8xa+DAgTp8+LAmT56srKwsdezYUatXr3ZsrrZv3z5Zrf+bwH3w4EFdeeWVjtfPP/+8nn/+efXo0UMbNmwwH0AFYHo5AABe6Ntvv9WBAwdktVp15ZVXqnHjxrrxxhudRrozMjJ0+eWXO+0Km5CQoLy8PP3www+eCBsAUF0Uj3SbPcph9OjR+uWXX1RQUKCvvvpKsbGxjvc2bNigJUuWOF5HR0fLMIwSh6cSbomkGwAAr/Tzzz9LklJSUvTkk09q1apVCg4OVs+ePfXbb79JkrKyskp9DEvxe2UpKCgo8YxVAABQOqaXAwBQjUycOFHPPffceevs3LlTdvu5OXxPPPGEBgwYIElKS0tTs2bN9Pbbb+v+++8vdwypqamaMmVKiXLf2w6qlqV2ua9bHq2tByq1vWIWDz3eJvjMzx5pV3abZ9r1gJpzp8BFuojndNc0JN0AAFQj48eP19ChQ89bp0WLFjp06JAk5zXcfn5+atGihfbt2ydJioiI0Ndff+10bvFjWc73KJZJkyYpKSnJ8TovL0+RkZGm7gMAUL1ZDEMWk9PFzdb3FiTdAABUI6GhoQoNDb1gvU6dOsnPz0+ZmZnq3r27JOns2bPau3evoqKiJElxcXF69tlnlZOTo7CwMEnS2rVrFRgY6JSs/5Gfn5/8PDTSCwCoIipp93JvQNINAIAXCgwM1MiRI5WcnKzIyEhFRUVp5syZkqQ77rhDktS7d2+1a9dOd999t2bMmKGsrCw9+eSTGjVqFEk1AOD8DElmdyOvmTk3STcAAN5q5syZqlWrlu6++26dOXNGsbGx+uyzzxQcHCxJ8vHx0apVq/TAAw8oLi5OdevWVWJioqZOnerhyAEAVR3Ty11H0g0AgJeqXbu24/mkZYmKitLHH39ciVEBAFCzkHQDAAAAAMwxVI413W6JpMoj6QYAAAAAmMNGai4j6QYAAAAAmGOXZCnHOTUQSTcAAAAAwBQ2UnMdSTcAAAAAwByml7uMpBsAAAAAYA5Jt8usng4AAAAAAABvxUg3AAAAAMAcRrpdRtINAAAAADCH3ctdRtINAAAAADCF3ctdR9INAAAAADCH6eUuI+kGAAAAAJhjNySLySTaXjOTbnYvBwAAAADATRjpBgAAAACYw/Ryl5F0AwAAAABMKkfSLZJuAAAAAAAujJFul5F0AwAAAADMsRsyPXJdQzdSI+kGAAAAAJhj2M8dZs+pgdi9HAAAAAAAN2GkGwAAAABgDmu6XUbSDQAAKkTOiM7y8fOv1DbrH7BVanvF6v031yPt+mQd9ki79hMnPdKuUVDgkXYBuIA13S4j6QYAAAAAmMNIt8tIugEAAAAA5hgqR9LtlkiqPDZSAwDAS/33v//VrbfeqpCQEAUGBqp79+5av369U519+/apb9++qlOnjsLCwvToo4+qqKjIQxEDAKqN4pFus0cNRNINAICX6tevn4qKivTZZ59py5Yt6tChg/r166esrCxJks1mU9++fVVYWKjNmzfr9ddf15IlSzR58mQPRw4AgPcg6QYAwAsdOXJEP/74oyZOnKgrrrhCl1xyiaZPn67Tp09r+/btkqRPP/1UO3bs0JtvvqmOHTvqxhtv1NNPP6358+ersLDQw3cAAKjS7PbyHTUQSTcAAF6oUaNGat26tZYuXapTp06pqKhIL730ksLCwtSpUydJUkZGhi6//HKFh4c7zktISFBeXp5++OEHT4UOAKgOmF7uMjZSAwDAC1ksFq1bt079+/dX/fr1ZbVaFRYWptWrVys4OFiSlJWV5ZRwS3K8Lp6CXpqCggIV/O5RTnl5eW64AwBAlcbu5S5jpBsAgGpk4sSJslgs5z127dolwzA0atQohYWF6V//+pe+/vpr9e/fXzfffLMOHTp0UTGkpqYqKCjIcURGRlbQ3QEAqg27Ub6jBmKkGwCAamT8+PEaOnToeeu0aNFCn332mVatWqVjx44pMDBQkrRgwQKtXbtWr7/+uiZOnKiIiAh9/fXXTudmZ2dLkiIiIsq8/qRJk5SUlOR4nZeXR+INADWMYdhlGObWaJut7y1IugEAqEZCQ0MVGhp6wXqnT5+WJFmtzpParFar7P+/kU1cXJyeffZZ5eTkKCwsTJK0du1aBQYGql27dmVe28/PT35+fuW9BQCANzDKMXJdQ6eXk3QDAJzs9f+rx9qOzl/usba9TVxcnIKDg5WYmKjJkycrICBAr7zyivbs2aO+fftKknr37q127drp7rvv1owZM5SVlaUnn3xSo0aNIqkGAKCCsKYbAAAvFBISotWrV+vkyZO6/vrr1blzZ23atEkffPCBOnToIEny8fHRqlWr5OPjo7i4ON11110aMmSIpk6d6uHoAQBVHruXu4yRbgAAvFTnzp21Zs2a89aJiorSxx9/XEkRAQC8ht0uWUyu0WZNNwAAAAAALjAMSazpdgVJNwAAAADAFMNul2FypJvdywEAAAAAcAUj3S5jIzUAAAAAANyEkW7ARZ58jBIAAABQpdgNycJItytIugEAAAAA5hiGJLO7l5N0wwRGPQEAAADUVIbdkGFypNsoZ9I9f/58zZw5U1lZWerQoYPmzZunLl26lFn/7bff1lNPPaW9e/fqkksu0XPPPaebbrqpXG1XBNZ0AwAAAADMMezlO0xasWKFkpKSlJycrG+//VYdOnRQQkKCcnJySq2/efNm3XnnnRo+fLj+85//qH///urfv7+2b99+sXdcbiTdAAAAAABTDLtRrsOsWbNmacSIERo2bJjatWunRYsWqU6dOlq8eHGp9V988UX16dNHjz76qNq2baunn35aV111lf72t79d7C2XG0k3AAAAAKDKKSws1JYtWxQfH+8os1qtio+PV0ZGRqnnZGRkONWXpISEhDLrVwaX1nQXz73Py8ursIbtBacv+hp5ZnfLAwBUaRXSN1RgX1V8rfKuQaspin8/tsL8Sm+76Kyt0tuUpCJbgUfatdgLPdKu3TjrkXYND7ULVHdFOvf/jjv7ryKjwPR08eK4/thX+/n5yc/Pr0T9I0eOyGazKTw83Kk8PDxcu3btKrWNrKysUutnZWWZirUiuZR0nzhxQpIUGRnp1mDMCvJ0AACACvaXi75C0JyLj+KPTpw4oaAgep2yFP+dkJk21cORAAB+zx39l6+vryIiIrQp6+NynV+vXr0SeWVycrJSUlIqILqqyaWku0mTJtq/f7/q168vi8Xi7pgqTV5eniIjI7V//34FBgZ6Ohy38PZ79Pb7k7hHb+Dt9yd57z0ahqETJ06oSZMmng6lSvPU3wne8N+dN9yDxH1UNdxH1eGpe3Bn/+Xv7689e/aosLB8M28MwyjRV5Q2yi1JISEh8vHxUXZ2tlN5dna2IiIiSj0nIiLCVP3K4FLSbbVa1axZM3fH4jGBgYHV9n9kV3n7PXr7/Uncozfw9vuTvPMeGeG+ME//neAN/915wz1I3EdVw31UHZ64B3f2X/7+/vL393fb9Yv5+vqqU6dOSk9PV//+/SVJdrtd6enpGj16dKnnxMXFKT09XWPHjnWUrV27VnFxcW6Ptyw8pxsAAAAAUCUlJSUpMTFRnTt3VpcuXTRnzhydOnVKw4YNkyQNGTJETZs2VWpqqiTp4YcfVo8ePfTCCy+ob9++euutt/Tvf/9bL7/8ssfugaQbAAAAAFAlDRw4UIcPH9bkyZOVlZWljh07avXq1Y7N0vbt2yer9X8P5eratauWL1+uJ598Uo8//rguueQSvf/++2rfvr2nbqFmJ91+fn5KTk4ucw2BN/D2e/T2+5O4R2/g7fcn1Yx7RNXjDf/decM9SNxHVcN9VB3ecA9VwejRo8ucTr5hw4YSZXfccYfuuOMON0flOovBc1AAAAAAAHAL64WrAAAAAACA8iDpBgAAAADATUi6AQAAAABwkxqZdG/YsEEWi6XU45tvvpEk7d27t9T3v/zySw9H77ro6OgS8U+fPt2pzvfff69rr71W/v7+ioyM1IwZMzwUrTl79+7V8OHDFRMTo4CAALVs2VLJyckqLCx0qlPdP0NJmj9/vqKjo+Xv76/Y2Fh9/fXXng6pXFJTU3X11Verfv36CgsLU//+/ZWZmelUp2fPniU+r5EjR3ooYvNSUlJKxN+mTRvH+/n5+Ro1apQaNWqkevXqacCAAcrOzvZgxOaU9m+KxWLRqFGjJFX/zw/Vh7f0497QT3tbf1yd+lxv6Ve9pe+kj8T51Mjdy7t27apDhw45lT311FNKT09X586dncrXrVunyy67zPG6UaNGlRJjRZk6dapGjBjheF2/fn3Hz3l5eerdu7fi4+O1aNEibdu2Tffcc48aNGig++67zxPhumzXrl2y2+166aWX1KpVK23fvl0jRozQqVOn9PzzzzvVrc6f4YoVK5SUlKRFixYpNjZWc+bMUUJCgjIzMxUWFubp8Ez5/PPPNWrUKF199dUqKirS448/rt69e2vHjh2qW7euo96IESM0depUx+s6dep4Itxyu+yyy7Ru3TrH61q1/vfP7Lhx4/TRRx/p7bffVlBQkEaPHq3bb79dX3zxhSdCNe2bb76RzWZzvN6+fbtuuOEGp91Bq/vnh+rBm/rx6t5Pe1N/XN36XG/qV72h76SPxHkZMAoLC43Q0FBj6tSpjrI9e/YYkoz//Oc/ngvsIkVFRRmzZ88u8/0FCxYYwcHBRkFBgaPsscceM1q3bl0J0VW8GTNmGDExMY7X3vAZdunSxRg1apTjtc1mM5o0aWKkpqZ6MKqKkZOTY0gyPv/8c0dZjx49jIcffthzQV2k5ORko0OHDqW+d/z4caN27drG22+/7SjbuXOnIcnIyMiopAgr1sMPP2y0bNnSsNvthmFU/88P1Vd17ce9tZ+urv1xde9zq2u/6q19J30kfq9GTi//o3/+8586evSohg0bVuK9W265RWFhYerevbv++c9/eiC6izN9+nQ1atRIV155pWbOnKmioiLHexkZGbruuuvk6+vrKCv+RvfYsWOeCPei5ObmqmHDhiXKq+tnWFhYqC1btig+Pt5RZrVaFR8fr4yMDA9GVjFyc3MlqcRntmzZMoWEhKh9+/aaNGmSTp8+7Ynwyu3HH39UkyZN1KJFCw0ePFj79u2TJG3ZskVnz551+jzbtGmj5s2bV8vPs7CwUG+++abuueceWSwWR3l1//xQPVXnftwb++nq2B97Q59bnftVb+s76SPxRzVyevkfvfbaa0pISFCzZs0cZfXq1dMLL7ygbt26yWq16t1331X//v31/vvv65ZbbvFgtK576KGHdNVVV6lhw4bavHmzJk2apEOHDmnWrFmSpKysLMXExDidEx4e7ngvODi40mMur927d2vevHlOU9mq+2d45MgR2Ww2x2dSLDw8XLt27fJQVBXDbrdr7Nix6tatm9q3b+8o/+tf/6qoqCg1adJE33//vR577DFlZmZq5cqVHozWdbGxsVqyZIlat26tQ4cOacqUKbr22mu1fft2ZWVlydfXVw0aNHA6Jzw8XFlZWZ4J+CK8//77On78uIYOHeooq+6fH6qv6tqPe2M/XV374+re51bnftUb+076SJTg6aH2ivTYY48Zks577Ny50+mc/fv3G1ar1XjnnXcueP27777b6N69u7vCd0l57rHYa6+9ZtSqVcvIz883DMMwbrjhBuO+++5zqvPDDz8YkowdO3a4/V5KU577+/XXX42WLVsaw4cPv+D1q8Jn6KoDBw4YkozNmzc7lT/66KNGly5dPBRVxRg5cqQRFRVl7N+//7z10tPTDUnG7t27KymyinXs2DEjMDDQePXVV41ly5YZvr6+JepcffXVxoQJEzwQ3cXp3bu30a9fv/PWqe6fHyqfN/Tj3tJP17T+uLr3ud7Ur3pD30kfiT/yqpHu8ePHO32jVJoWLVo4vU5LS1OjRo1c+qY1NjZWa9euvZgQL1p57rFYbGysioqKtHfvXrVu3VoREREldn8sfh0REVEh8Zpl9v4OHjyoXr16qWvXrnr55ZcveP2q8Bm6KiQkRD4+PqV+Rp76fCrC6NGjtWrVKm3cuNFpVKo0sbGxks6NnLRs2bIywqtQDRo00KWXXqrdu3frhhtuUGFhoY4fP+70jX11/Dx/+eUXrVu37oLfzlf3zw+Vzxv6cW/pp2taf1yd+1xv61ere99JH4nSeFXSHRoaqtDQUJfrG4ahtLQ0DRkyRLVr175g/a1bt6px48YXE+JFM3uPv7d161ZZrVbHDpxxcXF64okndPbsWcf9r127Vq1bt/bYlDUz93fgwAH16tVLnTp1UlpamqzWC29RUBU+Q1f5+vqqU6dOSk9PV//+/SWdmz6Wnp6u0aNHeza4cjAMQ2PGjNF7772nDRs2lJgyWZqtW7dKUrX5zP7o5MmT+umnn3T33XerU6dOql27ttLT0zVgwABJUmZmpvbt26e4uDgPR2pOWlqawsLC1Ldv3/PWq+6fHyqfN/Tj3tJP17T+uDr2ud7ar1b3vpM+EqXy7EC7Z61bt67MaV5Lliwxli9fbuzcudPYuXOn8eyzzxpWq9VYvHixByI1b/Pmzcbs2bONrVu3Gj/99JPx5ptvGqGhocaQIUMcdY4fP26Eh4cbd999t7F9+3bjrbfeMurUqWO89NJLHozcNb/++qvRqlUr409/+pPx66+/GocOHXIcxar7Z2gYhvHWW28Zfn5+xpIlS4wdO3YY9913n9GgQQMjKyvL06GZ9sADDxhBQUHGhg0bnD6v06dPG4ZhGLt37zamTp1q/Pvf/zb27NljfPDBB0aLFi2M6667zsORu278+PHGhg0bjD179hhffPGFER8fb4SEhBg5OTmGYZyb/te8eXPjs88+M/79738bcXFxRlxcnIejNsdmsxnNmzc3HnvsMadyb/j8UP1U537cW/ppb+qPq1uf6y39qjf1nfSRKEuNTrrvvPNOo2vXrqW+t2TJEqNt27ZGnTp1jMDAQKNLly5Ojyuo6rZs2WLExsYaQUFBhr+/v9G2bVtj2rRpjnVixb777juje/fuhp+fn9G0aVNj+vTpHorYnLS0tDLXmBWr7p9hsXnz5hnNmzc3fH19jS5duhhffvmlp0Mql7I+r7S0NMMwDGPfvn3GddddZzRs2NDw8/MzWrVqZTz66KNGbm6uZwM3YeDAgUbjxo0NX19fo2nTpsbAgQOd1mqdOXPGePDBB43g4GCjTp06xm233eb0h2l1sGbNGkOSkZmZ6VTuDZ8fqp/q3I97Sz/tbf1xdepzvaVf9aa+kz4SZbEYhmFUzpg6AAAAAAA1C8/pBgAAAADATUi6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEPGjp0qPr37+/42WKxyGKxyNfXV61atdLUqVNVVFQkSdqwYYPjfavVqqCgIF155ZWaMGGCDh065MG7AADAfYr7vrKOlJSUSoulZ8+eGjt2rNPr4jj8/f3Vrl07LViwwPH+kiVLHO/7+PgoODhYsbGxmjp1qnJzcystbgCeRdINVCF9+vTRoUOH9OOPP2r8+PFKSUnRzJkznepkZmbq4MGD+uabb/TYY49p3bp1at++vbZt2+ahqAEAcJ9Dhw45jjlz5igwMNCp7JFHHnHUNQzD8WV1ZRkxYoQOHTqkHTt26C9/+YtGjRqlv//97473i+P99ddftXnzZt13331aunSpOnbsqIMHD1ZqrAA8g6QbqEL8/PwUERGhqKgoPfDAA4qPj9c///lPpzphYWGKiIjQpZdeqkGDBumLL75QaGioHnjgAQ9FDQCA+0RERDiOoKAgWSwWx+tdu3apfv36+uSTT9SpUyf5+flp06ZNTjPJio0dO1Y9e/Z0vLbb7UpNTVVMTIwCAgLUoUMHvfPOO6bjq1OnjiIiItSiRQulpKTokksuceq7i+Nt3Lix2rZtq+HDh2vz5s06efKkJkyYUN5fC4BqhKQbqMICAgJUWFh4wTojR47UF198oZycnEqKDACAqmPixImaPn26du7cqSuuuMKlc1JTU7V06VItWrRIP/zwg8aNG6e77rpLn3/++UXF4krfHRYWpsGDB+uf//ynbDbbRbUHoOqr5ekAAJRkGIbS09O1Zs0ajRkz5oL127RpI0nau3evwsLC3B0eAABVytSpU3XDDTe4XL+goEDTpk3TunXrFBcXJ0lq0aKFNm3apJdeekk9evQwHYPNZtPf//53ff/997rvvvsuWL9NmzY6ceKEjh49St8NeDmSbqAKWbVqlerVq6ezZ8/Kbrfrr3/9q0sbxBiGIencFDYAAGqazp07m6q/e/dunT59ukSiXlhYqCuvvNLUtRYsWKBXX31VhYWF8vHx0bhx41xa8kXfDdQcJN1AFdKrVy8tXLhQvr6+atKkiWrVcu1/0Z07d0qSoqOj3RgdAABVU926dZ1eW61WR1Jb7OzZs46fT548KUn66KOP1LRpU6d6fn5+ptoePHiwnnjiCQUEBKhx48ayWl1bvblz504FBgaqUaNGptoDUP2QdANVSN26ddWqVStT55w5c0Yvv/yyrrvuOoWGhropMgAAqo/Q0FBt377dqWzr1q2qXbu2JKldu3by8/PTvn37yjWV/PeCgoJM9905OTlavny5+vfv73KSDqD6IukGqpmcnBzl5+frxIkT2rJli2bMmKEjR45o5cqVng4NAIAq4frrr9fMmTO1dOlSxcXF6c0339T27dsdU8fr16+vRx55ROPGjZPdblf37t2Vm5urL774QoGBgUpMTKywWAzDUFZWlgzD0PHjx5WRkaFp06YpKChI06dPr7B2AFRdJN1ANdO6dWtZLBbVq1dPLVq0UO/evZWUlKSIiAhPhwYAQJWQkJCgp556ShMmTFB+fr7uueceDRkyRNu2bXPUefrppxUaGqrU1FT9/PPPatCgga666io9/vjjFRpLXl6eGjduLIvFosDAQLVu3VqJiYl6+OGHFRgYWKFtAaiaLMYfF7wAAAAAAIAKwSISAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3ISkGwAAAAAANyHpBgAAAADATUi6AQAAAABwk/8DHD7ySm/zg8wAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Let's look at the network parameters after the last epche" + ], + "metadata": { + "id": "lb4-j5cvYqvK" + }, + "id": "lb4-j5cvYqvK" + }, + { + "cell_type": "markdown", + "source": [ + "#### Dynamics of the output neurons" + ], + "metadata": { + "id": "g4CMFtpHY54p" + }, + "id": "g4CMFtpHY54p" + }, + { + "cell_type": "code", + "source": [ + "# @title\n", + "# define the plot helper function\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from matplotlib.cm import ScalarMappable\n", + "\n", + "# We define here a helper function to control the line colors in a plot\n", + "def plot_lines_with_colorbar(x, ys, cmap_name='viridis', ax=None, colorbar_label=''):\n", + " \"\"\"\n", + " This function defines the colormap over which the line plot function cycles\n", + " and plots the corresponding colorbar next to the plot.\n", + "\n", + " Parameters:\n", + " x (array-like): X-axis values.\n", + " ys (list of arrays): List of Y-axis values for each line.\n", + " cmap_name (str): Name of the colormap to use.\n", + " ax (matplotlib axis, optional): Axis to plot on. Defaults to current axis.\n", + " colorbar_label (str, optional): Label for the colorbar. Defaults to an empty string.\n", + "\n", + " Example usage:\n", + " x = np.linspace(0, 10, 100)\n", + " ys = [np.sin(x + i) for i in np.arange(0, 2, 0.5)]\n", + "\n", + " plt.figure(figsize=(8, 6))\n", + " plot_lines_with_colorbar(x, ys, cmap_name='jet', colorbar_label='class index')\n", + " plt.show()\n", + " \"\"\"\n", + " if ax is None:\n", + " ax = plt.gca()\n", + "\n", + " # Define a new color cycle\n", + " num_lines = len(ys)\n", + " new_color_cycle = plt.get_cmap(cmap_name)(np.linspace(0, 1, num_lines))\n", + "\n", + " # Set the color cycle for the axis\n", + " ax.set_prop_cycle(color=new_color_cycle)\n", + "\n", + " # Plot multiple lines\n", + " for y in ys:\n", + " ax.plot(x, y)\n", + "\n", + " # Create a ScalarMappable object and plot the colorbar\n", + " sm = ScalarMappable(cmap=cmap_name, norm=plt.Normalize(vmin=0, vmax=num_lines))\n", + " sm.set_array([])\n", + " cbar = plt.colorbar(sm, ax=ax, ticks=np.linspace(0, num_lines, num_lines+1),\n", + " pad=0.01)\n", + " # Add the label to the colorbar\n", + " cbar.set_label(colorbar_label, rotation=270, labelpad=15)" + ], + "metadata": { + "id": "HHJoFyD7cDGP" + }, + "id": "HHJoFyD7cDGP", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(f'nb_epochs = {nb_epochs}')\n", + "print(f'output.shape = {output.shape} => (epochs, time points, classes)')\n", + "\n", + "plt.figure\n", + "#for i in range(num_classes):\n", + "# plt.plot(output.detach().numpy()[63,:,i])\n", + "plt.subplot(1,2,1)\n", + "#ys = [torch.abs(output).detach().numpy()[63,:,i] for i in range(num_classes)]\n", + "ys = [output.detach().numpy()[63,:,i] for i in range(num_classes)]\n", + "\n", + "plot_lines_with_colorbar(np.arange(duration_steps),ys, cmap_name='bwr',colorbar_label='Class index')\n", + "plt.xlabel('Time')\n", + "plt.ylabel('V_output')\n", + "\n", + "plt.subplot(1,2,2)\n", + "# calculate output agregated over time for e.g. the sample number 63\n", + "m_selection = np.sum(output.detach().numpy()[63,:,:],0)\n", + "# determine the estimated class index\n", + "ipd_class_estimated = np.argmax(m_selection)\n", + "\n", + "# plot agregated output neuron values\n", + "#plt.bar(np.arange(12),m,color='black')\n", + "plt.plot(np.arange(12),m_selection,color='black')\n", + "plt.plot(ipd_class_estimated, m_selection[ipd_class_estimated],'*r',markersize=20,label='Estimated class')\n", + "\n", + "\n", + "plt.title(f'Estimated class = {ipd_class_estimated}')\n", + "\n", + "plt.xlabel('Output neuron index (idp classes)')\n", + "plt.ylabel('m = sum(output) per output neuron')\n", + "plt.xticks(ticks=np.arange(12))\n", + "plt.legend()\n", + "plt.tight_layout()" + ], + "metadata": { + "id": "7Wp5hVLpiOlU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 523 + }, + "outputId": "d1dfc615-6901-40f8-ebf8-506951734528" + }, + "id": "7Wp5hVLpiOlU", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "nb_epochs = 10\n", + "output.shape = torch.Size([64, 100, 12]) => (epochs, time points, classes)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xT5f7HPxlNd9PS0pZCoey9XUVBlnBBvQ6ukyuguEFEvA7uDwEHIl5BRRG9DnAjMryCyt6yR5UtmxZaSlfadKQZ5/fHk2+eczLatE2btH3er1deaZOTk+ectMknn+9SSZIkQSAQCAQCgUBQr1H7ewECgUAgEAgEgpojRJ1AIBAIBAJBA0CIOoFAIBAIBIIGgBB1AoFAIBAIBA0AIeoEAoFAIBAIGgBC1AkEAoFAIBA0AISoEwgEAoFAIGgACFEnEAgEAoFA0AAQok4gEAgEAoGgASBEnUAgEAgaLQMHDsTAgQP9vQyfcv78eahUKixevDig9iWofYSoEwgEAkHAsXjxYqhUKo+X3bt3e72vY8eOYebMmTh//nztLbgafPTRR0IsBQCZmZl4+eWXMWjQIERGRkKlUmHLli0et9+5cyduuukmhIWFITExEZMmTYLRaKy7BVeA1t8LEAgEAoHAE6+99hpat27tcnu7du283sexY8fw6quvYuDAgUhJSVHct27dupousdp89NFHiIuLw7hx4/y2BgFw8uRJzJkzB+3bt0f37t2xa9cuj9umpaVhyJAh6Ny5M+bNm4eMjAy88847OHXqFH777bc6XLV7hKgTCAQCQcAyYsQIXHPNNbW2f51OV2v7FtQP+vbti9zcXDRp0gTLli3DPffc43Hbf//734iJicGWLVsQFRUFAEhJScFjjz2GdevWYdiwYXW1bLeI8KtAIBAI6jVLlixB3759ERkZiaioKHTv3h3vv/8+ABbGpQ/pQYMGOcK3FF5zzqnbsmULVCoVli5dildffRXNmzdHZGQk/vGPf8BgMMBkMmHy5MmIj49HREQEHn74YZhMJsV6Fi1ahMGDByM+Ph7BwcHo0qULFi5cqNgmJSUFR48exdatWx1rkq+joKAAkydPRnJyMoKDg9GuXTvMmTMHNptNsZ+CggKMGzcOer0e0dHRGDt2LAoKCrw+dwUFBXjuueeQkpKC4OBgtGjRAmPGjEFOTo7Hx/z5558YN24c2rRpg5CQECQmJuKRRx5Bbm6uYruioiJMnjzZse/4+HjccsstOHjwoGObU6dOYdSoUUhMTERISAhatGiB+++/HwaDwetjqCmRkZFo0qRJpdsVFhZi/fr1+Oc//+kQdAAwZswYREREYOnSpbW5TK8QTp1AIBAIAhaDweAiMFQqFWJjYwEA69evxwMPPIAhQ4Zgzpw5AIDjx4/j999/x7PPPosBAwZg0qRJmD9/Pv7973+jc+fOAOC49sTs2bMRGhqKl19+GadPn8YHH3yAoKAgqNVq5OfnY+bMmdi9ezcWL16M1q1bY/r06Y7HLly4EF27dsXf//53aLVarFq1Ck8//TRsNhsmTJgAAHjvvffwzDPPICIiAv/3f/8HAEhISAAAlJSU4Oabb8alS5fwxBNPoGXLlti5cyemTp2KzMxMvPfeewAASZJwxx13YMeOHXjyySfRuXNnrFy5EmPHjvXq3BqNRvTv3x/Hjx/HI488gj59+iAnJwc///wzMjIyEBcX5/Zx69evx9mzZ/Hwww8jMTERR48exX//+18cPXoUu3fvhkqlAgA8+eSTWLZsGSZOnIguXbogNzcXO3bswPHjx9GnTx+Ul5dj+PDhMJlMeOaZZ5CYmIhLly5h9erVKCgogF6v97j2kpISlJSUVHqMGo0GMTExXp2Pyjh8+DAsFouLc6zT6dCrVy8cOnTIJ89TIySBQCAQCAKMRYsWSQDcXoKDgx3bPfvss1JUVJRksVg87uvHH3+UAEibN292ue/mm2+Wbr75ZsfvmzdvlgBI3bp1k8rLyx23P/DAA5JKpZJGjBiheHxqaqrUqlUrxW0lJSUuzzN8+HCpTZs2itu6du2qeG7i9ddfl8LDw6W//vpLcfvLL78saTQa6eLFi5IkSdJPP/0kAZDefvttxzYWi0Xq37+/BEBatGiRy77lTJ8+XQIgrVixwuU+m80mSZIknTt3zmVf7o7v+++/lwBI27Ztc9ym1+ulCRMmeHz+Q4cOSQCkH3/8scJ1umPGjBke/z7kF+fXpjIq+luh++THSNxzzz1SYmJilY/D1winTiAQCAQBy4IFC9ChQwfFbRqNxvFzdHQ0iouLsX79evztb3/z2fOOGTMGQUFBjt+vv/56fP/993jkkUcU211//fWYP38+LBYLtFr2kRoaGuq432AwwGw24+abb8batWthMBgqdKAA4Mcff0T//v0RExOjcCmHDh2Kt956C9u2bcPo0aPx66+/QqvV4qmnnnJso9Fo8Mwzz2D79u2VHuPy5cvRs2dP3HXXXS73kdvmDvnxlZWVwWg04oYbbgAAHDx4EP379wfAXps9e/bg8uXLSEpKctkPnYe1a9di5MiRCAsLq3TNxJgxY3DTTTdVup18rTWltLQUABAcHOxyX0hIiON+fyJEnUAgEAgCluuuu67CQomnn34aS5cuxYgRI9C8eXMMGzYM9957b40FXsuWLRW/kwBJTk52ud1ms8FgMDhCwr///jtmzJiBXbt2uYQIvRF1p06dwp9//ommTZu6vT87OxsAcOHCBTRr1gwRERGK+zt27FjJ0THOnDmDUaNGebWtnLy8PLz66qtYsmSJYy2EPBfu7bffxtixY5GcnIy+ffti5MiRGDNmDNq0aQMAaN26NaZMmYJ58+bh22+/Rf/+/fH3v/8d//znPys9R23atHHsp64ggeicQwkwcetLAVldhKgTCAQCQb0lPj4eaWlpWLt2LX777Tf89ttvWLRoEcaMGYMvv/yy2vuVu4He3C5JEgAmlIYMGYJOnTph3rx5SE5Ohk6nw6+//op3333XpdDBHTabDbfccgtefPFFt/c7O5d1zb333oudO3fihRdeQK9evRAREQGbzYa//e1viuO799570b9/f6xcuRLr1q3Df/7zH8yZMwcrVqzAiBEjAABz587FuHHj8L///Q/r1q3DpEmTMHv2bOzevRstWrTwuAaj0ehVbziNRuNRHFeVZs2aAWB97ZzJzMx060bWNULUCQQCgaBeo9PpcPvtt+P222+HzWbD008/jU8++QSvvPIK2rVrV2Eo0desWrUKJpMJP//8s8Lt27x5s8u2ntbVtm1bGI1GDB06tMLnatWqFTZu3Aij0ahw606ePOnVWtu2bYsjR454tS2Rn5+PjRs34tVXX1UUh5w6dcrt9s2aNcPTTz+Np59+GtnZ2ejTpw9mzZrlEHUA0L17d3Tv3h3Tpk3Dzp07ceONN+Ljjz/GG2+84XEd77zzDl599dVK19uqVSufNZ3u1q0btFot9u/fj3vvvddxe3l5OdLS0hS3+QvR0kQgEAgE9RbnNhpqtRo9evQAwMNk4eHhAFClVh/VhZw8cu4AFpJctGiRy7bh4eFu13Tvvfdi165dWLt2rct9BQUFsFgsAICRI0fCYrEo2qVYrVZ88MEHXq111KhR+OOPP7By5UqX++Trl+Pu+AA4KnLl63BuSxIfH4+kpCTH61JYWOg4FqJ79+5Qq9VuQ5xyxowZg/Xr11d6+fbbbyvcT1XQ6/UYOnQovvnmGxQVFTlu//rrr2E0Givsb1dXCKdOIBAIBAHLb7/9hhMnTrjc3q9fP7Rp0waPPvoo8vLyMHjwYLRo0QIXLlzABx98gF69ejnalvTq1QsajQZz5syBwWBAcHCwo4+crxk2bJjDOXziiSdgNBrx6aefIj4+3iVs17dvXyxcuBBvvPEG2rVrh/j4eAwePBgvvPACfv75Z9x2220YN24c+vbti+LiYhw+fBjLli3D+fPnERcXh9tvvx033ngjXn75ZZw/fx5dunTBihUrvO7x9sILLzia7T7yyCPo27cv8vLy8PPPP+Pjjz9Gz549XR4TFRWFAQMG4O2334bZbEbz5s2xbt06nDt3TrFdUVERWrRogX/84x/o2bMnIiIisGHDBuzbtw9z584FAGzatAkTJ07EPffcgw4dOsBiseDrr7+GRqOpNNfP1zl15AoePXoUABNqO3bsAABMmzbNsd2sWbPQr18/3HzzzXj88ceRkZGBuXPnYtiwYT4t1Kk2/i2+FQgEAoHAlYpamkDWYmPZsmXSsGHDpPj4eEmn00ktW7aUnnjiCSkzM1Oxv08//VRq06aNpNFoFC0rPLU0cW6zQevZt2+f4nZqrXH16lXHbT///LPUo0cPKSQkREpJSZHmzJkjffHFFxIA6dy5c47tsrKypFtvvVWKjIyUACjWUVRUJE2dOlVq166dpNPppLi4OKlfv37SO++8o2i1kpubKz300ENSVFSUpNfrpYceesjRKqSylib0+IkTJ0rNmzeXdDqd1KJFC2ns2LFSTk6OJEnuW5pkZGRId911lxQdHS3p9XrpnnvukS5fviwBkGbMmCFJkiSZTCbphRdekHr27ClFRkZK4eHhUs+ePaWPPvrIsZ+zZ89KjzzyiNS2bVspJCREatKkiTRo0CBpw4YNla7b11T0t+bM9u3bpX79+kkhISFS06ZNpQkTJkiFhYV1vmZ3qCTJg8cqEAgEAoFAIKg3iJw6gUAgEAgEggaAEHUCgUAgEAgEDQAh6gQCgUAgEAgaAELUCQSCOmfbtm24/fbbkZSUBJVKhZ9++slxn9lsxksvvYTu3bsjPDwcSUlJGDNmDC5fvuy/BQsEAkE9QIg6gUBQ5xQXF6Nnz55YsGCBy30lJSU4ePAgXnnlFRw8eBArVqzAyZMn8fe//90PKxUIBIL6g6h+FQgEfkWlUmHlypW48847PW6zb98+XHfddbhw4YLLTE6BQCAQMETzYSdsNhsuX76MyMjIOh0tIxDUBZIkoaioCElJSSgvL0d5ebnP9uv8/xIcHIzg4GCf7N9gMEClUiE6Oton+xP4BvF+KRDUDfL3brXac5BViDonLl++jOTkZH8vQyCoVU6dOoX+7dsjy0f7i4iIcBmuPWPGDMycObPG+y4rK8NLL72EBx54AFFRUTXen8B3iPdLgaBuSU9PR4sWLTzeL0SdE5GRkQDYiRMfIIKGRmFhIZKTkxEcHIwsAOkAavpXXggg2Wh0+Z/xhUtnNptx7733QpIkxXxLQWAg3i8FgrqB3rvpf84TQtQ5QSGEqKgo8SYlaLA4/s5VKkTVNGwmSYAk+fx/hgTdhQsXsGnTpkbz/7hw4UIsXLgQ58+fBwB07doV06dPx4gRIwAw5/L555/HkiVLYDKZMHz4cHz00UdISEhw7OPixYt46qmnsHnzZkRERGDs2LGYPXs2tFr+lr9lyxZMmTIFR48eRXJyMqZNm4Zx48ZVaa3i/VIgqFsqS3MQ1a8CQWNGrfbNxceQoDt16hQ2bNiA2NhYnz9HoNKiRQu89dZbOHDgAPbv34/BgwfjjjvucAwaf+6557Bq1Sr8+OOP2Lp1Ky5fvoy7777b8Xir1Ypbb70V5eXl2LlzJ7788kssXrwY06dPd2xz7tw53HrrrRg0aBDS0tIwefJkPProo1i7dm2dH69AIPAh/hs7G5gYDAYJgGQwGPy9FIHA59Dfd3p6Ovs712gkSaut0cVgH5Belf+ZoqIi6dChQ47B4/PmzZMOHTokXbhwQSovL5f+/ve/Sy1atJDS0tKkzMxMx8VkMtXi2QlcYmJipM8++0wqKCiQgoKCFMPmjx8/LgGQdu3aJUmSJP3666+SWq2WsrKyHNssXLhQioqKcpy/F198UerataviOe677z5p+PDhVVqXeL8UNFoOHpSkYcMk6dChOnk6b//XhFMnEDRm/OTU7d+/H71790bv3r0BAFOmTEHv3r0xffp0XLp0CT///DMyMjLQq1cvNGvWzHHZuXOnr89AQGO1WrFkyRIUFxcjNTUVBw4cgNlsxtChQx3bdOrUCS1btsSuXbsAALt27UL37t0V4djhw4ejsLDQ4fbt2rVLsQ/ahvYRcBw6BAwfDqSl+XslAgFj6VJg3Tp2HUCInDqBoDGjVgO+yKmrIgMHDoRUweMquq8xcPjwYaSmpqKsrAwRERFYuXIlunTpgrS0NOh0OpfWLgkJCcjKYrXMWVlZCkFH99N9FW1TWFiI0tJShIaGul2XyWSCyWRy/F5YWFjpsVitVpjN5kq3qwjtd99Bu24dLD17wtKpU432JWjY6HS6Clt++IyVK/n1m2/W/vN5iRB1AoFAEGB07NgRaWlpMBgMWLZsGcaOHYutW7f6e1mYPXs2Xn31Va+2lSQJWVlZKCgoqPHztlm2DFoA1mXLcO7hh2u8P0HDRa1Wo3Xr1tDpdLX3JOfOASdPsp9PnADOnwdSUmrv+aqAEHUCQWPGT06doGJ0Oh3atWsHAOjbty/27duH999/H/fddx/Ky8tRUFCgcOuuXLmCxMREAEBiYiL27t2r2N+VK1cc99E13SbfJioqyqNLBwBTp07FlClTHL9TmwV3kKCLj49HWFhYtZsTq86fR7C9Ejj43Dm0UashtWpVrX0JGjbUDDszMxMtW7asvYbYq1ez906bjb1/rl4NTJxYO89VRYSoEwgaM0LU1QtsNhtMJhP69u2LoKAgbNy4EaNGjQIAnDx5EhcvXkRqaioAIDU1FbNmzUJ2djbi4+MBAOvXr0dUVBS6dOni2ObXX39VPMf69esd+/CEt1NCrFarQ9DVuHJ5/XrFB2jw+vUB8wEqCDyaNm2Ky5cvw2KxICgoqHae5H//4z+rVOz3APmbFIUSAoFAEEBMnToV27Ztw/nz53H48GFMnToVW7ZswejRo6HX6zF+/HhMmTIFmzdvxoEDB/Dwww8jNTUVN9xwAwBg2LBh6NKlCx566CH88ccfWLt2LaZNm4YJEyY4BNmTTz6Js2fP4sUXX8SJEyfw0UcfYenSpXjuued8cgyUQxcWFlbznbn7ABUIPEBhV6vVWjtPUFgIbN3KvmQA7HrLFqCoqHaer4oIp04gaMwIpy7gyM7OxpgxY5CZmQm9Xo8ePXpg7dq1uOWWWwAA7777LtRqNUaNGqVoPkxoNBqsXr0aTz31FFJTUxEeHo6xY8fitddec2zTunVr/PLLL3juuefw/vvvo0WLFvjss88wfPhwnx5LjcNfFX2AVtJZX9A4qfUZxOvWARaL8jaLhd1ud8/9iRB1AkFjRoi6gOPzzz+v8P6QkBAsWLAACxYs8LhNq1atXMKrzgwcOBCHDh2q1hrrjAD/ABU0QlatArRa5d+lVstuD4C/SSHqBAKBQBCYBPgHqLcsXrwYkydP9kklcF1R0zXPnDkTP/30E9LqS2/BS5cAp+IhFyQJ+Pln9180/vc/4MCByr8kJyQAzZvXbK0VIESdQNCYEU6dwB8E8AfouHHj8OWXX7rcPnz4cKxZs6bSx6ekpGDy5MmYPHmy47b77rsPI0eOrNI6qkN9FI8BwwMPANu3V76dp785gwG45prKHz9gAEspqCWEqBMIGjMqVc1nt1K+k0DgLQH+Afq3v/0NixYtUtzmTdWvJ0JDQytsFSMIAB59FNi3DzCZKv6i6um+yr7cqlRAcDAwfnz11+gFovpV0HjJzwdyc/29CoGg8fHoo0BISOVOW00+QENCqv0BGhwcjMTERMUlJibG/tQSZs6ciZYtWyI4OBhJSUmYNGkSAJaneOHCBTz33HNQqVSOpP3Fixcr+grOnDkTvXr1whdffIGWLVsiIiICTz/9NKxWK95++20kJiYiPj4es2bNUqxr3rx56N69O8LDw5GcnIynn34aRqMRALBlyxY8/PDDMBgMjueeOXMmADYJ5F//+heaN2+O8PBwXH/99diyZYti34sXL0bLli0RFhaGu+66C7levDdmZGTggQceQJMmTRAeHo5rrrkGe/bscbvtvn37cMsttyAuLg56vR4333wzDh486Li/ovMKAB999BHat2+PkJAQJCQk4B//+Eel66sSY8Yw97d9+5p/0XVGrQY6dGD7HzPGt/t2fqpa3btAEKgYjcA99wB33AGkp/t7Nf7DT7NfBY2cevwBunz5crz77rv45JNPcOrUKfz000/o3r07AGDFihVo0aIFXnvtNWRmZiIzM9Pjfs6cOYPffvsNa9aswffff4/PP/8ct956KzIyMrB161bMmTMH06ZNU4gktVqN+fPn4+jRo/jyyy+xadMmvPjiiwCAfv364b333kNUVJTjuf/1r38BACZOnIhdu3ZhyZIl+PPPP3HPPffgb3/7G06dOgUA2LNnD8aPH4+JEyciLS0NgwYNwhtvvFHheTAajbj55psds5r/+OMPvPjii7B5cO6LioowduxY7NixA7t370b79u0xcuRIFNlbgVR0Xvfv349Jkybhtddew8mTJ7FmzRoMGDDAm5eranTpAhw86Pu/m7Fj2X7tfSJrFUmgwGAwSAAkg8Hg76UIapP//leSevRglzFjJMli8feK6gT6+05PT2d/5/HxkpSYWKOLIT5e/M80Ujy9X5aWlkrHjh2TSktLK96B0ShJ48ZJEvPefHN5+GFJKi6u9jGNHTtW0mg0Unh4uOIya9YsSZIkae7cuVKHDh2k8vJyt49v1aqV9O677ypuW7RokaTX6x2/z5gxQwoLC5MKCwsdtw0fPlxKSUmRrFar47aOHTtKs2fP9rjWH3/8UYqNjfX4PJIkSRcuXJA0Go106dIlxe1DhgyRpk6dKkmSJD3wwAPSyJEjFfffd999LvuS88knn0iRkZFSbm6u2/tnzJgh9ezZ0+PjrVarFBkZKa1atUqSpIrP6/Lly6WoqCjF+fKE1397lbF4sSSFhEiSRlO9v0Otlj3+yy9rtg473moT8RVb0Hi4coV1/f7vf4GvvmK3qdVAWhrgJjFaIBDUMuHhwKJFwOLFLFyq0VRvP1ote/yXXwJffAHUsOnxoEGDkJaWprg8+eSTAIB77rkHpaWlaNOmDR577DGsXLkSFudiDi9ISUlBpKzXXkJCArp06aIYRp+QkIDs7GzH7xs2bMCQIUPQvHlzREZG4qGHHkJubi5KSko8Ps/hw4dhtVrRoUMHREREOC5bt27FmTNnAADHjx/H9ddfr3hcZdNF0tLS0Lt3bzRp0sSr471y5Qoee+wxtG/fHnq9HlFRUTAajbh48SKAis/rLbfcglatWqFNmzZ46KGH8O2331Z4zD5h7Fjm9rZtW3U3Wa1mj6sN16+yp67TZxMIqoEkuRbAVYsNG1hy9oIFrKlpSgrwyivsvkWLgNp+kwhERPhVEAgE2AdoeHg42rVrp7iQeElOTsbJkyfx0UcfITQ0FE8//TQGDBjgmKLhLc4jrFQqldvbKJx5/vx53HbbbejRoweWL1+OAwcOOHoVlpeXe3weo9EIjUaDAwcOKETq8ePH8f7771dpzXKqWvgxduxYpKWl4f3338fOnTuRlpaG2NhYx9orOq+RkZE4ePAgvv/+ezRr1gzTp09Hz549a7/Kl8Kxd91VtcfddRd7XOfOtbOuChDvxoKARpLYl/hFi4CyshruzDm/5ZlnWE5dcjITeatX1/AJ6iFC1AkChXr0ARoaGorbb78d8+fPx5YtW7Br1y4cPnwYABtTVRsjqg4cOACbzYa5c+fihhtuQIcOHXD58mXFNu6eu3fv3rBarcjOznYRqomJiQCAzp07uxQ47N69u8L19OjRA2lpacjLy/Nq/b///jsmTZqEkSNHomvXrggODkZOTo5im4rOq1arxdChQ/H222/jzz//xPnz57Fp0yavnrtGhIcDSUnMDfYGrZa10fHFiLxqIN6NAx2zmYUUfv+9UfYDKygAcnLYdSXvMZWTlcWuJ08Gfv0VGDqUhXseeIDd/s03oj2HQOBPAuQD1GQyISsrS3EhAbJ48WJ8/vnnOHLkCM6ePYtvvvkGoaGhaNWqFQAWVt22bRsuXbrkIlpqQrt27WA2m/HBBx/g7Nmz+Prrr/Hxxx8rtklJSYHRaMTGjRuRk5ODkpISdOjQAaNHj8aYMWOwYsUKnDt3Dnv37sXs2bPxyy+/AAAmTZqENWvW4J133sGpU6fw4YcfVtqT74EHHkBiYiLuvPNO/P777zh79iyWL1+OXbt2ud2+ffv2+Prrr3H8+HHs2bMHo0ePVrh9FZ3X1atXY/78+UhLS8OFCxfw1VdfwWazoWPHjjU8q15gswE//OB9uMhiAZYs8dtniRB1gc7SpcC8ecDTTwPjxgHPPgvMn99oxIcsnQQHDwJHjwJ//FHNcCx9q23VStmQ9M47gYgI4MIFYMeOmiy3/iGcOkEgESAfoGvWrEGzZs0Ul5tuugkAEB0djU8//RQ33ngjevTogQ0bNmDVqlWIjY0FALz22ms4f/482rZti6ZNm/psTT179sS8efMwZ84cdOvWDd9++y1mz56t2KZfv3548skncd9996Fp06Z4++23AQCLFi3CmDFj8Pzzz6Njx4648847sW/fPrRs2RIAcMMNN+DTTz/F+++/j549e2LdunWYNm1ahevR6XRYt24d4uPjMXLkSHTv3h1vvfUWNB7yIj///HPk5+ejT58+eOihhzBp0iTEx8c77q/ovEZHR2PFihUYPHgwOnfujI8//hjff/89unbtWpNT6h07dyo/iOzQX5xbqyU7G/AgbmsblSQ1QvunAgoLC6HX62EwGBAVFeXv5QCjRwNHjrje/tFHwI031v166gBJYg3n4+OBPXvcO3QDBwLXXlvFHQ8ezPrSLVniGqp55x3g66+B/v2BDz+s7tIDHvr7Tk9PR3JyMgwtWyKqhqKs0GaD/uLFwPmfEdQZnt4vy8rKcO7cObRu3RohISHe73DHDvY/WFV27Giw74eCqlHtvz1PTJoEaeFCqJxG1ZXbbPjQZsMkrRZaSQLkYW+tlhkxNchZdMZbbSK+YgcyFy4wQafRMMExdSowaBC77/vv/bu2WuTUKXZ4GzbwL0i9ejEzjdz6c+equFOTiTcabtbM9X5qZLljB3f0BAJB3bJ0qWvolSpbn3vOfYWsVsseJxD4GrtzLBd0kr0wZ8699+J5AB+NH+9a4OPHEKwQdYHMb7+x6+uvB3r0AO6/H5gyhXVL376dib4GSEYGu/7rLz4esnNn4KmngPvuY79fvqz8YlQptKOQEECvd70/JQW47jpmE65YUd2l1z9E+FUQKLgLvVJl64EDLA3FXYWsn3OYBA0YWeiV/rpU9kbC5vbtAQAn1Gr3ldd+CsGKd+NARZK4qJMPgm7ZErDndmDJkrpfVx1AucVmM1BczH6m1JS4OJYTbTa7FrNWCG3crJnn0UTk1v30E3uCxoAQdYJAwV3uknMnfk8d//2YwyRowCxdCgmABYBZpYLl888dfRDj4uIAgI1T89Rv0Q8Osng3DlTWrwfOn2fxRgq5Evfcw66dZvc1FJwLxvR6NgcZYHosOZn9bO9Z6R1yUeeJwYOBqCjg6lXg5Mkq7FxQVbZt24bbb78dSUlJUKlU+OmnnxT3r1ixAsOGDUNsbCxUKhXS0tL8sk5BHUIfgBpNxY2EA+gDVNCAsdlg+/57qACcBrB57lxoH3nEcTcVxigqnOX9FgG/OMhC1AUiZjNPsBw7liWTyenVi11fvgzY5+Y1FEpLuTtHyAqkAFRT1FE7k4pEXVAQ0KkT+9k+E7HBo1LV3KWrbCi7G4qLi9GzZ09H81R39990002YM2dOTY9QUB+g0CsAtGvn3dzWAPgAFTRgSktxQavFFwAe7d0bwydPVtytcOrkkJs8bhz72ywtrZPlEl42AxLUKUuXssSyuDj2xuWMXg8kJjKhcuoU0KdP3a+xlqAvPZGRTNuWlfHQK2FvB4XLl9k2Tk3Y3UNOnb3Zpkfatwf27gVOn67SuustvgifVqOAfsSIERgxYoTH+x966CEArIu+oP7iabi7C6Wl7APw1ltZ9bm3fefoA3TiROaul5YyJ0/QaPFVQ4+zV66gc04OygFs+M9/oHL68urWqSPITbbZ6jw9RYi6QGTDBnY9frzyzc1mY01zS0uBDh2YqDtxokGKuvh4Jub27mVf3OXExDDRV1TEItT2fNWKcefU5eWxJGu5FUhP1lhEnQ8pLCxU/B4cHIxgipsLGhU6nQ5qtRqXL19G06ZNodPpXD4UFWg07H2PPgCrMj5GowEWLuQfoDUePSOor0iShKtXr7oduVZVpk+fjnKLBbfccguGDBnicj+JOhenTo4f8o2FqAtEKFmYQoEAE3ILFrDOuwBAQ5T/+qtu11bLkKiLi2P1IDfe6Pp/oVIBHTsC+/czTeuVqKM2JSTqioqA//s/1urkX//iidi0s8YSfvWhU5dMcXE7M2bMwMyZM2u2b0G9RK1Wo3Xr1sjMzHQZZSUQ1CYqlQotWrTw2ATZG9LS0vDdd98BAN566y2321D4taysDCUlJQjz01gwZ4SoCzQkiSXqA0oHackSJug0GtbLg9qZNLCEfrmoU6k8p2t17sxE3enTQHk5oNNVsFNJ4k5dZCT7Rr96NWA0stvefZcJvJQUnp+Tm8ucPBLPDRUfirr09HRFU0zh0jVudDodWrZsCYvFUiuzUAUCdwQFBdVI0AHA1KlTIUkS7r//fvTxEAmLiIhAUFAQzGYzcnJyHNM5/I0QdYFGURFzjwCmbAAmQvbvZz9PmsQa5NI4q9OnWQjR21mJAYwkKUVdRSQkANHRbCbs6dPcaHNLTg5TfioV8PrrrC0MiTzKTfz6a+CVV1i4u0ULltN46hTrESjwiqioKDFRQqCAwmA1DYUJBHXFli1bsGbNGmi1Wrz++uset1OpVIiLi0NmZiZyc3MDRtSJ6tdAg1y6yEhWrg+wMs/CQvZ7jx6spYlOxxyW8nKWWNYAKCxk6TAqVeUGmUrFJ32dOFHJjimUGhXFHpieziosOnRgoVcAOHOGnUuAh2AbQ16d6FMnEAgEAFhO3ksvvQQAePzxx9HOOaHbiQqLJfyEeDcONOiPQ17y+eef7LpLF+bIJSSw/nUk+hpICDY9nV0nJnpnPLZpw67JdPMI5R1SLLdHDyA2FvjnP1mIOzqahbTPnmX3N6ZiCT+JOqPRiLS0NEf/uXPnziEtLQ0X7X1q8vLykJaWhmPHjgEATp48ibS0NGRV+mILBAJB9Vi5ciX27t2LsLAwvPLKK5Vu71WxRB0jRF2gQUUS7kRdjx7sWq1mIUQahNpAxAelCVLLksqIjmbXxcXKyUIukOgNCQGaN2fu3HvvAa1bM6HXoQO7n8QfOXX1qAglKwvYvBn47jvW4SHQ2b9/P3r37o3evXsDAKZMmYLevXtj+vTpAICff/4ZvXv3xq233goAuP/++9G7d298/PHHfluzQCBouFgsFvz73/8GADz//PNIrKz9FXixRCA5dfU/EauhIU8q276d53YBQPfufLtWrfiYhSp14Q1MJIkfhrepCaGhrEed2cxSEWNiPGxI4iwkBLjhBtfqiw4dWO8UEn8dO7LrU6fqRb7ilSusvRcJ24ceqkKXGz/1qRs4cGCF/aTGjRuHcePG1WBRAoFA4D2LFi3CyZMnERcXh39RWk4lBKJTF9ifVo0RyqmLigL++19+e7NmymrYli15yWcDEHX5+awYVaMBkpK8e4xKxU5Tbi5gMHgQdeXlwLlz7OeQECA11XUbEnGnT7OilJYt2RQPo5GFZMnJC1DOnWOCLiwM6Nevisv1k6gTCASCQKGkpMTRfun//u//vC748jhVwo8IURdokKgj20WvZyHDW25RbpeSonTqJKla45oCBQq9JiV5OSHCDok6p7637PxdvMgsPKuVqcXERJaP6ExyMhN8JSXMGW3ZklVh7NsHHDkS8KKOJsV16gTMnevftQgEAkF944MPPsDly5fRqlUrPPXUU14/ThRKCCqHRB0NQL3hBmDqVOCaa5TbNW/OCyXKyvjj6ilkNjrn01VmAtEXKhdRd+ECq2jdvp39Tvl07tBoeHHE8ePsumtXdm1P1A9k6NgjI6vxYFH9KhAIGjH5+fmOBsOvvfZalfprBmL4VbwbBxqk+OlaPlVCTlAQc5gaSAiW/ido4IMkAV99BTz5JK+KdYdez64NBqc78vPZNeXThYZWHNelIpQ9e9g1Nb6rB6KOnLpqiTqVquaCrh47xAKBoHHz1ltvoaCgAN27d8fo0aOr9NhALJQQoi6QkE+TIJVC+V7uaNWqwYg6Gu5AwmTpUmD9ehYRpeJfd7h16mw2fv5oRFFISMWiLjWViZNTp1jlATl1J0/y/nUBCh276PsrEAgE3pORkYH58+cDAGbPnl3lSRTCqRNUjNHIh1GTE1eR/ZKc3CAqYM1mPkQjPJy15Fi9mt9fUWsyEjIKp66oiAk7gIvk4GDP4VeA9Ufp1o39/PvvbFu9nuXmBfgcWHLqQkJYXUeV6hZE+FUgEDRSZs6cibKyMvTv3x8jR46s8uMDsVBCvBsHEmThBgezD0pPoVeigYg6Sh/UatnhbNjAfqdi34pEHYVfjUZWDwGAKzyNhs0RA9iOmzVjIs+T89avH7v+/Xd2TSHYo0ercjh1Dom6oiJgxgxg4cIqPFiIOoFA0Ag5fvw4Fi1aBACYM2cOVNVIIyGnzmg0wkTOhJ8R78aBBDUepvLPikKvgDKnjspH6yEUeg0PZ6lwR46w30eNYtdXrnh+bHg4026SxMWNQ8iRla5WM0svJwdIS/PcVPiaa9j5zM5mVbD1pFiCwq8kfgO8WFcgEAj8zv/93//BZrPhjjvuQKq7VldeoNfrobZ/qQ0Ut06IukDCOdmSJht4Qq9n464AVk1QT/uFkVMXEQHs2MEOo2NHXruQn8+j0s5QrzrALm4kiYs6UjvBwWwj6lfnUlVhJyQEaNuW/XzmTBWGy/qXoiJWB2IwsO8DVXp/Ek6dQCBoZOzevRsrV66EWq3Gm2++We39qNXqgGtrIt6NAwmypLRaNtG+sqn2AG/FYTLV27Ymcqdu2zb28803M5EXEcF+r8itU4i6khJ2LlQqIC+P3aHTsY0oz660lP/sDA2UPXeOi7pTp1jiX4BSUMAbL/fpw86j1whRJxAIGhGSJOGll14CwCbXdKE0m2oSaMUS4t04kMjMZNc6HXeMKqNlS55XF+COkifIqTOZmHgLCQGuvZbdRuP3vC6WoP4nTZqwECrAzk90NG/fIUn8SZ0hUXfmDKuWjYpixRIBPF83L4/Pwa3h+5NAIBA0aH777Tds27YNwcHBjikSNSHQiiWEqAskSNQFBXEHrjJatmTzoYD6McndDeTUUa1H//68r7I3oo5cKmN+OXDpEvslJYXnGep0TCX26sWriSsTdRkZzJ0jt46aEgcoWi0zIKnNntcIp04gEDQSbDYbpk6dCgB45plnkJycXON9ivBrNZk5cyZUKpXi0klWHVpWVoYJEyYgNjYWERERGDVqFK5UFLMLRKinmk7nvahr0YLH2w4cqJ111TLOok4+EY2melUk6ihKHV+ewcKqkZFM6Z09yze47jogLo6fK0+iLjaW5SparUwUBrioKytjgg5g4ecvvxQtTQQCgcAd33//Pf7880/o9XqHuKspIvxaA7p27YrMzEzHZceOHY77nnvuOaxatQo//vgjtm7disuXL+Puu+/242qriCQpG+WmpHj3uObNeeLZsWOeKwoCGNJXZjMrjqCpEgB36irS5yTq2gTbz1+rVixkSt+cUlO58KBzRUrSGZUKaN2a/Xz2bMCLuqIiXixtNLJeyXv3+ndNAoFAEGiYzWbMmDEDAPDiiy+iiTc5614QaFMl6pWo02q1SExMdFzoZBoMBnz++eeYN28eBg8ejL59+2LRokXYuXMndu/e7edVe0lhIYufASyfjlqVVEZwMBMxWi0TMocP194aawnSVxYLMGyY8j5vwq/R0UB4kAl6XSkkAGjalLlsksRE2pAhfOPKnDqA5zPKiyX++ostMMAoLOSirqSEXX/5ZRV2IJw6gUDQCFi0aBHOnDmD+Ph4TJo0yWf7FU5dDTh16hSSkpLQpk0bjB49Ghft8boDBw7AbDZj6NChjm07deqEli1bYteuXRXu02QyobCwUHHxC+TSabXeh16J9u3rbQjWauXmYmQk0L278n4SdUVFns01jQZo15S1KTHrItg53L6d3RkWxlvDFBez8tqiIqaAKquAPXuW9QIMD2dVHNQSJYAoKuL6v0ULFrqWh68rRYg6gUDQwCkrK8Nrr70GgPWni6CIjQ8QhRLV5Prrr8fixYuxZs0aLFy4EOfOnUP//v1RVFSErKws6HQ6RFMJoJ2EhARkVWTxgM170+v1josvEierhbxIoqIZpe6Qi7pDh3y7rlqGDDObjRVIOOuDkBDeio+KWd3RSs9EXaHKXgpLlcCJiXynBw+yqtbLl5mLR9aWMy1bsuusLBYTpm6+npoW+xF5+PWGG4B164C77vLvmgQCgSCQWLhwIS5duoTk5GQ88cQTPt23KJSoJiNGjMA999yDHj16YPjw4fj1119RUFCApUuX1mi/U6dOhcFgcFzSqSVGXSNvZ1JVUdeuHRd1R47UqybE58+za4uF9aZzB+nsil6a+BAm6q6W2+eG0T+Y/VsUACboABbmLivzHILV65ltKEmsmpacvgCcASsPvzZtWo0dUJuXmlyqMV5HIBAI6oKioiJHg+EZM2YgmFqA+QgRfvUR0dHR6NChA06fPo3ExESUl5ejgCYJ2Lly5QoSKX7ngeDgYERFRSkufoFsqKAgZaWANyQlyfp6GOtVE2JKAdTpPPdaJlHn0amTJESBhc0vFthFHU2NoPNiMCjPi8HAJ044o1Ipn5REXQD2qsvP59WvVf0uAECEXwUCQYPmvffeQ05ODtq3b4+xY8f6fP+iUMJHGI1GnDlzBs2aNUPfvn0RFBSEjRs3Ou4/efIkLl68WO2ZbnUOWVZhYTze6C1qNQsRUnJVAOZ+eYK0V0VTEEhfUcsTF4xGaCQryq0aXMh1qm4l+4pcOhIgBQWyYbGVPCnlOAZg+JXeRywW3v5FIBAIBEBeXh7eeecdAMDrr78OLX0D9iHk1BkMBlgCoJiu3oi6f/3rX9i6dSvOnz+PnTt34q677oJGo8EDDzwAvV6P8ePHY8qUKdi8eTMOHDiAhx9+GKmpqbjhhhv8vXTvoKa5zZpVL5zVrh3v2EsCph5AEdCKRF2LFuw6I8NDZNmuDLNKomAoVKG8XLbj+Hh2Teekb192fktLgbQ0YP9+9zulvLr0dO7UXbni2d3zE/n57LqszLupci4Ip04gEDRQ3n77bRQWFqJnz5645557auU5YmJioLJ/ZufRaEo/Um/ejTMyMvDAAw+gY8eOuPfeexEbG4vdu3ejqd2Jeffdd3Hbbbdh1KhRGDBgABITE7FixQo/r7oKUGiQxERVad+ejwujprv1gPJydu1U46KgWTNW4VpWxp0pBXbHjfLp8vPBS2ojIoCVK7kT2r07d+Fyc4HNm923gSElmZ7O9kEh8QALwZLGLC3lkeYq4SdRt23bNtx+++1ISkqCSqXCTz/9pLhfkiRMnz4dzZo1Q2hoKIYOHYpTAZjTKBAIApPMzEzMnz8fAPDGG29AXUtfPrVaraNIMxBCsPVG1C1ZsgSXL1+GyWRCRkYGlixZgray+aghISFYsGAB8vLyUFxcjBUrVlSaTxcwlJTwSkxyhapKmzbcqQvAMKEnqKsIGWru0Gp5vpjbYgm7K1eiZnZfcaGVq8Xz57kQ69aN2VnDh7PefqSCNm5kAk9O8+bM0SsqYk4ghWADTFjIRV1FwjjQKC4uRs+ePbFgwQK397/99tuYP38+Pv74Y+zZswfh4eEYPnw4yuphc22BQFD3zJo1C6WlpUhNTcWtt95aq88VSG1N6o2oa9CQS6dW8x5pVSUsjLtL9cSpKytjDhxQeZJ/hRWwdlFn0jJRZ74sK4gwmdj1P/8JjBjBhFp0NNC1K3NF4+NZQtovvyj71gUH8yZ58hBsgAlmOjyzmZ/LKuEnp27EiBF44403cJeb/iuSJOG9997DtGnTcMcdd6BHjx746quvcPnyZRdHryEye/ZsXHvttYiMjER8fDzuvPNOnDx5UrFNVlYWHnroISQmJiI8PBx9+vTB8uXLFdvk5eVh9OjRiIqKQnR0NMaPHw+jU7PHP//8E/3790dISAiSk5Px9ttv1/rxCRoPhw4dwj/+8Q/88ccfdfq858+fx3//+18AwJtvvukIj9YWgdTWRIi6QICqBTSaapYw2unalV0XFQEBENuvjOxs3o6jIqcO4KLur794CpzNBhhyzA5XzhrMRJ10wV5RodEwmy8qyrWiOCqKCbwOHZiAu3KF9bGTQyL54sWArYCtcV6uD0WdcxNvEynOKnLu3DlkZWUpmonr9Xpcf/31lTYTbwhs3boVEyZMwO7du7F+/XqYzWYMGzYMxbIWPGPGjMHJkyfx888/4/Dhw7j77rtx77334pCsT+Xo0aNx9OhRrF+/HqtXr8a2bdvw+OOPO+4vLCzEsGHD0KpVKxw4cAD/+c9/MHPmTMeHoUBQU+bNm4fly5fjtttuQ3Z2dp0976uvvuoYSDBw4MBaf75AamsiRF0gQNMkNJrK1U1FdOxYrypg6bBtNh459kSXLuz6zz+Br75ijykrA6yF7IPOGhSMyBhW2aTKsu+YzkXz5q47pNY1JhNvkLdjh7IQgubvnj2r7FUXgH0AA6FWITk5WdHIe/bs2dXaDzUMT3Aq5/WmmXhDYM2aNRg3bhy6du2Knj17YvHixbh48SIOyKbF7Ny5E8888wyuu+46tGnTBtOmTUN0dLRjm+PHj2PNmjX47LPPcP311+Omm27CBx984EhjAYBvv/0W5eXl+OKLL9C1a1fcf//9mDRpEubNm+eX4xY0PP78808ALCf+/vvvr5Pq0OPHj+Orr74CwEKwdYEIvwqUkLoJCeHWVXVo04YXS9SDClj64qZSVV7w26YN8PDDbLsNG4Dff7eHb00sF9ESHO4wObVXZY2cAfeiLiKC7YwmRjRvzn7ev59vIxdyrVqx16a4mFcq+5nCQt6jLiysmjvxoVOXnp6uaOQ9depU3xxoI8dgd/LlA8j79euHH374AXl5ebDZbFiyZAnKysocrsSuXbsQHR2Na665xvGYoUOHQq1WY8+ePY5tBgwYAJ1szvTw4cNx8uRJ5FNZtRMBM1ZREPCUl5fj+PHjAFg/2M2bN+Pf//53rT/v9OnTYbPZcOedd+K6666r9ecDRPhV4MyVK+y6or4e3tCyJRAayn4+erRm+6oDKEIs+0ypkMGDgQcfBMaOZTrYbAa0JrtTFxyO0FBWB6HNs+fUkUB2J+o0Gq6EiovZjC2AnTf6NtmmDdsuP58pKMp3DJC8ui1bmC61WqtZ+Qr4VNQ5N/Gubud2KnC6Qv8XdrxpJt7QsNlsmDx5Mm688UZ069bNcfvSpUthNpsRGxuL4OBgPPHEE1i5ciXa2Qt6srKyEO/k+mu1WjRp0sThdmZlZbl1Q+k+dwTMWEVBwHPixAmYzWbo9Xp8/fXXAID//Oc/WLZsWa0958GDB7Fs2TKoVCq8/vrrtfY8zginTqCECiUiI2u2H52OC5gjR2q2rzqAev/KXaaiIibWPNG1K+tKMmAA+z2onIm6oFANNLCgWzdAV2T/tqTTsYt8VJicCFmj4pQUdv7LynjeXHAwc+gAJuQ6duQ/BwB797Jro5H1qy4r8zzOtj7RunVrJCYmKpqJFxYWYs+ePfWnmbiPmDBhAo4cOYIlS5Yobn/llVdQUFCADRs2YP/+/ZgyZQruvfdeHHbXnseHBMxYRUHAQ6HXHj164J577sG//vUvAMDDDz/scPB8zbRp0wAADz74oOJLUG0jnDqBEgp1+KInBRVLXLyorOYMQKg7hd4+2SszE/j731mRKrWVkyNJ3NWjHDJy6oKCVIhFLjq3LEZIqf18hoSwClZPCWckoouK2Db0JmB/MwKgrHrt0IH97FSJ6C9IexYUMIfyyBFgwQJg7doq7MRP1a9GoxFpaWlIS0sDwIoj0tLScPHiRahUKkyePBlvvPGGoxBgzJgxSEpKwp133lnl56qvTJw4EatXr8bmzZvRgop2AJw5cwYffvghvvjiCwwZMgQ9e/bEjBkzcM011zhaxCQmJrokplssFuTl5TnczsTERLduKN3njoAZqygIeOSiDmAu76BBg2A0GnHXXXf5PHS/fft2/Pbbb9BqtZg5c6ZP910ZolBCoISqX6s6HswdvXqxmFx5uYf+H4EDRTnpsOfMYSHZq1eBRx91XT61nistZe6UzWKDylTKbgwJgQpAlNqIKFuB47YK45Jypw7gou7CBX6bvOqVRF0AOHU5OdyVy8lhh0mpmSSSvUKlqrmgq0a7gP3796N3797o3bs3AGDKlCno3bs3pk+fDgB48cUX8cwzz+Dxxx/HtddeC6PRiDVr1iCksooaP2G1WvH555/jwQcfxNChQzF48GDFpSpIkoSJEydi5cqV2LRpE1q3bq24v8T+wjs3U9VoNLDZv8ilpqaioKBAUVyxadMm2Gw2XH/99Y5ttm3bBrPMGl+/fj06duyImGrH8wUCBrUxIVGn1WqxZMkStGjRAidPnsTDDz8MyUdFZ5Ik4f/+7/8AAOPHj3ekIdQVgTT/VYi6QIAERE0qX4nWrXkpaYA4Sp4gLZCYyIogNm9mKWytWjFhN2eOcnsSdQUFwDvvAAd/L4FKkpiw0GohqVmjNnWx/XyGhjKF46niikRdcTFzNaOj+awt+uckIXfxIp/2kZHBXzM/sXs3f5nz89mySdTVpCtOXTFw4EBIkuRyWbx4MQBApVLhtddeQ1ZWFsrKyrBhwwZ0oNciAHn22Wfx7LPPwmq1olu3bujZs6fiUhUmTJiAb775Bt999x0iIyORlZWFrKwslJayLzCdOnVCu3bt8MQTT2Dv3r04c+YM5s6di/Xr1zuczM6dO+Nvf/sbHnvsMezduxe///47Jk6ciPvvvx9J9j+QBx98EDqdDuPHj8fRo0fxww8/4P3338eUKVN8em4EjRNy6uR///Hx8Vi2bBl0Oh1WrFjhs76I69atw/bt2xEcHIxXXnnFJ/usCoHk1Pl+uq2gakgSt1zkIQ9JAjZtYj8PGuR9iKtFCyZmSkuBP/4Ahg3z7Xp9RGEhb5b700/AgQNM5PXoAbz4IvDAA8DOnUzAUVSaRF1wMNNUORdLgBj7DSoVVBHhbMel9vNJlRNlZVzAyQkJYeWjFgt7DSIimOWVl8eUUkoK+z02lk2cKCgAmjZlivPUKcDuMvmDgwd5KLqggEWSc3LYOaxSLUE1w6cu+2jkLFmyBEuXLsXIkSNrvK+FCxcCgEt/rUWLFmHcuHEICgrCr7/+ipdffhm33347jEYj2rVrhy+//FLx/N9++y0mTpyIIUOGQK1WY9SoUY6xSQDr/bdu3TpMmDABffv2RVxcHKZPn67oZScQVIfs7GxkZWVBpVKhK6UE2bn++usxf/58PPnkk/j3v/+Na665BkOGDKn2c0mS5KiqnTBhApq7K4yrZcipy8/Ph9VqhaZaneB9gxB1/sZo5JUB8ga5hw/zZrjh4bw6szJCQoCEBCZM5LlhAUZGBru2WoEff2RiJD+faazNm5kmDQ1lE7w6d2Yal+od6H9WU24Pvep0TFiEhMCSZ4DW3vRWioiAKiKCibrwcNcwoUrFhFxBAcurI1EH8DxHgL0uublMzHXsyK7/+suvoi4riy3fYmGHR61Nmjb1vpoYgBB1PkKn0/ks5ONNSKp9+/YuEyScadKkCb777rsKt+nRowe2b99epfUJBJVBBTtt27ZFhJsv1I8//jj27NmDRYsW4f7778eBAwfQsppzz1esWIGDBw8iIiICL7/8co3WXV2o3ZDNZkNBQYHDufMH4t3Y3+TkMGUD8NBfSQmwdSvfZscOroK8gcJUATwujAp+Sc9eucJy6P74gx16QQG7fcsW1hbOHnkCAJw4wQ4xPkIm6jQaQKXClXSTozmw1Kw5u90qmwXrjHNeHb0G8okcFBbPzg6YvDpKw6RcY4ow14fQa0Pk+eefx/vvv++zHCGBoD5D+XSeUg9UKhUWLFiAPn36ICcnB6NGjarWXGer1eoIt06ZMgVNmzat/qJrgE6nQ6S98M7fIVgh6vyNXNRRJdnOncx+adqU21Rbtni/T3tiKoxGrp4CDDLCSGtRBPrwYWD7di7qKE9MbqAZDKwepKlc1NmtKkO6vU+KWg1Lsxa8b5/R6H4SBIk66q/izqmjN4qrVwFyY/wsmOn9Lz+f6VYSvVUWdX6qfm1o7NixA99++y3atm2L22+/HXfffbfiIhA0JpwrX90RGhqK5cuXo0mTJti/fz+eeeaZKj/Pt99+i+PHj6NJkyZ+zwUNlGIJ8W7sb65c4a1HSNTRxILUVJ5Pl5nJk/cro107Plni2DHfrtdHkMNEYoTGhJpMLLRoNrP74uOZZouIYJos0z4sIiICaBrpKurMVwvYbVotTPEtIIWF8zilu1mk8rYmksSdOoOBi225qKMGxGfO+G1cmCTxp87LAzp14tpdiDr/EB0djbvuugs333wz4uLiFA169VUqRxYI6j/eiDoASElJwffffw+VSoXPPvsMn332mdfPUV5ejhkzZgAAXnrpJb//nwVKsYTIqfM3ZEUBSoEBMNcoPJwJidOnmY01aFDl+2zZknX0NZmAtDQ+2zSAoNnkpaVMoJSXs8OnQ6dt4uO5zioq4mFGi0VyDb8CCC+29+bSamFukggb1NCEhbGdFRXx/DsiMpK3gDGZ2PkOCmKqsqCAFUmQqMvOZsUTKhUTfXl5vmlDU0WKirhmv3oVuO02pj9DQ33T6lBQdRYtWuTvJQgEAYHZbMZR+0Qjbyq/hw0bhtdffx3Tpk3DhAkT0LNnT1x77bWVPu6zzz7D+fPnkZiYiIkTJ9Z43TUlUKZKiK/Y/oasp+Bg5jaRRQVw5476px07xj7Rf/gBGDMGsI9ecSEmhocR5bNMAwgKH5aWsotaDdx7r3Ibk4nVfNChyNPcdCiHTmuDBCicushCe+6hVgtLTFOWsxcezp7AZmMWodxh02j4eLbCQibYnEOwlFNnMLD9UKWGn0Kwp06xw7XZ2BKplV50dDVaxgmnzqdcvXoVO3bswI4dO3A1QFMfBILa5K+//kJ5eTkiIyPRiibyVMLUqVPx97//HeXl5Rg1alSl/zslJSV44403ALDpKmHVHn7tOwJlqoR4N/Y39MfrnLAfFMTtmDZtmPNWXAxcey1w//1M0I0ZA8ya5RoGVKl47tfJkzyMGEBQgURxMRNvnTsDN96o3Ka8nAmWoCDm0FHIVq8HQsGEryooCCYzFxbheUzUScHBkIJD2fOoVNzCMplcZ2mReKYncC6WCA/nuXk5OTwE6ydRd+IEuyaXk0Ku7rq2VIoQdT6huLgYjzzyCJo1a4YBAwZgwIABSEpKwvjx4x3NggWCxgCFXrt37+7SINsTarUaX331Fdq3b4/09HQ88MADsHjqLwpgwYIFyMzMREpKCh599FGfrLumBEr4Vbwb+xsqY6TQKwkLCgsCzE3q2pWFA0+eZL9T8vW0aYC7tgUdOrAPW5OJ5X8FGJRGWFLCXLs+fZQdQnr1YodJXV5Il2o0TFORqINOhwuXtbBJ7FwFF7AxR5YQpnAc7wtBQVz1OFdZOYs6Z6dOpeJunTyvzk+i7sIFdu1c21HT0cGC6jNlyhRs3boVq1atQkFBAQoKCvC///0PW7duxfPPP+/v5QkEdYbzJAlv0ev1WLFiBcLCwrBx40bHHFdnDAYD3nrrLQDAzJkzoatSD6faQxRKCBj0yUxJnvS78yd0795sqgHAwrHLlwPPPst+X7XKdb9JSczdAwKuXx0NgQCYMVlWxg6ve3fgwQeBiROBvn1ZE1157qtazQ4rJgYIU3FR98dxnSM1UVNUAAAoDWFKR/Flj5xPi0XpbspFnSRVXAGbne13UZeVxa4LCljkOSiI/S6cOv+xfPlyfP755xgxYoRjJurIkSPx6aefYtmyZf5enkBQZ7ibJOEt3bp1wxdffAEAmDNnDlasWOGyzbvvvou8vDx07twZ//znP2u2WB8inDoBT84HeHjQk6jT6/l91KTx739n17t2ue67WTMu6uzfnAKFkhJuQhqN7BT07MlcuG+/BT74gIm3m25iosViYUJm4EDW+1ejAaJ19pCWToc/jgfj/HkAkgRVCavAyA9izprNxl1B6mUHQKn2IiLY7WYzU5hU/HD1Khd/7ipg/SDqLBbe7qWggFW+UtGJEHX+o6SkBAkJCS63x8fHi/CroFHhbeWrJ+677z4899xzAICxY8fiBOWbgLlgc+fOBQC8/vrrfp3c4IwolBAwRUNxRXKH5OFXZ6jVSUQEz69Tq5mDJ6+iBZSiLsCcuissQuqYhlBezkQdUVYGXHMNMG4c+/3iReD8eaUmi9KwD8pyTQguXNYyfVVYCJVdJF8JbunQYw79plJxW0s2xBwaDVdEhYVMwGm1bCH0DypvQEyiLieHv151REYG05kWC9P43brxNEwRfvUfqampmDFjhqKBamlpKV599VWkpqb6cWUCQd2Rm5uLS/bPqe7du1d7P3PmzMGAAQNgNBpx1113ochuaLz11lswGo3o06dPwPV/FIUSAvap7Nx4mNw4+p0oLweOHGE/t2jBWpVERvLK2D17lNs3bcqFyvnz3M4JAOTTJMrL2eHIO4NkZbG6BJphevgwzyMjtBYWfi0whyM8XMWcukuXHGItP6y5o7GxIgTrTtQByhCsPJmPxLLcqQsP54ur43xFOncmEzuE7t35n0y1nDqVquYuXZVLbhse7733Hn7//Xe0aNECQ4YMwZAhQ5CcnIydO3fi/fff9/fyBII6gVy6Nm3aOCYsVIegoCAsXboUSUlJOHHiBB5++GFkZGTgww8/BADMmjULqgB73xHhV4HSqXMWdc7/EH/8wT7J9Xo2BDUtjX2q00zY3buV22u1TJjQUNBTp2rlEKoDFZWWl7NLr17K+8nsoKje9u08nRAAC7PaFdvVskgkJzPRZzt33nE+88OaO3SsQtTR+XCurKLkPYptUtsSckfJqaNm0a1bs9/PnfPiiH0HHZPVyg5h6FCuT0X41X90794dp06dwuzZs9GrVy/06tULb731Fk6dOuUy0FwgaKjUNPQqJyEhAcuWLUNQUBCWL1+OgQMHwmQyoX///hg+fHiN9+9r5OFXf44LFO/G/qQqoo6cuNRUJkBKSoDjxz2LOoC5SdSKw8+zSuVQwS+5Tc75tCYTM38oenzunJNTJwtxXS0OR0oKE4eW0xcc57M4JM5R56Do6EJOnXOxBOU0FhYy0UZ9QuSiTqNhT5SXx5oQA64WYi0jF3VxcXwZOh27COoes9mMtm3b4sKFC3jssccwd+5czJ07F48++ihC6f9PIGgE+FLUASyt4b333gMAnLFHRQLRpQO4U2exWFBYx2k5coSo8yfO4Vd54YRz+HXjRnZ9ww2s/wfAcuVI1O3b5+o+JSYCISHs55Mnfb/+akI5YGVlTNQ5O3WlpVygFBSw03Tpkuzw7InnUlAQzDYN4uIArdoGbU6m43yWBUc5qkQVp0Wj4c6SPAQbFsY7+hYVcVGXn8+UlDwke+kSV1N17NRRzr3VCgwezEVetSMdwqmrMUFBQdUaRi4QNDSq286kIp566imMGTMGADBixAj079/fZ/v2JaGhoY4myP4MwTbud2N/4+zUkboPDmaq5upVdjl3Dvj5Z3bfqFF8hMCVK0Dbtsy5Ky0FDh5U7l8u6gIo/EoDM0pLXYskAKZrqfvI+fO8ApZMM8cOgoKg1TJN0aFpHtTFRsc+ynRRju0VFbD2xzmeiFCpeAjWYGAOJyX6UV4dhWQzMnj49fz5Kh59zaDosNUK3HlnDfPpACHqfMSECRMwZ86cChumCgQNGYvFUqXxYN6iUqnw6aefYunSpfjmm298tt/aIBCKJcTsV3/iLOrkodfcXJY3B7CxYDYbMHw4K4yQJCbWyspYKHDIEGDFCuCXX4DrruP7b9ZMGX612QLiA5gKGEpKmAHWti2/z2pl95NRee4c01aZmUw/tWoFh6hTBQdDH8pOVacmV4GLdgdPpwO0QSgrY1qNqkUd4cnQUCboSkt5OxOAhWBzc5lyatmSibjcXPbk7dtz9+7yZVaeC/DiDBKKtQxpSIsFuOUWruOrLeoEPmHfvn3YuHEj1q1bh+7duyOcRs/ZcddvSyBoSJw+fRplZWUICwtDG+oQ4CN0Oh3uuecen+6zNoiNjUV6erpw6hotRiOPDUZHK20X+zceFBWx5m0AQJ3pVSo2FBVgbt3tt7OfV69W7r9ZM2Z5qVRMwGRk1NqhVAXSsSUlrKhUrjMpikUG4/nzyp8BcIctONhhrqWEZ3OxFxbmuJ1OryI6ptMxNSlJ3PUDlE4dwJ06Ss5r0YJdX7rEcuxCQ9kT1OF5pSITSWKHUeN2JsKp8wnR0dEYNWoUhg8fjqSkJOj1esVFIGjoVGc8WEMjEKZKCKfOnxQU8GR9vZ63xzCbmXAJDQW++IIpknbtmCNHJCSwJP2sLGDECCbcDh5kgoPChDExrP1GSAgTL3/9xRsX+4nycm6MFRTwTiEE6TW5kCNN5SLqQkMdOqyZ5ipXbpGRiIlhjysoYNqsrIxpZbUabAGhoUwRlZayn+Xh17Iy9hzUO9BTRWxKCitWOX+eh2NrGdKg1HPTZ+HXmtBI38DlLFq0yN9LEAj8CuXT+TL0Wt8IhLYm4t3Yn8hni0ZE8K681DuspISFXgFg/Hh+P8D7pF25wgQehV1/+YVvo1IxdymAiiWys9m12cwO37kJP+kyCpWeO8fTAc+fBwshU/xWJupizNmK6Rykx65c4aacPIXOEZa2WHjCnVbLRDDA1BJVxJL4TkhgO6OwNxVL1GFeHdV20PLJqRPhV4FA4E98XflaHwmEqRJC1PkTcoDIQiLLNiaGibQpU5iYGDWKDUM9e5YLEFJDOTksnukpBNuiBVcAp0/X6uF4A03WKitjmtWdqFOpuBNFbhtgLzS1WrmyCQlBUBAQqSlBsNkIiVRbbKxD7BmN/PDlkVao1fxJ5D1PSB0Zjdy5Ky9ni9Vq+YL9VAFLxi5Fhutr+LWoqAiTJ09Gq1atEBoain79+mHfvn3VPAj/07p1a7Rp08bjRSBo6AhRJwolBFTtGhXFhAr1q+jcmYVKjx5lIuOjj4Bjx9j9V66wXDm9nhdL5OSwEOy0acCWLcqCiBYteClpHfdUcwdFLo1GppWopy9RVsZqDlQqdunRg0el8/OB0iILQilRzn5c8apsoLwcKhJnsbGOHnclJew0GY3sFCtqRTQaJujkoi4ykp3joiIm4iIj2c8FBczFa96cFUrIRV0dnlcKXScns2Op0dxXwG/h10cffRRHjhzB119/jaSkJHzzzTcYOnQojh07huYU5q5HTJ48WfG72WzGoUOHsGbNGrzwwgv+WZRAUEfk5+fjor1DfGMWdYHg1AlR5y+sVv6JHB0NR1M1jYZVWVJxxODBTPkUFTGbKzOTiToqlqC8uh49mHopKmKOXIcO7PFyUZeezp7Xj0OQKdG/sJCJLHeijpar0bCJCcuX8/sNV00IJRFm3zDWykSdQ5zp9Q5RRy3mqArWanUSdYBnpw7gBSwFBUzQNW/OegJeugTcdBPbpo6cupISvvaOHdmxSRK7zanYMqApLS3F8uXL8b///Q8DBgwAAMycOROrVq3CwoUL8cYbb/h5hVXn2WefdXv7ggULsH///jpejUBQtxw+fBgA0KpVq0ZdGBQITp0Iv/oLeTuTmBgmuAD26RwUBKxbx36ncSiUQ5eXx3PKKBSYnc1cpd692e/yD5Hmzbn1VV7OxaOfoBBofr5nUUf5dCTqAF4QkHFKNkPMPvIr3FxgHylhd/Bkoo7MT5oOppgu4U7U/fEHO/c0WUKeVwfwCtiMDF50YjBw17UWIcdSklxnvla7wboPw6+FhYWKi0mRxMixWCywWq0IoVxPO6GhodixY0c1DyQwGTFiBJbLv5UIBA0QEXpliEKJxoy8nYlez8VWkybs0/r339nvJOrCw1koUJJ4tYF8yDzAe6fJRV1UFBMmpJT8GIItKeE5Ybm5ruFXSeLhV4BphbZtgSee4O5dZDBvZ0JKRltWrHTqoqIcoq60lGkz0m8u0yUA/rjMTJab+M47wEsvMQfOk6i7dIk5o02a8N9rmePH2bXFwrS6p4lyVYKKcmpysb8OycnJijYes2fPdvuUkZGRSE1Nxeuvv47Lly/DarXim2++wa5du5CZmVmDgwk8li1bhib0NyIQNFBqY5JEfUSEXxszcqdOr+dxyYQEYPNm9sndtq2yM29iIvskz8pi4kIu6iTJvagD2LZ//MHKPy9cAPr1q91j8wBpT5OJCTxnp85iYaeERB2FTT/+GPjqK2DuXCAu0gQUQTnotLiY7VR2PuUjN0tLvXTq5szh5bd//AE89BBArSpI1CUksJ1RLmPz5uy1u3SJ5ULWIidOsGuLhWlJKrqtkajzIenp6YiSjbcLJiXuhq+//hqPPPIImjdvDo1Ggz59+uCBBx7AgQMH6mKpPqd3796KeZSSJCErKwtXr17FRx995MeVCQS1Dzl1jbmdCaAMv0qS5JcZtULU+Qv53NewMB4nTE7mbUzIpSMSElh/j/x8JmKaNGFOSXk5CwGSqDt4UJk7FyDFEvTU1AbOZFKKOjoFpNfk+fdM20rQh5QzUScP3VHVhf18SpFRUKv5aS0p4cLHrVNns7Hih08+Yb+/+CLw9tvAnj18GxJ1Wi3LaUxPZyHYpCTg8OE6cerseciOvMAa96gDfFooERUVpRB1FdG2bVts3boVxcXFKCwsRLNmzXDffffV20rRO++8U/G7Wq1G06ZNMXDgQHTq1Mk/ixII6gCr1YojR44AEE4dOXUmkwklJSUuk2XqAiHq/IXcqZM3UWvalI8HsyeROwgN5dWYeXlMXMTG8hmxHTuyMG1xMetJ16ULe1zz5sphqn6CImvFxcyl02h41xDAVdTJ6zmaNweiIiVoJd7OBAA7dyTq7IqtJDgG4eCirriY9xG2WtlDVCrwEtv8fODpp5na7NcPmDiRWYNZWdweKylhz6HTMeFNos65IXEtkpOjdOV8En71c/Ph8PBwhIeHIz8/H2vXrsXbb79ds7X4iRkzZvh7CQKBXzh79ixKSkoQGhqKdu3a+Xs5fiU8PBw6nQ7l5eXIycnxi6gTOXX+Qp5TR4UPQUFMlFHOnLvWDtSgjGL2ZHVdvcpUUJ8+7Hd5CDYxMSCcOjK7SB/FxysT/J2LGuRaISkJiI+1KaZJAGBCzGxWtCbJk5iCkxdLkECUJN7qDyoVex1GjgQ2bWIPeOcdlofYrRvbZu9e/lzO48Lkou7y5eqdFC+RJF4sTefHJ6LOT6xduxZr1qzBuXPnsH79egwaNAidOnXCww8/7O+lVZszZ85g2rRpeOCBB5Bt/x/+7bffHEPOBYKGCOXTdevWDRo/dlYIBFQqld+LJYSo8xfy8CuJuyZNmNCgyRHOpaG0DcCcOknyXCyxZQt/DM2ABZhd5qEqsbahLiElJa6hV4DlvlEeHaB06nQ6oE2KxaH8zKFRfKfyIgkAuRZ2n1zUyRsaK/Lqfv6ZtYpp1owVp6SmMmHdtSu7f/t2wG6pO8R2cjK7Tk+vM6eOBBzgOk3CJ05dHTcfNhgMmDBhAjp16oQxY8bgpptuwtq1axFECZX1jK1bt6J79+7Ys2cPVqxYAaP9xfnjjz+Eiydo0IjKVyX+nv8qRJ2/kIdf6UMxLo4pG/oEdyfqoqPZ9iYTs26cRd1dd7HrH37gg+n1eiZU1GomBKl9Sh1itfIaBIPBvagrKeFFEhQZlXNtl2LAaoVVUuPP83YlQ0USdmFsDo1EflEQJAkubU3cVsAePMiuH3wQ6NWL/azVcsdzzx5+jsmNI6cuM5O3mrl8mZf21gK5uXz9kZHMbazPou7ee+/FmTNnYDKZkJmZiQ8//LBe97d6+eWX8cYbb2D9+vXQyYp4Bg8ejN27d/txZQJB7SJEnRLh1DVW5OFX+rRu0oSLM51OmXBGaDS8zUZeHhcc+fnMsbrpJuYylZQAX3/N7lOplG6dH/LqTp/mn/0FBZWLOncufpckJlJzTeHYtdu+s2JlO5PysBhYLOz0ehJ1CqeOqi1JxDmerAtTS6WlvDKZkgJjY1lOH+1IpeLzYGuJnBy+/qgodkw2G3vq+tR4uKFy+PBh3EVfqGTEx8f7tRGpQFDbiHYmSvzd1kSIOn9BQ+IBbkk1acJDfM4JZ3LkeXXh4Vy95OSwxzz5JPv944/5cyQm8uICGsBahxw6xHPBqPpVLurMZnaR96hzJimcNfhNL4jEL7/Yb3QqkijWsXy6vDxXUUfP73Dqiop487cePWTJdmCCjgpNTp1i1zk57LlUKu7WZWXxA6nFEKxc1FErQ4CPDa42fnLqGhrR0dFue+wdOnSoXo49Ewi8wWAw4LzdJBCijuHvqRL19t34rbfegkqlUsxcLCsrw4QJExAbG4uIiAiMGjUKVyg/LdCgpHuViouJJk0qzqcjqJSThCFtS4LwoYeYojl6FKDQj1zUkUipQ+xTZCBJTBc5Nx4m4UVLdOfURapYvPF0dhQ2bbILGyqltSs1gzoaADu9lU6V2L+fLYh6/tGGABPL1HNpwwamnuSNn2maxMWLdZJXJw+/Nm3qo3YmgBB1PuL+++/HSy+9hKysLKhUKthsNvz+++/417/+hTFjxvh7eQJBrUCtTFq0aCGabNsR4ddqsG/fPnzyyScu3wyee+45rFq1Cj/++CO2bt2Ky5cv4+677/bTKiuBSkFDQniPjehoLhpoBJg7IiPZB6nFXjggr4AFWNiWQkErVrBruag7fdqXR1Ipubn8sEwmntonP0RnUeeiE8xmBFnYjLFjGXqUlwNr1oCLOqp8tUYDYKe3ovCrJIHlywHAtdfyDUlgR0QAN97Ift62jcc4yY2p42IJuVOXmOijfDqBz3jzzTfRqVMnJCcnw2g0okuXLhgwYAD69euHadOm+Xt5AkGtIPLpXBGFElXEaDRi9OjR+PTTTxFDjhWYDfz5559j3rx5GDx4MPr27YtFixZh586dgZeoLM9yp1JGvZ5ZSfLwqyfUapZYBbCqA2enDuCibuVKpmDkOXUXL/I2KnXAxYvcJSst5U5ZRY2HXZw6mq2q0+HCFab8fvoJLuHXXBv7m5CHcmnfsolWbPO9e9kvqalsgZLENw4PZ+esTRu2YHI3SdS5c+pqsa3J5cv8nCQn89NRY1EnnDqfoNPp8Omnn+LMmTNYvXo1vvnmG5w4cQJff/11o2/zIGi4UD5dY58kIUc4dVVkwoQJuPXWWzGUJr3bOXDgAMxms+L2Tp06oWXLlti1a1ddL7Niiot5YhdZU2RdeyPqAF5EIRd1NC4MYNMogoPZFPijR5ktFhTEHb467FdXUKDMpyNBkpTEt6moRx0A3qQtJARX89TQ6YBffwWk/AJ2zHalaFDHOE4tCTizmafCKUKw5NTdcAO39ahENyiIKUwaqUbbOjt1+fk8x5FGPtQCly4pc+rI6PVygINnhKjzKS1btsTIkSNx7733on379v5ejkBQqwinzhV/F0rUq4kSS5YswcGDB7Fv3z6X+7KysqDT6RBNlaF2EhISkJWV5XGfJpMJJlnftkJSHLWJvJ0JuWck6rzJqQOUoq5jR6ZWzGb2aR8Tw8KHt9wCrF7NLK1p05gCCAlhCur0aaCOPnTkos5kYjpI3goOULppgBunrpSFXhEUhJw8DeLimHtlzctX/BEXaaMRVMxOj8nEnpei1Dod26/ZDFjyi7iz1rMnfx2sVvYArZaHYL/5hvWru/lmpkjNZuawNm3KhDQJ81qsKs7J4X8S4eE80k7FzwL/YrVasXjxYmzcuBHZ2dmwyYtuAGzatMlPKxMIagebzYbD9mRpIeo4olDCS9LT0/Hss8/i22+/RYh87mcNmT17NvR6veOSTA5MbVJUxJ06ihE6O3UV5dQBXNQZjcypcm6QCwA0j3LlSnbdrJlfiiUMBqWoKyoCrr+e30bTEuRCzsX8sTto5epglJlUaN8eCA0yQ1tWwncCwKiNdnQWKSnxXCxhy7ALuogIJnbVah77JbcuPJyFX5s3Z7dlZLDbySajECx9gF+9quwS7EMoWi9JTH/SEuhlrzYqVc1dOj8MrQ40nn32WTz77LOwWq3o1q0bevbsqbgIBA2Nc+fOwWg0Ijg4GB06dPD3cgIGf4df641Td+DAAWRnZ6OPrJ+Y1WrFtm3b8OGHH2Lt2rUoLy9HQUGBwq27cuUKEqlBrBumTp2KKVOmOH4vLCysfWEnd+pI1FEIz9vwa3Awu5hMzD2Kj2ftNbKzmXMHALfdxq4PHmQ9PvxULCF36mw2dqEaBIAdgtUKtG7NfpdPlXBgd+pMEnPUmjYFEiOLeW6gXSQXaWJQks32VVzMdFlhIddaDiF52R5GlceAQ0LY/srK2APDw9lCunVj8c+cHCbyCgrYApKTWZ+7q1e5a3fuHGuP4kNkE9CgVvN2eGFhPuhR54vwqQi/YsmSJVi6dClGjhzp76UIBHUChV67du0KrbbeSIlah8KvxcXFKCsr86kJ5Q315t14yJAhOHz4MNLS0hyXa665BqNHj3b8HBQUhI0bNzoec/LkSVy8eBGpqake9xscHIyoqCjFpdaRjwiTJ0oB3odfVSr3eXVypy4hAaBvULt2MQHjZ1FHjrRc1BUXs+VT0r9e70bU2d0zk5qtX6UCmkUaWSgUcIi78ogYxyAN+cANOq2O9x7KjWvWjD+HPARrtXLF1LYtu6bqVmpHQ05dejpXpLUQgs3P5+sODRWh10BEp9M1+mHmgsaFyKdzj16vdxRH+cOtqzeiLjIyEt26dVNcwsPDERsbi27dukGv12P8+PGYMmUKNm/ejAMHDuDhhx9GamoqbrjhBn8vX4k8/BoczD6pw8KYhUWf2JWFXwGugoxG13FhBKmn339Xhl8vXVL2ZatF8vK4KDl3jgky+UtiNHJ9GhnJzUsHVqtDvJUFsWMuKABaxhSx2202h6gLS4p2iLqyMn4aKa2STCV1lj38Knfq1Gr+5BYLbwLXqhVfPD05wEVdRobrNj4kJ4efP72eC+Mah14BUSjhI55//nm8//77kGpxVJxAEEiISRLuUalUfg3BNijP9N1334VarcaoUaNgMpkwfPhwfPTRR/5elivOhRIUes3P57d784lNoq6oiLtJRUXKfh79+gGLFgE7dwLPPMPUQVAQ2+bMGaB7d98dlxskiRmJJK4KC1k0Uz4BrbiY/+52njuJT5UKUc2Ye3blCjCsY5FiRBg0GuibR6L0Ei8Cpq43WVm8HaBWC6ivuHHqAF5wYjZzhUkFJVlZbLHk1DVtyvLwysv561ULoi43l4u6uDgfO3Ui/OoTduzYgc2bN+O3335D165dEeT0h7yC+kUKBA0EcupEzqgrsbGxyM7O9kuxRL0WdVu2bFH8HhISggULFmDBggX+WZC3yMOvclFHodOYGJ60XxHkJBUXs/2EhDB7inK+AO7U7d3LmhtrNGzbOhJ1xcXMSCNRYjQCzmlHxcU8+uxWH1BCXHAwomK0iItjblXXlkVALp8mgehoJCSyuK3ZzE6hTsee22TihcFaLaDOrkDUAXyf4eFsZykpLLR66RJ/jFrNplGcPcv7DdaCqMvI4GI3MdGzqMvKYgW9CQm8dZ6gboiOjnY7+1UgaIgYjUacOXMGANC9lj9D6iPCqWtsyEWdTsdFHSV+eRN6BZiI02jYvkpKmGLJzGROEn3id+zIFFNeHpvVFR/P+qkZjXUyA9Zg4AWWAHvaXr34/ZLEdCjl0LkVdVT6aQ8dt2nDRF1yRD5wxaIQdVQTU1TETmtZGTsVmZnsEhPDTpnGXfgVcBV1ERFMDXbuzEVdhw687QmJOrIGMzKUTqkPOHuWL4smyalU/M+GKChgrl6VRocJp84nLFq0yN9LEAjqDBoP1qxZMzQVyb0u+HOqhHg39geFhcqcuqo2HiZUKv4JXlTEnDiAhwcB9oFLDXSd8+rs37RqE3mRhMXCIpWdO/P75YMtVCo3BRKSxHvU2fuTtGnDfo0Ds6zK7bUSiIlx6GH6XyouhkPoUV6dRuOFU2ezKYslKARLBRaUuNeiBf89LIwdJLU+8RHyiRx0HR3tqhtJ+1ZL1ImcOoFA4CVikkTF+NOpE+/G/qCggDs7Op1rj7mqfPORF0tQAplc1AHKqQh1LOrklZsURZWLuuJifr/baUoWC69wtYc4KX0w0syOs7DMHqqOiXGcStJeRqOrqNNqZYUSzqJOreYLsVi4qKPqVucKWBJ1ly7xbXzsgF65wgUcXTuPB5Mkfn7FPFiBQFCbiMrXivHnVAkh6vwBVU+qVEw0kLVC9lJVRB09tiJRR/94x4+zcCO17sjM5OO3aonMTGU+XWys8vCMxgpGgwHMLSM7TybqgjVmhNuYiiks5fYVtUOhXm5ypy47m4kfTVkx1Eb2WFuiU/gVUFqLdH6p0vXqVWWxBPU0zMriFbA+Fstyt5Ou6SUkTCa2XPqT8hrh1AkEgioiRF3F+HOqhHg3rmtsNi6kKJ+OYo6k6p2TpSrCG1HXqRO7PnmSKSqtlhdi1LJbl5HBhUhJidKlA5j4IvfJrTagmC3gEHVt2gAJYbxHXanJ/kC9HhoNq6Q1GtlptdmYAFKr2eZGI698lULDYA1zY2vJ25pQpUVkJA/BXrzIz7Fez14DSeJq1cfTOkpKuHlI58i5nyW5dOHhVdRYQtQJBIIqIEmSEHWVIMKvjYniYmU+nVzA1UTUlZUpq2HlyWopKXz6BIUy60jUZWdzQeIs6qxWZbsOj6KO1mxXMjExQKfmhY7b6XTSdHvStrS/khI++L6gAI6Zr9bEJFhtbkZc0YLMZqX11bs3u754kYfKVSpeakrb+bixM00hU6lcRwYT1cqnE/iMr776SjFDmigvL8dXX31VpX3Nnj0b1157LSIjIxEfH48777wTJ0+edNlu165dGDx4MMLDwxEVFYUBAwaglPJPAeTl5WH06NGIiopCdHQ0xo8fDyP9odj5888/0b9/f4SEhCA5ORlvv/12ldYqaHxcuHABhYWFCAoKQicyDAQKRKFEY8K5R508AYr+AKoi6oKCuG1Dg+YBpVun0fDJEhkZ7DnrKK+uoICLuuJipajLzeVOGuBB1JGrqVYrlMyAXkUOUSdZ7KrHfi5J1NFpNhp5DUlBARwJd7aEZlwQyiFRZ7UyB46UUteu7JpEHT0BhWDJcb1wQSmqawjtNjSU6XLAVdSRU1dlUSecOp/w8MMPw0DFMzKKiorw8MMPV2lfW7duxYQJE7B7926sX78eZrMZw4YNQ7EsVWLXrl3429/+hmHDhmHv3r3Yt28fJk6cCLXstRg9ejSOHj2K9evXY/Xq1di2bRsef/xxx/2FhYUYNmwYWrVqhQMHDuA///kPZs6cif/+97/VOAOCxgK5dF26dHHpxyhgiJYmjQnnylcSYQB36qo6KiAqijl1hYVM0ZSWMlEnb43SqRNraXL8OCsOoHFWtSzqSkp4Y2Fnp47MLjoFLtpAknjj4dBQRWlsr7aFwFkm6jQ2WfsRcFFXWsoe5lHUxTdz6DIFJFRsNiYcSSnRTN30dHZ7To6yKZzBwF6LwkJWLOGDb7E2GzdV9Xou6pzDr2TAVLlIQt5vprq4lCw3PiRJgsrNecjIyIBe3mnbC9asWaP4ffHixYiPj8eBAwcwYMAAAMBzzz2HSZMm4eWXX3Zs15H+PgEcP34ca9aswb59+3DNNdcAAD744AOMHDkS77zzDpKSkvDtt9+ivLwcX3zxBXQ6Hbp27Yq0tDTMmzdPIf4EAjki9Fo5olCiMZGXp+xRZ2/TAaB64VdAOQPWU14dqakTJ5QVsBcuVO25qojV6j78Kp+IRqLFRVvYbFzFOGX/N4/kTl2I2r6NXdFQhxiqR3ERdfLwqztRR2MnAGWxREICe73KytjiqZyWet1ducLz7nyUV3f5Ml9K06aOEbgKp47aFAL1I/xqtVrxyiuvoHXr1ggNDUXbtm3x+uuv18sRW71790afPn2gUqkwZMgQ9OnTx3Hp2bMn+vfvj6FDh9boOcgBbGL/w87OzsaePXsQHx+Pfv36ISEhATfffDN27NjheMyuXbsQHR3tEHQAMHToUKjVauzZs8exzYABA6CTNTofPnw4Tp48iXzn9w+BwI5oZ1I55NQZDAaYKX2ojhBOXV1z9WrlTl1VRR0ljBUWckXj/A2BXKMTJ4A77+RKKjOThQq9mWBRRSgXTB7NpEglpRZqZX+BLqLOYvEo6tQFXByHq+15RE7h16tXmX4tKeHmp7NT5zb8CrCwdnm5UtSZzcA11wDbtrEQbFYW0LMnL6+9epWFuQ8c8Fle3enTvG4jLs69U1dczEzNoCDXsGyl+KH58Jw5c7Bw4UJ8+eWX6Nq1K/bv34+HH34Yer0ekyZNqtla6pg777wTAJCWlobhw4cjQqaqdTodUlJSMGrUqGrv32azYfLkybjxxhvRrVs3AMBZe8ucmTNn4p133kGvXr3w1VdfYciQIThy5Ajat2+PrKwsxDv1u9RqtWjSpAmy7F9GsrKy0Jra8NhJsLv7WVlZiKF/JBkmk0mRO1hYWFjtYxPUT4RTVzkxMTFQqVSQJAl5eXmO/6u6QIi6uubqVWVOHTl1JhOPoVVX1JWV8cbFNJ2CIFFH4Vetll2oWS519PUhBQXM9CKnrkkT/vlPX16Cg3nLPhdtYLVyFSN3NAGHaC2z6RCpYrlGltAIaKEUdTTmlkRQcWYh8NtvbPftOkKSmPh0eW55sURUFJ/x2qcPE3Vnz/JzTGPdyst5yNtHTt3583wpej1v1SIXb5TKFRVVjUioH0Tdzp07cccdd+DWW28FAKSkpOD777/H3r17a7YOPzBjxgwA7Bjuu+8+hDjHxWvIhAkTcOTIEYULZ7N/W3riiScc+Xq9e/fGxo0b8cUXX2D27Nk+XYOc2bNn49VXX621/QsCm5KSEpyyv7cJUecZjUaDmJgY5OXlIScnp05FnQi/1jXO4Vdy6shZU6uV0+69QavlThbtLy9PmaxPhRK5uex5VSruztVSCJZy5kjUyVMFnYtwgSo4dZLkCC9fNUcjUsXEcKZR6dTl53O9S7vptvF9dg46doTlb7c5nsYFefhVkvjz0yzdY8eY40fN4citoyf0kaiTT5PQ692HX+Wizp8UFhYqLu6qQQGgX79+2LhxI/766y8ALJyzY8cOjBgxoi6X61PGjh3rc0E3ceJErF69Gps3b0YLanINNpoJYInqcjp37oyLFy8CABITE5FN/4B2LBYL8vLykGj/W01MTMQVpy9/9Dtt48zUqVNhMBgcl/T09BocoaC+ceTIEUiShISEhDoVKvURfxVLCFFX1xQUKJ06Z1Ent7OqAgnB8nIuQChpDWC3UXPcnBymtCiuV0uijop5SZTIPyfkEWjAw4gwCn8CSqfOZHKMDrtq4krmfI4yp04eds3OBpqo8nHNtrnshldfhTaYqU23KQ8aDV+QPATbtSs7kNJS1vePzjEdHJ3T7GwWDq8h8ubNkZHuw68k6qr6XQCAT6tfk5OTodfrHRdPjtHLL7+M+++/H506dUJQUBB69+6NyZMnY/To0dU4gMBArVZDo9F4vFQFSZIwceJErFy5Eps2bXIJkaakpCApKcmlzclff/2FVvb/8dTUVBQUFODAgQOO+zdt2gSbzYbrr7/esc22bdsUOT/r169Hx44d3YZeASA4OBhRUVGKi6DxIEKv3uOvYgkRfq1r5NWvYWFcBFS38pWIimJZ9QYDCwFSeJAqMwGgSxcm4A4fZtvQyCv7t3tfk5enLK6kfDrA1amrsJ1JUJBy0Gkh71FXomYCttQWjPOXdegPppNDQpirpdGwS2kp0OPMCoSUGVDWritC7rkHQaV8EoMLVCxhNitFXWkp8I9/AB9+CPz5JzvHzZpxUVdQwKzC/Hx2Xw0/9LKzuagLDeV5iiSGzWZeJFEjUVcT7I9PT09XfMgHe0jwW7p0Kb799lt89913jorLyZMnIykpCWPHjq3ZWvzEihUrFNWvZrMZhw4dwpdfflnlcOWECRPw3Xff4X//+x8iIyMdOXB6vR6hoaFQqVR44YUXMGPGDPTs2RO9evXCl19+iRMnTmDZsmUAmGv3t7/9DY899hg+/vhjmM1mTJw4Effffz+S7IU9Dz74IF599VWMHz8eL730Eo4cOYL3338f7777ro/OiqChIUSd9/hrqoQQdXVNcTF36uSfwtXpUSeH9lVUxPLqzp7l8U+iXz+WT7ZjB5CaypVBLTl18vFWFgsfjUq/A1yruZgZkuRw41zmXhUV8dCy3bIySJGOLi0A01WZmUzjJiYy/Rqbz9q3FPQciES1WpE25xZKyJO3NTEagXvvZaLu6FGWj9irl3LAbHw8F3VUDVtNcnP5eFp5Pz86b+TShYbWSq1LlfDWuXnhhRccbh0AdO/eHRcuXMDs2bPrraijggk5//jHP9C1a1f88MMPGD9+vNf7WrhwIQBg4MCBitsXLVqEcePGAQAmT56MsrIyPPfcc8jLy0PPnj2xfv16tKXByAC+/fZbTJw4EUOGDIFarcaoUaMwf/58x/16vR7r1q3DhAkT0LdvX8TFxWH69OminYnAI1T5KkRd5QinrjFQWMjEiDtRV93KV4KEj9nMx1U5F0v078+ut28H7rqr1kWdwaBsZyIXdSSkPE6TkBdJOIs6mVOnDWNKpkiKVBiO0dFM1OXns4jppUtAaPZ5AECBvhUSoazKdVssQcrJbOavlckEDBjAnM4rV1jRxG23cVF35QoTdSdPup7/amAwAJROJZ/7SqZQjUKvgF8KJUpKShRNcgGWWEwFAA2JG264ocoiydvWLi+//LKiT50zTZo0wXfffVfhPnr06IHt27dXaX2Cxol8PJhoZ1I5/nLqRE5dXZKZydQDvWlT8hdQc1Gn0fC8MxJBOTnK2OJ11zGhkpnJ1kDWDg2p9zFFRcq5rykp/D4Sdc4zTR1UVPlaxHvUhUawJyhCBOQ523Rq8/OZ4AkOBkKvMPGaE97K8dz0vG5DsPIZsBoNz38sLmbCDmChbJuNi7rcXGUiXw0pLeUCjs6VuyKJGou6Opwocfvtt2PWrFn45ZdfcP78eaxcuRLz5s3DXXfdVc2DCExKS0sxf/58NJenQAgE9ZSMjAwUFBRAq9WK8WBe4K9CCeHU1SXy0VJqtTLfqqaiDmAhwpISJtgoqSw3l7fZCA0Frr0W2LkTOHeOKS4KMV68qBz34AOKi7kQMZuVhhuJKLrfJfxqtXLlJ+/lByicuogopniMqkiFqKM8b8rri40FQrKZqMsMTnFsp9XyegyX8KVazR4sSTwEW1rKRGVqKvDjj+y8UR5deDg7aDrQGjp1ZjPX/xoNP2fyIgkaD1ZtUecHPvjgA7zyyit4+umnkZ2djaSkJDzxxBOYPn26v5dWbagvFSFJEoqKihAWFoZvvvnGjysTCHwDuXSdOnXymC8r4Phr/qsQdXWJc+Nhd9MkqlsoATDRkZ3NhEXTpmycFY2yIvr3Z6LuyBGmFHQ6ph4uXPC5qCsp8ezEkV5zdqEcyEWd8xtIfr5DHOujmOoxqiJx8QITQSoVnyBBBaixkeUIzmWTJLJDW6GsjIkj6jHsNq9OpVJuEBnJXkOjkTUhBlhcNzubWYOJiWzsGtmTNRR1WVn80IODXduZ2Gw8tdBZ93qNH8KvkZGReO+99/Dee+/V7HkDCOdjUavVaNq0Ka6//nqPlaQCQX1CTJKoGsKpawzk5nKnLiREKepqWigBKJP5Y2KYqHMe99O/PzBnDrBvH3ObdDomAmuh31RpKTetnF0wZxHlIuosFte+JwR14NVoEBXCVE2JOgIlJSwcGR2tHLIBALGlGVBJEqy6EJhj4pGXx6Z7ydPm3OIs6gBmj/XuzUSfwcCmdHTqxHLpzpzhSrWGou7SJX7eQkNd25nQ7/LCiSrjB1HXEKmvBR4CgbeIyteq4a9CCfFuXJfk53P1EBLimxFhckjUFRfzpDISQAQ1zz19mikGUg3U3sSHlJdzseY8k9R5RJiLqCsr47FHuaiz2fhQV70eOhNrPFyESAQH8+4szqIu6DILvZbFt0RklMpxWkgMWa1wPwdWnldHos5oZIKckgRpEgK9drTuGubUXbrEDz08nIs4uk3+e5UnSQh8Tn5+Pt555x2MHz8e48ePx9y5c5Hn/P8nENRThKirGqJQoqEjSczhkSdG+VrUhYUx18Rm4y6g84dKdDTQrh37WT7ztRZEndnMhRuFQwF2KuQ5bJS6ptiAFEtQkNIJMhq5MI6JcSSVFSIKOh03HEl/Ofr/XiBR1wqRkfy0qNV8jfIBHA7kqk+nYxtLEost9+7N7rO/2TmENL3GRUW8iVw1OHyYn6PISNfwq7vpElXGD4USDZFt27YhJSUF8+fPR35+PvLz8zF//ny0bt0a27Zt8/fyBIIaUVpa6mh2LUSdd5Coy8/Ph9WtY1A7iHfjusJi4VPsASbo3OXU1UTUqVSu8c78fO4cEZQTUVRUq6LOauUOHHVZodvlxbda5yQAm81zPp2sSEIu6oyIgE7n6tQZjfaGvXZRV5rQCuHhSq1L63Ar6tRqfhDyJsRFRcANN7Cfz59nry29doWFfLsauHU7dnBNqdd7Dr/WSNRRd+iaXIRNiAkTJuC+++7DuXPnsGLFCqxYsQJnz57F/fffjwkTJvh7eQJBjTh27BhsNhvi4uIcY+oEFUOiTpIk5DunQdUiQtTVFTTayp1TZ7Xy3LeaiDqAW1QA+8C1WFzHVfXqxa5zcrhqyMry0Nej+kgSF2zy9wF5BBrwUCThrtQTULqd0dFMtYGFX905dWSQOpy6hBTodMpTIhd1bluEyTsoy/Pq7OOWkJHBziW9drm5LL8OqHZencUC7N7NX56YGM9OnY9HjgqqwenTp/H8888rRoJpNBpMmTIFp0+f9uPKBIKaIw+9qsSXOK8ICgpyNGOvy7w6IerqCpNJOctUXighd9N8JeoKC5V9PeSQqMvI4OFNq9UnzXKdoc84eQGuc/1DlSpf5U5ddLTDqStCJIKCuKjTaJSmGok6WzLrUVdezkdukaiz2Tzk1bkTdYWFPPxqMLAcRXrtioo8N4D2kj/+YN8B6KljY2vJqRPhV5/Qp08fHD9+3OX248ePi2pBQb1HTJKoHv4olhDVr3VFaSmfIwrwAaUAD9Hp9TUoY7RDwiI/n4me3Fz2s3ycA33IpKczJRMaysKHly4pZ8XWAJNJGbmUd2pxnvvqIuoqCr86O3Uewq8AC8EajXZXzi7qdO2ZqAsNZbdHR/POJWYzE3su4WC5qKOGcIWFLNSdlMRm7h44AAwezA6qvJxvV83w6++/87m1ANPnly8rT4mzyKsWovrVJ0yaNAnPPvssTp8+jRvsYfndu3djwYIFeOuttxxOByA+GAX1DzFJonrExsbi7NmzdVosIURdXWE08ia2APuUJhub8tl8IajCwnjjYU/FEi1asKT+vDxWSUptTUg1+IC8PKWok9eE0CmocO6rp3YmBQXKc+gh/ArITLUCm0PthXZqBRSwU0O6l9ZiNlfi1Fmt7IFaLc+R7NyZnbfDh9nrGRfHfq9hA2ISdfTUEREVV78K/MsDDzwAAHjxxRfd3qdSqSBJElQqVZ0mTQsENUU+Hkx8Iaka/uhVJ0RdXVFYyMQKvaHLrStfijoan3DpEldLzqJOpWIh2E2bmLIhq8eHxRJXr7KnId0q71NnNrPbSbBUyamTi7qoKJlTFwm1mk9ikw/sKD+b4SjFjeiQBOxl2uzqVW5gymshXKA7JYldoqLYOTUYWAh240bg1Cl2X5MmTNTRAVdD1EkSK5KQO3WRkUpnTl4g7JPwa00QTh3OnTvn7yUIBLVCZmYmcnNzoVar0aVLF38vp17hj6kSQtTVFfKwoUqlTDLzpagDuKgjAemuV1bPnkzUGQxc/fhQ1OXkKLWQPKosb2ciF34O5I6mc4862TQJhIY6zqkuLhLIYfu6coUVZtBhqY8dYT906oSwKPYnr1YrT4vcjHOBFCg1RNbruai77jq2zaVL7HcKf9MOq+F+5uayh0VH892Q+Uo/m808J1CIOv9z4cIF9OvXD1qn2L3FYsHOnTsxgGYFCwT1DMqn69ixI0JEVVaV8IdTJ96N6wqjURlSlI8OIjHVrBlzoujTu7pQvzSamVVUxIeEElQsYTDUSlsTCr8CTCjJhZu8f53bjhjy6le5Yiks5H1HNBrFYNTY5iy+666tScipw+yHbt2gUnFjsriY75oEKLVbcUFu5VG+nMHAz2NWFrvQuaftKW+xCmRlsWt5zYw9yoyICOYykkun0wlNFQgMGjTIbaNhg8GAQYMG+WFFAoFvEPl01ccfhRLi46CukPeoCwlRTmAnMRUfzz6tDQYmwsrKqtdmJCiIKRqtlod5ncNDNFniyhWuCnwo6goKlE6dHIuFO3duBYl8Zpc8bpufryySIFUWGYlmSUwZBgXxQyVRF3HOLuq6d6fNAShbmMjXUWkFLL12xcVAcjITnhYLkJbGzzcp17IyFuetAlRbQfl+ajUXeklJTAT7pPEw7VxUv9YYypdzJjc3F+GUXykQ1ENEPl318cdUCRF+rQtsNl79CrCwoXzEAoXoqLcZoJxEEBfnJvGsEiIimLMVF8dExblzgPyfsk0bFu69dIm7eFevMlHpg8x7g4F/1jt/1jk7dS6QG6fTKR8sH7Om1/N1R0QgKYk/5OxZ9jOJuuhL9vCrXdTFxLBD1Wr5rFh5hNVqraQCVqdjr2FpKRN27doBR48Chw4B3brxtSYlMdvwwgVluL0SKA1P3kea/kSo35/PiiRE+LVG3H333QAAlUqFcePGIVj2glitVvz555/o16+fv5YnENQY0c6k+ojwa0PFXY86d04dffCHhirjas6hU28gRUDK5vx5pQWlUgGU5yNvQuwjt85o5DrUWY/K57661QOeFEtBAT+HsmkSiIz0KOo0NjPirtr7h9kFF52a4GB26IQ8BOuCXNRRsQTA1kBC7tgxZQPiVqx9CrVT8RYSdfSShIdzUUfH6ZN2JoIao9frodfrIUkSIiMjHb/r9XokJibi8ccfxzfffOPvZQoE1cJkMuHEiRMARPi1OohCiYZKWZmyR51c1Fks/FOcnLrwcKYwLBYmDkymqjto1HlXo+GuUmYma2dC3Hwz8P33LN7XpQt7rvPnmYtXQ4qLuWBzbr1nNvMWJxWGXyuqfJX1qENkpMPBkodfIyOBhMJT0FrL2fmwiyzq9BIczBw7GoVbaQWsSsXbrUREsNetqAjo2xf44QfgzBnuwJpMvLRW3jzPCyj8SuuJjmbGrVoNJCay20pL+THUCOHU1YhFixYBAFJSUvCvf/1LhFoFDYrjx4/DarUiJiYGzX1VyNeIEE5dQ8VkUoo6vZ47P1lZLDxL+W8qFf8012q5ApFn9XsDfbiUlnLHyDmvzp1Td/581Z7HAyRCAGVaHKBs8OuiB+Q96pzVoDz8Khd1UVGOwmFnp66FgYVepS5dHU9G7pZazUfuAl5UwNJ6zGaemGc08vzE9HT2Owl2KoapplPn3Lg5IYGvsaCAH2ONEDl1PmHGjBlC0AkaHGI8WM2QF0pIbivwfI9w6uoCZ6dOXtZI4c7ERPbh6CxkQkOZQjKbeTWrN4SEMFVgtbJErBMnlJ15AaBTJ7aW3Fw+DNVHoq60lGsbeePh0lJ2Ojz2qJP38pOfC5uNJcBRvl1cHDsmAIiMdDhYGg07pWYz07UtC1iRhKljd1CkUq3m+XPyGbAVhl9pPeXlbOfkhBYXA6mp7MFGI2tC3LQpWysdeDWcOo1GGX4tLVWGXsmpk6dmCvxH69atK/zQO0vfNASCegTl04nQa/Ugp85qtcJgMCC6Dt6whairC5ydOnlBhLydCeCaoS8P+5nNrraXJ1QqpgYKC7m6yspiioXUi0oF9O8P/PQTnyzhI1FXVsaNKrmBQakFdBhunTp3oq6oiN1Ooi4hAdi7l/0cGYmQEK5PtVqmo9q2BVKMTNQVt+aijtZkMLCXhk6Jc1sTl89ouVNH1cUWCxOcKSks/LpzJ1vb6dP8tUxPVyYSVsKVK+z8UGiV1kHjZMmli4z0epeeUalq7rSJb/CYPHmy4nez2YxDhw5hzZo1eOGFF/yzKIGghojK15oREhKC8PBwFBcXIzc3V4i6BkNZmbJQgmwlQOnUAa6f0ioV+4QnYeitqAO4qFOreffa7GwuIAHg+uuZqDMaWY81H4k6s1k5DYGgcCfd56InbDb3oi4/XzlpIiFBkVMHsFOYm8sedvYsE3XxRuaQGBI7QOaPIjKSibqgILab6GjeM48iwC5jeOkGUn0REUxhFRWxyuIzZ4CDB4HRo9l2lAdpMjFBLc9nrIDsbPYweqmpzR2JYxJ1Pnl/EDl1PuHZZ591e/uCBQuwf//+Ol6NQOAbhKirObGxsSguLkZOTg7atm1b688n3o3rgtJSpaiTiyrnyld31ovcIaoK8hAhxe6cJxz06cOuDQamaAwGJqBqgCTxUV0ANwptNt6UmMydCnPq5OciO5u7dCEhTJXJcuoArovlxRL6UtbgLUuVpHgaeQWswcB+lqfN0VMpkA+zLS9X5tVdfz37+dgx7sTm5LA+doDXeXWSxJw6vZ5P26BKV0qvpJdHhF6rTn5+Pvbu3Yt9+/Yhv4Z/594wYsQILF++vNafRyDwNVlZWcjOzoZarUbXrl39vZx6S10XSwhRVxeUlSmnRMiriEhkeXLqAG7ZyLvlegMpl4pEXe/e7LqoiIuUGs6xLC1VGkCUWlZQwEwu+t3tiDBPTt3ly8rQK03KABzrllfAnj0LwGxGaDGL954vk7mjsjXJRR2gPNVukQtsEs1FRaySGGDijdRWdjbQsiW/3QuMRvan4piGEcLz58LCmN6l6RI+deoaeKHEuXPnMHLkSMTFxeGGG27A9ddfj7i4OIwcORIXqljIUhWWLVuGJjRlRCCoR5BL1759e4TRN0pBlanrqRIi/FrbWCxMAFAzYbXafaFEs2ZMMLjLTyKhR/lm3iZSyZ06sn2dRV3TpkwdFBTw5z5/njt41SAvjy2RTC0SSjRFiQ7frRZwl1MnSWzdZFmRq+kk6uhmRwVsdjZUkgSrSoNT+XGKp6H3KJ2OhzPlayX97PJy6HS88MW5AjYoiN2XkcFuz83lPey8nAFLla/kbkZHK0fdFhaydYWE+KhHnR/CrykpKW6F1NNPP40FCxbUbC1uuHLlCm666SZoNBq8+eab6NSpEwDg5MmT+PDDD9GvXz8cPHgQCVVoEO1M7969FYUSkiQhKysLV69exUcffVTjYxAI6hoRevUNdT1VQoi62oYcOrrW6biiAPj8p/h4ZZmoHIoLms3KfiCVERLCHxcRwfZTWMhECAk+gDVq27+fr7GGzsXVq0zQ0Wc9JfxTVxYyECsVdXSchYXswfJ8OrodUOTUATKnzn5uDSEJyLisVog0OtUajbICVqtl66L0PZcURudiCYArwDZtgJMnWV4dnXfahl7nSiBRRy8PFUcEBbGLcyi2PrJv3z5YZSXGR44cwS233IJ77rmnVp5v1qxZaNKkCfbu3YtQp/+xSZMm4dprr8Ubb7yBDz74oNrPceeddyp+V6vVaNq0KQYOHOgQkQJBfUJMkvANwqlraFDsTD6sU64UyCaKianYetHpmEioSl6dSsUsn5wctg4aGXb5MtChA9+uSxcm6goKmNqpYfiVTCnnPnV0Kiqc+2q18soA2pB2SKFnylmrIKfu+HHAdCELwQAKQxNRVsaMM+r5RulxVqtyIhvVpZSVMQHlIurk1cg2G9ugvJztpFs3Jur27QM6dmTrJkXrpVNHjYdJeyQkMKFHIo5efpcijuriB6euKSlVO2+99Rbatm2LmymE7WNWr16Nd955x0XQAaw67fXXX8fzzz9fI1E3Y8aMmixRIAg4yKkT7UxqRl07dYGfDFPfKS1lAoAsltBQZUyPRB01HvZEdYslKI5XUMCTzjIzldv07cuu6ZtEFfuqOUPCxJOoq3BEmPz4aEMSRPKcOklyW/0KsFNVUgIc3cCOsyyGHTdFRQnS0PTSEBXm1ZHqo7WS2iotBa69lv189CgXnnSQVXTq6CnIlKx1UeeDnLrCwkLFxeR8Yt1QXl6Ob775Bo888kitNTfNzMys0G3o1q0bLvlgPJ7VasXy5cvxxhtv4I033sDKlSsVjqRAUF8oLy/H8eNsvKJw6mqGKJTwwMKFC9GjRw9ERUUhKioKqamp+O233xz3l5WVYcKECYiNjUVERARGjRqFK/QJ6U/KypStOORN20wmbhMlJro+Vo68nQY5Wd5Aos5g8FwsccMN7JrahmRmVq0gwwnntiVkMlJRq8d2JgA/T/L47eXLbD1UIZCQwEQUfWDaRV1sLNOBFK0+vYMJKVs8O7fOok7eakWuJelU05hXF+QCm9yf0lJg4ED28/nzrD0MwNdI494qITubCTh6CtpNrYk6H5KcnKyYfTp79uxKH/PTTz+hoKAA48aNq7V1NW3aFBa3s98YZrO5Rvl0AHD69Gl07twZY8aMwYoVK7BixQr885//RNeuXXHmzJka7VsgqGtOnjwJs9mMqKgotKRiL0G1qOvwa70RdS1atMBbb72FAwcOYP/+/Rg8eDDuuOMOHD16FADw3HPPYdWqVfjxxx+xdetWXL58GXfffbefVw3ezoQ+3OW5bFQ5ACiLJ9whb6dRFbeORF1ZGY89XrmiFIbdujHlRY5iWZmyJLSKUKcIuaij6LNcjFQo6uQzu6idiSSxnUVH80Q4rdZhuWk03CALCgLyjzNRp2nhXtTRS6HTcdNPvm7Ag36W9z0hUVdSwhzP0FA+sxdg66RtvHDrqJ0JPTdpkfrg1KWnp8NgMDguU6dOrfTpP//8c4wYMQJJ9IWjFujbty/WrVvn8f41a9bUOMQ0adIktG3bFunp6Th48CAOHjyIixcvonXr1pg0aVKN9i0Q1DXyfDoxHqxmiPCrB26//XaMHDkS7du3R4cOHTBr1ixERERg9+7dMBgM+PzzzzFv3jwMHjwYffv2xaJFi7Bz507s3r3bvwsvLWWfxCTq5MM6r15l196OBqhOCFar5epFrWY5XmYzf26AKQbqj0HrcA7RVoHCQmW7kuBgHnoNDeVCya2oc+5RV1ysdDrj49kD5fl0sjcdMjyTkoBYCxNRoa3dh19JKDm3NVGp+NO7NXjkVbmUM1dayh5EVcY0Fionh4e9vRB12dlc1Gk0ynYmQGCLOnLR6RJM58YDFy5cwIYNG/Doo4/66GDc89xzz+GTTz6Bwc0XlcLCQnz66acuEyGqytatW/H2228r2pfExsbirbfewtatW2u0b4GgrhH5dL5DOHVeYLVasWTJEhQXFyM1NRUHDhyA2WzG0KFDHdt06tQJLVu2xK5du/y4UrjOfZWLOnqRaZ5WZdQ0r66wkKseZ9FGt1O8sQairrhY6XYFBSlFHelbr5w6CrnSDulcOeXTEXQYvXoBzcCOQd+R3XjpEl8HoBR18rYm8qdzK+rkXYrpmsLo1MLkr7/YtVzUeVEsceUK1+A09pd+BgI7/FpVFi1ahPj4eNx66621+jwDBgzA0aNHoaf/AxlRUVE4duwYBg8eXKPnCA4ORpHc7rVjNBqhq8oUGIHAz+Tl5WHp0qUAhKjzBXKnTqpBWpO3VFnUaTQaZFMmvIzc3FxoXKaz+5bDhw8jIiICwcHBePLJJ7Fy5Up06dIFWVlZ0Ol0LnPVEhISkFWJO2IymVwSvH0G9aiTO3VyAUeiztsusnJRV5U/Dnd5dc6irVUrdk1x0hqIurIyLthoeoQ7p87tnwupKDpWZ1FHSsypnQlBqVF6PZAI9tpHdUhEUhLb9c6dfFsSSlqta7S5QqdOvj66piGy113HfidRZzTyviReOHVZWVzURUdzUVcfnLqqYLPZsGjRIowdOxbaGg+w9T+33XYbHn/8cezZsweSJEGSJOzevRtPPvkk/v73v/t7eQKBV1itVjz44IO4cOEC2rRpg3vvvdffS6r3kKgrLy9HMfX1qkWq/G7sSWmaTKZa/0basWNHpKWlYc+ePXjqqacwduxYHDt2rEb7nD17tiK5O5nGOvkCEkjyKQkk6iSJ59R5K+qoCkBeNOANcqfOk2tELU7IbaiBqCsv5xqMxIdc1AEVzJH3JOooxEqFJpU4dTar5BB1aNYMgwaxHzdv5nqYTqd8d4Q8pc8t8obQdLClpcCAAeznjAxewkrurBdOXVYWF3BNm9aBqPMTGzZswMWLF/HII4/U+nNpNBqo1WqvLtVl/vz5aNu2LVJTUxESEoKQkBDceOONaNeuHd5//30fHo1AUHvMmDEDa9euRWhoKFasWOHW3RZUjfDwcEcqSl3k1Xn9FXn+/PkAAJVKhc8++wwRsoR/q9WKbdu21XqTTZ1Oh3bt2gFgyc/79u3D+++/j/vuuw/l5eUoKChQuHVXrlxBYiVVpVOnTsWUKVMcvxcWFvpO2JGSkc8zpYIIs5m7Td6GX1UqJhAMBvZpr9V6blgsJzycN2UjgZGXx0Qn9fWgsCG5eV624HDGee4r6Rp5mz6bTSmoFA/2JOoIZ6dOHs6GTNQZihAOpoiyVQm46SZg6VLWV/ncOdYnmNZnMinDsoAy/Op2soRc9YWGsnWWlgI9erA1lpRwS9LLQoniYiYuafPmzXnRSViYsnDCZ6LOo7qu4j6qyLBhw+okFAEAK1eurPXniI6Oxv/+9z+cPn3a0Qqic+fOjvcrgSDQ+d///odZs2YBAD799FMRevURKpUKsbGxuHz5MnJzc5GSklKrz+e1qHv33XcBMKfu448/VoRadTodUlJS8PHHH/t+hRVgs9lgMpnQt29fBAUFYePGjRg1ahQAVpJ98eJFpKamVriP4ODgShO6qw01OpNPSaAKVLOZx/yqMsQzJIR9shcXMyERElL5hyo1Ic7LYwpGr2fPfeUKD7v27s22s1jYpZpOXVGRshtJaCg7fHmPOrmT54LziDASdSQAKnHqyIg0pzMBVYhIHL8YjoFtWGT099+BrVu5qAsLY6eEItp0KuVGnM3mZr3yDeSirmlTtogzZ5iw0+n4tpWIOurAQ3+OrVtzc4/mvjo/fY3xQ/PhuqYuw5/t2rUTQk5Q7zh58iQeeughAMCzzz6L0aNH+3lFDYu4uDiHqKttvP5oOGefMjBo0CCsWLECMd66Sz5i6tSpGDFiBFq2bImioiJ899132LJlC9auXQu9Xo/x48djypQpaNKkCaKiovDMM88gNTUVN1APNn9Aos5i4WKF8qusVu42VXUye3g4d4IsFu9sm6goJuoMBmZnGQxMZJCoa9GC7ddoZCqnmqIuL48JIBJBISHKlEJn0aRAHqZ2FnV0Ozl1HkQdmay6PCagMtEMJ06wFnK9ezNRl57Ot4+KYm6YWs3cRHl4mMxNq9WNqKMSWYuFqzCKlSYnM1FXUMCqdeXFJ3Ib04msLPb8ajV7SOvWwPbt7L7QUN7mjkaZCbxn1apVOHXqFFJTUyv9oicQNCaMRiPuvvtuFBUVoX///vjPf/7j7yU1OOqyrUmVPxo2b95c54IOALKzszFmzBh07NgRQ4YMwb59+7B27VrccsstAJiTeNttt2HUqFEYMGAAEhMTsWLFijpfpwL6FJbPoaJGalYrL7msqqiTTzXwoqEtAGWxBMUo5c5RTAxfh8nkdbNcZ/LylKJDp+MuXXAw12ZunTpSUICrqHNu3uw0IowIC2Nhyzh7O5MsJOLECXYfnXp5NxfKIggJ4aFOosIKWIArU3ot6HUmp4a+lZWXsxNiNit7EzqRlcUj8XKtTmZfreTT+alQoi55+eWX8Y9//AMLFy7EgAED8MMPPwAA3nzzTbz88st+Xp1A4D8kScIjjzyCY8eOoVmzZli6dCmC6nvCbgBSl1MlqhzEqSyx+Ysvvqj2Yiri888/r/D+kJAQLFiwAAsWLKiV568W5NRRmFWt5sKpJk4dwBQSNQqWNzT2BIm64mIuOuSiTq1mYi8jg6uYK1eAKnYTz8riLhfAc9Zoyc5t6BRUJOroXFZS/Qqw0GrcH8xplIs6inwXFLDd6XT8tISFMb0l74FLoeIKK2DLyrioI6HZuTO7zs5mP+fnM0WZlcX6qtBCnMjM5BpVra6jIolGEH794osv8NVXX+G+++7DW2+9hQ8++AD33XcfhgwZgjFjxuCtt97y9xIFAr8wd+5c/PjjjwgKCsLy5csrzUEXVA/qVReQTl1+fr7ikp2djU2bNmHFihUocG721dghIULnRafjsTWrtXo5dQSF/KzWClSH0/ZUFEExxsJCJvIICsXS/qoRgnVOG6MRYQB/esALp46sKVKEVGlRSU4dwPr/xljYP89VNIU9bx0REXwN9IUpLIy9HGo1v42otC0gKVP5hInyclYsATBRJ0msV12LFuw2eezXiawsfjghIQ238rWuMZlMuNY+l3fYsGGOsV3NmjVDhnNH6mpgsVjw2muv+WRfAkFdsWnTJrz00ksAgPfee0+kJdQiAe3Uuasks9lseOqpp9CWuukLGM6ijhQF5VjVxKlTq5liKi9nwsebzHm9nomjkhJWhZuby9w4qhro2JFd16BXnTy0CfABFgA/fI3GQ22Hs1NHLl1QkKvCqUTUFVsLAAD5iMHFi0y7hoczkywjg/cEVqnYGsvLXStgnWfAuqyZNlCpmFAuLWXroqITKqstKGAJcvv3VyrqyHSNjOR/NnSbcOqqx6233orVq1dj0qRJ0Ov1MNr/rg4fPuwTZ0Kr1eI///kPxowZU+N9CQR1QXp6Ou677z7YbDaMHTsWTz31lL+X1KCpy6kSPnk3VqvVmDJliqNCVmCHRB0JEBIkJFxqIuoA7tbR81QGJWzl5/MuvXLh1rUruy4pYSrGi75qzlDKmDynjsQIRSk96k+LhbcBkYu6sDDPTp1TTh3ANGqUlSXIlYezY6ZewBT5lItPeSsmeZcNud5x69bJJ0vQa2s0Ak2a8NY1xcVsp/R7JaJO3qOOqmHppRI5ddXjhhtuwGuvvYZHH30U33//PSwWC+bOnYvHHnvMZ1V+gwcPFuPABPWCsrIyjBo1Cjk5OejduzcWLlwo5rvWMnVZKOGzVu5nzpyBxZswYGOB5pVKEg9xkqvkLOqqW3hCKomG3Vf2j0ni0WBgSuHYMa4cAJb/RSWf5eWuw1K9wGBgyyLxFBvrKkY8tjORF2ZotVzUyVvOUOi4AqeuTRsgzy7qwppFA6eBP/9kBhoVH8tFXUICE1QaDdst6UTSbNTyxG1vbVKtZEMWFbEHJiUxO5AEN9ltFZzTrCyAWhjJWwWSmSTCr9Vj5syZAOAonNLr9fjhhx8wZcoUPPfccz55jhEjRuDll1/G4cOH0bdvX4TTlw87YqqEIFB45plnsG/fPjRp0gQrVqxAqDe9TgU1IqDDr/JGvQCrnsnMzMQvv/yCsWPH+mxh9R76MDeZeI6avEgCgGQwQCW/vapQQzibjT1fZf32IiJ4Gw4SGXJ1Ex/P434mU4WukieKi5mo0mjYU7VrxwQVLVd+rUCS+DkLCmLCiEQdqamQELZTk4mLOtkAdSIsDIjTMFEXkRwDnGaRz7FjuaiTf2GKjWW7i45mGldu/slFnVt0OnbQzoUdKSnswJ2F6cWLHnbEnpsi4M2b8/NWJ05dTfcRwORVUHHsK55++mkAwLx581zuU6lUsHocTSIQ1B2ffvopPvvsM6hUKnz//fe13ghXwKjLQokqi7pDhw4pfler1WjatCnmzp1bJyN/6g0kUMxmLupILdhsQFkZVBRSrK6oo4Sw0lKmPCoTdSoVe66cHP5BXFjIS0FjY7moKy+vlqgLDmZ60WJhaWQqFT8VZCS61QDygg8ScSSIKF5LsUn6tqPTuXXqACBGVQAACIpnLuj+/ex2chDl/1vyELFzW5NKiyVoA3LqjEb2+tLYNUqMo4PPz+cJfjJsNm7y2Wxcc+v13JwUoq56mM1mWK1WhMgrdXyMjdIGBIIAZe/evZg4cSIAYNasWRg2bJifV9R4CGinbvPmzbWxjoYHhRLLy/mnMVkusnYmkkoFlQdh4hXUCM7bvDoSdaWlfJxVbi6rGggJYaonPZ2tPz+fKQ0v1ydJXI+lp/MxqHT4pGs8Vr6SqCNxSqKORAMJIVJkcXEeQ86RFqbOTKHRAIC0NLYOd+FXgAsl53nLpCepL7LbJsQ6HZ8Ba7Wyc9qrF7s/M5OH4GNi2DlNTwecRurl5XFdKP8eIM/jF+HX6jF27FjExsbigw8+AAC8+uqrmDdvHlq2bIlvv/0WPaha2UeUlZXVqoAUCKpKdnY2Ro0ahfLyctx5552iP2MdQ05dSUkJSktLazXkXe2v2NnZ2di+fTu2b9+O7OxsX66pYSAPv9KnMVWZytqZSFF62GpSr0IqytvWJvJiCXe2VfPmfH9AlfLqaCoWwA6PBJSzy+W1U0cKi4Sbs1NHxQduCC1jos6gjkFUFKuzOHaMH7LBoNTBpBctFuV61Wou7Cp066gCFmBCuF8/9mCjkR1Hbm6FbU2ysriRazZzx7DWRV0jKJTYuXMn/vGPfwAATp8+jVmzZuHDDz9Enz59MHnyZJ88h9Vqxeuvv47mzZsjIiICZ8+eBQC88sorlfbYFAhqE4vFgvvuuw8ZGRno0KEDvvzyS1EYUcdERUVBa/8gqW23rsrvxoWFhXjooYeQlJSEm2++GTfffDOaN2+Of/7znzBQ3zUBVwwlJfzn9u0BAJLcqYuKVoyILS3lBaBeQa1NANeeHO6IiuLTDajsUy7qWrdWrr8KIdicHG6yFRQwASVJ7KnkFa9VFnV0QpydOk+irqwMGjNzStONMbjmGnbzvn1sF6S9nPPqnIuVCXkbOrfQeuUOY/PmfBBtTg4TdTTDrBJRp9Hw+pVaF3UqVc0FXYB/QFy5cgWt7X/Xv/zyC26++WY89NBDmDZtGvZTXL6GzJo1C4sXL8bbb78Nnayiplu3bvjss8988hwCQXWYOnUqtmzZgoiICKxcuRJRbjoGCGoXlUqFJvb874ATdY899hj27NmDX375BQUFBSgoKMDq1auxf/9+PPHEE7WxxvoJKYCcHO56tWkDSBJUkuRw6mz6aEfxamEhuziLikohlVJaquzJ4Q61mqsH5068AM/UJ3VZBVGXkcH1TX4+i/RSjzcSdR41gDeizlunzm5zWaFGRkGEQ9Tt38+e251BGRfHNbHz+ZcXGbuFnDq5qNPp+OQOEnXk1LlxP+U96sLDeWE0RexNJv5nVFnqpEBJXFwc0u1/x7/++iuGDh0KgOUD+8qx+Oqrr/Df//4Xo0ePhkYWo+/ZsydO0EgTgaCOWbp0Kd555x0AwKJFi9ClSxc/r6jxUlfFElUWdatXr8YXX3yB4cOHIyoqClFRURg+fDg+/fRTrFq1qjbWWD8hBUChaZ2OfWrbP5ltTk5daSlvxWYyVa7NFAQH80kVtJOKoMIM+vCR/5G1b89uJ4utgmpNZy5d4uKNpjQ496jzGKmzWvnGNE+M8hJJ7JFTR6LOw7gtEnVFmmhk56jRty+7mUwZCgvLu7nExfH+xiSoCHmE262LSr1PSCSTGO3WjV3n5LBjo/W6OaeZmVyzUkGvXs8FHK0pPLyCljDVoRGEX0eNGoVx48bhwQcfxLZt23DPPfcAANLS0tCBClpqyKVLl9CORLwMm80Gs8e4vXtmz56Na6+9FpGRkYiPj8edd96JkydPut1WkiSMGDECKpUKP/30k+K+ixcv4tZbb0VYWBji4+PxwgsvuLSd2rJlC/r06YPg4GC0a9cOixcvrtJaBYHLkSNHHMWLL774oiMFQeAf6qpYosrvxrGxsdDLu7Xa0ev1iKluv7WGCIk6egGjo1FSApQWsjd4m4EVAdj00bBale6QJHmXHudApeKKgJRJRZCoI4VSVMQFVNOmvDDCZKpSTl1mpuuMe/o8IzPR4+e/zaZ06kgYaTR8bXSM8kIJd9grTgs1MbBYeCHqn3+yp6CQpnykWVSU6wAQQp5X59Gtk49hKy1lCpAswrw89jtZcZcuuTw8PZ0fHv0bkfgEuKjzeeSkEYi6t99+G/fccw9KSkqwZMkStLHntnbo0AGffPKJT56jS5cu2L59u8vty5YtQ+/evau0r61bt2LChAnYvXs31q9fD7PZjGHDhqHYuYoHbLyTO7fRarXi1ltvRXl5OXbu3Ikvv/wSixcvxvTp0x3bnDt3DrfeeisGDRqEtLQ0TJ48GY8++ijWrl1bpfUKAg+DwYC7774bxcXFGDJkCGbNmuXvJTV66mqqRJWrX6dNm4YpU6bg66+/dozYycrKwgsvvIBXXnnF5wust5AQsas1qWk8jEYgQiJRx25XydqZhIbyvr/l5VXMnQoNZWE/i8VDmaYMes7ycmb9FBczodS8ORNK8l51VXDqcnO5mebchoNEnscedZ5EXVgY/9nZqXPTow6Aw6kr1bHjDAnhE9XS03mqm1zUyescyspcT2FQEFteeblyhq0DnY4pP+oDaDSyZs50fvPyuPi5etWlWXR6Otd8ZOjKRV0FvZYFlaDT6fDmm2+63N69e3efPcf06dMxduxYXLp0CTabDStWrMDJkyfx1VdfYfXq1VXa15o1axS/L168GPHx8Thw4AAGUEk5mNM4d+5c7N+/H83oj9rOunXrcOzYMWzYsAEJCQno1asXXn/9dbz00kuYOXMmdDodPv74Y7Ru3Rpz584FAHTu3Bk7duzAu+++i+HDh1fzTDQujEYjgoKCEBxAORE2mw1jxozBqVOnkJycjO+//96RpC/wH3U1VaLKX7EXLlyI3bt3o2XLlmjXrh3atWuHli1bYufOnfjkk0/Qp08fx6VRU17OhIrdOZOSkyFJQBCYypGushdWlxSHJk1Y39+oKC/ytzyhVnMVKJ/M4I6gIC6QyPqRhzTJiTWZWPjYm5AumPAg3ULpbvJ+wrRMFyRJaU8GByuFnPPc18qcOruoM4XFOA6N6j/OnnXv1AFMI5IIdXbrKn1dqBE0vbkXF7OT0KoV+/3qVX58ZrMjp5KgULBcTLoTdcKpqzqTJk1STI74/PPP0bNnT9x22224WIUvLRVxxx13YNWqVdiwYQPCw8Mxffp0HD9+HKtWrcItt9xSo31TAVoT2ZeYkpISPPjgg1iwYIHb+bW7du1C9+7dkUBJmQCGDx+OwsJCHD161LEN5RfKt9m1a5fHtZhMJhQWFioujZUrV66gbdu26N+/P6Qq5cvULm+++SZ+/vlnBAcHY8WKFWgqfyMR+I2AderuuOMOUQ5dGZSPJqt8tbVpBxVs0ML+wW7/MFG1TlE4cvKwpTeTvxRQF93yci6APBEdzYQH2VP0hxYayqysI0e4OExPd1TuVoQ8JzApiR8HUImooyZwRFCQe1EXHs5OSmU5dXZFZo5gou7qVVajcvIkE3WUY3f1KlsfrS02lt0fG8vuk9dhOOfVuRyHPK+uuJg5dbGxQMuWrJdKbi4TctHRbH1XryqaTpOIlLc1jI/nt9G59blT1wiaD69ZswYffvghAJb79tRTT+GVV17B77//jokTJ+Lnn3/2yfP0798f69ev98m+CJvNhsmTJ+PGG29EN8rRBPDcc8+hX79+uOOOO9w+LisrSyHoADh+z7J/m/G0TWFhocdeWrNnz8arr75ao2NqKCxatAjZ2dnIzs7GiRMn0LlzZ38vCWvWrHGE2D/66CNcQykgAr9TV05dlUUdzVEUVAA5MkVFDlFnSWmHIJihAmCBBpr082wbspDsaLVMH5AudDtv1BPkcHkzCzY6WlnZIP/20L49sH49r6a9dMkrUUdfVktKXEVdhSPC5EUSQUFMJMhFnTwUW1LCFU4l4VdJHw1YmbFHLQLPnuVTGkpLmRFJrfni4oBDh7io69hROQWDegubzR4qUHU65WSJtm15G5PcXHZp2pQpuOxsxzktK+N/MlotO49BQdwwJZcuLEzZGsbdabTZ+N+QgEH9uQDW0uS6667DK6+8gmPHjuGmm27y6XPt378fx48fB8Dy7PrSN4hqMmHCBBw5cgQ7duxw3Pbzzz9j06ZNLtN96oKpU6cqRkUWFhYimf7GGxE2mw2ffvqp4/c1a9b4XdRJkoSJEydCkiQ8/vjjYsJTgBGwhRJt2rRxu6iCggJHAnKjhwSK0ej42ZLYwhF6VQVpobl4jm3jJOpoQIF8N16j1fIq2Mrit2T50Ke/fD5mu3ZsXzYbs93cJPa7gwQbtWkD+DGQmePRqXOeJuHJqaNvOeHhnt1Iu6hTNWFOXXa2UtSpVDwEm5nJHxYXxwSUfYpb1fvVyStgjUZ2QqiFgNEIXLjgdqRFRgbPp6PXPi6OnyuKcFXm0pWVsZexSu0iG0H4NSoqyjH/dd26dY6QY1hYGMqrnOfgnoyMDPTv3x/XXXcdnn32WTz77LO49tprcdNNNyGjCsVGciZOnIjVq1dj8+bNaEHtcABs2rQJZ86cQXR0NLRarSNfatSoURg4cCAAIDExEVfk5d2A43cK13raJioqymPH++DgYEfXA7o0RjZs2OBoMA0gIIpLTp48iTNnzkCn0znyJAWBQ12FX6v8bnz+/Hm3w6lNJlO137waHKRkCgsdYcXyuCTowD5ANMZCqOSD352odl6dXBFWllcXHs62J+vHYODrTkzkJZilpV6JOpuNix6DwdWpq3BEmHORBMBFXWio0qnzYpoEiTpNU3YMzk4dHSKgzKuLjGTHQCLKeVBKpWJbq+WilCaJUPEJwOK/bkRdejoXbPRZWp18Ouf8Ra/wk6i7dOkS/vnPfyI2NhahoaHo3r27zxoBOzNixAhMmDAB//73v7F69WqMGjUKAHDs2DFHU+Ka8uijj8JsNuP48ePIy8tDXl4ejh8/DpvNhkcffbRK+yLHZeXKldi0aZPLGl9++WX8+eefSEtLc1wA4N1338WiRYsAAKmpqTh8+LBi2s/69esRFRXl6FWWmpqKjRs3Kva9fv16pKamVvXwGx1UNT1kyBAArGK51Jvm77XIb7/9BgAYMGAAIuhboiBgCLjwqzzvZO3atYq2JlarFRs3bvTZG2S9hwQKuV86HaxBodBKdiFHIikxkX+Ky5APka9yXl1ICLNsqNmdpwer1Uwk2WxMiJhMbL0JCSwPrEkTJjy8FHU5OcrGw3KnjnrzAh6W407UkTun0/F8u7CwyqdJAI4EteD4aOAYz6kDuKijYkG5U0cOHqW+5eTw/sGAF68LldAGBbGNiorYjpKT2c4yMgBKmvcg6ujfSi7qKNpc0bhACtcDVQzZ+4H8/HzceOONGDRo0P+zd97hUZVpG7/PzKQnk0YKgUBCB4VQxYBKEYkIKsqq64eKiLpqUMrasIEVddcu4ioCrsjaUUSkSBUpQgDpPZAAKYSQnkx9vz+eeeecqZmZTPr7u665pp95z0ky5879NPz666+Ii4vD8ePH660l0ttvv43MzEysXLkSb731lrXqVavV4l//+pdfPmPTpk3YunUruvPm3QC6d++ODz74AFdffbVX28rMzMTSpUvx008/ISIiwpoDFxkZiZCQECQmJjotjujQoYP1O3j06NHo1asX7r77brz55pvIz8/Hc889h8zMTGul5kMPPYQPP/wQTz75JO677z6sX78e33zzDX755RdfD0OrIC8vDz/99BMAailz/fXX49y5c/j9998xevToRlvXypUrAQA33HBDo61B4JomVygxfvx4ADTuYtKkSTbPBQQEICUlRVi+HKVTB4CFhQHMDBUYGACJV9y5CFcr8+qMRi+dl8BAerPZTNaNu1L78HBywcLDbUVdSors1NXUeNSr7swZW9OPiya93oNpEmazoyLh7hx3gdRqEqy1Vb4CVqcutJ3s1PH/N4qLSfO5qoBt2xY4f55ul5fT8efrV6s9yHcMCCDxWVpKl/BwEsl79tBCuDJTOCi5uXIxMv8HW5kuyE1Xdz9KPrlDab56RCMUSrzxxhtITk62ukoA6vUfwujoaCxdutThcX/m0yUnJzttMmwymZDEbWsPmT9/PgBYQ6mcRYsW4d577/VoG2q1GitWrMDDDz+M9PR0hIWFYdKkSXjppZesr0lNTcUvv/yCGTNm4L333kP79u2xYMEC0c6kFhYuXAiTyWQtXsnIyMDChQuxatWqRhN1FRUV2Lx5MwBypgVND+7UlZWVQa/X24wT9Ccef/2bLY1qU1NTsXPnTqvqFDiBf7krQoi86lVSq4HTp+lxFycyHkXV6XzoVydJJH74iAp3SiAignpp2FfAtm0rl15WV5Ooq8UyVNZcmM1yapnBIN922TrPXU4dr77g4WLufnoQfg1Plqtfw8NplwoLgexs504dQGHjHTtkMVdaKn+U8ufiVtSFhNAby8po3cpiCX6QFE5dTo7j+Fju2DHmmahT1pl45ew2gqhbvnw5MjIycNttt2HTpk1o164dHnnkETzwwAN1W0cj8q9//QuPPvoo5s2bZ6043LVrF6ZNm2Yd0+QpvrTHcPaejh07Wt0bVwwfPrxRCi6aKyaTyVog8eCDDwKAVdQ1Zl7dhg0boNfrkZKSYuMWC5oOUVFRkCQJjDEUFxc7ddv9gdff5tnZ2ULQ1QYXKJa4GQsJhRqWEKJGQ6oCcCnqAA+S8t3BVVRt88a4LcSFBhdMKhXQuzepA5OJxIlFKLkiP19eM9eI9o6WR6KOdwnmKkUp6gBZDHkQftV2iAIgt4VThmD531N5uW1BBBd7/DH7ogOPiiV4AUdZGR3jpCQ6pjqdLJwVoo47g3y0GiDnz/FQL+Be1PmUT+dn7PuX6VzkdZ46dQrz589H165dsXr1ajz88MN47LHH8Pnnnzfwiv3Hvffei71792Lw4MEICgpCUFAQBg8ejN27d+O+++5DTEyM9SJovqxduxZnzpxBdHS0ddzcqFGjoFKpcOjQIeuM4YaG59PxkXGCpodarbb+/ddnCNbrliZK+94ZyjE0rRYuSCwnNRYeIfen81DUKZPyaxsQ4QBvC1JbCJaLOq4klL9oXbpQPtilS7Jb5+aEpDSheH6Y2UwXr0Udd+kCAuSEMi7qeCjYroO+DRYBGhAfbdMWrlMnYPt2EnXBwbJzd+aMPKY1LIxcsspKikDbNyEOCqJCVt5b2sGk4rmKAK2dT5qIiyNX9ORJeq6oyLqBS5foUPNtRUTIx4rrosBA14ZYXfLpGCQw1O0kwN9v39pi9uzZTlsgmc1mDBw40DrloV+/fjhw4AA+/vhjh9SO5sK7777b2EsQNAC8QOKee+6xVgjHxMTgiiuuwPbt27FmzRpMmTKlQdfEGLMRdYKmS2xsLC5evFivxRJei7ply5bZ3DcYDMjOzoZGo0Hnzp2FqAPkMyxvPBweKYs6tdojUafRyH3RLl0iPeVxlEuSSH1UV7sXdcHBthWbly7JSiUlhfLWLl0ihXPuHNCnj8uPLCmRI7b20yQ8GhHGiyECAmwbsynbmQCUgAbIkxrsMRrl90dHo00buS2cfbFEaio9fvq0LOoAMtZ4hLy01DbyrPy56HROihf4sefFJ3y/EhNlUccd0EuXgNhY8KI5fnyUVa5c07pz6bh4Brx36pTv9RX+/tzcXJsWF65GJ7Vt29Zagcnp2bMnvv/++7otpBFprmJU4Dnnz5/Hzz//DAD4xz/+YfNcRkYGtm/fjlWrVjW4qDty5AhOnz6NwMBAjBw5skE/W+Adbdq0wbFjx+rVqfM6/Lpnzx6by4EDB5CXl4drr73WZhRPq4aLOt6jLjJGDr+qVGQNAW5FnSSRU6RS0fnfvmdarXjS2kSSSCwFBspKhVtTKSlyCWZVlRwjdAEXJmYz1VoA8mHg53aXog5w7tSFhZEtBpCrWFMjz9Ny1fBUGS+NjLQaeufPy/2TLVOSrN1kuMbmtG0r9102GuXlcJRdS5yi0dgOv5UkuRyYj6wAgMJClJfLx4ULMkVhuVf5dI3ddNi+f5krUTd06FAcPXrU5rFjx46hoyuhLhA0AT777DOYTCZcffXVDo2GeXHJb7/9BiP/LmsguEs3bNgwhPF/fgVNkoZoa+KXrqFarRYvvvginn/+eX9srvljNJJAsvxxm2LaQA2LnVFQQBaWWg0oGoo6Q62WXRuvc+uUc62c9BW0Eh5OSoDHTHmuV/v2sjqrrpatKxfw77Hqalm/2Od5uexRZzbL4s7ViLDQUNmli4iwGbFlA8/9Cw8HAgKs2u/sWeCKK+j2zp0khLimdibq+L4Ajnl1XKvwwR0OaDRyCLa8nPajQwe6f+6cXLlbVGTTzoT/yLwVdcppFN7CD39dL94wY8YMbN++Ha+99hpOnDiBpUuX4pNPPkFmZqb3O+ABnTp1QmpqqssLQDkuoiWTwBXKAgl7lw4ABg0ahOjoaJSUlGDnzp0NujYRem0+NMRUCR9OA84pLS21Dp5u9RgMpAi4mOLOjEol93xr396jszAXRPzk6XEIVqWi7RuNpD5cNTnjeXVhYXLyWffu9N4uXeTChX37av04gIw1ZeNhpXtU6zQJSSLlp3TnuJBT3u7QwbUlxYs9LC1ZuG7OzQW6daMwdnExsHevPOzhwgX6SH4o4uNpGWVlpM2Ki2WhCniQsqh06ngFbPv29CZlOfOFC8itkj+X17c0hqirC96+f9CgQVi2bBlmzZqFl156CampqXj33XcxceLEui3EBdOnT6/1NWFhYSLSIHDJqlWrkJubi5iYGGvzaiUajQajRo3Ct99+i9WrVzdYA2fRyqR5wYtMm1RO3fvvv29znzGGvLw8fPHFF+KXimMwkNtkEXUqrcWK0WjkPms8Aa0WPJo56oqgoNpFHbfruU2kqMpEVBSpoPx84Ngxtx/FBUV5ua2o45t126NOmU8nSXKsOSLC1rXjos7drEm7iRNKp06lAtLTgV9+AbZuBQYNkosllHl1Gg09XlpKqXCKmgYAtimLOl0too4f+8BAeaisYmRFjlr+EfC3KHPq6lvUNRbjxo3DuHHjGuSzHnvssVpfExwc7NHrBK0TXiAxadIkBPP/vuzIyMjAt99+i1WrVjXYjHTRyqR50SSdunfeecfmvkqlQlxcHCZNmoRZs2b5bWHNGqORwoYWC0MKs5ytlaLOi7YwGo0czfVK1PH8NB4ndKaquKLgsVF7URcfT6IuL4/2ycm81Zoa5yPC9HofKl8B2amzF3U8F5GHMp3hQtTl5NAhGDJEFnXTpsnFEtnZtsUSbdvKPeyMRmtNgxWlqHM4tNwl5cUSfL/atqXjy93EM2dwRk3HhjH5R+HMqXNxHgFjsiZuLk6dQNCcyM3NtU7Z4L3pnMHz6nbu3Ini4uIGaV+jnCIhWpk0fRpiqoTXp4Fs+wQkgS3ceaqpsZ5tNeEWUadW+yTqAgLkhrdeoYzduhpNERQkT2sASJVx+ykyUs6rq6qiyk3LiCUlZ8/KgqKszLZQolZRp8g9tK6PO3V84gW/rQy/usJO1LVrR4Krupq0FI+KbNtG16mp1GzYXV5dSAhpMaWo4/vl8tCq1fRGnU62+JKTKYxdUEDi+MgRnIuipxiTJ1bwHDug9upXZeTalx7CrUHUqdVqtw19zXXcgZKSEixbtgy///47zpw5g6qqKsTFxaFfv37IyMjAkCFD6rR9QeOycOFCmM1mDBs2DD169HD5uvbt2+Oyyy7DwYMH8dtvv+H222+v13WJVibNjyZfKHH27Fmc9WCEVKuCKy+FqFOHWQRTHZw6QD6BewwfgQC4rrTgFbDK5H7u1kVFyePCDAYgK8vpJnJzZVETECALOI8bDyvDr4w5d+pCQ8luA7wKvwYGyo2Gc3Mp5KpW0+3cXLki9sAB20PERR0vtr1wwbYootZDqzyeHJ7gxy3A06dRfoFUm7MedcrpabWJusaufG3KLFu2DD/++KP18u233+KFF15AcnKyNfndF86fP4/7778fbdu2xSuvvILq6mr07dsX1157Ldq3b48NGzbguuuuQ69evfD111/7cY8EDYXRaMSCBQsAOC+QsIe7dQ0xXeLIkSM4c+YMAgMDMWLEiHr/PEHdaZLhV7PZjFdeeQVvvfUWKiwn34iICPzzn//Es88+C1VdRw41d5SizuIAqEIV4VcumLx06gDSPl4VSwByoYNeL8f37AkLI4tNqyVH7sIFEiCRkfT+sDASV3/8ATiZPXn+vGPjYcD2Iz1y6pQzuABy57jACwiQB7V64dQBtCt5eSTi+vYF0tKA3bspBHvbbXLxxF9/kegDSM/yaV+SRD/Oigrb/QsKon3U6ZwcWmVeHXeCeB4ln7dbUYH4shMoj77caY86HnqVJNf95+qaT9canLqbbrrJ4bEJEyagV69e+Oqrr3zuK9avXz9MmjQJWVlZDn33ONXV1fjxxx/x7rvvIjc3F48//rhPnyVoHH799VecPXsWbdq0wa233lrr6zMyMvD2229j9erVYIzVa0hUtDJpfjREoYTXCuzZZ5/Fhx9+iNdff93aq+61117DBx98IFqaAPJZlrfiAOiMz2ds+uDUKcdzeu3WKUdTuApB2Wfqc+HJk7t4boiLCtgLF2TRoQxRehx+ddZ4ODiY3sT7ivDigvBw2T10hpPZsMpiCQC45hq6Xr+ejuuVV9J9HpIFSEglJtIh44LJflIad88MBifCRqNxTIQLCpKPtaUHYKqe+rXV1s7E1bnBX6KuIVuaNBUGDhxYJ0fl0KFDePPNN10KOgAICQnBnXfeiW3btmHy5Mk+f5agceAFEvfee6/LvotKrr76agQHB+PcuXM4yBti1hMi9Nr84E5dSUkJTO5ajdUBr0Xd559/jgULFuDhhx9Gnz590KdPHzzyyCP49NNPsXjx4npYYjODu0yWsCFTq+VRUYBPog6QRVNlpftxrg7wuJxylpQ99hWwhYV0zXvBcVF3+rTTDy8ulnePF0kAcksToJZpEsqcOmU7k6oq+fO4A5ec7D7O6MKpA+SUvGuvpet16+ia59nt3StrSOW+cH1uPzJMrZb3yyEEy0dPKH/2ZrNsxVkEX3fpqPKujV5tqZWvTYGqqiq8//77aKfsVeMlsYrfsc2bNzttOms0Gq0tJ2LdzSsWNDlycnKswsldgYSSkJAQDB8+HED9hmCVrUxuuOGGevscgX/hxTOMMVyqZZ66r3gt6oqLi50mi/bo0QPF3CVpzXDhxNVBoOWMbC/q+LQGDwkLIy2j11NI0GPHzpO8Ot4oja+xsJD2g4s6bh+VldlWx1ooL5edRD6lgU9j4I+77FEHyE5dYKDzdiZBQbJTV9uJ0Ymoc+bUqdVU93H6NE0cS0qiXVb2DeVikGtce1HHlww40cvcXg0JkRW5RiOLOssbuplJ1PH0O2XBHNe3TgqOAdi6ZMKpc01MTAyio6Otl6ioKISHh2PhwoV46623/PIZI0aMcPr9V1paKvKdmikLFiyA2WzGyJEj0ZUn33pAQ+TVrV+/Hnq9HqmpqejWrVu9fY7AvwQEBCDScj6trxCs16eCtLQ0fPjhhw796j788EOkpaX5bWHNFuVoBQAIURRJAHVy6iIjSVjodPLcUWUOlkt4rporURcSIrfh4PNW8/OpdFStlgVSTQ3N2LLrsccdJb0e6NyZbptMsoslSS7MNS7mnIVflaIuPFx+vLYddiPquFOn1QKDB1NO3bp1wJQp5NZ9/z09xsOzbdvSYbl4kQ6FTidXw3ICAuQRuw5oNKTGS0vpZ8CYLJQtvwcp+qOQmBnh4aR6lU4d17GudpkLSbXat8pXQDZL64JXznEj8O6779rcV6lUiI+PxxVXXIEoV5NJvMRV/tTFixdFvlMzxGg04rPPPgPguUvH4aJu8+bNqKqqQqir/8rqgDL0KlqZNC9iY2NRWlpab8USXou6N998E2PHjsVvv/1m7Zq9bds25ObmWnvmtGr4mZYrHf4Hzac7cMvVS1EHkGEVFUWaS68njRUR4UHVY1AQiSKe/GWvACSJhFNZGTmIZ86QrZWcTEqSN8jT6YDNmwE754Gf1Kuq5NFbytCrS8HB1YSr8Kuy8pUrHGWlgjP4H4rC8uKirrhYrge59lpbUTdkCIm6Q4foRxQdTctJTKRCkIAA2qfSUltRx506o9HJoVUrOgsHBNAPjZfV5ubCEBWHYFM1EvQ5CApKASBrPsbk8WTKPDslIvTqGffcc0+9bZsnz0uS5JB3ZTKZsG/fPtHSpBmyYsUKnD9/HnFxcbjlllu8em+PHj2QnJyM3NxcbNq0ye85b6KVSfOmTZs2OHXqVL05dV7/fz9s2DAcO3YMt9xyC0pKSlBSUoJbb70VR48exdVXX10fa2xe8IIEi3UjhYeDAXTm5eEZSXKf7O8GLuwA28azblEmf7nKq+NiiSsIHquMjKT1cjGye7fDW7mQqaqStZRe74Goq82pUwo85eOu0Ovl9yicuvBwefknTtC1Mq+OMTIfu3Wj21u3ypvkIViu0d3l1TkcWl4swXPrADlRLycHBcFUxdvOSE2Vg4Lkl9XU0Pa43nYG/zxXlbGe0BrCrwA1kH322Wdx66234tZbb8Uzzzzjl3ZMkZGRiIyMBGMMERER1vuRkZFITEzEgw8+iCVLlvhhDwQNySeffAIAmDx5MgL5H6WHSJKE66+/HkD9hGBFK5PmTX23NfHpf/ykpCS8+uqrbl/zyCOP4KWXXrKW8LYajEZ5phdAthDvKsuVeXR0newV3uLCYLB1xNwSGCjHCZ1l3mu1NJeWP3fuHJ2tuchr144S0E6dsnkbY7KoMBpl19Bjp06pCgIDbXvU8WS2sDD5trvwK/8jUalk5Wuhc2dqa3LiBNC/P1W8hobSZg8coJ7KQ4bQNLStW4GxY+l97dsDf/5JP7r4eOd5dQEB9CN3OLS8SCU0VFZrsbHWuW/F+nC0BxBvPI9zdrumLPZ1VTnsD6euNbQ0WblyJSZMmICuXbviiiuuAAD8/PPPeOedd/D999/XKdF80aJFAICUlBQ8/vjjItTaAjh9+jRWrVoFAHjggQd82kZGRgY+/fTTehF13KUbPny4+H1rhtT3VIl6ayq3ZMkSlPEzU2vCYCBbh5/ptFpAZTkr+5hP5wyvGxJzUcEtJ3u4ojCbSZkYDKR4uDjiDhMXVxYqK2VRpxRvSlHnMjys7FEnSaRenE2T4H30APdOHf8jiY52UJJdutA1d+qCggBuLPMq2MGDaQk5OcDx4/QYL47k9SE8iq3EZbEEPwBKUacolqiqpgMTbzgPwLYGpLbQq33PZoFrZsyYgUcffRT79u3DggULsGDBAuzfvx+PPvooZsyY4ZfPmD17tjjBthAWLFgAxhhGjRqFLvyLw0uuvfZaqNVqq6vmT3iakwi9Nk/qe6pEvYk6d2N5WjRc1PEzbkQEJLXlMPtR1PETucejw7ioUPaFUxIeTsLKZJJHMJw9K4s6PvurtNQmM76wUNYuyjChx+FXpTIxGuW5WPZzXz0JvzrpUcfh380nT8qP8RDsb7/J6x86lG7/8ANdBweTQ6cUqfZunctWgLwCNixMfhFgFXWsmvY1ziLq+GEHai+S4FpY2cPQF1pD+DU3Nxf333+/w+MPPPAAcnn1TB1JTU1Fp06dXF4EzQODwWAtkPBkgoQroqKiMHjwYAD+DcFWVFTg999/ByBEXXOlSYZfBW4wGinMycUK70UC+DRNwhVKUecwUN4ZvLrVaCTRaV+RpVLJuWvR0VQskZ/v2IBYpyMlZxF5vIjAfrcMBjls6Db8qpwmwUVZUBBdnIk6T8KvbkTdiRPy8Ro1ih7btInWGxAA3HwzDc44cAA4ehTo3p0KLXiXF0miZSo70vDqU7PZRQg2NFRuRGc0Wo9vTNkZIAJooydRxw8xY56Lurq6dK0h/HrFFVdg165dDq0fdu3aZS32qivTp0+3uW8wGLBnzx6sWrUKTzzxhF8+Q1D//Pzzz8jPz0dCQgJuvvnmOm3r+uuvx9atW7F69WqvK2hdIVqZNH/qe6qEEHX+xmCgMzs/0/FpEoDPPeqcwdP0eD84j07uwcGUs1ZT47z5mVZL4omXdxYWUrIZIIdHTSZgxw7AMnopP192sLiZB9Ah4OaUU1HHe2konbrzJG7Qti19Hs+v8zb86kTUpabSJktKSJTFxtK4sNhYetvOnZRTFx9PLU02bAB+/BF46inqY5eVRT++uDjHyRIA7SsvbnAQdSoVHVtJovvt2gF796LTpV1AYldEV9uKuspKOizc5HMGd2hF5WvtTJ48GY8//jj2799vU7G/ePFivP7669i0aZP1tcOGDfPpM6ZNm+b08Xnz5mHXrl0+bVPQ8PAJEpMnT0ZAHf9jysjIwAsvvIB169bBaDRC44c/VtHKpPkjnLrmBJ/aoAy/OhN1fnDqeLGEXi+7TLXCRZ3BQErQ/kuGCyZusRUXy6qipIRcOz4k1SLqiorkl/MKU4A0GA8nOhV1/PgoLSdejcg3pAy5ehJ+dSPqgoPJccvJIbcuNpbWNWIE8N13FILlnSfGjSNRd/AgHa727el4FxSQqON5dcpjHhBAos6hX11QEJUFBweT8uNNncPDEVBRAZSXI1SthkZfBa021Ga3tVrXLic/fC7Hr3lIa3Dq7rvvPgDUjsnVcwCljJj9vDNjxozBrFmzrAUVgqbLqVOnsGbNGgC+F0goGTBgAGJiYlBcXIwdO3ZgKM/t8BFlKxMxRaL50mQKJQ4cOFAvC/CUuXPnYtCgQYiIiEB8fDzGjx+Po0eP2rympqYGmZmZiI2NRXh4OCZMmICCgoKGW6TZLLczUYg6I1OhoABgF/wn6gBZVPA0tFpRq2UbSTkPi8NjfTU1JOaUg08vXpQdxsOHrW+5eFF+Ce8HV1lJwsRtTp29qAsMpPJUQK5O4NUCYWHyej0RdcqxDAp4Y2ReLAHIIdgVK+TH4uNpXxgj/RoURALVaJRFlL1b5zKvLiCAFCEXdby9ieVgGctpv8LLz1u37YkpyQ9fXf/5bw05dZcuXfLoUuKstLmOfPfdd9bRQIKmzYIFCwAAo0eP9ksepFqtxnXXXQcA1mraunD48GGcOXMGQUFBopVJM6bJFEr06dMHgwcPxqeffopybiW44a677oLWo3EHnrFp0yZkZmZi+/btWLt2LQwGA0aPHo1KnncFqnL7+eef8e2332LTpk04f/68tTlog8BjYnbh1/N5KuzbB1Se8a+o41FS3trEI3huV02N4yiAiAgSHUajvMaKCvk2v1ZUG1y6JIs2Luq4jnYr6uxm5CIkRFZK3OLjok6pXFw1bQPcOnWAYwUsAIwfT7pr507bFnx9+9L13r103YFaylmdOPuJUDwcDtj9LCSJVGFICIk53uLEskFVWQlgNiOq6rz1LbXl0ymnQNTVqWsNaLVajy++0q9fP/Tv39966devH9q2bYtnnnkGzzzzjB/3RlAfGAwGLFy4EEDdCiTs8We/Ou7SDRs2rF6mVAgaBu7UFRcX+z0yAHgRft20aRMWLVqEf/7zn5gxYwYmTJiA+++/32XD4fnz5/ttkYDjfzqLFy9GfHw8srKycM0116C0tBSfffYZli5dipEjRwKgHlI9e/bE9u3bceWVV/p1PU7hrpPBIFsp4eG4VEqqxlToX1HHjTedjiJ8rtpf2BAURMKCFykoY4gqlRxi5WHXwkJKSCsqkh2wc+esb+HD7pW5ZPn5tiLHqajj/fy4qON2Y0wMCaCaGsf2K2Fh7q0pD0Udb1cCUB7gbbcBS5cC8+YBlsI39O0L/PwzsG8fLbVDB0olLCyk6LC9qOMjdvk0Npt+pUFBJKYtB8gcGARVmzaoCo5BaE0xUF2N2BoSdYzVXhPCf7Vcjl/zgtYQfgWA/fv344033sDu3bsRHh6OtLQ0PP300+jM7ds6Mn78eJv7KpUKcXFxGD58uNNZ2YKmxU8//YSCggIkJibixhtv9Nt2R48eDYCKcoqKiurUt1VMkWgZcKfOZDKhtLQU0T4OInCFx07d1VdfjYULFyIvLw8ffPABTp8+jWHDhqFbt2544403kJ+f79eF1UapxcXhoY2srCwYDAaM4vE00LiWDh06YNu2bQ2zKG7RKEVdWBhKyugwB5aSqGMxtQyl9wL+D1tNjYcnV56MBzgfWMpbmHCFVlAgz/7i8UCFbcx3k2+qooJ0mrJHnVPhYTTaunR8mzyfjrt0gYHyxj0dEeZC1PGZ3CdO2B6rzEy6XrpU3kSXLvRxVVUkAtu3p0PCl1lZ6Rj25ofMoRVgYCAdEIu1agIp3rKoZOsbYnXnrdutrUhCmU/nL1HXksOvWVlZSE9PR2FhIUaPHo39+/dDo9Ggb9++2LJli18+Y/bs2TaX559/Hg899JAQdM0EXiAxZcqUOhdIKElKSkLv3r3BGMNvvHeSD4hWJi2HoKAga0/L+sir87rDVVhYGCZPnoxNmzbh2LFjuO222zBv3jx06NABN1mS5+sbs9mM6dOnY+jQobj88ssBAPn5+QgMDHQY0J2QkOBWcOp0OpSVldlcfMZJ+JWFhcFglKDRAAHlZO9cRCwuXaKQn73j4y0BAbKActVX2AFuI7kTdZyiIjn2yGN9Op114dyF47vOI6j8nw+Xla9Kly46Wq585U2OuaiLipKrYGsLj9Ui6jp0oONVXS1/HACkpwP9+pFI4xOdVCqqjgWAtWvpGHfvTsvmUWv7v0cu6rgJaUWloict61dZhJgxPIpu6PWIsTh1SpfOlWDjhrAIvXrGs88+i8mTJ2PNmjWYNm0aNBoN5s+fj9dee82voVGTyYTvvvsOL7/8Ml5++WV8//33MHrcHVzQWJw4cQK//fYbJEnyS4GEPRkZGQDqllfHW5l06tRJtDJpAdRnsUSdmg936dIFzzzzDJ577jlERETgl19+8de63JKZmYkDBw7gq6++qvO25s6dazOvMZknhvkC/wJXFCGYw7VgkBCtNUFTRYLxeFE0/vqLCkqPHnVMbfMGnrIFeFEw4TKrH/KsVz5ZwmyWxZReL7t8lmIJ+39qla3lAA/z6WJiZBHHwxP8vlbrWeWA2UxjzAA5uc+OgACA5z8rQ7CSBPCZ7z//LD9+/fW0/p076XLZZfQ4bzdo//eoUsnHw0FgBwdbla5aQ2qNhVv2R6+HtpJEnTdFEv4QdTw/ry4Xb39/58yZA0mSbC716Wht27bN2nxY2RR97Nixfms3cvDgQXTt2hWTJk3CsmXLsGzZMkyaNAldu3Zt9CIzgXs+/fRTAJT/1rFjR79vn+fVrVmzxuem/MopEqKVSfOnPoslfBZ1mzdvxr333ovExEQ88cQTuPXWW/HHH3/4c21OmTp1KlasWIENGzagPZ+2DiAxMRF6vd6hgo3nSbhi1qxZKC0ttV7q1GGeixWeaBYUBKNEZ/loVan1ZZUBUdaXVlTIIsFXuKhT1me4hc8k5U3u7J+LiKDneZJeVRWVhGo08oft3o2aGlnE8GtuqvEiDrf5dPw4RUU5qkGlU+dJO5OcHBLTgYFyuNgJzvLqAGpjAlAjYi6sOnaUH1+8mJYSGSkvrbjYUdC4DMEGBVGRBw/FAlCFW2Lnej3CLlGeolLLusKfoq6xwq+XXXYZ8vLyrBd/hUGdwRhzOsKrsLAQcX7oGQkA999/Py6//HKcPXsWu3fvxu7du5Gbm4s+ffr4rfGswP/o9Xpru5n6+jldddVVCA0NRV5eHvbv3+/1+5WtTETotWXQZJy68+fP47XXXkO3bt0wfPhwnDhxAu+//z7Onz+PTz/9tF6LERhjmDp1KpYtW4b169cj1e7EPWDAAAQEBGAdH+QJ4OjRo8jJyXHbNT4oKMhvFXBcqTFumYWGQqenQxxpprgkCw0D0wQgIEBOH8vOrptbp9HIJ3hnEVUHasur42KOK7OLF+Xuvbz6dN8+lJXJoV9+zuTazG3jYeU4sKAgehFXufaijjdE5rddwdusdO3qtpiC59XZi7ouXSi8ajQCllZVAKg6NjGRhN7u3UCvXrSPvCWhfSG4UmDb6GVJIlEaFGRdX3Ck7JhqKkpgKi61Ckr7KLgSf4q6xkKj0SAxMdF6qUsCeW107twZBw8etN5njGHLli2YOnWqQ4GDr+zduxdz5861SXqOjo7Gq6++ij179vjlMwT+Z9myZbhw4QKSkpIwjv8H52eCgoIwfPhwAL5VwR4+fBg5OTmilUkLokk4dWPGjEHHjh3xwQcf4JZbbsHhw4exZcsWTJ48uUEGWWdmZmLJkiVYunQpIiIikJ+fj/z8fFRbQp2RkZGYMmUKZs6ciQ0bNiArKwuTJ09Genp6w1S+AnQWZ0y2acLDUWMRdeHGEgCAFB2FQYNoeHy3bqRnyspkDeMLyhCsX/Lq+M+Tb/TiRTmvjp+09u/HpUuyfoqLo03xzbltZ2I0yi8MDbVVgnxdyon2nsQkjxyh6549Xb8GtsUS9vDvdGXPuoAAuSnxrl1y+JY7koWFttvQaORdKC+3E+vR0RSGtRyc0DBSZcxgAMxmVB46Dcbo/VxP28PTEfln1ZXGcuqOHz+OpKQkdOrUCRMnTkROTk7dd8YFf//7322S1GtqajB8+HCkpaXh9ddf98tndOvWzWlPzMLCQp+Hwgvqn08++QQAFUj4Y+KDK3henS+iTrQyaXnU51QJj3+LAwIC8N1332HcuHFQN4JFwFuk8P94OIsWLcK9994LAHjnnXegUqkwYcIE6HQ6ZGRk4KOPPmq4RVqqXiXuOkVEQG9UUSeOcrmCQOnCtGlDwqCkxL07Uxt8cIFO5+EsWPu8OuUb+BeHsvFw9+50OzGRXLGTJ5GXJ7+kXTtZmwUHy2LGQdTxkC8XdSEhtuPAOEpRd+gQ3XYn6rhT56GoO3PGsfXIuHHAW28BK1eScOK/5gMGAD/8QPNgo6LkMbUREVQc3Lmz7eGLiKBDpteTIWkVaMHBYKGhkCwHLSTACENAKAIMVYDBAN2R00DHNERFuf75KQWUy5m6XuDPlib2RUZBQUEIspmZRgwePBiLFy9G9+7dkZeXhxdffBFXX301Dhw4gIjaKpx94KmnnrLe7tChAw4ePIjU1FQE2vSdqRtz587FY489hjlz5lj/idy+fTteeuklvPHGGzbHxp/9OwW+c/z4caxfvx4qlcqac1lf8Ly633//HZWVlV4ZIWKKRMujSYRfly9fjptvvrlRBB1AIRNnFy7oACA4OBjz5s1DcXExKisr8cMPP7jNp/M7PFeMC5bISBhMEuX+25eFwvoSAHVz6gBylFQqeaBFrXA1prR+OPZVDiUlsqDix7O4GOey9TbTJLg2Cw93M5tUOXUDIMXD1aCysbBS1HkTfq0l4T4+nnbFZAJOnbJ9buhQEm0XLgDffy8/npxM7zMYaHRYcrK8vKoqefkcjUY+hBUVCtEkSdAHawG1Gsxyvzxa7mpsOnUagMOviA3+bGfib5KTk22KjubOnev0dWPGjMFtt92GPn36ICMjAytXrkRJSQm++eabelnXlClTrA3TNRoNunfvbhV0X3zxhV8+Y9y4cTh06BBuv/12dOzYER07dsTtt9+OAwcO4MYbb0R0dDSioqL83pNK4DvcpRszZgw68EhEPdG1a1ekpKRAr9dj48aNHr+voqICmzdvBiDy6VoS9Rl+FbNf/QnvT8cVTWQk9EYVEpJBwghwsOO4TqmrqOMh2OpqcuucGCSObwgIkMdRKNUXz3NTdjfmCoKrFbMZgVs3QNOJwgqxsXI1aHi4LGQcRJ2yQTNAoo6/0ZVT58fwqySRW7d7Nw3GUGrAgABg2jTgxReB558Hbr1VrikZMAD49VcgKwsYOJDey+e/FhQ4DroICyOXzmQiYcd/zvn6GHSUJHLrjEZURiUhpvAIoNdDnXsagHvH1t/tTPzp1OXm5tq4UM5cOmdERUWhW7duOOEsJu4Hdu/ejX79+uG///0vhlhi6SUlJXjooYfwyy+/4O67767zZ2zYsKHO2xA0HDqdDosXLwbg3wkSrpAkCRkZGfjPf/6D1atXY+zYsR69b926dTAYDOjUqRO68jCDoNnTJJw6gQdwgcQFS1QUzFCRG+fCqePnQJ3Oi5YkLlDm1XlUeMGLJexnjPFRVsoKWK4mamqsj3U8uNIqLkJDHaOoarWTECHfjjOnjr+RMedOnStRV1QkdwX2oIcTL5rmo2aVzJxJIfFjx6jilTNgAF3v3k1TKAB5HJqz8cKSJP9sq6vlKPee7Cg6MBa1WxNp2Zhej5CC01Cr3U9C82c+HeDfnDr7giNPRV1FRQVOnjyJtrxyyM/8+eefuPXWWzFixAg899xzWLt2LdLS0pCdnY29fA5cHUlNTcU111yDYcOG2VyuueYapKam2jwmaHx++OEHFBUVoX379g3mgPmSV6esehWtTFoOTaJQQuABPFeMn3mjoxEariKTy4VTp9HIJ/G69D0G5NGifAJYrbgSdYAssPjiqqpkJWHp5ZRasMPaGUWpzfi53KnwMBppgc5y6vhncRUEeBZ+5S5dx46uxzAo4BFkZz2ptVrg2Wfp9quvyj/Krl2pWrm6mkKwylG1lZXyLigJDJRH7VZW0uftOBhuUyxRHmhplKzXI7QoB5HhRre5ci2h8fDjjz+OTZs24fTp09i6dStuueUWqNVq3HnnnfXyeQEBAXjzzTexfPlyvPnmm8jIyMC4ceOwbds2v40JS01NxQUnvYmKi4sdKvUFjY9ygkR9FkgoGTlyJDQaDY4dO4bs7OxaXy9ambRc6rNQQog6f8F7XOh0NqJOG2k5xC6cOsB/eXV8/ijgoevHRR2v2lXCiyW4Krl4URakFjcstjwbktkES/GmVadxUeJ02o7RKAs2lYoW7KpHHZ+XWptT52E+HcfeabPnH/+gH9Pp03J7E5UKsIxxxNq11OFFmYroalv8MOp0wJ9/AqeLbEXd2YooAAAzGKEyGdHWfN75hiw0ZafOU86ePYs777wT3bt3x+23347Y2Fhs377dbz3jnHHgwAE89dRT6NChA4YOHYoffvjBesL0B4wxp05KRUUFgvnfkKBJcPz4cWzatKlBCiSUREZGWttreeLWiVYmLRcefi0qKvK5IbUrRE6dv1AWAHA7JTISEZGKYgPAacJUZCRw7lzdRR0gp8A5M98cUKnoYjbTG5TVgFyNcGVWVERrV4wNU+lqEKIvgUETa22lola7ER68KEPp0kmSY6GEsvEwY7Xn1B07Rtceijru1LkSYiEhwKRJwLvvAh9/DPB/kq+6igooCgvlfcvLIwePV8HaExAgpy6WlADlxlCbXnWmENpnZjBAAhBffRqA86RtZU1LU8yp8xR/TILxhnfeeQfPPvssbr/9dsybNw9hYWF44403MGHCBNx33311qpCfOXMmAMqZev75521aTphMJuzYsQN9+/at6y4I/AifIpKenm7TwL4hyMjIwO+//47Vq1fjoYcecvta/k/H8OHDRSuTFgZ36gwGAyoqKvxa9S+cOn/BGw8rnDoWoYUm0Dunrq4nWGWnklq35a4JsTIxDqD1c9HFHRWdDmHVFxEWJr89OFgWHg5OnbPKV8AxGU/ZeLimRlaorn7xuTrjc2NrgTt1bkYCg3/frlhBwyoA2jf+D/Pu3bR8nhLhKgQLyLvZpw+gjdHAEBBiFXWBEeTiqAw0DkRjKZZwBj+ukuSfdiathddeew1ffPEFFi9ebG0l8dRTT2H79u1eVSI6Y8+ePdizZw8YY9i/f7/1/p49e3DkyBGkpaVZE/IFTYNTlrL3xpihyvPqeAGEO5SjwQQti9DQUKuD7+8QrHDq/AX/A1U4dfrwKATxkIwbURcWJrs5ZWV161fHixO4+VZrrjq39mpqaCF8vfw/Q7OZVFBBgawkuLjS6xFWVQhTWDerTuO6z22RBL8OCZFD1so3c1dTOZNL2SfEHq6sPAzfcVFXWko5cs4a/XbvTgJuwwZgwQLgpZfo8ZEjSegdOgT87W9kEprNtK/5+fIYMiXBwfTjT0qigotKlRZRFrEcFW6EISwSAZWl9LvD59c6QZlP56+c6cZw6hqaffv2OS3C6Nu3L3bv3l2nbfOq18mTJ+O9994TPeiaAVzUNUauY//+/dGmTRsUFRVh27ZtuOaaa5y+rry8HL///jsAIepaIpIkITY2FufOnUNRURFSUlL8tm3x/76/sJ/7CsAYphBwbsKvkkQz7QFqaltX3A2LcCA4mBagbMUCyHFDgDoLKzaoM6mozxpjiL50Cm3ayLqMpw+5LJJQLkxZXcHbpwByi5M2bWwFnislwxPUPRw1FREha1ZXIVgA4KMgFy2SXbI2bYDevek2X9o5GtuKM2dsfvxWJEkeS3bZZcAFc7T1ALWLKEVNgmWIuF7vdkH+zqcDyDitaz6dn1NC/I67qlp/5bstWrRICLpmAhd1nfh4mAZEpVJhtCU5111e3fr160UrkxZOfRVLCFHnLyyChVVYRIpKBWOgwgJy49QpH/anqPMor06SZCVmGblmhTtnll8+LsCqCypQo6Hnoi+eQLt2sk7jusxpzhd/kavGw1y0cectNta2tYkrvHTqJKn2vDqA5r7GxABnz1JxBIeHYP/8U+7Px93RAweci5xvv6XrLl2Ac5Ux1h9SXEAJqhNS6EmDwe2Caq18LSmhWLH9QFpBvTNy5Ei3F0HToTFFHeBZaxPlFAnRyqRloiyW8CdC1PkLfsblVk1QEMwSnX0vFjGYL5UAAPKqo5y+nTt1JSWOAx68xX4CWK3w+GNNjW0sjYu6oCCbOC4rKUFFIC048tIZpKTITh13kRyEB8+lU87GdTUijP/nohR17mLS3KnzonoyPp6u3Ym64GDgrrvo9oIF8uN9+9JyyspkcXjkCO1zaSmJQCXnzwOff04/j4gIoDSgjdUqDDGWoyZenipRJ6cuLw84etT5YFsXNNbs15ZGWlqazaVXr17Q6/XYvXs3enNrV9Do6PV65ObmAmg8UceduqysLBTaD4+GaGXSWqgvp07k1PkLi6iTuKgLDoakVqO8HPhhSRUeMJJt9vWaaNzVyTFSGBpKIqKmhoQdN8d8QVnUqtd7kFen0chlq3q97Nwpe9R16GCNNwZWluBSSDziqnIQVnoOMTGA5XvSKuYcRB135/jsV77T9u1MANmujI2VZ3m5cuqqq+VteBh+Bdz3qlMyZQrw/vvA8uVkgnXoQIdr8GBg9Wp6LC6OdCUXXadPU8Sa5xSuXEki8vx5aqWX2jscrDwcEgCVyQhTW0sFnl5PStFJop/ysLl06pyNW6uF1pBT1xC88847Th+fM2cOKlxV0AganJycHDDGEBoainj+n10Dk5iYiL59+2Lv3r1Yu3YtJk6caPP8oUOHrK1M7GedC1oO9TVVQjh1/sI6ccESwgwNBdQqfP89YLxAoVezWgNDYBiOHnV8uyT5LwSrLGr1qAmxssGdMhGPF0RUVNAYBstGw0xlKNdSpWlIeSFUKvltPFLgIDy4O8cVQHCwbG0BcmNh3vsD8Cz8yq3rgAD3s2Ht8FTU9ekDXH01LevWW2Ujlk+Y+OsvmhnLb0sSCfPzinZzv/wCXHednHuX1E5CdZCcIxjSwXJy4T8sJ/+9c9dVklw4dYzJi3MXqhY0KHfddRcWLlzY2MsQWFCGXhszrOkuBCtambQO6muqhBB1/sIyKUHi4iUsDBdL1LhwAYhkJQAAszYKkCRrWzV7eAiWp9/VBXfDIpziTNRxx0evJydNUXZZE0XJ58GVpEB1OluxYSPqlCFXpUsH2IZaAXnnAwIsscpawq/KIgkvvqR5BawT/eTAf/9Lm8/KAh5+mB7r1o0OT0UF7dLw4bSbPPSanU36VacD/viDmhXn5sq95gpMbawHLDzZsm/82DgJwfJ0R17X4oBOJx9jL8StCL/WL9u2bRPNh5sQjVn5qoSLujVr1sBs9wckQq+tAxF+beoYjbaNdcPDcamUlE1KJAkVVWw0VCoyly5dcqyZ4LqlrIw2VZcGsz6LOpNJ/nC1msRXVRVtkNtEBgP0sSTqAmrKrOlyPGKoUtkJDz4aDJCPjytRp7wvSZ47dV5OI/CkVx0nJYWaDg8fTgLvhReo0XDfvsCWLdSzbuJEqk/YvZtcwJoaEnFHjwL9+9Mx4borOBioimxrPZZhcZbQs05Hx8lOaXJxCMiRcQeUrV+8EBEi/Oofbr31Vpv7jDHk5eVh165deP755xtpVQJ7GrtIgjN06FCEhYWhoKAA+/btszaoVrYyueGGGxpxhYL6RhRKNHWMRnn2K6jx8IWLpGyipRIAgCo6ig9jcOrWhYSQtmKs7gWM3DXz+KStUslKkCsIQHbruErjr4khRarW18BYpQdjsi50CA8quxHzECHvWMynRTgTdYDbVjAAfCqSADwPv3KuuQa4/nq6bRkbif796XrXLjrG6em0izzMeuIEjRnr25ce79VL1qBRXeOsB0qqqZaPs5MKWJ2OfifUahej1wD5F8aD2bcC/xMZGWlziYmJwfDhw7Fy5UrMnj3bq23NnTsXgwYNQkREBOLj4zF+/HgcVeRsFBcX49FHH0X37t0REhKCDh064LHHHkOp3UianJwcjB071po/9sQTT8Bol4+xceNG9O/fH0FBQejSpUuLb5TcVERdYGCgtSpaGYLlrUw6d+4sWpm0cERLk6YOd7gsos4UGY3iYhJCkWa5nQlvYn7woGO+myTJ2oVrGV9RqWSnzy8h2Joaum2x48Ii5I3rz5KzxJ06B4eRq0qVSk7mDw2VkwdDQ+U324s6+5w7e7hK8qJIApCduvJyeUm1wadMLFxIh6N3b1p6URGweTPtwoABtFvV1bTbffvS0jp1osNbXU0CLaBNlKx+L1ygCgrAaQUsD73yqWpO4cn4XhRJACL86i8WLVpkc/nss8/w+uuvWysdvWHTpk3IzMzE9u3bsXbtWhgMBowePRqVll/U8+fP4/z58/j3v/+NAwcOYPHixVi1ahWmTJli3YbJZMLYsWOh1+uxdetWfP7551i8eDFeeOEF62uys7MxduxYjBgxAnv37sX06dNx//33ezSXtLnSVEQdIIdgV61aZX1MTJFoPYhCiSYO4+FXi1IzRcVa08PCTSV0IyoK3bpRdOziRWD9esft8ChjXUUd4EMIlpfJ8tYjgFwsUV5OitMS2otRl4JZFIbp0GEActTPQdQp51tVKwpJ7AUc0GBOXXi4/BG8wLY2xo4FkpNpid99R/t7yy303DffkAk5cCCJL+7WJSRQPl1ICP08Bg4kc5IFBoEFWo53URHFeAE69orwq9Eo//xcRlXNZtkB9bIBrhB1/iUrKwtLlizBkiVLsGfPHp+2sWrVKtx777247LLLrGPGcnJykJWVBQC4/PLL8f333+PGG29E586dMXLkSLz66qv4+eefrU7cmjVrcOjQISxZsgR9+/bFmDFj8PLLL2PevHnQW/5p+/jjj5Gamoq33noLPXv2xNSpU/G3v/3NZSVvS6Apiro//vgDFRUVopVJK0MUSjR1DEabM7AhKk7WLzrZqQsJAcaNo7t//QWHSlilU1fXTv1eizqNhoSXsn+GsgJWq7U6agm6XJh4c+WjFEvmRp9Lp47n1kkSbccTUcfDs65y6rycJqGERzf4tIfaUKuBf/yDbr/zDh2mUaNo/Fd5OfDjjyS8Jk0CJkyg3nWArLN69aLnd+8mncsiyFVjpaWyU2cwwHi+0KqDa2roOjDQTY6lXi+/UEw1aBQKCwsxcuRIDBo0CI899hgee+wxDBgwANdeey0u8N9RH+Fh1RheSeXiNVqtFhqL+7tt2zb07t0bCdySBomIsrIyHDx40PqaUaNG2WwnIyMD27Ztq9N6myqXLl2yHkt/jmXylS5duqBTp04wGAzYsGEDDh06hNzcXNHKpJXARV11dTWqnI0i8hEh6vwFz6eznI11UfRlGhEBaMpsp0mkpgKDBtFDhw/bbkarpSilweB85JQ38Oie0eihQFS2NlE2CA4NhTVpLjgYZkgIMVXAEEyCT7L89+uy8TAXdXyboaH0WbWJOrO59upXHwslAHlOqxe9evHQQ7T83buB336jfeZtplavpuKIiAgS1HPmyLvDmNzweNs2KrYwxlhOuBUVsCZb6vWQLhRYRb0y9OqSqirZDfUyp044df7h0UcfRXl5OQ4ePIji4mIUFxfjwIEDKCsrw2OPPebzds1mM6ZPn46hQ4fi8ssvd/qaoqIivPzyy3iQz7UDkJ+fbyPoAFjv51sSSV29pqysDNX202Us6HQ6lJWV2VyaC9ylS0xMbDKtQq63JOquXr3a6tKNGDGiyaxPUH8o/wnzZwhWiDp/YTKSW2I5uVaF0xk8JgZy7pii3JULivPnbQWXSiWbLXXtV8edOq9OvM7y6rjokiRApYIhiMScPogWqjp7xiaHz6Wo426Sq8pXxmwfq6iQ31ubU+eDqONOnasWM86IjQUeeIBuv/46XffpQ2FVs5kmR8yfTz/fNm2AjRuBQ4eAIUPkbWRnAzt3AiVR5M5JOh1M0Ran0WiE6tJFGGsMKCqSjU23DaT5iTUkxOuSaSHq/MOqVavw0UcfoWfPntbHevXqhXnz5llP1r6QmZmJAwcO4KuvvnL6fFlZGcaOHYtevXphzpw5Pn+Op8ydO9emICQ5ObneP9NfNKXQK0eZVydCr60LSZLqpVhCiDp/wBhgNNk4JqVqEnAxMQBzIjwSEuS6Aft/dvnLPK3MdIWyUa3XxRIGg3y25mEfy0akEEruMoWQK6TKz7Pme/FpFjbYxxJDQ8k+VDYZBuj48dfExMjP87JgZ/hYKAHAWrRy4oR3oe6ZM+m4rl9P4gwgty4wkMLpf/wBXHUVVcdWVlLYVVncynvZqbt1pht6PQxq2j9mNEJiDKriIuvhV47FdYAx51M5BA2K2WxGgJPS5ICAAIc+ZJ4ydepUrFixAhs2bED79u0dni8vL8f111+PiIgILFu2zObzExMTUWBXcMPvJ1pKv129RqvVIsSFNTxr1iyUlpZaL3zkVnOgKYq6ESNGQKPR4OTJk9i4cSMAIepaE/VRLCFEnT8wmyHBtg9JoY5E3aFDQM5uEh4ny2RRFxAgh+OU0wcAuTKzpETWOL7iU16dfdlsTIyNqggMJaWoCqMvfs2FPGt40OG8xpismLj7FxxMDhtjdJuLES7iwsLImqqtSAKok1PXqRMJ0EuXZIPQEzp0AP7+d7o9fz5dt2kD3Hkn7aIkkduq0dDPeMQI+b25uaRxQ0OBmB6WH7TJBDUzWm8DQGRNAbRa2i23kRi9Xj6uPog6xuru0tU197MlMHLkSEybNg3nFX/M586dw4wZM3Dttdd6tS3GGKZOnYply5Zh/fr1ThvllpWVYfTo0QgMDMTy5csdGhynp6dj//79NrNF165dC61Wi169ellfs27dOpv3rV27Funp6S7XFhQUBK1Wa3NpLjRFURcREYGhlpE0ZrNZtDJpZdRHsYQQdf7AUlTAeFsJtRpni+hL9vBhILSSfmB7cm3dpCSatOUg6kJC5GijJxMP3OG1qAMc8+o0GlqQWo0aU4A1wSsomtSGuijfKuocetQpXQouPoKC5ES2jh1lwchFHN/52ookTCZZjfng1AUHUzUr4F0IFpAnS3z1lTwEY+lSqoLdsweYNg245x7g8cdtj0l2Nl2npgISL0IBoNZTDpNkcUgDi0goO7ie9hgMtrmKXiLCr/7hww8/RFlZGVJSUtC5c2d07twZqampKCsrwwcffODVtjIzM7FkyRIsXboUERERyM/PR35+vjXPjQu6yspKfPbZZygrK7O+xmT5p2D06NHo1asX7r77bvz1119YvXo1nnvuOWRmZiLIEst/6KGHcOrUKTz55JM4cuQIPvroI3zzzTeYMWOGfw9OE6EpijpAzqsDhEvX2hBOXVOFV4pawmAsMBAXikio6HSAVkdu0qHCNjauhitRB3jfHNcVSlHnsaPiLK/O4tbp1HJPuZA4EiWqmmqEVpD6dCnq+EgFgNQULznlyYWA4/SI2py6S5fknVIWW3gBD8F6WgHLSU+nPnXV1cAXXwD79wO8b+unn1KO3XXXAW3b2r7v9Gm6TkkBHROLwyJVVYMpB/bm5Hi2EL2+TqJO4B+Sk5Oxe/du/PLLL5g+fTqmT5+OlStXYvfu3U5Dp+6YP38+SktLMXz4cLRt29Z6+frrrwEAu3fvxo4dO7B//3506dLF5jU8HKpWq7FixQqo1Wqkp6fjrrvuwj333IOXXnrJ+jmpqan45ZdfsHbtWqSlpeGtt97CggULrHleLY1sy39UTU3UKY+3mCLRuqgPp06MCfMHXNRVWSrGgoJhNltclupqBBlJ7J3VxaGwUA6vclFXWEiiSxm6TEig/KzSUgrB+jo+ko9rZYw+w1Vqmg3KkWFGo+zUASSwSkphDAyFJoyBBQZC0uuhzVoPfYe/O4ZflT3quPioqiKHTaWiGCjHvtK1tsbDPPQaHe1m1IJ7unQB1q71rgIWoN156CEgMxN46y3g66/pGN92Gwk+VyidOgB0XGtqIFWUwxSXCPX5XDrmZ87Uvgiz2Tb8Wgenri4Ip46QJAnXXXcdrrvuujpth9Xy39fw4cNrfQ0AdOzY0drM1t22fO2n15wwGo04Y/mbauy5r/akpaVh8ODBKCkpEa1MWhmiUKKpwkVdDYk6c4h8cg3X0Q/LpNKgOkBr05dOq6U0KLPZcYZ7UJCso+oi4iXJhxCscmQYn5ARSq5cRFIYzJCgCbb0tIui3MGgP3/nxbG28DO+MreOC5YOHWzVqrdOHY9N+xB65XTvTtcHDnj/3rvuImGekwNs3UoC+pVX3L/HQdTximi9HqoEy34YDJ6JOoNBFnQqVS0lss4R4VffcVWR6ozc3Fz88ccf9bgagTvOnj0Lo9GIwMBAJPH/ppsIKpUK27dvx5EjR1wWqAhaJiL82lQxmQDGIFmqGkwhJIBqauTQq17bBpAkG1EnSXJ4zlmYlWuVuv68nUVTa4ULBIu7duB4EM5fDIQqMBD5qnZWMWaOof80Ag7stfYutkHZeJgv5uRJuq0MvQKOos7+vj1c+PDGvT5gmaONU6e8P85aLZCVRQ2JAwKAp5+Ww7nOYEwOv1pFHResRiMkxW2cOVN7vFync+z91wx5/fXXIUkSpk+f3thL8Yr58+ejZ8+eePPNN3HYvuEkqCHwypUr8X//93/o37+/38cBCTyH59OlpqZCVWuiqkDQMIhCiaYKHxFmscJ0ISRCSkqACJ1tc1w+ZYDjLndOKerq4oYop3/xaGitKJUgY9i6Fdh/msKgF8Nkh41ZnDr1qeOO+XSA/IHcJgwIkG1J+67ursKvrpw6Pt+rDjky0dGyENu1y/v3JyYCH39MuXW1uXRFRdR6T62WCzSsgtVolKd3GI1USc0rMFyhzKfzsZ1JYzt1O3fuxH/+8x/06dPH9400Eps2bcIbb7yBtWvX4vLLL4dWq0XXrl3Ru3dvtG/fHrGxsbjvvvvQoUMHHDhwADfddFNjL7nV0lSLJAStm/pw6kROnT8wGuWJEgAqAkjoFBYCKTUk6gLbtoEk0WNnzsjmEhd1eXmOm42IIG2l19P53cdaAGg0pKUMBnIPPTr/azQU0jObAZ0OBw8GowYRyBhQBERGoLogAiEAVFramHTxAgL0lQDsNs7P+FzUmUx0CQx0FGv21a/29+3hoq6OOTKDBlH1686dgK854p70/OUVtu3bK3Ibeb6g0Sg3s+Oh7zNn5B6B9vDjWMciicbMqauoqMDEiRPx6aef4pXaFHET5aabbsJNN92EoqIibNmyBWfOnEF1dTXatGmDfv36oV+/fsIZagIIUSdoiginrqli59SVBcRCq6WTXbSRwq/qhDZIS6OXv/WWnCfHRZ2znnSSJLt1df2Z89S16movRobx/I6qKhw/DpwoICcpPrQKOyt6AZIEVVgYoNFAAqA5tM9xO/bhV76TcXGO4UL7cCvv++eqUMIPTh0gj2zjjYTrC8s8duvvAQBbUcfVNleI7vLqeCydi+VmWPmamZmJsWPHOswfbY60adMG48ePx7Rp0/D000/j/vvvx4ABA4SgayI01cpXQetGFEo0URh36iwn2ItSG+u5Ok6Sw6//+AfQrh25bh99RA8re9LVZ15dcDBpKIX2rB0u6gwGhAUakF1EO9UmuAI7S7tRXDcoyPo69d4sx21wUcdFCJ9+wDsvc0wmWcTZ96mrZ1E3YAAdm9On694X0B1c1A0cqHhQKeq4MOMC2J2o4w6dn5w6f4Rf7WeC6vjanPDVV19h9+7dmDt3rk/rbspUVFQ02/moLRVlTp1A0FTg4dfy8nLovUp6d40Qdf7AaKSTqyV/7FJggjW8FsvkMVbh4dSMVpKoLxqf7equWIJH3yor6zZdQlkc6WJWtyNqtdXiu31cJaoRjGqjBmoVQ1lwHFhoKKBW0zUA6S+71ggmk6Oo48LNfgJEeTlZiCqVnFvmTtRVV8sx6zqKOq0W6NGDbm/eXKdNuaS6Wq6wHTDA7sMB+h1S2qmAa1FnCYlbW5oAsgD3En+KuuTkZJu5oK4EW25uLqZNm4Yvv/zSYRJCcyU7Oxtjx45FWFgYIiMjER0djejoaERFRSFaMfNZ0DiI8KugKRIVFWV18/3l1omcOj/ADEZI1dVWUWfSxlgji1EGSy81iyJv04ZSwE6dooa1w4ZRCPbIEed5dQEBdN4vKyMRWJdq/JAQEoZcD3gUGQoNBWpqcPtNOhzMNqKwOgIdIy6ha3sdDIZ2CCwuBiK0QEEBpH37aKFBQZSTxy1BjcZacGHNk7N36vjjWq2cy+dO1PEyUq1WbgtSB0aNoukf77xDTpp9DUdd2b+fdFt8PLm1VpSFElx1l5XRsXIl6ri653F0lcrDBoT1S25urs3YqCAXLVaysrJQWFiI/v37Wx8zmUzYvHkzPvzwQ+h0Oqg9SVJsQtx1111gjGHhwoVISEiA1EwrkVsiZWVl1pwl4dQJmhIqlQp79uxBTEwM4u3PiT4iRJ0/MJroRGsJm/VMj8Jmi5azr34FKKfq1Cngr79kUQfQZAn7JsQAFUiUlVEIti6iLiCAzDeeX++RuRMQgHMXg9EutgZTbi9D0ZFwdIy4hM4J5Sg1dEPckf1AlEWYHD8O/PknNX8LC5N3JCCAPtBopOOkTBbk2OfTVVTIosWZqFOGXv1wAp00CfjjD2D3bmDmTBr/5U+dxEOvPNRrhQtSxuRxHDxHMyfHufq2t2x5bN0H/Fko4eks0GuvvRb79++3eWzy5Mno0aMHnnrqqWYn6ADgr7/+QlZWFrrzxoeCJgPPp2vTpk2zmlUraB34u/JfhF/9gV34tXN/rTUHLrRKDr9y+M/w4EF6S2IiaaCqKmpiaw8PwRYX1214urL2weMQLIBft4SjrFxCSjsjAsPJfWkfVYE8raUXCN+3sjI6Dhcu2M4kVanoPv9QZxMg7EUdd+mCg5031fVTPh0nIAD4179IQJ88Cfzwg182a0Up6mzQaORwM2M2feug18vHhaNMiuRqqg4hzMZoaRIREYHLL7/c5hIWFobY2FhcfvnlPu9LYzJo0CDriC5B00KEXgWtCSHq/IHJaOMs/fK7FmfP0lOBZbbhV4B0SHg4ibiZM4FHHwWuuIKe27nTMQwbFUW6SK+nj6kL/PxvMHheMLHvgBrvL6C8OW0bEmNxwRW4ENEZDIAUHQ2mUtH+79tH6tNgkHvUcSXKHSZnNrN9+xKee6cYem+Dn0UdQD+ihx6i2599JmvSulJRAezdS7dtiiQ4XLUbDPJtbhPa51nwHDrufgI+59MJ/MeCBQvwxhtv4PPPP0dWVhb27dtncxE0HqLyVdCaEOFXf2A0Wqs6mSThm1/CAQkAY9CUOIZfVSrg8suB7dvlYolz54CePSmva+dOQNmnVKUic+viRbq40jmeoFaT8aXT0ZJd9fVVcuIEUBhEYi4iJgCoBIJVeqhVElhwCKSaalpUaSl18B04kHqwtG1L9iDvx8IFibOxXq6mSdRW+ernHJnx44EFC6g/8oIFwL33+tzX18rGjaTXUlNd5OpFR1P+nMEgh2PVahLDFy/aTt7gQlmtlkVyHZw6xuoefq2Le8zZuHFj3TfSiFy4cAEnT57E5MmTrY9JkgTGGCRJgsnjrt8CfyMqXwWtCeHU+QHJZCTbDQDTBAKShNRU4Pr0Ukj8y9yuc/DYsUDnzsBll9H93bvlsKyzggn+di4C6wIXKTzNrTZOnABKq0j/R0UC54rJGQpHBcyR5CxJ3GE6fpyuuSgrK6MNALJ6cNZQ1356BA+/1tZ42M//fQcGAvffT7c/+YRyHtevr9s216yh64wMF6lvXMgZjbLg5UrpwgXb1ypFHQ9n18Gpa+yJEi2F++67D/369cO2bdtw6tQpZGdn21wLGg8RfhW0JoRTV1cYo0IJi6gzBQZDkoBZs4CQs5YTcni4g5uSkgLMmUM96x57jDQKf0lZGbloSoeI66BLl7yoXHVBQICtW+dKNwGkM7Kzgb591aislhAWwpBXFop2MdWIQDlYdDRQcI7ESHY2WY48LFhTI1dwduhANqRyZ5TYh19r61HHt+vvMlUAt95K/ep++YWKVxYtAkaO9G1bZWVynuR117l4EReyBoO8v7xixp2o84NTJ/APZ86cwfLly9HFfp6xoNERok7QmhBOXV0xmyGBWU+whsBQJCZazJMix9CrPdHRstl06JCsd/h4VE54OLlIZrOsf+oC71Wr07kPn505Qy5haipQVEIhWFMgvbkzTiIg2PJ/ARdjvF8KQILEbCbR0a6dLPacxXztc+jcibqaGvn1CQm17Kn3aDTA1KnAF1+Qdtq3j/SqL2zaRPqsc2fbKKoNypw6/oOx/JPgkFPnTNQJp67RGTlyJP7666/GXobADrPZLHLqBK0K4dTVFUueGNPpIAGo0UTI5hFXZm5EHQD060dO3Z49NFy+uJhCsMrvIEmic39+Pj3vaiSopwQE2Ix2dWn2HD0KXHUVPX/hkgYd2+qhjadqVA1MspjjtqKyKzYfSJ+QIN+OjHSsfAUcR4K5y6nj7pVG41lSoI+0aQMMHUoNiZcvB6ZN834bv/1G16NHu3kRD78aDPJxLC2lY6WcD6dMgDMa6b4kOa8O9pDGnP3akrjxxhsxY8YM7N+/H71790aA3e/4TcokWUGDcf78eej1emg0GrRv376xlyMQ1DtC1NUV3lTXImYqVFp07Gh57tw5uq7ly6R/f+D776lBLa+CtXfqAHLM8vMdc+d9QZJIqFVVkeHjStQdOEBGUFAQcKHEkleXGARYtIYxtTM0mzbZjBRDSYmtexQfL4dLnTUKNpvlsl7u1Lmrfr2gqCiu5yavN91Eou7nn8m986aFWk0NFcMAwPDhbl7Ij4nJJN/mDYiVSZTcpZMk2fUMCqr3YyConYcsZdMvvfSSw3OiUKLx4C5dx44dodGI052g5SPCr3XFEr+ULKKuRBUtF2Tyvia1iLrkZApvGgyy9snLcwyLcneurEw2vuoCF3LKiKk9Z8+SkAkIIKcOAKJj1chGCiriO0HdtTO9UK2WE/0OH5ZvBwWR48TFiTOLsapK3tnwcLp2VyjBRV0tDqg/GDaMlnDhAvDee969988/SdglJlI/ZpfYO3UaDf1ADAbnos5V6HX/fmDpUqq68RARfvUPZrPZ5UUIusZDVL4KWhtC1NUVvZ5CYZYy0mLEyk4dF3U2c6EckSRgzBi6vXUr6aGqKtms4gQHy8WRu3fbRuZ8QaORnSdXzYgvXZKje0WXNJQiFwTkaDoB7ZIgBQWBabWy9QcAx47JYdH4eHqOq1Bnoo7vaEiIPFXBXU6dB7mK/iIwEHjiCbr9+efAwoWev3fTJrq+5ppazLTwcDkkbTbLx0ivp+PGBW9tRRIXLpA77MUAeSHqBC0ZUSQhaG00Kz968+bN+Ne//oWsrCzk5eVh2bJlGD9+vPV5xhhmz56NTz/9FCUlJRg6dCjmz5+Prl271t+i9HqbaRLVYW3kqlUPnToAGDSIwqsXL8ph0T//BK691lYQ9OlD48UuXqSGtt26kdPnSwROkigvv7ycop/8vhKDQRZ1lVUSzheq0T7RhLbROoSYLG1c4uIhlZXJYzEKCkiYaDRydao7p85ZqNWTnLoGEHUAcOONtPy33ya3LjISmDDB/XsYk0XdsGG1fIAkkVtXWEj/HERG0m0u6oxGEn21tTOprbefoN5wFnZV8sILLzTQSgRKhKgTtDaalairrKxEWloa7rvvPtx6660Oz7/55pt4//338fnnnyM1NRXPP/88MjIycOjQIQTXV9sHnY6EjOWEq4lT5Ix5Ieo0Gmqb8e238vl6zx66HjVKfp1aDfTtS5WyeXlUyFBeDvTo4V2+FyckhJbOnUGNRh5mUFUltz8ByAD6c38I2idWoGtiOSQAZkhgHToCJ0/IAqOykuaWcjVjMsklu85EHc+n46FX/mFAkxB1AM2GLS2lSROvvEKOqTuxtnUrLTMkhAR7rXBRFx5uG441mUjYxcXZijp+zJR9b2rr7ecEUSjhH5YtW2Zz32AwIDs7GxqNBp07dxairpEQok7Q2mhWom7MmDEYw+OUdjDG8O677+K5557DzTffDAD473//i4SEBPz444/4+9//Xj+L0uspFMZFXYyWL8grUQcA3FA8dw647z5g1Sq5IrZDB/l1KhU1LQ4Pp16/58+T4GjXjoY4eDOIXpJoO2Yz7UZZGTmGkgScPk2v4RHRCxeA4+dCUVKpQ1QYzRirRBjCO6UAGyCHEKuqqMLiqqtIgJSU0PEICLAVbhxnTh1/rJFz6pQ8+ig5dsuWAe++6zqseuCAHLK9/noPi1O5kAsIkIUvF3E5ObYJliqV82NWW28/JwhR5x/28P/AFJSVleHee+/FLbfc0ggrEgBC1AlaHy0mpy47Oxv5+fkYpbC1IiMjMXjwYGzbtq3ePpfp9GStWU7AgbGWk2xxsZz3lJTk0baSk+m6qIiqW/v2pfubNzsWTUgSRTb79ycdUFlJqWxZWd6PbZIk0gYqFe0GH2O7fz89z0VJXh6QnCzh4FktzJBgggo6VSgkHmLlCqe6moQdny7Be61FRztXQfYCxWTyrPq1gUWdJAH//CeFqE+dkpsKK9m9m+bHVlaSQ/f00x5unIs6xuR8RD7uw74UWq+XO1DzeDn/5wIQ4dcmglarxYsvvojnn3++sZfSKqmqqkJ+fj4AIeoErYcWI+r4H2+CXTPahIQE63PO0Ol0KCsrs7l4hV5nk1MXEm8RIdyli4vzuOO/MvKWmwukp5NLlpcHnDzp/D2xscCQIVRdqdGQILMfQuAJKpWsn3go9vhxEjI8qmo00u5U6TSoConFRcRCEyCRE8lLZAG53QafYl9bYYO9gFNWiDSR8CsnIoImTgDUnFjJunUk6MrLqffg++97Y4g63wAAVxZJREFUMeyBz4GrqbEtlADIig0NpeMbGCg3Jg4Pl0Uyz6cLDvaqb50olKhfSktLUcp/NoIG5bQl1BAZGYloZ62UBIIWSLMKv9YHc+fOxYsvvuj7BuzCr6EJFmHCe9TVUvlqT/v2lEJ19iyFXQcMAHbsAHbtct2bLjCQwrN6PU0+OHOGik69JThYduqqq4EbbiD9oFKRZktMpNeFhwMmpgaDJTSr0ZDNyK09LnJzc8mlq02E2efUcWEdEuK8UXEjijoAuPNO6hyybRtNm+jdmwTe22+T0TZ8OPDGG15O72rblq6VnaWrq2mD+fl0LLjo5bN06xh6BWz7GfuKt85wS+T999+3uc8YQ15eHr744guXKSOC+kWEXgWtkRYj6hItiqOgoABt+QnScr8vj2M6YdasWZg5c6b1fllZGZJ5HLQ2TCZIJhOdfC1nxogky0nVy3w6DtdGubl0v3dvEnXnzpFoc5cv17495cGVlMgDCbwlLIwEXFkZ6dGHHwZWriSXjkdZIyPlyKC1n2dKiqxiTCZSlRcvUs86ZbNgZ3gzIgyofXv1TPv21ILml1+AJ58EBg8GfvyRnrvtNgq5et3nlIfoCwpojAUfzqvTkdA7coQSKSVJPl7K/ERR+dqovPPOOzb3VSoV4uLiMGnSJMyaNauRVtW6EaJO0BppMaIuNTUViYmJWLdunVXElZWVYceOHXj44Yddvi8oKAhBvo5ZsoQZWVUVeKZYZHvLibYOog6QRV10NImo0lJ6rHNn1+8NDiY3LS+PxF1amlcfbbOdggIyiFJSyC3ctk0WdVFRcg6/Vbx07CiLOqORXnTxIiWf8cpXT8Ov7qo4DQa5510jOXUACbf9+6mG4ccfSWvNmAHcc4+PAx5iYkix6/UUak1MJMuVz7nNyyOhHB/vOH0D8KnyFRCFEv4i29fhwIJ6Q4g6QWukWeXUVVRUYO/evdhrydXKzs7G3r17kZOTA0mSMH36dLzyyitYvnw59u/fj3vuuQdJSUk2vez8Cs95qqYEdbNag7BIS7jQR1HHX372rBzW4mKKV6O6g7+2sNCrHrQO5OQAX39NJ+zkZDKO+NrCw+W1WduopKTIuVwmk3y7oIBeHBJi235Dib1Icec68X53kiTnoTUCWi2FW8PC6PL++9T2xOeJXSqV7NapVHKsu6ZGtkVzc0nU8oIIT1vAuEHk1NUPZWVl+PHHH3H48OHGXkqrRYg6QWukWYm6Xbt2oV+/fujXrx8AYObMmejXr5+1B9STTz6JRx99FA8++CAGDRqEiooKrFq1qv561FlFHSWumwOD5ZO6j6IuKYnO6ZWVsiHljagLD5f1gKviCk/IyaH6hqNH6f7gweTKSZK826GhChGTnGzr1NXU2LpGcXGuFY99OLGwkK55FagSHnqNifGtMZ8f6doVWLGCWs9cc40fNsjTBvR6+YdYXS2L3uJiOVczONg239BHUSfwD7fffjs+/PBDAEB1dTUGDhyI22+/HX369MH333/fyKtrnXD3VIg6QWuiWYm64cOHgzHmcFm8eDEAGpz90ksvIT8/HzU1Nfjtt9/QrVu3eluPscpS5WkJwxqDFE6Uj6IuMFA+n/MQbIcOpIeKiz1z3zp1otcXFfnu1p06Rebavn2yxoiJod0xmUh42hhvQUGy+mSMKjat89LgOv/NZCIFC8iibudOuu7Tx/H1jVwkYU9MjB91FHfqysttnbqiIrl4greJsavytrqbPoZfhVNXNzZv3oyrr74aADUiZoyhpKQE77//Pl555ZVGXl3rgzEm5r4KWiXNStQ1NaouWSwri6gzBYdDr6fKyKrjJOqqY7yrfgUA/h3Ez988Vw6gxra1ERYmV7+66ebiEsYonSs0lHaNryMpSW65Eh5Ows6GLl3kB8+dsxV1rkQYF3R8owYDNdsDyB60p4mJOr/CK6UvXACuvJJuGwwk6pT7Gx5um1xpMMhtTkT4tVEoLS1FjEV4r1q1ChMmTEBoaCjGjh2L4/wPSNBgFBYWoqqqCpIkoaPye0ggaOEIUVcHasp0pIAs8UhjqBavvgq8PVeHUCOFFL/e4H1vkR496FqZjmOJOGPrVtkEdAc3cnhKmzcUF5OY4/3psrPl1iYAiT2nEe2UFDkkeP687RiM2ookeNntwYP0YVFR1NPFnpYs6nj49fx56ifDcwx5Dl1wMB2j3r1tQ8/8GAYEeNlHReAvkpOTsW3bNlRWVmLVqlUYPXo0AODSpUv1l/4hcAl36ZKTkxHozYgdgaCZI0RdHTBX6wGdjtqaANCFRWPFCkBromQ4MyQs+DbSmhvnKb160fXJk/L5vFcvoGdPEmgrVsiPu6JNGxJhfPSXN+TkkMbimqKigkLBJSVkBEVEuEiP69hR7rly+jSpv/R0Wrx9uJBjXySxYwddDxrkxApEyxZ1iYnyD02jkefG8RDs4MHU7sR+1BpPtmzTxutKDeHU+Yfp06dj4sSJaN++PZKSkjB8+HAAFJbt3bt34y6uFSKKJAStFSHq6oDKpKdqBouoK9BHw2gEruxOKq4qIBLlVWr85z/ebTcujgo7TSY59ClJwOjRFP4sLwfWr3e/DbVa1j32U6Zq4/BhCgFrNKQfamrIuTt9WnbvnNKxo/yCo0eBe+8FLr8cGDvWuUADHIsk/vyTrq+4wvnrW7Ko02jkuPn588DAgXS7poaKRwIDnU+LOHKErrt39/ojG0PUzZ8/H3369IFWq4VWq0V6ejp+/fVXr9felHjkkUewfft2LFy4EFu2bIHK8vveqVMnkVPXCAhRJ2itCFFXBzQwkoNiEXVHCijhbPwwEnWaOLr/v/8Bf/zh+XYliVw5wDYEGxhITW8liaKUtVW3KkOw3px4z54lDZaTA/ztb3LuvSuzzUp4uPziwkLg88+BN990/x5lj7rqauCvv+i+s3w6sxlYu5Zuu2vY15zhyZOFhdQgECBFzate7Skrk5/jcfsmTvv27fH6668jKysLu3btwsiRI3HzzTfj4MGDjb20OjFgwADccsstCFc4qWPHjsXQoUMbcVWtE1H5KmitCFHnI4wBQSoDJaBZRN258kgkJAADOpGoC06Mxu230+uffdY7x8yZqAMol54bOBs2uM+Xa9OGhGBNjVxJWxtGo7zNo0dJM/DUOI++H+3nk5054/71vGozIoKUqsFALpwyH4+zahVZl5GRpDZbIrxKuKhIrpgxGFz3s+G/IMnJts2IPaQxnLobb7wRN9xwA7p27Ypu3brh1VdfRXh4OLZv3+71+gUCZwinTtBaEaLOR2qqGYLVBpvw6yVTBG6+GVCXWZLoYmIwcCCdpy9dApYs8Xz7XNRlZzvmzw0ZQmLt0iVy01yhVsuG1qlTcn85dxw+TC6d0UjVrqdOUf59VZWHmoG35eAUFbl/fV4eXSckAJam0ujXz3luGJ+vOWWKY15ZS0Ep6vixNBopHOsMHnrlvzBe0tg5dSaTCV999RUqKyuRnp7u+4YEAgWinYmgtSJEnY9UVpihNhspfGgRdeWIwA03wNo1OE8XjeuvB/bsoff88ovn24+Lk8dx2ZtdgYFyMQWPVrqiXTsSY0YjCbbaKmF5BOziRapx4OPAzp/3MAefhw85XLS5gocO27WTRZ2zWb3HjgGrV9MiMjM9WEgzhecKXrggizqTyXlvmooKuVEzL6poRMrKymwuOkurH2fs378f4eHhCAoKwkMPPYRly5ahF/+lFgjqgE6nw1lLiwDh1AlaG0LU+UhNmYFik4xZrYqoDlqKmFlGWe3Jppw63tHg4kVKG/MU/n1k+afTBj7X9fhxuYDUGZJEqVaSROf/o0fdCzuuHWpqyPxRqyls7PF4XHtRx8OrzjCbZQcqKcm9qNu1i66HDPEwDtxMUTp1UVFyNTEXb0q4TZuQQJXGPsB/fety4b9PycnJiIyMtF7mzp3r8nO7d++OvXv3WmczT5o0CYcOHfJpHwQCJWfOnAFjDGFhYYhriQVVAoEbhKjzEV2lUZ5DarGz+l0TAZMJqDpPTt2+syTqvvxSDn1u2+b5ZyhDp/bEx5MOMptpoDxfijOioqgIFaDcOl5Aak91Na0zIQG4+WZrT2UsX+6Fjnr4Yeov16UL3eeFEM4oKKB8scBAUqbl5aSAnfWn431h7EVjS4OfhEpK6Njw6pSSEsc4PLdw69Bc1Z/h19zcXJSWllovs2bNcvm5gYGB6NKlCwYMGIC5c+ciLS0N7733ns/7IRBwlPl0ks/DmAWC5okQdT6irzLIQsMi6q68LgIvvgh8+wk9fgnRGDMGGDGCulUAJMA8haeDOBN1AM0bDQykCOd//wu3/fASE+UpXq5qF06eJEeO64j4eGDRInL3PE5NiY4GrrtOno6gnBhhD++i3K4dzSMDSH0qZ5py+M7xkRYtlfBw2Ra9eFEWbHo9cOKE/DrG5OKJJtIxn7co4Zcgj+1dwGw2uw3XNge0Wq1VUChvCxoWUSQhaM0IUecjxmqLqFNYFXGdtPjhByAaJECKEWNN/+LdJnh+nSfw76TCQueGV3IyMHkyCTaDofa2KXyGbEmJ86jooUOkr1Qq2rWYGMqxCwyUNZpHxMfL4UC9nhbnDGf5dHx0hj0lJXQdFeXFQpohkmQbguUH3mCQmxYCZM1WVFB83Ksfji2NUSgxa9YsbN68GadPn8b+/fsxa9YsbNy4ERMnTvR5P5oCTJHXwLwd4yLwG6KdiaA1I0Sdj5h1RopXGo0AAJOkRgULw+HDsqi7ahw5dQBNfQJITOn1FElbu9Z9jl1YmBxttHxPOaDVUlNigAoh3LVNCQqSt2dfNcsYaYTISDpJR0fLn9mxo+w0eoRS1AGuY8PcqWvfnhQlQCOwnNFanDrAebGEwWD7S8Dt1nbtnDubHtIYoq6wsBD33HMPunfvjmuvvRY7d+7E6tWrcd111/m8HwIBR1S+ClozQtT5CNMbKOnM4kJVhsZj7341zGYgXkMiZtL0aOsghdtuI/0nSZR2NnQoibFXX3X/OTyvzl2j4YQEuaPFxo3uCyF4+7eCAtvxYWfPyvph0ybq/cujR15/N8bFkdDg80ldVcByUde2rawyXTUVbk2izlVbE2WzQX68mkjo1Rs+++wznD59GjqdDoWFhfjtt9+EoBP4DRF+FbRmhKjzFYPeRtQZYxOsBZpxakcBEh4u9+X94Qdg9266vWGD+4+pLa+OM3QouWk5Oe7DsFotiUDGgAMHKKp57BjlzanVdP+PP+h1/DO9/m6Mj6eNcXvPWRKf0SiX2mo0ZF8GBspD7e1pLeFXwLmoMxioUthgoB8eD10nJ9fpoxq7T51A4E8YY0LUCVo1QtT5SJCxks5mFlGnbieLugiT3HxYydVX03V0NNCnD93evdt1yhkgO2uupkRxeH0CQBW27py9Hj1IP1VWAjt3kuZijELCu3bJEVAe7fNJ1EmSHBa0j/WazcBXX1GBSUiInOCXnCy7e/a0JqfOVfi1tJSE3qVL1A1ao/Fgdpt7hKgTtCSKi4tRZglBpPDKMIGgFSFEnQ+YTEC42RK7tOTUhaaSqAtCDQKMltYTdgKER8r+/ncqmIiKIiG1f7/rz+Ln9KKi2idCXH65XGfw66+u+9fx5sWSRLogJoYKKY8cobDstdeShjh2jF7Pu5N4DLckuajjYVbOnDnAF1+QkrztNtnJc/cl3JpEnavwa2kpVc3w45mY6GWyo0DQsuEuXVJSEkJCQhp5NQJBwyNEnQ9UVwNhzKKYLKLOGJuIo0flIgmoVA5ztbjrlpNDT19xBd3fscP1Z2m1VDDBWO3DGQBg+HAyeqqrgZ9/JifQWfFEXBwwbBhdSkspullRQa8dPpzqFmpqSHh6nVMXGUmCjos65YirvXup8V1+PiUVXned3JrDnahrjeHXkhL5ttlMJdCnT9sWmNQR4dQJWhKi8lXQ2hGizgcqK4Fgo6XHiCV2eryMwmC9kyyVnlFRsFZJWFCKOkAWdX/+6fqzJEk2a1yN/1Si0QDjxtH12bPAunXA0qXU8syegABKC+Qt4goLacnR0fIAh/79HXajdlQqUo28TxmfhlBWBjz5pFzJwStkaxN1JpMcom0NTl1EhCyITSb5nwODgZIfhahrktx1113QarUOtwUNh6h8FbR2hKjzgcpKIEBnaapriYl+sYZCjsP6OM+nA+Sc9tJSugweTPfdOXWAXDvgiagDyNy58UbKnYuNJTNxxQp5jquSPXtIK1RXk1PHhScv5BgwwLPPdCA+Xh5xxVua/Pe/trYhF3O1iTplU73W4NRJkryfly7ZhmBPnaLjoVT7gibB/Pnz0cbirCpve8vcuXMxaNAgREREID4+HuPHj8fRo0dtXlNTU4PMzEzExsYiPDwcEyZMQIGdJZ+Tk4OxY8ciNDQU8fHxeOKJJ2C0RBY4GzduRP/+/REUFIQuXbpg8eLFPq25qSCKJAStHSHqfKCyElDXVJHjZBF1X65LhFoNTLrJde5XaKicA3/mjOzUHTnifkQqP3d7En7ldOlCwu7226kWobAQ+N//qJkwN8pMJrnnLxeMgweTduBNkn0WdbGx8tBbng/Hkwd5rsvp03Qw+dwyV6KOvz80VBaKLR3++6MUdQaDHIZOTPRiIK9rhFPX9Ni0aRMyMzOxfft2rF27FgaDAaNHj0alYjrLjBkz8PPPP+Pbb7/Fpk2bcP78edx6663W500mE8aOHQu9Xo+tW7fi888/x+LFi/HCCy9YX5OdnY2xY8dixIgR2Lt3L6ZPn477778fq1evbtD99SdC1AlaOyLL2geqKhmkmiq58TDUKDDGYvIUoH2Y+4T+jh1Jw+TkUAVsSgppm02bgJtucv55fGCAp06dkvBwYMwY4KefSBTm5ZGgvP56mjpVWUk6qaqK9OkNN1CBRGUlRf2cjWH1iJgYWbzxhni88iIykqzB06flIonoaEogdAYXMq0h9Mrh+1pcLItdvZ6E3IgRPpQkO4exuosyMTzBv6xatcrm/uLFixEfH4+srCxcc801KC0txWeffYalS5di5MiRAIBFixahZ8+e2L59O6688kqsWbMGhw4dwm+//YaEhAT07dsXL7/8Mp566inMmTMHgYGB+Pjjj5Gamoq33noLANCzZ09s2bIF77zzDjIyMhp8v/2BEHWC1o5w6nzAoDNBqq625tOdM8SBSWrMno1aqzTt8+puuYWuFy50/XncqMnP9+0E3Lkz8OCD1MtOksit+/FHamcCkIBjjJYeHy/n0/Xt67rDSK0oRV1lJVVy8jBsZCRdnzsnCz1R+WoL39eSEnnGXE0Nha8HDnQa3he0TEotNn6M5WeelZUFg8GAUaNGWV/To0cPdOjQAdu2bQMAbNu2Db1790aCouVNRkYGysrKcPDgQetrlNvgr+HbcIZOp0NZWZnNpalgNBqRY/liFaJO0FoRos4HzHojnWAtoddcfSJSUiw5c1y4eCjqHniArlescO3EtWlDefMGgxyp9JbwcGDIEODmm0monTxJrp0kyU2G+ZK5zkpL8+2zrBvjoq6mhmLMADlN4eF0MZup9wrg3nnioq415NNxlOFXLup0OvqhKcJwdUWEX5s2ZrMZ06dPx9ChQ3H55ZcDAPLz8xEYGIgou7+HhIQE5Fsaeufn59sIOv48f87da8rKylDtYn7h3LlzERkZab0k17H5tT/Jzc2FyWRCcHAwEvk8RIGglSFEnQ8wvYGEisWpO2uIl8OUl1wXSgCOoq5nT+Cqqyi/bdEi55+nUskzW2trQlwbXbsCEyfKbUratCGtUF5OzhwgT6Oq0wQqpVNnNpM9CFCeXceOsjO3fTtdX3ON62219vArF3V6PVmqvsThXSBEXdMmMzMTBw4cwFdffdXYSwEAzJo1C6WlpdZLrnJ0XSPDQ68pKSlQeV2yLxC0DEROnQ9IRtu5r2cNCY6izoUA4aNNjx2jPLbQUHLrtmyhEOyzzzr/zHbtSGydO0dtRupCQgLwt79Rteu8efTYqVPAI4/QbS446/RPeHQ0CThJIiHC+7YEB5Og0+tpThlAyXtDhrjeVmsMv/J/Ci5dIgXOrVqDgUKwXbs27voEDtTU1GDfvn0oLCyE2U7p3uQqYdYNU6dOxYoVK7B582a0V7SvSUxMhF6vR0lJiY1bV1BQYHWoEhMT8addryReHat8jX3FbEFBAbRarcvGvUFBQQjyQ4FOfSDy6QQC4dT5RKBkIFGiEHXWcyyfZ8rLXO3o2JFy5AwGWedMmEAh0VOnXDtx9g6fpxw6BBw/7vw5xuh5gEaC9e9PQo9HkOsk6oKDqfCBnxx+/52uQ0JIpCj7SI0a5b6qtTWKOmX4VaORx3rwEKyfEE6df1i1ahU6dOiAK6+8EjfddBPGjx9vvdzCE2c9hDGGqVOnYtmyZVi/fr1Dz7UBAwYgICAA69atsz529OhR5OTkID09HQCQnp6O/fv3o5D3iASwdu1aaLVa9OrVy/oa5Tb4a/g2mhtC1AkEQtT5RFiA3kHUWZ06Ho7gKswOSZJnwG7ZYtleGHDZZXSbFy/Yw0Oh3oi606eB118HXnoJ+Pprx5NvVhY9VlxMxlCbNvLyY2Io7a1OxMbKjlNREV1zp05ZGDFmjPvttKZpEhy+rwYD5dAp8+qcjQjxESHq/MOjjz6K2267DXl5eTCbzTYXk7MGkW7IzMzEkiVLsHTpUkRERCA/Px/5+fnWPLfIyEhMmTIFM2fOxIYNG5CVlYXJkycjPT0dV155JQBg9OjR6NWrF+6++2789ddfWL16NZ577jlkZmZanbaHHnoIp06dwpNPPokjR47go48+wjfffIMZM2b49dhcuHABCxcudOi152+EqBMIhKjziXCU2/SoO6NvS6KOMVkVubG5lKKOt4MYNIiuXYk6rhHz8ui87gkrV8rbX7ECePVVamOyYQO5hDyd7cwZOaTrwfI9JzpajjdXVpIdGRpKseSePcmBSkqiak53tEanLjBQVtXKYomaGtkNFjQZCgoKMHPmTIfCA1+YP38+SktLMXz4cLRt29Z6+frrr62veeeddzBu3DhMmDAB11xzDRITE/HDDz9Yn1er1VixYgXUajXS09Nx11134Z577sFLL71kfU1qaip++eUXrF27FmlpaXjrrbewYMECv7czeeihhzBlyhQsWbLEr9u1R4g6gUDk1PlEuLGU7AlLn7o8JJHounSJEuUAtyOcBg6kItC8PKpC7dKFRN1nn7keGRYVRdHMsjKaEsW1kiuKiuRJFbfcQkWmx44BL77o+NqcHGpSDPhZ1MXEUIWHSkUCOCSE1KlaTcLuv/+lHautb0prFHUA7W9FhfMKWD/hD6dNOHXA3/72N2zcuBGda/vD9ADmQeO/4OBgzJs3D/N4UqwTOnbsiJUrV7rdzvDhw7GHdxqvJ8aPH48ffvgBy5Ytw8svv1xvnyPmvgoEQtR5jckEBOvLrKFXHQtEREoM6RIeG42Lk6cpOCEkhETcli0UFn3mGdmp27WL3DVJcnxfx440lOHMGVnUMQa8/z6FWmfPlqN2K1bQyfayy4Bbb6UK2wULqLNIp06Uu1dTQxq0vFyeHOGXIglOdDQl+HfsSEl7gG0uHY8510ZrbGkC0PHLzXUUdfUQfq3rNlo7H374IW677Tb8/vvv6N27NwL47F4Ljz32WCOtrPEZN24cNBoNDh48iOPHj6NrPRT5lJaW4qJlwLWY+ypozQhR5yU6HRBQU24VdXnmeHTrZlFgteTTKbnpJhJ133xDwuqFF8i9KymhEKmz770OHUjUKfPqsrLkZsErVgB33UWuHM9/HjuWruPjSTyaTGSMlZTQa+6/n57nos6LXagdnk/HRV1Bgfsmw65ojS1NANtiCd5vxmgkRW42kwMqaBL873//w5o1axAcHIyNGzdCUvxXJklSqxZ10dHRGD58OH777Tf8+OOPeOKJJ/z+Gdyli4uLQ3idk4EFguaLOCt4iU4HaKrLHfPpAK9ilxkZJOTUahJje/bI521XIVheLMEnaxmN5PRxNmyg+0uX0v1bbgF697bdBo90RkWR0CspoUgx74PnV6eOizq+8exswJdk6dYcfgVo/yMj5TFqVVXyMakjolDCPzz77LN48cUXUVpaitOnTyM7O9t64blerRleAbxs2bJ62b7IpxMICCHqvESnA1SVslN3orq97Kp5qYgmTABGj6bbBw4AV1xBt3kBgz3cPcvNJUH300+UM6/Vyq3fVqyg19x0kzyCzBXc4eN1CtXV8sQKvzh1XJSo1aRIzWYgMxPYuNHzbfD5ZUDrDL8Cco+Z2Fi6Npn8ViwhRJ1/0Ov1uOOOO0TTWxfcfPPNAIDt27cjz485oRwh6gQCQnwDeUlNDSCVlVqdumx9kjxOy4fYJU+VOnKE2rUBwBdfAJZxjzYkJlLxqE4HPP44zW8FgDvuoLw5gHLx7rkHuO0253l5SrKy6JqHXs+epWutVh7PWie4UydJNHj2sstIkHAr0RPKyug9yu21FpQNiAHqOQOQoq+HE6PAdyZNmmRTnSqwpV27drjiiivAGMPy5cv9vn0h6gQCQuTUeUl1hQlSZaXVqTtnbuso6ryIXfbsSddHjgBvvkn3Dx8GPvzQcbqEWk1G10cfAZacYNxxhzxha9o00gGefq/ZO3WnT9O1X1w6gBrwhYSQBdizJzByJCXx7d/v+TZ489TwcFK0rQnuzPEfNhd1JpPfiiUYq7vT5kGxpg1z587FDz/8gCNHjiAkJARDhgzBG2+8ge7du9dtIY2IyWTCm2++idWrV6NPnz4OhRJvv/12I62s6XDLLbfgzz//xLJly/CPf/zDr9sWla8CASFEnZeYqvWU02Rx6gJTkmCdmuODqONOXW4utXJ79lkqdnjnHRJp9jm/ffoAr7xCLl2PHlTVyqmt3ZuSsjI5vY07dSdO0DUfXlBnJAn4xz9ImF13nfyBBw64LvG1h4sXP/T/anZwp66ign7fuMgzGv0efq3rNrxh06ZNyMzMxKBBg2A0GvHMM89g9OjROHToEMLCwuq2mEZi//796NevHwDgAB9/Z0Hy5Pe8FTB+/HjMmjUL69evR2lpKSL9Eg4guFMnKl8FrR0h6rzErNOT+rI4dW37WYoATCY5fumFqIuMBNq2pWja0aPkvL34Io32+vBD4OmnHd/Tpo1cteoLxcUkDAFKdeMTzbio80OrLRmuGAGgWzdqcVJRQdUenlTCcqcuPt6Pi2omhIZSSbRORz80pVPXjMOvq1atsrm/ePFixMfHIysrC9dw27mZsWHDhsZeQpOnR48e6NGjB44cOYKVK1fizjvv9Mt2TSYTTlvCDMKpE7R2RE6dl6h0VSTqGIMZEroOtYiNggJyUNRqUmleoMyr02iA55+n+//6Fzlq/qSqihy9d96h+3//u/yc3506ewIC5J21czNc0pqdOkmS3TqlqDMagbVrycrl7V58pCkUSpRaEkhjWlvOZCukPqpgz58/D71eD41Gg/Zumr4LBK0BIeq8JLy6yBp6LUYMrhhiyZ3hodekJFJmXsB1zuHDdP1//0ePFRcDDz9MIdlNmxzfd/48sGgRTY7wdLzkf/9LnUUSE6lH3quv0uM6nVy8W2+iDgAuv5yuPc2ra81OHeBc1MXEkODbuJESLOuAP0VdWVmZzUXnwTw7s9mM6dOnY+jQobic/24IWixc1P3666+oqanxyzZ56DUlJQXq2qbTCAQtHCHqvCSsukhuPMwSZQF05Ahd+9DgTenUAWT2zZlDt5cuBV57DRg+nNqUtGtH5/ZJk6j24L77gCuvpEENv/9uu13GgIULgblz6fyv08kO3axZVCHLvwOzs+nkrNXK4dh6gTfO89Sp46KuNTp1gK2o4zl1iYnAu+/S7ZUrbYcB+9va9YLk5GRERkZaL3Pnzq31PZmZmThw4AC++uqrBlihoLEZMGAA2rVrh4qKCqzjHdLriKh8FQhkhKjzkpCKQutJtCi0A+X6m83Av/9NLxg50utt8mlZJ0/K0cbbbgPuvRcYMgQYP54e+/lncucuXiTHrawM6N6d8vJyc+mjP/lE3u7atcCUKTRJYsQI0pvHjtHr77vPdg3K0Gu95nVzUeepU8cPSGt16pQVsNypKyoCrr6axF15OXWdBsiyHTOGhJ6H+NOpy83NRWlpqfUya9Yst589depUrFixAhs2bBBhs1aCSqXCeMsXmr9CsKLyVSCQEaLOS4JKCymnDkB197704FdfkfMUGQnMnOn1NuPigP79yVn75Rd6TKWi0OoffwDLltFIr0ceoYbDv/5Kgu+jj4CDB2lq1N//TqlWDz0ErFlDJ1p+Tu3dm7QBbyz8j384VtXWez4dh4fYjhyxOp5uae3hV2UDYqWoU6uBG2+k+z/9RMfp6aepCMXVSBIn+FPUabVam0uQtSzcFsYYpk6dimXLlmH9+vWiYrGVwUOwy5cvh8nTvBE3iMpXgUBGVL96ifrSRao2ABCf0Y/OaDxW+vjjPo+yGjcO2L2bJkJMnuzolo0caWsCXn+9fDssjMK0YWHAZ58Bd95JeXm7dwMREcD69VRI+Z//UN6es4rakyfput5FXceOpCgrKsg25DalK1pzoQQgO3XK8OulS5REefPNwKefAlu3ArffTo936+b8B9yEyMzMxNKlS/HTTz8hIiIC+Zb2LJGRkQgJCWnk1Qnqm2uuuQbR0dG4cOEC/vjjjzpXPIvwq0Ag0yKdunnz5iElJQXBwcEYPHgw/vTCuagNKS8PMJvBNAG47KYupJKOHyfVNG2az9u97jogMJDEFS+Y8GpdErVAGTiQzv8ffkiPP/EEGTyhocCMGRSedaY7G8ypkyQ5ifDYsdpf39qdOmc5dWYzVb0mJ1NTQ4AEXVgYlUwHB3u8+caofp0/fz5KS0sxfPhwtG3b1noRExlaBwEBARg3bhwA4Ec+FqcOCFEnEMi0OFH39ddfY+bMmZg9ezZ2796NtLQ0ZGRkoJCLg7pygbaja5OEkHC1PKh10CCyxXxEq6ViCICctuuvl6tRPSU4mJy+p54ip+6RR4B//rP29x0/Trl6Gg0ZPfUOH5bLlaQrdDq5ZUdrdeqUDYgZo18UgEKwAKn21auBF14gm9aT3n8KGkPUMcacXu69917vNiRotihbmzBvR5IoqKysRIHFzReiTiBogaLu7bffxgMPPIDJkyejV69e+PjjjxEaGoqFCxfWedsmE6xzOIvjLSONuKi78so6b/+uu+Rct7w84H//834bCQnA668DX34JzJvn2WQtnld/9dV10qWew+3A48fdv44nAWo0QFRUvS6pycIbEAO2bh0fHQZQwcSECfLMOYGgiZORkYGQkBCcPn0af/31l8/b4UUS0dHRiGqt3xECgYIWJer0ej2ysrIwatQo62MqlQqjRo3Ctm3b6rz9i+eqIJ08CVRV4WI3i4jjoi49vc7bT0ujtiS87cjKlZ7VEtQFs1kWdWPH1u9nWfHUqVNWvqpa1K+q50iSbV6dsljCDzSF5sOC1kdoaChGjx4NoG5VsKLyVSCwpUWdKYuKimAymZBgF6pLSEiwJmPbo9PpHJqmuqJy6XIaBXbiBC77cCpZaQcP0pODB/tlH1Qq4JprqCK2pMR502F/smcPjREND6fPbRA8depaez4dh4dg7dua+AHG6i7o6hA9E7RieAi2Lnl1ovJVILClRYk6X5g7d65Nw9RkN82DpaoKsPh4MLUaqsJ8ipcyRnlMiYl+W5NGQ9WwALB8ud8265Rff6XrUaPkKF+9w526s2eB6mrXr2vtla8cvv/nz8uiThl+FQiaIePGjYNarca+ffus4sxbRJGEQGBLixJ1bdq0gVqttibOcgoKCpDoQnTNmjXLpmFqLh/35YSUl+6HVFAAqbKSykx53MkP+XT23HwzXW/Z4jdTxik7dtC1Dz2TfSc2lnr6AXIvFWcIp47o0IGuc3PlUKwIvwqaObGxsdZ2Jr6GYIWoEwhsaVGiLjAwEAMGDLAZP2M2m7Fu3Tqku8h5CwoKcmiaWitBQVRpyGe8+iGfzp7UVKBPHyrO4A2J/U1BAVXYqlTU/LjBkCTneXUGAyX833cfOaCtfUQYh7vHubkip07QoqhrCFaIOoHAlhYl6gBg5syZ+PTTT/H555/j8OHDePjhh1FZWYnJkyf794P69AE+/pj6kPz97/7dtgXu1v34Y/3kLfH2fT17NlDVqxJneXUbNgA//ECjNFasECPCOHyE1qVLcnm0CL8KWgB8ZNgff/zhEGGpDcaYKJQQCOxocaLujjvuwL///W+88MIL6Nu3L/bu3YtVq1Y5FE/4hSlTSIjUk+jIyKDec6dO0RQyf7NrF10PGuT/bdeKM6fu++/l248/TuOvALItWzMhIfLvGLfFeLuXOiKcOkFjkpycjIEDB4IxhuVeJhAXFBSguroaKpUKHXiKgkDQymlxog6gQeFnzpyBTqfDjh07MNhPlakNTUSEnOv27bf+3/7OnXR9xRX+33at2Dt1JhNZkgCFZ48do2H1w4YBN93UCAtsYvAQLJ+V6adm2kLUCRob7tZ5m1fHQ6/JyckICAjw97IEgmZJixR1LYnbb6fr5ctplqu/yM4Gzp2jtMB+/fy3XY/hTh0fFfbHHyRUoqLk2aWpqcB339H8tNYOF3W8WthZqKqkBDh6VKgsQbOC59WtW7fObUspe0Q+nUDgiBB1TZx+/YDx4ymnbvZs9x1APKGsDPj3v4E77qD7vXt7NnXC7/DpB+fOkRjhodebbgLmzAH+8x9q0scLA1o7PLxUXi5f2/8y/PEH8MorNErEQ4RTJ2hsevbsiW7dukGv1+NX3mPJA4SoEwgcEaKuGfDPf1Iz4pwc4O23vX//unXApEnA3XcDN94IfPEFjVVNS6ORoY1CVJTsPu3fT/NLAeCWW8iZe/BB+XmBfCwuXJCdS3u3jk83uewyjzcrRJ2gsZEkyacQrBB1AoEjQtQ1A7Ra4MUX6fY33wC//ebZ+0wmYNYsYOZMYO9eYN8+MsU6dSIz5/PP6Xaj0bs3XW/eTGFDABg6tPHW05SJjycxZzTK7qVS1OXnA6dPU3+aRql8EQh8h4dgV65cCZ1O59F7hKgTCBwRoq6ZMHQowLuyPP88Fd3WxoYNNNdVo6HWb2+/Dbz/PgnDq66ieoRGpU8ful60iK47dSJLUuCISgW0a0e3eeNmZbGE0qXzoj+NcOoETYErrrgCbdu2RXl5OdavX+/Re0Q7E4HAESHqmhGZmVSpWlUFTJ8OLFzo+rWMyVpp8mRg2jTg2mupmLTJFIpxp45PlWimVcoNBg/B8iRIpVPHRZ2X002EqBM0BVQqlVch2JqaGpw7dw6AEHUCgRIh6poRAQHARx/RyFmAXDd+LrcnK4t62wUGAnfe2XBr9Aru1HGEqHMPb0LMJ5lwUZebK5cyDxjQOGsTCOoIF3U//fQTTLx1jwvOnDkDxhjCw8MRy0fnCQQCaBp7AQLvCAgAnniCCh2+/RZ45hkqGA0Lo0rZnj0pl37uXHr9zTfL40KbHN270w4ZDHS/URrmNSO4qONwUbdpE1337Uu/CF7AWN2dtvqYdiJofQwfPhyRkZEoLCzE9u3bMdRNfq0yn05q9DwSgaDpIERdM+Xxx6lv3cmTcpiVo1LRiToyUs7Da5IEBJAK3bePbjdKw7xmhH0D4oICEsR//EH3hw3zepNmc91zK0X4VeAPAgMDMW7cOHz55ZdYtmyZx6JOIBDIiPBrMyU4mMKvd91Fl4wMucbAbCbT69tv5dz6JgvPq0tLo50SuCYykma/8uNUUEDKvqICiI52DGcLBM0MZV4dc2MBC1EnEDhHOHXNmPbtKRSrpLycLm3bNoHqVk8YORL48ktgzJjGXknTR5Loh87n5RYUUBNCALj6arJovUQ4dYKmxPXXX4+goCCcOnUKBw4cQG/+T58dQtQJBM4RTl0LIyICSEpqJoIOAO69F9i2DXjuucZeSfMgOVl26nJzgcOHAbXap9ArIKpfBU2L8PBwjB49GoD7KljRzkQgcI4QdYLGRaWiNhxivqtntG8PhITQ7cpKyq+bPJmaEzcjNm/ejBtvvBFJSUmQJAk//vhjYy9J0ETgjYhdiTrGmNWpS01NbbB1CQTNASHqBILmRO/eQEyMbMUOH+6zSwc0nlNXWVmJtLQ0zPNiTq2gdTBu3DioVCrs3bvX6sgpuXjxIsotM5BTUlIaeHUCQdNGiDqBoDkRFwd8+CGQkED369iXrrFE3ZgxY/DKK69YXRmBgBMXF4err74aAPWss4e7dO3atUOwKK4SCGwQok4gaG5oNFQJA9hOlRAIWgjuQrCiSEIgcI0QdQJBc4Q7dXUUdf506srKymwung5mFwjsufnmmwEAW7ZswYULF2yeE6JOIHCNEHUCQXMkMZGuc3PrtBl/irrk5GRERkZaL3P5WBOBwEtSUlLQr18/mM1mLF++3OY5UfkqELhGiDqBoDnCc+k2b27cdSjIzc1FaWmp9TJr1qzGXpKgGcNDsPaV0aLyVSBwjRB1AkFzZNQout6yBaiu9nkz/nTqtFqtzSUoKMgPOyporXBRt3btWmu1KyDCrwKBO4SoEwiaI927U886nY6EnY8wVndB52aak0sqKiqwd+9e7N27FwCF1Pbu3YucnByf90XQsrjsssvQuXNn6HQ6rFq1CgBgMBisvyNC1AkEjghRJxA0RyQJuO46ur12beOuxQd27dqFfv36oV+/fgCAmTNnol+/fnjhhRcaeWWCpoIkSQ4h2JycHJjNZgQHByOR55UKBAIrQtQJBM0VHoJdvRo4e9anhnGN1adu+PDhYIw5XBYvXuz9xgQtFi7qfvnlF+j1epvQq9RsZiEKBA2HEHUCQXPl2mvpet8+mgk7frzXm2gsUSdwTW0j1CoqKjB16lS0b98eISEh6NWrFz7++GOb19TU1CAzMxOxsbEIDw/HhAkTUGDX/iYnJwdjx45FaGgo4uPj8cQTT8BoNNb37nnFlVdeiYSEBJSWlmLDhg2i8lUgqAUh6gSC5kpCAjBhgnx/5UqgoqLx1iPwC7WNUJs5cyZWrVqFJUuW4PDhw5g+fTqmTp1q0/pjxowZ+Pnnn/Htt99i06ZNOH/+PG699Vbr8yaTCWPHjoVer8fWrVvx+eefY/HixU0u/K1Sqaw965YtWyYqXwWCWhCiTiBoznz3HaDXAx06ACYTsGOHV28XTl3To7YRalu3bsWkSZMwfPhwpKSk4MEHH0RaWhr+/PNPAEBpaSk+++wzvP322xg5ciQGDBiARYsWYevWrdi+fTsAYM2aNTh06BCWLFmCvn37YsyYMXj55Zcxb9486PX6BttXT+DH4aeffsKJEycACKdOIHCFEHUCQXMnIAAYOpRu//GHV28Voq75MWTIECxfvhznzp0DYwwbNmzAsWPHMHr0aABAVlYWDAYDRvGcSwA9evRAhw4dsG3bNgDAtm3b0Lt3byTwySQAMjIyUFZWhoMHDzbsDtXCyJEjodVqkZ+fb62CFaJOIHCOEHUCQUvAR1EnaH588MEH6NWrF9q3b4/AwEBcf/31mDdvHq655hoAQH5+PgIDAxEVFWXzvoSEBOTn51tfoxR0/Hn+nCt0Op3DOLj6JjAwEDfccAMACk0DQtQJBK4Qok4gaAlwUbdtG4VhPUQ4dc2PDz74ANu3b8fy5cuRlZWFt956C5mZmfjtt9/q/bPnzp1rMwouOTm53j8TgEMoWuTUCQTOEaJOIGgJ9O4NREQA5eXAgQMev02IuuZFdXU1nnnmGbz99tu48cYb0adPH0ydOhV33HEH/v3vfwMAEhMTodfrUVJSYvPegoICa2+3xMREh2pYft9d/7dZs2bZjILLrePsYU8ZM2YMAgMDAZCjGBYW1iCfKxA0N4SoEwhaAmo1cOWVdFuEYFssBoMBBoMBKpXtV7darYbZoq4HDBiAgIAArFu3zvr80aNHkZOTg/T0dABAeno69u/fj8LCQutr1q5dC61Wi169ern8/KCgIIdxcA1BRESENUdQuHQCgWuEqBMIWgo+5NUJp67p4W6EmlarxbBhw/DEE09g48aNyM7OxuLFi/Hf//7XGqKMjIzElClTMHPmTGzYsAFZWVmYPHky0tPTcaVF+I8ePRq9evXC3Xffjb/++gurV6/Gc889h8zMzCY7s3fy5MkAgKH891wgEDigaewFCAQCP/H3vwOXXy6LOw/whyATos6/7Nq1CyNGjLDenzlzJgBg0qRJWLx4Mb766ivMmjULEydORHFxMTp27IhXX30VDz30kPU977zzDlQqFSZMmACdToeMjAx89NFH1ufVajVWrFiBhx9+GOnp6QgLC8OkSZPw0ksvNdyOesnf/vY3HDhwAJ07d27spQgETRaJMV/GcbdcysrKEBkZidLS0gYLLQgEDQX//c7NzUVycjJiYkqhUtXt99xsLkNxsfibaY2I70uBoGHw9G9NOHUCQSuGsbo7beLfQoFAIGgaCFEnELRizGagrnPRhagTCASCpoEolBAIBAKBQCBoAQinTiBoxQinTiAQCFoOQtQJBK0YIeoEAoGg5SDCrwKBQCAQCAQtAOHUCQStGOHUCQQCQctBiDqBoBUjRJ1AIBC0HET4VSAQCAQCgaAFIJw6gaAVI5w6gUAgaDk0G6fu1VdfxZAhQxAaGoqoqCinr8nJycHYsWMRGhqK+Ph4PPHEEzAajQ27UIGgGWE2++fiC/PmzUNKSgqCg4MxePBg/Pnnn/7dOYFAIGhlNBtRp9frcdttt+Hhhx92+rzJZMLYsWOh1+uxdetWfP7551i8eDFeeOGFBl6pQCCoja+//hozZ87E7NmzsXv3bqSlpSEjIwOFhYWNvTSBQCBotjQbUffiiy9ixowZ6N27t9Pn16xZg0OHDmHJkiXo27cvxowZg5dffhnz5s2DXq9v4NUKBM2DxnLq3n77bTzwwAOYPHkyevXqhY8//hihoaFYuHCh/3dSIBAIWgnNRtTVxrZt29C7d28kJCRYH8vIyEBZWRkOHjzYiCsTCJoujNVd0HmbU6fX65GVlYVRo0ZZH1OpVBg1ahS2bdvm5z0UCASC1kOLKZTIz8+3EXQArPfz8/Ndvk+n00Gn01nvl5aWAgDKysrqYZUCQePCf6+ZVYn54/e8zGbbnKCgIAQFBTm8uqioCCaTyenf65EjR/ywHkFDwX+PxPelQFC/OH53O6dRRd3TTz+NN954w+1rDh8+jB49etTbGubOnYsXX3zR4fHk5OR6+0yBoLHR6XRITExEfr5/fs/Dw8Md/mZmz56NOXPm+GX7gqZJeXk5APF9KRA0FOXl5YiMjHT5fKOKun/+85+499573b6mU6dOHm0rMTHRoXquoKDA+pwrZs2ahZkzZ1rvm81mFBcXIzY2FpKTXg9lZWVITk5Gbm4utFqtR2sTuEccU//i7ngyxlBeXo6kpCRkZ2f7Ld+UMebw9+LMpQOANm3aQK1WW/8+OQUFBW7/VgVNj6SkJOTm5iIiIsLp9yXg379vf21LbKd5bacprqmht6P87nZHo4q6uLg4xMXF+WVb6enpePXVV1FYWIj4+HgAwNq1a6HVatGrVy+X73MWInLVMkWJVqsVAsTPiGPqX1wdT/5fXnBwMIKDgxt6WQgMDMSAAQOwbt06jB8/HgD9M7Vu3TpMnTq1wdcj8B2VSoX27dt79Fp//n37a1tiO81rO/7cVnPcjjuHjtNscupycnJQXFyMnJwcmEwm7N27FwDQpUsXhIeHY/To0ejVqxfuvvtuvPnmm8jPz8dzzz2HzMxMl46BQCBoHGbOnIlJkyZh4MCBuOKKK/Duu++isrISkydPbuylCQQCQbOl2Yi6F154AZ9//rn1fr9+/QAAGzZswPDhw6FWq7FixQo8/PDDSE9PR1hYGCZNmoSXXnqpsZYsEAhccMcdd+DChQt44YUXkJ+fj759+2LVqlUOxRMCgUAg8JxmI+oWL16MxYsXu31Nx44dsXLlynpdR1BQEGbPni3cPz8ijql/aS7Hc+rUqSLc2grw5++jv7YlttO8ttMU19TUtsORWG31sQKBQCAQCASCJk+LaT4sEAgEAoFA0JoRok4gEAgEAoGgBSBEnUAgEAgEAkELQIg6L5g3bx5SUlIQHByMwYMHOzQ7Frhmzpw5kCTJ5qKcFFJTU4PMzEzExsYiPDwcEyZMcGhO29rZvHkzbrzxRiQlJUGSJPz44482zzPG8MILL6Bt27YICQnBqFGjcPz4cZvXFBcXY+LEidBqtYiKisKUKVNQUVHRgHshaG3443uztt99T5g7dy4GDRqEiIgIxMfHY/z48Th69KjX2wGA+fPno0+fPtbeYunp6fj111992hbn9ddfhyRJmD59utfvre371RvOnTuHu+66C7GxsQgJCUHv3r2xa9cur7aRkpLisB5JkpCZmenVdkwmE55//nmkpqYiJCQEnTt3xssvv1zrqCxnlJeXY/r06ejYsSNCQkIwZMgQ7Ny5s9b3+eN715Pt/PDDDxg9erR18AFv2+YtQtR5yNdff42ZM2di9uzZ2L17N9LS0pCRkYHCwsLGXlqz4bLLLkNeXp71smXLFutzM2bMwM8//4xvv/0WmzZtwvnz53Hrrbc24mqbHpWVlUhLS8O8efOcPv/mm2/i/fffx8cff4wdO3YgLCwMGRkZqKmpsb5m4sSJOHjwINauXYsVK1Zg8+bNePDBBxtqFwStDH99b9b2u+8JmzZtQmZmJrZv3461a9fCYDBg9OjRqKys9Hpb7du3x+uvv46srCzs2rULI0eOxM0334yDBw/6tLadO3fiP//5D/r06ePT+wH336+ecunSJQwdOhQBAQH49ddfcejQIbz11luIjo72ajs7d+60WcvatWsBALfddptX23njjTcwf/58fPjhhzh8+DDeeOMNvPnmm/jggw+82g4A3H///Vi7di2++OIL7N+/H6NHj8aoUaNw7tw5t+/zx/euJ9uprKzEVVddVevo1FphAo+44oorWGZmpvW+yWRiSUlJbO7cuY24qubD7NmzWVpamtPnSkpKWEBAAPv222+tjx0+fJgBYNu2bWugFTYvALBly5ZZ75vNZpaYmMj+9a9/WR8rKSlhQUFB7H//+x9jjLFDhw4xAGznzp3W1/z6669MkiR27ty5Blu7oPVQH9+b9r/7vlJYWMgAsE2bNtV5W4wxFh0dzRYsWOD1+8rLy1nXrl3Z2rVr2bBhw9i0adO83oa771dveOqpp9hVV11V5+3YM23aNNa5c2dmNpu9et/YsWPZfffdZ/PYrbfeyiZOnOjVdqqqqpharWYrVqywebx///7s2Wef9Xg7vnzverIdJdnZ2QwA27Nnj8frUiKcOg/Q6/XIysrCqFGjrI+pVCqMGjUK27Zta8SVNS+OHz+OpKQkdOrUCRMnTkROTg4AICsrCwaDweb49ujRAx06dBDH10Oys7ORn59vcwwjIyMxePBg6zHctm0boqKiMHDgQOtrRo0aBZVKhR07djT4mgUtm6b+vVlaWgoAiImJqdN2TCYTvvrqK1RWViI9Pd3r92dmZmLs2LE2x8kXXH2/esPy5csxcOBA3HbbbYiPj0e/fv3w6aef1mlder0eS5YswX333edyPrArhgwZgnXr1uHYsWMAgL/++gtbtmzBmDFjvNqO0WiEyWRyGIsYEhLik6PJ8eR7t6FpNs2HG5OioiKYTCaHbvcJCQk4cuRII62qeTF48GAsXrwY3bt3R15eHl588UVcffXVOHDgAPLz8xEYGOgwczchIQH5+fmNs+BmBj9Ozn5H+XP5+fnWucgcjUaDmJgYcZwFfqcpf2+azWZMnz4dQ4cOxeWXX+7TNvbv34/09HTU1NQgPDwcy5Ytcztn3BlfffUVdu/e7VFulzvcfb9GRER4vJ1Tp05h/vz5mDlzJp555hns3LkTjz32GAIDAzFp0iSf1vbjjz+ipKQE9957r9fvffrpp1FWVoYePXpArVbDZDLh1VdfxcSJE73aTkREBNLT0/Hyyy+jZ8+eSEhIwP/+9z9s27YNXbp08XpdHE++dxsaIeoEDYLyP6s+ffpg8ODB6NixI7755huEhIQ04soEAkFrIzMzEwcOHKiTS9O9e3fs3bsXpaWl+O677zBp0iRs2rTJY2GXm5uLadOmYe3atQ4Okre4+36dMmWKx9sxm80YOHAgXnvtNQA0jvPAgQP4+OOPfRZ1n332GcaMGYOkpCSv3/vNN9/gyy+/xNKlS3HZZZdh7969mD59OpKSkrxezxdffIH77rsP7dq1g1qtRv/+/XHnnXciKyvL63U1ZUT41QPatGkDtVrtUI1ZUFCAxMTERlpV8yYqKgrdunXDiRMnkJiYCL1ej5KSEpvXiOPrOfw4ufsdTUxMdEhQNxqNKC4uFsdZ4Hea6vfm1KlTsWLFCmzYsAHt27f3eTuBgYHo0qULBgwYgLlz5yItLQ3vvfeex+/PyspCYWEh+vfvD41GA41Gg02bNuH999+HRqOByWTyeW3K71dvaNu2rYMo7dmzp0+hXAA4c+YMfvvtN9x///0+vf+JJ57A008/jb///e/o3bs37r77bsyYMQNz5871eludO3fGpk2bUFFRgdzcXPz5558wGAzo1KmTT2sDPPvebWiEqPOAwMBADBgwAOvWrbM+ZjabsW7dOp9yKARARUUFTp48ibZt22LAgAEICAiwOb5Hjx5FTk6OOL4ekpqaisTERJtjWFZWhh07dliPYXp6OkpKSmz+M12/fj3MZjMGDx7c4GsWtGya2vcmYwxTp07FsmXLsH79eqSmpvp1+2azGTqdzuPXX3vttdi/fz/27t1rvQwcOBATJ07E3r17oVarfV6L8vvVG4YOHerQ5uXYsWPo2LGjT+tYtGgR4uPjMXbsWJ/eX1VVBZXKVqao1WqYzWaftgcAYWFhaNu2LS5duoTVq1fj5ptv9nlbnnzvNjg+lVe0Qr766isWFBTEFi9ezA4dOsQefPBBFhUVxfLz8xt7ac2Cf/7zn2zjxo0sOzub/fHHH2zUqFGsTZs2rLCwkDHG2EMPPcQ6dOjA1q9fz3bt2sXS09NZenp6I6+6aVFeXs727NnD9uzZwwCwt99+m+3Zs4edOXOGMcbY66+/zqKiothPP/3E9u3bx26++WaWmprKqqurrdu4/vrrWb9+/diOHTvYli1bWNeuXdmdd97ZWLskaOH463uztt99T3j44YdZZGQk27hxI8vLy7NeqqqqvN0t9vTTT7NNmzax7Oxstm/fPvb0008zSZLYmjVrvN6WEl+rX2v7fvWUP//8k2k0Gvbqq6+y48ePsy+//JKFhoayJUuWeL0mk8nEOnTowJ566imv38uZNGkSa9euHVuxYgXLzs5mP/zwA2vTpg178sknvd7WqlWr2K+//spOnTrF1qxZw9LS0tjgwYOZXq93+z5/fO96sp2LFy+yPXv2sF9++YUBYF999RXbs2cPy8vL82o/hajzgg8++IB16NCBBQYGsiuuuIJt3769sZfUbLjjjjtY27ZtWWBgIGvXrh2744472IkTJ6zPV1dXs0ceeYRFR0ez0NBQdsstt3j9y9zS2bBhAwPgcJk0aRJjjMrrn3/+eZaQkMCCgoLYtddey44ePWqzjYsXL7I777yThYeHM61WyyZPnszKy8sbYW8ErQV/fG/W9rvvCc7eD4AtWrTI6/Xcd999rGPHjiwwMJDFxcWxa6+9ts6CjjHfRV1t36/e8PPPP7PLL7+cBQUFsR49erBPPvnEp+2sXr2aAXD4DvKGsrIyNm3aNNahQwcWHBzMOnXqxJ599lmm0+m83tbXX3/NOnXqxAIDA1liYiLLzMxkJSUltb7PH9+7nmxn0aJFTp+fPXu2V/spMeZDa2aBQCAQCAQCQZNC5NQJBAKBQCAQtACEqBMIBAKBQCBoAQhRJxAIBAKBQNACEKJOIBAIBAKBoAUgRJ1AIBAIBAJBC0CIOoFAIBAIBIIWgBB1AoFAIBAIBC0AIeoEAoFAIBAIWgBC1AnqnXvvvRfjx49v7GUIBAJBi0aSJPz444912sbixYsRFRXll/W4Q6/Xo0uXLti6dSsA4PTp05AkCXv37nX5no0bN0KSJJSUlNTbuubMmYO+ffvW2/b9RVFREeLj43H27Fmbx4WoE9QJSZLcXubMmYP33nsPixcvbuylCgSCOpCbm4v77rsPSUlJCAwMRMeOHTFt2jRcvHjRq+14cvKuC/4QNs2VvLw8jBkzprGX4REff/wxUlNTMWTIEABAcnIy8vLycPnllzfyypoHbdq0wT333IPZs2fbPC5EnaBO5OXlWS/vvvsutFqtzWOPP/44IiMjG+Q/P4FAUD+cOnUKAwcOxPHjx/G///0PJ06cwMcff4x169YhPT0dxcXFjb3EZoPBYKi3bScmJiIoKKjetu8vGGP48MMPMWXKFOtjarUaiYmJ0Gg0jbiy5sXkyZPx5Zdf2vz9CVEnqBOJiYnWS2RkJCRJsnksPDzcIfw6fPhwPProo5g+fTqio6ORkJCATz/9FJWVlZg8eTIiIiLQpUsX/PrrrzafdeDAAYwZMwbh4eFISEjA3XffjaKiogbeY4Gg9ZGZmYnAwECsWbMGw4YNQ4cOHTBmzBj89ttvOHfuHJ599lnra505ZVFRUVa3PjU1FQDQr18/SJKE4cOHA5DTNF588UXExcVBq9XioYcegl6vt24nJSUF7777rs22+/btizlz5lifB4BbbrkFkiRZ79vD3cIffvgBI0aMQGhoKNLS0rBt2zab123ZsgVXX301QkJCkJycjMceewyVlZUe7yv/nK+//hrDhg1DcHAwvvzyS5jNZrz00kto3749goKC0LdvX6xatcrr9dmjXI+n21i8eDE6dOiA0NBQ3HLLLU6d159++gn9+/dHcHAwOnXqhBdffBFGoxEA8NJLLyEpKcnmfWPHjsWIESNgNpudrjMrKwsnT57E2LFjHfZZ6eCuXLkS3bp1Q0hICEaMGIHTp087rD0qKgo//vgjunbtiuDgYGRkZCA3N9ftcTp79izuvPNOxMTEICwsDAMHDsSOHTucvnbnzp247rrr0KZNG0RGRmLYsGHYvXu39XnGGObMmYMOHTogKCgISUlJeOyxx6zPf/TRR9a1JSQk4G9/+5v1ObPZjLlz5yI1NRUhISFIS0vDd999Z33+0qVLmDhxIuLi4hASEoKuXbti0aJF1ucvu+wyJCUlYdmyZfKCmUDgJxYtWsQiIyMdHp80aRK7+eabrfeHDRvGIiIi2Msvv8yOHTvGXn75ZaZWq9mYMWPYJ598wo4dO8YefvhhFhsbyyorKxljjF26dInFxcWxWbNmscOHD7Pdu3ez6667jo0YMaKB9k4gaJ1cvHiRSZLEXnvtNafPP/DAAyw6OpqZzWbGGGMA2LJly2xeExkZyRYtWsQYY+zPP/9kANhvv/3G8vLy2MWLFxlj9D0RHh7O7rjjDnbgwAG2YsUKFhcXx5555hnrdjp27Mjeeecdm22npaWx2bNnM8YYKywsZADYokWLWF5eHissLHS65uzsbAaA9ejRg61YsYIdPXqU/e1vf2MdO3ZkBoOBMcbYiRMnWFhYGHvnnXfYsWPH2B9//MH69evH7r33Xut2attX/jkpKSns+++/Z6dOnWLnz59nb7/9NtNqtex///sfO3LkCHvyySdZQEAAO3bsmMfrc4ZyPZ5sY/v27UylUrE33niDHT16lL333nssKirK5nt88+bNTKvVssWLF7OTJ0+yNWvWsJSUFDZnzhzGGGNGo5Glp6ez8ePHM8YY+/DDD1lUVBQ7c+aMy3W+/fbbrEePHk5/Jnv27GGMMZaTk8OCgoLYzJkz2ZEjR9iSJUtYQkICA8AuXbrEGKNzTkBAABs4cCDbunUr27VrF7viiivYkCFDXH52eXk569SpE7v66qvZ77//zo4fP86+/vprtnXrVsYYY7Nnz2ZpaWnW169bt4598cUX7PDhw+zQoUNsypQpLCEhgZWVlTHGGPv222+ZVqtlK1euZGfOnGE7duxgn3zyCWOMsZ07dzK1Ws2WLl3KTp8+zXbv3s3ee+8967ZfeeUV1qNHD7Zq1Sp28uRJtmjRIhYUFMQ2btzIGGMsMzOT9e3bl+3cuZNlZ2eztWvXsuXLl9vszx133MEmTZpkvS9EncBveCPqrrrqKut9o9HIwsLC2N133219LC8vjwFg27ZtY4wx9vLLL7PRo0fbbDc3N5cBYEePHvXvjggEAivbt293Kl44b7/9NgPACgoKGGOeCx1+8uZMmjSJxcTEWP+RY4yx+fPns/DwcGYymRhjtYs6V59vD1/DggULrI8dPHiQAWCHDx9mjDE2ZcoU9uCDD9q87/fff2cqlYpVV1d7ta/vvvuuzWuSkpLYq6++avPYoEGD2COPPOLx+pzhTNS528add97JbrjhBptt3HHHHTbf49dee62DoP/iiy9Y27ZtrfdPnjzJIiIi2FNPPcVCQkLYl19+6XKNjDE2bdo0NnLkSJvH7H8vZs2axXr16mXzmqeeespB1AFg27dvt77m8OHDDADbsWOH08/+z3/+wyIiIqz/TNhjL+rsMZlMLCIigv3888+MMcbeeust1q1bN6bX6x1e+/333zOtVmsVgEpqampYaGioVUxypkyZwu68807GGGM33ngjmzx5ssu1MMbYjBkz2PDhw633RfhV0Cj06dPHelutViM2Nha9e/e2PpaQkAAAKCwsBAD89ddf2LBhA8LDw62XHj16AABOnjzZgCsXCFonjLF6/4y0tDSEhoZa76enp6OioqLWcJqvKL+H2rZtC8D2O2fx4sU23zkZGRkwm83Izs726nMGDhxovV1WVobz589j6NChNq8ZOnQoDh8+7PH6PMXdNg4fPozBgwfbvD49Pd3m/l9//YWXXnrJ5jg88MADyMvLQ1VVFQCgU6dO+Pe//4033ngDN910E/7v//7P7Zqqq6sRHBzs9jWerA0ANBoNBg0aZL3fo0cPREVFORxLzt69e9GvXz/ExMS4/XxOQUEBHnjgAXTt2hWRkZHQarWoqKhATk4OAOC2225DdXU1OnXqhAceeADLli2zhqavu+46dOzYEZ06dcLdd9+NL7/80nrMTpw4gaqqKlx33XU2x/a///2v9Zz28MMP46uvvkLfvn3x5JNPWiuFlYSEhFi3CQAiI1HQKAQEBNjclyTJ5jFJkgDAmpNRUVHx/+3dbUhT7R8H8G/qWqfpytSKbCk1sRkYiphFIalTCqQ0SKQXMyKyfAyyfBGmRMHKF2bSC8PyKUnCwjJbaaXGyueWT2uZokZkYD6U9IT6u19Iu/9r07K/d/9/3r8P+GLnXLvOdY3t2o9zztchNDQUarXarK9vCxVjbPbJ5XLMmzcPer0eYWFhZvv1ej3s7e3h5OQEYPKz+30BOFvhACsrq1nt+0drzoEDB0zuj/pm1apVxuf8zHgkEsmsj+939TE6Ooq0tDSEh4eb7fvPwqympgbW1tbo6enB2NjYtIEHR0dHtLa2/vQYZpMgCDNqr1Kp8O7dO5w7dw4uLi4Qi8XYuHGj8V5PmUwGg8GAyspKVFRU4NChQzh79iyqq6thZ2eH5uZmVFVV4d69e0hJSUFqaioaGhowOjoKALh9+zacnZ1Njvkt7LJt2zb09vaivLwcFRUVCAwMRExMDNLT041tBwcHjZ89gIMS7A/h7e2N9vZ2uLq6Qi6Xm/z96oLJGPsxBwcHKJVKXLhwAZ8+fTLZ19/fjytXriAiIsJYMDg5OeHNmzfGNp2dnSZnEubPnw8AGB8fNzvWs2fPTI5RW1sLW1tbyGQyi32/f//e7KyZSCSy2PdMeXt7o6Ojw2y9kcvlxjn8aK6WSKVSrFixAlqt1mS7VquFh4fHfz3umVAoFGYBgdraWpPH3t7eMBgMFl8HK6vJEqK4uBjXr19HVVUV+vr6cPLkyWmP6+XlhefPn0979lehUKC+vn7asQHA2NgYGhsbjY8NBgOGh4ehUCgs9uvp6QmdTvfTiW2tVov4+Hhs374d69atg1gsNgvoCYKA0NBQZGZmoqqqCk+ePDEWrTY2NggKCsKZM2fQ0tKCnp4ePHjwAB4eHhCLxejr6zN7Xb+934HJ95hKpUJhYSEyMjKQnZ1tcuy2tjZ4eXkZH3NRx/4IMTExGBwcRGRkJBoaGtDV1YW7d+9i7969s7KAM8amlpWVhS9fviAkJAQ1NTV49eoVNBoNlEolnJ2dcerUKWPbgIAAZGVl4enTp2hsbER0dLTJ2aKlS5dCEARoNBq8ffsWIyMjxn1fv37Fvn370NHRgfLycpw4cQKxsbHG4iEgIAAFBQV49OgRWltboVKpYG1tbTJWV1dX3L9/H/39/RgaGvrlOR87dgyPHz9GbGwsdDodOjs7UVpaitjY2J+e61SSkpKgVqtRXFwMg8GA5ORk6HQ6JCQk/PJ4f0V8fDw0Gg3S09PR2dmJrKwskxQuAKSkpCA/Px9paWlob2+HXq/H1atXcfz4cQCTSdKDBw9CrVZj8+bNuHz5Mk6fPm2xAPtm69atGB0dRXt7+5RtoqOj0dnZiaSkJBgMBhQVFVn8f6cikQhxcXGoq6tDU1MToqKi4OfnB19fX4v9RkZGYvny5di5cye0Wi26u7tRUlIyZbLYzc0NBQUF0Ov1qKurw549e0zO9uXm5iInJwdtbW3o7u5GYWEhBEGAi4sLysrKkJmZCZ1Oh97eXuTn52NiYgLu7u6ws7PDkSNHcPjwYeTl5aGrqwvNzc04f/488vLyjK99aWkpXr58ifb2dpSVlZkUqx8/fkRTUxOCg4P/HvC0d+AxNgMzCUokJCSYtLF0AzS+uwn5xYsXFBYWRosXLyZBEGjt2rWUmJhoTN0xxv45PT09pFKpaNmyZSQSiUgmk1FcXBwNDAyYtHv9+jUFBweTRCIhNzc3Ki8vNwkPEBFdvHiRZDIZWVlZkb+/PxH9vU6kpKSQg4MD2dra0v79++nz58/G542MjFBERARJpVKSyWSUm5trFpS4efMmyeVysrGxIRcXF4tzsRTWGBoaIgD08OFD47b6+npSKpVka2tLEomEPD09TQIOP5rrVKGQ8fFxSk1NJWdnZxKJRLR+/Xq6c+fOjMf3PVgISvyoj5ycHFq5ciUJgkChoaGUnp5uto5rNBratGkTCYJAUqmUfH19KTs7myYmJigwMJBCQkJM1uG4uDhas2YNffjwYcqx7t69m5KTk6ed861bt0gul5NYLKYtW7bQpUuXzIISixYtopKSElq9ejWJxWIKCgqaNnlLNPle3rVrF0mlUlq4cCH5+PgYgxXfByWam5vJx8eHFixYQG5ubnTt2jWT76sbN27Qhg0bSCqVkkQiIT8/P6qsrCSiyWCNv78/2dvbkyAI5OnpScXFxca+JyYmKCMjg9zd3UkkEpGTkxOFhIRQdXU1EU0GBBUKBQmCQEuWLKEdO3ZQd3e38flFRUXk7u5uMrd5RL/h7lfGGGNsGlFRURgeHv7X/hrEv01LSwuUSiW6urpga2v7S33k5uYiMTHxH/3ZsP9nfn5+iI+PNwmm8OVXxhhjjP1Wnp6eUKvVM04Ss0kDAwMIDw9HZGSkyXZOvzLGGGPst4uKivpfD+GP5ejoiKNHj5pt58uvjDHGGGNzAF9+ZYwxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA7ioY4wxxhibA/4C0kMRKSFo/8gAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Weights distribution after training\n" + ], + "metadata": { + "id": "t5cbrZErZBsc" + }, + "id": "t5cbrZErZBsc" + }, + { + "cell_type": "code", + "source": [ + "plt.figure\n", + "plt.subplot(1,2,1)\n", + "plt.hist(init_weight_matrix().detach().numpy().ravel(),bins=100);\n", + "plt.xlabel('Weigth value')\n", + "plt.ylabel('Counts')\n", + "plt.title('initialization')\n", + "\n", + "plt.subplot(1,2,2)\n", + "plt.hist(W.detach().numpy().ravel(),bins=100);\n", + "plt.xlabel('Weigth value')\n", + "plt.ylabel('Counts')\n", + "plt.title('after training')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 490 + }, + "id": "08o6peVj2R_C", + "outputId": "7749b49e-de56-42b1-ed6d-a150ec2c5650" + }, + "id": "08o6peVj2R_C", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'after training')" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIOklEQVR4nO3de1xU9b7/8fegXFRk8IJcAu/mLdE2mrErb+Et9eiWU2nuHZZby1BTdzfKvFUbs1Krg7rrGGY7tls9abZL/SUJZYkpHvNWJkapKbi9AIpyCdbvjx7OaQRUYIaZBa/n4zGPXJdZ67NmWN/e813fWWMxDMMQAACACXm4ugAAAICqIsgAAADTIsgAAADTIsgAAADTIsgAAADTIsgAAADTIsgAAADTIsgAAADTIsgAAADTIsjUAStXrpTFYtGPP/5YqeelpKTIYrEoJSXluuv++OOPslgsWrlypUPq69evn/r161fpbVWXq/YLmMmRI0c0aNAgWa1WWSwWbdiwwdUlOVxl2r+rVac9ROURZFApSUlJWrJkiavLqJZDhw5p7ty5lQ52AH4VExOj/fv366WXXtJ7772nnj17uqRtWLp0KWEBsvBbS7VfSUmJiouL5e3tLYvFcsPPKy0tVVFRkby8vOTh8WvmHT58uA4cOFAmBBiGocLCQnl6eqpevXqVqm/lypV66KGHlJmZqdatW0uSioqKJEleXl6V2taNWLdune69915t27atTO+LM/cL1AaXL19Ww4YN9dxzz+nFF1+0za+obXCmW265Rc2bN69Sr8n1lNf+3ajqtIeovPquLgDOV69evSqdTB4eHvLx8bmhdS0Wyw2veyNcFSQIMMC1/fvf/5Yk+fv7O31fV8KEI9qW/Px8NWrU6IbXr0z7dzVHt4e4Ni4t1QFXj0Fp3bq1hg8fru3bt+u2226Tj4+P2rZtq1WrVtk97+prxP369dPHH3+sn376SRaLRRaLxdaDUt414X379mn8+PFq27atfHx8FBQUpIcfflhnz569bs1Xj1Vp3bq1bZ9XP67U99NPP+mxxx5Tx44d1aBBAzVr1kz33nuv3SfElStX6t5775Uk9e/fv8w2yhsjc/r0aU2YMEGBgYHy8fFR9+7d9e6779qtc+X4X331Vb311ltq166dvL291atXL+3ateu6xwu42o2cP3PnzlWrVq0kSU8++aStDbhW2yBJhYWFmjNnjtq3by9vb2+FhYXpqaeeUmFhoV0NFotFU6ZM0fvvv6+uXbvK29tbmzdvLrfe1q1b6+DBg0pNTbXt88q5e6XNS01N1WOPPaYWLVooNDT0ho9TKn+MTL9+/XTLLbfo0KFD6t+/vxo2bKibbrpJCxcutHtuee3h+PHj5evrq59//lmjRo2Sr6+vAgIC9MQTT6ikpMTu+WfPntWf/vQn+fn5yd/fXzExMfrmm28Yd1MBemTqqIyMDP3nf/6nJkyYoJiYGL3zzjsaP368IiIi1LVr13Kf89xzzyk3N1cnTpzQ4sWLJUm+vr4V7uPTTz/VDz/8oIceekhBQUE6ePCg3nrrLR08eFBpaWmVusy1ZMkSXbx40W7e4sWLtXfvXjVr1kyStGvXLn311VcaM2aMQkND9eOPP2rZsmXq16+fDh06pIYNG6pPnz6aNm2a3njjDT377LPq3LmzJNn+e7XLly+rX79+ysjI0JQpU9SmTRutXbtW48ePV05Ojh5//HG79ZOSknThwgU98sgjslgsWrhwoUaPHq0ffvhBnp6eN3y8QE27kfNn9OjR8vf314wZMzR27Fjdc8898vX1VaNGjSpsG0pLS/Uf//Ef2r59uyZNmqTOnTtr//79Wrx4sb7//vsyA4U/++wzrVmzRlOmTFHz5s3tAtFvLVmyRFOnTpWvr6+ee+45SVJgYKDdOo899pgCAgI0e/Zs5efn3/BxXsv58+c1ZMgQjR49Wvfdd5/WrVunp59+Wt26ddPQoUOv+dySkhINHjxYvXv31quvvqqtW7fqtddeU7t27TR58mTb6zVixAh9/fXXmjx5sjp16qQPP/xQMTEx19x2nWag1ktMTDQkGZmZmYZhGEarVq0MScbnn39uW+f06dOGt7e38Ze//MU2b9u2bYYkY9u2bbZ5w4YNM1q1alVmH5mZmYYkIzEx0Tbv0qVLZdb7xz/+UWbfV9dnGIbRt29fo2/fvhUe05o1awxJxvz586+5vx07dhiSjFWrVtnmrV27tsxxVbTfJUuWGJKMv//977Z5RUVFRmRkpOHr62vk5eXZHX+zZs2Mc+fO2db98MMPDUnGRx99VOGxAO7gRs+fK3/rr7zyit26FbUN7733nuHh4WF88cUXdvOXL19uSDK+/PJL2zxJhoeHh3Hw4MEbqrlr167lthNX2pQ777zT+OWXX+yW3ehxltf+9e3bt8x6hYWFRlBQkBEdHW2bV157GBMTU6bNMgzDuPXWW42IiAjb9P/8z/8YkowlS5bY5pWUlBgDBgwos038iktLdVSXLl1011132aYDAgLUsWNH/fDDDw7bR4MGDWz/Ligo0JkzZ3T77bdLkvbs2VPl7R46dEgPP/ywRo4cqVmzZpW7v+LiYp09e1bt27eXv79/lff3ySefKCgoSGPHjrXN8/T01LRp03Tx4kWlpqbarX///ferSZMmtukrr7EjX1fAGZxx/kjS2rVr1blzZ3Xq1ElnzpyxPQYMGCBJ2rZtm936ffv2VZcuXaq8v9+aOHFimfGB1T1OX19f/fGPf7RNe3l56bbbbrvhc/zRRx+1m77rrrvsnrt582Z5enpq4sSJtnkeHh6KjY29oe3XRQSZOqply5Zl5jVp0kTnz5932D7OnTunxx9/XIGBgWrQoIECAgLUpk0bSVJubm6VtpmXl6fRo0frpptu0qpVq+wuT12+fFmzZ89WWFiYvL291bx5cwUEBCgnJ6fK+/vpp5/UoUOHMt9auHIp6qeffrKbf/XreiXUOPJ1BZzBGeeP9Os9Zw4ePKiAgAC7x8033yzp1zFov3WljXCE8rZV3eMMDQ0tc1n8RttOHx8fBQQEXPO5P/30k4KDg8tc4mrfvv11t19XMUamjqroW0yGA7+Nf9999+mrr77Sk08+qR49esjX11elpaUaMmSISktLq7TN8ePH6+TJk/r666/l5+dnt2zq1KlKTEzU9OnTFRkZabtZ15gxY6q8v8qqidcVcAZnnT+lpaXq1q2bFi1aVO7ysLAwu+nf9phUV3nbqu5xVucc56vYzkGQQaXc6ADd8+fPKzk5WfPmzdPs2bNt848cOVLlfS9YsEAbNmzQBx98oE6dOpVZvm7dOsXExOi1116zzSsoKFBOTo7depUZZNyqVSvt27dPpaWldr0y3333nW05UBvc6PlTkYrOq3bt2umbb77R3XffXalzrzr7vJbqHqeztWrVStu2bdOlS5fsemUyMjJcWJV749ISKuXKtxOu58onj6s/pVT1zp9bt27VrFmz9Nxzz2nUqFEV7vPq/b355ptlvtp45V4SN9Jw3XPPPcrKytI///lP27xffvlFb775pnx9fdW3b9/KHQjgpm70/KlIRW3Dfffdp59//llvv/12mWWXL1+2fZuoKho1alTpAFLd43S2wYMHq7i42O71Ki0tVUJCggurcm/0yKBSIiIi9M9//lMzZ85Ur1695OvrqxEjRpRZz8/PT3369NHChQtVXFysm266Sf/v//0/ZWZmVmm/Y8eOVUBAgDp06KC///3vdssGDhyowMBADR8+XO+9956sVqu6dOmiHTt2aOvWrbavZ1/Ro0cP1atXTy+//LJyc3Pl7e2tAQMGqEWLFmX2O2nSJP3tb3/T+PHjlZ6ertatW2vdunX68ssvtWTJEjVu3LhKxwO4mxs9fypSUdvwpz/9SWvWrNGjjz6qbdu26Y477lBJSYm+++47rVmzRlu2bFHPnj2rVHNERISWLVumF198Ue3bt1eLFi1sg4iddZzONmrUKN122236y1/+ooyMDHXq1EkbN27UuXPnJFWtF6q2I8igUh577DHt3btXiYmJWrx4sVq1alVukJF+vafK1KlTlZCQIMMwNGjQIG3atEkhISGV3u+ZM2ckqdx7KWzbtk2BgYF6/fXXVa9ePb3//vsqKCjQHXfcoa1bt2rw4MF26wcFBWn58uWKj4/XhAkTVFJSom3btpUbZBo0aKCUlBQ988wzevfdd5WXl6eOHTsqMTFR48ePr/RxAO7qRs+filTUNnh4eGjDhg1avHixVq1apfXr16thw4Zq27atHn/8cdug36qYPXu2fvrpJy1cuFAXLlxQ3759rxtkqnuczlavXj19/PHHevzxx/Xuu+/Kw8NDf/jDHzRnzhzdcccd3DG4HPzWEgAAbm7Dhg36wx/+oO3bt+uOO+5wdTluhSADAIAbuXz5st03rkpKSjRo0CDt3r1bWVlZDv1mV23ApSUAANzI1KlTdfnyZUVGRqqwsFAffPCBvvrqK/31r38lxJSDHhkAANxIUlKSXnvtNWVkZKigoEDt27fX5MmTNWXKFFeX5pYIMgAAwLS4jwwAADAtggwAADCtWj/Yt7S0VCdPnlTjxo25kRDgAoZh6MKFCwoJCSnz45vuinYDcL0bbTtqfZA5efJkmR8lA1Dzjh8/rtDQUFeXcUNoNwD3cb22o9YHmSu3kD9+/HiZX0sG4Hx5eXkKCwsz1c850G4ArnejbUetDzJXuoX9/PxokAAXMtMlGtoNwH1cr+0wxwVrAACAchBkAACAaRFkAACAaRFkAACAaRFkAACAaRFkAJhK69atZbFYyjxiY2MlSQUFBYqNjVWzZs3k6+ur6OhoZWdnu7hqAM5CkAFgKrt27dKpU6dsj08//VSSdO+990qSZsyYoY8++khr165VamqqTp48qdGjR7uyZABOVOvvIwOgdgkICLCbXrBggdq1a6e+ffsqNzdXK1asUFJSkgYMGCBJSkxMVOfOnZWWlqbbb7/dFSUDcCJ6ZACYVlFRkf7+97/r4YcflsViUXp6uoqLixUVFWVbp1OnTmrZsqV27NjhwkoBOAs9MgBMa8OGDcrJydH48eMlSVlZWfLy8pK/v7/deoGBgcrKyqpwO4WFhSosLLRN5+XlOaNcAE7g0h6ZZcuWKTw83HYb8MjISG3atMm2vF+/fmUG9D366KMurBiAO1mxYoWGDh2qkJCQam0nPj5eVqvV9uAHIwHzcGmQCQ0N1YIFC5Senq7du3drwIABGjlypA4ePGhbZ+LEiXYD+xYuXOjCigG4i59++klbt27Vn//8Z9u8oKAgFRUVKScnx27d7OxsBQUFVbituLg45ebm2h7Hjx93VtkAHMyll5ZGjBhhN/3SSy9p2bJlSktLU9euXSVJDRs2vGYDBKBuSkxMVIsWLTRs2DDbvIiICHl6eio5OVnR0dGSpMOHD+vYsWOKjIyscFve3t7y9vZ2es0AHM9tBvuWlJRo9erVys/Pt2tw3n//fTVv3ly33HKL4uLidOnSJRdWCcAdlJaWKjExUTExMapf//8+j1mtVk2YMEEzZ87Utm3blJ6eroceekiRkZF8YwmopVw+2Hf//v2KjIxUQUGBfH19tX79enXp0kWS9MADD6hVq1YKCQnRvn379PTTT+vw4cP64IMPKtweg/aA2m/r1q06duyYHn744TLLFi9eLA8PD0VHR6uwsFCDBw/W0qVLXVAlgJpgMQzDcGUBRUVFOnbsmHJzc7Vu3Tr993//t1JTU21h5rc+++wz3X333crIyFC7du3K3d7cuXM1b968MvNzc3Pl5+fn8PoBZ2v9zMeSpB8XDLvOmu4pLy9PVqvVVOegGWuui8x+buDabvQ8dPmlJS8vL7Vv314RERGKj49X9+7d9frrr5e7bu/evSVJGRkZFW6PQXsAANQdLr+0dLXS0lK7S0O/tXfvXklScHBwhc9n0B4AAHWHS4NMXFychg4dqpYtW+rChQtKSkpSSkqKtmzZoqNHjyopKUn33HOPmjVrpn379mnGjBnq06ePwsPDXVk2AABwEy4NMqdPn9aDDz6oU6dOyWq1Kjw8XFu2bNHAgQN1/Phxbd26VUuWLFF+fr7CwsIUHR2tWbNmubJkAADgRlwaZFasWFHhsrCwMKWmptZgNQCA2oTBwHWDywf7AgAAVBVBBgAAmBZBBgAAmBZBBgAAmJbb3UcGjsVgN/dzo+/JlfUAABWjRwYAAJgWQQYAAJgWQQYAAJgWQQYAAJgWQQYAUCu0fuZjBsnXQQQZAABgWgQZAABgWgQZAABgWgQZAABgWgQZAAySBGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBnAQbg7LuCeODdrN4IMAAAwLYIMAAAwLYIMAAAwLYIMAAAwLYIMAMCtMVgX10KQAQAApkWQAQAApkWQAQAApkWQAQAApkWQQZ3gzoMF3bk2AHB3BBkApvPzzz/rj3/8o5o1a6YGDRqoW7du2r17t225YRiaPXu2goOD1aBBA0VFRenIkSMurBhmc/UHDD5wuC+CDABTOX/+vO644w55enpq06ZNOnTokF577TU1adLEts7ChQv1xhtvaPny5dq5c6caNWqkwYMHq6CgwIWVA3CG+q4uAAAq4+WXX1ZYWJgSExNt89q0aWP7t2EYWrJkiWbNmqWRI0dKklatWqXAwEBt2LBBY8aMqfGaATgPPTIATGXjxo3q2bOn7r33XrVo0UK33nqr3n77bdvyzMxMZWVlKSoqyjbParWqd+/e2rFjhytKBuBEBBkApvLDDz9o2bJl6tChg7Zs2aLJkydr2rRpevfddyVJWVlZkqTAwEC75wUGBtqWXa2wsFB5eXl2DwDm4NIgs2zZMoWHh8vPz09+fn6KjIzUpk2bbMsLCgoUGxurZs2aydfXV9HR0crOznZhxQBcrbS0VL/73e/017/+VbfeeqsmTZqkiRMnavny5VXeZnx8vKxWq+0RFhbmwIrhaAy8xW+5NMiEhoZqwYIFSk9P1+7duzVgwACNHDlSBw8elCTNmDFDH330kdauXavU1FSdPHlSo0ePdmXJAFwsODhYXbp0sZvXuXNnHTt2TJIUFBQkSWU+9GRnZ9uWXS0uLk65ubm2x/Hjx51QOQBncOlg3xEjRthNv/TSS1q2bJnS0tIUGhqqFStWKCkpSQMGDJAkJSYmqnPnzkpLS9Ptt9/uipIBuNgdd9yhw4cP2837/vvv1apVK0m/DvwNCgpScnKyevToIUnKy8vTzp07NXny5HK36e3tLW9vb6fWDcA53GaMTElJiVavXq38/HxFRkYqPT1dxcXFdgP2OnXqpJYtW15zwB7XuoHabcaMGUpLS9Nf//pXZWRkKCkpSW+99ZZiY2MlSRaLRdOnT9eLL76ojRs3av/+/XrwwQcVEhKiUaNGubZ4AA7n8q9f79+/X5GRkSooKJCvr6/Wr1+vLl26aO/evfLy8pK/v7/d+tcasCf9eq173rx5Tq7a3m+v1f64YJhTtn2j263s+s6sBZXD63tjevXqpfXr1ysuLk7z589XmzZttGTJEo0bN862zlNPPaX8/HxNmjRJOTk5uvPOO7V582b5+Pi4sHIAzuDyINOxY0ft3btXubm5WrdunWJiYpSamlrl7cXFxWnmzJm26by8PAbuAbXM8OHDNXz48AqXWywWzZ8/X/Pnz6/BqlAbMajY/bk8yHh5eal9+/aSpIiICO3atUuvv/667r//fhUVFSknJ8euV+ZaA/YkrnUDAFCXuM0YmStKS0tVWFioiIgIeXp6Kjk52bbs8OHDOnbsmCIjI11YIQAAcBcu7ZGJi4vT0KFD1bJlS124cEFJSUlKSUnRli1bZLVaNWHCBM2cOVNNmzaVn5+fpk6dqsjISL6xBAAAJLk4yJw+fVoPPvigTp06JavVqvDwcG3ZskUDBw6UJC1evFgeHh6Kjo5WYWGhBg8erKVLl7qyZAAA4EZcGmRWrFhxzeU+Pj5KSEhQQkJCDVUEAADMxO3GyAAAANwoggwAADAtggwAADAtgoyTuPOvs7qqNmfut7rbduf362qurNVMrxOAuoEgAwAATIsgAwAATIsgAwAATIsgAwAATIsgAwAATIsgAwCoU/j2Xe1CkAEAAKZFkAEAAKZFkAEAAKbl0l+/rkuuXI/9ccEwp26/Ks9xVk2omqpeu+f9BFAXEWQAAG7JDANy+QDhelxaAgAApkWQAQAApkWQAQAApkWQAQAApkWQAQA4TWXuossdd1EVBBkAAGBaBBkAAGBaBBkAAGBa3BAPleboG0CVd0386m1z06mKXf36/Xa6qq8jrzcAsyDIAABc6lph3Jn7Qe3ApSUAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBaBBkAAGBa3BDvNyp7N1NX3lzperXW1A2mUFZl757rChXVyN8JALOhRwYAAJgWQQaAqcydO1cWi8Xu0alTJ9vygoICxcbGqlmzZvL19VV0dLSys7NdWDGcrfUzH9ObWIcRZACYTteuXXXq1CnbY/v27bZlM2bM0EcffaS1a9cqNTVVJ0+e1OjRo11YLQBnYowMANOpX7++goKCyszPzc3VihUrlJSUpAEDBkiSEhMT1blzZ6Wlpen222+v6VIBOBk9MgBM58iRIwoJCVHbtm01btw4HTt2TJKUnp6u4uJiRUVF2dbt1KmTWrZsqR07driqXABO5NIgEx8fr169eqlx48Zq0aKFRo0apcOHD9ut069fvzLXwx999FEXVQzA1Xr37q2VK1dq8+bNWrZsmTIzM3XXXXfpwoULysrKkpeXl/z9/e2eExgYqKysrAq3WVhYqLy8PLsHAHNw6aWl1NRUxcbGqlevXvrll1/07LPPatCgQTp06JAaNWpkW2/ixImaP3++bbphw4auKBeAGxg6dKjt3+Hh4erdu7datWqlNWvWqEGDBlXaZnx8vObNm+eoEgHUIJcGmc2bN9tNr1y5Ui1atFB6err69Oljm9+wYcNyr4cDgL+/v26++WZlZGRo4MCBKioqUk5Ojl2vTHZ29jXbkLi4OM2cOdM2nZeXp7CwMGeWDcBB3GqMTG5uriSpadOmdvPff/99NW/eXLfccovi4uJ06dKlCrdBFzFQt1y8eFFHjx5VcHCwIiIi5OnpqeTkZNvyw4cP69ixY4qMjKxwG97e3vLz87N7ADAHt/nWUmlpqaZPn6477rhDt9xyi23+Aw88oFatWikkJET79u3T008/rcOHD+uDDz4odztm6SKu7F2Ea1JVa6vsHW3d8divdiO1VnT/iqvnO/p46+p9M5544gmNGDFCrVq10smTJzVnzhzVq1dPY8eOldVq1YQJEzRz5kw1bdpUfn5+mjp1qiIjI/nGElBLuU2QiY2N1YEDB+zuByFJkyZNsv27W7duCg4O1t13362jR4+qXbt2ZbZDFzFQu504cUJjx47V2bNnFRAQoDvvvFNpaWkKCAiQJC1evFgeHh6Kjo5WYWGhBg8erKVLl7q4agDO4hZBZsqUKfrXv/6lzz//XKGhoddct3fv3pKkjIyMcoOMt7e3vL29nVInANdbvXr1NZf7+PgoISFBCQkJNVQRaoqzeyHrai+n2bk0yBiGoalTp2r9+vVKSUlRmzZtrvucvXv3SpKCg4OdXB0AAHB3Lg0ysbGxSkpK0ocffqjGjRvb7vNgtVrVoEEDHT16VElJSbrnnnvUrFkz7du3TzNmzFCfPn0UHh7uytIBAIAbcGmQWbZsmaRfb3r3W4mJiRo/fry8vLy0detWLVmyRPn5+QoLC1N0dLRmzZrlgmoBAIC7cfmlpWsJCwtTampqDVUDAADMxi0G+wIA4CoM8jU3t7ohHgAAQGUQZAAAgGlxacnJavN9D65311t3vINvdWv67evtTscFAHUVPTIAAMC06JEBANQqDN6tW+iRAQAApkWQAQAApkWQAQAApkWQAQAApkWQAQAApkWQAQAApkWQAQAApsV9ZCrBHe9U6wiOPq4bvYeDI+714Kz7RXAfCgAwB3pkAACAadEjAwCoMjP3VNPzWjvQIwMAAEyLIAMAAEyLIAMAAEyLIAMAAEyLIAMAAEyLIAMAAEyLIAMAAEyL+8hUgTPuPWDmezFcjyvv1eCofbvDXYid+XcHAGZFjwwAADAtggwAwGFaP/Nxre7pq+3HZ0YEGQAAYFoEGQAAYFoEGQAAYFoEGQAAYFp8/RoA4HS/HSBbm28zURuPzd3RIwMAAEyLIAMAAEyLIAMAAEyLMTIm44obMZnp5k9cpwaAuoUeGQAAYFoEGQCmtmDBAlksFk2fPt02r6CgQLGxsWrWrJl8fX0VHR2t7Oxs1xUJO7XhNv+14RhqC4IMANPatWuX/va3vyk8PNxu/owZM/TRRx9p7dq1Sk1N1cmTJzV69GgXVQnAmaoUZPbs2aP9+/fbpj/88EONGjVKzz77rIqKihxWHIDaY+/evQ5tNy5evKhx48bp7bffVpMmTWzzc3NztWLFCi1atEgDBgxQRESEEhMT9dVXXyktLc0hxwLAfVQpyDzyyCP6/vvvJUk//PCDxowZo4YNG2rt2rV66qmnbng78fHx6tWrlxo3bqwWLVpo1KhROnz4sN06dBEDtcP06dMd0m5cERsbq2HDhikqKspufnp6uoqLi+3md+rUSS1bttSOHTuqdxAA3E6Vgsz333+vHj16SJLWrl2rPn36KCkpSStXrtT//M//3PB2UlNTFRsbq7S0NH366acqLi7WoEGDlJ+fb1uHLmKgdjh69KhD2g1JWr16tfbs2aP4+Pgyy7KysuTl5SV/f3+7+YGBgcrKyip3e4WFhcrLy7N7ADCHKn392jAMlZaWSpK2bt2q4cOHS5LCwsJ05syZG97O5s2b7aZXrlypFi1aKD09XX369LF1ESclJWnAgAGSpMTERHXu3FlpaWm6/fbbq1I+ABdwVLtx/PhxPf744/r000/l4+PjkNri4+M1b948h2wL+C1uCeF8VeqR6dmzp1588UW99957Sk1N1bBhv75BmZmZCgwMrHIxubm5kqSmTZtKoosYqE169OjhkHYjPT1dp0+f1u9+9zvVr19f9evXV2pqqt544w3Vr19fgYGBKioqUk5Ojt3zsrOzFRQUVO424+LilJuba3scP368yscJoGZVqUdm8eLF+uMf/6gNGzboueeeU/v27SVJ69at0+9///sqFVJaWqrp06frjjvu0C233CKp6l3EhYWFtmm6iAH3EB8fr0cffbTa7cbdd99tN2hYkh566CF16tRJTz/9tMLCwuTp6ank5GRFR0dLkg4fPqxjx44pMjKy3G16e3vL29u7ikcGwJWqFGS6d+9epiGRpFdeeUX161ftZsGxsbE6cOCAtm/fXqXnX+GILuKruwK5m677cHY3La+783Tr1s0h7Ubjxo1tH3auaNSokZo1a2abP2HCBM2cOVNNmzaVn5+fpk6dqsjISC5HA7VQlS4ttW3bVmfPni0zv6CgQDfffHOltzdlyhT961//0rZt2xQaGmqbHxQURBcxUEuEh4c7tN24lsWLF2v48OGKjo5Wnz59FBQUpA8++MCh+wDgHqrUffLjjz+qpKSkzPzCwkKdOHHihrdjGIamTp2q9evXKyUlRW3atLFbHhERQRcxUEscO3bMIe1GeVJSUuymfXx8lJCQoISEhGptF4D7q1SQ2bhxo+3fW7ZskdVqtU2XlJQoOTm5TBi5ltjYWCUlJenDDz9U48aNbeNerFarGjRoIKvVShcxYHKffPKJ7d+OaDcA4LcqFWRGjRolSbJYLIqJibFb5unpqdatW+u111674e0tW7ZMktSvXz+7+YmJiRo/frykX7uIPTw8FB0drcLCQg0ePFhLly6tTNkAXOiBBx6Q5Lh2AwB+q1JB5so9INq0aaNdu3apefPm1dq5YRjXXYcuYsDccnJyZLVaFRoaqvT09Gq3GwDwW1UaI5OZmenoOgDUcvv375efn5+rywBQy1Ttu9KSkpOTlZycrNOnT9t6aq545513ql0YgNqHdgOAo1UpyMybN0/z589Xz549FRwcLIvF4ui6ANQyCxYs0Msvv0y7AcChqhRkli9frpUrV+pPf/qTo+sBUEu98847tBsAHK5KQaaoqKjKP0VQ29WmO8O68lj4oTXHcvR7WZX3h3YDgDNU6c6+f/7zn5WUlOToWgDUYg8++CDtBgCHq1KPTEFBgd566y1t3bpV4eHh8vT0tFu+aNEihxQHoPYoLCzUokWLaDdMil7SyqlNvfPurkpBZt++ferRo4ck6cCBA3bLGMAHoDwHDx6k3QDgcFUKMtu2bXN0HQBquX/961/cRwaAw1VpjAwAAIA7qFKPTP/+/a/ZFfzZZ59VuSAAtdPw4cNVv37FTQ7tBoCqqFKQuXKd+4ri4mLt3btXBw4cKPOjcAAgSd26dZOXl5dtmnajdqnK4FYGxMIRqhRkFi9eXO78uXPn6uLFi9UqCEDtFB8fX+4YGdoNANXh0DEyf/zjH/m9FACVQrsBoDqq/KOR5dmxY4d8fHwcucla5+qu1BvtWq2rXbDOOm7uieE+aDcAVEeVgszo0aPtpg3D0KlTp7R79249//zzDikMQO0ybtw4u5vg0W4AcIQqBRmr1Wo37eHhoY4dO2r+/PkaNGiQQwoDULtYrVa7IEO7gdqosr3s9ApXX5WCTGJioqPrAFDLLV26lBviAXC4ao2RSU9P17fffitJ6tq1q2699VaHFAWg9qLdAOBIVQoyp0+f1pgxY5SSkiJ/f39JUk5Ojvr376/Vq1crICDAkTUCqAX+/e9/a9SoUbQbAByqSl+/njp1qi5cuKCDBw/q3LlzOnfunA4cOKC8vDxNmzbN0TUCqAWefPJJ2g0ADlelHpnNmzdr69at6ty5s21ely5dlJCQwKA9AOVKTk6m3agFGKQKd1OlHpnS0lK7bx9c4enpqdLS0moXBaD2od0A4AxVCjIDBgzQ448/rpMnT9rm/fzzz5oxY4buvvtuhxUHoPbo06cP7QYAh6tSkPmv//ov5eXlqXXr1mrXrp3atWunNm3aKC8vT2+++aajawTgIq2f+dhhd1d+5ZVXaDcAOFyVxsiEhYVpz5492rp1q7777jtJUufOnRUVFeXQ4gDUHqGhobQbAByuUkHms88+05QpU5SWliY/Pz8NHDhQAwcOlCTl5uaqa9euWr58ue666y6nFAvAfFJTUyVJeXl5tBu1yPV66urq78Oh5lXq0tKSJUs0ceLEcu/OabVa9cgjj2jRokUOKw6A+S1btkySaDcAOEWlgsw333yjIUOGVLh80KBBSk9Pr3ZRAGqPAwcOXHM57QaA6qhUkMnOzi7365NX1K9fX//+97+rXRSA2uP06dPXXE67AaA6KhVkbrrppmt+utq3b5+Cg4OrXRSA2uN6bQLtBoDqqFSQueeee/T888+roKCgzLLLly9rzpw5Gj58uMOKA2B+V+7aS7sBwBkq9a2lWbNm6YMPPtDNN9+sKVOmqGPHjpKk7777TgkJCSopKdFzzz3nlEIBmNOTTz6pt956SxEREZo6dSrtBgCHqlSQCQwM1FdffaXJkycrLi5OhmFIkiwWiwYPHqyEhAQFBgY6pVAA5tSiRQtJv94zhnYDgKNV+oZ4rVq10ieffKLz588rIyNDhmGoQ4cOatKkiTPqq3PMeO8FM9aMmrdu3TqVlJTQbgBwqCrd2VeSmjRpol69ejmyFgC1HO0GAEer0m8tAQAAuAOCDABTWbZsmcLDw+Xn5yc/Pz9FRkZq06ZNtuUFBQWKjY1Vs2bN5Ovrq+joaGVnZ7uwYqDiH2B15A+z1lUEGQCmEhoaqgULFig9PV27d+/WgAEDNHLkSB08eFCSNGPGDH300Udau3atUlNTdfLkSY0ePdrFVQNwliqPkQEAVxgxYoTd9EsvvaRly5YpLS1NoaGhWrFihZKSkjRgwABJUmJiojp37qy0tDTdfvvtrigZgBO5tEfm888/14gRIxQSEiKLxaINGzbYLR8/frwsFovd41q/9QSgbikpKdHq1auVn5+vyMhIpaenq7i4WFFRUbZ1OnXqpJYtW2rHjh0urBSAs7i0RyY/P1/du3fXww8/XGHX75AhQ5SYmGib9vb2rqnyALip/fv3KzIyUgUFBfL19dX69evVpUsX7d27V15eXvL397dbPzAwUFlZWRVur7CwUIWFhbbpvLw8Z5UOwMFcGmSGDh2qoUOHXnMdb29vBQUF1VBFAMygY8eO2rt3r3Jzc7Vu3TrFxMQoNTW1ytuLj4/XvHnzHFhh7cFAVLg7tx/sm5KSohYtWqhjx46aPHmyzp49e831CwsLlZeXZ/cAULt4eXmpffv2ioiIUHx8vLp3767XX39dQUFBKioqUk5Ojt362dnZ1/xAFBcXp9zcXNvj+PHjTj4CAI7i1oN9hwwZotGjR6tNmzY6evSonn32WQ0dOlQ7duxQvXr1yn2OIz9Z8UnEfTnqvant73FdeZ1KS0tVWFioiIgIeXp6Kjk5WdHR0ZKkw4cP69ixY4qMjKzw+d7e3ly2BkzKrYPMmDFjbP/u1q2bwsPD1a5dO6WkpOjuu+8u9zlxcXGaOXOmbTovL09hYWFOrxVAzYiLi9PQoUPVsmVLXbhwQUlJSUpJSdGWLVtktVo1YcIEzZw5U02bNpWfn5+mTp2qyMhIvrEE1FJuHWSu1rZtWzVv3lwZGRkVBhk+WQG12+nTp/Xggw/q1KlTslqtCg8P15YtWzRw4EBJ0uLFi+Xh4aHo6GgVFhZq8ODBWrp0qYurBuAspgoyJ06c0NmzZxUcHOzqUgC4yIoVK6653MfHRwkJCUpISKihigC4kkuDzMWLF5WRkWGbzszM1N69e9W0aVM1bdpU8+bNU3R0tIKCgnT06FE99dRTat++vQYPHuzCqgEAgLtwaZDZvXu3+vfvb5u+MrYlJiZGy5Yt0759+/Tuu+8qJydHISEhGjRokF544QUuHQEAAEkuDjL9+vWTYRgVLt+yZUsNVgMAAMzG7e8jAwAAUBFTDfYFANQMd793EHAFPTIAAMC06JEBqohPrADgevTIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAADgYq2f+Zh7U1URQQYAAJgWd/ZFrcQnGwCoG+iRAQAApkWQAQAApkWQAYA6jEGmMDuCDAAAMC2CDAAAMC2CDAAAMC2CDAAAMC3uIwMAQA1hYLXj0SMDAABMiyADAABMiyADAABMiyADAABMi8G+AAAbBqPCbOiRAQAApkWQAQAApkWQAQAApkWQAQAApkWQAQAApkWQAQAApsXXr2HD1y4BAGZDjwwAADAtggwAADAtggwAADAtggwAU4mPj1evXr3UuHFjtWjRQqNGjdLhw4ft1ikoKFBsbKyaNWsmX19fRUdHKzs720UVA3AmggwAU0lNTVVsbKzS0tL06aefqri4WIMGDVJ+fr5tnRkzZuijjz7S2rVrlZqaqpMnT2r06NEurBqAs7g0yHz++ecaMWKEQkJCZLFYtGHDBrvlhmFo9uzZCg4OVoMGDRQVFaUjR464plgAbmHz5s0aP368unbtqu7du2vlypU6duyY0tPTJUm5ublasWKFFi1apAEDBigiIkKJiYn66quvlJaW5uLqATiaS4NMfn6+unfvroSEhHKXL1y4UG+88YaWL1+unTt3qlGjRho8eLAKCgpquFIA7io3N1eS1LRpU0lSenq6iouLFRUVZVunU6dOatmypXbs2OGSGgE4j0vvIzN06FANHTq03GWGYWjJkiWaNWuWRo4cKUlatWqVAgMDtWHDBo0ZM6YmSwXghkpLSzV9+nTdcccduuWWWyRJWVlZ8vLykr+/v926gYGBysrKKnc7hYWFKiwstE3n5eU5rWYAjuW2Y2QyMzOVlZVl96nKarWqd+/e1/xUVVhYqLy8PLsHgNopNjZWBw4c0OrVq6u1nfj4eFmtVtsjLCzMQRUCcDa3DTJXPjkFBgbazb/WpyqJBgmoK6ZMmaJ//etf2rZtm0JDQ23zg4KCVFRUpJycHLv1s7OzFRQUVO624uLilJuba3scP37cmaUDcCC3DTJVRYME1G6GYWjKlClav369PvvsM7Vp08ZueUREhDw9PZWcnGybd/jwYR07dkyRkZHlbtPb21t+fn52DwDm4La/tXTlk1N2draCg4Nt87Ozs9WjR48Kn+ft7S1vb29nlwfARWJjY5WUlKQPP/xQjRs3tvXQWq1WNWjQQFarVRMmTNDMmTPVtGlT+fn5aerUqYqMjNTtt9/u4uoBOJrb9si0adNGQUFBdp+q8vLytHPnzgo/VQGo/ZYtW6bc3Fz169dPwcHBtsc///lP2zqLFy/W8OHDFR0drT59+igoKEgffPCBC6sG4Cwu7ZG5ePGiMjIybNOZmZnau3evmjZtqpYtW2r69Ol68cUX1aFDB7Vp00bPP/+8QkJCNGrUKNcVDcClDMO47jo+Pj5KSEio8NYOAGoPlwaZ3bt3q3///rbpmTNnSpJiYmK0cuVKPfXUU8rPz9ekSZOUk5OjO++8U5s3b5aPj4+rSgYAAG7EpUGmX79+1/x0ZbFYNH/+fM2fP78GqwIAAGbhtmNkAAAArocgAwAATIsgAwAATIsgAwAATIsgAwAATIsgAwAATIsgAwAATIsgAwCAm2n9zMdq/czHFU7j/xBkAACAaRFkAACAaRFkAACAaRFkAACAabn0RyMBAMD/YUBv5dEjAwAATIsgAwAATIsgAwAATIsgAwAATIvBvgAAmMRvBwP/uGCYCytxH/TIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA06rv6gIAAM7X+pmPJUk/LhhmNw3zu/q9rWvokQEAAKZFkAEAAKZFkAEAAKZFkAEAAKZFkAFgOp9//rlGjBihkJAQWSwWbdiwwW65YRiaPXu2goOD1aBBA0VFRenIkSOuKdZFWj/zMQN6USe4dZCZO3euLBaL3aNTp06uLguAi+Xn56t79+5KSEgod/nChQv1xhtvaPny5dq5c6caNWqkwYMHq6CgoIYrBeBsbv/1665du2rr1q226fr13b5kAE42dOhQDR06tNxlhmFoyZIlmjVrlkaOHClJWrVqlQIDA7VhwwaNGTOmJksF4GRu3SMj/RpcgoKCbI/mzZu7uiQAbiwzM1NZWVmKioqyzbNarerdu7d27NjhwsoAOIPbd28cOXJEISEh8vHxUWRkpOLj49WyZcsK1y8sLFRhYaFtOi8vrybKBOAmsrKyJEmBgYF28wMDA23Lrka7AZiXWweZ3r17a+XKlerYsaNOnTqlefPm6a677tKBAwfUuHHjcp8THx+vefPm1XClAMyMdgPu6loDthnM/Su3vrQ0dOhQ3XvvvQoPD9fgwYP1ySefKCcnR2vWrKnwOXFxccrNzbU9jh8/XoMVA3C1oKAgSVJ2drbd/OzsbNuyq9FuAObl1j0yV/P399fNN9+sjIyMCtfx9vaWt7d3DVYFwJ20adNGQUFBSk5OVo8ePST9eqlo586dmjx5crnPod0AzMute2SudvHiRR09elTBwcGuLgWAC128eFF79+7V3r17Jf06wHfv3r06duyYLBaLpk+frhdffFEbN27U/v379eCDDyokJESjRo1yad0AHM+te2SeeOIJjRgxQq1atdLJkyc1Z84c1atXT2PHjnV1aQBcaPfu3erfv79teubMmZKkmJgYrVy5Uk899ZTy8/M1adIk5eTk6M4779TmzZvl4+PjqpIBOIlbB5kTJ05o7NixOnv2rAICAnTnnXcqLS1NAQEBri4NgAv169dPhmFUuNxisWj+/PmaP39+DVZV864M9vxxwbAy84C6wq2DzOrVq11dAgAAcGOmGiMDAADwWwQZAABgWgQZAABgWm49RgYAUD1XD/6taDAwg4RhVvTIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA0yLIAAAA06rv6gIAoK5r/czHkqQfFwyr0nLgt678vVxx9d9Nbft7okcGAACYFkEGAACYFkEGAACYFkEGAACYFoN9AQCoBa4e5Huj880+6JceGQAAYFoEGQAAYFoEGQAAYFoEGQAAYFoM9gUAk7l68GZFgzkBZ3KXwcL0yAAAANMiyAAAANMiyAAAANMiyAAAANMiyAAAANPiW0sA4Cau/hYI304Cro8eGQAAYFoEGQAAYFoEGQAAYFoEGQAAYFqmCDIJCQlq3bq1fHx81Lt3b3399deuLgmACdRU29H6mY+vORD36uVXpit63vW2BzhDRX+nztyHI7h9kPnnP/+pmTNnas6cOdqzZ4+6d++uwYMH6/Tp064uDYAbo+0A6ga3DzKLFi3SxIkT9dBDD6lLly5avny5GjZsqHfeecfVpQFwY7QdQN3g1kGmqKhI6enpioqKss3z8PBQVFSUduzY4cLKALgz2g6g7nDrG+KdOXNGJSUlCgwMtJsfGBio7777rtznFBYWqrCw0Dadm5srScrLy7vu/koLL1WjWqDuuZHz6so6hmE4uxybyrYd1Wk3pP9rOypa/+rltDVwJ1f/XVY0fbXrLa/uc2607XDrIFMV8fHxmjdvXpn5YWFhLqgGqN2sS2583QsXLshqtTqtlupwVLtxvdejMq8XUFOu/ru83vT1nl+VfV7L9doOtw4yzZs3V7169ZSdnW03Pzs7W0FBQeU+Jy4uTjNnzrRNl5aW6ty5c2rWrJksFotT662OvLw8hYWF6fjx4/Lz83N1OW6F16ZiZnhtDMPQhQsXFBISUmP7rGzbYdZ243rM8PdRWbXxmKTaeVzVPaYbbTvcOsh4eXkpIiJCycnJGjVqlKRfG5jk5GRNmTKl3Od4e3vL29vbbp6/v7+TK3UcPz+/WvNH7Gi8NhVz99empntiKtt2mL3duB53//uoitp4TFLtPK7qHNONtB1uHWQkaebMmYqJiVHPnj112223acmSJcrPz9dDDz3k6tIAuDHaDqBucPsgc//99+vf//63Zs+eraysLPXo0UObN28uM4gPAH6LtgOoG9w+yEjSlClTKryUVFt4e3trzpw5Zbq3wWtzLbw211YX2o5rqY1/H7XxmKTaeVw1dUwWoya/EwkAAOBAbn1DPAAAgGshyAAAANMiyAAAANMiyAAAANMiyLjIuXPnNG7cOPn5+cnf318TJkzQxYsXr7n+1KlT1bFjRzVo0EAtW7bUtGnTbL8JY3YJCQlq3bq1fHx81Lt3b3399dfXXH/t2rXq1KmTfHx81K1bN33yySc1VGnNq8xr8/bbb+uuu+5SkyZN1KRJE0VFRV33tYR5OasdsVgsZR6rV6922nE4+vw3DEOzZ89WcHCwGjRooKioKB05csRp9VfE0efu+PHjy7wvQ4YMcfZh2KnMMa1cubJMvT4+PnbrOOS9MuASQ4YMMbp3726kpaUZX3zxhdG+fXtj7NixFa6/f/9+Y/To0cbGjRuNjIwMIzk52ejQoYMRHR1dg1U7x+rVqw0vLy/jnXfeMQ4ePGhMnDjR8Pf3N7Kzs8td/8svvzTq1atnLFy40Dh06JAxa9Ysw9PT09i/f38NV+58lX1tHnjgASMhIcH43//9X+Pbb781xo8fb1itVuPEiRM1XDlqgrPaEUlGYmKicerUKdvj8uXLTjkGZ5z/CxYsMKxWq7Fhwwbjm2++Mf7jP/7DaNOmjdOOoTzOOHdjYmKMIUOG2L0v586dq6lDqvQxJSYmGn5+fnb1ZmVl2a3jiPeKIOMChw4dMiQZu3btss3btGmTYbFYjJ9//vmGt7NmzRrDy8vLKC4udkaZNea2224zYmNjbdMlJSVGSEiIER8fX+769913nzFs2DC7eb179zYeeeQRp9bpCpV9ba72yy+/GI0bNzbeffddZ5UIF3FmOyLJWL9+vSPLrZCjz//S0lIjKCjIeOWVV2zLc3JyDG9vb+Mf//iHE46gfM44d2NiYoyRI0c6utQbVtljSkxMNKxWa4Xbc9R7xaUlF9ixY4f8/f3Vs2dP27yoqCh5eHho586dN7yd3Nxc+fn5qX59U9zXsFxFRUVKT09XVFSUbZ6Hh4eioqK0Y8eOcp+zY8cOu/UlafDgwRWub1ZVeW2udunSJRUXF6tp06bOKhMu4ux2JDY2Vs2bN9dtt92md955R4YTbjnmjPM/MzNTWVlZdutYrVb17t27xtoIZ567KSkpatGihTp27KjJkyfr7NmzDq29IlU9posXL6pVq1YKCwvTyJEjdfDgQdsyR71XBBkXyMrKUosWLezm1a9fX02bNlVWVtYNbePMmTN64YUXNGnSJGeUWGPOnDmjkpKSMreNDwwMrPC1yMrKqtT6ZlWV1+ZqTz/9tEJCQso0/DA/Z7Yj8+fP15o1a/Tpp58qOjpajz32mN58802H1f7b/Tv6/L/yX1e2Ec46d4cMGaJVq1YpOTlZL7/8slJTUzV06FCVlJQ4tP7yVOWYOnbsqHfeeUcffvih/v73v6u0tFS///3vdeLECUmOe6/M+1HeDT3zzDN6+eWXr7nOt99+W+395OXladiwYerSpYvmzp1b7e2hdlqwYIFWr16tlJSUMgPs4L7coR15/vnnbf++9dZblZ+fr1deeUXTpk2r9n5xfRWdu2PGjLH9u1u3bgoPD1e7du2UkpKiu+++2xWlXlNkZKQiIyNt07///e/VuXNn/e1vf9MLL7zgsP0QZBzoL3/5i8aPH3/Nddq2baugoCCdPn3abv4vv/yic+fOKSgo6JrPv3DhgoYMGaLGjRtr/fr18vT0rG7ZLtW8eXPVq1dP2dnZdvOzs7MrfC2CgoIqtb5ZVeW1ueLVV1/VggULtHXrVoWHhzuzTDiYO7YjvXv31gsvvKDCwkKH/m6OM87/K//Nzs5WcHCw3To9evRwWO3XUlPnbtu2bdW8eXNlZGQ4PchU55iu8PT01K233qqMjAxJjnuvuLTkQAEBAerUqdM1H15eXoqMjFROTo7S09Ntz/3ss89UWlqq3r17V7j9vLw8DRo0SF5eXtq4cWOt+JTt5eWliIgIJScn2+aVlpYqOTnZLsn/VmRkpN36kvTpp59WuL5ZVeW1kaSFCxfqhRde0ObNm+3GT8Ac3LEd2bt3r5o0aeLwH/9zxvnfpk0bBQUF2a2Tl5ennTt31lgbUVPn7okTJ3T27Fm7EOAsVT2m3yopKdH+/ftt9TrsvbrhYcFwqCFDhhi33nqrsXPnTmP79u1Ghw4d7L42eeLECaNjx47Gzp07DcMwjNzcXKN3795Gt27djIyMDLuvs/3yyy+uOgyHWL16teHt7W2sXLnSOHTokDFp0iTD39/f9jW9P/3pT8YzzzxjW//LL7806tevb7z66qvGt99+a8yZM6dWf/26Mq/NggULDC8vL2PdunV2fyMXLlxw1SHAiZzRjmzcuNF4++23jf379xtHjhwxli5dajRs2NCYPXu2U47BGef/ggULDH9/f+PDDz809u3bZ4wcOdIlX7925Ll74cIF44knnjB27NhhZGZmGlu3bjV+97vfGR06dDAKCgrc8pjmzZtnbNmyxTh69KiRnp5ujBkzxvDx8TEOHjxod9zVfa8IMi5y9uxZY+zYsYavr6/h5+dnPPTQQ3b/s8nMzDQkGdu2bTMMwzC2bdtmSCr3kZmZ6ZqDcKA333zTaNmypeHl5WXcdtttRlpamm1Z3759jZiYGLv116xZY9x8882Gl5eX0bVrV+Pjjz+u4YprTmVem1atWpX7NzJnzpyaLxxO54x2ZNOmTUaPHj0MX19fo1GjRkb37t2N5cuXGyUlJU47Dkef/6Wlpcbzzz9vBAYGGt7e3sbdd99tHD582Gn1V8SR5+6lS5eMQYMGGQEBAYanp6fRqlUrY+LEiWXuy+JOxzR9+nTbuoGBgcY999xj7Nmzx257jnivLIbhhO/UAQAA1ADGyAAAANMiyAAAANMiyAAAANMiyAAAANMiyAAAANMiyAAAANMiyAAAANMiyMAhUlJSZLFYlJOTU+1tWSwWbdiwodrbMct+gbqMtgPVRZCpY5YvX67GjRvrl19+sc27ePGiPD091a9fP7t1rzQwR48eve52f//73+vUqVOyWq03XMvcuXNr7EfcAFQPbQfcFUGmjunfv78uXryo3bt32+Z98cUXCgoK0s6dO1VQUGCbv23bNrVs2VLt2rW77na9vLwUFBQki8XilLoBuBZtB9wVQaaO6dixo4KDg5WSkmKbl5KSopEjR6pNmzZKS0uzm9+/f39Jv/7KaXx8vNq0aaMGDRqoe/fuWrdund26V3cPv/322woLC1PDhg31hz/8QYsWLZK/v78kaeXKlZo3b56++eYbWSwWWSwWrVy50vbcM2fO6A9/+IMaNmyoDh06aOPGjRUe07PPPlvur/12795d8+fPlyTt2rVLAwcOVPPmzWW1WtW3b1/t2bOnwm2Wdzx79+6VxWLRjz/+aJu3fft23XXXXWrQoIHCwsI0bdo05efnV7hdwKxoO2g73FY1fjsKJvXAAw8YgwYNsk336tXLWLt2rfHoo4/afuH20qVLtl85NQzDePHFF41OnToZmzdvNo4ePWokJiYa3t7eRkpKimEY//djdOfPnzcMwzC2b99ueHh4GK+88opx+PBhIyEhwWjatKlhtVpt2//LX/5idO3a1fYrr5cuXTIMwzAkGaGhoUZSUpJx5MgRY9q0aYavr69x9uzZco/nwIEDhiQjIyOjzLwjR44YhmEYycnJxnvvvWd8++23xqFDh4wJEyYYgYGBRl5enu05koz169eXezyGYRj/+7//a/fjehkZGUajRo2MxYsXG99//73x5ZdfGrfeeqsxfvz4KrwrgPuj7aDtcEcEmTro7bffNho1amQUFxcbeXl5Rv369Y3Tp08bSUlJRp8+fQzD+PXklWT89NNPRkFBgdGwYUPjq6++stvOhAkTjLFjxxqGUfbkvf/++41hw4bZrT9u3DhbY2QYhjFnzhyje/fuZeqTZMyaNcs2ffHiRUOSsWnTpgqPqXv37sb8+fNt03FxcUbv3r0rXL+kpMRo3Lix8dFHH9nttzKN0YQJE4xJkybZbfeLL74wPDw8KvUT9IBZ0HbQdrgjLi3VQf369VN+fr527dqlL774QjfffLMCAgLUt29f27XulJQUtW3bVi1btlRGRoYuXbqkgQMHytfX1/ZYtWpVhYP5Dh8+rNtuu81u3tXT1xIeHm77d6NGjeTn56fTp09XuP64ceOUlJQkSTIMQ//4xz80btw42/Ls7GxNnDhRHTp0kNVqlZ+fny5evKhjx47dcE1X++abb7Ry5Uq712Tw4MEqLS1VZmZmlbcLuCvaDtoOd1Tf1QWg5rVv316hoaHatm2bzp8/r759+0qSQkJCFBYWpq+++krbtm3TgAEDJP36zQRJ+vjjj3XTTTfZbcvb29spNXp6etpNWywWlZaWVrj+2LFj9fTTT2vPnj26fPmyjh8/rvvvv9+2PCYmRmfPntXrr7+uVq1aydvbW5GRkSoqKip3ex4ev2Z8wzBs84qLi+3WuXjxoh555BFNmzatzPNbtmx5/YMETIa2g7bDHRFk6qj+/fsrJSVF58+f15NPPmmb36dPH23atElff/21Jk+eLEnq0qWLvL29dezYMVvDdT0dO3bUrl277OZdPe3l5aWSkpJqHsmvQkND1bdvX73//vu6fPmyBg4cqBYtWtiWf/nll1q6dKnuueceSdLx48d15syZCrcXEBAgSTp16pSaNGki6dcBe7/1u9/9TocOHVL79u0dcgyAGdB20Ha4G4JMHdW/f3/FxsaquLjYroHp27evpkyZoqKiItu3Dho3bqwnnnhCM2bMUGlpqe68807l5ubqyy+/lJ+fn2JiYspsf+rUqerTp48WLVqkESNG6LPPPtOmTZvsvmLZunVrZWZmau/evQoNDVXjxo2r9Slt3LhxmjNnjoqKirR48WK7ZR06dNB7772nnj17Ki8vT08++aQaNGhQ4bbat2+vsLAwzZ07Vy+99JK+//57vfbaa3brPP3007r99ts1ZcoU/fnPf1ajRo106NAhffrpp/qv//qvKh8H4M5oO2g73I5rh+jAVTIzMw1JRqdOnezm//jjj4Yko2PHjnbzS0tLjSVLlhgdO3Y0PD09jYCAAGPw4MFGamqqYRjlD3B76623jJtuuslo0KCBMWrUKOPFF180goKCbMsLCgqM6Ohow9/f35BkJCYmGoZhP3DuCqvValtekfPnzxve3t5Gw4YNjQsXLtgt27Nnj9GzZ0/Dx8fH6NChg7F27VqjVatWxuLFi23rXL3f7du3G926dTN8fHyMu+66y1i7dq3dgD3DMIyvv/7aGDhwoOHr62s0atTICA8PN1566aVr1gmYGW0HbYe7sRjGby7kAU40ceJEfffdd/riiy9cXQoAE6HtwLVwaQlO8+qrr2rgwIFq1KiRNm3apHfffVdLly51dVkA3BxtByqDHhk4zX333aeUlBRduHBBbdu21dSpU/Xoo4+6uiwAbo62A5VBkAEAAKbFDfEAAIBpEWQAAIBpEWQAAIBpEWQAAIBpEWQAAIBpEWQAAIBpEWQAAIBpEWQAAIBpEWQAAIBp/X8atIHKXfxZ4QAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Inferred ipds versus ipds" + ], + "metadata": { + "id": "q4eNz1uMZN_X" + }, + "id": "q4eNz1uMZN_X" + }, + { + "cell_type": "code", + "source": [ + "m.shape\n", + "tmp = log_softmax_fn(m)\n", + "tmp.shape\n", + "output.shape\n", + "results = {'inferred ipds':np.argmax(m.detach().numpy(),1), 'true ipds':ipd_batch}\n", + "results_df = pd.DataFrame(results)\n", + "results_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 424 + }, + "id": "LIrh5y4e2tPf", + "outputId": "11ba0cea-48d1-470d-fa92-5325c7e1e227" + }, + "id": "LIrh5y4e2tPf", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " inferred ipds true ipds\n", + "0 3 3\n", + "1 3 2\n", + "2 6 5\n", + "3 3 5\n", + "4 7 7\n", + ".. ... ...\n", + "59 7 7\n", + "60 3 3\n", + "61 3 0\n", + "62 10 10\n", + "63 10 9\n", + "\n", + "[64 rows x 2 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
inferred ipdstrue ipds
033
132
265
335
477
.........
5977
6033
6130
621010
63109
\n", + "

64 rows × 2 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "results_df", + "summary": "{\n \"name\": \"results_df\",\n \"rows\": 64,\n \"fields\": [\n {\n \"column\": \"inferred ipds\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 1,\n \"max\": 10,\n \"num_unique_values\": 9,\n \"samples\": [\n 9,\n 6,\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"true ipds\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 11,\n \"num_unique_values\": 12,\n \"samples\": [\n 1,\n 9,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "markdown", + "id": "729b0bbf", + "metadata": { + "id": "729b0bbf" + }, + "source": [ + "This poor performance isn't surprising because this network is not actually doing any coincidence detection, just a weighted sum of input spikes." + ] + }, + { + "cell_type": "markdown", + "id": "3bb91016", + "metadata": { + "id": "3bb91016" + }, + "source": [ + "## Implementation 2: Spiking neural network\n", + "\n", + "Next we'll implement a version of the model with spikes to see how that changes performance. We'll just add a single hidden feed-forward layer of spiking neurons between the input and the output layers. This layer will be spiking, so we need to use the surrogate gradient descent approach.\n", + "\n", + "![Full architecture](https://github.com/neural-reckoning/cosyne-tutorial-2022/blob/main/arch-full.png?raw=1)" + ] + }, + { + "cell_type": "markdown", + "id": "03f5456e", + "metadata": { + "id": "03f5456e" + }, + "source": [ + "### Surrogate gradient descent\n", + "\n", + "First, this is the key part of surrogate gradient descent, a function where we override the computation of the gradient to replace it with a smoothed gradient. You can see that in the forward pass (method ``forward``) it returns the Heaviside function of the input (takes value 1 if the input is ``>0``) or value 0 otherwise. In the backwards pass, it returns the gradient of a sigmoid function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5fabc7b", + "metadata": { + "id": "e5fabc7b" + }, + "outputs": [], + "source": [ + "beta = 5\n", + "\n", + "class SurrGradSpike(torch.autograd.Function):\n", + " \"\"\"\n", + " This class allows for the approximation of gradients for non-differentiable spiking functions, enabling\n", + " the backpropagation of errors in networks that incorporate spiking neurons. The forward method applies\n", + " a thresholding logic, mimicking the firing of a neuron, while the backward method implements the surrogate\n", + " gradient calculation.\n", + "\n", + " Methods\n", + " -------\n", + " @staticmethod\n", + " forward(ctx, input):\n", + " Computes the forward propagation step in the neural network. This method applies a specific logic to\n", + " mimic the all-or-none spiking nature of biological neurons. It generates a binary output corresponding\n", + " to whether each neuron in the input tensor has fired or not.\n", + " Parameters:\n", + " ctx : torch.autograd.function._ContextMethodMixin\n", + " A context object for storing information necessary for the backward computation.\n", + " input : torch.Tensor\n", + " A tensor containing the input data, typically the neuronal activations in form of the membrane potential,\n", + " for which the output firing response will be computed.\n", + " Returns:\n", + " torch.Tensor: A tensor with the same shape as input, filled with binary values indicating whether\n", + " each neuron has fired (1.0) or not (0.0).\n", + "\n", + " @staticmethod\n", + " backward(ctx, grad_output):\n", + " Computes the backward propagation step in the neural network. This method calculates the surrogate\n", + " gradients of the loss function with respect to the input activations. It is designed to work with\n", + " the non-differentiable nature of spiking neurons by approximating the gradients.\n", + " Parameters:\n", + " ctx : torch.autograd.function._ContextMethodMixin\n", + " A context object that has the information stashed during the forward pass.\n", + " grad_output : torch.Tensor\n", + " A tensor containing the gradient of the loss function with respect to the outputs of the forward method.\n", + " Returns:\n", + " torch.Tensor: A tensor containing the surrogate gradients of the loss function with respect to\n", + " the input activations, which can be backpropagated through the rest of the network.\n", + " \"\"\"\n", + " @staticmethod\n", + " def forward(ctx, input):\n", + " ctx.save_for_backward(input)\n", + " out = torch.zeros_like(input)\n", + " out[input > 0] = 1.0\n", + " return out\n", + " @staticmethod\n", + " def backward(ctx, grad_output):\n", + " input, = ctx.saved_tensors\n", + " # Original SPyTorch/SuperSpike gradient\n", + " # This seems to be a typo or error? But it works well\n", + " #grad = grad_output/(100*torch.abs(input)+1.0)**2\n", + " # Sigmoid\n", + " grad = grad_output*beta*torch.sigmoid(beta*input)*(1-torch.sigmoid(beta*input))\n", + " return grad\n", + "\n", + "spike_fn = SurrGradSpike.apply # allows the defined class to be used as a function." + ] + }, + { + "cell_type": "markdown", + "id": "911318ee", + "metadata": { + "id": "911318ee" + }, + "source": [ + "### Updated model\n", + "\n", + "The code for the updated model is very similar to the membrane only layer. First, for initialisation we now need two weight matrices, $W_1$ from the input to the hidden layer, and $W_2$ from the hidden layer to the output layer. Second, we run two passes of the loop that you saw above for the membrane only model.\n", + "\n", + "The first pass computes the output spikes of the hidden layer. The second pass computes the output layer and is exactly the same as before except using the spikes from the hidden layer instead of the input layer.\n", + "\n", + "For the first pass, we modify the function in two ways.\n", + "\n", + "Firstly, we compute the spikes with the line ``s = spike_fn(v-1)``. In the forward pass this just computes the Heaviside function of $v-1$, i.e. returns 1 if $v>1$, otherwise 0, which is the spike threshold function for the LIF neuron. In the backwards pass, it returns a gradient of the smoothed version of the Heaviside function.\n", + "\n", + "The other line we change is the membrane potential update line. Now, we multiply by $1-s$ where ($s=1$ if there was a spike in the previous time step, otherwise $s=0$), so that the membrane potential is reset to 0 after a spike (but in a differentiable way rather than just setting it to 0)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7b072bb5", + "metadata": { + "id": "7b072bb5" + }, + "outputs": [], + "source": [ + "num_hidden = 100\n", + "\n", + "# Weights and uniform weight initialisation\n", + "def init_weight_matrices():\n", + " # Input to hidden layer\n", + " W1 = nn.Parameter(torch.empty((input_size, num_hidden), device=device, dtype=dtype, requires_grad=True))\n", + " fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W1)\n", + " bound = 1 / np.sqrt(fan_in)\n", + " nn.init.uniform_(W1, -bound, bound)\n", + " # Hidden layer to output\n", + " W2 = nn.Parameter(torch.empty((num_hidden, num_classes), device=device, dtype=dtype, requires_grad=True))\n", + " fan_in, _ = nn.init._calculate_fan_in_and_fan_out(W2)\n", + " bound = 1 / np.sqrt(fan_in)\n", + " nn.init.uniform_(W2, -bound, bound)\n", + " return W1, W2\n", + "\n", + "# Run the simulation\n", + "def snn(input_spikes, W1, W2, tau=20*ms):\n", + " # First layer: input to hidden\n", + " v = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n", + " s = torch.zeros((batch_size, num_hidden), device=device, dtype=dtype)\n", + " s_rec = [s]\n", + " h = torch.einsum(\"abc,cd->abd\", (input_spikes, W1))\n", + " alpha = np.exp(-dt/tau)\n", + " for t in range(duration_steps - 1):\n", + " new_v = (alpha*v + h[:, t, :])*(1-s) # multiply by 0 after a spike\n", + " s = spike_fn(v-1) # threshold of 1\n", + " v = new_v\n", + " s_rec.append(s)\n", + " s_rec = torch.stack(s_rec, dim=1)\n", + " # Second layer: hidden to output\n", + " v = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n", + " s = torch.zeros((batch_size, num_classes), device=device, dtype=dtype)\n", + " v_rec = [v]\n", + " h = torch.einsum(\"abc,cd->abd\", (s_rec, W2))\n", + " alpha = np.exp(-dt/tau)\n", + " for t in range(duration_steps - 1):\n", + " # v = alpha * v + torch.where(h[:, t, :] > 0, h[:, t, :], torch.zeros_like(h[:, t, :])) # VB allow only positive inputs to change the membrane pot.\n", + " v = alpha*v + h[:, t, :]\n", + " v_rec.append(v)\n", + " v_rec = torch.stack(v_rec, dim=1)\n", + " # Return recorded membrane potential of output\n", + " return v_rec" + ] + }, + { + "cell_type": "markdown", + "id": "0a1662e0", + "metadata": { + "id": "0a1662e0" + }, + "source": [ + "### Training and analysing\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Training\n", + "We train it as before, except that we modify the functions to take the two weight matrices into account." + ], + "metadata": { + "id": "xG1W1MTA6L6l" + }, + "id": "xG1W1MTA6L6l" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a5d558df", + "metadata": { + "id": "a5d558df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 683 + }, + "outputId": "0121ce3b-cc74-4768-bc98-7bc2fff75ba5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n", + "Epoch 1: loss=3.17483\n", + "Epoch 2: loss=1.54502\n", + "Epoch 3: loss=1.22398\n", + "Epoch 4: loss=0.99698\n", + "Epoch 5: loss=0.87871\n", + "Epoch 6: loss=0.77592\n", + "Epoch 7: loss=0.71269\n", + "Epoch 8: loss=0.67917\n", + "Epoch 9: loss=0.62464\n", + "Epoch 10: loss=0.57160\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/v0lEQVR4nO3deXxU9b3/8fdMlsk6k40sQEJYLItsYUkIWEWlorUqaq1aW3C/tmC13vZ3pa3L1Wux9Wq9LRa0VakL1aqFWlwRxIVFNlGQRdlCWJKQhMxknSQz8/tjkpFIGJKQ5Mzyej4e55HknDOTzzS93He/38/3e0wej8cjAAAABD2z0QUAAACgexDsAAAAQgTBDgAAIEQQ7AAAAEIEwQ4AACBEEOwAAABCBMEOAAAgRBDsAAAAQkSk0QX0NrfbrcOHDysxMVEmk8nocgAAAPzyeDyqrq5W3759ZTb7H5MLu2B3+PBhZWdnG10GAABApxQXF6t///5+7wm7YJeYmCjJ+x+O1Wo1uBoAAAD/HA6HsrOzfRnGn7ALdq3Tr1arlWAHAACCRkdayFg8AQAAECIIdgAAACGCYAcAABAiCHYAAAAhgmAHAAAQIgh2AAAAIYJgBwAAECIIdgAAACGCYAcAABAiCHYAAAAhgmAHAAAQIgh2AAAAIYJgBwAAECIIdgAAACEi0ugCQtHWg3b9+/PDGpQWr2vyc4wuBwAAhAlG7HrA1kN2PfXhXi359JDRpQAAgDBCsOsB+QNTJEmfFlfJ2ewyuBoAABAuCHY9YHCfeKUlRKux2a3Piu1GlwMAAMIEwa4HmEwm36jd+n0VBlcDAADCBcGuh+TneoPdJ/sqDa4EAACEC4JdDykYlCpJ2lR0TE0ut8HVAACAcECw6yFDMxJli41SXaNLXxx2GF0OAAAIAwS7HmI2mzSxdTp2L312AACg5xHselCBbwEFfXYAAKDnEex6UMGglmC3v1Iut8fgagAAQKgj2PWgEVlWxUdHqLqhWTtL6LMDAAA9i2DXgyIjzBqfy3QsAADoHQS7HtbaZ/fJXoIdAADoWQS7HuZbQLG/Uh4PfXYAAKDnEOx62Oj+SbJEmlVZ26jdZTVGlwMAAEIYwa6HRUeaNS4nWRKPFwMAAD2LYNcL8gfy3FgAANDzCHa9wLef3b4K+uwAAECPIdj1grzsZEVFmFTqcOpAZZ3R5QAAgBBFsOsFsdERGtM/SRLbngAAgJ5DsOsl9NkBAICeZmiwW7BggUaPHi2r1Sqr1arCwkK99dZbfl/zyiuvaNiwYYqJidGoUaP05ptv9lK1p+frYFdhcCUAACBUGRrs+vfvr4cfflibNm3Sxo0bdd555+myyy7TF1980e79a9as0bXXXqubbrpJn376qWbMmKEZM2Zo27ZtvVx5503ITZHZJB08Vq9DVfVGlwMAAEKQyRNgyzRTUlL0yCOP6Kabbjrh2tVXX63a2lotW7bMd27SpEkaO3asFi5c2KH3dzgcstlsstvtslqt3VZ3R1w6/2N9ftCux68eqxl5/Xr1dwMAgODUmewSMD12LpdLL730kmpra1VYWNjuPWvXrtW0adPanJs+fbrWrl170vd1Op1yOBxtDqMUMB0LAAB6kOHBbuvWrUpISJDFYtFtt92mJUuWaMSIEe3eW1JSooyMjDbnMjIyVFJSctL3nzdvnmw2m+/Izs7u1vo7I39gqiQWUAAAgJ5heLAbOnSotmzZok8++UQ/+clPNGvWLG3fvr3b3n/u3Lmy2+2+o7i4uNveu7Pyc1NkMkl7j9aqrLrBsDoAAEBoMjzYRUdHa8iQIRo/frzmzZunMWPG6P/+7//avTczM1OlpaVtzpWWliozM/Ok72+xWHyrblsPo9jiojQ0I1GStGHfMcPqAAAAocnwYPdNbrdbTqez3WuFhYVasWJFm3PLly8/aU9eIGrts1tPnx0AAOhmkUb+8rlz5+qiiy5STk6OqqurtXjxYq1atUrvvPOOJGnmzJnq16+f5s2bJ0m64447dM455+jRRx/VxRdfrJdeekkbN27UU089ZeTH6JSCQan629oi+uwAAEC3MzTYlZWVaebMmTpy5IhsNptGjx6td955R9/5znckSQcOHJDZ/PWg4uTJk7V48WL95je/0a9+9SudccYZWrp0qUaOHGnUR+i0ibneEbudJdWqqmtUUly0wRUBAIBQEXD72PU0I/exa3X+o6u052itnvrxeF1w5sn7AwEAAIJyH7tw0rrtyXqmYwEAQDci2BnAt4BiP8EOAAB0H4KdAfJbgt22Q3ZVNzQZXA0AAAgVBDsD9E2KVXZKrNweaVMR+9kBAIDuQbAzSAGPFwMAAN2MYGeQfN9GxQQ7AADQPQh2BpnUMmL3+cEq1Te6DK4GAACEAoKdQbJTYpVpjVGTy6NPD9BnBwAATh/BziAmk8k3HUufHQAA6A4EOwMVDGoNdhUGVwIAAEIBwc5ArRsVf3qgSs5m+uwAAMDpIdgZaHCfBKXGR8vZ7NbnB+1GlwMAAIIcwc5Ax/fZse0JAAA4XQQ7g7GAAgAAdBeCncFan0CxaX+lml1ug6sBAADBjGBnsKGZibLGRKq20aUvDjuMLgcAAAQxgp3BIszH72fHticAAKDrCHYBgAUUAACgOxDsAkB+S5/d+n2Vcrs9BlcDAACCFcEuAIzsa1VcdIQcDc3aWVJtdDkAACBIEewCQGSEWeMHJEuS1tNnBwAAuohgFyAmDfJOx7KfHQAA6CqCXYA4fgGFx0OfHQAA6DyCXYAY3d8mS6RZFbWN2nO0xuhyAABAECLYBQhLZITycpIkMR0LAAC6hmAXQI7f9gQAAKCzCHYBZFLrEyj20mcHAAA6j2AXQPJykhUVYVKJo0HFlfVGlwMAAIIMwS6AxEZHaHT/JEnSOvazAwAAnUSwCzA8NxYAAHQVwS7AEOwAAEBXEewCzIQByTKbpAOVdTpip88OAAB0HMEuwCTGROnMvjZJjNoBAIDOIdgFoIKW6dh1ewl2AACg4wh2AejrPjtWxgIAgI4j2AWgibneYLfnaK3Ka5wGVwMAAIIFwS4AJcdHa1hmoiT67AAAQMcR7AIU254AAIDOItgFqIKBqZKkdXvpswMAAB1DsAtQEwcmS5J2lVarqq7R4GoAAEAwINgFqPTEGA3qEy+PR9q4/5jR5QAAgCBAsAtgrfvZfcK2JwAAoAMIdgGMBRQAAKAzCHYBrHUBxbbDDtU4mw2uBgAABDqCXQDrmxSr/smxcrk92lREnx0AAPCPYBfgWkftPmHbEwAAcAoEuwBXQJ8dAADoIIJdgGtdQPHZwSo1NLkMrgYAAAQygl2AG5AapwyrRU0ujzYfoM8OAACcHMEuwJlMJuW39NkxHQsAAPwh2AUB30bFewl2AADg5Ah2QaA12G0+cEyNzW6DqwEAAIGKYBcEhqQnKCU+Ws5mt7YeqjK6HAAAEKAIdkHAZDIpP9c7areO6VgAAHASBLsgwXNjAQDAqRDsgkTBIG+w27i/Us0u+uwAAMCJCHZBYlimVYkxkaptdGn7EYfR5QAAgABEsAsSEeav++yYjgUAAO0h2AWR1j47FlAAAID2EOyCSGuw27C/Um63x+BqAABAoDE02M2bN08TJ05UYmKi0tPTNWPGDO3atcvvaxYtWiSTydTmiImJ6aWKjTWyn01x0RGy1zdpV2m10eUAAIAAY2iw++CDDzR79mytW7dOy5cvV1NTky644ALV1tb6fZ3VatWRI0d8R1FRUS9VbKyoCLPGD0iWRJ8dAAA4UaSRv/ztt99u8/OiRYuUnp6uTZs26eyzzz7p60wmkzIzM3u6vIBUMDBFH31Vrk/2VWjW5FyjywEAAAEkoHrs7Ha7JCklJcXvfTU1NRowYICys7N12WWX6YsvvjjpvU6nUw6Ho80RzPIHpkryjth5PPTZAQCArwVMsHO73brzzjs1ZcoUjRw58qT3DR06VM8884z+9a9/6YUXXpDb7dbkyZN18ODBdu+fN2+ebDab78jOzu6pj9ArRve3KTrSrPKaRu0t9z9lDQAAwovJEyDDPj/5yU/01ltv6eOPP1b//v07/LqmpiYNHz5c1157rR588METrjudTjmdTt/PDodD2dnZstvtslqt3VJ7b7v6ybX6ZF+lfnv5KP2wIMfocgAAQA9yOByy2Wwdyi4BMWI3Z84cLVu2TO+//36nQp0kRUVFKS8vT7t37273usVikdVqbXMEuwLfc2MrDK4EAAAEEkODncfj0Zw5c7RkyRKtXLlSAwcO7PR7uFwubd26VVlZWT1QYWAqGOTts/uEPjsAAHAcQ4Pd7Nmz9cILL2jx4sVKTExUSUmJSkpKVF9f77tn5syZmjt3ru/nBx54QO+++6727t2rzZs360c/+pGKiop08803G/ERDJGXk6RIs0lH7A06eKz+1C8AAABhwdBgt2DBAtntdk2dOlVZWVm+4+WXX/bdc+DAAR05csT387Fjx3TLLbdo+PDh+u53vyuHw6E1a9ZoxIgRRnwEQ8RFR2p0f5sk76gdAACAFECLJ3pLZxoQA9nDb+3Uwg/26Krx/fXIVWOMLgcAAPSQoFs8gc7zLaDYz4gdAADwItgFqfG5yTKbpKKKOpXYG4wuBwAABACCXZCyxkRpRF/vcOwnbHsCAABEsAtqBcc9XgwAAIBgF8TyW/rsWBkLAAAkgl1Qm5jrDXa7y2pUXuM8xd0AACDUEeyCWEp8tIZmJEqSNjBqBwBA2CPYBTmmYwEAQCuCXZArGESwAwAAXgS7IJff0me3s8Qhe12TwdUAAAAjEeyCXLo1RgPT4uXxSBuLGLUDACCcEexCQAF9dgAAQAS7kMACCgAAIBHsQkLBIO8TKLYdsqvG2WxwNQAAwCgEuxDQLylW/ZJi5XJ7tLnomNHlAAAAgxDsQkTrtic8NxYAgPBFsAsRXy+gqDC4EgAAYBSCXYjIH+jts/us2K6GJpfB1QAAACMQ7EJEbmqc0hMtanS59emBKqPLAQAABiDYhQiTyeTb9oQ+OwAAwhPBLoS0bnuyfj99dgAAhCOCXQhpXUCxqeiYGpvdBlcDAAB6G8EuhAzpk6DkuCg1NLm19ZDd6HIAAEAvI9iFELPZdNzjxZiOBQAg3BDsQkzrticsoAAAIPwQ7EJMa5/dxv3H5HJ7DK4GAAD0JoJdiBmeZVWiJVI1zmZtP+wwuhwAANCLCHYhJsJs0oTcZEn02QEAEG4IdiGodT+7T+izAwAgrBDsQlDrytgN+yvlps8OAICwQbALQaP62RQbFaGquiZ9WVZtdDkAAKCXEOxCUFSEWeMHePvs2PYEAIDwQbALUQW+jYoJdgAAhAuCXYjyPYFib6U8HvrsAAAIBwS7EDUmO0nRkWaV1zi1r7zW6HIAAEAvINiFqJioCI3NTpLEdCwAAOGCYBfCWvvsWEABAEB4INiFsIKB3o2KCXYAAIQHgl0IGzcgSZFmkw5V1au4ss7ocgAAQA8j2IWwuOhIjexnk8SoHQAA4YBgF+IKBrXuZ1dhcCUAAKCnEexCHAsoAAAIHwS7EDchN0Umk7S/ok6ljgajywEAAD2IYBfirDFRGpFllcR+dgAAhDqCXRj4etsT+uwAAAhlBLswcPxzYwEAQOgi2IWB1mD3VVmNKmqcBlcDAAB6CsEuDKTER+tbGQmSpA37GbUDACBUEezChG86lgUUAACELIJdmOC5sQAAhD6CXZhoHbHbfsQhe32TwdUAAICeQLALExnWGOWmxsnjkTYVMWoHAEAoItiFkdbpWLY9AQAgNBHswggLKAAACG0EuzBSMMgb7LYdsqvW2WxwNQAAoLsR7MJI/+Q49UuKVbPbo80HjhldDgAA6GYEuzDTOh3LticAAIQegl2YKeC5sQAAhCyCXZhpHbHbUlylhiaXwdUAAIDuRLALMwPT4tUn0aJGl1ufFVcZXQ4AAOhGhga7efPmaeLEiUpMTFR6erpmzJihXbt2nfJ1r7zyioYNG6aYmBiNGjVKb775Zi9UGxpMJhPbngAAEKIMDXYffPCBZs+erXXr1mn58uVqamrSBRdcoNra2pO+Zs2aNbr22mt100036dNPP9WMGTM0Y8YMbdu2rRcrD26TWEABAEBIMnk8Ho/RRbQ6evSo0tPT9cEHH+jss89u956rr75atbW1WrZsme/cpEmTNHbsWC1cuPCUv8PhcMhms8lut8tqtXZb7cFkV0m1pj/+oWKjIvT5/RcoKoIZeQAAAlVnsktA/X90u90uSUpJSTnpPWvXrtW0adPanJs+fbrWrl3b7v1Op1MOh6PNEe7OSE9QUlyU6ptc2nrIbnQ5AACgmwRMsHO73brzzjs1ZcoUjRw58qT3lZSUKCMjo825jIwMlZSUtHv/vHnzZLPZfEd2dna31h2MzGaT8nOZjgUAINQETLCbPXu2tm3bppdeeqlb33fu3Lmy2+2+o7i4uFvfP1j5FlDsrTC4EgAA0F0ijS5AkubMmaNly5bpww8/VP/+/f3em5mZqdLS0jbnSktLlZmZ2e79FotFFoul22oNFZMGpUqSNu4/JpfbowizyeCKAADA6TJ0xM7j8WjOnDlasmSJVq5cqYEDB57yNYWFhVqxYkWbc8uXL1dhYWFPlRmShmdZlWCJVLWzWTuO0HcIAEAoMDTYzZ49Wy+88IIWL16sxMRElZSUqKSkRPX19b57Zs6cqblz5/p+vuOOO/T222/r0Ucf1c6dO3X//fdr48aNmjNnjhEfIWhFmE2akJssif3sAAAIFYYGuwULFshut2vq1KnKysryHS+//LLvngMHDujIkSO+nydPnqzFixfrqaee0pgxY/Tqq69q6dKlfhdcoH0FA73TsfTZAQAQGrrUY1dcXCyTyeTrh1u/fr0WL16sESNG6NZbb+3w+3RkC71Vq1adcO6qq67SVVdd1eHfg/a1LqDYsL9SbrdHZvrsAAAIal0asfvhD3+o999/X5J3+5HvfOc7Wr9+vX7961/rgQce6NYC0XNG9bMpNipCx+qatPtojdHlAACA09SlYLdt2zbl5+dLkv7xj39o5MiRWrNmjV588UUtWrSoO+tDD4qONGvcgCRJTMcCABAKuhTsmpqafFuIvPfee7r00kslScOGDWvTD4fAl5/b0mfHAgoAAIJel4LdmWeeqYULF+qjjz7S8uXLdeGFF0qSDh8+rNTU1G4tED2rYFDLRsX7KjvU8wgAAAJXl4Ld7373Oz355JOaOnWqrr32Wo0ZM0aS9Prrr/umaBEcxmYnKTrCrKPVTu2vqDO6HAAAcBq6tCp26tSpKi8vl8PhUHJysu/8rbfeqri4uG4rDj0vJipCY7OTtH5/pdbvq9DAtHijSwIAAF3UpRG7+vp6OZ1OX6grKirS448/rl27dik9Pb1bC0TP+/q5sfTZAQAQzLoU7C677DI999xzkqSqqioVFBTo0Ucf1YwZM7RgwYJuLRA97/g+OwAAELy6FOw2b96sb3/725KkV199VRkZGSoqKtJzzz2nP/7xj91aIHreuJxkRZhNOlRVr4PH6LMDACBYdSnY1dXVKTExUZL07rvv6oorrpDZbNakSZNUVFTUrQWi58VbIjWyn02StJ5ROwAAglaXgt2QIUO0dOlSFRcX65133tEFF1wgSSorK5PVau3WAtE7JrX02RHsAAAIXl0Kdvfee69+8YtfKDc3V/n5+SosLJTkHb3Ly8vr1gLRO3wLKAh2AAAErS5td/L9739fZ511lo4cOeLbw06Szj//fF1++eXdVhx6z4TcFJlM0r7yWpU5GpRujTG6JAAA0EldGrGTpMzMTOXl5enw4cM6ePCgJCk/P1/Dhg3rtuLQe2yxURqe6Z1GZ9QOAIDg1KVg53a79cADD8hms2nAgAEaMGCAkpKS9OCDD8rtdnd3jegl+fTZAQAQ1Lo0FfvrX/9aTz/9tB5++GFNmTJFkvTxxx/r/vvvV0NDgx566KFuLRK9Y9KgFC1as1+f7KswuhQAANAFXQp2f/vb3/TXv/5Vl156qe/c6NGj1a9fP/30pz8l2AWpibneEbsvS2tUWduolPhogysCAACd0aWp2MrKynZ76YYNG6bKSqbxglVqgkVnpCdIkjbs5+8IAECw6VKwGzNmjObPn3/C+fnz52v06NGnXRSMw3NjAQAIXl2aiv3973+viy++WO+9955vD7u1a9equLhYb775ZrcWiN5VMChVL35yQOv302cHAECw6dKI3TnnnKMvv/xSl19+uaqqqlRVVaUrrrhCX3zxhZ5//vnurhG9KL+lz277YYccDU0GVwMAADrD5PF4PN31Zp999pnGjRsnl8vVXW/Z7RwOh2w2m+x2O48/O4lzHnlfRRV1evb6iTp3WLrR5QAAENY6k126vEExQlcBjxcDACAoEexwgvyBqZLEfnYAAAQZgh1O0Dpit/WgXXWNzQZXAwAAOqpTq2KvuOIKv9erqqpOpxYEiP7Jsepri9Fhe4M2F1XprDPSjC4JAAB0QKeCnc1mO+X1mTNnnlZBMJ7JZFL+wBQt3XJY6/dVEOwAAAgSnQp2zz77bE/VgQBTMChVS7ccZgEFAABBhB47tKv1CRSfFlepoSlwt68BAABfI9ihXYPS4pWWYFFjs1ufH7QbXQ4AAOgAgh3aZTKZvt7Pbi/bngAAEAwIdjip1unY9fvpswMAIBgQ7HBSBYO8wW5T0TE1udwGVwMAAE6FYIeT+lZ6opLiolTX6NK2Q/TZAQAQ6Ah2OCmz2aSJuS3TsWx7AgBAwCPYwS/fAgqCHQAAAY9gB78KBqZKkjbsr5TL7TG4GgAA4A/BDn4Nz0pUgiVS1Q3N2nHEYXQ5AADAD4Id/IqMMGv8gGRJ9NkBABDoCHY4pdZtTwh2AAAENoIdTqnguI2KPR767AAACFQEO5zSqH5Jiokyq7K2UbvLaowuBwAAnATBDqcUHWnWuBxvn906pmMBAAhYBDt0iO+5sQQ7AAACFsEOHdK6n936fRX02QEAEKAIduiQvJwkRUeYVepwqqiizuhyAABAOwh26JCYqAiNybZJYjoWAIBARbBDh7X22a3bV2FwJQAAoD0EO3RYvq/PjhE7AAACEcEOHTZ+QLIizCYdPFavQ1X1RpcDAAC+gWCHDkuwRGpkX6sk7+pYAAAQWAh26JSCQUzHAgAQqAh26JT8XO8Cik/2EuwAAAg0BDt0ysTcFJlM0t7yWpVVNxhdDgAAOA7BDp1ii4vSsMzWPjtG7QAACCQEO3RaAc+NBQAgIBHs0GkEOwAAAhPBDp02sSXY7Syp1urd5QZXAwAAWhHs0GlpCRadNyxdkjTzmfV6+uN98ng8BlcFAAAIduiSP183TleM6yeX26MHl23XL175XA1NLqPLAgAgrBka7D788ENdcskl6tu3r0wmk5YuXer3/lWrVslkMp1wlJSU9E7B8ImJitCjV43RPd8boQizSa9tPqirn1yrEjtboAAAYBRDg11tba3GjBmjJ554olOv27Vrl44cOeI70tPTe6hC+GMymXTTWQP13I35SoqL0mcH7frenz7WpiIWVQAAYIRII3/5RRddpIsuuqjTr0tPT1dSUlL3F4QumTIkTa/PPku3Pr9RO0uqdc1T6/TAZSN1bX6O0aUBABBWgrLHbuzYscrKytJ3vvMdrV692u+9TqdTDoejzYHul5Map3/+dLIuHpWlJpdHc/+5Vb9ZulWNzW6jSwMAIGwEVbDLysrSwoUL9dprr+m1115Tdna2pk6dqs2bN5/0NfPmzZPNZvMd2dnZvVhxeImLjtT8H+bpl9OHymSSXlh3QD/66yc6Wu00ujQAAMKCyRMg+1SYTCYtWbJEM2bM6NTrzjnnHOXk5Oj5559v97rT6ZTT+XWwcDgcys7Olt1ul9VqPZ2S4cfKnaW64+9bVO1sVpYtRk/9eIJG9bcZXRYAAEHH4XDIZrN1KLsE1Yhde/Lz87V79+6TXrdYLLJarW0O9LzzhmVo6ZwpGtQnXkfsDfr+wjVa+ukho8sCACCkBX2w27Jli7KysowuA+0Y3CdBS2dP0XnD0uVsduvOl7fooTe2q9lF3x0AAD3B0FWxNTU1bUbb9u3bpy1btiglJUU5OTmaO3euDh06pOeee06S9Pjjj2vgwIE688wz1dDQoL/+9a9auXKl3n33XaM+Ak7BGhOlv8ycoD8s/1Lz39+tv3y0TztLqvWna/OUFBdtdHkAAIQUQ0fsNm7cqLy8POXl5UmS7rrrLuXl5enee++VJB05ckQHDhzw3d/Y2Kj//M//1KhRo3TOOefos88+03vvvafzzz/fkPrRMRFmk34xfaj+fN04xUZF6KOvynXp/NXaVVJtdGkAAISUgFk80Vs604CI7rfjiEO3Pr9RxZX1iouO0GM/GKMLRzKVDgDAyYTV4gkEl+FZVr0++yxNGZKqukaXbnthsx57d5fc7rD63xcAAPQIgh16XXJ8tP52Q75uOmugJOmPK3fr1uc3qrqhyeDKAAAIbgQ7GCIywqx7vjdCj141RtGRZr23o0yX/3mN9h6tMbo0AACCFsEOhrpyfH+98h+FyrTGaHdZjS57YrXe31VmdFkAAAQlgh0MNyY7Sa/fPkUTBiSruqFZNy7aoD+v2q0wW9cDAMBpI9ghIKQnxmjxLZN0bX6OPB7p92/v0u1//1R1jc1GlwYAQNAg2CFgREeaNe+KUXro8pGKNJu07PMjunLBWhVX1hldGgAAQYFgh4BzXcEA/f3WSUpLiNaOIw5dOv9jrdlTbnRZAAAEPIIdAtLE3BS9Pucsjepn07G6Jv346fV6dvU++u4AAPCDYIeA1TcpVq/cVqjL8/rJ5fbov/+9Xb989XM1NLmMLg0AgIBEsENAi4nyPnbsNxcPl9kkvbrpoK55ap1KHQ1GlwYAQMAh2CHgmUwm3fztQXruxgLZYqO0pbhK3/vTx9pUdMzo0gAACCgEOwSNs85I07/nnKWhGYk6Wu3UtU+t08sbDhhdFgAAAYNgh6CSkxqnf/50si4amalGl1v/9dpW3bN0m5pcbqNLAwDAcAQ7BJ14S6T+fN04/eKCb8lkkp5fV6Tr/vqJymucRpcGAIChCHYISiaTSXPOO0N/+fEEJVgitX5fpS7908fadshudGkAABiGYIegNm1EhpbOnqJBafE6bG/Q9xeu0b+2HDK6LAAADEGwQ9Abkp6gJbOn6NyhfdTQ5NYdL23RvDd3yOVmM2MAQHgh2CEk2GKj9NdZE/XTqYMlSU9+uFfXP7te9romgysDAKD3EOwQMiLMJv2/C4dp/g/zFBsVoY++KtelT3ysL0urjS4NAIBeQbBDyPne6L567SeT1T85VkUVdbr8idV654sSo8sCAKDHEewQkkb0ter1OWdp8uBU1Ta69B/Pb9Ifln8pN313AIAQRrBDyEqJj9ZzN+brhim5kqT/W/GV/uOFTapxNhtbGAAAPYRgh5AWGWHWfZecqf+9aoyiI81avr1Ulz+xWvvLa40uDQCAbkewQ1j4/vj++sd/FCrDatFXZTW6dP7HWrWrzOiyAADoVgQ7hI2x2Un695yzNC4nSY6GZt24aIMWfrBHHg99dwCA0ECwQ1hJt8bo77dO0rX52XJ7pIff2qk7Xtqi+kaX0aUBAHDaCHYIO5bICP328lF6cMZIRZpNev2zw7pywRodPFZndGkAAJwWgh3Ckslk0o8nDdCLNxcoNT5a2484dOn81Vq7p8Lo0gAA6DKCHcJawaBU/fv2szSyn1WVtY360dOf6G9r9tN3BwAISgQ7hL2+SbF69bbJmjG2r1xuj+57/Qv912ufy9lM3x0AILgQ7ABJMVER+sPVY/Xr7w6X2ST9Y+NBXfPUOvruAABBhWAHtDCZTLrl7EFadEO+bLFR+vRAlc5/9AM9+u4u1fK0CgBAECDYAd9w9rf66PU5U1QwMEXOZrf+tHK3znt0lV7bdJBnzQIAAprJE2Zd4g6HQzabTXa7XVar1ehyEMA8Ho/e+aJED725Q8WV9ZKk0f1tuvd7IzQhN8Xg6gAA4aIz2YVgB5xCQ5NLi9bs1/yVu1XTMiV7yZi++q8Lh6p/cpzB1QEAQh3Bzg+CHbrqaLVTj767Sy9vLJbHI1kizbr17EG67ZzBirdEGl0eACBEEez8INjhdH1x2K4H/r1dn+yrlCSlJ1r0/y4cpivy+slsNhlcHQAg1BDs/CDYoTt4++9K9ds3d+hApXdLFPrvAAA9gWDnB8EO3cnZ7NKzq9v2331vdJbuvmgY/XcAgG5BsPODYIeeQP8dAKCnEOz8INihJ31x2K4Hl23Xur303wEAugfBzg+CHXoa/XcAgO5EsPODYIfe4mx2adHq/foT/XcAgNNAsPODYIfedrTaqceW79JLG+i/AwB0HsHOD4IdjEL/HQCgKwh2fhDsYCT67wAAnUWw84Ngh0BA/x0AoKMIdn4Q7BBIvP13X+qlDQfk8UjRkWbd+u1B+slU+u8AAF4EOz8IdghE2w879MCyL+i/AwCcgGDnB8EOgcrj8ejd7d7+u6IKb//dqH423XvJCE2k/w4AwhbBzg+CHQJde/13F4/O0lz67wAgLBHs/CDYIVjQfwcAkAh2fhHsEGy2H3bowWXbtXZvhST67wAg3BDs/CDYIRjRfwcA4Ytg5wfBDsHM2ezS39bs159W7FY1/XcAEBYIdn4Q7BAKymucevTdL/XyhgNy038HACGNYOcHwQ6hhP47AAh9BDs/CHYINfTfAUBoI9j5QbBDqDpZ/93dFw5Tdgr9dwAQrDqTXcy9VFO7PvzwQ11yySXq27evTCaTli5desrXrFq1SuPGjZPFYtGQIUO0aNGiHq8TCAaWyAjdevZgvf/LqfphQY7MJumNz4/o/Mc+0CPv7FRtS9gDAIQuQ4NdbW2txowZoyeeeKJD9+/bt08XX3yxzj33XG3ZskV33nmnbr75Zr3zzjs9XCkQPNISLPrt5aP0xs++rcJBqWpsduuJ9/do6v+u0isbi+V2h9UgPQCElYCZijWZTFqyZIlmzJhx0nv+67/+S2+88Ya2bdvmO3fNNdeoqqpKb7/9dod+D1OxCCcej0fLt5fqIfrvACBoBc1UbGetXbtW06ZNa3Nu+vTpWrt27Ulf43Q65XA42hxAuDCZTLrgzEy9+/Oz9avvDlOiJVJbD9l11cK1mr14s/aX1xpdIgCgGwVVsCspKVFGRkabcxkZGXI4HKqvr2/3NfPmzZPNZvMd2dnZvVEqEFBO1n839X9X6cLHP9Tv396pTUWVcjFNCwBBLaiCXVfMnTtXdrvddxQXFxtdEmCY4/vvpg7tI7NJ2llSrT+v2qMrF6zVxIfe013/2KI3Pj8iR0OT0eUCADopqLaoz8zMVGlpaZtzpaWlslqtio2Nbfc1FotFFoulN8oDgsbwLKsW3ZCvqrpGffDlUa3YUaZVu8pUWduof24+pH9uPqRIs0n5A1N03rB0nT88QwPT4o0uGwBwCkEV7AoLC/Xmm2+2Obd8+XIVFhYaVBEQ3JLionXZ2H66bGw/Nbvc2lR0TCt2lmnFjlLtOVqrNXsqtGZPhf7njR0a1Cde5w9L13nDMjQhN1lRESE/4A8AQcfQVbE1NTXavXu3JCkvL0+PPfaYzj33XKWkpCgnJ0dz587VoUOH9Nxzz0nybncycuRIzZ49WzfeeKNWrlypn/3sZ3rjjTc0ffr0Dv1OVsUCHbO/vFYrd5Zp5c4yfbKvQk2ur/+pSIyJ1Dnf6qNpwzN0zrf6KDk+2sBKASC0Bc2TJ1atWqVzzz33hPOzZs3SokWLdP3112v//v1atWpVm9f8/Oc/1/bt29W/f3/dc889uv766zv8Owl2QOdVNzTpo6/KtWJHmd5vmbJtZTZJ4wck67xhGTp/eLrOSE+QycRzagGguwRNsDMCwQ44PS63R58drNKKHaVasaNMO0uq21zPTonV+cMydN6wdBUMSpElMsKgSgEgNBDs/CDYAd3rUFW9d8p2R6lW76lQY7Pbdy0uOkLfPiNN5w/P0LlD09UnkYVMANBZBDs/CHZAz6lrbNbq3RVaudM7mldW7WxzfUx2UssCjHSd2dfKlC0AdADBzg+CHdA73G6Pvjjs0IqdpVq5s0yfH7S3uZ5pjdF5w9N1/rB0TR6cpthopmwBoD0EOz8IdoAxyhwNen9Xmd7bUaaPvypXfZPLd80SadaUIWkte+alK8vW/r6UABCOCHZ+EOwA4zU0ubRub4VW7izTih1lOlTV9pGAI7KsOn+4d8p2TP8kmc1M2QIIXwQ7Pwh2QGDxeDzaVVqtFTu8e+ZtPnBMx/+rlJYQrXOHekfyzjqjjxIsQbWvOgCcNoKdHwQ7ILBV1Dh9jzn78MujqnY2+65FRZg0aVCqd8p2WIZyUuMMrBQAegfBzg+CHRA8Gpvd2ri/0veYs/0VdW2un5Ge0LIAI0PjcpIUyWPOAIQggp0fBDsgeO05WqOVO8q0YmepNuw/Jpf763++kuKiNPVbfXTe8Aydc0Yf2eKiDKwUALoPwc4Pgh0QGuz1Tfrwy6NasaNUq748qqq6Jt+1CLNJEwYk67xh6TrrjDQNz7SyAANA0CLY+UGwA0JPs8utT4urWhZglOrL0po215PjolQ4OFWFg9M0eXCqBqXFszkygKBBsPODYAeEvgMVdVq50zuSt35fpeoaXW2uZ1pjNHlwqgoHp2rykDT1S2LfPACBi2DnB8EOCC9NLrc+P1ilNbsrtGZPhTYVHVOjy93mntzUON9oXuHgVKUl8ExbAIGDYOcHwQ4Ibw1NLm0qOqY1e8q1Zk+FPj9ob7MIQ5KGZiRq8pBUTR6cpvyBKbLFshADgHEIdn4Q7AAcz9HQpA37KrVmj3dEb8cRR5vrZpM0qp9Nk4d4R/QmDEjhubYAehXBzg+CHQB/KmqcWre3Umv2lGvtngrtLa9tcz0qwqS8nGRNHpyqKUPSNKZ/kqIj2T8PQM8h2PlBsAPQGUfs9b7+vDV7ynXE3tDmemxUhCYOTNHkwamaPDhVZ/a1KYKtVQB0I4KdHwQ7AF3l8XhUVFGn1S39eWv3VKiytrHNPdaYSE0a5A15k4ek6Yz0BLZWAXBaCHZ+EOwAdBe326Mvy6pbRvTK9cneyjbPtpWktASLbzRv8uA0nm8LoNMIdn4Q7AD0lGaXW9sOO7wrbndXaMP+Sjmb226t0j851hfyCgenKsMaY1C1AIIFwc4Pgh2A3uJsdunTA1Xe/rzd5dpSXKXmb2ytMrhPvKa0rLidNChVSXHRBlULIFAR7Pwg2AEwSq2zWRv2V2pty9Yq2w7bdfy/wCaTNCLLqilDvKN5+bkpirdEGlcwgIBAsPODYAcgUFTVNWrd3kqtbVmM8VVZ22fcRppNGpOd5Ju6zctJUkwUe+gB4YZg5wfBDkCgKnM0aO3eCu9ijL3lKq6sb3PdEmnWhNxkTW55/NmofjZFRrCHHhDqCHZ+EOwABIviyjrfo8/W7KnQ0Wpnm+sJlkiN6mfT4PR4DemToCHpiRqSnqAMq4UtVoAQQrDzg2AHIBh5PB7tOVqj1S1bq6zdUyFHQ3O79yZYIjW4T7wGpydoSHqCBvfxfh2QEscIHxCECHZ+EOwAhAKX26MdRxzaWVKtPUdrtLusRnvKalRUWSeXu/1/1qMiTMpNjfcFvdZjUJ94xUWzSAMIVAQ7Pwh2AEKZs9mlooo67Snzhr3dR2u052iN9pTVqr7JddLX9UuK9Y7w9Uk4bmo3QakJll6sHkB7CHZ+EOwAhCO326PD9nrvyN7RWt8I3+6jNSc8Fu14yXFRbUb4WsNfv6RYmXkmLtArCHZ+EOwAoK3K2kbfdK43+Hm/HjxWf9LXxESZNSitbQ/fkPQE5abFyRLJlixAd+pMdqGpAgDCXEp8tFLiUzQxN6XN+fpGl3ca9+jXo3u7y2q0v7xODU1ubT/i0PYjjjavMZuknJS4NqN7rYs4rDFRvfmxgLDEiB0AoFOaXW4VH6s/YYRvT1mNqp3tr9SVpPREywkjfEPSE5SeyPYsgD9MxfpBsAOAnuHxeFRW7Wwzutca/EodzpO+LtESqUEto3ve4BevIekJymF7FkASwc4vgh0A9D5HQ5Nvpa5v8cbRGhVV1Ooku7MoKsKk7JQ49UmwKDUhWqnxrV+jlZpgUUp8tNJazttio1jMgZBFjx0AIKBYY6KUl5OsvJzkNudbt2c5YVr3aI0amtzae7RWe4/WnvL9I8wmJce1hj5v8EuN9/6c0hL+0hKildISCq0xkUz/IiQR7AAAhrFERuhbGYn6VkZim/Nut0eHqupVXFmnitpGVdQ4vV9bvq+sbVRFTaPKa5xyNDTL5faovMap8hqnVHrq3xsVYfKGvONGAVNavvcGwLajg/HREQRBBAWCHQAg4JjN3mnY7JS4U97b2OzWsTpv0KuodbZ8/ToAlrecbw2DNc5mNbk8KnU4/fb+Hc8SaW4zBewNgC3ft44Sxn89ZRwbzZYvMAbBDgAQ1KIjzcqwxijDGtOh+xuaXL6Q1xoEK2sbVX7c974RwppG1Te55Gx267C9QYftDR36HXHREb5p37T4r6eAT5gqTohWnwQLi0TQbQh2AICwEhMVob5JseqbFNuh++sam32jgJW1Tu8IYI33e9/o4HHfNza7VdfoUl1jvd9NnltFmk3qnxyrnNR45abGKSclTgNS4zWg5fuYKEb/0HEEOwAA/IiLjlRcSmSHpoU9Ho9qnM2+KeBvjv61Tgl7w6H3+2a3R/sr6rS/ok4ftvOeGVaLBqTEKyc1zhv8UuM1ICVOA1LjlBQX3f0fGEGNYAcAQDcxmUxKjIlSYkyUBqTGn/J+t9ujEkeDiirqdKCyVkUVdd6j5fvqhmZfL+D6/ZUnvN4aE6kBqd7Q1xr2Wkf7MhJj2AImDLGPHQAAAcjj8aiqrklFlXUqqqjVgYo63/dFFXUqq/a/8CM60uyd1k2JOy74eUNgdnKcoiPp6wsW7GMHAECQM5lMSo6PVnJ8tMZmJ51wvb7RpQOtoa/SO9K3v+X7Q8fq1djs9u0P+E1mk5Rli20Z4YtTTsrXPX0DUuOUyHN9gxYjdgAAhJhml1uHqxp8U7oHKuu0v/zrAFjf5PL7+tT4aN8o3/E9fTmp3ieBsKdf7+KRYn4Q7AAA4czj8ehojdM7tfuN6d0DlXWqrG30+/q46AjfyN6A1Pivv0+JV9+kGLZu6QEEOz8IdgAAnFx1Q5Mv5LUu6thf7v35sL1e/lJDpNmkfsmxykmJU+5xW7a09vXFW+gA6wqCnR8EOwAAusbZ7NLBY/Uto321LaN93u+LW/r6/ElLsCgnxRv8clqeLNK6b196ooVVvCfB4gkAANDtLJERGtwnQYP7JJxwrd2tW1qmeYsr62Wvb/I9z3fzgaoTXh8daVZ2ctvQ1zrVm50Sq7hoIktHMGIHAAB6nL2uScXHjp/irVNxpffroap6udz+40jraN+A1HjfSF/rEeqjfYzYAQCAgGKLi5ItzqaR/WwnXGtdxXugJegdH/qKKmrlaGj2O9pniTS3CXtfT/F6e/tio8PnsWwEOwAAYKjICLNyWrZTaY+9rqlN6PMe3u1bDlc1yOlnzz5J6pNoaTvF27KgIyfFu31LKI32MRULAACCVpPLrSPHjfYVVdYeN9rnfSybP98c7fMdATTax1QsAAAIC1EdGO0rahndO36Kt6OjfenfGO1rDX0DUuLUJzHwNmtmxA4AAISlJpdbh6vqT+jtK6qo04GKOlU7/Y/2xUSZlZ0cp++MyND/u3BYj9XJiB0AAMApREWYNSA1XgNS40+45vF4ZK//Rm9fxfGjffVqaHLrq7Kadp/laxSCHQAAwDeYTCYlxUUrKS5ao/snnXD9+NG+pNjo3i/wJAh2AAAAneRvtM9IPKkXAAAgRBDsAAAAQgTBDgAAIEQERLB74oknlJubq5iYGBUUFGj9+vUnvXfRokUymUxtjpiYmF6sFgAAIDAZHuxefvll3XXXXbrvvvu0efNmjRkzRtOnT1dZWdlJX2O1WnXkyBHfUVRU1IsVAwAABCbDg91jjz2mW265RTfccINGjBihhQsXKi4uTs8888xJX2MymZSZmek7MjIyerFiAACAwGRosGtsbNSmTZs0bdo03zmz2axp06Zp7dq1J31dTU2NBgwYoOzsbF122WX64osvTnqv0+mUw+FocwAAAIQiQ4NdeXm5XC7XCSNuGRkZKikpafc1Q4cO1TPPPKN//etfeuGFF+R2uzV58mQdPHiw3fvnzZsnm83mO7Kzs7v9cwAAAAQCw6diO6uwsFAzZ87U2LFjdc455+if//yn+vTpoyeffLLd++fOnSu73e47iouLe7liAACA3mHokyfS0tIUERGh0tLSNudLS0uVmZnZofeIiopSXl6edu/e3e51i8Uii8Vy2rUCAAAEOkNH7KKjozV+/HitWLHCd87tdmvFihUqLCzs0Hu4XC5t3bpVWVlZPVUmAABAUDD8WbF33XWXZs2apQkTJig/P1+PP/64amtrdcMNN0iSZs6cqX79+mnevHmSpAceeECTJk3SkCFDVFVVpUceeURFRUW6+eabjfwYAAAAhjM82F199dU6evSo7r33XpWUlGjs2LF6++23fQsqDhw4ILP564HFY8eO6ZZbblFJSYmSk5M1fvx4rVmzRiNGjDDqIwAAAAQEk8fj8RhdRG9yOByy2Wyy2+2yWq1GlwMAAOBXZ7JL0K2KBQAAQPsMn4rtba0DlGxUDAAAgkFrZunIJGvYBbvq6mpJYqNiAAAQVKqrq2Wz2fzeE3Y9dm63W4cPH1ZiYqJMJlOP/R6Hw6Hs7GwVFxfTyxek+BsGN/5+wY+/YfDjb9g9PB6Pqqur1bdv3zYLStsTdiN2ZrNZ/fv377XfZ7Va+S9zkONvGNz4+wU//obBj7/h6TvVSF0rFk8AAACECIIdAABAiCDY9RCLxaL77ruP59QGMf6GwY2/X/Djbxj8+Bv2vrBbPAEAABCqGLEDAAAIEQQ7AACAEEGwAwAACBEEux7wxBNPKDc3VzExMSooKND69euNLgkdNG/ePE2cOFGJiYlKT0/XjBkztGvXLqPLwml4+OGHZTKZdOeddxpdCjrh0KFD+tGPfqTU1FTFxsZq1KhR2rhxo9FloYNcLpfuueceDRw4ULGxsRo8eLAefPDBDj0SC6eHYNfNXn75Zd1111267777tHnzZo0ZM0bTp09XWVmZ0aWhAz744APNnj1b69at0/Lly9XU1KQLLrhAtbW1RpeGLtiwYYOefPJJjR492uhS0AnHjh3TlClTFBUVpbfeekvbt2/Xo48+quTkZKNLQwf97ne/04IFCzR//nzt2LFDv/vd7/T73/9ef/rTn4wuLeSxKrabFRQUaOLEiZo/f74k7yPMsrOzdfvtt+vuu+82uDp01tGjR5Wenq4PPvhAZ599ttHloBNqamo0btw4/fnPf9b//M//aOzYsXr88ceNLgsdcPfdd2v16tX66KOPjC4FXfS9731PGRkZevrpp33nrrzySsXGxuqFF14wsLLQx4hdN2psbNSmTZs0bdo03zmz2axp06Zp7dq1BlaGrrLb7ZKklJQUgytBZ82ePVsXX3xxm/97RHB4/fXXNWHCBF111VVKT09XXl6e/vKXvxhdFjph8uTJWrFihb788ktJ0meffaaPP/5YF110kcGVhb6we1ZsTyovL5fL5VJGRkab8xkZGdq5c6dBVaGr3G637rzzTk2ZMkUjR440uhx0wksvvaTNmzdrw4YNRpeCLti7d68WLFigu+66S7/61a+0YcMG/exnP1N0dLRmzZpldHnogLvvvlsOh0PDhg1TRESEXC6XHnroIV133XVGlxbyCHbAScyePVvbtm3Txx9/bHQp6ITi4mLdcccdWr58uWJiYowuB13gdrs1YcIE/fa3v5Uk5eXladu2bVq4cCHBLkj84x//0IsvvqjFixfrzDPP1JYtW3TnnXeqb9++/A17GMGuG6WlpSkiIkKlpaVtzpeWliozM9OgqtAVc+bM0bJly/Thhx+qf//+RpeDTti0aZPKyso0btw43zmXy6UPP/xQ8+fPl9PpVEREhIEV4lSysrI0YsSINueGDx+u1157zaCK0Fm//OUvdffdd+uaa66RJI0aNUpFRUWaN28ewa6H0WPXjaKjozV+/HitWLHCd87tdmvFihUqLCw0sDJ0lMfj0Zw5c7RkyRKtXLlSAwcONLokdNL555+vrVu3asuWLb5jwoQJuu6667RlyxZCXRCYMmXKCdsMffnllxowYIBBFaGz6urqZDa3jRgRERFyu90GVRQ+GLHrZnfddZdmzZqlCRMmKD8/X48//rhqa2t1ww03GF0aOmD27NlavHix/vWvfykxMVElJSWSJJvNptjYWIOrQ0ckJiae0BMZHx+v1NRUeiWDxM9//nNNnjxZv/3tb/WDH/xA69ev11NPPaWnnnrK6NLQQZdccokeeugh5eTk6Mwzz9Snn36qxx57TDfeeKPRpYU8tjvpAfPnz9cjjzyikpISjR07Vn/84x9VUFBgdFnoAJPJ1O75Z599Vtdff33vFoNuM3XqVLY7CTLLli3T3Llz9dVXX2ngwIG66667dMsttxhdFjqourpa99xzj5YsWaKysjL17dtX1157re69915FR0cbXV5II9gBAACECHrsAAAAQgTBDgAAIEQQ7AAAAEIEwQ4AACBEEOwAAABCBMEOAAAgRBDsAAAAQgTBDgAAIEQQ7ADAYCaTSUuXLjW6DAAhgGAHIKxdf/31MplMJxwXXnih0aUBQKdFGl0AABjtwgsv1LPPPtvmnMViMagaAOg6RuwAhD2LxaLMzMw2R3JysiTvNOmCBQt00UUXKTY2VoMGDdKrr77a5vVbt27Veeedp9jYWKWmpurWW29VTU1Nm3ueeeYZnXnmmbJYLMrKytKcOXPaXC8vL9fll1+uuLg4nXHGGXr99dd79kMDCEkEOwA4hXvuuUdXXnmlPvvsM1133XW65pprtGPHDklSbW2tpk+fruTkZG3YsEGvvPKK3nvvvTbBbcGCBZo9e7ZuvfVWbd26Va+//rqGDBnS5nf893//t37wgx/o888/13e/+11dd911qqys7NXPCSAEeAAgjM2aNcsTERHhiY+Pb3M89NBDHo/H45Hkue2229q8pqCgwPOTn/zE4/F4PE899ZQnOTnZU1NT47v+xhtveMxms6ekpMTj8Xg8ffv29fz6178+aQ2SPL/5zW98P9fU1Hgked56661u+5wAwgM9dgDC3rnnnqsFCxa0OZeSkuL7vrCwsM21wsJCbdmyRZK0Y8cOjRkzRvHx8b7rU6ZMkdvt1q5du2QymXT48GGdf/75fmsYPXq07/v4+HhZrVaVlZV19SMBCFMEOwBhLz4+/oSp0e4SGxvbofuioqLa/GwymeR2u3uiJAAhjB47ADiFdevWnfDz8OHDJUnDhw/XZ599ptraWt/11atXy2w2a+jQoUpMTFRubq5WrFjRqzUDCE+M2AEIe06nUyUlJW3ORUZGKi0tTZL0yiuvaMKECTrrrLP04osvav369Xr66aclSdddd53uu+8+zZo1S/fff7+OHj2q22+/XT/+8Y+VkZEhSbr//vt12223KT09XRdddJGqq6u1evVq3X777b37QQGEPIIdgLD39ttvKysrq825oUOHaufOnZK8K1Zfeukl/fSnP1VWVpb+/ve/a8SIEZKkuLg4vfPOO7rjjjs0ceJExcXF6corr9Rjjz3me69Zs2apoaFBf/jDH/SLX/xCaWlp+v73v997HxBA2DB5PB6P0UUAQKAymUxasmSJZsyYYXQpAHBK9NgBAACECIIdAABAiKDHDgD8oFsFQDBhxA4AACBEEOwAAABCBMEOAAAgRBDsAAAAQgTBDgAAIEQQ7AAAAEIEwQ4AACBEEOwAAABCBMEOAAAgRPx/hHYrgcKn6HAAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Training parameters\n", + "nb_epochs = 10 # quick, it won't have converged\n", + "lr = 0.01 # learning rate\n", + "\n", + "# Generate the training data\n", + "ipds, spikes, _ = random_ipd_input_signal(num_samples)\n", + "\n", + "# Initialise a weight matrices\n", + "W1, W2 = init_weight_matrices()\n", + "\n", + "# Optimiser and loss function\n", + "optimizer = torch.optim.Adam([W1, W2], lr=lr)\n", + "log_softmax_fn = nn.LogSoftmax(dim=1)\n", + "loss_fn = nn.NLLLoss()\n", + "\n", + "print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + "loss_hist = []\n", + "for e in range(nb_epochs):\n", + " local_loss = []\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n", + " # Run network\n", + " output = snn(spike_batch, W1, W2)\n", + "\n", + " #output = torch.abs(output)\n", + "\n", + " # Compute cross entropy loss\n", + " m = torch.mean(output, 1) # Mean across time dimension\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # The softmax function transforms the output of a neural network's final layer into a probability\n", + " # distribution over multiple classes in such a way that increasing the score of one class\n", + " # decreases the probabilities of the other classes. It does this by exponentiating each logit\n", + " # and then normalizing these values so that they sum to 1. This is important because it ensures that\n", + " # the predicted values for each class sum up to 1.0. This probability distribution allows us to\n", + " # interpret the network's output as the likelihood of each class being the correct class.\n", + " # Training Objective: The training process aims to increase the probability of the correct class.\n", + " # As the model updates its weights to increase the probability (and hence the log probability) of the\n", + " # correct class, the softmax function inherently decreases the probabilities of the other classes due\n", + " # to the normalization step.\n", + " # Using it with the negative log likelihood loss encourages the model to increase the log probability\n", + " # of the correct class.\n", + " # Interpretability: The softmax function's output can be interpreted as class probabilities, which is\n", + " # valuable not only for making predictions but also for understanding the model's confidence in those\n", + " # predictions. This can be useful for post-processing or decision-making based on the network's output\n", + " # probabilities.\n", + "\n", + " # Update gradients\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n", + "\n", + "# Plot the loss function over time\n", + "plt.plot(loss_hist)\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "fde52021", + "metadata": { + "id": "fde52021" + }, + "source": [ + "You might already see that the loss functions are lower than before, so maybe performance is better? Let's see." + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Analysis" + ], + "metadata": { + "id": "Xk4jn2Ju6P7s" + }, + "id": "Xk4jn2Ju6P7s" + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7f8a92ad", + "metadata": { + "id": "7f8a92ad", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 909 + }, + "outputId": "67e5f069-304d-4dd1-9c23-4c12b000ae39" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Chance accuracy level: 8.3% \n", + "\n", + "Train classifier accuracy: 81.6%\n", + "Train absolute error: 4.8 deg \n", + "\n", + "Test classifier accuracy: 76.5%\n", + "Test absolute error: 5.1 deg \n", + "\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(76.513671875, 4.823615773931573, 5.090425730940498, 3.714645815731368)" + ] + }, + "metadata": {}, + "execution_count": 27 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkI0lEQVR4nO3de1xUdf7H8feAMoAKonLxgoBaXjK1dGXxbktiaWW31bIEM8u8i+alTNBKTMvQ8pKVmKVbW9nV0hQ1t6RsbTVNpSxNNwXTUrwk6Mz5/eEyvyZQ5yDDwPB6Ph7n8eB853vO93Oc3b58+F6OxTAMQwAAAAAAoNT5eDoAAAAAAAC8FUk3AAAAAABuQtINAAAAAICbkHQDAAAAAOAmJN0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CYk3QAAAAAAuAlJN1CBJSUlKTo62tNhAABQIt9//7169Oih4OBgWSwWvfvuu6V6/3379slisWjJkiWlel9vEB0draSkJE+HAVQKJN2AG1gsFpeODRs2eDpUAEAl98MPP+jBBx9Uo0aN5O/vr6CgIHXs2FFz5szR77//7ta2ExMTtX37dj355JN69dVX1a5dO7e254127typ1NRU7du3z9OhALgAi2EYhqeDALzNa6+95nS+dOlSrVmzRq+++qpT+fXXX6/w8PASt3P27FnZ7XZZrdYS3wMAUHmtXLlSd955p6xWqwYMGKCWLVuqoKBAn332md5++20lJSVp0aJFbmn7999/V2BgoB599FE98cQTbmnDMAzl5+eratWq8vX1dUsbnvbWW2/pzjvv1Pr169WtWzeXr8vPz5ePj4+qVq3qvuAASJKqeDoAwBvdc889TudffPGF1qxZU6T8z06fPq3AwECX26GjBACU1N69e9WvXz9FRUVp3bp1qlu3ruOzYcOGac+ePVq5cqXb2v/ll18kSTVr1nRbGxaLRf7+/m67f0VjGIbOnDmjgIAA/mAPlCGmlwMe0q1bN7Vs2VJbtmxRly5dFBgYqEceeUSS9N5776lXr16qV6+erFarGjdurMcff1w2m83pHn9e0124du3pp5/WokWL1LhxY1mtVv3lL3/RV199VZaPBwAo52bOnKmTJ0/q5Zdfdkq4CzVp0kSjRo1ynJ87d06PP/64o2+Jjo7WI488ovz8fKfroqOj1bt3b3322Wdq3769/P391ahRIy1dutRRJzU1VVFRUZKkhx9+WBaLxdGfXWi/ktTUVFksFqeyNWvWqFOnTqpZs6aqV6+upk2bOvpS6cJrutetW6fOnTurWrVqqlmzpm655Rbt2rWr2Pb27NmjpKQk1axZU8HBwRo4cKBOnz594X/Y/yns57/55ht17dpVgYGBatKkid566y1J0qeffqrY2FgFBASoadOmWrt2rdP1P/30k4YOHaqmTZsqICBAtWvX1p133uk0jXzJkiW68847JUndu3cvsnyt8LtYvXq12rVrp4CAAL3wwguOzwrXdBuGoe7duys0NFSHDx923L+goEBXX321GjdurFOnTl3ymQEUj6Qb8KCjR4/qhhtuUJs2bZSenq7u3btLOt+JVq9eXcnJyZozZ47atm2rKVOmaOLEiS7dd/ny5Zo1a5YefPBBPfHEE9q3b59uu+02nT171p2PAwCoQD744AM1atRIHTp0cKn+/fffrylTpujaa6/Vs88+q65duyotLU39+vUrUnfPnj264447dP311+uZZ55RSEiIkpKS9O2330qSbrvtNj377LOSpLvuukuvvvqq0tPTTcX/7bffqnfv3srPz9e0adP0zDPP6Oabb9bnn39+0evWrl2rhIQEHT58WKmpqUpOTtamTZvUsWPHYtdF//3vf9eJEyeUlpamv//971qyZImmTp3qUoy//fabevfurdjYWM2cOVNWq1X9+vXTG2+8oX79+unGG2/UjBkzdOrUKd1xxx06ceKE49qvvvpKmzZtUr9+/TR37lwNGTJEmZmZ6tatmyPp79Kli0aOHClJeuSRR/Tqq6/q1VdfVfPmzR33yc7O1l133aXrr79ec+bMUZs2bYrEabFYtHjxYp05c0ZDhgxxlKekpOjbb79VRkaGqlWr5tIzAyiGAcDthg0bZvz5/25du3Y1JBkLFy4sUv/06dNFyh588EEjMDDQOHPmjKMsMTHRiIqKcpzv3bvXkGTUrl3b+PXXXx3l7733niHJ+OCDD0rhaQAAFd3x48cNScYtt9ziUv2tW7cakoz777/fqXzcuHGGJGPdunWOsqioKEOSsXHjRkfZ4cOHDavVaowdO9ZRVthnzZo1y+mef+7bCqWkpDj1pc8++6whyfjll18uGHdhGxkZGY6yNm3aGGFhYcbRo0cdZdu2bTN8fHyMAQMGFGnvvvvuc7rnrbfeatSuXfuCbRYq7OeXL1/uKNu9e7chyfDx8TG++OILR/nq1auLxFnc7wJZWVmGJGPp0qWOsjfffNOQZKxfv75I/cLvYtWqVcV+lpiY6FT2wgsvGJKM1157zfjiiy8MX19fY/To0Zd8VgAXx0g34EFWq1UDBw4sUh4QEOD4+cSJEzpy5Ig6d+6s06dPa/fu3Ze8b9++fRUSEuI479y5syTpxx9/LIWoAQAVXV5eniSpRo0aLtX/6KOPJEnJyclO5WPHjpWkImu/W7Ro4eh7JCk0NFRNmzYt1X6ocC34e++9J7vd7tI1hw4d0tatW5WUlKRatWo5ylu1aqXrr7/e8Zx/9MeRX+l8n3r06FHHv+HFVK9e3WkmQNOmTVWzZk01b95csbGxjvLCn//47/PH3wXOnj2ro0ePqkmTJqpZs6a+/vprF572vJiYGCUkJLhU94EHHlBCQoJGjBihe++9V40bN9b06dNdbgtA8Ui6AQ+qX7++/Pz8ipR/++23uvXWWxUcHKygoCCFhoY6NmE7fvz4Je/bsGFDp/PCBPy3334rhagBABVdUFCQJDlNZ76Yn376ST4+PmrSpIlTeUREhGrWrKmffvrJqfzP/ZB0vi8qzX6ob9++6tixo+6//36Fh4erX79++uc//3nRBLwwzqZNmxb5rHnz5jpy5EiRtcuX06c2aNCgyDr04OBgRUZGFin78z1///13TZkyRZGRkbJarapTp45CQ0N17Ngxl34XKBQTE+NyXUl6+eWXdfr0aX3//fdasmSJU/IPoGTYvRzwoOI6smPHjqlr164KCgrStGnT1LhxY/n7++vrr7/WhAkTXPpr/oVei2LwhkAAgM4n3fXq1dOOHTtMXffnBPJCLqcfulAbf95MNCAgQBs3btT69eu1cuVKrVq1Sm+88Yauu+46ffLJJ6X2irDLeZYLXevKPUeMGKGMjAyNHj1acXFxCg4OlsViUb9+/Vwe2ZeK/13jYjZs2ODYHG/79u2Ki4szdT2Aoki6gXJmw4YNOnr0qFasWKEuXbo4yvfu3evBqAAA3qZ3795atGiRsrKyLplYRUVFyW636/vvv3fapCs3N1fHjh1z7EReGkJCQnTs2LEi5X8eTZckHx8f/e1vf9Pf/vY3zZ49W9OnT9ejjz6q9evXKz4+vtjnkM5vLvZnu3fvVp06dcrNhmFvvfWWEhMT9cwzzzjKzpw5U+TfxtU/hLji0KFDGjFihHr06CE/Pz+NGzdOCQkJpfr9ApUR08uBcqbwr99//Gt3QUGB5s+f76mQAABeaPz48apWrZruv/9+5ebmFvn8hx9+0Jw5cyRJN954oyQV2WF89uzZkqRevXqVWlyNGzfW8ePH9c033zjKDh06pHfeecep3q+//lrk2sKduf/8GrNCdevWVZs2bfTKK684Ja87duzQJ5984njO8sDX17fIaPpzzz1XZMS/8I8Exf2hwqzBgwfLbrfr5Zdf1qJFi1SlShUNGjSImXLAZWKkGyhnOnTooJCQECUmJmrkyJGyWCx69dVX6fAAAKWqcePGWr58ufr27avmzZtrwIABatmypQoKCrRp0ya9+eabjvc4t27dWomJiVq0aJFjGdTmzZv1yiuvqE+fPo5XXpaGfv36acKECbr11ls1cuRInT59WgsWLNCVV17ptIHYtGnTtHHjRvXq1UtRUVE6fPiw5s+frwYNGqhTp04XvP+sWbN0ww03KC4uToMGDdLvv/+u5557TsHBwUpNTS2157hcvXv31quvvqrg4GC1aNFCWVlZWrt2rWrXru1Ur02bNvL19dVTTz2l48ePy2q16rrrrlNYWJip9jIyMrRy5UotWbJEDRo0kHQ+yb/nnnu0YMECDR06tNSeDahsSLqBcqZ27dr68MMPNXbsWE2ePFkhISG655579Le//c3l3UcBAHDFzTffrG+++UazZs3Se++9pwULFshqtapVq1Z65plnNHjwYEfdl156SY0aNdKSJUv0zjvvKCIiQpMmTVJKSkqpxlS7dm298847Sk5O1vjx4xUTE6O0tDR9//33Tkn3zTffrH379mnx4sU6cuSI6tSpo65du2rq1KmOjcmKEx8fr1WrViklJUVTpkxR1apV1bVrVz311FOmNx1zpzlz5sjX11fLli3TmTNn1LFjR8c7xv8oIiJCCxcuVFpamgYNGiSbzab169ebSrr/+9//asyYMbrpppuUmJjoKO/fv7/efvttjR8/XjfccEO5+vcBKhKLwfAZAAAAAABuwZpuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADdx6T3ddrtdBw8eVI0aNWSxWNwdEwAA5YJhGDpx4oTq1asnHx/+Tn0h/J4AAOWLu/uvM2fOqKCgoETX+vn5yd/fv5QjKt9cSroPHjyoyMhId8cCAEC5dODAATVo0MDTYZRb/J4AAOWTO/qvM2fOKCaqunIO20p0fUREhPbu3VupEm+Xku4aNWpIOv+lBQUFuTUgAADKi7y8PEVGRjr6QRSv8N+nk25UFVX1cDQAcGGnbmnnkXY/nvlymbZ34qRdMW33u6X/KigoUM5hm37aEq2gGuZG0fNO2BXVdp8KCgpIuv+scKpYUFAQSTcAoNJhyvTFFf77VFFVVbGQdAMov6pU9UyiZzY5LS3u7L+q17Coeg1z97ercvanLiXdAAAAAAAUshl22Qzz11RGJN0AAAAAAFPsMmSXuazbbH1vQdINAAAAADDFLrvMjlubv8I7kHQDgAk2m01nz571dBgoRX5+frwODAAAk2yGIZthbuTabH1vQdINAC4wDEM5OTk6duyYp0NBKfPx8VFMTIz8/Pw8HQoAABUG08tdR9INAC4oTLjDwsIUGBjIbtZewm636+DBgzp06JAaNmzI9woAAEodSTcAXILNZnMk3LVr1/Z0OChloaGhOnjwoM6dO6eqVXndFQAArrDLkI2RbpeQdAPAJRSu4Q4MDPRwJHCHwmnlNpuNpBsAABcxvdx1JN0A4CKmHnsnvlcAAMxjIzXXkXQDAAAAAEyx/+8we01lxDtSAADwUjabTY899phiYmIUEBCgxo0b6/HHH5fxh5EGwzA0ZcoU1a1bVwEBAYqPj9f333/vwagBABWB7X9rus0elREj3QBwGaInriyztvbN6OVy3UtNmU5JSVFqauplRoTy7qmnntKCBQv0yiuv6KqrrtK///1vDRw4UMHBwRo5cqQkaebMmZo7d65eeeUVxcTE6LHHHlNCQoJ27twpf39/Dz8BAAAVH0l3SaUGe7j9455tH0C5dujQIcfPb7zxhqZMmaLs7GxHWfXq1R0/G4Yhm82mKlXoErzNpk2bdMstt6hXr/N/sImOjtY//vEPbd68WdL57z49PV2TJ0/WLbfcIklaunSpwsPD9e6776pfv34eix0AUL7ZjPOH2WsqI6aXA4AXioiIcBzBwcGyWCyO8927d6tGjRr6+OOP1bZtW1mtVn322WdKSkpSnz59nO4zevRodevWzXFut9uVlpbmmK7cunVrvfXWW2X7cHBZhw4dlJmZqe+++06StG3bNn322We64YYbJEl79+5VTk6O4uPjHdcEBwcrNjZWWVlZF7xvfn6+8vLynA4AQOViL+FRGTGsAQCV1MSJE/X000+rUaNGCgkJcematLQ0vfbaa1q4cKGuuOIKbdy4Uffcc49CQ0PVtWtXN0cMsyZOnKi8vDw1a9ZMvr6+stlsevLJJ9W/f39JUk5OjiQpPDzc6brw8HDHZ8VJS0vT1KlT3Rc4AKDcs8sim8y9AcRusr63IOkGgEpq2rRpuv76612un5+fr+nTp2vt2rWKi4uTJDVq1EifffaZXnjhBZLucuif//ynli1bpuXLl+uqq67S1q1bNXr0aNWrV0+JiYklvu+kSZOUnJzsOM/Ly1NkZGRphAwAqCDsxvnD7DWVEUk3AFRS7dq1M1V/z549On36dJFEvaCgQNdcc01phoZS8vDDD2vixImOtdlXX321fvrpJ6WlpSkxMVERERGSpNzcXNWtW9dxXW5urtq0aXPB+1qtVlmtVrfGDgAo32wlGOk2W99bkHQDQCVVrVo1p3MfHx+nV0lJ0tmzZx0/nzx5UpK0cuVK1a9f36keCVj5dPr0afn4OG/f4uvrK7v9/Kq6mJgYRUREKDMz05Fk5+Xl6csvv9RDDz1U1uECAOCVSLoBAJKk0NBQ7dixw6ls69atqlq1qiSpRYsWslqt2r9/P1PJK4ibbrpJTz75pBo2bKirrrpK//nPfzR79mzdd999ks6/Wm706NF64okndMUVVzheGVavXr0im+oBAPBHjHS7jqQbACBJuu666zRr1iwtXbpUcXFxeu2117Rjxw7H1PEaNWpo3LhxGjNmjOx2uzp16qTjx4/r888/V1BQ0GWtEYZ7PPfcc3rsscc0dOhQHT58WPXq1dODDz6oKVOmOOqMHz9ep06d0gMPPKBjx46pU6dOWrVqFe/oBgBclN2wyG6Y3EjNZH1vQdINAJAkJSQk6LHHHtP48eN15swZ3XfffRowYIC2b9/uqPP4448rNDRUaWlp+vHHH1WzZk1de+21euSRRzwYOS6kRo0aSk9PV3p6+gXrWCwWTZs2TdOmTSu7wAAAFR4j3a4j6QaAy7BvRi9Ph3BJSUlJSkpKcpx369atyNrtQlOnTr3oq6AsFotGjRqlUaNGlXaYAACgArHJRzb5XLqi0zWVE0k3AAAAgErhUGfPjLT2impfpu2dM85K2ufWNowSTC83mF4OAAAAAMClMb3cdebmAwAAAAAAAJcx0g0AAAAAMMVm+MhmmFzTXfyWMl6PpBsAAAAAYIpdFtlNTpy2q3Jm3STdAAAAAABTWNPtOpJuAAAAAIApJZtezkg3AAAAAACXdH56ubmRa7P1vQW7lwMAAAAA4CYk3QAAly1ZskQ1a9b0dBimVMSYAQAo7+zykc3kYXbjNW/B9HIAuBypwWXY1nHTlyQlJemVV14pUp6QkKBVq1Zd9Nro6GiNHj1ao0ePdpT17dtXN954o+k4zFqyZIlGjx6tY8eOub0tAABgHmu6XUfSDQBermfPnsrIyHAqs1qtJbpXQECAAgICSiMsAABQgdlLMHJdWV8ZVjnH9wGgErFarYqIiHA6QkJCZBiGUlNT1bBhQ1mtVtWrV08jR46UJHXr1k0//fSTxowZI4vFIovl/MYnf56qnZqaqjZt2mjx4sVq2LChqlevrqFDh8pms2nmzJmKiIhQWFiYnnzySaeYZs+erauvvlrVqlVTZGSkhg4dqpMnT0qSNmzYoIEDB+r48eOOtlNTUyVJ+fn5GjdunOrXr69q1aopNjZWGzZscLr3kiVL1LBhQwUGBurWW2/V0aNH3fMPCwBAJWYzLCU6KiNGugGgknr77bf17LPP6vXXX9dVV12lnJwcbdu2TZK0YsUKtW7dWg888IAGDx580fv88MMP+vjjj7Vq1Sr98MMPuuOOO/Tjjz/qyiuv1KeffqpNmzbpvvvuU3x8vGJjYyVJPj4+mjt3rmJiYvTjjz9q6NChGj9+vObPn68OHTooPT1dU6ZMUXZ2tiSpevXqkqThw4dr586dev3111WvXj2988476tmzp7Zv364rrrhCX375pQYNGqS0tDT16dNHq1atUkpKihv/FQEAqJwK12mbu6ZyjnSTdAOAl/vwww8dSWuhRx55RP7+/oqIiFB8fLyqVq2qhg0bqn379pKkWrVqydfXVzVq1FBERMRF72+327V48WLVqFFDLVq0UPfu3ZWdna2PPvpIPj4+atq0qZ566imtX7/ekXT/cZ14dHS0nnjiCQ0ZMkTz58+Xn5+fgoODZbFYnNrev3+/MjIytH//ftWrV0+SNG7cOK1atUoZGRmaPn265syZo549e2r8+PGSpCuvvFKbNm265Pp1AAAAdyHpBgAv1717dy1YsMCprFatWjp16pTS09PVqFEj9ezZUzfeeKNuuukmValirmuIjo5WjRo1HOfh4eHy9fWVj4+PU9nhw4cd52vXrlVaWpp2796tvLw8nTt3TmfOnNHp06cVGBhYbDvbt2+XzWbTlVde6VSen5+v2rVrS5J27dqlW2+91enzuLg4km4AAEqZ3fCR3eRGanY2UgMAeKNq1aqpSZMmRcpr1aql7OxsrV27VmvWrNHQoUM1a9Ysffrpp6patarL9/9zXYvFUmyZ3W6XJO3bt0+9e/fWQw89pCeffFK1atXSZ599pkGDBqmgoOCCSffJkyfl6+urLVu2yNfX1+mzP4/kAwAA92J6uetIugGgEgsICNBNN92km266ScOGDVOzZs20fft2XXvttfLz85PNZiv1Nrds2SK73a5nnnnGMRr+z3/+06lOcW1fc801stlsOnz4sDp37lzsvZs3b64vv/zSqeyLL74oxegBAIAk2SXTG6PZ3RNKuUfSDQBeLj8/Xzk5OU5lVapU0YcffiibzabY2FgFBgbqtddeU0BAgKKioiSdnza+ceNG9evXT1arVXXq1CmVeJo0aaKzZ8/queee00033aTPP/9cCxcudKoTHR2tkydPKjMzU61bt1ZgYKCuvPJK9e/fXwMGDNAzzzyja665Rr/88osyMzPVqlUr9erVSyNHjlTHjh319NNP65ZbbtHq1auZWg4AgBuU7JVhlfPlWZXzqQGgElm1apXq1q3rdHTq1Ek1a9bUiy++qI4dO6pVq1Zau3atPvjgA8f66GnTpmnfvn1q3LixQkNDSy2e1q1ba/bs2XrqqafUsmVLLVu2TGlpaU51OnTooCFDhqhv374KDQ3VzJkzJUkZGRkaMGCAxo4dq6ZNm6pPnz766quv1LBhQ0nSX//6V7344ouaM2eOWrdurU8++USTJ08utdgBAMB5NsOnREdlZDGMS69mz8vLU3BwsI4fP66goKCyiKv8Sw32cPvHPds+UImcOXNGe/fuVUxMjPz9/T0dDkrZxb5f+j/XFP47ddMtqmJxfT8AAChre9L/6pF2rxj37zJt75xxVuvPve2W/qvwv/nPb4lVQHVzE6d/P3lOw9t+Wen6VaaXAwAAAABMscsiu8yu6TZX31tUzvF9AAAqiZ9//ln33HOPateurYCAAF199dX697//f8TFMAxNmTJFdevWVUBAgOLj4/X99997MGIAQEXA9HLXVc6nBgCgEvjtt9/UsWNHVa1aVR9//LF27typZ555RiEhIY46M2fO1Ny5c7Vw4UJ9+eWXqlatmhISEnTmzBkPRg4AKO8KXxlm9qiMmF4OAICXeuqppxQZGamMjAxHWUxMjONnwzCUnp6uyZMn65ZbbpEkLV26VOHh4Xr33XfVr1+/Mo8ZAFAx2A2L7GZfGWayvreonH9qAACgEnj//ffVrl073XnnnQoLC9M111yjF1980fH53r17lZOTo/j4eEdZcHCwYmNjlZWVdcH75ufnKy8vz+kAAFQu9hKMclfWV4Yx0g0ALrLb7Z4OAW7gwks8Kqwff/xRCxYsUHJysh555BF99dVXGjlypPz8/JSYmOh4f3t4eLjTdeHh4UXe7f5HaWlpmjp1qltjB1A2fFtc6ZF231mzzCPt9hjS3iPtGufOlW17hvvbsxs+sptco222vrcg6QaAS/Dz85OPj48OHjyo0NBQ+fn5yWKpnNOjvI1hGPrll19ksVhUtar3verKbrerXbt2mj59uiTpmmuu0Y4dO7Rw4UIlJiaW+L6TJk1ScnKy4zwvL0+RkZGXHS8AAN6IpBsALsHHx0cxMTE6dOiQDh486OlwUMosFosaNGggX19fT4dS6urWrasWLVo4lTVv3lxvv/22JCkiIkKSlJubq7p16zrq5Obmqk2bNhe8r9VqldVqLf2AAQAVhk0W2Uy+AsxsfW9B0g0ALvDz81PDhg117tw52Ww2T4eDUlS1alWvTLglqWPHjsrOznYq++677xQVFSXp/KZqERERyszMdCTZeXl5+vLLL/XQQw+VdbgAgAqE6eWuI+kGABcVTkH2xmnI8E5jxoxRhw4dNH36dP3973/X5s2btWjRIi1atEjS+f9Njx49Wk888YSuuOIKxcTE6LHHHlO9evXUp08fzwYPACjXbDI/cl3SYYt58+Zp1qxZysnJUevWrfXcc8+pffsLr89PT0/XggULtH//ftWpU0d33HGH0tLS5O/vX8IILg9JNwAAXuovf/mL3nnnHU2aNEnTpk1TTEyM0tPT1b9/f0ed8ePH69SpU3rggQd07NgxderUSatWrfLYLyYAgIqhrEa633jjDSUnJ2vhwoWKjY1Venq6EhISlJ2drbCwsCL1ly9frokTJ2rx4sXq0KGDvvvuOyUlJclisWj27Nmm2y8NJN0AAHix3r17q3fv3hf83GKxaNq0aZo2bVoZRgUAqOhsho9sJpNos/Ulafbs2Ro8eLAGDhwoSVq4cKFWrlypxYsXa+LEiUXqb9q0SR07dtTdd98tSYqOjtZdd92lL7/80nTbpaVyTqoHAAAAAJRrBQUF2rJli+Lj4x1lPj4+io+PV1ZWVrHXdOjQQVu2bNHmzZslnX995kcffaQbb7yxTGIuDiPdAAAAAABTDFlkN7mm2/hf/by8PKfyC70V48iRI7LZbAoPD3cqDw8P1+7du4tt4+6779aRI0fUqVMnGYahc+fOaciQIXrkkUdMxVqaGOkGAAAAAJhSOL3c7CFJkZGRCg4OdhxpaWmlFteGDRs0ffp0zZ8/X19//bVWrFihlStX6vHHHy+1NsxipBsAAAAAYIrdsMhumBvpLqx/4MABBQUFOcqLG+WWpDp16sjX11e5ublO5bm5uYqIiCj2mscee0z33nuv7r//fknS1Vdf7dgw9NFHH5WPT9mPOzPSDQAAAAAwxSafEh2SFBQU5HRcKOn28/NT27ZtlZmZ6Siz2+3KzMxUXFxcsdecPn26SGLt6+srSTIMozQe3TRGugEAAAAAplzOSLcZycnJSkxMVLt27dS+fXulp6fr1KlTjt3MBwwYoPr16zumqN90002aPXu2rrnmGsXGxmrPnj167LHHdNNNNzmS77JG0g0AAAAAKJf69u2rX375RVOmTFFOTo7atGmjVatWOTZX279/v9PI9uTJk2WxWDR58mT9/PPPCg0N1U033aQnn3zSU49A0g0AAAAAMMcuH9lNrlY2W7/Q8OHDNXz48GI/27Bhg9N5lSpVlJKSopSUlBK15Q4k3QAAAAAAU2yGRTaT08XN1vcWJN0AAAAAAFPKak23NyDpBgAAAACYYhg+shvmposbJut7C5JuAAAAAIApNllkk8np5SbrewuSbgC4kNRgD7Z93HNtAwAAXILdMD9d3O6Z12R7XOUc3wcAAAAAoAww0g0AAAAAMMVegjXdZut7C5JuAAAAAIApdllkN7lG22x9b0HSDQAAAAAwhfd0u46kGwAAAABgCtPLXUfSDQAAAHiaj69Hmm2zbLdH2r0luqNH2vU/u9kj7Xojuyzmdy+vpNPLK+efGgAAAAAAKAOMdAMAnPF+cgAAcAlGCTZSMyrpSDdJNwAAAADAFLtRgunllXQjNaaXAwBQScyYMUMWi0WjR492lJ05c0bDhg1T7dq1Vb16dd1+++3Kzc31XJAAgAqhcCM1s0dlVDmfGgCASuarr77SCy+8oFatWjmVjxkzRh988IHefPNNffrppzp48KBuu+02D0UJAKgoCke6zR6VEdPLYR7rPQGgQjl58qT69++vF198UU888YSj/Pjx43r55Ze1fPlyXXfddZKkjIwMNW/eXF988YX++te/eipkAEA5Zy/Bmm52LwcAAF5p2LBh6tWrl+Lj453Kt2zZorNnzzqVN2vWTA0bNlRWVlZZhwkAgFdipBsAAC/2+uuv6+uvv9ZXX31V5LOcnBz5+fmpZs2aTuXh4eHKycm54D3z8/OVn5/vOM/Lyyu1eAEAFQMbqbmOkW4AALzUgQMHNGrUKC1btkz+/v6ldt+0tDQFBwc7jsjIyFK7NwCgYmBNt+sY6UbFwnpyAHDZli1bdPjwYV177bWOMpvNpo0bN+r555/X6tWrVVBQoGPHjjmNdufm5ioiIuKC9500aZKSk5Md53l5eSTeAFDJMNLtOpJuwFUk/AAqmL/97W/avn27U9nAgQPVrFkzTZgwQZGRkapataoyMzN1++23S5Kys7O1f/9+xcXFXfC+VqtVVqvVrbEDAMo3km7XkXQDAOClatSooZYtWzqVVatWTbVr13aUDxo0SMnJyapVq5aCgoI0YsQIxcXFsXM5AOCiDJnfjdxwTyjlHkk3AACV2LPPPisfHx/dfvvtys/PV0JCgubPn+/psAAA8Bok3QAAVCIbNmxwOvf399e8efM0b948zwQEAKiQmF7uOpJuAAAAAIApJN2uI+kGAAAAAJhC0u06km4AAAAAgCkk3a4j6QYAAAAAmGIYFhkmk2iz9b0FSTcAAAAAwBS7LKZfGWa2vrfw8XQAAAAAAAB4K0a6AQAAAACmsKbbdSTdAC4uNdiDbR/3XNsAAAC4INZ0u46kGwAAAABgCiPdriPpBgAAAACYwki360i6AQAAAACmGCUY6SbpBgAAACo5H39/j7Q7JzvTI+2O6dLPI+0aZw94pF3AE0i6AQAAAACmGJIMw/w1lRFJNwAAAADAFLssssjkRmom63sLkm4AANzIbrdryZIlWrFihfbt2yeLxaKYmBjdcccduvfee2WxVM5fQAAAFRsbqbmOpBtAuRU9cWWx5ftm9CrjSICSMQxDN998sz766CO1bt1aV199tQzD0K5du5SUlKQVK1bo3Xff9XSYAACYZjcssvDKMJeQdAMA4CZLlizRxo0blZmZqe7duzt9tm7dOvXp00dLly7VgAEDPBQhAAAlYxglWNNdSRd1+3g6AAAAvNU//vEPPfLII0USbkm67rrrNHHiRC1btswDkQEAgLJC0g0AgJt888036tmz5wU/v+GGG7Rt27YyjAgAgNJRuKbb7FEZMb0cAAA3+fXXXxUeHn7Bz8PDw/Xbb7+VYUQAAJQONlJzHUk3AABuYrPZVKXKhbtaX19fnTt3rgwjAgCgdLCRmutIugEAcBPDMJSUlCSr1Vrs5/n5+WUcEQAApYON1FxH0g0AgJskJiZesg47lwMAKqLzSbfZ6eVuCqacI+kGAMBNMjIyPB2C0tLStGLFCu3evVsBAQHq0KGDnnrqKTVt2tRR58yZMxo7dqxef/115efnKyEhQfPnz7/oenQAQOXGmm7XsXs5AAButG/fPr344ouaN2+evv322zJv/9NPP9WwYcP0xRdfaM2aNTp79qx69OihU6dOOeqMGTNGH3zwgd588019+umnOnjwoG677bYyjxUAAG/ESDdQAURPXOmxtvf5e6xpoMJbv369evfurd9//12SVKVKFS1evFj33HNPmcWwatUqp/MlS5YoLCxMW7ZsUZcuXXT8+HG9/PLLWr58ua677jpJ50fomzdvri+++EJ//etfyyxWAEDFYfzvMHtNZcRINwAAbvLYY4/p+uuv188//6yjR49q8ODBGj9+vEdjOn78uCSpVq1akqQtW7bo7Nmzio+Pd9Rp1qyZGjZsqKysLI/ECAAo/8ryPd3z5s1TdHS0/P39FRsbq82bN1+0/rFjxzRs2DDVrVtXVqtVV155pT766KMStV0aSLoBAHCTHTt2aPr06apbt65CQkI0a9YsHT58WEePHvVIPHa7XaNHj1bHjh3VsmVLSVJOTo78/PxUs2ZNp7rh4eHKyckp9j75+fnKy8tzOgAAlYxRwsOkN954Q8nJyUpJSdHXX3+t1q1bKyEhQYcPHy62fkFBga6//nrt27dPb731lrKzs/Xiiy+qfv36Lre5fv1684FeBEk3AABukpeXpzp16jjOAwMDFRAQ4BhtLmvDhg3Tjh079Prrr1/WfdLS0hQcHOw4IiMjSylCAECFUZJR7hKMdM+ePVuDBw/WwIED1aJFCy1cuFCBgYFavHhxsfUXL16sX3/9Ve+++646duyo6Ohode3aVa1bt3a5zZ49e6px48Z64okndODAAdMx/xlJNwAAbrR69Wq9//77jsNutyszM9OprCwMHz5cH374odavX68GDRo4yiMiIlRQUKBjx4451c/NzVVERESx95o0aZKOHz/uOErjFxIAQMVS+J5us4ekIrOl8vPzi22joKBAW7ZscVoC5ePjo/j4+AsugXr//fcVFxenYcOGKTw8XC1bttT06dNls9lcfraff/5Zw4cP11tvvaVGjRopISFB//znP1VQUOD6P9AfsJEaAABuVNy7uh988EHHzxaLxdQvAmYZhqERI0bonXfe0YYNGxQTE+P0edu2bVW1alVlZmbq9ttvlyRlZ2dr//79iouLK/aeVqtVVqvVbTEDALzbn2dIpaSkKDU1tUi9I0eOyGazFXmFZXh4uHbv3l3svX/88UetW7dO/fv310cffaQ9e/Zo6NChOnv2rFJSUlyKr06dOhozZozGjBmjr7/+WhkZGRo6dKiGDh2qu+++W4MGDTI1cl7pk+6S7grt6R2d3bWb9b4ZvdxyXwBwRWn8t608/XfMbrd7OgQNGzZMy5cv13vvvacaNWo41mkHBwcrICBAwcHBGjRokJKTk1WrVi0FBQVpxIgRiouLY+dyAMAFXc57ug8cOKCgoCBHeWn+IddutyssLEyLFi2Sr6+v2rZtq59//lmzZs1yOen+o2uvvVYRERGqXbu2ZsyYocWLF2v+/PmKi4vTwoULddVVV13yHkwvBwDAiy1YsEDHjx9Xt27dVLduXcfxxhtvOOo8++yz6t27t26//XZ16dJFERERWrFihQejBgCUe4VrtM0ekoKCgpyOCyXdderUka+vr3Jzc53KL7YEqm7durryyivl6+vrKGvevLlycnJMTQ8/e/as3nrrLd14442KiorS6tWr9fzzzys3N1d79uxRVFSU7rzzTpfuVelHugEAcBdX12vffPPNbovBMC69Vay/v7/mzZunefPmuS0OAIB3+eMabTPXmOHn56e2bdsqMzNTffr0kSTH3ijDhw8v9pqOHTtq+fLlstvt8vE5P8b83XffqW7duvLz83Op3REjRugf//iHDMPQvffeq5kzZzre+iFJ1apV09NPP6169eq5dD+SbgAA3KTwF4SLcfeabgAA3KIkrwArwSvDkpOTlZiYqHbt2ql9+/ZKT0/XqVOnNHDgQEnSgAEDVL9+faWlpUmSHnroIT3//PMaNWqURowYoe+//17Tp0/XyJEjXW5z586deu6553TbbbdddBTe1VeLkXQDQAVX2ns8eHrPCm9SHtZ0AwDgDpezptuMvn376pdfftGUKVOUk5OjNm3aaNWqVY7N1fbv3+8Y0ZbOb9K2evVqjRkzRq1atVL9+vU1atQoTZgwweU2U1JS1KFDB1Wp4pwunzt3Tps2bVKXLl1UpUoVde3a1aX7kXQDAACgfPLxvXSdUnbFZ56ZeTK6rfuWmVyM7Qiv/EP5N3z48AtOJ9+wYUORsri4OH3xxRclbq979+46dOiQwsLCnMqPHz+u7t27m56hRtINAAAAADCvBNPFKwLDMGSxFB2VP3r0qKpVq2b6fiTdAAAAAABTymp6eVm67bbbJJ3fbyUpKclpPbfNZtM333yjDh06mL4vSTcAAAAAwJwy2kitLAUHB0s6P9Jdo0YNBQQEOD7z8/PTX//6Vw0ePNj0fUm6AVQ4pb1x2IWwoRgAAMCFWP53mL2m/MrIyJAkRUdHa9y4cSWaSl4ckm4AKIfK6g8LAAAAJeKFI92FUlJSSvV+JN0AALhBSEhIsZuwFOfXX391czQAAOBirr32WmVmZiokJETXXHPNRfvwr7/+2tS9SboBAHCD9PR0x89Hjx7VE088oYSEBMXFxUmSsrKytHr1aj322GMeihAAgMvgZSPdt9xyi2PjtD59+pTqvT2WdDN1snxy5XthnSsAXFpiYqLj59tvv13Tpk1zesfoyJEj9fzzz2vt2rUaM2aMJ0IEAKDkDMv5w+w15dQfp5SX9vRyn1K9GwAAKGL16tXq2bNnkfKePXtq7dq1HogIAIDLYxglOyojppcDAOBmtWvX1nvvvaexY8c6lb/33nuqXbu2h6ICAOAyeNn0cnfuxULSDQCAm02dOlX333+/NmzYoNjYWEnSl19+qVWrVunFF1/0cHQAAJSAl00v/+NeLKWNpBsAADdLSkpS8+bNNXfuXK1YsUKS1Lx5c3322WeOJBwAgIrEYpw/zF5TXv1xL5bSRtINAEAZiI2N1bJlyzwdBgAAKEZeXp6CgoIcP19MYT1XkXQDAFAGfvjhB2VkZOjHH39Uenq6wsLC9PHHH6thw4a66qqrPB0eAADmeOGa7kOHDiksLEw1a9Ysdn23YRiyWCyy2Wym7k3SDQCAm3366ae64YYb1LFjR23cuFFPPPGEwsLCtG3bNr388st66623PB0iAADmeNma7nXr1qlWrVqSpPXr15fqvUm6AQBws4kTJ+qJJ55QcnKyatSo4Si/7rrr9Pzzz3swMgAASsjLRrq7du1a7M+loUIn3fv87/Z0CAAAXNL27du1fPnyIuVhYWE6cuSIByICAOAyeVnS/We//fabXn75Ze3atUuS1KJFCw0cONAxGm6GT2kHBwAAnNWsWVOHDh0qUv6f//xH9evX90BEAABcJqOERwWwceNGRUdHa+7cufrtt9/022+/ae7cuYqJidHGjRtN369Cj3QDlQWzOoCKrV+/fpowYYLefPNNWSwW2e12ff755xo3bpwGDBjg6fAAAMAfDBs2TH379tWCBQvk6+srSbLZbBo6dKiGDRum7du3m7ofI90AALjZ9OnT1axZM0VGRurkyZNq0aKFunTpog4dOmjy5MmeDg8AAPMKN1Ize1QAe/bs0dixYx0JtyT5+voqOTlZe/bsMX0/km4AANzMz89PL774on788Ud9+OGHeu2117R79269+uqrTh26J82bN0/R0dHy9/dXbGysNm/e7OmQAADlmMUo2VERXHvttY613H+0a9cutW7d2vT9mF4OAICbTZs2TePGjVNkZKQiIyMd5b///rtmzZqlKVOmeDA66Y033lBycrIWLlyo2NhYpaenKyEhQdnZ2QoLC/NobACAcsrLNlL75ptvHD+PHDlSo0aN0p49e/TXv/5VkvTFF19o3rx5mjFjhul7k3QDAOBmU6dO1ZAhQxQYGOhUfvr0aU2dOtXjSffs2bM1ePBgDRw4UJK0cOFCrVy5UosXL9bEiRM9GhsAAGWhTZs2slgsMoz//8vA+PHji9S7++671bdvX1P3JukGAMDNDMOQxVJ0Hdu2bdtK9OqR0lRQUKAtW7Zo0qRJjjIfHx/Fx8crKyvLg5EBAMozi8xPFy/PK7r37t3rtnuTdAMA4CYhISGyWCyyWCy68sornRJvm82mkydPasiQIR6MUDpy5IhsNpvCw8OdysPDw7V79+5ir8nPz1d+fr7jPC8vz60xAgDgblFRUW67N0k3AABukp6eLsMwdN9992nq1KkKDg52fObn56fo6GjFxcV5MMKSSUtL09SpUz0dBsqQb23PzMiY9/X7Zd7m/feNKvM2JanKkS0eaRcosZLsRl5Bdi8vtHPnTu3fv18FBQVO5TfffLOp+5B0AwDgJomJiZKkmJgYdejQQVWrVvVwREXVqVNHvr6+ys3NdSrPzc1VREREsddMmjRJycnJjvO8vDynDeIAAJWAl22k9kc//vijbr31Vm3fvt1pnXfhjDWbzWbqfrwyDAAAN+vatasj4T5z5ozy8vKcDk/y8/NT27ZtlZmZ6Siz2+3KzMy84Ci81WpVUFCQ0wEAqGSMEh4VwKhRoxQTE6PDhw8rMDBQ3377rTZu3Kh27dppw4YNpu/HSDcAAG52+vRpjR8/Xv/85z919OjRIp+b/Yt5aUtOTlZiYqLatWun9u3bKz09XadOnXLsZg4AwJ+V5L3bFeU93VlZWVq3bp3q1KkjHx8f+fj4qFOnTkpLS9PIkSP1n//8x9T9GOkGAMDNHn74Ya1bt04LFiyQ1WrVSy+9pKlTp6pevXpaunSpp8NT37599fTTT2vKlClq06aNtm7dqlWrVhXZXA0AAAcvHum22WyqUaOGpPPLsA4ePCjp/GZr2dnZpu/HSDcAAG72wQcfaOnSperWrZsGDhyozp07q0mTJoqKitKyZcvUv39/T4eo4cOHa/jw4Z4OAwBQUXjxmu6WLVtq27ZtiomJUWxsrGbOnCk/Pz8tWrRIjRo1Mn0/RroBAHCzX3/91dFJBwUF6ddff5UkderUSRs3bvRkaAAA4E8mT54su90uSZo2bZr27t2rzp0766OPPtLcuXNN34+RbgAA3KxRo0bau3evGjZsqGbNmumf//yn2rdvrw8++EA1a9b0dHgAAJjmzWu6ExISHD83adJEu3fv1q+//qqQkBDHDuZmkHQDAOBmAwcO1LZt29S1a1dNnDhRN910k55//nmdPXtWs2fP9nR4AACYVwne0y1JBw4ckKTLejUmSTcAAG42ZswYx8/x8fHavXu3tmzZoiZNmqhVq1YejAwAgBLy4jXd586d09SpUzV37lydPHlSklS9enWNGDFCKSkpjteAuoqkGwCAMhYVFaWoqChPhwEAQIl58/TyESNGaMWKFZo5c6bi4uIknX+NWGpqqo4ePaoFCxaYuh9JN4Bya5//3Z4OASg1X331ldavX6/Dhw87NmcpxBRzAECF48Uj3cuXL9frr7+uG264wVHWqlUrRUZG6q677iLpBgCgvJk+fbomT56spk2bKjw83GkTlpJsyAIAANzHarUqOjq6SHlMTIz8/PxM34+kGwAAN5szZ44WL16spKQkT4cCAEDpKMH08ooy0j18+HA9/vjjysjIkNVqlSTl5+frySef1PDhw03fj6QbAAA38/HxUceOHT0dBgAApcfLppffdtttTudr165VgwYN1Lp1a0nStm3bVFBQoL/97W+m703SDQCAm40ZM0bz5s1Tenq6p0MBAKB0eFnSHRwc7HR+++23O53zyjAAAMqxcePGqVevXmrcuLFatGhR5FUjK1as8FBkAACUjLftXp6RkeG2e5N0AwDgZiNHjtT69evVvXt31a5dm83TAACoAH755RdlZ2dLkpo2barQ0NAS3YekGwAAN3vllVf09ttvq1evXp4OBQAAXMKpU6c0YsQILV261PGaT19fXw0YMEDPPfecAgMDTd3Pxx1BAgCA/1erVi01btzY02EAAFB6jBIeFUBycrI+/fRTffDBBzp27JiOHTum9957T59++qnGjh1r+n4k3QAAuFlqaqpSUlJ0+vRpT4cCAECpKFzTbfaoCN5++229/PLLuuGGGxQUFKSgoCDdeOONevHFF/XWW2+Zvh/TywEAcLO5c+fqhx9+UHh4uKKjo4tspPb11197KDIAAC5DBUmizTp9+rTCw8OLlIeFhZXoD+gk3QAAuFmfPn08HQIAAKXLy14Z9kdxcXFKSUnR0qVL5e/vL0n6/fffNXXqVMXFxZm+H0k3AABulpKS4ukQAAAoVd72yrA/Sk9PV8+ePdWgQQO1bt1akrRt2zb5+/tr9erVpu9H0g0AAAAAMMeLR7qvvvpqff/991q2bJl2794tSbrrrrvUv39/BQQEmL4fSTcAAG5Qq1Ytfffdd6pTp45CQkIu+m7uX3/9tQwjQ0VWpVG0R9p9MvMNj7Q77Nqby7zNKke3lHmbAC5u3rx5mjVrlnJyctS6dWs999xzat++/SWve/3113XXXXfplltu0bvvvutSW2fPnlWzZs304YcfavDgwZcZ+Xkk3QAAuMGzzz6rGjVqOH6+WNINAEBFU1bTy9944w0lJydr4cKFio2NVXp6uhISEpSdna2wsLALXrdv3z6NGzdOnTt3NtVe1apVdebMGfOBXgRJNwAAbpCYmOj4OSkpyXOBAADgDmU0vXz27NkaPHiwBg4cKElauHChVq5cqcWLF2vixInFXmOz2dS/f39NnTpV//rXv3Ts2DFTbQ4bNkxPPfWUXnrpJVWpcvkpM0k3AABu5uvrq0OHDhX5i/zRo0cVFhYmm83mocgAACihy0i68/LynIqtVqusVmuR6gUFBdqyZYsmTZrkKPPx8VF8fLyysrIu2My0adMUFhamQYMG6V//+pfJIKWvvvpKmZmZ+uSTT3T11VerWrVqTp+vWLHC1P18TEcAAABMMYzifyvJz8+Xn5+fW9rct2+fBg0apJiYGAUEBKhx48ZKSUlRQUGBU71vvvlGnTt3lr+/vyIjIzVz5ky3xAMA8C6F08vNHpIUGRmp4OBgx5GWllZsG0eOHJHNZivyzuzw8HDl5OQUe81nn32ml19+WS+++GKJn61mzZq6/fbblZCQoHr16jnFGhwcbPp+jHQDAOAmc+fOlSRZLBa99NJLql69uuMzm82mjRs3qlmzZm5pe/fu3bLb7XrhhRfUpEkT7dixQ4MHD9apU6f09NNPSzo/0tCjRw/Fx8dr4cKF2r59u+677z7VrFlTDzzwgFviAgB4icsY6T5w4ICCgoIcxcWNcpfEiRMndO+99+rFF19UnTp1TF9vt9s1a9YsfffddyooKNB1112n1NTUEu1Y/kck3QAAuMmzzz4r6fxI98KFC+Xr6+v4zM/PT9HR0Vq4cKFb2u7Zs6d69uzpOG/UqJGys7O1YMECR9K9bNkyFRQUaPHixfLz89NVV12lrVu3avbs2STdAAC3CQoKckq6L6ROnTry9fVVbm6uU3lubq4iIiKK1P/hhx+0b98+3XTTTY4yu90uSapSpYqys7PVuHHjC7b35JNPKjU1VfHx8QoICNDcuXP1yy+/aPHixa4+WrFIugEAcJO9e/dKkrp3764VK1YoJCTEo/EcP35ctWrVcpxnZWWpS5cuTlPcExIS9NRTT+m33367YLz5+fnKz893nP95bR4AoBIog43U/Pz81LZtW2VmZqpPnz6SzifRmZmZGj58eJH6zZo10/bt253KJk+erBMnTmjOnDmKjIy8aHtLly7V/Pnz9eCDD0qS1q5dq169eumll16Sj0/JV2aTdAMA4Gbr1693OrfZbNq+fbuioqLKLBHfs2ePnnvuOccotyTl5OQoJibGqV7hurmcnJwLxpaWlqapU6e6L1gAQLlXVq8MS05OVmJiotq1a6f27dsrPT1dp06dcuxmPmDAANWvX19paWny9/dXy5Ytna6vWbOmJBUpL87+/ft14403Os7j4+NlsVh08OBBNWjQwHzw/8NGagAAuNno0aP18ssvSzqfcHfp0kXXXnutIiMjtWHDBlP3mjhxoiwWy0WP3bt3O13z888/q2fPnrrzzjs1ePDgy36eSZMm6fjx447jwIEDl31PAEAFY5TwMKlv3756+umnNWXKFLVp00Zbt27VqlWrHH8k3r9/vw4dOnT5zyPp3Llz8vf3dyqrWrWqzp49e1n3ZaQbAAA3e/PNN3XPPfdIkj744APt27dPu3fv1quvvqpHH31Un3/+ucv3Gjt27CXf+92oUSPHzwcPHlT37t3VoUMHLVq0yKleREREsevkCj+7kAu92gUAUHmU1Ui3JA0fPrzY6eSSLvnH6yVLlrjcjmEYSkpKcurjzpw5oyFDhji9NszsK8NIugEAcLOjR486ktiPPvpId955p6688krdd999mjNnjql7hYaGKjQ01KW6P//8s7p37662bdsqIyOjyHq0uLg4Pfroozp79qyqVq0qSVqzZo2aNm3q8fXnAIByrgzWdJe1xMTEImWFfzS/HCTdAAC4WXh4uHbu3Km6detq1apVWrBggSTp9OnTTjual6aff/5Z3bp1U1RUlJ5++mn98ssvjs8K/wBw9913a+rUqRo0aJAmTJigHTt2aM6cOY5d1wEAqEwyMjLccl+SbgAA3GzgwIH6+9//rrp168pisSg+Pl6S9OWXX7rtPd1r1qzRnj17tGfPniKbvxjG+aGG4OBgffLJJxo2bJjatm2rOnXqaMqUKbwuDABwaV440u0uJN0AALhZamqqWrZsqQMHDujOO+90rBXz9fXVxIkT3dJmUlLSJdd+S1KrVq30r3/9yy0xAAC8l+V/h9lrKiOSbgAAysAdd9xRpKy4tWMAAFQIjHS7jFeGAQDgJjfeeKOOHz/uOJ8xY4aOHTvmOD969KhatGjhgcgAALg8hbuXmz0qI5JuAADcZPXq1crPz3ecT58+Xb/++qvj/Ny5c8rOzvZEaAAAXJ4yek+3NyDpBgDATQo3LLvQOQAA8H6s6QYAAAAAmMffkl1C0g0AgJtYLBZZLJYiZQAAVHQlWaNdWdd0k3QDAOAmhmEoKSnJ8YqwM2fOaMiQIapWrZokOa33BgCgQmH3cpeRdAMA4CZ/fiXYPffcU6TOgAEDyiocAABKDSPdriPpBgDATTIyMjwdAgAA7sFIt8tIugEAAAAApjDS7TqSbgAAAJMOD+3gkXafH/e8R9qddFV3j7RrP/3rpSsBQDlH0g0AAAAAMIfp5S4j6QYAAAAAmEPS7TKSbgAAAACAKazpdh1JNwAAAADAHEa6XUbSDQAAAAAwxWIYshjmsmiz9b2Fj6cDAAAAAADAWzHSDQAAAAAwh+nlLiPpBgAAAACYwkZqriPpBgAAAACYw0i3y0i6AaAc2ud/t6dDAAAAuCBGul1H0g0AAAAAMIeRbpexezkAAAAAAG5C0g0AgJfLz89XmzZtZLFYtHXrVqfPvvnmG3Xu3Fn+/v6KjIzUzJkzPRMkAKBCKZxebvaojEi6AQDwcuPHj1e9evWKlOfl5alHjx6KiorSli1bNGvWLKWmpmrRokUeiBIAUKEYJTwqIdZ0AwDgxT7++GN98sknevvtt/Xxxx87fbZs2TIVFBRo8eLF8vPz01VXXaWtW7dq9uzZeuCBBzwUMQCgoqisI9dmMdINAICXys3N1eDBg/Xqq68qMDCwyOdZWVnq0qWL/Pz8HGUJCQnKzs7Wb7/9dsH75ufnKy8vz+kAAFQyhlGyoxIi6QYAwAsZhqGkpCQNGTJE7dq1K7ZOTk6OwsPDncoKz3Nyci5477S0NAUHBzuOyMjI0gscAFAhsKbbdSTdAABUIBMnTpTFYrnosXv3bj333HM6ceKEJk2aVOoxTJo0ScePH3ccBw4cKPU2AADlHGu6XcaabgAAKpCxY8cqKSnponUaNWqkdevWKSsrS1ar1emzdu3aqX///nrllVcUERGh3Nxcp88LzyMiIi54f6vVWuS+AACgeCTdAABUIKGhoQoNDb1kvblz5+qJJ55wnB88eFAJCQl64403FBsbK0mKi4vTo48+qrNnz6pq1aqSpDVr1qhp06YKCQlxzwMAALyCxX7+MHtNZUTSDQCAF2rYsKHTefXq1SVJjRs3VoMGDSRJd999t6ZOnapBgwZpwoQJ2rFjh+bMmaNnn322zOMFAFQwJZkuzvRyAABQmQQHB+uTTz7RsGHD1LZtW9WpU0dTpkzhdWEAgEsqycZolXUjNZJuAAAqgejoaBnFvKqlVatW+te//uWBiAAAFVpJXgFWSV8ZRtINAAAAADCFkW7X8cowAAAAAADchJFuAAAAk+qu/8Uj7U6bf61H2pVOe6hdAOUWG6m5jKQbAAAAAGAK08tdR9INAAAAADCHjdRcRtINAAAAADCFkW7XkXQDAAAAAMxhTbfL2L0cAAAAAAA3YaQbAAAAAGAK08tdR9INAAAAADDHbpw/zF5TCZF0AwAAAADMYU23y0i6AQAAAACmWFSC6eVuiaT8YyM1AAAAAIA5he/pNnuUwLx58xQdHS1/f3/FxsZq8+bNF6z74osvqnPnzgoJCVFISIji4+MvWr8skHQDAAAAAMqlN954Q8nJyUpJSdHXX3+t1q1bKyEhQYcPHy62/oYNG3TXXXdp/fr1ysrKUmRkpHr06KGff/65jCP/fyTdAAAAAABTCncvN3uYNXv2bA0ePFgDBw5UixYttHDhQgUGBmrx4sXF1l+2bJmGDh2qNm3aqFmzZnrppZdkt9uVmZl5mU9cciTdAAAAAABzjBIekvLy8pyO/Pz8YpsoKCjQli1bFB8f7yjz8fFRfHy8srKyXArz9OnTOnv2rGrVqlWSpywVJN0AAAAAAFMshlGiQ5IiIyMVHBzsONLS0opt48iRI7LZbAoPD3cqDw8PV05OjktxTpgwQfXq1XNK3Msau5cDAAAAAMyx/+8we42kAwcOKCgoyFFstVpLLaw/mjFjhl5//XVt2LBB/v7+bmnDFSTdAAAAAABT/jhybeYaSQoKCnJKui+kTp068vX1VW5urlN5bm6uIiIiLnrt008/rRkzZmjt2rVq1aqVqThLG9PLAQAAAADmXMaablf5+fmpbdu2TpugFW6KFhcXd8HrZs6cqccff1yrVq1Su3btzDXqBox0AwAAAADKpeTkZCUmJqpdu3Zq37690tPTderUKQ0cOFCSNGDAANWvX9+xLvypp57SlClTtHz5ckVHRzvWflevXl3Vq1f3yDOQdAMAAAAAzDGM84fZa0zq27evfvnlF02ZMkU5OTlq06aNVq1a5dhcbf/+/fLx+f8J3AsWLFBBQYHuuOMOp/ukpKQoNTXVdPulgenlAAB4sZUrVyo2NlYBAQEKCQlRnz59nD7fv3+/evXqpcDAQIWFhenhhx/WuXPnPBMsAKDCKKv3dEvS8OHD9dNPPyk/P19ffvmlYmNjHZ9t2LBBS5YscZzv27dPhmEUOTyVcEuMdAMA4LXefvttDR48WNOnT9d1112nc+fOaceOHY7PbTabevXqpYiICG3atEmHDh3SgAEDVLVqVU2fPt2DkQMAyr0yGun2BiTdAAB4oXPnzmnUqFGaNWuWBg0a5Chv0aKF4+dPPvlEO3fu1Nq1axUeHq42bdro8ccf14QJE5Samio/Pz9PhA4AqAAs9vOH2WsqI6aXAwDghb7++mv9/PPP8vHx0TXXXKO6devqhhtucBrpzsrK0tVXX+1YFydJCQkJysvL07fffuuJsAEAFUXhSLfZoxIi6QYAwAv9+OOPkqTU1FRNnjxZH374oUJCQtStWzf9+uuvkqScnBynhFuS47xwt9fi5OfnKy8vz+kAAADFY3o5AAAVyMSJE/XUU09dtM6uXbtkt5+fw/foo4/q9ttvlyRlZGSoQYMGevPNN/Xggw+WOIa0tDRNnTq1SLlvWKh8fcp2SvpH//mkTNsrFPN+e4+0e+UQjzQLAEWV4L3bput7CZJuAAAqkLFjxyopKemidRo1aqRDhw5Jcl7DbbVa1ahRI+3fv1+SFBERoc2bNztdm5ub6/jsQiZNmqTk5GTHeV5eniIjI009BwCgYrMYhiwmp4ubre8tSLoBAKhAQkNDFRoaesl6bdu2ldVqVXZ2tjp16iRJOnv2rPbt26eoqChJUlxcnJ588kkdPnxYYWFhkqQ1a9YoKCjIKVn/M6vVKqvVWgpPAwCosNi93GUk3QAAeKGgoCANGTJEKSkpioyMVFRUlGbNmiVJuvPOOyVJPXr0UIsWLXTvvfdq5syZysnJ0eTJkzVs2DCSagDAxRmSzO5GXjlzbpJuAAC81axZs1SlShXde++9+v333xUbG6t169YpJCREkuTr66sPP/xQDz30kOLi4lStWjUlJiZq2rRpHo4cAFDeMb3cdSTdAAB4qapVq+rpp5/W008/fcE6UVFR+uijj8owKgAAKheSbgAAAACAOYZKsKbbLZGUeyTdAAAAAABz2EjNZSTdAAAAAABz7JIsJbimEiLpBgAAAACYwkZqriPpBgAAAACYw/Ryl5F0AwAAAADMIel2mY+nAwAAAAAAwFsx0g0AAAAAMIeRbpeRdAMAAAAAzGH3cpeRdAMAAAAATGH3cteRdAMAAAAAzGF6uctIugEAAAAA5tgNyWIyibZXzqSb3csBAAAAAHATRroBAAAAAOYwvdxlJN0AAAAAAJNKkHSLpBsAAAAAgEtjpNtlJN0AAAAAAHPshkyPXFfSjdRIugEAAAAA5hj284fZayohdi8HAAAAAMBNGOkGAAAAAJjDmm6XkXQDAIBSMWv9+6peo2wn0SXU71ym7RW60tjskXYBoNxgTbfLSLoBAAAAAOYw0u0ykm4AAAAAgDmGSpB0uyWSco+ku4La53+3p0MAAJRz3333nR5++GF9/vnnKigoUKtWrfT444+re/fujjr79+/XQw89pPXr16t69epKTExUWlqaqlThVwQAwEUw0u0ydi8HAMBL9e7dW+fOndO6deu0ZcsWtW7dWr1791ZOTo4kyWazqVevXiooKNCmTZv0yiuvaMmSJZoyZYqHIwcAwHuQdAMA4IWOHDmi77//XhMnTlSrVq10xRVXaMaMGTp9+rR27NghSfrkk0+0c+dOvfbaa2rTpo1uuOEGPf7445o3b54KCgo8/AQAgHLNbi/ZUQmRdAMA4IVq166tpk2baunSpTp16pTOnTunF154QWFhYWrbtq0kKSsrS1dffbXCw8Md1yUkJCgvL0/ffvutp0IHAFQEhdPLzR6VEAu2AADwQhaLRWvXrlWfPn1Uo0YN+fj4KCwsTKtWrVJISIgkKScnxynhluQ4L5yCXpz8/Hzl5+c7zvPy8tzwBACAco013S5jpBsAgApk4sSJslgsFz12794twzA0bNgwhYWF6V//+pc2b96sPn366KabbtKhQ4cuK4a0tDQFBwc7jsjIyFJ6OgBAhWE3SnZUQox0AwBQgYwdO1ZJSUkXrdOoUSOtW7dOH374oX777TcFBQVJkubPn681a9bolVde0cSJExUREaHNmzc7XZubmytJioiIuOD9J02apOTkZMd5Xl4eiTcAVDKGYZdhmFujbba+tyDpBgCgAgkNDVVoaOgl650+fVqS5OPjPKnNx8dH9v9tZBMXF6cnn3xShw8fVlhYmCRpzZo1CgoKUosWLS54b6vVKqvVWtJHAAB4A6MEI9dMLwcAAN4iLi5OISEhSkxM1LZt2xzv7N67d6969eolSerRo4datGihe++9V9u2bdPq1as1efJkDRs2jKQaAIBSQtINAIAXqlOnjlatWqWTJ0/quuuuU7t27fTZZ5/pvffeU+vWrSVJvr6++vDDD+Xr66u4uDjdc889GjBggKZNm+bh6AEA5R67l7uM6eUAAHipdu3aafXq1RetExUVpY8++qiMIgIAeA27XbKYXKPNmm4AAAAAAFxgGJJY0+0Kkm4AAAAAgCmG3S7D5Eg3u5cDAAAAAOAKRrpdxkZqAAAAAAC4CSPdAAAAAABz7IZkYaTbFSTdAAAAAABzDEOS2d3LK2fSzfRyAAAAAIApht0o0VES8+bNU3R0tPz9/RUbG6vNmzdftP6bb76pZs2ayd/fX1dffbXHX41J0g0AAAAAMMewl+ww6Y033lBycrJSUlL09ddfq3Xr1kpISNDhw4eLrb9p0ybdddddGjRokP7zn/+oT58+6tOnj3bs2HG5T1xiJN0AAAAAAFPKaqR79uzZGjx4sAYOHKgWLVpo4cKFCgwM1OLFi4utP2fOHPXs2VMPP/ywmjdvrscff1zXXnutnn/++ct95BIj6QYAAAAAlDsFBQXasmWL4uPjHWU+Pj6Kj49XVlZWsddkZWU51ZekhISEC9YvCy5tpGb8b8F7Xl5eqTVszz992ffIM7tbHgCgXCuVvqEU+6rCexmVdOMXVxX++5w8aX7a4OU6Z5wt8zYlVdrNgABUDOd0/r+N7uy/zhn5pqeLF8b1577aarXKarUWqX/kyBHZbDaFh4c7lYeHh2v37t3FtpGTk1Ns/ZycHFOxliaXku4TJ05IkiIjI90ajFnBng4AAFDK/n7ZdwhOv/wo/uzEiRMKDqbXuZDC3xO6xB7xQOvveqBNAKgY3NF/+fn5KSIiQp/llGxzsurVqxfJK1NSUpSamloK0ZVPLiXd9erV04EDB1SjRg1ZLBZ3x1Rm8vLyFBkZqQMHDigoKMjT4bgFz1jxefvzSd7/jN7+fJL3PqNhGDpx4oTq1avn6VDKNU/9nuAN/7vzhmeQeI7yhucoPzz1DO7sv/z9/bV3714VFBSU6HrDMIr0FcWNcktSnTp15Ovrq9zcXKfy3NxcRUREFHtNRESEqfplwaWk28fHRw0aNHB3LB4TFBRUYf+P7CqeseLz9ueTvP8Zvf35JO98Rka4L83Tvyd4w//uvOEZJJ6jvOE5yg9PPIM7+y9/f3/5+/u77f6F/Pz81LZtW2VmZqpPnz6SJLvdrszMTA0fPrzYa+Li4pSZmanRo0c7ytasWaO4uDi3x3shLiXdAAAAAACUteTkZCUmJqpdu3Zq37690tPTderUKQ0cOFCSNGDAANWvX19paWmSpFGjRqlr16565pln1KtXL73++uv697//rUWLFnnsGUi6AQAAAADlUt++ffXLL79oypQpysnJUZs2bbRq1SrHZmn79++Xj8//v5SrQ4cOWr58uSZPnqxHHnlEV1xxhd599121bNnSU49QuZNuq9WqlJSUC64h8AY8Y8Xn7c8nef8zevvzSZXjGVH+eMP/7rzhGSSeo7zhOcoPb3iG8mD48OEXnE6+YcOGImV33nmn7rzzTjdH5TqLwXtQAAAAAABwC59LVwEAAAAAACVB0g0AAAAAgJuQdAMAAAAA4CaVMunesGGDLBZLscdXX30lSdq3b1+xn3/xxRcejt510dHRReKfMWOGU51vvvlGnTt3lr+/vyIjIzVz5kwPRWvOvn37NGjQIMXExCggIECNGzdWSkqKCgoKnOpU9O9QkubNm6fo6Gj5+/srNjZWmzdv9nRIJZKWlqa//OUvqlGjhsLCwtSnTx9lZ2c71enWrVuR72vIkCEeiti81NTUIvE3a9bM8fmZM2c0bNgw1a5dW9WrV9ftt9+u3NxcD0ZsTnH/TbFYLBo2bJikiv/9oeLwln7cG/ppb+uPK1Kf6y39qrf0nfSRuJhKuXt5hw4ddOjQIaeyxx57TJmZmWrXrp1T+dq1a3XVVVc5zmvXrl0mMZaWadOmafDgwY7zGjVqOH7Oy8tTjx49FB8fr4ULF2r79u267777VLNmTT3wwAOeCNdlu3fvlt1u1wsvvKAmTZpox44dGjx4sE6dOqWnn37aqW5F/g7feOMNJScna+HChYqNjVV6eroSEhKUnZ2tsLAwT4dnyqeffqphw4bpL3/5i86dO6dHHnlEPXr00M6dO1WtWjVHvcGDB2vatGmO88DAQE+EW2JXXXWV1q5d6zivUuX//zM7ZswYrVy5Um+++aaCg4M1fPhw3Xbbbfr88889EappX331lWw2m+N8x44duv766512B63o3x8qBm/qxyt6P+1N/XFF63O9qV/1hr6TPhIXZcAoKCgwQkNDjWnTpjnK9u7da0gy/vOf/3gusMsUFRVlPPvssxf8fP78+UZISIiRn5/vKJswYYLRtGnTMoiu9M2cOdOIiYlxnHvDd9i+fXtj2LBhjnObzWbUq1fPSEtL82BUpePw4cOGJOPTTz91lHXt2tUYNWqU54K6TCkpKUbr1q2L/ezYsWNG1apVjTfffNNRtmvXLkOSkZWVVUYRlq5Ro0YZjRs3Nux2u2EYFf/7Q8VVUftxb+2nK2p/XNH73Irar3pr30kfiT+qlNPL/+z999/X0aNHNXDgwCKf3XzzzQoLC1OnTp30/vvveyC6yzNjxgzVrl1b11xzjWbNmqVz5845PsvKylKXLl3k5+fnKCv8i+5vv/3miXAvy/Hjx1WrVq0i5RX1OywoKNCWLVsUHx/vKPPx8VF8fLyysrI8GFnpOH78uCQV+c6WLVumOnXqqGXLlpo0aZJOnz7tifBK7Pvvv1e9evXUqFEj9e/fX/v375ckbdmyRWfPnnX6Pps1a6aGDRtWyO+zoKBAr732mu677z5ZLBZHeUX//lAxVeR+3Bv76YrYH3tDn1uR+1Vv6zvpI/FnlXJ6+Z+9/PLLSkhIUIMGDRxl1atX1zPPPKOOHTvKx8dHb7/9tvr06aN3331XN998swejdd3IkSN17bXXqlatWtq0aZMmTZqkQ4cOafbs2ZKknJwcxcTEOF0THh7u+CwkJKTMYy6pPXv26LnnnnOaylbRv8MjR47IZrM5vpNC4eHh2r17t4eiKh12u12jR49Wx44d1bJlS0f53XffraioKNWrV0/ffPONJkyYoOzsbK1YscKD0bouNjZWS5YsUdOmTXXo0CFNnTpVnTt31o4dO5STkyM/Pz/VrFnT6Zrw8HDl5OR4JuDL8O677+rYsWNKSkpylFX07w8VV0Xtx72xn66o/XFF73Mrcr/qjX0nfSSK8PRQe2maMGGCIemix65du5yuOXDggOHj42O89dZbl7z/vffea3Tq1Mld4bukJM9Y6OWXXzaqVKlinDlzxjAMw7j++uuNBx54wKnOt99+a0gydu7c6fZnKU5Jnu+///2v0bhxY2PQoEGXvH95+A5d9fPPPxuSjE2bNjmVP/zww0b79u09FFXpGDJkiBEVFWUcOHDgovUyMzMNScaePXvKKLLS9dtvvxlBQUHGSy+9ZCxbtszw8/MrUucvf/mLMX78eA9Ed3l69Ohh9O7d+6J1Kvr3h7LnDf24t/TTla0/ruh9rjf1q97Qd9JH4s+8aqR77NixTn9RKk6jRo2czjMyMlS7dm2X/tIaGxurNWvWXE6Il60kz1goNjZW586d0759+9S0aVNFREQU2f2x8DwiIqJU4jXL7PMdPHhQ3bt3V4cOHbRo0aJL3r88fIeuqlOnjnx9fYv9jjz1/ZSG4cOH68MPP9TGjRudRqWKExsbK+n8yEnjxo3LIrxSVbNmTV155ZXas2ePrr/+ehUUFOjYsWNOf7GviN/nTz/9pLVr117yr/MV/ftD2fOGftxb+unK1h9X5D7X2/rVit530keiOF6VdIeGhio0NNTl+oZhKCMjQwMGDFDVqlUvWX/r1q2qW7fu5YR42cw+4x9t3bpVPj4+jh044+Li9Oijj+rs2bOO51+zZo2aNm3qsSlrZp7v559/Vvfu3dW2bVtlZGTIx+fSWxSUh+/QVX5+fmrbtq0yMzPVp08fSeenj2VmZmr48OGeDa4EDMPQiBEj9M4772jDhg1FpkwWZ+vWrZJUYb6zPzt58qR++OEH3XvvvWrbtq2qVq2qzMxM3X777ZKk7Oxs7d+/X3FxcR6O1JyMjAyFhYWpV69eF61X0b8/lD1v6Me9pZ+ubP1xRexzvbVfreh9J30kiuXZgXbPWrt27QWneS1ZssRYvny5sWvXLmPXrl3Gk08+afj4+BiLFy/2QKTmbdq0yXj22WeNrVu3Gj/88IPx2muvGaGhocaAAQMcdY4dO2aEh4cb9957r7Fjxw7j9ddfNwIDA40XXnjBg5G75r///a/RpEkT429/+5vx3//+1zh06JDjKFTRv0PDMIzXX3/dsFqtxpIlS4ydO3caDzzwgFGzZk0jJyfH06GZ9tBDDxnBwcHGhg0bnL6v06dPG4ZhGHv27DGmTZtm/Pvf/zb27t1rvPfee0ajRo2MLl26eDhy140dO9bYsGGDsXfvXuPzzz834uPjjTp16hiHDx82DOP89L+GDRsa69atM/79738bcXFxRlxcnIejNsdmsxkNGzY0JkyY4FTuDd8fKp6K3I97Sz/tTf1xRetzvaVf9aa+kz4SF1Kpk+677rrL6NChQ7GfLVmyxGjevLkRGBhoBAUFGe3bt3d6XUF5t2XLFiM2NtYIDg42/P39jebNmxvTp093rBMrtG3bNqNTp06G1Wo16tevb8yYMcNDEZuTkZFxwTVmhSr6d1joueeeMxo2bGj4+fkZ7du3N7744gtPh1QiF/q+MjIyDMMwjP379xtdunQxatWqZVitVqNJkybGww8/bBw/ftyzgZvQt29fo27duoafn59Rv359o2/fvk5rtX7//Xdj6NChRkhIiBEYGGjceuutTr+YVgSrV682JBnZ2dlO5d7w/aHiqcj9uLf0097WH1ekPtdb+lVv6jvpI3EhFsMwjLIZUwcAAAAAoHLhPd0AAAAAALgJSTcAAAAAAG5C0g0AAAAAgJuQdAMAAAAA4CYk3QAAAAAAuAlJNwAAAAAAbkLSDQAAAACAm5B0AwAAAADgJiTdAAAAAAC4CUk34EFJSUnq06eP42eLxSKLxSI/Pz81adJE06ZN07lz5yRJGzZscHzu4+Oj4OBgXXPNNRo/frwOHTrkwacAAMB9Cvu+Cx2pqallFku3bt00evRop/PCOPz9/dWiRQvNnz/f8fmSJUscn/v6+iokJESxsbGaNm2ajh8/XmZxA/Askm6gHOnZs6cOHTqk77//XmPHjlVqaqpmzZrlVCc7O1sHDx7UV199pQkTJmjt2rVq2bKltm/f7qGoAQBwn0OHDjmO9PR0BQUFOZWNGzfOUdcwDMcfq8vK4MGDdejQIe3cuVN///vfNWzYMP3jH/9wfF4Y73//+19t2rRJDzzwgJYuXao2bdro4MGDZRorAM8g6QbKEavVqoiICEVFRemhhx5SfHy83n//fac6YWFhioiI0JVXXql+/frp888/V2hoqB566CEPRQ0AgPtEREQ4juDgYFksFsf57t27VaNGDX388cdq27atrFarPvvsM6eZZIVGjx6tbt26Oc7tdrvS0tIUExOjgIAAtW7dWm+99Zbp+AIDAxUREaFGjRopNTVVV1xxhVPfXRhv3bp11bx5cw0aNEibNm3SyZMnNX78+JL+swCoQEi6gXIsICBABQUFl6wzZMgQff755zp8+HAZRQYAQPkxceJEzZgxQ7t27VKrVq1cuiYtLU1Lly7VwoUL9e2332rMmDG655579Omnn15WLK703WFhYerfv7/ef/992Wy2y2oPQPlXxdMBACjKMAxlZmZq9erVGjFixCXrN2vWTJK0b98+hYWFuTs8AADKlWnTpun66693uX5+fr6mT5+utWvXKi4uTpLUqFEjffbZZ3rhhRfUtWtX0zHYbDb94x//0DfffKMHHnjgkvWbNWumEydO6OjRo/TdgJcj6QbKkQ8//FDVq1fX2bNnZbfbdffdd7u0QYxhGJLOT2EDAKCyadeunan6e/bs0enTp4sk6gUFBbrmmmtM3Wv+/Pl66aWXVFBQIF9fX40ZM8alJV/03UDlQdINlCPdu3fXggUL5Ofnp3r16qlKFdf+L7pr1y5JUnR0tBujAwCgfKpWrZrTuY+PjyOpLXT27FnHzydPnpQkrVy5UvXr13eqZ7VaTbXdv39/PfroowoICFDdunXl4+Pa6s1du3YpKChItWvXNtUegIqHpBsoR6pVq6YmTZqYuub333/XokWL1KVLF4WGhropMgAAKo7Q0FDt2LHDqWzr1q2qWrWqJKlFixayWq3av39/iaaS/1FwcLDpvvvw4cNavny5+vTp43KSDqDiIukGKpjDhw/rzJkzOnHihLZs2aKZM2fqyJEjWrFihadDAwCgXLjuuus0a9YsLV26VHFxcXrttde0Y8cOx9TxGjVqaNy4cRozZozsdrs6deqk48eP6/PPP1dQUJASExNLLRbDMJSTkyPDMHTs2DFlZWVp+vTpCg4O1owZM0qtHQDlF0k3UME0bdpUFotF1atXV6NGjdSjRw8lJycrIiLC06EBAFAuJCQk6LHHHtP48eN15swZ3XfffRowYIC2b9/uqPP4448rNDRUaWlp+vHHH1WzZk1de+21euSRR0o1lry8PNWtW1cWi0VBQUFq2rSpEhMTNWrUKAUFBZVqWwDKJ4vx5wUvAAAAAACgVLCIBAAAAAAANyHpBgAAAADATUi6AQAAAABwE5JuAAAAAADchKQbAAAAAAA3IekGAAAAAMBNSLoBAAAAAHATkm4AAAAAANyEpBsAAAAAADch6QYAAAAAwE1IugEAAAAAcBOSbgAAAAAA3OT/ANoImP+UkuUdAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk60lEQVR4nO3de3zO9f/H8ee1sYPDZuyEZhvKMRRfayj0XaakdKSUTVJyCCOHko3KRGnIIZVJ8dW30lERc/qWqb76EskixBebQzGHbFzX5/eH765fVxuuz+zatV173G+3z+22z/vz/nzer8+u8tnreh8+FsMwDAEAAAAAgBLn5e4AAAAAAADwVCTdAAAAAAC4CEk3AAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAHCLnTt3qkuXLgoMDJTFYtFHH31Uotffu3evLBaLFixYUKLX9QRRUVFKTEx0dxhAhUDSDZQCi8Xi1LZ27dorbuvMmTNKSUkpkWsBADzfL7/8oscff1z169eXn5+fAgIC1L59e02fPl1//PGHS9tOSEjQ1q1b9cILL+jtt99WmzZtXNqeJ9q+fbtSUlK0d+9ed4cC4CIquTsAoCJ4++23HfYXLlyolStXFipv0qTJFbd15swZTZgwQZLUqVOnK74eAMBzLVu2TPfdd598fX3Vp08fNW/eXPn5+frqq6/01FNP6ccff9S8efNc0vYff/yhzMxMPfPMMxo8eLBL2oiMjNQff/yhypUru+T6ZcH27ds1YcIEderUSVFRUU6fl5WVJS8v+t+A0kDSDZSChx56yGF/48aNWrlyZaFyAABKy549e9SrVy9FRkZq9erVql27tv3YoEGDtGvXLi1btsxl7R85ckSSVKNGDZe1YbFY5Ofn57LrlzeGYejs2bPy9/eXr6+vu8MBKgy+3gLKCJvNprS0NDVr1kx+fn4KCwvT448/rt9//92h3r///W/Fx8crODhY/v7+io6O1iOPPCLpwty1kJAQSdKECRPsw9ZTUlJK+3YAAGXclClTdOrUKb355psOCXeBhg0baujQofb98+fP67nnnlODBg3k6+urqKgoPf3008rLy3M4LyoqSrfffru++uortW3bVn5+fqpfv74WLlxor5OSkqLIyEhJ0lNPPSWLxWLvpU1MTCyyxzYlJUUWi8WhbOXKlerQoYNq1KihatWqqVGjRnr66aftxy82p3v16tW68cYbVbVqVdWoUUN33nmnfvrppyLb27VrlxITE1WjRg0FBgaqb9++OnPmzMV/sf/TqVMnNW/eXD/88IM6duyoKlWqqGHDhnr//fclSevWrVNMTIz8/f3VqFEjrVq1yuH8X3/9VQMHDlSjRo3k7++vWrVq6b777nMYRr5gwQLdd999kqTOnTsXmq5W8FmsWLFCbdq0kb+/v1577TX7sYI53YZhqHPnzgoJCdHhw4ft18/Pz9e1116rBg0a6PTp05e9ZwBFI+kGyojHH39cTz31lH0eXd++fbVo0SLFx8fr3LlzkqTDhw+rS5cu2rt3r8aMGaOZM2eqd+/e2rhxoyQpJCREc+bMkSTdddddevvtt/X222/r7rvvdtt9AQDKpk8//VT169dXu3btnKr/6KOPavz48br++uv1yiuvqGPHjkpNTVWvXr0K1d21a5fuvfde3XLLLXr55ZcVFBSkxMRE/fjjj5Kku+++W6+88ook6YEHHtDbb7+ttLQ0U/H/+OOPuv3225WXl6eJEyfq5Zdf1h133KGvv/76kuetWrVK8fHxOnz4sFJSUpSUlKQNGzaoffv2Rc6Lvv/++3Xy5Emlpqbq/vvv14IFC+zTuC7n999/1+23366YmBhNmTJFvr6+6tWrl95991316tVLt912myZPnqzTp0/r3nvv1cmTJ+3nfvfdd9qwYYN69eqlGTNmaMCAAcrIyFCnTp3sSf9NN92kJ598UpL09NNP25/7f56ulpWVpQceeEC33HKLpk+frlatWhWK02KxaP78+Tp79qwGDBhgL09OTtaPP/6o9PR0Va1a1al7BlAEA0CpGzRokPHn//3+9a9/GZKMRYsWOdRbvny5Q/mHH35oSDK+++67i177yJEjhiQjOTnZJbEDAMq/EydOGJKMO++806n6mzdvNiQZjz76qEP5yJEjDUnG6tWr7WWRkZGGJGP9+vX2ssOHDxu+vr7GiBEj7GV79uwxJBlTp051uGZCQoIRGRlZKIbk5GSHZ+crr7xiSDKOHDly0bgL2khPT7eXtWrVyggNDTWOHTtmL9uyZYvh5eVl9OnTp1B7jzzyiMM177rrLqNWrVoXbbNAx44dDUnG4sWL7WU7duwwJBleXl7Gxo0b7eUrVqwoFOeZM2cKXTMzM9OQZCxcuNBe9t577xmSjDVr1hSqX/BZLF++vMhjCQkJDmWvvfaaIcl45513jI0bNxre3t7GsGHDLnuvAC6Nnm6gDHjvvfcUGBioW265RUePHrVvrVu3VrVq1bRmzRpJ/z/v7bPPPrP3fgMAYFZubq4kqXr16k7V//zzzyVJSUlJDuUjRoyQpEJzv5s2baobb7zRvh8SEqJGjRpp9+7dxY75rwqeiR9//LFsNptT5xw6dEibN29WYmKiatasaS9v0aKFbrnlFvt9/tmfe34l6cYbb9SxY8fsv8NLqVatmsNIgEaNGqlGjRpq0qSJYmJi7OUFP//59+Pv72//+dy5czp27JgaNmyoGjVq6Pvvv3fibi+Ijo5WfHy8U3Ufe+wxxcfHa8iQIXr44YfVoEEDTZo0yem2ABSNpBsoA3bu3KkTJ04oNDRUISEhDtupU6fs86s6duyoe+65RxMmTFBwcLDuvPNOpaenF5pPBwDApQQEBEiSw3DmS/n111/l5eWlhg0bOpSHh4erRo0a+vXXXx3K69WrV+gaQUFBhdYpuRI9e/ZU+/bt9eijjyosLEy9evXSP//5z0sm4AVxNmrUqNCxJk2a6OjRo4XmLv/1XoKCgiTJqXu56qqrCs1DDwwMVERERKGyv17zjz/+0Pjx4xURESFfX18FBwcrJCREx48f14kTJy7bdoHo6Gin60rSm2++qTNnzmjnzp1asGCBQ/IPoHhYvRwoA2w2m0JDQ7Vo0aIijxcsjmaxWPT+++9r48aN+vTTT7VixQo98sgjevnll7Vx40ZVq1atNMMGAJRTAQEBqlOnjrZt22bqvL8mkBfj7e1dZLlhGMVuw2q1Ouz7+/tr/fr1WrNmjZYtW6bly5fr3Xff1c0336wvv/zyojGYdSX3crFznbnmkCFDlJ6ermHDhik2NlaBgYGyWCzq1auX0z37kkwnzWvXrrV/mb9161bFxsaaOh9AYSTdQBnQoEEDrVq1Su3bt3fq4XjDDTfohhtu0AsvvKDFixerd+/eWrJkiR599FGn/yACAFRst99+u+bNm6fMzMzLJlaRkZGy2WzauXOnwyJdOTk5On78uH0l8pIQFBSk48ePFyr/a2+6JHl5eenvf/+7/v73v2vatGmaNGmSnnnmGa1Zs0ZxcXFF3od0YXGxv9qxY4eCg4PLzIJh77//vhISEvTyyy/by86ePVvod1OSz/1Dhw5pyJAh6tKli3x8fDRy5EjFx8eX6OcLVEQMLwfKgPvvv19Wq1XPPfdcoWPnz5+3P2B///33Qt+sF6xCWvCtdJUqVSSpyD9YAAAoMGrUKFWtWlWPPvqocnJyCh3/5ZdfNH36dEnSbbfdJkmFVhifNm2aJKlbt24lFleDBg104sQJ/fDDD/ayQ4cO6cMPP3So99tvvxU696/PxL+qXbu2WrVqpbfeesvhOblt2zZ9+eWX9vssC7y9vQs982fOnFmox7/gS4KSeO73799fNptNb775pubNm6dKlSqpX79+TvXqA7g4erqBMqBjx456/PHHlZqaqs2bN6tLly6qXLmydu7cqffee0/Tp0/Xvffeq7feekuzZ8/WXXfdpQYNGujkyZN6/fXXFRAQYP9Dwd/fX02bNtW7776ra665RjVr1lTz5s3VvHlzN98lAKAsadCggRYvXqyePXuqSZMm6tOnj5o3b678/Hxt2LBB7733nv09zi1btlRCQoLmzZun48ePq2PHjvr222/11ltvqUePHurcuXOJxdWrVy+NHj1ad911l5588kmdOXNGc+bM0TXXXOOwgNjEiRO1fv16devWTZGRkTp8+LBmz56tq666Sh06dLjo9adOnapbb71VsbGx6tevn/744w/NnDlTgYGBSklJKbH7uFK333673n77bQUGBqpp06bKzMzUqlWrVKtWLYd6rVq1kre3t1588UWdOHFCvr6+uvnmmxUaGmqqvfT0dC1btkwLFizQVVddJelCkv/QQw9pzpw5GjhwYIndG1DRkHQDZcTcuXPVunVrvfbaa3r66adVqVIlRUVF6aGHHlL79u0lyf5HzpIlS5STk6PAwEC1bdtWixYtclgo5Y033tCQIUM0fPhw5efnKzk5maQbAFDIHXfcoR9++EFTp07Vxx9/rDlz5sjX11ctWrTQyy+/rP79+9vrvvHGG6pfv74WLFigDz/8UOHh4Ro7dqySk5NLNKZatWrpww8/VFJSkkaNGqXo6GilpqZq586dDkn3HXfcob1792r+/Pk6evSogoOD1bFjR02YMMG+MFlR4uLitHz5ciUnJ2v8+PGqXLmyOnbsqBdffNH0omOuNH36dHl7e2vRokU6e/as2rdvb3/H+J+Fh4dr7ty5Sk1NVb9+/WS1WrVmzRpTSfd///tfDR8+XN27d1dCQoK9vHfv3vrggw80atQo3XrrrWXq9wOUJxaD8SIAAAAAALgEc7oBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXMSp93TbbDYdPHhQ1atXl8VicXVMAACUCYZh6OTJk6pTp468vPie+mL4OwEAyhZXP7/Onj2r/Pz8Yp3r4+MjPz+/Eo6obHMq6T548KAiIiJcHQsAAGXS/v37ddVVV7k7jDKLvxMAoGxyxfPr7Nmzio6spuzD1mKdHx4erj179lSoxNuppLt69eqSLnxoAQEBLg0IAICyIjc3VxEREfbnIIpW8PvpoNtUSZXdHA0AXNzJ+/7mlnZXvTC/VNvLPWVT5PV7XfL8ys/PV/Zhq37dFKWA6uZ60XNP2hTZeq/y8/NJuv+qYKhYQEAASTcAoMJhyPSlFfx+KqmyKllIugGUXd6V3ZPomU1OS4orn1/VqltUrbq569tUMZ+nTiXdAAAAAAAUsBo2WQ3z51REJN0AAAAAAFNsMmSTuazbbH1PQdINAAAAADDFJpvM9lubP8MzkHSjXLNarTp37py7w0AJqVy5sry9vd0dBgAAAC7DahiyGuZ6rs3W9xQk3SiXDMNQdna2jh8/7u5QUMJq1Kih8PBwFq4CAAAowxhe7jySbpRLBQl3aGioqlSpQoLmAQzD0JkzZ3T48GFJUu3atd0cEQAAAHDlSLpR7litVnvCXatWLXeHgxLk7+8vSTp8+LBCQ0MZag4AAFBG2WTISk+3U0i6Ue4UzOGuUqWKmyOBKxR8rufOnSPpBgAAKKMYXu48km6UWwwp90x8rgAAAGUfC6k5j6QbAAAAAGCK7X+b2XMqIi93BwAAAFzDarXq2WefVXR0tPz9/dWgQQM999xzMv7U02AYhsaPH6/atWvL399fcXFx2rlzpxujBgCUB9b/zek2u1VE9HTDo0SNWVZqbe2d3M3pupcbMp2cnKyUlJQrjAgAHL344ouaM2eO3nrrLTVr1kz//ve/1bdvXwUGBurJJ5+UJE2ZMkUzZszQW2+9pejoaD377LOKj4/X9u3b5efn5+Y7AACg/CPpLq6UQDe3f8K97cOUQ4cO2X9+9913NX78eGVlZdnLqlWrZv/ZMAxZrVZVqsT/ngCuzIYNG3TnnXeqW7cLXxJGRUXpH//4h7799ltJF/69SUtL07hx43TnnXdKkhYuXKiwsDB99NFH6tWrl9tiBwCUbVbjwmb2nIqI4eVAKQgPD7dvgYGBslgs9v0dO3aoevXq+uKLL9S6dWv5+vrqq6++UmJionr06OFwnWHDhqlTp072fZvNptTUVPvQ0ZYtW+r9998v3ZsDUGa1a9dOGRkZ+vnnnyVJW7Zs0VdffaVbb71VkrRnzx5lZ2crLi7Ofk5gYKBiYmKUmZl50evm5eUpNzfXYQMAVCy2Ym4VEV1pQBkxZswYvfTSS6pfv76CgoKcOic1NVXvvPOO5s6dq6uvvlrr16/XQw89pJCQEHXs2NHFEQMo68aMGaPc3Fw1btxY3t7eslqteuGFF9S7d29JUnZ2tiQpLCzM4bywsDD7saKkpqZqwoQJrgscAFDm2WSRVebeOmMzWd9TkHQDZcTEiRN1yy23OF0/Ly9PkyZN0qpVqxQbGytJql+/vr766iu99tprJN0A9M9//lOLFi3S4sWL1axZM23evFnDhg1TnTp1lJCQUOzrjh07VklJSfb93NxcRURElETIAIBywmZc2MyeUxGRdANlRJs2bUzV37Vrl86cOVMoUc/Pz9d1111XkqEBKKeeeuopjRkzxj43+9prr9Wvv/6q1NRUJSQkKDw8XJKUk5Oj2rVr28/LyclRq1atLnpdX19f+fr6ujR2AEDZZi1GT7fZ+p6CpBsoI6pWreqw7+Xl5fBaH0k6d+6c/edTp05JkpYtW6a6des61OOPYQCSdObMGXl5OS7f4u3tLZvtwqy66OhohYeHKyMjw55k5+bm6ptvvtETTzxR2uECAOCRSLqBMiokJETbtm1zKNu8ebMqV64sSWratKl8fX21b98+hpIDKFL37t31wgsvqF69emrWrJn+85//aNq0aXrkkUckXXid4bBhw/T888/r6quvtr8yrE6dOoUWcgQA4M/o6XYeSTdQRt18882aOnWqFi5cqNjYWL3zzjvatm2bfeh49erVNXLkSA0fPlw2m00dOnTQiRMn9PXXXysgIOCK5msC8AwzZ87Us88+q4EDB+rw4cOqU6eOHn/8cY0fP95eZ9SoUTp9+rQee+wxHT9+XB06dNDy5ct5RzcA4JJshkU2w+RCaibrewqSbqCMio+P17PPPqtRo0bp7NmzeuSRR9SnTx9t3brVXue5555TSEiIUlNTtXv3btWoUUPXX3+9nn76aTdGDqCsqF69utLS0pSWlnbROhaLRRMnTtTEiRNLLzAAQLlHT7fzSLrhUfZO7ubuEC4rMTFRiYmJ9v1OnToVmrtdYMKECZd8LY/FYtHQoUM1dOjQkg4TAAAAuCirvGSV1+UrOpxTMZF0AwAAAKgQfm/inp7W+Lql+2aZ88Y5Sbtd2oZRjOHlBsPLAQAAAAC4PIaXO8/ceAAAAAAAAOA0eroBAAAAAKZYDS9ZDZNzuotexsjjkXQDAAAAAEyxySKbyYHTNlXMrJukGwAAAABgCnO6nUfSDQAAAAAwpXjDy+npBgAAAADgsi4MLzfXc222vqdg9XIAAAAAAFyEpBsoxxYsWKAaNWq4OwxTymPMAAAAcGSTl6wmN7MLr3kKhpfDs6QElmJbJ0yfkpiYqLfeeqtQeXx8vJYvX37Jc6OiojRs2DANGzbMXtazZ0/ddtttpuMwa8GCBRo2bJiOHz/u8rYAAABQ9jGn23kk3UAp69q1q9LT0x3KfH19i3Utf39/+fv7l0RYAAAAgNNsxei5rqivDKuY/fuAG/n6+io8PNxhCwoKkmEYSklJUb169eTr66s6deroySeflCR16tRJv/76q4YPHy6LxSKL5cIiFH8dqp2SkqJWrVpp/vz5qlevnqpVq6aBAwfKarVqypQpCg8PV2hoqF544QWHmKZNm6Zrr71WVatWVUREhAYOHKhTp05JktauXau+ffvqxIkT9rZTUlIkSXl5eRo5cqTq1q2rqlWrKiYmRmvXrnW49oIFC1SvXj1VqVJFd911l44dO+aaXywAAABKjdWwFGuriOjpBsqIDz74QK+88oqWLFmiZs2aKTs7W1u2bJEkLV26VC1bttRjjz2m/v37X/I6v/zyi7744gstX75cv/zyi+69917t3r1b11xzjdatW6cNGzbokUceUVxcnGJiYiRJXl5emjFjhqKjo7V7924NHDhQo0aN0uzZs9WuXTulpaVp/PjxysrKkiRVq1ZNkjR48GBt375dS5YsUZ06dfThhx+qa9eu2rp1q66++mp988036tevn1JTU9WjRw8tX75cycnJLvwtAgAAoDQUzNM2d07F7Okm6QZK2WeffWZPWgs8/fTT8vPzU3h4uOLi4lS5cmXVq1dPbdu2lSTVrFlT3t7eql69usLDwy95fZvNpvnz56t69epq2rSpOnfurKysLH3++efy8vJSo0aN9OKLL2rNmjX2pPvP88SjoqL0/PPPa8CAAZo9e7Z8fHwUGBgoi8Xi0Pa+ffuUnp6uffv2qU6dOpKkkSNHavny5UpPT9ekSZM0ffp0de3aVaNGjZIkXXPNNdqwYcNl568DAAAAnoKkGyhlnTt31pw5cxzKatasqdOnTystLU3169dX165dddttt6l79+6qVMnc/6ZRUVGqXr26fT8sLEze3t7y8vJyKDt8+LB9f9WqVUpNTdWOHTuUm5ur8+fP6+zZszpz5oyqVKlSZDtbt26V1WrVNddc41Cel5enWrVqSZJ++ukn3XXXXQ7HY2NjSboBAADKOZvhJZvJhdRsLKQGoDRUrVpVDRs2LFRes2ZNZWVladWqVVq5cqUGDhyoqVOnat26dapcubLT1/9rXYvFUmSZzWaTJO3du1e33367nnjiCb3wwguqWbOmvvrqK/Xr10/5+fkXTbpPnTolb29vbdq0Sd7e3g7H/tqTDwAAAM/C8HLnkXQDZYi/v7+6d++u7t27a9CgQWrcuLG2bt2q66+/Xj4+PrJarSXe5qZNm2Sz2fTyyy/be8P/+c9/OtQpqu3rrrtOVqtVhw8f1o033ljktZs0aaJvvvnGoWzjxo0lGD0AAADcwSaZXhjN5ppQyjySbqCU5eXlKTs726GsUqVK+uyzz2S1WhUTE6MqVaronXfekb+/vyIjIyVdGDa+fv169erVS76+vgoODi6ReBo2bKhz585p5syZ6t69u77++mvNnTvXoU5UVJROnTqljIwMtWzZUlWqVNE111yj3r17q0+fPnr55Zd13XXX6ciRI8rIyFCLFi3UrVs3Pfnkk2rfvr1eeukl3XnnnVqxYgVDywEAADxA8V4ZVjFfnlUx7xpwo+XLl6t27doOW4cOHVSjRg29/vrrat++vVq0aKFVq1bp008/tc+Pnjhxovbu3asGDRooJCSkxOJp2bKlpk2bphdffFHNmzfXokWLlJqa6lCnXbt2GjBggHr27KmQkBBNmTJFkpSenq4+ffpoxIgRatSokXr06KHvvvtO9erVkyTdcMMNev311zV9+nS1bNlSX375pcaNG1disQMAAMA9rIZXsbaKyGIYl5/Nnpubq8DAQJ04cUIBAQGlEVfZlxLo5vZPuLd9Nzp79qz27Nmj6Oho+fn5uTsclDA+X5QlPP+cU/B76qQ7Vcni/BoUAFDafp0Y65Z2I5NLd3rdeeOc1hofueT5VfBv/qubYuRfzdzA6T9Ondfg1t9UuOcqw8sBAAAAAKbYZJFNZud0m6vvKSpm/z4AABXEgQMH9NBDD6lWrVry9/fXtddeq3//+9/244ZhaPz48apdu7b8/f0VFxennTt3ujFiAEB5wPBy59HTDQAX485pJBV4CglKzu+//6727durc+fO+uKLLxQSEqKdO3cqKCjIXmfKlCmaMWOG3nrrLUVHR+vZZ59VfHy8tm/fzhQPAMBFFe+VYSTdAADAg7z44ouKiIhQenq6vSw6Otr+s2EYSktL07hx43TnnXdKkhYuXKiwsDB99NFH6tWrV6nHDAAoH2yGRTazrwwzWd9TVMyvGgAAqAA++eQTtWnTRvfdd59CQ0N13XXX6fXXX7cf37Nnj7KzsxUXF2cvCwwMVExMjDIzMy963by8POXm5jpsAICKxfa/nm4zW0V9ZRg93Si3bDabu0OAC/C5AiVn9+7dmjNnjpKSkvT000/ru+++05NPPikfHx8lJCQoOztbkhQWFuZwXlhYmP1YUVJTUzVhwgSXxg6gdJzr0sYt7S55c7pb2u0x8ga3tKvLvzCq3LVnM7xkMzlH22x9T0HSjXLHx8dHXl5eOnjwoEJCQuTj4yOLpWIOVfEkhmEoPz9fR44ckZeXl3x8fNwdElDu2Ww2tWnTRpMmTZIkXXfdddq2bZvmzp2rhISEYl937NixSkpKsu/n5uYqIiLiiuMFAMATkXSj3PHy8lJ0dLQOHTqkgwcPujsclLAqVaqoXr168vKqmN+EAiWpdu3aatq0qUNZkyZN9MEHH0iSwsPDJUk5OTmqXbu2vU5OTo5atWp10ev6+vrK19e35AMGAJQbVllkNfkKMLP1PQVJN8olHx8f1atXT+fPn5fVanV3OCgh3t7eqlSpEiMXgBLSvn17ZWVlOZT9/PPPioyMlHRhUbXw8HBlZGTYk+zc3Fx98803euKJJ0o7XABAOcLwcueRdKPcslgsqly5sipXruzuUACgTBo+fLjatWunSZMm6f7779e3336refPmad68eZIu/Ds6bNgwPf/887r66qvtrwyrU6eOevTo4d7gAQBlmlXme66L21U2a9YsTZ06VdnZ2WrZsqVmzpyptm3bXrR+Wlqa5syZo3379ik4OFj33nuvUlNT3fYqTJJuAAA81N/+9jd9+OGHGjt2rCZOnKjo6GilpaWpd+/e9jqjRo3S6dOn9dhjj+n48ePq0KGDli9fzju6AQCXVFo93e+++66SkpI0d+5cxcTEKC0tTfHx8crKylJoaGih+osXL9aYMWM0f/58tWvXTj///LMSExNlsVg0bdo00+2XBJJuAAA82O23367bb7/9osctFosmTpyoiRMnlmJUAIDyzmp4yWoyiTZbX5KmTZum/v37q2/fvpKkuXPnatmyZZo/f77GjBlTqP6GDRvUvn17Pfjgg5KkqKgoPfDAA/rmm29Mt11SKuagegAAAABAmZafn69NmzYpLi7OXubl5aW4uDhlZmYWeU67du20adMmffvtt5IuvD7z888/12233VYqMReFnm4AAAAAgCmGLLKZnNNt/K9+bm6uQ/nF3opx9OhRWa1WhYWFOZSHhYVpx44dRbbx4IMP6ujRo+rQoYMMw9D58+c1YMAAPf3006ZiLUn0dAMAAAAATCkYXm52k6SIiAgFBgbat9TU1BKLa+3atZo0aZJmz56t77//XkuXLtWyZcv03HPPlVgbZtHTDQAAAAAwxWZYZDPM9XQX1N+/f78CAgLs5UX1cktScHCwvL29lZOT41Cek5Oj8PDwIs959tln9fDDD+vRRx+VJF177bX2BUOfeeYZeXmVfr8zPd0AAAAAAFOs8irWJkkBAQEO28WSbh8fH7Vu3VoZGRn2MpvNpoyMDMXGxhZ5zpkzZwol1t7e3pIkwzBK4tZNo6cbAAAAAGDKlfR0m5GUlKSEhAS1adNGbdu2VVpamk6fPm1fzbxPnz6qW7eufYh69+7dNW3aNF133XWKiYnRrl279Oyzz6p79+725Lu0kXQDAAAAAMqknj176siRIxo/fryys7PVqlUrLV++3L642r59+xx6tseNGyeLxaJx48bpwIEDCgkJUffu3fXCCy+46xZIugEAAAAA5tjkJZvJ2cpm6xcYPHiwBg8eXOSxtWvXOuxXqlRJycnJSk5OLlZbrkDSDQAAAAAwxWpYZDU5XNxsfU9B0g0AAAAAMKW05nR7ApJuAAAAAIAphuElm2FuuLhhsr6nIOkGAAAAAJhilUVWmRxebrK+pyDpBgAAAACYYjPMDxe3uec12W5XMfv3AQAAAAAoBfR0AwAAAABMsRVjTrfZ+p6CpBsAAAAAYIpNFtlMztE2W99TkHQDAAAAAEzhPd3OI+kGAAAAAJjC8HLnkXQDAAAAbuZdq6Zb2j0w4A+3tJt47W1uabf68Y1uadcT2WQxv3p5BR1eXjG/agAAAAAAoBTQ0w0AAAAAMMUoxkJqRgXt6SbpBgAAAACYYjOKMby8gi6kxvByAAAqiMmTJ8tisWjYsGH2srNnz2rQoEGqVauWqlWrpnvuuUc5OTnuCxIAUC4ULKRmdquIKuZdAwBQwXz33Xd67bXX1KJFC4fy4cOH69NPP9V7772ndevW6eDBg7r77rvdFCUAoLwo6Ok2u1VEJN0AAHi4U6dOqXfv3nr99dcVFBRkLz9x4oTefPNNTZs2TTfffLNat26t9PR0bdiwQRs3ssIvAODibP+b0212q4hIugEA8HCDBg1St27dFBcX51C+adMmnTt3zqG8cePGqlevnjIzM0s7TAAAPBILqQEA4MGWLFmi77//Xt99912hY9nZ2fLx8VGNGjUcysPCwpSdnX3Ra+bl5SkvL8++n5ubW2LxAgDKBxZScx493QAAeKj9+/dr6NChWrRokfz8/ErsuqmpqQoMDLRvERERJXZtAED5wJxu55F0AwDgoTZt2qTDhw/r+uuvV6VKlVSpUiWtW7dOM2bMUKVKlRQWFqb8/HwdP37c4bycnByFh4df9Lpjx47ViRMn7Nv+/ftdfCcAgLKGpNt5DC8HAMBD/f3vf9fWrVsdyvr27avGjRtr9OjRioiIUOXKlZWRkaF77rlHkpSVlaV9+/YpNjb2otf19fWVr6+vS2MHAJRtDC93Hkk3AAAeqnr16mrevLlDWdWqVVWrVi17eb9+/ZSUlKSaNWsqICBAQ4YMUWxsrG644QZ3hAwAKCcMyfRq5IZrQinzSLoBAKjAXnnlFXl5eemee+5RXl6e4uPjNXv2bHeHBQCAxyDpBgCgAlm7dq3Dvp+fn2bNmqVZs2a5JyAAQLnE8HLnkXQDAAAAAEwh6XYeSTcAAAAAwBSSbueRdMO8lEA3tn3CjW1X0PtGxcN/6wAA4DJIup1H0g0AAAAAMMUwLDJMJtFm63sKkm4AAAAAgCk2WUy/MsxsfU/h5e4AAAAAAADwVPR0o3xx51xTAAAAAJKY020GSTcAAAAAwBTmdDuPpBsAAAAAYAo93c4j6QYAAAAAmEJPt/NIugEAAAAAphjF6Okm6QYAAAAqOO+wULe0O2rDKre0m/pAb7e0az1+wi3tAu5A0g0AAAAAMMWQZBjmz6mISLoBAAAAAKbYZJFFJhdSM1nfU5B0AwDgQjabTQsWLNDSpUu1d+9eWSwWRUdH695779XDDz8si6Vi/gECACjfWEjNeV7uDgAAAE9lGIbuuOMOPfroozpw4ICuvfZaNWvWTL/++qsSExN11113uTtEAACKpeCVYWa3ioiebgAAXGTBggVav369MjIy1LlzZ4djq1evVo8ePbRw4UL16dPHTRECAFA8hlGMOd0VdFI3Pd0AALjIP/7xDz399NOFEm5JuvnmmzVmzBgtWrTIDZEBAIDSQtINAICL/PDDD+ratetFj996663asmVLKUYEAEDJKJjTbXariBheDgCAi/z2228KCwu76PGwsDD9/vvvpRgRAAAlg4XUnEfSDQCAi1itVlWqdPFHrbe3t86fP1+KEQEAUDJshkUWk0k0C6kBAIASZRiGEhMT5evrW+TxvLy8Uo4IAICSwUJqziPpBgDARRISEi5bh5XLAQDl0YWk2+zwchcFU8aRdAMA4CLp6enuDkGpqalaunSpduzYIX9/f7Vr104vvviiGjVqZK9z9uxZjRgxQkuWLFFeXp7i4+M1e/bsS85HBwBUbMzpdh6rlwMA4EJ79+7V66+/rlmzZunHH38s9fbXrVunQYMGaePGjVq5cqXOnTunLl266PTp0/Y6w4cP16effqr33ntP69at08GDB3X33XeXeqwAAHgikm4AAFxkzZo1atasmR5//HENGTJE1113nd55551SjWH58uVKTExUs2bN1LJlSy1YsED79u3Tpk2bJEknTpzQm2++qWnTpunmm29W69atlZ6erg0bNmjjxo2lGisAoPwwirkVx6xZsxQVFSU/Pz/FxMTo22+/vWT948ePa9CgQapdu7Z8fX11zTXX6PPPPy9m61euwg8vjxqzrFjn7fUr4UAAAB7n2Wef1S233KI5c+bIz89P48aN06hRo/TQQw+5LaYTJ05IkmrWrClJ2rRpk86dO6e4uDh7ncaNG6tevXrKzMzUDTfc4JY4AQBlW2kNL3/33XeVlJSkuXPnKiYmRmlpaYqPj1dWVpZCQ0ML1c/Pz9ctt9yi0NBQvf/++6pbt65+/fVX1ahRw3TbJYWebgAAXGTbtm2aNGmSateuraCgIE2dOlWHDx/WsWPH3BKPzWbTsGHD1L59ezVv3lySlJ2dLR8fn0J/jISFhSk7O7vI6+Tl5Sk3N9dhAwBUMKXU1T1t2jT1799fffv2VdOmTTV37lxVqVJF8+fPL7L+/Pnz9dtvv+mjjz5S+/btFRUVpY4dO6ply5ZOt7lmzRrzgV4CSTcAAC6Sm5ur4OBg+36VKlXk7+9v720ubYMGDdK2bdu0ZMmSK7pOamqqAgMD7VtEREQJRQgAKDf+19NtZpPJnu78/Hxt2rTJYTSWl5eX4uLilJmZWeQ5n3zyiWJjYzVo0CCFhYWpefPmmjRpkqxWq9Ptdu3aVQ0aNNDzzz+v/fv3m4q5KBV+eDkAAK60YsUKBQYG2vdtNpsyMjK0bds2e9kdd9zh8jgGDx6szz77TOvXr9dVV11lLw8PD1d+fr6OHz/u0Nudk5Oj8PDwIq81duxYJSUl2fdzc3NJvAGggrmS93T/dYSUr6+vfH19C9U/evSorFZrobdphIWFaceOHUW2sXv3bq1evVq9e/fW559/rl27dmngwIE6d+6ckpOTnYrzwIEDevvtt/XWW29pwoQJuvnmm9WvXz/16NFDPj4+Tl3jz0i6AQBwoaLe1f3444/bf7ZYLKa+fTfLMAwNGTJEH374odauXavo6GiH461bt1blypWVkZGhe+65R5KUlZWlffv2KTY2tshrXuyPIwAAnPHXL2qTk5OVkpJSIte22WwKDQ3VvHnz5O3trdatW+vAgQOaOnWq00l3cHCwhg8fruHDh+v7779Xenq6Bg4cqIEDB+rBBx9Uv379TA1XJ+kGAMBFbDabu0PQoEGDtHjxYn388ceqXr26fZ52YGCg/P39FRgYqH79+ikpKUk1a9ZUQECAhgwZotjYWBZRAwBc1JUspLZ//34FBATYyy/2RW5wcLC8vb2Vk5PjUH6p0Vi1a9dW5cqV5e3tbS9r0qSJsrOzlZ+fb7qn+vrrr1d4eLhq1aqlyZMna/78+Zo9e7ZiY2M1d+5cNWvW7LLXIOkGgDLIzJsV9k7u5sJIUN7NmTNHktSpUyeH8vT0dCUmJkqSXnnlFXl5eemee+5RXl6e4uPjNXv27FKOFABQrhRjjnZB/YCAAIek+2J8fHzUunVrZWRkqEePHpL+f5rW4MGDizynffv2Wrx4sWw2m7y8Lixh9vPPP6t27dqmEu5z587p448/1vz587Vy5Uq1adNGr776qh544AEdOXJE48aN03333aft27df9lok3QAAuMgnn3ziVD1Xzuk2nJhw5+fnp1mzZmnWrFkuiwMA4FmuZE63GUlJSUpISFCbNm3Utm1bpaWl6fTp0+rbt68kqU+fPqpbt65SU1MlSU888YReffVVDR06VEOGDNHOnTs1adIkPfnkk063OWTIEP3jH/+QYRh6+OGHNWXKFPtbPySpatWqeumll1SnTh2nrkfSDQCAixR8K38prp7TDQCASxTnFWDFSLp79uypI0eOaPz48crOzlarVq20fPly++Jq+/bts/doSxfmi69YsULDhw9XixYtVLduXQ0dOlSjR492us3t27dr5syZuvvuuy859N3ZV4uRdAMA4CJlYU43AACucCVzus0aPHjwRYeTr127tlBZbGysNm7cWKy2pAsLu7Vr106VKjmmy+fPn9eGDRt00003qVKlSurYsaNT1yPpBsoBM/N7XYm5wwCA0mSpVPp/qp5aWLXU25SkKW07uaVdHdvqnnaBMqxz5846dOiQQkNDHcpPnDihzp07mx6h5raku6wkEQAAAACAYijGcPHywDAMWSyFe+WPHTumqlXNfzFHTzcAlHMl/SXmXr8SvRwAAPBApTm8vLTcfffdki6st5KYmOgwn9tqteqHH35Qu3btTF+XpBvAJe31e/D/d1JKufGUE6XcIAAAAJxSSguplabAwEBJF3q6q1evLn9/f/sxHx8f3XDDDerfv7/p65J0AwAAAABMsvxvM3tO2ZWeni5JioqK0siRI4s1lLwoJN0AAAAAAHM8sKe7QHJycolej6QbAAAXCAoKKnIRlqL89ttvLo4GAABcyvXXX6+MjAwFBQXpuuuuu+Qz/Pvvvzd1bZJuAABcIC0tzf7zsWPH9Pzzzys+Pl6xsbGSpMzMTK1YsULPPvusmyIEAOAKeFhP95133mlfOK1Hjx4lem2SbgAAXCAhIcH+8z333KOJEydq8ODB9rInn3xSr776qlatWqXhw4e7I0QAAIrPsFzYzJ5TRv15SDnDyyHJde853zu5m0uuCwAV2YoVK/Tiiy8WKu/atavGjBnjhogAALgyhnFhM3tORUTSDQCAi9WqVUsff/yxRowY4VD+8ccfq1atWm6KCgCAK+Bhw8tduRYLSTcAAC42YcIEPfroo1q7dq1iYmIkSd98842WL1+u119/3c3RAQBQDB42vPzPa7GUNJJuAECZURJTZ8riNJnExEQ1adJEM2bM0NKlSyVJTZo00VdffWVPwgEAKE8sxoXN7Dll1Z/XYilpJN0AAJSCmJgYLVq0yN1hAACAIuTm5iogIMD+86UU1HMWSTccONPLtNevFAIBAA/zyy+/KD09Xbt371ZaWppCQ0P1xRdfqF69emrWrJm7wwMAwBwPnNN96NAhhYaGqkaNGkXO7zYMQxaLRVar1dS1SboBAHCxdevW6dZbb1X79u21fv16Pf/88woNDdWWLVv05ptv6v3333d3iAAAmONhc7pXr16tmjVrSpLWrFlTotcm6QYAwMXGjBmj559/XklJSapevbq9/Oabb9arr77qxsgAACgmD+vp7tixY5E/lwSSbgAAXGzr1q1avHhxofLQ0FAdPXrUDREBAHCFPCzp/qvff/9db775pn766SdJUtOmTdW3b197b7gZ5Trp3uv3oLtDAADgsmrUqKFDhw4pOjraofw///mP6tat66aoAAC4Ah6cdK9fv17du3dXYGCg2rRpI0maMWOGJk6cqE8//VQ33XSTqet5uSJIAADw/3r16qXRo0crOztbFotFNptNX3/9tUaOHKk+ffq4OzwAAPAngwYNUs+ePbVnzx4tXbpUS5cu1e7du9WrVy8NGjTI9PXKdU83gIqpJN7l7AxW6kdJmTRpkgYNGqSIiAhZrVY1bdpUVqtVDz74oMaNG+fu8AAAMM/DFlL7s127dun999+Xt7e3vczb21tJSUlauHCh6evR0w0AgIv5+Pjo9ddf1+7du/XZZ5/pnXfe0Y4dO/T22287PNDdadasWYqKipKfn59iYmL07bffujskAEAZZjGKt5UH119/vX0u95/99NNPatmypenr0dMNAICLTZw4USNHjlRERIQiIiLs5X/88YemTp2q8ePHuzE66d1331VSUpLmzp2rmJgYpaWlKT4+XllZWQoNDXVrbACAMsrD5nT/8MMP9p+ffPJJDR06VLt27dINN9wgSdq4caNmzZqlyZMnm742STeAMqu0hpEDrjZhwgQNGDBAVapUcSg/c+aMJkyY4Pake9q0aerfv7/69u0rSZo7d66WLVum+fPna8yYMW6NDQCA0tCqVStZLBYZxv9/MzBq1KhC9R588EH17NnT1LVJugEAcDHDMGSxFJ7HtmXLlmK9eqQk5efna9OmTRo7dqy9zMvLS3FxccrMzHRjZACAsswi88PFy/KM7j179rjs2iTdAAC4SFBQkCwWiywWi6655hqHxNtqterUqVMaMGCAGyOUjh49KqvVqrCwMIfysLAw7dixo8hz8vLylJeXZ9/Pzc11aYwAALhaZGSky65N0g0AgIukpaXJMAw98sgjmjBhggIDA+3HfHx8FBUVpdjYWDdGWDypqamaMGGCu8NAKaoUVc8t7Q5c9WWpt5k6pnWptylJ1mOu62UDXMKDVy8vsH37du3bt0/5+fkO5XfccYep65B0AwDgIgkJCZKk6OhotWvXTpUrV3ZzRIUFBwfL29tbOTk5DuU5OTkKDw8v8pyxY8cqKSnJvp+bm+uwQBwAoALwsIXU/mz37t266667tHXrVod53gUj1qxWq6nr8cowAABcrGPHjvaE++zZs8rNzXXY3MnHx0etW7dWRkaGvcxmsykjI+OivfC+vr4KCAhw2AAAFYxRzK0cGDp0qKKjo3X48GFVqVJFP/74o9avX682bdpo7dq1pq9HTzcAAC525swZjRo1Sv/85z917NixQsfNfmNe0pKSkpSQkKA2bdqobdu2SktL0+nTp+2rmQMA8FfFee92eXlPd2ZmplavXq3g4GB5eXnJy8tLHTp0UGpqqp588kn95z//MXU9eroBAHCxp556SqtXr9acOXPk6+urN954QxMmTFCdOnW0cOFCd4ennj176qWXXtL48ePVqlUrbd68WcuXLy+0uBoAAHYe3NNttVpVvXp1SRemYR08eFDShcXWsrKyTF+Pnm4AAFzs008/1cKFC9WpUyf17dtXN954oxo2bKjIyEgtWrRIvXv3dneIGjx4sAYPHuzuMAAA5YUHz+lu3ry5tmzZoujoaMXExGjKlCny8fHRvHnzVL9+fdPXo6cbAAAX++233+wP6YCAAP3222+SpA4dOmj9+vXuDA0AAPzFuHHjZLPZJEkTJ07Unj17dOONN+rzzz/XjBkzTF+Pnm4AAFysfv362rNnj+rVq6fGjRvrn//8p9q2batPP/1UNWrUcHd4AACY5slzuuPj4+0/N2zYUDt27NBvv/2moKAg+wrmZpB0AwDgYn379tWWLVvUsWNHjRkzRt27d9err76qc+fOadq0ae4ODwAA8yrAe7olaf/+/ZJ0Ra/GJOkGAMDFhg8fbv85Li5OO3bs0KZNm9SwYUO1aNHCjZEBAFBMHjyn+/z585owYYJmzJihU6dOSZKqVaumIUOGKDk52f4aUGeRdAMAUMoiIyMVGRnp7jAAACg2Tx5ePmTIEC1dulRTpkxRbGyspAuvEUtJSdGxY8c0Z84cU9cj6QYAoBR89913WrNmjQ4fPmxfnKUAQ8wBAOWOB/d0L168WEuWLNGtt95qL2vRooUiIiL0wAMPkHQDAFDWTJo0SePGjVOjRo0UFhbmsAhLcRZkAQAAruPr66uoqKhC5dHR0fLx8TF9PZJuAABcbPr06Zo/f74SExPdHQoAACWjGMPLy0tP9+DBg/Xcc88pPT1dvr6+kqS8vDy98MILGjx4sOnrkXQDAOBiXl5eat++vbvDAACg5HjY8PK7777bYX/VqlW66qqr1LJlS0nSli1blJ+fr7///e+mr03SDQCAiw0fPlyzZs1SWlqau0MBAKBkeFjSHRgY6LB/zz33OOzzyjAAAMqwkSNHqlu3bmrQoIGaNm1a6FUjS5cudVNkAAAUj6etXp6enu6ya5N0AwDgYk8++aTWrFmjzp07q1atWiyeBgBAOXDkyBFlZWVJkho1aqSQkJBiXYekGwAAF3vrrbf0wQcfqFu3bu4OBQAAXMbp06c1ZMgQLVy40P6aT29vb/Xp00czZ85UlSpVTF3PyxVBAgCA/1ezZk01aNDA3WEAAFByjGJu5UBSUpLWrVunTz/9VMePH9fx48f18ccfa926dRoxYoTp65F0AwDgYikpKUpOTtaZM2fcHQoAACWiYE632a08+OCDD/Tmm2/q1ltvVUBAgAICAnTbbbfp9ddf1/vvv2/6egwvB8qBvX4PujsEAFdgxowZ+uWXXxQWFqaoqKhCC6l9//33booMAIArUE6SaLPOnDmjsLCwQuWhoaHF+gKdpBsAABfr0aOHu0MAAKBkedgrw/4sNjZWycnJWrhwofz8/CRJf/zxhyZMmKDY2FjT1yPpBgDAxZKTk90dAgAAJcrTXhn2Z2lpaeratauuuuoqtWzZUpK0ZcsW+fn5acWKFaavR9INAAAAADDHg3u6r732Wu3cuVOLFi3Sjh07JEkPPPCAevfuLX9/f9PXI+kGAMAFatasqZ9//lnBwcEKCgq65Lu5f/vtt1KMDOWZV6umbml34PtL3dLurFtvK/U2q+78ptTbBHBps2bN0tSpU5Wdna2WLVtq5syZatu27WXPW7JkiR544AHdeeed+uijj5xq69y5c2rcuLE+++wz9e/f/wojv4CkGwAAF3jllVdUvXp1+8+XSroBAChvSmt4+bvvvqukpCTNnTtXMTExSktLU3x8vLKyshQaGnrR8/bu3auRI0fqxhtvNNVe5cqVdfbsWfOBXgJJNwAALpCQkGD/OTEx0X2BAADgCqU0vHzatGnq37+/+vbtK0maO3euli1bpvnz52vMmDFFnmO1WtW7d29NmDBB//rXv3T8+HFTbQ4aNEgvvvii3njjDVWqdOUpM0k3AAAu5u3trUOHDhX6Rv7YsWMKDQ2V1Wp1U2QAABTTFSTdubm5DsW+vr7y9fUtVD0/P1+bNm3S2LFj7WVeXl6Ki4tTZmbmRZuZOHGiQkND1a9fP/3rX/8yGaT03XffKSMjQ19++aWuvfZaVa1a1eH40qXmptx4mY4AAACYYhhF/1WSl5cnHx8fl7S5d+9e9evXT9HR0fL391eDBg2UnJys/Px8h3o//PCDbrzxRvn5+SkiIkJTpkxxSTwAAM9SMLzc7CZJERERCgwMtG+pqalFtnH06FFZrdZC78wOCwtTdnZ2ked89dVXevPNN/X6668X+95q1Kihe+65R/Hx8apTp45DrIGBgaavR083AAAuMmPGDEmSxWLRG2+8oWrVqtmPWa1WrV+/Xo0bN3ZJ2zt27JDNZtNrr72mhg0batu2berfv79Onz6tl156SdKFnoYuXbooLi5Oc+fO1datW/XII4+oRo0aeuyxx1wSFwDAQ1xBT/f+/fsVEBBgLy6ql7s4Tp48qYcfflivv/66goODTZ9vs9k0depU/fzzz8rPz9fNN9+slJSUYq1Y/mck3QAAuMgrr7wi6UJP99y5c+Xt7W0/5uPjo6ioKM2dO9clbXft2lVdu3a179evX19ZWVmaM2eOPeletGiR8vPzNX/+fPn4+KhZs2bavHmzpk2bRtINAHCZgIAAh6T7YoKDg+Xt7a2cnByH8pycHIWHhxeq/8svv2jv3r3q3r27vcxms0mSKlWqpKysLDVo0OCi7b3wwgtKSUlRXFyc/P39NWPGDB05ckTz58939taKRNINAICL7NmzR5LUuXNnLV26VEFBQW6N58SJE6pZs6Z9PzMzUzfddJPDEPf4+Hi9+OKL+v333y8ab15envLy8uz7f52bBwCoAEphITUfHx+1bt1aGRkZ6tGjh6QLSXRGRoYGDx5cqH7jxo21detWh7Jx48bp5MmTmj59uiIiIi7Z3sKFCzV79mw9/vjjkqRVq1apW7dueuONN+TlVfyZ2STdAAC42Jo1axz2rVartm7dqsjIyFJLxHft2qWZM2fae7klKTs7W9HR0Q71CubNZWdnXzS21NRUTZgwwXXBAgDKvNJ6ZVhSUpISEhLUpk0btW3bVmlpaTp9+rR9NfM+ffqobt26Sk1NlZ+fn5o3b+5wfo0aNSSpUHlR9u3bp9tuu82+HxcXJ4vFooMHD+qqq64yH/z/sJAaAAAuNmzYML355puSLiTcN910k66//npFRERo7dq1pq41ZswYWSyWS247duxwOOfAgQPq2rWr7rvvPvXv3/+K72fs2LE6ceKEfdu/f/8VXxMAUM4YxdxM6tmzp1566SWNHz9erVq10ubNm7V8+XL7l8T79u3ToUOHrvx+JJ0/f15+fn4OZZUrV9a5c+eu6Lr0dAMA4GLvvfeeHnroIUnSp59+qr1792rHjh16++239cwzz+jrr792+lojRoy47Hu/69evb//54MGD6ty5s9q1a6d58+Y51AsPDy9ynlzBsYu52KtdAAAVR2n1dEvS4MGDixxOLumyX14vWLDA6XYMw1BiYqLDM+7s2bMaMGCAw2vDzL4yjKQbAAAXO3bsmD2J/fzzz3Xffffpmmuu0SOPPKLp06ebulZISIhCQkKcqnvgwAF17txZrVu3Vnp6eqH5aLGxsXrmmWd07tw5Va5cWZK0cuVKNWrUyO3zzwEAZVwpzOkubQkJCYXKCr40vxIk3QDKrL1+D7o7BKBEhIWFafv27apdu7aWL1+uOXPmSJLOnDnjsKJ5STpw4IA6deqkyMhIvfTSSzpy5Ij9WMEXAA8++KAmTJigfv36afTo0dq2bZumT59uX3UdAICKJD093SXXJekGAMDF+vbtq/vvv1+1a9eWxWJRXFycJOmbb75x2Xu6V65cqV27dmnXrl2FFn8xjAtdDYGBgfryyy81aNAgtW7dWsHBwRo/fjyvCwMAXJ4H9nS7Ckk3AAAulpKSoubNm2v//v2677777HPFvL29NWbMGJe0mZiYeNm535LUokUL/etf/3JJDAAAz2X532b2nIqIpBsAgFJw7733Fiorau4YAADlAj3dTuOVYQAAuMhtt92mEydO2PcnT56s48eP2/ePHTumpk2buiEyAACuTMHq5Wa3ioikGwAAF1mxYoXy8vLs+5MmTdJvv/1m3z9//ryysrLcERoAAFemlN7T7QlIugEAcJGCBcsutg8AADwfc7oBAAAAAObxXbJTSLoBAHARi8Uii8VSqAwAgPKuOHO0K+qcbpJuAABcxDAMJSYm2l8RdvbsWQ0YMEBVq1aVJIf53gAAlCusXu40km4AAFzkr68Ee+ihhwrV6dOnT2mFAwBAiaGn23kk3QAAuEh6erq7QwAAwDXo6XYaSTcAAAAAwBR6up1H0g0AAGDSwafauaXdZx79h1vafbVla7e0azu92y3tAkBJIukGAAAAAJjD8HKnkXQDAAAAAMwh6XYaSTcAAAAAwBTmdDuPpBsAAAAAYA493U4j6QYAAAAAmGIxDFkMc1m02fqewsvdAQAAAAAA4Kno6QYAAAAAmMPwcqeRdAMAAAAATGEhNeeRdAMAAAAAzKGn22kk3QAAAAAAU+jpdh5JNwAAAADAHHq6ncbq5QAAAAAAuAhJNwAAHi4vL0+tWrWSxWLR5s2bHY798MMPuvHGG+Xn56eIiAhNmTLFPUECAMqVguHlZreKiKQbAAAPN2rUKNWpU6dQeW5urrp06aLIyEht2rRJU6dOVUpKiubNm+eGKAEA5YpRzK0CYk43AAAe7IsvvtCXX36pDz74QF988YXDsUWLFik/P1/z58+Xj4+PmjVrps2bN2vatGl67LHH3BQxAKC8qKg912bR0w0AgIfKyclR//799fbbb6tKlSqFjmdmZuqmm26Sj4+PvSw+Pl5ZWVn6/fffL3rdvLw85ebmOmwAgArGMIq3VUAk3QAAeCDDMJSYmKgBAwaoTZs2RdbJzs5WWFiYQ1nBfnZ29kWvnZqaqsDAQPsWERFRcoEDAMoF5nQ7j6QbAIByZMyYMbJYLJfcduzYoZkzZ+rkyZMaO3ZsiccwduxYnThxwr7t37+/xNsAAJRxzOl2GnO6AQAoR0aMGKHExMRL1qlfv75Wr16tzMxM+fr6Ohxr06aNevfurbfeekvh4eHKyclxOF6wHx4eftHr+/r6FrouAAAoGkk3AADlSEhIiEJCQi5bb8aMGXr++eft+wcPHlR8fLzeffddxcTESJJiY2P1zDPP6Ny5c6pcubIkaeXKlWrUqJGCgoJccwMAAI9gsV3YzJ5TEZF0AwDggerVq+ewX61aNUlSgwYNdNVVV0mSHnzwQU2YMEH9+vXT6NGjtW3bNk2fPl2vvPJKqccLAChnijNcnOHlAICyYq/fg+4OARVAYGCgvvzySw0aNEitW7dWcHCwxo8fz+vCAACXVZyF0SrqQmok3QAAVABRUVEyinhVS4sWLfSvf/3LDREBAMq14rwCrIK+MoykGwAAAABgCj3dzuOVYQAAAAAAuAg93QAAACZFfJTtlnbTp0a6pV3ptJvaBVBmsZCa00i6AQAAAACmMLzceSTdAAAAAABzWEjNaSTdAAAAAABT6Ol2Hkk3AAAAAMAc5nQ7jdXLAQAAAABwEXq6AQAAAACmMLzceSTdAAAAAABzbMaFzew5FRBJNwAAAADAHOZ0O42kGwAAAABgikXFGF7ukkjKPhZSAwAAAACYU/CebrNbMcyaNUtRUVHy8/NTTEyMvv3224vWff3113XjjTcqKChIQUFBiouLu2T90kDSDQAAAAAok959910lJSUpOTlZ33//vVq2bKn4+HgdPny4yPpr167VAw88oDVr1igzM1MRERHq0qWLDhw4UMqR/z+SbgAAAACAKQWrl5vdzJo2bZr69++vvn37qmnTppo7d66qVKmi+fPnF1l/0aJFGjhwoFq1aqXGjRvrjTfekM1mU0ZGxhXecfGRdAMAAAAAzDGKuUnKzc112PLy8opsIj8/X5s2bVJcXJy9zMvLS3FxccrMzHQqzDNnzujcuXOqWbNmce6yRJB0AwAAAABMsRhGsTZJioiIUGBgoH1LTU0tso2jR4/KarUqLCzMoTwsLEzZ2dlOxTl69GjVqVPHIXEvbaxeDgAAAAAwx/a/zew5kvbv36+AgAB7sa+vb4mF9WeTJ0/WkiVLtHbtWvn5+bmkDWeQdAMAAAAATPlzz7WZcyQpICDAIem+mODgYHl7eysnJ8ehPCcnR+Hh4Zc896WXXtLkyZO1atUqtWjRwlScJY3h5QAAAAAAc65gTrezfHx81Lp1a4dF0AoWRYuNjb3oeVOmTNFzzz2n5cuXq02bNuYadQF6ugEAAAAAZVJSUpISEhLUpk0btW3bVmlpaTp9+rT69u0rSerTp4/q1q1rnxf+4osvavz48Vq8eLGioqLsc7+rVaumatWqueUeSLoBAAAAAOYYxoXN7Dkm9ezZU0eOHNH48eOVnZ2tVq1aafny5fbF1fbt2ycvr/8fwD1nzhzl5+fr3nvvdbhOcnKyUlJSTLdfEhheDgCAB1u2bJliYmLk7++voKAg9ejRw+H4vn371K1bN1WpUkWhoaF66qmndP78efcECwAoN0rrPd2SNHjwYP3666/Ky8vTN998o5iYGPuxtWvXasGCBfb9vXv3yjCMQpu7Em6Jnm4AADzWBx98oP79+2vSpEm6+eabdf78eW3bts1+3Gq1qlu3bgoPD9eGDRt06NAh9enTR5UrV9akSZPcGDkAoMwrpZ5uT0DSDQCABzp//ryGDh2qqVOnql+/fvbypk2b2n/+8ssvtX37dq1atUphYWFq1aqVnnvuOY0ePVopKSny8fFxR+gAgHLAYruwmT2nImJ4OQAAHuj777/XgQMH5OXlpeuuu061a9fWrbfe6tDTnZmZqWuvvdY+L06S4uPjlZubqx9//NEdYQMAyouCnm6zWwVE0g0AgAfavXu3JCklJUXjxo3TZ599pqCgIHXq1Em//fabJCk7O9sh4ZZk3y9Y7bUoeXl5ys3NddgAAEDRGF4OAEA5MmbMGL344ouXrPPTTz/JZrswhu+ZZ57RPffcI0lKT0/XVVddpffee0+PP/54sWNITU3VhAkTCpV7N7la3t6+xb5ucSxcPr9U2ysQ88ENbmm34bDdbmkXAAopxnu3Tdf3ECTdAACUIyNGjFBiYuIl69SvX1+HDh2S5DiH29fXV/Xr19e+ffskSeHh4fr2228dzs3JybEfu5ixY8cqKSnJvp+bm6uIiAhT9wEAKN8shiGLyeHiZut7CpJuAADKkZCQEIWEhFy2XuvWreXr66usrCx16NBBknTu3Dnt3btXkZGRkqTY2Fi98MILOnz4sEJDQyVJK1euVEBAgEOy/le+vr7y9S3dHm0AQBnD6uVOI+kGAMADBQQEaMCAAUpOTlZERIQiIyM1depUSdJ9990nSerSpYuaNm2qhx9+WFOmTFF2drbGjRunQYMGkVQDAC7NkGR2NfKKmXOTdAMA4KmmTp2qSpUq6eGHH9Yff/yhmJgYrV69WkFBQZIkb29vffbZZ3riiScUGxurqlWrKiEhQRMnTnRz5ACAso7h5c4j6QYAwENVrlxZL730kl566aWL1omMjNTnn39eilEBAFCxkHQDAAAAAMwxVIw53S6JpMwj6QYAAAAAmMNCak4j6QYAAAAAmGOTZCnGORUQSTcAAAAAwBQWUnMeSTcAAAAAwByGlzuNpBsAAAAAYA5Jt9O83B0AAAAAAACeip5uAAAAAIA59HQ7jaQbAAAAAGAOq5c7jaQbAAAAAGAKq5c7j6QbAAAAAGAOw8udRtINAAAAADDHZkgWk0m0rWIm3axeDgAAAACAi9DTDQAAAAAwh+HlTiPpBgAAAACYVIykWyTdAAAAAABcHj3dTiPpBgAAAACYYzNkuue6gi6kRtINAAAAADDHsF3YzJ5TAbF6OQAAAAAALkJPNwAAAADAHOZ0O42kGwAAlIjExStUpbp3qbb5cNOupdpegYYnN7qlXQAoM5jT7TSSbgAAAACAOfR0O42kGwAAAABgjqFiJN0uiaTMYyE1AAA81M8//6w777xTwcHBCggIUIcOHbRmzRqHOvv27VO3bt1UpUoVhYaG6qmnntL58+fdFDEAoNwo6Ok2u1VAJN0AAHio22+/XefPn9fq1au1adMmtWzZUrfffruys7MlSVarVd26dVN+fr42bNigt956SwsWLND48ePdHDkAAJ6DpBsAAA909OhR7dy5U2PGjFGLFi109dVXa/LkyTpz5oy2bdsmSfryyy+1fft2vfPOO2rVqpVuvfVWPffcc5o1a5by8/PdfAcAgDLNZiveVgGRdAMA4IFq1aqlRo0aaeHChTp9+rTOnz+v1157TaGhoWrdurUkKTMzU9dee63CwsLs58XHxys3N1c//viju0IHAJQHDC93GguplVN7/R50dwgAgDLMYrFo1apV6tGjh6pXry4vLy+FhoZq+fLlCgoKkiRlZ2c7JNyS7PsFQ9CLkpeXp7y8PPt+bm6uC+4AAFCmsXq50+jpBgCgHBkzZowsFssltx07dsgwDA0aNEihoaH617/+pW+//VY9evRQ9+7ddejQoSuKITU1VYGBgfYtIiKihO4OAFBu2IzibRUQPd0AAJQjI0aMUGJi4iXr1K9fX6tXr9Znn32m33//XQEBAZKk2bNna+XKlXrrrbc0ZswYhYeH69tvv3U4NycnR5IUHh5+0euPHTtWSUlJ9v3c3FwSbwCoYAzDJsMwN0fbbH1PQdINAEA5EhISopCQkMvWO3PmjCTJy8txUJuXl5ds/1vIJjY2Vi+88IIOHz6s0NBQSdLKlSsVEBCgpk2bXvTavr6+8vX1Le4tAAA8gVGMnmuGlwMAAE8RGxuroKAgJSQkaMuWLfr555/11FNPac+ePerWrZskqUuXLmratKkefvhhbdmyRStWrNC4ceM0aNAgkmoAAEoISTcAAB4oODhYy5cv16lTp3TzzTerTZs2+uqrr/Txxx+rZcuWkiRvb2999tln8vb2VmxsrB566CH16dNHEydOdHP0AIAyj9XLncbwcgAAPFSbNm20YsWKS9aJjIzU559/XkoRAQA8hs0mWUzO0WZONwAAAAAATjAMSczpdgZJNwAAAADAFMNmk2Gyp5vVywEAAAAAcAY93U5jITUAAAAAAFyEnm4AAAAAgDk2Q7LQ0+0Mkm4AAAAAgDmGIcns6uUVM+lmeDkAAAAAwBTDZhRrK45Zs2YpKipKfn5+iomJ0bfffnvJ+u+9954aN24sPz8/XXvttW5/NSZJNwAAAADAHMNWvM2kd999V0lJSUpOTtb333+vli1bKj4+XocPHy6y/oYNG/TAAw+oX79++s9//qMePXqoR48e2rZt25XecbGRdAMAAAAATCmtnu5p06apf//+6tu3r5o2baq5c+eqSpUqmj9/fpH1p0+frq5du+qpp55SkyZN9Nxzz+n666/Xq6++eqW3XGwk3QAAAACAMic/P1+bNm1SXFycvczLy0txcXHKzMws8pzMzEyH+pIUHx9/0fqlwamF1Iz/TXjPzc0tsYZteWeu+Bq5ZlfLAwCUaSXybCjBZ1XBtYwKuvCLswp+P3+cspZ62+eN/FJvU5Jsxjm3tAsAzjivC/9GufL5dd7IMz1cvCCuvz6rfX195evrW6j+0aNHZbVaFRYW5lAeFhamHTt2FNlGdnZ2kfWzs7NNxVqSnEq6T548KUmKiIhwaTBmBbo7AABACbv/iq8QmHblUfzVyZMnFRjIU+diCv5OeOzG7W5ofasb2gSA8sEVzy8fHx+Fh4frq+ziLU5WrVq1QnllcnKyUlJSSiC6ssmppLtOnTrav3+/qlevLovF4uqYSk1ubq4iIiK0f/9+BQQEuDscl+Aeyz9Pvz/J8+/R0+9P8tx7NAxDJ0+eVJ06ddwdSpnmrr8TPOG/O0+4B4n7KGu4j7LDXffgyueXn5+f9uzZo/z84o00Mgyj0LOiqF5uSQoODpa3t7dycnIcynNychQeHl7kOeHh4abqlwankm4vLy9dddVVro7FbQICAsrt/8jO4h7LP0+/P8nz79HT70/yzHukh/vy3P13gif8d+cJ9yBxH2UN91F2uOMeXPn88vPzk5+fn8uuX8DHx0etW7dWRkaGevToIUmy2WzKyMjQ4MGDizwnNjZWGRkZGjZsmL1s5cqVio2NdXm8F+NU0g0AAAAAQGlLSkpSQkKC2rRpo7Zt2yotLU2nT59W3759JUl9+vRR3bp1lZqaKkkaOnSoOnbsqJdfflndunXTkiVL9O9//1vz5s1z2z2QdAMAAAAAyqSePXvqyJEjGj9+vLKzs9WqVSstX77cvljavn375OX1/y/lateunRYvXqxx48bp6aef1tVXX62PPvpIzZs3d9ctVOyk29fXV8nJyRedQ+AJuMfyz9PvT/L8e/T0+5Mqxj2i7PGE/+484R4k7qOs4T7KDk+4h7Jg8ODBFx1Ovnbt2kJl9913n+677z4XR+U8i8F7UAAAAAAAcAmvy1cBAAAAAADFQdINAAAAAICLkHQDAAAAAOAiFTLpXrt2rSwWS5Hbd999J0nau3dvkcc3btzo5uidFxUVVSj+yZMnO9T54YcfdOONN8rPz08RERGaMmWKm6I1Z+/everXr5+io6Pl7++vBg0aKDk5Wfn5+Q51yvtnKEmzZs1SVFSU/Pz8FBMTo2+//dbdIRVLamqq/va3v6l69eoKDQ1Vjx49lJWV5VCnU6dOhT6vAQMGuCli81JSUgrF37hxY/vxs2fPatCgQapVq5aqVaume+65Rzk5OW6M2Jyi/k2xWCwaNGiQpPL/+aH88JTnuCc8pz3teVyenrme8lz1lGcnz0hcSoVcvbxdu3Y6dOiQQ9mzzz6rjIwMtWnTxqF81apVatasmX2/Vq1apRJjSZk4caL69+9v369evbr959zcXHXp0kVxcXGaO3eutm7dqkceeUQ1atTQY4895o5wnbZjxw7ZbDa99tpratiwobZt26b+/fvr9OnTeumllxzqlufP8N1331VSUpLmzp2rmJgYpaWlKT4+XllZWQoNDXV3eKasW7dOgwYN0t/+9jedP39eTz/9tLp06aLt27eratWq9nr9+/fXxIkT7ftVqlRxR7jF1qxZM61atcq+X6nS//8zO3z4cC1btkzvvfeeAgMDNXjwYN199936+uuv3RGqad99952sVqt9f9u2bbrlllscVgct758fygdPeo6X9+e0Jz2Py9sz15Oeq57w7OQZiUsyYOTn5xshISHGxIkT7WV79uwxJBn/+c9/3BfYFYqMjDReeeWVix6fPXu2ERQUZOTl5dnLRo8ebTRq1KgUoit5U6ZMMaKjo+37nvAZtm3b1hg0aJB932q1GnXq1DFSU1PdGFXJOHz4sCHJWLdunb2sY8eOxtChQ90X1BVKTk42WrZsWeSx48ePG5UrVzbee+89e9lPP/1kSDIyMzNLKcKSNXToUKNBgwaGzWYzDKP8f34ov8rrc9xTn9Pl9Xlc3p+55fW56qnPTp6R+LMKObz8rz755BMdO3ZMffv2LXTsjjvuUGhoqDp06KBPPvnEDdFdmcmTJ6tWrVq67rrrNHXqVJ0/f95+LDMzUzfddJN8fHzsZQXf6P7+++/uCPeKnDhxQjVr1ixUXl4/w/z8fG3atElxcXH2Mi8vL8XFxSkzM9ONkZWMEydOSFKhz2zRokUKDg5W8+bNNXbsWJ05c8Yd4RXbzp07VadOHdWvX1+9e/fWvn37JEmbNm3SuXPnHD7Pxo0bq169euXy88zPz9c777yjRx55RBaLxV5e3j8/lE/l+Tnuic/p8vg89oRnbnl+rnras5NnJP6qQg4v/6s333xT8fHxuuqqq+xl1apV08svv6z27dvLy8tLH3zwgXr06KGPPvpId9xxhxujdd6TTz6p66+/XjVr1tSGDRs0duxYHTp0SNOmTZMkZWdnKzo62uGcsLAw+7GgoKBSj7m4du3apZkzZzoMZSvvn+HRo0dltVrtn0mBsLAw7dixw01RlQybzaZhw4apffv2at68ub38wQcfVGRkpOrUqaMffvhBo0ePVlZWlpYuXerGaJ0XExOjBQsWqFGjRjp06JAmTJigG2+8Udu2bVN2drZ8fHxUo0YNh3PCwsKUnZ3tnoCvwEcffaTjx48rMTHRXlbePz+UX+X1Oe6Jz+ny+jwu78/c8vxc9cRnJ89IFOLurvaSNHr0aEPSJbeffvrJ4Zz9+/cbXl5exvvvv3/Z6z/88MNGhw4dXBW+U4pzjwXefPNNo1KlSsbZs2cNwzCMW265xXjssccc6vz444+GJGP79u0uv5eiFOf+/vvf/xoNGjQw+vXrd9nrl4XP0FkHDhwwJBkbNmxwKH/qqaeMtm3buimqkjFgwAAjMjLS2L9//yXrZWRkGJKMXbt2lVJkJev33383AgICjDfeeMNYtGiR4ePjU6jO3/72N2PUqFFuiO7KdOnSxbj99tsvWae8f34ofZ7wHPeU53RFex6X92euJz1XPeHZyTMSf+VRPd0jRoxw+EapKPXr13fYT09PV61atZz6pjUmJkYrV668khCvWHHusUBMTIzOnz+vvXv3qlGjRgoPDy+0+mPBfnh4eInEa5bZ+zt48KA6d+6sdu3aad68eZe9fln4DJ0VHBwsb2/vIj8jd30+JWHw4MH67LPPtH79eodeqaLExMRIutBz0qBBg9IIr0TVqFFD11xzjXbt2qVbbrlF+fn5On78uMM39uXx8/z111+1atWqy347X94/P5Q+T3iOe8pzuqI9j8vzM9fTnqvl/dnJMxJF8aikOyQkRCEhIU7XNwxD6enp6tOnjypXrnzZ+ps3b1bt2rWvJMQrZvYe/2zz5s3y8vKyr8AZGxurZ555RufOnbPf/8qVK9WoUSO3DVkzc38HDhxQ586d1bp1a6Wnp8vL6/JLFJSFz9BZPj4+at26tTIyMtSjRw9JF4aPZWRkaPDgwe4NrhgMw9CQIUP04Ycfau3atYWGTBZl8+bNklRuPrO/OnXqlH755Rc9/PDDat26tSpXrqyMjAzdc889kqSsrCzt27dPsbGxbo7UnPT0dIWGhqpbt26XrFfePz+UPk94jnvKc7qiPY/L4zPXU5+r5f3ZyTMSRXJvR7t7rVq16qLDvBYsWGAsXrzY+Omnn4yffvrJeOGFFwwvLy9j/vz5bojUvA0bNhivvPKKsXnzZuOXX34x3nnnHSMkJMTo06ePvc7x48eNsLAw4+GHHza2bdtmLFmyxKhSpYrx2muvuTFy5/z3v/81GjZsaPz97383/vvf/xqHDh2ybwXK+2doGIaxZMkSw9fX11iwYIGxfft247HHHjNq1KhhZGdnuzs005544gkjMDDQWLt2rcPndebMGcMwDGPXrl3GxIkTjX//+9/Gnj17jI8//tioX7++cdNNN7k5cueNGDHCWLt2rbFnzx7j66+/NuLi4ozg4GDj8OHDhmFcGP5Xr149Y/Xq1ca///1vIzY21oiNjXVz1OZYrVajXr16xujRox3KPeHzQ/lTnp/jnvKc9qTncXl75nrKc9WTnp08I3ExFTrpfuCBB4x27doVeWzBggVGkyZNjCpVqhgBAQFG27ZtHV5XUNZt2rTJiImJMQIDAw0/Pz+jSZMmxqRJk+zzxAps2bLF6NChg+Hr62vUrVvXmDx5spsiNic9Pf2ic8wKlPfPsMDMmTONevXqGT4+Pkbbtm2NjRs3ujukYrnY55Wenm4YhmHs27fPuOmmm4yaNWsavr6+RsOGDY2nnnrKOHHihHsDN6Fnz55G7dq1DR8fH6Nu3bpGz549HeZq/fHHH8bAgQONoKAgo0qVKsZdd93l8IdpebBixQpDkpGVleVQ7gmfH8qf8vwc95TntKc9j8vTM9dTnque9OzkGYmLsRiGYZROnzoAAAAAABUL7+kGAAAAAMBFSLoBAAAAAHARkm4AAAAAAFyEpBsAAAAAABch6QYAAAAAwEVIugEAAAAAcBGSbgAAAAAAXISkGwAAAAAAFyHpBgAAAADARUi6ATdKTExUjx497D9bLBZZLBb5+PioYcOGmjhxos6fPy9JWrt2rf24l5eXAgMDdd1112nUqFE6dOiQG+8CAADXKXj2XWxLSUkptVg6deqkYcOGOewXxOHn56emTZtq9uzZ9uMLFiywH/f29lZQUJBiYmI0ceJEnThxotTiBuBeJN1AGdK1a1cdOnRIO3fu1IgRI5SSkqKpU6c61MnKytLBgwf13XffafTo0Vq1apWaN2+urVu3uilqAABc59ChQ/YtLS1NAQEBDmUjR4601zUMw/5ldWnp37+/Dh06pO3bt+v+++/XoEGD9I9//MN+vCDe//73v9qwYYMee+wxLVy4UK1atdLBgwdLNVYA7kHSDZQhvr6+Cg8PV2RkpJ544gnFxcXpk08+cagTGhqq8PBwXXPNNerVq5e+/vprhYSE6IknnnBT1AAAuE54eLh9CwwMlMVise/v2LFD1atX1xdffKHWrVvL19dXX331lcNIsgLDhg1Tp06d7Ps2m02pqamKjo6Wv7+/WrZsqffff990fFWqVFF4eLjq16+vlJQUXX311Q7P7oJ4a9eurSZNmqhfv37asGGDTp06pVGjRhX31wKgHCHpBsowf39/5efnX7bOgAED9PXXX+vw4cOlFBkAAGXHmDFjNHnyZP30009q0aKFU+ekpqZq4cKFmjt3rn788UcNHz5cDz30kNatW3dFsTjz7A4NDVXv3r31ySefyGq1XlF7AMq+Su4OAEBhhmEoIyNDK1as0JAhQy5bv3HjxpKkvXv3KjQ01NXhAQBQpkycOFG33HKL0/Xz8vI0adIkrVq1SrGxsZKk+vXr66uvvtJrr72mjh07mo7BarXqH//4h3744Qc99thjl63fuHFjnTx5UseOHePZDXg4km6gDPnss89UrVo1nTt3TjabTQ8++KBTC8QYhiHpwhA2AAAqmjZt2piqv2vXLp05c6ZQop6fn6/rrrvO1LVmz56tN954Q/n5+fL29tbw4cOdmvLFsxuoOEi6gTKkc+fOmjNnjnx8fFSnTh1VquTc/6I//fSTJCkqKsqF0QEAUDZVrVrVYd/Ly8ue1BY4d+6c/edTp05JkpYtW6a6des61PP19TXVdu/evfXMM8/I399ftWvXlpeXc7M3f/rpJwUEBKhWrVqm2gNQ/pB0A2VI1apV1bBhQ1Pn/PHHH5o3b55uuukmhYSEuCgyAADKj5CQEG3bts2hbPPmzapcubIkqWnTpvL19dW+ffuKNZT8zwIDA00/uw8fPqzFixerR48eTifpAMovkm6gnDl8+LDOnj2rkydPatOmTZoyZYqOHj2qpUuXujs0AADKhJtvvllTp07VwoULFRsbq3feeUfbtm2zDx2vXr26Ro4cqeHDh8tms6lDhw46ceKEvv76awUEBCghIaHEYjEMQ9nZ2TIMQ8ePH1dmZqYmTZqkwMBATZ48ucTaAVB2kXQD5UyjRo1ksVhUrVo11a9fX126dFFSUpLCw8PdHRoAAGVCfHy8nn32WY0aNUpnz57VI488oj59+mjr1q32Os8995xCQkKUmpqq3bt3q0aNGrr++uv19NNPl2gsubm5ql27tiwWiwICAtSoUSMlJCRo6NChCggIKNG2AJRNFuOvE14AAAAAAECJYBIJAAAAAAAuQtINAAAAAICLkHQDAAAAAOAiJN0AAAAAALgISTcAAAAAAC5C0g0AAAAAgIuQdAMAAAAA4CIk3QAAAAAAuAhJNwAAAAAALkLSDQAAAACAi5B0AwAAAADgIiTdAAAAAAC4yP8BTOGvlkLOh8oAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Analyse\n", + "print(f\"Chance accuracy level: {100*1/num_classes:.1f}% \\n\")\n", + "run_func = lambda x: snn(x, W1, W2)\n", + "analyse(ipds, spikes, 'Train', run=run_func)\n", + "ipds_test, spikes_test, _ = random_ipd_input_signal(batch_size*n_testing_batches)\n", + "analyse(ipds_test, spikes_test, 'Test', run=run_func)" + ] + }, + { + "cell_type": "markdown", + "id": "26e19d66", + "metadata": { + "id": "26e19d66" + }, + "source": [ + "Yes! Performance is much better and now the confusion matrices look more like what you'd expect too. Let's take a look at the weight matrices." + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Now play with it\n", + "Change systematically some of the parameters and record the performance. You can do this for example by running the following code in a loop:" + ], + "metadata": { + "id": "34BK5WAviV6-" + }, + "id": "34BK5WAviV6-" + }, + { + "cell_type": "markdown", + "source": [ + "#### Example project: Envelope power\n", + "\n", + "\n" + ], + "metadata": { + "id": "XomkkqeZtCvF" + }, + "id": "XomkkqeZtCvF" + }, + { + "cell_type": "markdown", + "source": [ + "This code performs an analysis of the performance of a spiking neural network (SNN) classifier across a range of envelope power values.\n", + "\n", + "Please note that the current code only plots the result of a single training session.\n", + "\n", + "\n", + "##### Suggestion for improvement:\n", + " \n", + "* Run the example code from the EnvelopePower project multiple times.\n", + "\n", + "* You will notice that the results vary significantly between consecutive training sessions.\n", + "\n", + "* To draw robust conclusions, calculate the average across all training sessions.\n", + "\n", + "* Then, plot a graph with the average and the corresponding standard deviation.\n", + "\n", + "* Apply this same approach to your other projects to obtain reliable results." + ], + "metadata": { + "id": "gvviJOm7QF7T" + }, + "id": "gvviJOm7QF7T" + }, + { + "cell_type": "code", + "source": [ + "from tqdm import tqdm # Import the tqdm library for displaying a progress bar\n", + "\n", + "# Set training parameters\n", + "nb_epochs = 10 # Number of epochs (quick training for demonstration)\n", + "lr = 0.01 # Learning rate\n", + "\n", + "# Flag for whether to plot analysis results (histograms and confusion matrises)\n", + "plot_analysis = 0 # 0:not plotting ; 1:plotting\n", + "\n", + "# Define a range of envelope powers to test\n", + "Envelop_powers = [0, 1, 2, 3, 4, 5, 10, 30, 40, 50, 100]\n", + "\n", + "# Initialize lists to store results for training and testing accuracy and absolute error.\n", + "# Mean and std are calulated over the different batches\n", + "Train_accuracy_mean = [] # Mean training accuracy\n", + "Train_accuracy_std = [] # Standard deviation of training accuracy\n", + "Train_abs_error_mean = [] # Mean training absolute error\n", + "Train_abs_error_std = [] # Standard deviation of training absolute error\n", + "\n", + "Test_accuracy_mean = [] # Mean testing accuracy\n", + "Test_accuracy_std = [] # Standard deviation of testing accuracy\n", + "Test_abs_error_mean = [] # Mean testing absolute error\n", + "Test_abs_error_std = [] # Standard deviation of testing absolute error\n", + "\n", + "results_Train = [] # Stores results from training data\n", + "results_Test = [] # Stores results from test data\n", + "\n", + "# Loop through each envelope power, showing progress with tqdm\n", + "for i, envelope_power in enumerate(tqdm(Envelop_powers, desc=\"Processing Envelope Powers\")):\n", + "\n", + " # Generate training data: interaural phase differences (IPDs) and spike data\n", + " ipds, spikes, _ = random_ipd_input_signal(num_samples)\n", + " plt.imshow(spikes[0, :, :].T, aspect='auto', interpolation='nearest', cmap=plt.cm.gray_r)\n", + "\n", + " # Initialize weight matrices for the neural network classifier\n", + " W1, W2 = init_weight_matrices()\n", + "\n", + " # Define the optimizer and loss functions\n", + " optimizer = torch.optim.Adam([W1, W2], lr=lr)\n", + " log_softmax_fn = nn.LogSoftmax(dim=1)\n", + " loss_fn = nn.NLLLoss()\n", + "\n", + " # Print the expected initial loss\n", + " print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + " loss_hist = [] # Track loss over epochs\n", + " for e in range(nb_epochs): # Loop through each epoch\n", + " local_loss = [] # Track batch losses for the current epoch\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes): # Generate data batches\n", + " # Run the classifier on the batch\n", + " output = snn(spike_batch, W1, W2)\n", + "\n", + " # Compute cross-entropy loss\n", + " m = torch.sum(output, 1) * 0.01 # Aggregate output over the time dimension\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # Update weights\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Append the mean loss for the epoch\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\" % (e + 1, np.mean(local_loss)))\n", + "\n", + " # Optionally plot the loss curve over epochs\n", + " if plot_analysis:\n", + " # Plot the loss function over time\n", + " plt.plot(loss_hist)\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Loss')\n", + " plt.tight_layout()\n", + "\n", + "\n", + " # Analyse training data\n", + " print(f\"Chance accuracy level: {100*1/num_classes:.1f}%\")\n", + "\n", + " run_func = lambda x: snn(x, W1, W2) # Define the classifier function\n", + " results_Train = analyse(ipds, spikes, 'Train', run=run_func, plot_analysis=plot_analysis)\n", + "\n", + " # Generate and analyse test data\n", + " ipds_test, spikes_test, _ = random_ipd_input_signal(batch_size*n_testing_batches)\n", + " results_Test = analyse(ipds_test, spikes_test, 'Test', run=run_func, plot_analysis=0)\n", + "\n", + " # Append training results\n", + " Train_accuracy_mean.append(results_Train[0])\n", + " Train_accuracy_std.append(results_Train[1])\n", + " Train_abs_error_mean.append(results_Train[2])\n", + " Train_abs_error_std.append(results_Train[3])\n", + "\n", + " # Append testing results\n", + " Test_accuracy_mean.append(results_Test[0])\n", + " Test_accuracy_std.append(results_Test[1])\n", + " Test_abs_error_mean.append(results_Test[2])\n", + " Test_abs_error_std.append(results_Test[3])\n", + "\n", + "# Plot training and testing accuracy with error bars\n", + "plt.figure(figsize=(8, 6))\n", + "plt.errorbar(Envelop_powers,Train_accuracy_mean, yerr=Train_accuracy_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n", + "plt.errorbar(Envelop_powers,Test_accuracy_mean, yerr=Test_accuracy_std, label='Test', fmt='o', ecolor='red', capsize=5)\n", + "plt.ylim([0,100])\n", + "plt.xlim([-1,50])\n", + "plt.xlabel('Envelop Power')\n", + "plt.ylabel('Accurancy (mean+/-std (%))')\n", + "plt.legend()\n", + "\n", + "# Plot training and testing absolute error with error bars\n", + "plt.figure(figsize=(8, 6))\n", + "plt.errorbar(Envelop_powers,Train_abs_error_mean, yerr=Train_abs_error_std, label='Training',fmt='o', ecolor='blue', capsize=5)\n", + "plt.errorbar(Envelop_powers,Test_abs_error_mean, yerr=Test_abs_error_std, label='Test', fmt='o', ecolor='red', capsize=5)\n", + "plt.ylim([0,100])\n", + "plt.xlim([-1,50])\n", + "plt.xlabel('Envelop Power')\n", + "plt.ylabel('Abs_error (mean+/-std (deg))')\n", + "plt.legend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "R98YIDmQiTUg", + "outputId": "6d4cfcfa-4a80-4a0b-9843-8e27360370c9" + }, + "id": "R98YIDmQiTUg", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\rProcessing Envelope Powers: 0%| | 0/11 [00:00" + ] + }, + "metadata": {}, + "execution_count": 29 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGhCAYAAABLWk8IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+LUlEQVR4nO3df5BV5XnA8ecuyAXi/nBBdtm6wGoT0SAEQTdEa6RgERwskabFYIqRYjTgD7apSBp/YGuXiW2aamwdOxE6EyjRGcWGTOggiMRmRYHZUFIlLCEBIouNDHsF4uXHnv7RcNvdPYvv3vOe933Oud/PzM6wu+eec/aeew7v+7zP+7yZIAgCAQAAUKTM9wkAAAB0RwMFAACoQwMFAACoQwMFAACoQwMFAACoQwMFAACoQwMFAACoQwMFAACoQwMFAACoQwMFAACo47WB8vTTT8uoUaNk4MCB0tjYKG+++abP0wEAAEp4a6B873vfk6amJnnkkUdkx44dMm7cOJk2bZq89957vk4JAAAokfG1WGBjY6NcddVV8u1vf1tERDo7O6W+vl7uueceefDBB8/52s7OTnn33XelvLxcMpmMi9MFAAARBUEgH3zwgdTV1UlZ2bljJP0dnVMXJ0+elO3bt8vSpUsLPysrK5OpU6dKS0tLj+3z+bzk8/nC97/61a/k8ssvd3KuAADArgMHDshFF110zm28NFB+/etfy5kzZ6SmpqbLz2tqauSdd97psX1zc7MsW7bsI/fb0dFh7RxFRCorK422i3Jc02OYHDNsX6bnFuVvjXJcUy6OAZgq9r4Vsfu5dfGMikL7fav9/NIol8tJfX29lJeXf+S2XhoofbV06VJpamoqfH/2D+yuoqLC5Wl5Pa7pMW2fm6/j+joGYJvm54ULms4ljPbzSwuT9AwvDZShQ4dKv3795PDhw11+fvjwYamtre2xfTablWw22+PnHR0dRX2YTPNWwtJzwl4bZX9xs/23mr7WVNgxwvbnKVUKlple7yivjbJdmCifR9PnRff9RXmfTNl+P8O4eDZEwXPFLtvXzMssngEDBsiECRNk48aNhZ91dnbKxo0bZdKkST5OCQAAKOJtiKepqUnmzZsnEydOlKuvvlq+9a1vyfHjx+VLX/qS8T66jx+6aNW76BEU2wqN0kt00et00SOCbrbvPV+9e1PF3kNR7r0wtp8Dtl8bhmdD8ti+Zt4aKH/yJ38i//3f/y0PP/ywtLe3y6c+9SlZv359j8TZcyl2iMeFKA8Ek+1cNB5sD/HwwIFtthstvoZE4y6X4KLD4GsICunlrQ5KFLlcTiorK1PRQCmWpgdkAj9CSDEaKMUfU9O9rP38UJy+/P+diFk8mvjqdXQ/ru1wr69kQ8DFPaUpGVtLcUntEQ+eF35oep6zWCAAAFAn9REUX9Maw9h8reZwMtJNU0/Z13BO3LRP+9d0XNil6X0nggIAANRJdATFpMyzi3HWKK8tdkZNEotbIR00JVza7t37mpZv63VxHENTwTQiLbqlolAbAADAuSQ6gtKdi1a4iwJKJsfwVaOEnBaESUsv1ld0yOb+tOeqRJGWz1la2b4+RFAAAIA6iY6gmBR6sT1W7KKgmc3FxLRHNxhThgu279uk5WLZzjtLYvQFyZPoBorJWjwuQrEuGjcmr3XRGNH0YOJBl15JG1bpbX8+OhK276kouEdLC0myAAAg9RIdQbE5xBPGV7jT5Fx8DTVpWj2Wnlh6abq2cS/8aZumsv6ariOKF+UzFeXzTgQFAACok+gIikkOim22Cz7ZPA8X05190X5+sMvX6touEkdtJsFH4eue4l5OHptLWZxdzdgEERQAAKBOoiMoJjkovvIjTGmeGqypp0MPKx1sL3LpIp/M1/IWxe7L9nmQOwZfiKAAAAB1Eh1BKZaWmTh9ea3JYoEuelO+xujD0BNLHl+Ld6b1s2J7xk5a8lyQDkRQAACAOqmPoGhaUjyMzeiDr9wV2+8dPaz4JbFn6ysvxfa5mBxD0yy9Uo9SwR8iKAAAQJ3UR1DC2M630DITR1MdmCiS2LtPGk3vp6/qxD5yx0yP4SJq4eJ91/Q5Q/KkqoFSSkMcLh5gvhLmeKiVFl+NDF8di7g/39obNywaClMM8QAAAHVSFUEJoylhzvS1Nl+nqTflqzAU4md7+rn2RT6jMDkXX/e3i2Ra23he6MZigQAAIFVSH0Gx3ap3sYhZsdMQo2xneh62IyOMPaeDr+iGpnLtcUcfXNw/ptuROwZTLBYIAABSJVURFF9j3mGiTFsudv+axt7TcgzET1N+hObF92wvbkhZe7hADgoAAEiVVEVQbPcwbPdEtBR0Y9YNonDxGbCdH+FryYu4l7LQVI9E03OA51Tx4v5ckIMCAAASLdERlO6tMO01T5K26FZaeiFp+Tu00D5zxvZMOy21QWxHYNM8g07TuSSNr2hoGCIoAABAnURHULqzvS6H7WOY7s+kd+KraqMvvhaUQ0++oiVRtgtjO/riY8aOi2gw9w+iUJWD0tzcLFdddZWUl5fLsGHDZNasWbJ79+4u21x//fWSyWS6fN11112Rjx0EQY8v26Ico/vf3JeHYffXhZ2H6bmFbWd6bmHbmX5F4eLalpIo18f2tbB5X7j6nIUdN8prTc7D9G+1/TdE+VuBKKw3UF577TVZuHChvPHGG7JhwwY5deqU/MEf/IEcP368y3YLFiyQQ4cOFb6+8Y1v2D4VAACQUNaHeNavX9/l+5UrV8qwYcNk+/btct111xV+PnjwYKmtrbV9+B5cDN24SF4z2Z+LQk5RjhHltfTQ7PI1pOniXHxNFdaSBJ/m6cMoLbEnyXZ0dIiISHV1dZefr1q1SoYOHSpjxoyRpUuXyokTJ3rdRz6fl1wu1+ULAACkV6xJsp2dnXL//ffLNddcI2PGjCn8/Atf+IKMHDlS6urqZOfOnbJkyRLZvXu3vPjii6H7aW5ulmXLlvX4eUdHh1RUVBS+d5FI6auXZJIk6+JvdZG8SI9ND03XwnZEz8dUYdNjuHjfiVTCNtv3SiaI8RN59913yw9/+EN5/fXX5aKLLup1u02bNsmUKVOkra1NLrnkkh6/z+fzks/nC9/ncjmpr6+32kAxldYwrq9jAFEksYFicn4uGmPc37CtL/dK9/+/w8QWQVm0aJGsW7dOtmzZcs7GiYhIY2OjiEivDZRsNivZbPYjj2l7yqGmxo3Nh6SWRhbQGxcNChclA+LOJzOlZfo09Is7ct6XacbWGyhBEMg999wjL730kmzevFkaGho+8jWtra0iIjJ8+HDbpwMAABLIegNl4cKFsnr1ann55ZelvLxc2tvbReR/y9IPGjRI9u7dK6tXr5YZM2bIkCFDZOfOnbJ48WK57rrrZOzYsX06VrGl7m33sExfa3s2QLHHjLK/KBiCKi2aInW+oqHF3kO+crhsR664H/UwvT6arpn1HJTebsgVK1bI7bffLgcOHJDbbrtNdu3aJcePH5f6+nr53Oc+J1//+tc/cjzqrN5CRJqS3sLEPXSj5Zi9oYFSWnxNZzc9RhQ+7lsXaKCkl5brc/b/b5MclFiTZOPS2x/o6wK4+A/fZBZPsfvqbX8J/Gikho9ZHS5oivK5qBFU7Gtd1FaKgudFaYkjJ8xrkqwPLrL3NYejkzi1lwdduDS8B7ajIFEkbWaP7feO4m2IwuZnxetaPAAAAFElOoJikiSbxJZ+sb0dF2P+tiXx+sAuF0M8PmqZ9EWxQ3ralwlAOviKNhJBAQAA6iQ6gmKSZGObi+JOxdKeW4N0iDJd0ddCfqZ8RVqKfQ9sX4soeK6kl6/rSAQFAACok+gISne+aifYHt+Nu6w9vRqEcTEF2Fdek4vZfD5yUKKwfQyeK+mg6f8MIigAAECdVEVQNI1l2z5GsQuMaaKpZY6ebM8csR2BdJHX5auQnI/aR2G4R0uL9v8ziKAAAAB1UhVBMWV77Q/bY942eyymixH6mnEB2M4FcTGbLe6y85rK2och0pIO2nPMiKAAAAB1Eh1BMakka8pXnQCbr/VV/wCIwsUy8C4qqdqMvkTZl4u/gWgJiv2s9GUtnkQ3UIpl+wb2sQKqpgcu0kt7KN9Fgq2LpNtij+GiUJ2m643SwhAPAABQJ9ERlO6l7l0UYwqjpeCTi6gKPazSoqlgmKbCb2F8lLC3vT/u5XRIy3OaCAoAAFAn0REU00SbuGnOQdE+jQx2ab9mLs7PdqTSxeKDxd7fJvvqjfbPCoqXlgJ+RFAAAIA6iY6gdM9Bsc32UuY2Iy0uyojTm0oe7dfMRc/ONh+FzzTl1gAuChiGIYICAADUSXQEpTvbEQ8tZa9Nj0kUBJrYzpNyETW0nZdS7DHIMYMvcS+F0pdCbURQAACAOqmKoIRJWmSkt+MWu8AYPSyY8lUfx9eilFqiJWGvdXHv2a6KjXTQ9H8GERQAAKBOqiIovjKNo/BxLkRGEMbFYpsuFvyLQnO9FB+RHKA3tmevhklVA8X2AyzKQ9dHEisrlkI7TQt1hnExVFXsasa+3jvAFEmyAAAg9VIVQdG+9LjN3pmmMK6vXicRnuJpT8LUPjwUd4Kti/tCUzIk9NB0bYmgAAAAdRIdQek+jqWpBxh3wq6L8WMXkRHyYfzQNAXY9nR+F/uL+/7W/nnXfn4onqbIGhEUAACgTqIjKN0XC9Q0bh13kTdNUw41tbhhl4tr62K6om2ap+1qyp2DHr7yzqIgggIAANRJdATFhK8sd9NzibJdd5pm9piiJ5ZevnpnviItPu4/F7lEzKqLXxKjG2HU56A8+uijkslkunyNHj268PsPP/xQFi5cKEOGDJHzzz9fZs+eLYcPH7Z9GgAAIMFiiaB88pOflFdeeeX/DtL//w6zePFi+cEPfiAvvPCCVFZWyqJFi+SWW26R//iP/4jjVIzZrALZGx89DF+9GnpYcBG9tJ2L5SvvLG5J7I2XEk21qaIcw7ZYGij9+/eX2traHj/v6OiQ73znO7J69Wr5/d//fRERWbFihVx22WXyxhtvyKc//Wnr55LE5DCT42paPTYMDzCEsd3A9zXsE/eKyVqeM0gmTQ2eKPdeLEmye/bskbq6Orn44otl7ty5sn//fhER2b59u5w6dUqmTp1a2Hb06NEyYsQIaWlp6XV/+Xxecrlcly8AAJBe1iMojY2NsnLlSrn00kvl0KFDsmzZMvm93/s92bVrl7S3t8uAAQOkqqqqy2tqamqkvb291302NzfLsmXLijofF0mitoeHTM7FV7EseljpYHtoJO6FMKNysQxGlOOaREht7r+3n8GPJEazXJyz9QbK9OnTC/8eO3asNDY2ysiRI+X555+XQYMGFbXPpUuXSlNTU+H7XC4n9fX1kc8VAADoFPs046qqKvnEJz4hbW1tcsMNN8jJkyfl6NGjXaIohw8fDs1ZOSubzUo2m+3xc5Mlm6Mkx/kqo22zZUpkBGFcROA0LRWhPX/F5BguEox5DvjhoqCor8TzKGIv1Hbs2DHZu3evDB8+XCZMmCDnnXeebNy4sfD73bt3y/79+2XSpElxnwoAAEgI6xGUr371qzJz5kwZOXKkvPvuu/LII49Iv3795NZbb5XKykqZP3++NDU1SXV1tVRUVMg999wjkyZNsjKDx3bPzlc5eZNzsV1kCfDFRSTDRYTU9Lhhil3ewnYkDMljOzIf94zOXC5nNPohEkMD5eDBg3LrrbfK+++/LxdeeKFce+218sYbb8iFF14oIiJ///d/L2VlZTJ79mzJ5/Mybdo0+cd//EfbpwEAABIsEySwGd1bC8zF2LipuOehJ7G+SxhN51LqtOcraSphHybKs8ZmnSPARd2SYj/bZ///7r7YbxgWCwQAAOokerFAkxaYi16H7ciNzfHouM8jKnqFutn+rCQxopm0suHaI2GIn+371tf/GURQAACAOomOoJjwNUfc9LVx92Js105AOvhayM/FrBPbiwC6mDFn8/7THi2CH7bvbxdRldQ3UMLYLg/tazqyiSQ+cJJ4zknj4uHiq9Efha8lL0yS4H0t8sn9CFMM8QAAgNRLdATFtNhLd74WCTMVd+9Ee49I07kkja9r6yIBLwoXkRGbEVIXicimuB9Li+3PT5R7mQgKAABQJ9ERlO5sj3nbLpNvc8Eykl8RJokLxUW5H8P4yiOxeU8S8YAvtp8hUUrdE0EBAADqJDqCYlKoLYzt6Yq2Fx8MYzJGXey+eqOplw27kpiXYnoMU7YjN2HijpByj8JFzoiLRQXDEEEBAADqJDqC0n0cy1ehJB/l5F30MOmJlRYXEY8oNJXJt53HVuz+qVuSDpoKJ2oq9EcEBQAAqJPoCIpNtntnPnoxvmon0GNLB029cV8ze6LknZkyOWfuPf18RMSjsB11d5GXQgQFAACok6oIiu2xZ1MuxsF99LpsV9CkZ5c8mq6ZryiIi3yvYkW597hHo/HxXmlaj8nFuSS6gWIyzdj20IWpuBstLgo5USwqedL8n47txFHbw7VJawRoOQ+Y05SMbvraKBjiAQAA6iQ6gtKdi6EL0+OG8bXgEkqHr8+Yr2TsKNtpWqTQ5hAukZHSoj2RPQoiKAAAQJ1URVDC+JquqKXYDQlzMKUpohBlf7Y/87aXvDCh6d7j2aCHr7L2YVzkpRBBAQAA6iQ6gmK6ZHN3PpZP78sxTM4vyrnRI4IpTXlYpsf1lYcTd34N9y1c8HUvhyGCAgAA1El0BKU72/UPTLlYhMlma5VeF2zP2LGdv+JisTxf5eSTFgnRfG6lxteitlF0P0YulzMe/SCCAgAA1ElVBCWM7fLYUdgc20taLwy6uMgFibKdbZqqQmteUA7plcTaKKlqoLiYUuti2qXJ+ZVSiBn62Z7GG+UYpq8No6VQm/ZkYujha201F0NGDPEAAAB1UhVBsU1zIacwLpJ1kQ4uipnZ5quEvYv3oPv+bEc8uOfTy9cSCC6eA0RQAACAOomOoHR0dEhFRUXhe1+9JC0tU3pJsB1F85VbEsZFlMZXqQKT83CBXJXSYjsf0+S1TDMGAACJlugISrFc9PbCxD1GDbj4fNqOvkQ5RhhNBeJs3qcuIhlES9ywOWtLUyFBclAAAEDqWW+gjBo1SjKZTI+vhQsXiojI9ddf3+N3d911l+3TKAg7lzBBEPT4inKMsC/TY5ics+3zhW62r5nt+8L0HjA9hu2/N8r9YvrasO1Mv1BabF7/KPePi/9Huu+/o6PD+BjWh3jeeustOXPmTOH7Xbt2yQ033CCf//znCz9bsGCBPPbYY4XvBw8ebPs0AABAgllvoFx44YVdvl++fLlccskl8tnPfrbws8GDB0ttba3xPvP5vOTz+cL3uVwu0jnaLlNtuz6ByVg2NRFKi4uZYmF8zcSxPZMgabNTNJ8b7HNR98ZFnSzbn9tYc1BOnjwp3/3ud+WOO+7o8uasWrVKhg4dKmPGjJGlS5fKiRMnzrmf5uZmqaysLHzV19fHedoAAMCzTBBjU/3555+XL3zhC7J//36pq6sTEZFnn31WRo4cKXV1dbJz505ZsmSJXH311fLiiy/2up+wCIqLRoqv2g4mr01rzxHmtF9bTblNtu9l268t9rpp/wygeL6ubdy1Uc7WQelexyx0f3E2UKZNmyYDBgyQ73//+71us2nTJpkyZYq0tbXJJZdcYrTfPv2BlodzTI8Rd4iahxCicFFsTVNBN19Tnk2Z3N80RtLLxbXV1OAR6VloNUxsQzy//OUv5ZVXXpE/+7M/O+d2jY2NIiLS1tYW16kAAICEia1Q24oVK2TYsGFy0003nXO71tZWEREZPnx4n4/RvVyu7QJSvkLUxR5XU48Q0cQdMXPROzPdznZkxFdyoc3t0tyjRk+a3nfb/+/1NsRjIpYGSmdnp6xYsULmzZsn/fv/3yH27t0rq1evlhkzZsiQIUNk586dsnjxYrnuuutk7NixcZwKAABIoFgaKK+88ors379f7rjjji4/HzBggLzyyivyrW99S44fPy719fUye/Zs+frXvx7HaTjjIlcl7vOIsj/TY2jqJWhn871ykVBtO+8jiijHcBEJMtnOxb3H/YgwvqKroa+NM0k2Lr2FiFwk6oXR0kAxRQOltGhvoCSxERRGy+ebew9hkpgkm+jFAk3+QE03ps0GlKZiOr6OATOarrftAlK2OxYuoi9xXw/uPdj+HPuaVcZigQAAQJ1ER1BMMoF9hrBM2By3RnoUGzFzMeMkjIuhFtvnrCXiYYqhG5jyFR20jQgKAABQJ9ERlO45KC5aeUlLiI0iDX9DUhX7PvuKyGnKBYly3Cjijshw7yGM7c+dps8ZERQAAKBOoiMoJnyNM2tqhRYrDX9DqXGxbLvtc4myne3XmvJRV4SIZmmJu9ZOHGxHPlPVQLGdMKcpMZEHUWnzVXzL12fW1z2gpa4Kz4B0M0mCd/H/mfa6RAzxAAAAdRIdQTFZLNBFb8922M1HmXPo5uuauYgEaor62D5Gsa/lHk23uBOlkzaFvjdEUAAAgDqJjqCYlLpPy9i4Cc3nBn9sF1vzteaVKReRyrjH6blvdUnas1XzufUFERQAAKBOoiMo3fkaU7Z9LhRyggkXOR6aohGmtK9MbvNZk7SefVIlLeru6/Np8tpcLme0TI0IERQAAKBQqiIoLoo7+Rp/Z4wa3fnK6Pc1SyYKX4XfbEZGkEw+ntUuoiUu/i4iKAAAQJ1URVDCuOg5hUnaAk6MZetiM2JmO7oRZX+aSnD7msVjsj8qTCOM7f+ntNdVSXQDxTTRxoSmIZ64H0SEj3Up9nr7emhoSkY3lbSVi2mMpIfJtYyS8K79nqLUPQAASJVER1C6F2pzERlw0VqNu/VLT0wXH9PKbZem91UMzpT2RdFM9o9kMrmWmu5H0+1c/H9LBAUAAKiT6AiKzRwUU5rGAAGbNC34ZypKFMRXIjvPC5jQUlgt6nZREEEBAADqJDqC0p2LmTi22ZzBQS+stLiYcuhruQdfr3XxbOA+RbGS+Nyn1D0AAEiVREdQip3F46IV6mPMLomtaxSv1HrxmgrOxT12n8RieCie7VwvF1E/ZvEAAICSlOgIisk4lq9aB3GXsKeXBO15U74WLNMSBeltuzDF1sqAPzbvP9u5XppGBKgkCwAAUiXREZTu0tJjKxY5KKXFxWKWUfha88nF+xL338a9rF/cM9xczKCz/f+eyf76Mosn0Q0UkyRZ26Fn27SECWGflgap7fNwUfTMdvEp29JQ6p5GkBtaFgNN4rR/hngAAIA6iY6gmISJbPemtEztZMqhfnFPO41yHlG4KC9vur8oNA3X2rzepng2uGEzIm56T7m455lmDAAASlKfGyhbtmyRmTNnSl1dnWQyGVm7dm2X3wdBIA8//LAMHz5cBg0aJFOnTpU9e/Z02ebIkSMyd+5cqaiokKqqKpk/f74cO3aszyff0dEhQRAUvsL8/9/39cu2TCbT46vY1/r6GxBNsdco7LNjuq8on7soTM/PxT0a9too72mUc/F1PWBX3NfR9PNp+7lv8/+pqO9Jnxsox48fl3HjxsnTTz8d+vtvfOMb8uSTT8ozzzwjW7dulY997GMybdo0+fDDDwvbzJ07V37605/Khg0bZN26dbJlyxa58847i/8rAABAqmSCCM2tTCYjL730ksyaNUtE/rdXUVdXJ3/+538uX/3qV0Xkf6McNTU1snLlSpkzZ468/fbbcvnll8tbb70lEydOFBGR9evXy4wZM+TgwYNSV1fX4zj5fF7y+Xzh+1wuJ/X19T1m8aRZsWPUvor4mPI168SUr/MrNsufqFlp8VVsTtN2Ufi6X+KeZqzZ2WnGJv9/W81B2bdvn7S3t8vUqVMLP6usrJTGxkZpaWkREZGWlhapqqoqNE5ERKZOnSplZWWydevW0P02NzdLZWVl4au+vt7maQMAAGWszuJpb28XEZGampouP6+pqSn8rr29XYYNG9b1JPr3l+rq6sI23S1dulSampoK35+NoPjgq9cadya4i1kiUWYeaY+CRGHz2iK9tETufO4vjIv7wHZdHiKkZhIxzTibzUo2m/V9GgAAwBGrDZTa2loRETl8+LAMHz688PPDhw/Lpz71qcI27733XpfXnT59Wo4cOVJ4vWaaW7BRKum66K34mktvm+bPANLLxb1n+xmSlihI3M9MoiXhrOagNDQ0SG1trWzcuLHws1wuJ1u3bpVJkyaJiMikSZPk6NGjsn379sI2mzZtks7OTmlsbLR5OgAAIKH6HEE5duyYtLW1Fb7ft2+ftLa2SnV1tYwYMULuv/9++eu//mv5+Mc/Lg0NDfLQQw9JXV1dYabPZZddJjfeeKMsWLBAnnnmGTl16pQsWrRI5syZEzqDpxT5WMMljK9ISxQuZgjQs4HmHq+LKEiUyIMpTWtNmb5/xdLy2dGmzw2Ubdu2yeTJkwvfn01enTdvnqxcuVIeeOABOX78uNx5551y9OhRufbaa2X9+vUycODAwmtWrVolixYtkilTpkhZWZnMnj1bnnzySQt/TjrEnTTpa6jFRaJrlNe6SPZFOsR9bV0MR7hIYHXxXLH993Lf6hGpDoovfZlHDTMuogyaZuLQQIFmvqIC2nPCNNV/QnH68v93ImbxQA9fDY8oPTYXDzUefkgaTQ3tKM8Q7dOlUTwWCwQAAOoQQUkoX5ECU7ajKqbHcPF30JtKB03X1ubQiovkUk3vna9oiab3IK2IoAAAAHWIoCSUpgS3KD0OF+PgvhIE6WHppilaUmwxL9vHtD1F2fbMI9vPCxdLfKB4RFAAAIA6RFA8s9kjsB0V8NVbsT2Lx5SLGUqmuh9XeylwxF/gy1eemPaZcbafDT6KOHLvhSOCAgAA1CGCEhMfC1P5KmdtykcJ6d6O6+JcklZXhR5bNHFHzHwVSbRNez6Mj9dy74WjgeKZzZvL12qdpjSVnHcR3nZRchy6+Rj20ZQsbztB3fb76eI5YLI/ngHhGOIBAADqEEGJie3pa8UO8WhaEdT2MWxPTTQ9BmCq2J68i6EMU0lMUI9yXBf747lihggKAABQhwiKBS56MTZzUHxFVcJoWo6dRcfgQtyfC9uRDB/RYJ+IuOpBBAUAAKhDBMUCH2XYXfRqbGfCuziXKMcNo2WqMNEYuIjwRdnOxSweU5qeISgeERQAAKAOEZTf8tVD9RFBcFH+Pon781U0Lu6IGXSJu6ZRlP35qi1kegxTvpatINJpFxEUAACgDhGU39LUytVS5txFyWcXtVGi8HV+mj6PMBP37JQokQfb+SEuZuL4KlcfZX/ct3YRQQEAAOoQQUkRF+vu+FqwzPa4NT0i2Objs2K7no+LXBUXx42CPBI9aKB4VuyNrqnYmm0ukuhsS+L7jGTRPmU3ylCQpmcX960eDPEAAAB1iKAoZNKCtz2c46som+kxbP8dLoo22Xyf6dW5oXm5CF+fWRf78xUtcRGtLXahVxBBAQAAChFBOYe05hWkpWfiYtzaV5QmDZ+zJPIVmTShqXib7fvCV7Kvi2R+7uXiEUEBAADqEEE5B82l7jUVMXIxRu+rV6M9SgM9bH4GXBRbc8HFFGXbr42C+9YuIigAAEAdIigW+CiHrimPJIyvugYueo8s2464Z8LZzqGwPUtPU5RGU0QYdhFBAQAA6hBBsSBp+Qeaoi8usu3p6SAKH6XjbX/ebd9nLiItLsrpm+6PZ4gfRFAAAIA6RFD6yEe+SZTzcNFr8FV9krFiaBd3zRxfM3t87S+JM3tQvD5HULZs2SIzZ86Uuro6yWQysnbt2sLvTp06JUuWLJErrrhCPvaxj0ldXZ386Z/+qbz77rtd9jFq1CjJZDJdvpYvXx75j3EhCIIeX6a6/82+kspsi/KemO7P9jHCroXpl21p/VykhZbPnul5uNjO9DOraTvus+TpcwPl+PHjMm7cOHn66ad7/O7EiROyY8cOeeihh2THjh3y4osvyu7du+Xmm2/use1jjz0mhw4dKnzdc889xf0FAAAgdfo8xDN9+nSZPn166O8qKytlw4YNXX727W9/W66++mrZv3+/jBgxovDz8vJyqa2t7evhVYqSgFbsMTRNo0vLtEaKO6WXi2FDF8+BYvm6zzQlt9veH8PJ8Ys9Sbajo0MymYxUVVV1+fny5ctlyJAhMn78eHniiSfk9OnTve4jn89LLpfr8gUAANIr1iTZDz/8UJYsWSK33nqrVFRUFH5+7733ypVXXinV1dXy4x//WJYuXSqHDh2Sb37zm6H7aW5ulmXLlsV5qqE0TYHtvl2UXo2LiIft3gXFmBCFi+TKuD9TUfYVZfqwi6hKGE3TguN+nvGcCZcJIrwzmUxGXnrpJZk1a1aP3506dUpmz54tBw8elM2bN3dpoHT33HPPyZe//GU5duyYZLPZHr/P5/OSz+cL3+dyOamvr5eOjo5z7jcqX0MXNvdvSvuMHdP9RUEDBbZpaaCY7i+Mr2EaX0NBYWig2JPL5aSystLo/+9YIiinTp2SP/7jP5Zf/vKXsmnTpo88icbGRjl9+rT84he/kEsvvbTH77PZbGjDJW4ueuimiv1Au2jI+MqGjztKFfVcSumhg3DFRlVsRyqjbKdptouv/Dnt+TBpZb2BcrZxsmfPHnn11VdlyJAhH/ma1tZWKSsrk2HDhtk+HQAAkEB9bqAcO3ZM2traCt/v27dPWltbpbq6WoYPHy5/9Ed/JDt27JB169bJmTNnpL29XUREqqurZcCAAdLS0iJbt26VyZMnS3l5ubS0tMjixYvltttukwsuuMDeX6aQzYiM7fCs7fFe28fQFKGw3WuFH7bzLaK81iRCmsQhHtvRF+0zqrjn7epzDsrmzZtl8uTJPX4+b948efTRR6WhoSH0da+++qpcf/31smPHDvnKV74i77zzjuTzeWloaJAvfvGL0tTUZDyM05cxrLTSNG0wjItcFRooiEJTA6XYfWm6H33RdO9xz3+0vvz/HSlJ1hcaKLpqgPhKmNNUYwF6uMhJiHs77ZERX++nC5rOJY28J8mmmZYPr6+enu1p1jQoYJuLKcW+9ted7XIDtl/roqFl+7guClTCDKsZAwAAdYigJIRJCNhXsqrpa01p6v3QS0IYF1HIYrnIO3Nx//jKfSGqqwcRFAAAoA4RlD6y3ZswPYYJX1n+ts/F9nHDaO/9lHKlyaSKe5qx7WO6KNRmOz/N17RgTbOWSgkRFAAAoA4RFAtclFI3ea2vaIkpFz0n7e+BKSImerj4PBZbiDHKMX3dA75yWsgnSx4iKAAAQJ3UR1BKqdXso6fX23GjHMMX7eeH5LFZqM1FmXdfFaq149lgxvb/t0RQAACAOqmPoKR1MShfJbltY0wZ2mn5PLrIw3IRVdFUYt/2a0ud7feJCAoAAFAn9RGUKFzUFYk7muFigT7b+9NerRYIY7OHnubaI6Y0zTKCHzRQzkFzufZSS1IzpX1IC+kVJTm1mG36ch5RuHiuMPyCMAzxAAAAdYigxCTu4RHtC26FsR1V8lXMih5bevka1jR5nSlNia6aF1WMimdD/IigAAAAdYigxMR2S9okic5FzoyLnpiLpQNMUW47fpreE1/3UPfXRtlXlOiLpnyTKLREwhANERQAAKAOEZTfSmsLOcr0QtvHdRGNCKOp55SGz5RtaX5PbOaguMjh8lVELcr+bL82rf8XJBERFAAAoA4RlN/SXhLfpNehvSS1pkJtprR/LpAONmfpmew/ju00zSx0cZ9xL8ePCAoAAFCHCEpMbM/qKHYWj2mWv4vej6+IjG223z8kT9yfWxefbdsRXU2VrNMyi7DUEUEBAADqEEH5LR85I7b3p30NDl95LlFeG6WHxRh1OvioK2I7t8SUpvwv6g2BBspvuWiMxH2DuCjuFGUYyZTt4RxCtjDlYtq7yWtdlJwP42KYOIkdARo8fjDEAwAA1CnJCEoSE9BMkuii8NVbidKb0lRoSvvCZknjq8eqpcS+r2nBvoqy+SrsSHRVNyIoAABAnZKMoGhqDcc9Nc92zynKccO4OBdN0TGYSct7XGzv3kXEMIymKCLLTIAICgAAUKckIygu+BjvdFGm2sVsnyi9Qhdj2YDtz2Pc97zt16Y5Hwh6EEEBAADqEEGxwFdRJZu0z0zRNJYNaInK+ZqJo33WTRQ8L/TocwRly5YtMnPmTKmrq5NMJiNr167t8vvbb79dMplMl68bb7yxyzZHjhyRuXPnSkVFhVRVVcn8+fPl2LFjkf4QAACQHn2OoBw/flzGjRsnd9xxh9xyyy2h29x4442yYsWKwvfZbLbL7+fOnSuHDh2SDRs2yKlTp+RLX/qS3HnnnbJ69eq+nk6sNLf+XWT5uygbrzmqBP3S0ts1uQ+03z8u7nntNaxgV58bKNOnT5fp06efc5tsNiu1tbWhv3v77bdl/fr18tZbb8nEiRNFROSpp56SGTNmyN/+7d9KXV1dX08pNi7WaymWpkJtpnyt7YP08hXyD2PzHrJdmt7FkJSLomeaGmSIXyxJsps3b5Zhw4bJpZdeKnfffbe8//77hd+1tLRIVVVVoXEiIjJ16lQpKyuTrVu3hu4vn89LLpfr8gUAANLLepLsjTfeKLfccos0NDTI3r175Wtf+5pMnz5dWlpapF+/ftLe3i7Dhg3rehL9+0t1dbW0t7eH7rO5uVmWLVtm+1RjZbsX46Ogm222px77KlNN5CZ5XCygF4VJqXtfQxm+FgiNsp0LPAfiZ72BMmfOnMK/r7jiChk7dqxccsklsnnzZpkyZUpR+1y6dKk0NTUVvs/lclJfXx/5XAEAgE6xTzO++OKLZejQodLW1iZTpkyR2tpaee+997psc/r0aTly5EiveSvZbLZHoq0vvnpdxfaw0jxm66vQFL2k5NE0Td3ktbanD9vOo3GRR8KSF4i9UNvBgwfl/fffl+HDh4uIyKRJk+To0aOyffv2wjabNm2Szs5OaWxsjPt0AABAAvQ5gnLs2DFpa2srfL9v3z5pbW2V6upqqa6ulmXLlsns2bOltrZW9u7dKw888ID87u/+rkybNk1ERC677DK58cYbZcGCBfLMM8/IqVOnZNGiRTJnzhxVM3hE/PU6fEw59DVtmUgGXHCx9ISP0gKm52FK04KEWt53+NPnCMq2bdtk/PjxMn78eBERaWpqkvHjx8vDDz8s/fr1k507d8rNN98sn/jEJ2T+/PkyYcIE+dGPftRliGbVqlUyevRomTJlisyYMUOuvfZaefbZZ+39VQAAINEyQQKbmrlcTiorK6Wjo0MqKip8n04kac4R6S4tZarpsSWPi6KLcUcVfD0rtJT1Rzr05f9vFgsEAADqsFhgTFzkg5i8Loz27HgXNStsVwmmR6mHplynYl/rqxqspjL03FMgggIAANRJdASlsrKyy/eaWte2lzIvlu3xc03REi3rIrk6Bsy4iCC4uA+K2Sbqa10s7meKewqJbqB0T7JJS0jQZsKc9lWPfYWtGbpJHu2NWV9DrK733xda3hMkE0M8AABAnURHULrzlZDlYyEyTeWstSfn+uoVE2mxS1NRv7QuNWH7OahpGBbJQwQFAACok6oIShS+espxJ+W5mHarKbHQ13WkB6iHpmiWjwip6f5sS2IEG7oRQQEAAOoQQekjLUt2255ho714m+1j0MNKrzRE6mzP0vN1f9vOQSFaUlqIoAAAAHWIoMQk7lwV27kgmkpra9of0stX3kPSPqOaaplofp9gHxEUAACgDhGUmMQ92yVKxMN2T0dTrQeqwaaXpplXtl9rczFQ2xFSapnAFyIoAABAnVRFUJKYz6Cl1+GiCqaLsWx6dumlqZZJGJuf2yiRDBdraNnOwTE9rm1EV3VLVQPFRcE024oNn/o63yQWdAPCuEgMt7k/X0nrts9F0zRwnjW6McQDAADUSVUExTZfiwUWS1Oyqil6MPDFV8S12Oii9uR2X5ERniHpRQQFAACoQwTlt1xMOYw7L8N2wpztKJCvhQvpYcHF5zvuxfw03ctRaErO5dmgGxEUAACgDhGUc7A9OyVM3Mux+9ouTJTxY6IlCOOrtICLqbzFnoeLyJCvqAULhJYWIigAAEAdIijnoKl3b7JYoMnr+rKdi5LZYXyNlxOR0cPXDA5f+VTFbNMXtqOctvNITF+L0kIEBQAAqFOSERRNJex99CY0jQFH6Slqj8igeJruRxf5WSYRUhc5cdQegSYl2UDxte5M3OtXuBhqcfFaUzwk4SsJ08XnO24upk9HOS7AEA8AAFCnJCMovop+xT01T1MpbO2JcCTEpoP2FW/jPj8X92gYF9EX7lEQQQEAAOqUZAQlChfjzD6iJb7KSmtaLh5w8bnVkquipYR/HK9FOhBBAQAA6qQqghJlipyvXoLpLJu4pxn7KN3dl+1M0euCpiUf0jpFl8U74UKfIyhbtmyRmTNnSl1dnWQyGVm7dm2X32cymdCvJ554orDNqFGjevx++fLlkf8YAACQDn2OoBw/flzGjRsnd9xxh9xyyy09fn/o0KEu3//whz+U+fPny+zZs7v8/LHHHpMFCxYUvi8vL+/rqRTNxRiw7WiOzXP2lb9i+lpTLnpn9ACTx1eRs7gjCL4iPoAvfW6gTJ8+XaZPn97r72tra7t8//LLL8vkyZPl4osv7vLz8vLyHtsCAACIxJwke/jwYfnBD34g8+fP7/G75cuXy5AhQ2T8+PHyxBNPyOnTp3vdTz6fl1wu1+UrTBAEPb7ChpvCtgv7ciHs/ExEOd8of3+U7Wy/x1H2Z/q++/pcwC7TZ4Ppa23rbWi8r8+FvuzfhSjvexjT1/r6e2FXrEmy//Iv/yLl5eU9hoLuvfdeufLKK6W6ulp+/OMfy9KlS+XQoUPyzW9+M3Q/zc3NsmzZsjhPFQAAKJIJInQHMpmMvPTSSzJr1qzQ348ePVpuuOEGeeqpp865n+eee06+/OUvy7FjxySbzfb4fT6fl3w+X/g+l8tJfX29dHR0SEVFRZfz6c5FfoSPWh4uxtk1zXwIwxg6TLmoW2Izp8VFvSHT4/rK30E65XI5qays7PH/d5jYIig/+tGPZPfu3fK9733vI7dtbGyU06dPyy9+8Qu59NJLe/w+m82GNly6czG1VXuZ/Lj3H2U7F++Jiwcx7HKRUO1iOrvN/8h9FYSMcg/YbvAheWw/Q2PLQfnOd74jEyZMkHHjxn3ktq2trVJWVibDhg2L63QAAECC9DmCcuzYMWlrayt8v2/fPmltbZXq6moZMWKEiPxvCOeFF16Qv/u7v+vx+paWFtm6datMnjxZysvLpaWlRRYvXiy33XabXHDBBX06l8rKyi7fuxga8NWb6L5dlCnLplwUqHIRtXARWYNdLq6Fi8iN6f5M7m/tBehMabrPiJraZfu963MDZdu2bTJ58uTC901NTSIiMm/ePFm5cqWIiKxZs0aCIJBbb721x+uz2aysWbNGHn30Ucnn89LQ0CCLFy8u7AcAACBSkqwvvSXZuEiEiyLut9pXknCUc/G1P6SX9sRrm4mzmu5l7lGE6e0zapIky2KBAABAnVQtFpiWcdEwJmPUpqL0xKLkm2jaXxT0FO3SlOOgZZptlOUufN17UY4BPeK+H8+OgJggggIAANRJdASl2Fk8ppK2wJjtGTamx4jC1/5czOSCGRd5YnHPquvLMWxy8d65iLTADy2f494QQQEAAOokOoJikgUcxkXdjrijKnGX0jc9j77QNJatqZcAu3xFOW3miGjP4dI+S097ZEAL7e8JERQAAKBOoiMo3bkYK9VSE8FFj9DX/kyPEYaekx6+1l7yNdvFR/6K7dooLu5l03PRtD/4kaoGivYwZtyFlqI8IKPQtPgXDyY9XFwLF8MAmhv0ts9Xe5E725J4zlq4eO8Y4gEAAOqkKoISxkVSq+3IRdxJssUeM+pxte8PfvhKvDbl4/w0lzOIei5RkCyvh4vPChEUAACgTuojKKZs54f4Wsq92GNqKuREYajS4qvAou0yAjb/Dl+5IJqfWz6Pi+JR6h4AAKRK6iMo2hcd8zGW62t2EqXkoYmmHCaTxQJ9nIeI+XPLR6QJ6UYEBQAAqJOqCIqvsVcXORjFHjMKeklIIhczVuIuaKZpcUNfM3t4/uhGHRQAAFCSUhVB0ZTlbrvXZXOMWnsOChCFr/oecUdIo/BVcTcKctZ0c/G+p6qBomkNjriHW3yV3Pc1DZEGT2nRPt3Vx3o3LhoZmp55AEM8AABAnVRFUGxPkdO0gKDJEI+LYnNapmEi3TRF4Hyt8GvzmC5KARClgW1EUAAAgDqpiqCYclG8zUfrP0rPxFdhKFP0pmBK09ITcd9Xms7XdlJrEhcwhV1EUAAAgDqJjqCYLDikqYdhuj+bWf7al7I3pelckDy+7o24Ize29+/reenr/HiuxC/KfUYEBQAAqJPoCEp3tsciTY/hIqpik+3ZToBtvnINbG/nq0y8Ce3REqRD9+udy+WMRj9EiKAAAACFEh1B6ejokIqKinNu46Kn46OXZLv3p52Lxd6gh+2ZOLarJ2teLNBXDRkX9xT3cmkhggIAANRJdASl+ziWr2qwPqpUulhm3fb+bPeATdHDSgdfUQUfnx/bi4FGoanKK/dyaUl0A6X7EI/2VTej7M/mQ8fXUJCvJGbYpSnMbrtzEEXcw66aSibYbrRo+kzBLqYZAwCAVEl0BKU7Fz1024o9ru2eiaZkuzCUs9ZD03uXxNICcUdDw7iYAp20YTS4wTRjAACQKqmKoPhKwnSRlNf9GLbzbZKYQ2CK3pkfmhK0w/jKu/IxHdlUmksVmCLiWjzb710iGyhn/+BcLlfU64t9natjaP67XEjL34GebF/btN7Lce8rjuOm+b5N898Wt+7v3dnvTRoumSCBTcODBw9KfX2979MAAABFOHDggFx00UXn3CaRDZTOzk559913pby8XD744AOpr6+XAwcOfGRVWcQrl8txLZTgWujBtdCDa+FfEATywQcfSF1dnZSVnTsNNpFDPGVlZYWW19kxr4qKCj5wSnAt9OBa6MG10INr4RezeAAAQGLRQAEAAOokvoGSzWblkUcekWw26/tUSh7XQg+uhR5cCz24FsmSyCRZAACQbomPoAAAgPShgQIAANShgQIAANShgQIAANShgQIAANRJdAPl6aefllGjRsnAgQOlsbFR3nzzTd+nlHrNzc1y1VVXSXl5uQwbNkxmzZolu3fv7rLNhx9+KAsXLpQhQ4bI+eefL7Nnz5bDhw97OuPSsXz5cslkMnL//fcXfsa1cOdXv/qV3HbbbTJkyBAZNGiQXHHFFbJt27bC74MgkIcffliGDx8ugwYNkqlTp8qePXs8nnF6nTlzRh566CFpaGiQQYMGySWXXCJ/9Vd/1WWBOq5HAgQJtWbNmmDAgAHBc889F/z0pz8NFixYEFRVVQWHDx/2fWqpNm3atGDFihXBrl27gtbW1mDGjBnBiBEjgmPHjhW2ueuuu4L6+vpg48aNwbZt24JPf/rTwWc+8xmPZ51+b775ZjBq1Khg7NixwX333Vf4OdfCjSNHjgQjR44Mbr/99mDr1q3Bz3/+8+Df//3fg7a2tsI2y5cvDyorK4O1a9cGP/nJT4Kbb745aGhoCH7zm994PPN0evzxx4MhQ4YE69atC/bt2xe88MILwfnnnx/8wz/8Q2Ebrod+iW2gXH311cHChQsL3585cyaoq6sLmpubPZ5V6XnvvfcCEQlee+21IAiC4OjRo8F5550XvPDCC4Vt3n777UBEgpaWFl+nmWoffPBB8PGPfzzYsGFD8NnPfrbQQOFauLNkyZLg2muv7fX3nZ2dQW1tbfDEE08Ufnb06NEgm80G//qv/+riFEvKTTfdFNxxxx1dfnbLLbcEc+fODYKA65EUiRziOXnypGzfvl2mTp1a+FlZWZlMnTpVWlpaPJ5Z6eno6BARkerqahER2b59u5w6darLtRk9erSMGDGCaxOThQsXyk033dTlPRfhWrj0b//2bzJx4kT5/Oc/L8OGDZPx48fLP//zPxd+v2/fPmlvb+9yLSorK6WxsZFrEYPPfOYzsnHjRvnZz34mIiI/+clP5PXXX5fp06eLCNcjKRK5mvGvf/1rOXPmjNTU1HT5eU1Njbzzzjuezqr0dHZ2yv333y/XXHONjBkzRkRE2tvbZcCAAVJVVdVl25qaGmlvb/dwlum2Zs0a2bFjh7z11ls9fse1cOfnP/+5/NM//ZM0NTXJ1772NXnrrbfk3nvvlQEDBsi8efMK73fYM4trYd+DDz4ouVxORo8eLf369ZMzZ87I448/LnPnzhUR4XokRCIbKNBh4cKFsmvXLnn99dd9n0pJOnDggNx3332yYcMGGThwoO/TKWmdnZ0yceJE+Zu/+RsRERk/frzs2rVLnnnmGZk3b57nsys9zz//vKxatUpWr14tn/zkJ6W1tVXuv/9+qaur43okSCKHeIYOHSr9+vXrMRvh8OHDUltb6+msSsuiRYtk3bp18uqrr8pFF11U+Hltba2cPHlSjh492mV7ro1927dvl/fee0+uvPJK6d+/v/Tv319ee+01efLJJ6V///5SU1PDtXBk+PDhcvnll3f52WWXXSb79+8XESm83zyz3PiLv/gLefDBB2XOnDlyxRVXyBe/+EVZvHixNDc3iwjXIykS2UAZMGCATJgwQTZu3Fj4WWdnp2zcuFEmTZrk8czSLwgCWbRokbz00kuyadMmaWho6PL7CRMmyHnnndfl2uzevVv279/PtbFsypQp8p//+Z/S2tpa+Jo4caLMnTu38G+uhRvXXHNNj+n2P/vZz2TkyJEiItLQ0CC1tbVdrkUul5OtW7dyLWJw4sQJKSvr+t9bv379pLOzU0S4HonhO0u3WGvWrAmy2WywcuXK4L/+67+CO++8M6iqqgra29t9n1qq3X333UFlZWWwefPm4NChQ4WvEydOFLa56667ghEjRgSbNm0Ktm3bFkyaNCmYNGmSx7MuHf9/Fk8QcC1cefPNN4P+/fsHjz/+eLBnz55g1apVweDBg4Pvfve7hW2WL18eVFVVBS+//HKwc+fO4A//8A+Z1hqTefPmBb/zO79TmGb84osvBkOHDg0eeOCBwjZcD/0S20AJgiB46qmnghEjRgQDBgwIrr766uCNN97wfUqpJyKhXytWrChs85vf/Cb4yle+ElxwwQXB4MGDg8997nPBoUOH/J10CeneQOFauPP9738/GDNmTJDNZoPRo0cHzz77bJffd3Z2Bg899FBQU1MTZLPZYMqUKcHu3bs9nW265XK54L777gtGjBgRDBw4MLj44ouDv/zLvwzy+XxhG66Hfpkg+H+l9QAAABRIZA4KAABINxooAABAHRooAABAHRooAABAHRooAABAHRooAABAHRooAABAHRooAABAHRooAABAHRooAABAHRooAABAnf8B2p7vLLKbxzQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUa0lEQVR4nO3deViVdf7/8dcB2VQ4iMpWLpSkklvuqGULJdm4ZZlFP7Wackwzs9XvlGiby7RNm2nNpFOaS01lm2U2aZpbbmmWo4WCyVKDgiCicu7fH+jJI6DnwH3gwP18XNe55pz7vs/N+3QP+OLD+/58bIZhGAIAAAAswq+mCwAAAACqEwEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAllKjAXjVqlUaMGCAYmNjZbPZ9MEHH7jsNwxDkydPVkxMjEJCQpSUlKTdu3e7HJObm6uUlBSFhYUpPDxcd9xxhwoKCqrxUwAAAKA2qdEAXFhYqI4dO+qVV14pd//MmTP14osv6rXXXtP69evVoEED9evXT0ePHnUek5KSoh9++EHLly/Xxx9/rFWrVumuu+6qro8AAACAWsZmGIZR00VIks1m0/vvv6/BgwdLKh39jY2N1f33368HHnhAkpSXl6eoqCjNnTtXw4cP148//qiEhARt3LhRXbt2lSQtW7ZM/fv31/79+xUbG1tTHwcAAAA+ql5NF1CRtLQ0ZWVlKSkpybnNbrerR48eWrt2rYYPH661a9cqPDzcGX4lKSkpSX5+flq/fr2GDBlS7rmLi4tVXFzsfO1wOJSbm6vGjRvLZrN570MBAACgUgzD0OHDhxUbGys/v6o1MfhsAM7KypIkRUVFuWyPiopy7svKylJkZKTL/nr16ikiIsJ5THmmTZumqVOnmlwxAAAAvC0jI0Pnn39+lc7hswHYmyZNmqSJEyc6X+fl5al58+bKyMhQWFhYDVYGAACA8uTn56tZs2YKDQ2t8rl8NgBHR0dLkrKzsxUTE+Pcnp2drU6dOjmPycnJcXnfiRMnlJub63x/eYKCghQUFFRme1hYGAEYAADAh5nRruqz8wDHxcUpOjpaK1ascG7Lz8/X+vXrlZiYKElKTEzUoUOHtGnTJucxX331lRwOh3r06FHtNQMAAMD31egIcEFBgfbs2eN8nZaWpq1btyoiIkLNmzfXhAkT9OSTTyo+Pl5xcXF67LHHFBsb65wpom3btkpOTtadd96p1157TcePH9e4ceM0fPhwZoAAAABAuWo0AH/33Xe64oornK9P9eWOHDlSc+fO1UMPPaTCwkLdddddOnTokPr06aNly5YpODjY+Z758+dr3Lhxuuqqq+Tn56ehQ4fqxRdfrPbPAgAAgNrBZ+YBrkn5+fmy2+3Ky8ujBxgAgDqupKREx48fr+kycAZ/f3/Vq1evwh5fM/Oaz94EBwAAYLaCggLt379fjP/5pvr16ysmJkaBgYFe/ToEYAAAYAklJSXav3+/6tevr6ZNm7L4lQ8xDEPHjh3Tb7/9prS0NMXHx1d5sYuzIQADAABLOH78uAzDUNOmTRUSElLT5eAMISEhCggI0L59+3Ts2DGXe77MRgAGAACW4snIb2Zm6cNTMTGlD3jGm6O+pyMAAwAAVGD2bGnqVM/fl5oqTZliejkwCQEYAACgAqNHSwMHum4rKpL69Cl9vnq1VF43BaO/vo0ADAAAUIHyWhnyDxsKapYr/4ZHdSw8WD3bRsjfr3bdUNeyZUtNmDBBEyZMcOv4r7/+WldccYUOHjyo8PBwr9ZWHQjAAAAAblq2I1OpH+5U9C1HJUm3vSXF2IOVOiBBye3MH/Y9V79yamqqplSi12Ljxo1q0KCB28f36tVLmZmZstvtHn8tX0QABgAAcMOyHZka8/ZmnTmDcFbeUY15e7Nm3drZ9BCcedodeIsWLdLkyZO1a9cu57aGDRs6nxuGoZKSEtWrd+5417RpU4/qCAwMVHR0tEfv8WXVc6sdAABALVbiMDT1o51lwq8k57apH+1UicPcBTaio6OdD7vdLpvN5nz9008/KTQ0VJ999pm6dOmioKAgrV69Wj///LMGDRqkqKgoNWzYUN26ddOXX37pct6WLVvqhRdecL622Wx64403NGTIENWvX1/x8fFaunSpc//XX38tm82mQ4cOSZLmzp2r8PBwff7552rbtq0aNmyo5ORkl8B+4sQJjR8/XuHh4WrcuLEefvhhjRw5UoMHDzb1v1FlEIABAADOYUNarjLzjla435CUmXdUG9Jyq6+okx555BFNnz5dP/74ozp06KCCggL1799fK1as0JYtW5ScnKwBAwYoPT39rOeZOnWqhg0bpu+//179+/dXSkqKcnMr/jxHjhzRM888o7feekurVq1Senq6HnjgAef+GTNmaP78+XrzzTe1Zs0a5efn64MPPjDrY1cJARgAAOAccg5XHH4rc5yZHn/8cV199dW68MILFRERoY4dO2r06NFq166d4uPj9cQTT+jCCy90GdEtz6hRo3TzzTerVatWevrpp1VQUKANGzZUePzx48f12muvqWvXrurcubPGjRunFStWOPe/9NJLmjRpkoYMGaI2bdro5Zdf9pkb6AjAAAAA5xAZ6t6qZO4eZ6auXbu6vC4oKNADDzygtm3bKjw8XA0bNtSPP/54zhHgDh06OJ83aNBAYWFhysnJqfD4+vXr68ILL3S+jomJcR6fl5en7Oxsde/e3bnf399fXbp08eizeQs3wQEAAJxD97gIxdiDlZV3tNw+YJukaHuwusdFVHdpZWZzeOCBB7R8+XI988wzatWqlUJCQnTDDTfo2LFjZz1PQECAy2ubzSaHw+HR8YZhbg+0tzACDAAAcA7+fjalDkiQVBp2T3fqdeqABJ+YD3jNmjUaNWqUhgwZovbt2ys6Olp79+6t1hrsdruioqK0ceNG57aSkhJt3ry5WuuoCAEYAADADcntYjTr1s5l2hyi7cFemQKtsuLj4/Xvf/9bW7du1bZt23TLLbecdSTXW+655x5NmzZNH374oXbt2qV7771XBw8ePOfcxtWBFggAAAA3JbeLUa8W0Yq8uHQluI+XBOsyH1sJ7rnnntPtt9+uXr16qUmTJnr44YeVn59f7XU8/PDDysrK0ogRI+Tv76+77rpL/fr1k7+/f7XXciabUVuaNbwoPz9fdrtdeXl5CgsLq+lyAACAFxw9elRpaWmKi4tTcLB7N6tlZpY+TldUJPXpU/p89WopJKTs+8pbQtnqHA6H2rZtq2HDhumJJ54o95izXSMz8xojwAAAABWYPVuaOrXi/aeC8JlSU6VKrFBcp+zbt09ffPGF+vbtq+LiYr388stKS0vTLbfcUtOlEYABAAAqMnq0NHCg5+9j9Ffy8/PT3Llz9cADD8gwDLVr105ffvml2rZtW9OlEYABAAAqQitD5TVr1kxr1qyp6TLKxSwQAAAAsBQCMAAAACyFAAwAAABLoQcYAACgIuXNg+YOmod9GgEYAACgIueaB60izIPm0wjAAAAAFSlvHjR3V8KAzyIAAwAAVKS8VobD+VILfynUJkUckVr3lPxqfnlfuI+b4AAAANy1c6k0u7s0qoE0tL606AbphXal273AZrOd9TGlCm0WNptNH3zwgWm11iaMAAMAALhj51Jp8QhJhuv2/MzS7cP+JSVUYtm4s8g87Qa8RYsWafLkydq1a5dzW8OGDU39elbBCDAAAMC5OEqkZQ+rTPiV/ti27JHS40wUHR3tfNjtdtlsNpdtCxcuVNu2bRUcHKw2bdro1Vdfdb732LFjGjdunGJiYhQcHKwWLVpo2rRpkqSWLVtKkoYMGSKbzeZ8bRWMAAMAAJzLvm+l/ANnOcCQ8n8tPS7u0mopaf78+Zo8ebJefvllXXLJJdqyZYvuvPNONWjQQCNHjtSLL76opUuXavHixWrevLkyMjKUkZEhSdq4caMiIyP15ptvKjk5Wf7+1uphJgADAACcS0G2uceZIDU1Vc8++6yuv/56SVJcXJx27typ2bNna+TIkUpPT1d8fLz69Okjm82mFi1aON/btGlTSVJ4eLiio6OrrWZfQQAGAAA4l4ZR5h5XRYWFhfr55591xx136M4773RuP3HihOx2uyRp1KhRuvrqq9W6dWslJyfrT3/6k6655ppqqc/XEYABAADOpUUvKSy29Ia3cvuAbaX7W/SqlnIKCgokSa+//rp69Ojhsu9UO0Pnzp2Vlpamzz77TF9++aWGDRumpKQkvfvuu9VSoy8jAAMAAJyLn7+UPOPkLBA2uYZgW+n/JE+vtvmAo6KiFBsbq19++UUpKSkVHhcWFqabbrpJN910k2644QYlJycrNzdXERERCggIUEmJuTft1RYEYAAAAHckDCyd6uzTh6SCP6YnU1hsafg1eQq0c5k6darGjx8vu92u5ORkFRcX67vvvtPBgwc1ceJEPffcc4qJidEll1wiPz8/LVmyRNHR0QoPD5dUOhPEihUr1Lt3bwUFBalRo0bVWn9NIgADAAC4K2Gg1OxyqX1E6Upwiz+VWl9ZIyvB/fnPf1b9+vX1t7/9TQ8++KAaNGig9u3ba8KECZKk0NBQzZw5U7t375a/v7+6deumTz/9VH5+pbPgPvvss5o4caJef/11nXfeedq7d2+1f4aaYjMMo7xGFkvJz8+X3W5XXl6ewsLCarocAADgBUePHlVaWpri4uIUHBzs3psyM0sfpysqkvr0KX2+erUUElL2feUtoYxzOts1MjOvMQIMAABQkdmzpalTK95/KgifKTVVqsIyxfAuAjAAAEBFRo+WBlait5fRX59GAAYAAKgIrQx1kl9NFwAAAABUJ0aAAQCApXD/v+8yDEMlJdIPP0g2m+u+k2t/mIIADAAALOHUCmnHjh1TSHkzN6DGHTlyRIcOSf36BejIEe99HQIwAACwhHr16ql+/fr67bffFBAQ4JwPFzXPMAwdOXJEOTk5iowM1zffuM6rfPrMc2YgAAMAAEuw2WyKiYlRWlqa9u3bV9PloBzh4eGKjo4u0/5QWGju1yEAAwAAywgMDFR8fLyOHTtW06XgDAEBAc42FW8jAAMAAEvx8/NzfyU41Ek0vwAAAMBSCMAAAACwFAIwAAAALIUADAAAAEvhJrizyMwsfXiKZcMBAAB8FwH4LGbPlqZO9fx9qanSlCmmlwMAAAATEIDPYvRoaeBA122nr0SyerV0+kqKv/0m/f671KSJtHmz+1+HEWMAAIDqQwA+i/KC6ekrkXTqJDVo8MfrKVMYMQYAAPB1BGATeTpifAqjvwAAANWHAGwiT0eMAQAAUP2YBg0AAACWQgAGAACApRCAAQAA4NNKHIYCz8s17Xz0AAMA6gQWLwLqpmU7MpX64U5F3ZirjBfMOScBGABQJ7B4EVD3LNuRqTFvb5Zh8nkJwACAOoGpKIG6pcRhaOpHO00PvxIBGABQRzAVJVC3bEjLVWbeUa+cmwBch9EPBwAAaqucw94JvxIBuE6jHw4AANRWkaHBXjs3AdhDJQ5DQc1y5d/wqDbsDdZlbSPk72er6bLKRT8cAACodU7+Cbu7w1BMiJ+yihzcBFeTTk3DEX1L6ZD8bW9JMfZgpQ5IUHI776dGM1oa6IcDAAA+7eSfsP0lpV6UqDGD/082kyMwAdhNFU3DkZV3VGPe3qxZt3b2egimpQEAANR5p/0JO1nSrP1FmrIpTweOmfclCMBuONs0HIYkm6SpH+3U1QnRZdohzGyZqI6WBm6cAwAANeqMUJHcWerVvUAbuvbQ1SZ9CQKwG841DYchKTPvqDak5SrxwsbO7Wa3TFTHFD+MMgMAAF/j72dT9193mnY+ArAb3J2G4/TjfKFlojK4cQ4AANR1BGA3uDsNx6njqtIyUdOYSB4AANR1BOCzcXMaDpuk6BA/dT+4V9q8TxtKGlaqZQIAAADe51fTBfi02bOlLl3k362rUhc8IRmGbIbD5RCb4ZAMQ6kLnpB/t65Sly7KWbrMrdN7c4UTAAAAlI8R4LOpYBqOrOI/xoGj69dT6iVhSr7pZee2yJKG0nu7z3l6b65wAgAAgPIRgM+mgmk4fujeSzkNGynsrfm67JLzyvTxdncYivkyQ1l5RytumbAHq3tchHfrBwAAQBkEYA/5+9mUmLFdklTYrFG5N7H5+9mUOiBBY97eLJvkEoJPHZ06IMHnboCzIuY9BgDAegjAXpLcLkazbu2s1A93Kvu0Xt/oalw6GefGvMcAAFiPTwfgkpISTZkyRW+//baysrIUGxurUaNG6dFHH5XNVjp6ahiGUlNT9frrr+vQoUPq3bu3Zs2apfj4+BquvjQE92oRrciLS1eC+3hJ1VaCg/mY9xgAAOvx6QA8Y8YMzZo1S/PmzdPFF1+s7777TrfddpvsdrvGjx8vSZo5c6ZefPFFzZs3T3FxcXrsscfUr18/7dy5U8HB1XyTWTl/Tw8okhIySp/3PCT5b91X9n38Pb3GMO8xAADW49MB+Ntvv9WgQYN03XXXSZJatmypd955Rxs2bJBUOvr7wgsv6NFHH9WgQYMkSf/6178UFRWlDz74QMOHD6/egsv5e3qIpM2nXvSp4H3V+Pf0EoehoGalI9Ib9jIiDQCoPbhvA2bx6QDcq1cvzZkzR//973910UUXadu2bVq9erWee+45SVJaWpqysrKUlJTkfI/dblePHj20du3aCgNwcXGxiouLna/z8/PNKbicv6cX5RYp5OrS5Fu0fLVCImru7+nLdmQq9cOdir6ltCf5trekGHqSAdRh/NJft3DfBszi0wH4kUceUX5+vtq0aSN/f3+VlJToqaeeUkpKiiQpKytLkhQVFeXyvqioKOe+8kybNk1TK/MddC7l/IrpyPnj7+mODp2kyGr8e/ppvyov21+kMd8eKjMtW1beUY15e7Nm9QpX8vknwzm/KgOojc4YHly2v0hTNucr+pbSBYxue0uKCfErnbv9/NMGI/iZV2tw3wbM4tMrwS1evFjz58/XggULtHnzZs2bN0/PPPOM5s2bV6XzTpo0SXl5ec5HRkaGSRX7mJMr2ZV07aapy3bLMMrOSmxIkuHQ1GW7VdK1m9SlS+n7AKC2OfkzT126aNnN4zRmzUFlFZW4HJJ15ITGrDmoZTePcx7Lz7zaIyZG6tzZ9dGp0x/7O3Uqu79zZwIwyvLpEeAHH3xQjzzyiLOVoX379tq3b5+mTZumkSNHKjo6WpKUnZ2tmNP+352dna1Op39HnCEoKEhBQUFerd0nnPxVeUNOsTK/zq3wMMPmp8ywptrw6WolRgbxkwJA7XTyZ16Jw9DUT3JkFDnKHGLY/GSTNPWWx3T1dZGl7RD8zAN8Snm93sW50sUmfg2fDsBHjhyRn5/rILW/v78cjtIfanFxcYqOjtaKFSucgTc/P1/r16/XmDFjqrtcj3m9mf/kgTlbf5VUcQA+JSe6udTpPM8LAgBfcPJn3oaf/6fMoorb4AxJmUUObWjUUokXNq6++gC4pbxe7/qSKhGZKuTTAXjAgAF66qmn1Lx5c1188cXasmWLnnvuOd1+++2SJJvNpgkTJujJJ59UfHy8cxq02NhYDR48uGaLd0N1NfNHhro3HZy7xwGAL8s5bfEhM44DUL3K6/X2K1LFs2lVgk8H4JdeekmPPfaY7r77buXk5Cg2NlajR4/W5MmTncc89NBDKiws1F133aVDhw6pT58+WrZsWfXPAVwJ1dXM3z0uQjH2YGXlHS1zE5xUujxztD1Y3eMiPDsxAPggfukHardy/9JdKJk0Z5ckyWaUd2eUxeTn58tutysvL09hYWFnPbYwp1ANohqWPs8uUINzzOrg8fGFUsPSw1VQcO5FGPIPG26tNLdsR6bGvF06I/HpF/zUkbNu7VzhVGie1lTbWe3zAnVNicNQnxlfnfOX/tUPX8mUaHUAP7MtorBQ+Q0byi65ldfOxadHgGtaRU3YiSeff/+9FFTOoGl1zajjyby+ye1iNOvWzkr94AdlF/wxB3I08wADqGP8/WxKHZCgMW9vlk3l/9KfOiCB8AvUJo4SqZmflFH25tbKIACfRUVN2Kdm9k26WjpSzvuqY8LtUyO6Fc7rW86IbnK7GPVqEqofuvdSTsNGCntrvi675Dz+EQBQ5/BLP1CH7FwqffqQlNJAmn7YlFMSgM+i3CbsIyXSrf5SqE3bnv5W+bFXSjZ/SdJvv0m//y41aSJtPrn+sTdGjEschqZ+tLPcP+0ZKh3hmPrRTl2dEF0m3Pr72ZSYsV2SVNisEeEXQJ3FL/1AHbBzqbR4hFRu6qk8AvBZlAmmO5dKXz0kjSptMGq16QZpd6yUPENKGKgpU6pnxHhDWq4y8yq+e9mQlJl3VBvSck2Z4oelRAHUVvzSD9RijhJp2cMyO/xKBGD3VfQbSH5m6fZh/9Lo0QPPOm3HmtWSoyqzOpxsSs5JL3Lr8JztP0l5IVVqSvakzxgAAMA0+76V8g945dQEYHec9TeQk00Hyx5RzITrFBPj77q78I+nnTpJqsrdqSebkiObtZdumXbOwyPHj5Eytle6Kbkyfca1Tjl3OvoVSZecer5VUjm/tFTbnY4AAFhVQbbXTk0Adsc5fwMxpPxfS4+Lu9R1l6NEalHaM6z0b6XWV0p+/uWf5lxONiV3dxiK+SRHWUWOiqf4CfFT93+/KVVymc+q9BnXKuXc6RgiafOpFxVNul0ddzoCAGBlDaO8dmoCsDvc/Q3kzONO3bV4smdYi26Qwv7oGfbYyVFHf0mpwZlnn+JnaCf5V2Z09uSI6IacYvf6jL9Yp8TIoNo7IlrOnY5FuUUKubo0+RYtX62QCBNWIwEAAJ5p0as0N+Vnyuw+YD9Tz1ZXufsbyOnHneoZLjhjIuFTPcM7l1appFNT/EQ2DHLZHm0PrlprwuzZUpcuypn4iFuH50x8ROrSpfR9tVFMjNS5s8vD0aGTc7ejQ6cy+9W5MwEYAABv8/MvHTSU9McQnzkYAXbHOX8DsZXub9Gr9KWbPcNqc13l2yFUySl+TmvJ8Pv1W6nJGS0ZJ0dEI3OKpa9zz1lD5HPTpVMjwAAAAGZKGCgN+1fpX9SLzbshjgDsjlO/gSweIVXUdJA8/Y8gWZWeYQ95NMXPzqUK+eSPloyQD2+Q/nNGS8bJVobuDkMxW869lGj3a3qW9hkDAAB4Q8JAqdnl0sWNTDslLRDuOvUbSMNo1+1hsaXbT+/prWzPsDedbMmwFbrXknFqKVGp7B8dWEoUAABUKz9/05ZBlgjAnkkYKI3eIM0tlN47It30rjRhe9kb2irTM+xNp7VklI2rJ8d3lz1SetxpvNZnDAAAUINogfCUn7+072RQbN6r/B5eT3uGva0KLRlWXEq0xGFobbP2pZ8346Aua1K/Tn9eAKjNWK0UlUEA9gZPe4a9rYotGVZaSnTZjkylfvCDsk8tNLJkm2K+2MXKdwDgg1itFJVFC4S3eNIz7G2+1pLho06tfJddUOyy/dTKd8t2ZFbwTgBAdXP+zD7sOmc9P7PhDkaAvenUXYvtI0pXglv8adVWgvOQc5Vfo5faBccq4GimbOW0ZBiy6XhwrHbk9pIO1t41LarCMivfAVZzrqkfUSvxMxtVxQiwt53qGd5xouKeYS85uaaFunT11/B5M2QYksNw/UHgMGwyDGn4vOnq0tW/Vq9pURUb0nLdW/ku7dxzIwPwETuXKuSt7qVTPw6tXzr14wvtqrwQEWoeP7NRVYwA+xgzm/ldV/kdqL0H/qXztz+kwOI//ix0IiRW+9tN16ODBurRk9usNvorSTmHK/5BWpnjANSwU1M/njlGeGrqx+puRYM5Tv5pMye9yK3Dc7b/JOWFWPNPmzgrArAPMbuZv8z3e+eBUt/LXVoyAltfqQv4c6AiQ4NNPQ5ADTrn1I/mrMaJGjB7tjR1qiKbtZdO3ax8FpHjx0gZ26XUVGnKFO/Xh1qDFggfUW3N/DXYkuHLusdFKMYeXOFK4zaV/jLSPS6iOssCUBmeTP2I2mX0aGnTJnX/95uKCfE7+8/sED91//eb0qZNpe8DTkMA9gHnauaXSpv5SxzlHVENTt1E0q5e6U0kZyyYURew8h1Q+2VmSps3S2nb3Zv6MW17tjZvPnmzMGqHmBipc2f5d+2i1KGdJJ3lZ/bQTvLv2kXq3Jn2B5RBAPYBPt3Mb6GbSFj5DqjdTt34e9t496Z0vG18lGVv/K0L+JmNqqAH2Af47A1YFryJxIor3wF1hfPGX6OXji0/99SPz73XS7IxOFib8TMblUUA9gE+eQOWhW8i8ZdDiX47JX+bivx+lL9iJNWtzwjURX/c+OsvhVS8GqdNUuDA6eqcwPd1XWCl1UphHlogfIBP3oBl1ZtILNTyAdRpvrQaJwCfQwD2AT55A1aBezeRuH1cbXCq5aPwjDtiTrV8EIKB2iVhoDR6gzS3UHrviHTTu9KE7YRfAARgX+Fs5j+jzaHGmvkbuncTidvH+bpztnyotOWjDs6AAdRpTP0IoBz0APuQ5HYx6tUiWpEXl64E9/ESN1aC89Y69y16lf6pMD9TKneCNlvp/ha9qv61fIEnLR9xl1ZbWQAAwHwEYB/j72dTcUZjSVL3lpL/aWP0J1eAdAo/sFTnff9Qab+qpJAPb9Cxz2O1v90MHYr94098lVoB0s9fSi69icSQ7Yw7qU8G8uTpdWc0xYotHwAAWBQB+GzOTJySVHTa+uNbt0ohIWXf527iLOf8fkXSJaeeb5V02umXzpZmz5EyFaPENhv17rARkgyXxuF6RZlquXGEblj8L73/U2kIrvQKkCdvIjE+eci1LzYstjT81qU+Oqu1fAAAYGEE4LM5ueZ4hfr0KX/7XXf9sezi2QLz7NnSnDkubw2RtNl5ftfTjj75yLzrMTWOWyLb0bL9qn42Q4ZsWjjyEe24+jrJ5l+1OS4TBqoo4nI16BkhhdpU9K9PFdLRpDYLX2K1lg8AAHzVuQYgTWAzDKOG1tf1Hfn5+bLb7crLy1NYWNgfO8q7AGdTTqB1y2mBuSi3SCFXlybfouWrFRJRzgizkS59NPLc5x35cdl+1cJCqWHD0ucFBVKDBuc8TWFOoRpElb6nMLtADSLP/Z5a6eQsEKWzHJfT8sHUSUDtU4mfeahdLPNvlJVMmVLuAGS+JLtUNq9VAiPAZ+Np8+yUKX+M/Fby6zhyCp2bHR06SeV9I2//xb3z0q/qGSu1fAAA4KucyzqeoaBA6tvXlC9BADZTpe42qwR3+1CP1ZM2b3bddo4e5t9+K+0xPtH0j89RnCslnnz+/fdSUDnrcVTXR/c6q7R8AADgqyoKFfn5pn0JjwKww+HQypUr9c0332jfvn06cuSImjZtqksuuURJSUlq1qyZaYXhLNztV/1oszR1SMXnKaeHuamkV5SqqZri3FZf0qlx6aSrpSPlnKrSN9r5olPzhkpynMe8oQAA1DVuBeCioiI9++yzmjVrlnJzc9WpUyfFxsYqJCREe/bs0QcffKA777xT11xzjSZPnqyePXt6u25rO22KsvLWuZdU+if7Rt2kgYM9OvVvv0nXK0YDm5725YrkvCFvzWrJUcHEFwAAVDtvzYePOs2tAHzRRRcpMTFRr7/+uq6++moFBASUOWbfvn1asGCBhg8frr/+9a+68847TS8Wpzm1zv2nD0kFZ+lX9TCZNj35cPFHW7I6dZLE/QUAAF+wc6lCPnGdD1//iS0dJOK+DZyFW7NA/Pjjj2rbtq1bJzx+/LjS09N14YUXVrm46lLhLBA1wOO7WQ/nS+1L+1W1+FOptRd+87XYXdTcUQzUIRb7+WUpzpl7zpwSlJl76ioz85rfuQ+R2+FXkgICAmpV+K31WOceAGA1jhJp2cNSmfArOdsClz1SehxQjkrNApGenu5yE9zFF1+soKAgs2sDAAAoa9+3Uv6BsxxgSPm/lh535nz4gDwIwHv37tWsWbO0cOFC7d+/X6d3TgQGBurSSy/VXXfdpaFDh8rPz62BZQAAAM+5O8898+GjAm4l1fHjx6tjx45KS0vTk08+qZ07dyovL0/Hjh1TVlaWPv30U/Xp00eTJ09Whw4dtHHjRm/XDQAArMrd+fDdPQ6W49YIcIMGDfTLL7+ocePGZfZFRkbqyiuv1JVXXqnU1FQtW7ZMGRkZ6tatm+nFohqca/3tchbPkFSHVsIAAPgq5z9RRi+1C45VwNHMM5auL2XIpuPBsdqR20s6yD9RKMutADxt2jS3T5icnFzpYuADZs8ud/1tp3IWz5BUx1bCAAD4oj/+ifLXkDYz9O6wETJkk5/tjxDsMEpvixs+b7ren1R6Yzj/ROFMVVoK+ffff9f69etVUlKibt26KYZfr2q/itbfPheuPQDAy1z/iRqovQf+pfO3P6TA4j/+cnkiJFb7203Xo4MG6tGT2/gnCmeqdAB+7733dMcdd+iiiy7S8ePHtWvXLr3yyiu67bbbzKwP1Y2/EwGorWjhqvPKXKrOA6W+l7vMhx/Y+kpdwJSgOAe3A3BBQYEanppMXNLUqVO1YcMGXXTRRZKkTz75RHfeeScB2APl/awuzpUSTz7//nspKKLs+/hZbR6uAVCH0MJlTafmw5eYDx9uczsAd+nSRTNnztSgQYNK31ivnnJycpwBODs7W4GBgd6pso4q72d1ff2x8nDS1dKRct7Hz2rzcA2AOoQWLgBucmspZKl0HuCxY8cqMDBQr7zyin7++WcNHz5cJSUlOnHihPz8/DR37lz179/f2zWbrqaWQi5v9NGvqFCd+pSOtG9dXSBHSNllO11GH1nms0pMuQYAgJrDv4OWYWZec3sEuGXLlvrkk0/0zjvvqG/fvho/frz27NmjPXv2qKSkRG3atFFwcHCVirGackNU4R9PO3WSxPexV3ENAACwHo9vgrv55pt17bXX6oEHHtDll1+uOXPmqFOnTl4ozaIcJVIL/9Jm/vRvpdZX0s/kTdw0AwCA5XgUgD/99FP9+OOP6tixo9544w2tXLlSKSkpuvbaa/X4448rpLygAPftXCp9+pA06uSQ46IbpLBYKXmGlFCJvjacGzfNAABgOW73AN9///16++23dcUVV2jjxo0aNWqUHnvsMR07dkxPPPGElixZoueff17XXnutt2s2XU31ALvYuVRaPEIqs6JN6YTeGvav8kMwvU9VU94IsDsYAQYA38C/g5ZhZl5zOwA3btxYX3zxhbp06aLc3Fz17NlT//3vf537d+7cqdGjR+ubb76pUkE1ocYDsKNEeqGdlH+gggNspSPBE7aXbYfgGx8AYGX8O2gZZuY1P3cPbNCggdLS0iRJGRkZZW54S0hIqJXh1yfs+/Ys4VeSDCn/19LjAAAAUCVuB+Bp06ZpxIgRio2NVd++ffXEE094sy5rKcg29zgAAABUyO2b4FJSUpScnKxffvlF8fHxCg8P92JZFtMwytzjAAAAUCGPZoFo3LixGjdu7K1arKtFr9Ie3/xMlb0JTnL2ALfoVd2VAQAA1DlutUD85S9/0f79+9064aJFizR//vwqFWU5fv6lU51Jcs764HTydfJ05gMGAAAwgVsjwE2bNtXFF1+s3r17a8CAAeratatiY2MVHBysgwcPaufOnVq9erUWLlyo2NhYzZkzx9t11z0JA0unOvv0IangtGm5wmJLw2/CQBZtAAAAMIHb06BlZ2frjTfe0MKFC7Vz506XfaGhoUpKStKf//xnJScne6VQb6rxadBOdzhfah9RuhLc4k9dV4KbMuXsizZUhEUbAAB1QUUDQacWLVq9moGgOqxG5gE+3cGDB5Wenq6ioiI1adJEF154oWy2M/90X3v4VAA+23yGLNoAALAyBoIszcy85tFNcKc0atRIjRo1qtIXRiUQZAEAVjZ6tDSwnFVRz4V/O3GGSgVgAACAasdAEEzi9kIYAAAAQF1AAAYAAIClEIABAABgKQRgAAAAWIpbN8Fdcsklbk9ztnnz5ioVBAAAAHiTWwF48ODBzudHjx7Vq6++qoSEBCUmJkqS1q1bpx9++EF33323V4oEAAAAzOJWAE5NTXU+//Of/6zx48friSeeKHNMRkaGudUBAAAAJvO4B3jJkiUaMWJEme233nqr3nvvPVOKAgAAALzF4wAcEhKiNWvWlNm+Zs0aBQcHm1IUAAAA4C0erwQ3YcIEjRkzRps3b1b37t0lSevXr9c///lPPfbYY6YXCAAAAJjJ4wD8yCOP6IILLtDf//53vf3225Kktm3b6s0339SwYcNMLxAAAAAwk80wDKOmi6hp+fn5stvtysvLU1hYWM0WU1goNWxY+rygQGrQoGbrAQAA8AFm5jWPe4AvuOAC/e9//yuz/dChQ7rggguqVAwAAADgbR4H4L1796qkpKTM9uLiYv3666+mFAUAAAB4i9s9wEuXLnU+//zzz2W3252vS0pKtGLFCrVs2dLU4gAAAACzuR2AT60GZ7PZNHLkSJd9AQEBatmypZ599llTiwMAAADM5nYAdjgckqS4uDht3LhRTZo08VpRlpGZWfo4XVHRH8+3bpVCQsq+Lyam9AEAAACPedwDnJaWVib8Hjp0yKx6yvj111916623qnHjxgoJCVH79u313XffOfcbhqHJkycrJiZGISEhSkpK0u7du71Wj6lmz5a6dHF99Onzx/4+fcru79Kl9H0AAACoFI/nAZ4xY4Zatmypm266SZJ044036r333lNMTIw+/fRTdezY0bTiDh48qN69e+uKK67QZ599pqZNm2r37t1q1KiR85iZM2fqxRdf1Lx58xQXF6fHHntM/fr1086dO31/ZbrRo6WBAz1/H6O/AAAAlebxPMBxcXGaP3++evXqpeXLl2vYsGFatGiRFi9erPT0dH3xxRemFffII49ozZo1+uabb8rdbxiGYmNjdf/99+uBBx6QJOXl5SkqKkpz587V8OHD3fo6PjUPMAAAAMqo0XmAs7Ky1KxZM0nSxx9/rGHDhumaa67RQw89pI0bN1apmDMtXbpUXbt21Y033qjIyEhdcsklev31153709LSlJWVpaSkJOc2u92uHj16aO3atRWet7i4WPn5+S4PAAAAWIPHAbhRo0bKyMiQJC1btswZPg3DKHd+4Kr45ZdfNGvWLMXHx+vzzz/XmDFjNH78eM2bN09SaRiXpKioKJf3RUVFOfeVZ9q0abLb7c7HqUAPAACAus/jHuDrr79et9xyi+Lj4/W///1P1157rSRpy5YtatWqlanFORwOde3aVU8//bQk6ZJLLtGOHTv02muvlZmKzROTJk3SxIkTna/z8/MJwQAAABbh8Qjw888/r3HjxikhIUHLly9Xw4YNJUmZmZm6++67TS0uJiZGCQkJLtvatm2r9PR0SVJ0dLQkKTs72+WY7Oxs577yBAUFKSwszOUBAAAAa/B4BDggIMB5w9np7rvvPlMKOl3v3r21a9cul23//e9/1aJFC0mlN+RFR0drxYoV6tSpk6TS0dz169drzJgxptcDAACA2s/jEeDThYWF6ZdffjGrljLuu+8+rVu3Tk8//bT27NmjBQsWaM6cORo7dqyk0lXpJkyYoCeffFJLly7V9u3bNWLECMXGxjpXrgMAAABO5/EI8Ok8nEHNY926ddP777+vSZMm6fHHH1dcXJxeeOEFpaSkOI956KGHVFhYqLvuukuHDh1Snz59tGzZMt+fAxgAAAA1wuN5gE8XGhqqbdu26YILLjCzpmrHPMAAAAC+rUbnAT7drbfeSmAEAABAreJ2AB4xYoTee+89FRQUOLfNmjVLTZo08UphAAAAgDe4HYBbtWqlp59+Wk2bNtW1116rWbNm6cCBA96sDQAAADCdxz3A+/fv19KlS/Xhhx9q5cqVuvjiizVo0CANHDjQORVZbUMPMAAAgG8zM69V6Sa4w4cP67PPPtOHH36ozz77TKGhoRowYIDGjBmjiy++uEqFVScCMAAAgG/zmZvgQkNDNWzYMM2fP1+//fab/vnPf8rf319r166tUlEAAACAt1RpBLiuYAQYAADAt/nMCPDdd9+t33//vUoFAAAAANWpSgH47bffVn5+vlm1AAAAAF5XpQBM9wQAAABqmyoFYEmy2Wxm1AEAAABUi3qeHBwXF+cSeIuKitS3b1/Vq/fHaX755RfzqgMAAABM5lEAnjt3rvO5YRjq37+/pk+frvPOO8/sugAAAACv8CgA9+3b1+W1v7+/evbsqQsuuMDUogAAAABvqVIPMP2/AAAAqG2YBQIAAACW4lELxJkOHz5sVh0AAABAtajyNGgAAABAbVKpEeBDhw5pw4YNysnJkcPhcNk3YsQIUwoDAAAAvMHjAPzRRx8pJSVFBQUFCgsLc7kRzmazEYABAADg0zxugbj//vt1++23q6CgQIcOHdLBgwedj9zcXG/UCAAAAJjG4wD866+/avz48apfv7436gEAAAC8yuMA3K9fP3333XfeqAUAAADwOo97gK+77jo9+OCD2rlzp9q3b6+AgACX/QMHDjStOAAAAMBsNsPD1Sz8/CoeNLbZbCopKalyUdUtPz9fdrtdeXl5CgsLq+lyAAAAcAYz85rHI8BnTnsGAAAA1CYshAEAAABLqdRCGIWFhVq5cqXS09N17Ngxl33jx483pTAAAADAGzwOwFu2bFH//v115MgRFRYWKiIiQr///rvq16+vyMhIAjAAAAB8msctEPfdd58GDBiggwcPKiQkROvWrdO+ffvUpUsXPfPMM96oEQAAADCNxwF469atuv/+++Xn5yd/f38VFxerWbNmmjlzpv7v//7PGzUCAAAApvE4AAcEBDinQouMjFR6erokyW63KyMjw9zqAAAAAJN53AN8ySWXaOPGjYqPj1ffvn01efJk/f7773rrrbfUrl07b9QIAAAAmMbjEeCnn35aMTExkqSnnnpKjRo10pgxY/Tbb79pzpw5phcIAAAAmMnjleDqIlaCAwAA8G1m5rVKLYRx4sQJffnll5o9e7YOHz4sSTpw4IAKCgqqVAwAAADgbR73AO/bt0/JyclKT09XcXGxrr76aoWGhmrGjBkqLi7Wa6+95o06AQAAAFN4PAJ87733qmvXrs55gE8ZMmSIVqxYYWpxAAAAgNk8HgH+5ptv9O233yowMNBle8uWLfXrr7+aVhgAAADgDR6PADscDpWUlJTZvn//foWGhppSFAAAAOAtHgfga665Ri+88ILztc1mU0FBgVJTU9W/f38zawMAAABM5/E0aPv371e/fv1kGIZ2796trl27avfu3WrSpIlWrVqlyMhIb9XqNUyDBgAA4NvMzGuVmgf4xIkTWrhwob7//nsVFBSoc+fOSklJcbkprjYhAAMAAPg2M/OaxzfBSVK9evV06623VukLAwAAADWhUgH4wIEDWr16tXJycuRwOFz2jR8/3pTCAAAAAG/wOADPnTtXo0ePVmBgoBo3biybzebcZ7PZCMAAAADwaR73ADdr1kx/+ctfNGnSJPn5VWolZZ9DDzAAAIBvMzOveZxgjxw5ouHDh9eZ8AsAAABr8TjF3nHHHVqyZIk3agEAAAC8zuMWiJKSEv3pT39SUVGR2rdvr4CAAJf9zz33nKkFVgdaIAAAAHxbjU6DNm3aNH3++edq3bq1JJW5CQ4AAADwZR4H4GeffVb//Oc/NWrUKC+UAwAAAHiXxz3AQUFB6t27tzdqAQAAALzO4wB877336qWXXvJGLQAAAIDXedwCsWHDBn311Vf6+OOPdfHFF5e5Ce7f//63acUBAAAAZvM4AIeHh+v666/3Ri0AAACA13kcgN98801v1AEAAABUC5ZzAwAAgKW4FYCTk5O1bt26cx53+PBhzZgxQ6+88kqVCwMAAAC8wa0WiBtvvFFDhw6V3W7XgAED1LVrV8XGxio4OFgHDx7Uzp07tXr1an366ae67rrr9Le//c3bdQMAAACV4vZSyMXFxVqyZIkWLVqk1atXKy8vr/QENpsSEhLUr18/3XHHHWrbtq1XC/YGlkIGAADwbWbmNbcD8Jny8vJUVFSkxo0bl5kKrbYhAAMAAPg2M/Oax7NAnGK322W326v0xQEAAIDqxiwQAAAAsBQCMAAAACyFAAwAAABLIQADAADAUjwOwCNHjtSqVau8UQsAAADgdR4H4Ly8PCUlJSk+Pl5PP/20fv31V2/UBQAAAHiFxwH4gw8+0K+//qoxY8Zo0aJFatmypa699lq9++67On78uDdqBAAAAExTqR7gpk2bauLEidq2bZvWr1+vVq1a6f/9v/+n2NhY3Xfffdq9e7fZdQIAAACmqNJNcJmZmVq+fLmWL18uf39/9e/fX9u3b1dCQoKef/55s2oEAAAATONxAD5+/Ljee+89/elPf1KLFi20ZMkSTZgwQQcOHNC8efP05ZdfavHixXr88ce9US8AAABQJR4vhRwTEyOHw6Gbb75ZGzZsUKdOncocc8UVVyg8PNyE8gAAAABzeRyAn3/+ed14440KDg6u8Jjw8HClpaVVqTAAAADAGzxugRg4cKCOHDlSZntubq7y8/NNKQoAAADwFo8D8PDhw7Vw4cIy2xcvXqzhw4ebUhQAAADgLR4H4PXr1+uKK64os/3yyy/X+vXrTSkKAAAA8BaPA3BxcbFOnDhRZvvx48dVVFRkSlEAAACAt3gcgLt37645c+aU2f7aa6+pS5cuphQFAAAAeIvHs0A8+eSTSkpK0rZt23TVVVdJklasWKGNGzfqiy++ML1AAAAAwEwejwD37t1ba9euVbNmzbR48WJ99NFHatWqlb7//ntdeuml3qjRafr06bLZbJowYYJz29GjRzV27Fg1btxYDRs21NChQ5Wdne3VOgAAAFB7eTwCLEmdOnXS/Pnzza7lrDZu3KjZs2erQ4cOLtvvu+8+ffLJJ1qyZInsdrvGjRun66+/XmvWrKnW+gAAAFA7VCoAOxwO7dmzRzk5OXI4HC77LrvsMlMKO11BQYFSUlL0+uuv68knn3Ruz8vL0z/+8Q8tWLBAV155pSTpzTffVNu2bbVu3Tr17NnT9FoAAABQu3kcgNetW6dbbrlF+/btk2EYLvtsNptKSkpMK+6UsWPH6rrrrlNSUpJLAN60aZOOHz+upKQk57Y2bdqoefPmWrt2bYUBuLi4WMXFxc7XLOABAABgHR4H4L/85S/q2rWrPvnkE8XExMhms3mjLqeFCxdq8+bN2rhxY5l9WVlZCgwMVHh4uMv2qKgoZWVlVXjOadOmaerUqWaXCgAAgFrA4wC8e/duvfvuu2rVqpU36nGRkZGhe++9V8uXL1dwcLBp5500aZImTpzofJ2fn69mzZqZdn4AAAD4Lo9ngejRo4f27NnjjVrK2LRpk3JyctS5c2fVq1dP9erV08qVK/Xiiy+qXr16ioqK0rFjx3To0CGX92VnZys6OrrC8wYFBSksLMzlAQAAAGvweAT4nnvu0f3336+srCy1b99eAQEBLvvPnKWhKq666ipt377dZdttt92mNm3a6OGHH1azZs0UEBCgFStWaOjQoZKkXbt2KT09XYmJiabVAQAAgLrD4wB8Kmjefvvtzm02m02GYZh+E1xoaKjatWvnsq1BgwZq3Lixc/sdd9yhiRMnKiIiQmFhYbrnnnuUmJjIDBAAAAAol8cBOC0tzRt1VNrzzz8vPz8/DR06VMXFxerXr59effXVmi4LAAAAPspmnDmXmQXl5+fLbrcrLy+PfmAAAAAfZGZeq9RCGJK0c+dOpaen69ixYy7bBw4cWKWCAAAAAG/yOAD/8ssvGjJkiLZv3+7s/ZXknA/YGwthAAAAAGbxeBq0e++9V3FxccrJyVH9+vX1ww8/aNWqVeratau+/vprL5QIAAAAmMfjEeC1a9fqq6++UpMmTeTn5yc/Pz/16dNH06ZN0/jx47VlyxZv1AkAAACYwuMR4JKSEoWGhkqSmjRpogMHDkiSWrRooV27dplbHQAAAGAyj0eA27Vrp23btikuLk49evTQzJkzFRgYqDlz5uiCCy7wRo0AAACAaTwOwI8++qgKCwslSY8//rj+9Kc/6dJLL1Xjxo21aNEi0wsEAAAAzGTKPMC5ublq1KiRcyaI2oZ5gAEAAHybmXnNox7g48ePq169etqxY4fL9oiIiFobfgEAAGAtHgXggIAANW/enLl+AQAAUGt5PAvEX//6V/3f//2fcnNzvVEPAAAA4FUe3wT38ssva8+ePYqNjVWLFi3UoEEDl/2bN282rTgAAADAbB4H4MGDB3uhDAAAAKB6mDILRG3HLBAAAAC+rcZmgQAAAABqO49bIPz8/M465RkzRAAAAMCXeRyA33//fZfXx48f15YtWzRv3jxNnTrVtMIAAAAAbzCtB3jBggVatGiRPvzwQzNOV63oAQYAAPBtPtkD3LNnT61YscKs0wEAAABeYUoALioq0osvvqjzzjvPjNMBAAAAXuNxD3CjRo1cboIzDEOHDx9W/fr19fbbb5taHAAAAGA2jwPw888/7xKA/fz81LRpU/Xo0UONGjUytTgAAADAbB4H4FGjRnmhDAAAAKB6eNwD/Oabb2rJkiVlti9ZskTz5s0zpSgAAADAWzwOwNOmTVOTJk3KbI+MjNTTTz9tSlEAAACAt3gcgNPT0xUXF1dme4sWLZSenm5KUQAAAIC3eByAIyMj9f3335fZvm3bNjVu3NiUogAAAABv8TgA33zzzRo/frz+85//qKSkRCUlJfrqq6907733avjw4d6oEQAAADCNx7NAPPHEE9q7d6+uuuoq1atX+naHw6ERI0bQAwwAAACfZzMMw6jMG3fv3q2tW7cqJCRE7du3V4sWLcyurdqYubY0AAAAzGdmXvN4BPiU+Ph4xcfHV+mLAwAAANXN4x7goUOHasaMGWW2z5w5UzfeeKMpRQEAAADe4nEAXrVqlfr3719m+7XXXqtVq1aZUhQAAADgLR4H4IKCAgUGBpbZHhAQoPz8fFOKAgAAALzF4wDcvn17LVq0qMz2hQsXKiEhwZSiAAAAAG/x+Ca4xx57TNdff71+/vlnXXnllZKkFStW6J133tGSJUtMLxAAAAAwk8cBeMCAAfrggw/09NNP691331VISIg6dOigL7/8Un379vVGjQAAAIBpKj0PcHl27Nihdu3amXW6asM8wAAAAL7NzLzmcQ/wmQ4fPqw5c+aoe/fu6tixY1VPBwAAAHhVpQPwqlWrNGLECMXExOiZZ57RlVdeqXXr1plZGwAAAGA6j3qAs7KyNHfuXP3jH/9Qfn6+hg0bpuLiYn3wwQfMAAEAAIBawe0R4AEDBqh169b6/vvv9cILL+jAgQN66aWXvFkbAAAAYDq3R4A/++wzjR8/XmPGjFF8fLw3awIAAAC8xu0R4NWrV+vw4cPq0qWLevTooZdfflm///67N2sDAAAATOd2AO7Zs6def/11ZWZmavTo0Vq4cKFiY2PlcDi0fPlyHT582Jt1AgAAAKao0jzAu3bt0j/+8Q+99dZbOnTokK6++motXbrUzPqqBfMAAwAA+DafmQe4devWmjlzpvbv36933nmnSoUAAAAA1cHUleBqK0aAAQAAfJvPjAADAAAAtQ0BGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJbi0wF42rRp6tatm0JDQxUZGanBgwdr165dLsccPXpUY8eOVePGjdWwYUMNHTpU2dnZNVQxAAAAfJ1PB+CVK1dq7NixWrdunZYvX67jx4/rmmuuUWFhofOY++67Tx999JGWLFmilStX6sCBA7r++utrsGoAAAD4MpthGEZNF+Gu3377TZGRkVq5cqUuu+wy5eXlqWnTplqwYIFuuOEGSdJPP/2ktm3bau3aterZs2e55ykuLlZxcbHzdX5+vpo1a6a8vDyFhYVVy2cBAACA+/Lz82W3203Jaz49AnymvLw8SVJERIQkadOmTTp+/LiSkpKcx7Rp00bNmzfX2rVrKzzPtGnTZLfbnY9mzZp5t3AAAAD4jFoTgB0OhyZMmKDevXurXbt2kqSsrCwFBgYqPDzc5dioqChlZWVVeK5JkyYpLy/P+cjIyPBm6QAAAPAh9Wq6AHeNHTtWO3bs0OrVq6t8rqCgIAUFBZlQFQAAAGqbWjECPG7cOH388cf6z3/+o/PPP9+5PTo6WseOHdOhQ4dcjs/OzlZ0dHQ1VwkAAIDawKcDsGEYGjdunN5//3199dVXiouLc9nfpUsXBQQEaMWKFc5tu3btUnp6uhITE6u7XAAAANQCPt0CMXbsWC1YsEAffvihQkNDnX29drtdISEhstvtuuOOOzRx4kRFREQoLCxM99xzjxITEyucAQIAAADW5tPToNlstnK3v/nmmxo1apSk0oUw7r//fr3zzjsqLi5Wv3799Oqrr3rUAmHmtBoAAAAwn5l5zacDcHUhAAMAAPg2y84DDAAAAFQVARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFhKnQnAr7zyilq2bKng4GD16NFDGzZsqOmSAAAA4IPqRABetGiRJk6cqNTUVG3evFkdO3ZUv379lJOTU9OlAQAAwMfUiQD83HPP6c4779Rtt92mhIQEvfbaa6pfv77++c9/1nRpAAAA8DH1arqAqjp27Jg2bdqkSZMmObf5+fkpKSlJa9euLfc9xcXFKi4udr7Oy8uTJOXn53u3WAAAAFTKqZxmGEaVz1XrA/Dvv/+ukpISRUVFuWyPiorSTz/9VO57pk2bpqlTp5bZ3qxZM6/UCAAAAHP873//k91ur9I5an0AroxJkyZp4sSJztcOh0O5ublq3LixbDbbOd+fn5+vZs2aKSMjQ2FhYd4sFTWEa2wNXGdr4DrXfVxja8jLy1Pz5s0VERFR5XPV+gDcpEkT+fv7Kzs722V7dna2oqOjy31PUFCQgoKCXLaFh4d7/LXDwsL4RqvjuMbWwHW2Bq5z3cc1tgY/v6rfwlbrb4ILDAxUly5dtGLFCuc2h8OhFStWKDExsQYrAwAAgC+q9SPAkjRx4kSNHDlSXbt2Vffu3fXCCy+osLBQt912W02XBgAAAB9TJwLwTTfdpN9++02TJ09WVlaWOnXqpGXLlpW5Mc4sQUFBSk1NLdNGgbqDa2wNXGdr4DrXfVxjazDzOtsMM+aSAAAAAGqJWt8DDAAAAHiCAAwAAABLIQADAADAUgjAAAAAsBQCsIdeeeUVtWzZUsHBwerRo4c2bNhQ0yWhClatWqUBAwYoNjZWNptNH3zwgct+wzA0efJkxcTEKCQkRElJSdq9e3fNFItKmTZtmrp166bQ0FBFRkZq8ODB2rVrl8sxR48e1dixY9W4cWM1bNhQQ4cOLbO4DnzbrFmz1KFDB+dCCImJifrss8+c+7nGdc/06dNls9k0YcIE5zauc+03ZcoU2Ww2l0ebNm2c+826xgRgDyxatEgTJ05UamqqNm/erI4dO6pfv37Kycmp6dJQSYWFherYsaNeeeWVcvfPnDlTL774ol577TWtX79eDRo0UL9+/XT06NFqrhSVtXLlSo0dO1br1q3T8uXLdfz4cV1zzTUqLCx0HnPffffpo48+0pIlS7Ry5UodOHBA119/fQ1WDU+df/75mj59ujZt2qTvvvtOV155pQYNGqQffvhBEte4rtm4caNmz56tDh06uGznOtcNF198sTIzM52P1atXO/eZdo0NuK179+7G2LFjna9LSkqM2NhYY9q0aTVYFcwiyXj//fedrx0OhxEdHW387W9/c247dOiQERQUZLzzzjs1UCHMkJOTY0gyVq5caRhG6TUNCAgwlixZ4jzmxx9/NCQZa9eurakyYYJGjRoZb7zxBte4jjl8+LARHx9vLF++3Ojbt69x7733GobB93JdkZqaanTs2LHcfWZeY0aA3XTs2DFt2rRJSUlJzm1+fn5KSkrS2rVra7AyeEtaWpqysrJcrrndblePHj245rVYXl6eJCkiIkKStGnTJh0/ftzlOrdp00bNmzfnOtdSJSUlWrhwoQoLC5WYmMg1rmPGjh2r6667zuV6Snwv1yW7d+9WbGysLrjgAqWkpCg9PV2Sude4TqwEVx1+//13lZSUlFldLioqSj/99FMNVQVvysrKkqRyr/mpfahdHA6HJkyYoN69e6tdu3aSSq9zYGCgwsPDXY7lOtc+27dvV2Jioo4ePaqGDRvq/fffV0JCgrZu3co1riMWLlyozZs3a+PGjWX28b1cN/To0UNz585V69atlZmZqalTp+rSSy/Vjh07TL3GBGAAljF27Fjt2LHDpZ8MdUfr1q21detW5eXl6d1339XIkSO1cuXKmi4LJsnIyNC9996r5cuXKzg4uKbLgZdce+21zucdOnRQjx491KJFCy1evFghISGmfR1aINzUpEkT+fv7l7nTMDs7W9HR0TVUFbzp1HXlmtcN48aN08cff6z//Oc/Ov/8853bo6OjdezYMR06dMjleK5z7RMYGKhWrVqpS5cumjZtmjp27Ki///3vXOM6YtOmTcrJyVHnzp1Vr1491atXTytXrtSLL76oevXqKSoqiutcB4WHh+uiiy7Snj17TP1eJgC7KTAwUF26dNGKFSuc2xwOh1asWKHExMQarAzeEhcXp+joaJdrnp+fr/Xr13PNaxHDMDRu3Di9//77+uqrrxQXF+eyv0uXLgoICHC5zrt27VJ6ejrXuZZzOBwqLi7mGtcRV111lbZv366tW7c6H127dlVKSorzOde57ikoKNDPP/+smJgYU7+XaYHwwMSJEzVy5Eh17dpV3bt31wsvvKDCwkLddtttNV0aKqmgoEB79uxxvk5LS9PWrVsVERGh5s2ba8KECXryyScVHx+vuLg4PfbYY4qNjdXgwYNrrmh4ZOzYsVqwYIE+/PBDhYaGOvvE7Ha7QkJCZLfbdccdd2jixImKiIhQWFiY7rnnHiUmJqpnz541XD3cNWnSJF177bVq3ry5Dh8+rAULFujrr7/W559/zjWuI0JDQ529+6c0aNBAjRs3dm7nOtd+DzzwgAYMGKAWLVrowIEDSk1Nlb+/v26++WZzv5erMFOFJb300ktG8+bNjcDAQKN79+7GunXrarokVMF//vMfQ1KZx8iRIw3DKJ0K7bHHHjOioqKMoKAg46qrrjJ27dpVs0XDI+VdX0nGm2++6TymqKjIuPvuu41GjRoZ9evXN4YMGWJkZmbWXNHw2O233260aNHCCAwMNJo2bWpcddVVxhdffOHczzWum06fBs0wuM51wU033WTExMQYgYGBxnnnnWfcdNNNxp49e5z7zbrGNsMwDBODOwAAAODT6AEGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAB81ZcoUderUqabLAIA6hwAMAGcYNWqUbDZbmUdycnJNl+YVl19+ufMzBgcHKyEhQa+++mpNlwUAXkMABoByJCcnKzMz0+Xxzjvv1HRZXnPnnXcqMzNTO3fu1LBhwzR27Fif+bzHjh2r6RIA1DEEYAAoR1BQkKKjo10ejRo1cu632Wx64403NGTIENWvX1/x8fFaunSpJMnhcOj888/XrFmzXM65ZcsW+fn5ad++fZKkQ4cO6c9//rOaNm2qsLAwXXnlldq2bVuFNTkcDj3++OM6//zzFRQUpE6dOmnZsmXO/Xv37pXNZtPChQvVq1cvBQcHq127dlq5cuU5P2/9+vUVHR2tCy64QFOmTHH5POnp6Ro0aJAaNmyosLAwDRs2TNnZ2ZKkvLw8+fv767vvvnPWGBERoZ49ezrP/fbbb6tZs2bO1xkZGRo2bJjCw8MVERGhQYMGae/evc79o0aN0uDBg/XUU08pNjZWrVu3Pmf9AOAJAjAAVNLUqVM1bNgwff/99+rfv79SUlKUm5srPz8/3XzzzVqwYIHL8fPnz1fv3r3VokULSdKNN96onJwcffbZZ9q0aZM6d+6sq666Srm5ueV+vb///e969tln9cwzz+j7779Xv379NHDgQO3evdvluAcffFD333+/tmzZosTERA0YMED/+9//PPpsISEhOnbsmBwOhwYNGqTc3FytXLlSy5cv1y+//KKbbrpJkmS329WpUyd9/fXXkqTt27fLZrNpy5YtKigokCStXLlSffv2lSQdP35c/fr1U2hoqL755hutWbNGDRs2VHJysstI74oVK7Rr1y4tX75cH3/8sUe1A8A5GQAAFyNHjjT8/f2NBg0auDyeeuop5zGSjEcffdT5uqCgwJBkfPbZZ4ZhGMaWLVsMm81m7Nu3zzAMwygpKTHOO+88Y9asWYZhGMY333xjhIWFGUePHnX52hdeeKExe/ZswzAMIzU11ejYsaNzX2xsrEsNhmEY3bp1M+6++27DMAwjLS3NkGRMnz7duf/48ePG+eefb8yYMaPCz9u3b1/j3nvvNQzDME6cOGG89dZbhiTj5ZdfNr744gvD39/fSE9Pdx7/ww8/GJKMDRs2GIZhGBMnTjSuu+46wzAM44UXXjBuuukmo2PHjs7/Fq1atTLmzJljGIZhvPXWW0br1q0Nh8PhPF9xcbEREhJifP75587//lFRUUZxcXGFNQNAVdSr0fQNAD7qiiuuKNPCEBER4fK6Q4cOzucNGjRQWFiYcnJyJEmdOnVS27ZttWDBAj3yyCNauXKlcnJydOONN0qStm3bpoKCAjVu3NjlnEVFRfr555/L1JOfn68DBw6od+/eLtt79+5dpm0iMTHR+bxevXrq2rWrfvzxx7N+3ldffVVvvPGGjh07Jn9/f913330aM2aMXn75ZTVr1sylhSEhIUHh4eH68ccf1a1bN/Xt21f/+Mc/VFJSopUrV+qaa65RdHS0vv76a3Xo0EF79uzR5Zdf7vzce/bsUWhoqMvXP3r0qMvnbt++vQIDA89aMwBUFgEYAMrRoEEDtWrV6qzHBAQEuLy22WxyOBzO1ykpKc4AvGDBAiUnJzsDb0FBgWJiYpytA6cLDw+vcv2eSklJ0V//+leFhIQoJiZGfn7ud8hddtllOnz4sDZv3qxVq1bp6aefVnR0tKZPn66OHTsqNjZW8fHxkko/d5cuXTR//vwy52natKnzeYMGDar+oQCgAvQAA4CX3HLLLdqxY4c2bdqkd999VykpKc59nTt3VlZWlurVq6dWrVq5PJo0aVLmXGFhYYqNjdWaNWtctq9Zs0YJCQku29atW+d8fuLECW3atElt27Y9a612u12tWrXSeeed5xJ+27Ztq4yMDGVkZDi37dy5U4cOHXJ+3fDwcHXo0EEvv/yyAgIC1KZNG1122WXasmWLPv74Y2f/76nPvXv3bkVGRpb53Ha7/aw1AoBZCMAAUI7i4mJlZWW5PH7//XePztGyZUv16tVLd9xxh0pKSjRw4EDnvqSkJCUmJmrw4MH64osvtHfvXn377bf661//6pxR4UwPPvigZsyYoUWLFmnXrl165JFHtHXrVt17770ux73yyit6//339dNPP2ns2LE6ePCgbr/9ds//I5yss3379kpJSdHmzZu1YcMGjRgxQn379lXXrl2dx11++eWaP3++M+xGRESobdu2WrRokUsATklJUZMmTTRo0CB98803SktL09dff63x48dr//79laoRADxFAAaAcixbtkwxMTEujz59+nh8npSUFG3btk1DhgxRSEiIc7vNZtOnn36qyy67TLfddpsuuugiDR8+XPv27VNUVFS55xo/frwmTpyo+++/X+3bt9eyZcu0dOlSZ3vBKdOnT3e2H6xevVpLly4td1TZHTabTR9++KEaNWqkyy67TElJSbrgggu0aNEil+P69u2rkpISZ6+vVBqKz9xWv359rVq1Ss2bN9f111+vtm3b6o477tDRo0cVFhZWqRoBwFM2wzCMmi4CAFB1e/fuVVxcnLZs2cISygBwFowAAwAAwFIIwAAAALAUWiAAAABgKYwAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAAS/n/wgCXqRJ49L0AAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAISCAYAAADC2XnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMUElEQVR4nO3deXgUVd728buzEJKQdAhLFtYAEQirgGCAkRlBQBxWR3CMr6goyCIg4MLzCAEHZVEZRBRwZUZhwGVQ5BEQGQ3CsC8qgoiCECQLGpKQAAkk9f4RaWmTQDqpTjqp7+e6+rL7VHX1r6irK3cfT52yGYZhCAAAALAIr4ouAAAAAChPBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYSoUG4M2bN6t///6KjIyUzWbTBx984LTcMAxNnz5dERER8vf3V69evXTkyBGnddLS0hQXF6fg4GCFhIRoxIgRysrKKse9AAAAQGVSoQE4Oztb7dq100svvVTk8nnz5mnhwoVasmSJduzYocDAQPXp00cXLlxwrBMXF6dvvvlGGzdu1Nq1a7V582aNHDmyvHYBAAAAlYzNMAyjoouQJJvNptWrV2vQoEGSCnp/IyMjNXnyZE2ZMkWSlJGRobCwMC1btkx33nmnDh06pJiYGO3atUudOnWSJK1fv179+vXTyZMnFRkZWVG7AwAAAA/lU9EFFOfYsWNKTk5Wr169HG12u11dunTRtm3bdOedd2rbtm0KCQlxhF9J6tWrl7y8vLRjxw4NHjy4yG3n5OQoJyfH8To/P19paWmqVauWbDab+3YKAAAApWIYhs6ePavIyEh5eZVtEIPHBuDk5GRJUlhYmFN7WFiYY1lycrLq1q3rtNzHx0ehoaGOdYoye/ZszZw50+SKAQAA4G6JiYmqX79+mbbhsQHYnaZOnapJkyY5XmdkZKhhw4ZKTExUcHBwBVYGAACAomRmZqpBgwYKCgoq87Y8NgCHh4dLklJSUhQREeFoT0lJUfv27R3rpKamOr3v0qVLSktLc7y/KH5+fvLz8yvUHhwcTAAGAADwYGYMV/XYeYCjoqIUHh6uTZs2OdoyMzO1Y8cOxcbGSpJiY2OVnp6uPXv2ONb5z3/+o/z8fHXp0qXcawYAAIDnq9Ae4KysLH3//feO18eOHdP+/fsVGhqqhg0bauLEiZo1a5aio6MVFRWladOmKTIy0jFTRMuWLdW3b189+OCDWrJkiS5evKhx48bpzjvvZAYIAAAAFKlCA/Du3bv1pz/9yfH68rjc4cOHa9myZXrssceUnZ2tkSNHKj09Xd27d9f69etVvXp1x3uWL1+ucePGqWfPnvLy8tLtt9+uhQsXlvu+AAAAoHLwmHmAK1JmZqbsdrsyMjIYAwwAQBVnGIYuXbqkvLy8ii4FV/D29paPj0+xY3zNzGseexEcAACA2XJzc5WUlKRz585VdCkoQkBAgCIiIlStWjW3fg4BGAAAWEJ+fr6OHTsmb29vRUZGqlq1atwAy0MYhqHc3FydPn1ax44dU3R0dJlvdnE1BGAAAGAJubm5ys/PV4MGDRQQEFDR5eB3/P395evrq+PHjys3N9fpmi+zEYABAICluNKzmJRU8HBVRETBA65xZ6/vlQjAAAAAxVi6VJo50/X3xcdLM2aYXg5MQgAGAAAoxqhR0oABzm3nz0vduxc837JF8vcv/D56fz0bARgAAKAYRQ1lyDxryK9BmrxrXFBuSHXd2DJU3l6V62K6xo0ba+LEiZo4cWKJ1v/888/1pz/9SWfOnFFISIhbaysPBGAAAIASWn8gSfEfHlT4XRckSfe9JUXYqyu+f4z6tja/2/das1TEx8drRinGWuzatUuBgYElXr9r165KSkqS3W53+bM8EQEYAACgBNYfSNLot/fq93cQS864oNFv79XiuzuYHoKTrrgCb9WqVZo+fboOHz7saKtRo4bjuWEYysvLk4/PteNdnTp1XKqjWrVqCg8Pd+k9nqx8LrUDAACoxPLyDc386GCh8CvJ0Tbzo4PKyzf3Brvh4eGOh91ul81mc7z+9ttvFRQUpHXr1qljx47y8/PTli1b9MMPP2jgwIEKCwtTjRo1dMMNN+jTTz912m7jxo21YMECx2ubzabXXntNgwcPVkBAgKKjo7VmzRrH8s8//1w2m03p6emSpGXLlikkJEQbNmxQy5YtVaNGDfXt29cpsF+6dEnjx49XSEiIatWqpccff1zDhw/XoEGDTP03Kg0CMAAAwDXsPJampIwLxS43JCVlXNDOY2nlV9SvnnjiCc2ZM0eHDh1S27ZtlZWVpX79+mnTpk3at2+f+vbtq/79++vEiRNX3c7MmTM1dOhQffXVV+rXr5/i4uKUllb8/pw7d07PPfec3nrrLW3evFknTpzQlClTHMvnzp2r5cuX680339TWrVuVmZmpDz74wKzdLhMCMAAAwDWkni0+/JZmPTM99dRTuuWWW9S0aVOFhoaqXbt2GjVqlFq3bq3o6Gj97W9/U9OmTZ16dIty77336q9//auaNWumZ555RllZWdq5c2ex61+8eFFLlixRp06d1KFDB40bN06bNm1yLH/xxRc1depUDR48WC1atNCiRYs85gI6AjAAAMA11A0q2V3JSrqemTp16uT0OisrS1OmTFHLli0VEhKiGjVq6NChQ9fsAW7btq3jeWBgoIKDg5Wamlrs+gEBAWratKnjdUREhGP9jIwMpaSkqHPnzo7l3t7e6tixo0v75i5cBAcAAHANnaNCFWGvruSMC0WOA7ZJCrdXV+eo0PIurdBsDlOmTNHGjRv13HPPqVmzZvL399df/vIX5ebmXnU7vr6+Tq9tNpvy8/NdWt8wzB0D7S70AAMAAFyDt5dN8f1jJBWE3Stdfh3fP8Yj5gPeunWr7r33Xg0ePFht2rRReHi4fvzxx3KtwW63KywsTLt27XK05eXlae/eveVaR3EIwAAAACXQt3WEFt/dodAwh3B7dbdMgVZa0dHR+ve//639+/fryy+/1F133XXVnlx3efjhhzV79mx9+OGHOnz4sCZMmKAzZ85cc27j8sAQCAAAgBLq2zpCXRuFq26rgjvBrX23um7ysDvBzZ8/X/fff7+6du2q2rVr6/HHH1dmZma51/H4448rOTlZ99xzj7y9vTVy5Ej16dNH3t7e5V7L79mMyjJYw40yMzNlt9uVkZGh4ODgii4HAAC4wYULF3Ts2DFFRUWpevWSXayWlFTwuNL581L37gXPt2yR/P0Lv6+oWyhbXX5+vlq2bKmhQ4fqb3/7W5HrXO0YmZnX6AEGAAAoxtKl0syZxS+/HIR/Lz5eKsUdiquU48eP65NPPlGPHj2Uk5OjRYsW6dixY7rrrrsqujQCMAAAQHFGjZIGDHD9ffT+Sl5eXlq2bJmmTJkiwzDUunVrffrpp2rZsmVFl0YABgAAKA5DGUqvQYMG2rp1a0WXUSRmgQAAAIClEIABAABgKQRgAAAAWApjgAEAAIpT1DxoJcHgYY9GAAYAACjOteZBKw7zoHk0AjAAAEBxipoHraR3woDHIgADAAAUp6ihDGczpUbeUpBNCj0nNb9R8qr42/ui5LgIDgAAoKQOrpGWdpbuDZRuD5BW/UVa0Lqg3Q1sNttVHzPKMMzCZrPpgw8+MK3WyoQeYAAAgJI4uEZ65x5JhnN7ZlJB+9B/SjGluG3cVSRdcQHeqlWrNH36dB0+fNjRVqNGDVM/zyroAQYAALiW/Dxp/eMqFH6l39rWP1GwnonCw8MdD7vdLpvN5tS2cuVKtWzZUtWrV1eLFi308ssvO96bm5urcePGKSIiQtWrV1ejRo00e/ZsSVLjxo0lSYMHD5bNZnO8tgp6gAEAAK7l+H+lzFNXWcGQMn8qWC/qD+VS0vLlyzV9+nQtWrRI119/vfbt26cHH3xQgYGBGj58uBYuXKg1a9bonXfeUcOGDZWYmKjExERJ0q5du1S3bl29+eab6tu3r7y9rTWGmQAMAABwLVkp5q5ngvj4eD3//PMaMmSIJCkqKkoHDx7U0qVLNXz4cJ04cULR0dHq3r27bDabGjVq5HhvnTp1JEkhISEKDw8vt5o9BQEYAADgWmqEmbteGWVnZ+uHH37QiBEj9OCDDzraL126JLvdLkm69957dcstt6h58+bq27ev/vznP6t3797lUp+nIwADAABcS6OuUnBkwQVvRY4DthUsb9S1XMrJysqSJL366qvq0qWL07LLwxk6dOigY8eOad26dfr00081dOhQ9erVS++991651OjJCMAAAADX4uUt9Z376ywQNjmHYFvBf/rOKbf5gMPCwhQZGamjR48qLi6u2PWCg4M1bNgwDRs2TH/5y1/Ut29fpaWlKTQ0VL6+vsrLM/eivcqCAAwAAFASMQMKpjr7+DEp67fpyRQcWRB+TZ4C7Vpmzpyp8ePHy263q2/fvsrJydHu3bt15swZTZo0SfPnz1dERISuv/56eXl56d1331V4eLhCQkIkFcwEsWnTJnXr1k1+fn6qWbNmudZfkQjAAAAAJRUzQGrwR6lNaMGd4N75WGp+c4XcCe6BBx5QQECAnn32WT366KMKDAxUmzZtNHHiRElSUFCQ5s2bpyNHjsjb21s33HCDPv74Y3l5FcyC+/zzz2vSpEl69dVXVa9ePf3444/lvg8VxWYYRlEDWSwlMzNTdrtdGRkZCg4OruhyAACAG1y4cEHHjh1TVFSUqlevXrI3JSUVPK50/rzUvXvB8y1bJH//wu8r6hbKuKarHSMz8xo9wAAAAMVZulSaObP45ZeD8O/Fx0tluE0x3IsADAAAUJxRo6QBpRjbS++vRyMAAwAAFIehDFWSV0UXAAAAAJQnAjAAALAUrv/3XOV1bAjAAADAEnx9fSVJ586dq+BKUJzLx+bysXIXxgADAABL8Pb2VkhIiFJTUyVJAQEBstlsFVwVpIKe33Pnzik1NVUhISGO2zm7CwEYAABYRnh4uCQ5QjA8S0hIiOMYuRMBGAAAWIbNZlNERITq1q2rixcvVnQ5uIKvr6/be34vIwADAADL8fb2LrewBc/DRXAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSPDoA5+Xladq0aYqKipK/v7+aNm2qv/3tbzIMw7GOYRiaPn26IiIi5O/vr169eunIkSMVWDUAAAA8mUcH4Llz52rx4sVatGiRDh06pLlz52revHl68cUXHevMmzdPCxcu1JIlS7Rjxw4FBgaqT58+unDhQgVWDgAAAE9lM67sTvUwf/7znxUWFqbXX3/d0Xb77bfL399fb7/9tgzDUGRkpCZPnqwpU6ZIkjIyMhQWFqZly5bpzjvvLNHnZGZmym63KyMjQ8HBwW7ZFwAAAJSemXnNo3uAu3btqk2bNum7776TJH355ZfasmWLbr31VknSsWPHlJycrF69ejneY7fb1aVLF23btq3Y7ebk5CgzM9PpAQAAAGvwqegCruaJJ55QZmamWrRoIW9vb+Xl5enpp59WXFycJCk5OVmSFBYW5vS+sLAwx7KizJ49WzNnznRf4QAAAPBYHt0D/M4772j58uVasWKF9u7dq3/84x967rnn9I9//KNM2506daoyMjIcj8TERJMqBgAAgKfz6B7gRx99VE888YRjLG+bNm10/PhxzZ49W8OHD1d4eLgkKSUlRREREY73paSkqH379sVu18/PT35+fm6tHQAAAJ7Jo3uAz507Jy8v5xK9vb2Vn58vSYqKilJ4eLg2bdrkWJ6ZmakdO3YoNja2XGsFAABA5eDRPcD9+/fX008/rYYNG6pVq1bat2+f5s+fr/vvv1+SZLPZNHHiRM2aNUvR0dGKiorStGnTFBkZqUGDBlVs8QAAAPBIHh2AX3zxRU2bNk1jxoxRamqqIiMjNWrUKE2fPt2xzmOPPabs7GyNHDlS6enp6t69u9avX6/q1atXYOUAAADwVB49D3B5YR5gAAAAz2aZeYABAAAAsxGAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACW4uPKyunp6Vq9erW++OILHT9+XOfOnVOdOnV0/fXXq0+fPuratau76gQAAABMUaIe4FOnTumBBx5QRESEZs2apfPnz6t9+/bq2bOn6tevr88++0y33HKLYmJitGrVKnfXDAAAAJRaiXqAr7/+eg0fPlx79uxRTExMkeucP39eH3zwgRYsWKDExERNmTLF1EIBAAAAM9gMwzCutdIvv/yiWrVqlXijrq5f0TIzM2W325WRkaHg4OCKLgcAAAC/Y2ZeK9EQCFfDbGUKvwAAALAWly6Ck6ScnBzt2LGj0EVwUVFR7qgPAAAAMFWJA/DWrVv1wgsv6KOPPtLFixdlt9vl7++vtLQ05eTkqEmTJho5cqQeeughBQUFubNmAAAAoNRKNARiwIABGjZsmBo3bqxPPvlEZ8+e1S+//KKTJ0/q3LlzOnLkiJ588klt2rRJ1113nTZu3OjuugEAAIBSKVEP8G233ab3339fvr6+RS5v0qSJmjRpouHDh+vgwYNKSkoytUgAAADALCWaBaKqYxYIAAAAz1bus0AAAAAAVYXLs0DUrFlTNputULvNZlP16tXVrFkz3XvvvbrvvvtMKRAAAAAwk8sBePr06Xr66ad16623qnPnzpKknTt3av369Ro7dqyOHTum0aNH69KlS3rwwQdNLxgAAAAoC5cD8JYtWzRr1iw99NBDTu1Lly7VJ598ovfff19t27bVwoULCcAAAADwOC6PAd6wYYN69epVqL1nz57asGGDJKlfv346evRo2asDAAAATOZyAA4NDdVHH31UqP2jjz5SaGioJCk7O5ubYQAAAMAjuTwEYtq0aRo9erQ+++wzxxjgXbt26eOPP9aSJUskSRs3blSPHj3MrRQAAAAwQanmAd66dasWLVqkw4cPS5KaN2+uhx9+WF27djW9wPLAPMAAAACezcy8xo0wRAAGAADwdBV+I4wffvhBTz75pO666y6lpqZKktatW6dvvvmmTMUAAAAA7uZyAE5ISFCbNm20Y8cOvf/++8rKypIkffnll4qPjze9QAAAAMBMLgfgJ554QrNmzdLGjRtVrVo1R/vNN9+s7du3m1ocAAAAYDaXA/DXX3+twYMHF2qvW7eufv75Z1OKAgAAANzF5QAcEhKipKSkQu379u1TvXr1TCkKAAAAcBeXA/Cdd96pxx9/XMnJybLZbMrPz9fWrVs1ZcoU3XPPPe6oEQAAADCNywH4mWeeUYsWLdSgQQNlZWUpJiZGN910k7p27aonn3zSHTUCAAAApin1PMAnTpzQgQMHlJWVpeuvv17R0dFm11ZumAcYAADAs5mZ11y+FfJlDRs2VMOGDcv04QAAAEB5K1EAnjRpUok3OH/+/FIXAwAAALhbiQLwvn37nF7v3btXly5dUvPmzSVJ3333nby9vdWxY0fzKwQAAABMVKIA/Nlnnzmez58/X0FBQfrHP/6hmjVrSpLOnDmj++67T3/4wx/cUyUAAABgEpcvgqtXr54++eQTtWrVyqn9wIED6t27t06dOmVqgeWBi+AAAAA8m5l5zeVp0DIzM3X69OlC7adPn9bZs2fLVAwAAADgbi4H4MGDB+u+++7Tv//9b508eVInT57U+++/rxEjRmjIkCHuqBEAAAAwjcvToC1ZskRTpkzRXXfdpYsXLxZsxMdHI0aM0LPPPmt6gQAAAICZSn0jjOzsbP3www+SpKZNmyowMNDUwsoTY4ABAAA8m0fcCCMwMFBt27Yt04cDAAAA5a1EY4AfeughnTx5skQbXLVqlZYvX16mogAAAAB3KVEPcJ06ddSqVSt169ZN/fv3V6dOnRQZGanq1avrzJkzOnjwoLZs2aKVK1cqMjJSr7zyirvrBgAAAEqlxGOAU1JS9Nprr2nlypU6ePCg07KgoCD16tVLDzzwgPr27euWQt2JMcAAAACezcy8VqqL4M6cOaMTJ07o/Pnzql27tpo2bSqbzVamQioSARgAAMCzVfhFcDVr1nTcBhkAAACoTFy+EQYAAABQmRGAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApZRoFojrr7++xNOc7d27t0wFAQAAAO5UogA8aNAgx/MLFy7o5ZdfVkxMjGJjYyVJ27dv1zfffKMxY8a4pUgAAADALCUKwPHx8Y7nDzzwgMaPH6+//e1vhdZJTEw0tzoAAADAZC6PAX733Xd1zz33FGq/++679f7775tS1JV++ukn3X333apVq5b8/f3Vpk0b7d6927HcMAxNnz5dERER8vf3V69evXTkyBHT6wAAAEDV4HIA9vf319atWwu1b926VdWrVzelqMvOnDmjbt26ydfXV+vWrdPBgwf1/PPPO92Fbt68eVq4cKGWLFmiHTt2KDAwUH369NGFCxdMrQUAAABVg8u3Qp44caJGjx6tvXv3qnPnzpKkHTt26I033tC0adNMLW7u3Llq0KCB3nzzTUdbVFSU47lhGFqwYIGefPJJDRw4UJL0z3/+U2FhYfrggw905513mloPAAAAKj+bYRiGq29655139MILL+jQoUOSpJYtW2rChAkaOnSoqcXFxMSoT58+OnnypBISElSvXj2NGTNGDz74oCTp6NGjatq0qfbt26f27ds73tejRw+1b99eL7zwQpHbzcnJUU5OjuN1ZmamGjRooIyMDAUHB5u6DwAAACi7zMxM2e12U/Kayz3AkjR06FDTw25Rjh49qsWLF2vSpEn6n//5H+3atUvjx49XtWrVNHz4cCUnJ0uSwsLCnN4XFhbmWFaU2bNna+bMmW6tHQAAAJ7J5THATZo00S+//FKoPT09XU2aNDGlqMvy8/PVoUMHPfPMM7r++us1cuRIPfjgg1qyZEmZtjt16lRlZGQ4HsxeAQAAYB0uB+Aff/xReXl5hdpzcnL0008/mVLUZREREYqJiXFqa9mypU6cOCFJCg8PlySlpKQ4rZOSkuJYVhQ/Pz8FBwc7PQAAAGANJR4CsWbNGsfzDRs2yG63O17n5eVp06ZNaty4sanFdevWTYcPH3Zq++6779SoUSNJBRfEhYeHa9OmTY4xwJmZmdqxY4dGjx5tai0AAACoGkocgC/fDc5ms2n48OFOy3x9fdW4cWM9//zzphb3yCOPqGvXrnrmmWc0dOhQ7dy5U6+88opeeeUVRy0TJ07UrFmzFB0draioKE2bNk2RkZFOd68DAAAALitxAM7Pz5dU0Ou6a9cu1a5d221FXXbDDTdo9erVmjp1qp566ilFRUVpwYIFiouLc6zz2GOPKTs7WyNHjlR6erq6d++u9evXmz4nMQAAAKqGUk2D9nvp6ekKCQkxoZyKYea0GgAAADCfmXnN5Yvg5s6dq1WrVjle33HHHQoNDVW9evX05ZdflqkYAAAAwN1cDsBLlixRgwYNJEkbN27Up59+qvXr1+vWW2/Vo48+anqBAAAAgJlcvhFGcnKyIwCvXbtWQ4cOVe/evdW4cWN16dLF9AIBAAAAM7ncA1yzZk3HjSPWr1+vXr16SZIMwyhyfmAAAADAk7jcAzxkyBDdddddio6O1i+//KJbb71VkrRv3z41a9bM9AIBAAAAM7kcgP/+97+rcePGSkxM1Lx581SjRg1JUlJSksaMGWN6gQAAAICZTJkGrbJjGjQAAADPVqHToF0pODhYR48eLVMBAAAAQHkqUwCm8xgAAACVTZkCMAAAAFDZlCkA33333YyZBQAAQKVS4gB8zz336P3331dWVpajbfHixapdu7ZbCgMAAADcocQBuFmzZnrmmWdUp04d3XrrrVq8eLFOnTrlztoAAAAA07k8DdrJkye1Zs0affjhh0pISFCrVq00cOBADRgwQO3bt3dTme7FNGgAAACezcy8VqZ5gM+ePat169bpww8/1Lp16xQUFKT+/ftr9OjRatWqVZkKK08EYAAAAM/mMfMABwUFaejQoVq+fLlOnz6tN954Q97e3tq2bVuZigIAAADchTvBiR5gAAAAT+cxPcBjxozRzz//XKYCAAAAgPJUpgD89ttvKzMz06xaAAAAALfjVsgAAACwlDLfCtlms5lRBwAAAFAufFxZOSoqyinwnj9/Xj169JCPz2+bOXr0qHnVAQAAACZzKQAvW7bM8dwwDPXr109z5sxRvXr1zK4LAAAAcAuXAnCPHj2cXnt7e+vGG29UkyZNTC0KAAAAcJcyjQFm/C8AAAAqG2aBAAAAgKW4NATi986ePWtWHQAAAEC5KPM0aAAAAEBlUqoe4PT0dO3cuVOpqanKz893WnbPPfeYUhgAAADgDi4H4I8++khxcXHKyspScHCw04VwNpuNAAwAAACP5vIQiMmTJ+v+++9XVlaW0tPTdebMGccjLS3NHTUCAAAApnE5AP/0008aP368AgIC3FEPAAAA4FYuB+A+ffpo9+7d7qgFAAAAcDuXxwDfdtttevTRR3Xw4EG1adNGvr6+TssHDBhgWnEAAACA2WyGi3ez8PIqvtPYZrMpLy+vzEWVt8zMTNntdmVkZCg4OLiiywEAAMDvmJnXXO4B/v20ZwAAAEBlwo0wAAAAYCmluhFGdna2EhISdOLECeXm5jotGz9+vCmFAQAAAO7gcgDet2+f+vXrp3Pnzik7O1uhoaH6+eefFRAQoLp16xKAAQAA4NFcHgLxyCOPqH///jpz5oz8/f21fft2HT9+XB07dtRzzz3njhoBAAAA07gcgPfv36/JkyfLy8tL3t7eysnJUYMGDTRv3jz9z//8jztqBAAAAEzjcgD29fV1TIVWt25dnThxQpJkt9uVmJhobnUAAACAyVweA3z99ddr165dio6OVo8ePTR9+nT9/PPPeuutt9S6dWt31AgAAACYxuUe4GeeeUYRERGSpKefflo1a9bU6NGjdfr0ab3yyiumFwgAAACYyeU7wVVF3AkOAADAs5mZ10p1I4xLly7p008/1dKlS3X27FlJ0qlTp5SVlVWmYgAAAAB3c3kM8PHjx9W3b1+dOHFCOTk5uuWWWxQUFKS5c+cqJydHS5YscUedAAAAgClc7gGeMGGCOnXq5JgH+LLBgwdr06ZNphYHAAAAmM3lHuAvvvhC//3vf1WtWjWn9saNG+unn34yrTAAAADAHVzuAc7Pz1deXl6h9pMnTyooKMiUogAAAAB3cTkA9+7dWwsWLHC8ttlsysrKUnx8vPr162dmbQAAAIDpXJ4G7eTJk+rTp48Mw9CRI0fUqVMnHTlyRLVr19bmzZtVt25dd9XqNkyDBgAA4NnMzGulmgf40qVLWrlypb766itlZWWpQ4cOiouLc7oorjIhAAMAAHg2M/OayxfBSZKPj4/uvvvuMn0wAAAAUBFKFYBPnTqlLVu2KDU1Vfn5+U7Lxo8fb0phAAAAgDu4HICXLVumUaNGqVq1aqpVq5ZsNptjmc1mIwADAADAo7k8BrhBgwZ66KGHNHXqVHl5lepOyh6HMcAAAACezcy85nKCPXfunO68884qE34BAABgLS6n2BEjRujdd991Ry0AAACA27k8BCIvL09//vOfdf78ebVp00a+vr5Oy+fPn29qgeWBIRAAAACerUKnQZs9e7Y2bNig5s2bS1Khi+AAAAAAT+ZyAH7++ef1xhtv6N5773VDOQAAAIB7uTwG2M/PT926dXNHLQAAAIDbuRyAJ0yYoBdffNEdtQAAAABu5/IQiJ07d+o///mP1q5dq1atWhW6CO7f//63acUBAAAAZnM5AIeEhGjIkCHuqAUAAABwO5cD8JtvvumOOgAAAIBywe3cAAAAYCklCsB9+/bV9u3br7ne2bNnNXfuXL300ktlLgwAAABwhxINgbjjjjt0++23y263q3///urUqZMiIyNVvXp1nTlzRgcPHtSWLVv08ccf67bbbtOzzz7r7roBAACAUinxrZBzcnL07rvvatWqVdqyZYsyMjIKNmCzKSYmRn369NGIESPUsmVLtxbsDtwKGQAAwLOZmddKHIB/LyMjQ+fPn1etWrUKTYVW2RCAAQAAPJuZec3lWSAus9vtstvtZfpwAAAAoLwxCwQAAAAshQAMAAAASyEAAwAAwFJcCsB5eXnavHmz0tPT3VQOAAAA4F4uBWBvb2/17t1bZ86ccVc9AAAAgFu5PASidevWOnr0qDtqAQAAANzO5QA8a9YsTZkyRWvXrlVSUpIyMzOdHgAAAIAnc/lGGF5ev2Vmm83meG4Yhmw2m/Ly8syrrpxwIwwAAADPVqE3wvjss8/K9IFlMWfOHE2dOlUTJkzQggULJEkXLlzQ5MmTtXLlSuXk5KhPnz56+eWXFRYWVmF1AgAAwHO5HIB79OjhjjquadeuXVq6dKnatm3r1P7II4/o//7v//Tuu+/Kbrdr3LhxGjJkiLZu3VohdQIAAMCzlepWyOnp6Xr99dd16NAhSVKrVq10//33u+3WyFlZWYqLi9Orr76qWbNmOdozMjL0+uuva8WKFbr55pslSW+++aZatmyp7du368Ybb3RLPQAAAKi8XL4Ibvfu3WratKn+/ve/Ky0tTWlpaZo/f76aNm2qvXv3uqNGjR07Vrfddpt69erl1L5nzx5dvHjRqb1FixZq2LChtm3bVuz2cnJyuHgPAADAolzuAX7kkUc0YMAAvfrqq/LxKXj7pUuX9MADD2jixInavHmzqQWuXLlSe/fu1a5duwotS05OVrVq1RQSEuLUHhYWpuTk5GK3OXv2bM2cOdPUOgEAAFA5lKoH+PHHH3eEX0ny8fHRY489pt27d5taXGJioiZMmKDly5erevXqpm136tSpysjIcDwSExNN2zYAAAA8m8sBODg4WCdOnCjUnpiYqKCgIFOKumzPnj1KTU1Vhw4d5OPjIx8fHyUkJGjhwoXy8fFRWFiYcnNzC92aOSUlReHh4cVu18/PT8HBwU4PAAAAWIPLQyCGDRumESNG6LnnnlPXrl0lSVu3btWjjz6qv/71r6YW17NnT3399ddObffdd59atGihxx9/XA0aNJCvr682bdqk22+/XZJ0+PBhnThxQrGxsabWAgAAgKrB5QD83HPPyWaz6Z577tGlS5ckSb6+vho9erTmzJljanFBQUFq3bq1U1tgYKBq1arlaB8xYoQmTZqk0NBQBQcH6+GHH1ZsbCwzQAAAAKBILgXgvLw8bd++XTNmzNDs2bP1ww8/SJKaNm2qgIAAtxR4LX//+9/l5eWl22+/3elGGAAAAEBRXL4VcvXq1XXo0CFFRUW5q6Zyx62QAQAAPJuZec3li+Bat26to0ePlulDAQAAgIricgCeNWuWpkyZorVr1yopKYkbSgAAAKBScXkIhJfXb5nZZrM5nhuGIZvNpry8PPOqKycMgQAAAPBsZuY1l2eB+Oyzz8r0gQAAAEBFcikAX7x4UU899ZSWLFmi6Ohod9UEAAAAuI1LY4B9fX311VdfuasWAAAAwO1cvgju7rvv1uuvv+6OWgAAAAC3c3kM8KVLl/TGG2/o008/VceOHRUYGOi0fP78+aYVBwAAAJjN5QB84MABdejQQZL03XffOS27clYIAAAAwBMxCwQAAAAsxeUxwJd9//332rBhg86fPy+pYB5gAAAAwNO5HIB/+eUX9ezZU9ddd5369eunpKQkSdKIESM0efJk0wsEAAAAzORyAH7kkUfk6+urEydOKCAgwNE+bNgwrV+/3tTiAAAAALO5PAb4k08+0YYNG1S/fn2n9ujoaB0/fty0wgAAAAB3cLkHODs726nn97K0tDT5+fmZUhQAAADgLi4H4D/84Q/65z//6Xhts9mUn5+vefPm6U9/+pOpxQEAAABmc3kIxLx589SzZ0/t3r1bubm5euyxx/TNN98oLS1NW7dudUeNAAAAgGlc7gFu3bq1vvvuO3Xv3l0DBw5Udna2hgwZon379qlp06buqBEAAAAwjc1w0wS+Y8aM0VNPPaXatWu7Y/OmyszMlN1uV0ZGhoKDgyu6HAAAAPyOmXmt1DfCuJa3335bmZmZ7to8AAAAUCpuC8DcGQ4AAACeyG0BGAAAAPBEBGAAAABYCgEYAAAAlkIABgAAgKW4LQDffffdTCkGAAAAj+NyAF6/fr22bNnieP3SSy+pffv2uuuuu3TmzBlH++LFiyvFHMAAAACwFpcD8KOPPuqY3/frr7/W5MmT1a9fPx07dkyTJk0yvUAAAADATD6uvuHYsWOKiYmRJL3//vv685//rGeeeUZ79+5Vv379TC8QAAAAMJPLPcDVqlXTuXPnJEmffvqpevfuLUkKDQ3lzm8AAADweC73AHfv3l2TJk1St27dtHPnTq1atUqS9N1336l+/fqmFwgAAACYyeUe4EWLFsnHx0fvvfeeFi9erHr16kmS1q1bp759+5peIAAAAGAmm2EYRkUXUdEyMzNlt9uVkZHB1G0AAAAeyMy85vIQCEnKy8vT6tWrdejQIUlSy5YtNWjQIPn4lGpzAAAAQLlxObF+88036t+/v1JSUtS8eXNJ0ty5c1WnTh199NFHat26telFAgAAAGZxeQzwAw88oNatW+vkyZPau3ev9u7dq8TERLVt21YjR450R40AAACAaVzuAd6/f792796tmjVrOtpq1qypp59+WjfccIOpxQEAAABmc7kH+LrrrlNKSkqh9tTUVDVr1syUogAAAAB3KVEAzszMdDxmz56t8ePH67333tPJkyd18uRJvffee5o4caLmzp3r7noBAACAMinRNGheXl6y2WyO15ffcrntytd5eXnuqNOtmAYNAADAs5X7NGifffZZmT4EAAAA8BQlCsA9evQo0cYOHDhQpmIAAAAAd3P5IrjfO3v2rF555RV17txZ7dq1M6MmAAAAwG1KHYA3b96s4cOHKyIiQs8995xuvvlmbd++3czaAAAAANO5NA9wcnKyli1bptdff12ZmZkaOnSocnJy9MEHHygmJsZdNQIAAACmKXEPcP/+/dW8eXN99dVXWrBggU6dOqUXX3zRnbUBAAAApitxD/C6des0fvx4jR49WtHR0e6sCQAAAHCbEvcAb9myRWfPnlXHjh3VpUsXLVq0SD///LM7awMAAABMV+IAfOONN+rVV19VUlKSRo0apZUrVyoyMlL5+fnauHGjzp496846AQAAAFOU6E5wxTl8+LBef/11vfXWW0pPT9ctt9yiNWvWmFlfueBOcAAAAJ7NzLxWpnmAmzdvrnnz5unkyZP617/+VaZCAAAAgPJQph7gqoIeYAAAAM/mMT3AAAAAQGVDAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAICleHwAnj17tm644QYFBQWpbt26GjRokA4fPuy0zoULFzR27FjVqlVLNWrU0O23366UlJQKqhgAAACezOMDcEJCgsaOHavt27dr48aNunjxonr37q3s7GzHOo888og++ugjvfvuu0pISNCpU6c0ZMiQCqwaAAAAnspmGIZR0UW44vTp06pbt64SEhJ00003KSMjQ3Xq1NGKFSv0l7/8RZL07bffqmXLltq2bZtuvPHGQtvIyclRTk6O43VmZqYaNGigjIwMBQcHl9u+AAAAoGQyMzNlt9tNyWse3wP8exkZGZKk0NBQSdKePXt08eJF9erVy7FOixYt1LBhQ23btq3IbcyePVt2u93xaNCggfsLBwAAgEeoVAE4Pz9fEydOVLdu3dS6dWtJUnJysqpVq6aQkBCndcPCwpScnFzkdqZOnaqMjAzHIzEx0d2lAwAAwEP4VHQBrhg7dqwOHDigLVu2lGk7fn5+8vPzM6kqAAAAVCaVpgd43LhxWrt2rT777DPVr1/f0R4eHq7c3Fylp6c7rZ+SkqLw8PByrhIAAACezuMDsGEYGjdunFavXq3//Oc/ioqKclresWNH+fr6atOmTY62w4cP68SJE4qNjS3vcgEAAODhPH4IxNixY7VixQp9+OGHCgoKcozrtdvt8vf3l91u14gRIzRp0iSFhoYqODhYDz/8sGJjY4ucAQIAAADW5vHToNlstiLb33zzTd17772SCm6EMXnyZP3rX/9STk6O+vTpo5dffrnEQyDMnFYDAAAA5jMzr3l8AC4PBGAAAADPZul5gAEAAICyIAADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACzFp6ILsLSkpIKHqyIiCh4AAABwGQG4Ii1dKs2c6fr7Ro6URo0q+foEZgAAAAebYRhGRRdR0TIzM2W325WRkaHg4ODy++CieoDPn5e6dy94vmWL5O//27KlS6VXXnH9c+LjpRkzSl0mAAAegf9zamlm5jV6gCtQkiKUJOcvpJey1f7X5/vVXvkKdCzzGTJDvjeNUu3aUp06vzZeLTBfxpf+6jihAkDlUNr/c0pHEH6HAFyBivoeB0jK/vV5t+7SOaelEZIinL/H2dm/LW7fXgoMVJlYMQxyQgWASiFl0CilRQ9wavPKOa/mIwo6gg6/vkX5foU7gkJbRSisXCpEZUEArkCjRkkDnL/HykmTdEvB8083Sn6hvy07fVr6+Wepdm1p796CNq/z+q3HeL+UX0wHcImzqQXDICdUoIqw4g94i1n8QYRmznQ+VgHKdnQcdRjRXudUuCMoPl6a0d799aHyIACbycWTb8SvjytPvtmpvy1v21YKrPvb6xkzXO0xlsKVpBkjk0p8zdwv18Uq829v61JIbV2qWTDOoqqHQU6oQBVhwR/wVuNqx9Fl/L7B73ERnK4yqNrV3gQTLlLLTs1WYFiNgucpWQqs+1vwKqqcnLRsxd5SsP62jVnyC3UOahFLZyjiFdf/IMxQvGaqoKaCMFjwGYHKKj4MznD5YzxCaf5dJTqNAE+Tsj9Jad84f5lL/AO+PV/myupqfzdRtXARXHkxY5oyEy9SKypwXa3HWJI0Y5Q06nc/l69S0+VhFkNqR2jArxfaVfVf16X6dwXgcfi/OUAVUVwHZFaWaR9BAL6KMo0NvdybYPZFai5ydaYJ1Sl4XBkKCYMAKgP+9zhQRZS2A9IFBOCrqAq9Ca7PNFGgMg9pAGBN/N8coIoo6tfslf/32gQE4KvwyFkaXESPCAAAqFSK/DWbXfS6pUQAvgpXexNKM0uD5N7eVnpEAABAZVLUEGCv81ITEz+DAGwielsBAADKprjhm6WY5btYBGAT0dsKAABQNtfqUDQDARgAAAAeo7gOxTwTP8PLxG3BDPl5UiNvqbWPvH76b8FrAAAAmIYA7EkOrpH/W52lewOl2wPk/+FfpAWtpYNrin8PgRkAYGX8HUQpEIA9xcE10jv3yJbtPMTbyEyS3rmn6BBcmsBcGlY8uVhxnwGgsimvv4OocgjAniA/T1r/uAwZsv1ukU2GDEla/4RzCCtNYC4NK55cithno6rvM1BV8WO26iqvv4OokgjArnL1ZFqS9Y//V8o8VSj8XmaTIWX+VLDe5W26GphLsw9WPLkcXCPjnXukQvt8qqC9Ku4zUFXxY7bqKuvfQVgeAdgVrp5MS9h7mn82uUQf71jP1cBcmn2w4sklP0/nP3pUhmEU+mJ4STIMQ+c/erRq7TNQVfFjtmory99BVE75eVID82IrAbikXD2ZutB7euhsQIlKuLyey4G5NPtgwZNL3o9b5X8+WV7F7LSXTfI/n6y8H7eWb2EAXMOP2Sqv1H8HUTld7ryLCzRtkwTgknD1ZOpi7+n3AW10yghVvlHMxxvSKaOWvg9oI8n1wFyafbDiyeWHoz+Yuh6AisGP2aqvVH8HUTkV06FYVgTgEnD5ZOpi72nd4EDNvHiPJBUKwZdfz7z4/1Q3uOCXj6uBuTT7YMWTS6oRYup6ACoGP2arvtL8HUQldJUOxbIiAJeAqydTV3tPO0eF6qugmzTm4kQlK9RpnWTV0piLE/VV0E3qHFWwzNXAXJp9sOLJxbtxtxLts3fjbuVbGACX8GO26ivN30FUQtfoUCwLAnAJuHoydbX31NvLpvj+MdqQ31l/yFmoO3Of1Pjccboz90n9IecFbcjvrPj+MfL+tfvW1cBcmn2w4smlc9M6Wuj7gKTi93mh7wh1blqnnCsD4Ap+zFZ9pfk7iMrHncMsfdy25SrEu3E3ndoSqnClFTmEIN8o+MJdPpl+H9BGNY1rr/99QBu1+rWtb+sILb67g+I/+Ebbs2Ic60bYqyu+f4z6tv7tptiXA/Poty9oY04n3eD1reoqXakK0a78FsqXlxZfEZhLsw+do0I1KegmjTkrTff9pyKV5lg3WbX01MX/V+VOLt5eNv1x0P0asyK32H0edMf9Tv+uADxP56Z19L++D+iZi/OUb8jpnHflj9mn+TFbaZXm7yAqn0NnAxw5yWwE4BJw9WR6ufd0se+CYtefefH/6d7f9Z72bR2hrrWD9E3nrkqtUVPBby3XTdfXK/IL7EpgLs0+WPXk0rd1hHTXQ7p9dVc1Ov+VY58Ta7TTtDvaFPp3BeB5+DFrDa7+HUTlc60OxbKwGYZRzP8kso7MzEzZ7XZlZGQoODi4yHXWH0jSByuWFJxMbb+dTE8Zv55M73rI8WXLyzfUfe5/1O7s5mLX/zLoJm15/OZCJ+Ds1GwFhtUoeJ6SpcC6Vx9ikJmcVaLA7Oo+XPme+A++UUpWjqPNCicXV/5dAXim9QeSNHP1V4V/zA7gx2xVwvm66tr2wy9a9vpCLfZdIEnKyjVkn3P2qnmtpAjAKlkAllw7ma4/kKTRb++Vl/KL7j29u0ORJ2BXA7Cr65fmD4IVTy6u/rsC8ExWPH9ZDefrquv3HYo1cn8xLQAzBMIFvw1ReNT0IQrlxZV9uMzby6bYxK8lSdkNavLHA0ClwfkLqLx+Pxyz/cX9kqabsm0CsItcOZm6Mqa3PPEHAQAAVAZXdiju+qWFadslALsZYRMAAKD0Lnco7uzURbeYtE3mAQYAAIBH8/ayqfNPB03bHgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCrNAVKSkpILHFbzSzv/2/Kv9Uqh/4fdFRBQ8AAAA4DICcEVaulSaOdOp6cq4639L96LfFx8vzZjhtrIshx8iAFA5cL6GSQjAV5GyP0lp3zh/0S5mnlfbX5//8P5++QYX/qKFtopQWPtrf9FSBo1SWvQAp7acHOn+EQXP33hd8vP7bZnPmdPySf9ZwU1rq9bevZKu/cU/fVpKUoQu1fmtnpw0KfbX5199JfmF/rZ+xrdJOn80SSEhUs2a5u+zJzr73FIFzXf9h8jZSfEKen6G+woD4BrCUZXH+doaistfjU38DALwVRyauFR/TJhZ7PK2Y4r+om1uMVJpT46SdPXw+P6/pX//uyCgJqvwyff6Ec6v4zVDM+TaF7+OpH9rpJZq1BXvOa+tvz6fcst+nb9iK6O0VKP0SpH7JRW/z5/3iFfY5zOKfZ8nW6pRWqEB117xd+5ShKa4oR4ApUM4qvo4X1tDcfkr08TPsBmGYZi4vUopMzNTdrtdGRkZCg4OdrQX9Qvkak7PWqqbvi0+PBbnow7xqvfqjGuu96+/J2nT2yWvR7p2oC1O4q0jlRU36tor/qoy9wAX0WlUInQaAZ7luclJWjHf9S/zXZMiNOV5vsyVAedrayguf2Wdy1LnkT0K5bXSIACr+ADsKlcD82UlDY+l+eL7nE5ShJJUp46LRXG2AFDJEI6Aqs2svCZVoQD80ksv6dlnn1VycrLatWunF198UZ07dy7Re838BwUAAID5zMxrVWIe4FWrVmnSpEmKj4/X3r171a5dO/Xp00epqakVXRoAAAA8TJUIwPPnz9eDDz6o++67TzExMVqyZIkCAgL0xhtvVHRpAAAA8DCVfhaI3Nxc7dmzR1OnTnW0eXl5qVevXtq2bVuR78nJyVFOTo7jdUZGhqSCrnUAAAB4nss5zYzRu5U+AP/888/Ky8tTWFiYU3tYWJi+/fbbIt8ze/ZszZxZeHqNBg0auKVGAAAAmOOXX36R3W4v0zYqfQAujalTp2rSpEmO1/n5+UpLS1OtWrVks9mu+f7MzEw1aNBAiYmJXDRXhXGcqz6OsTVwnKs+jrE1ZGRkqGHDhgoNDb32ytdQ6QNw7dq15e3trZSUFKf2lJQUhYeHF/kePz8/+V15izVJISEhLn92cHAwXzQL4DhXfRxja+A4V30cY2vw8ir7JWyV/iK4atWqqWPHjtq0aZOjLT8/X5s2bVJsbOxV3gkAAAArqvQ9wJI0adIkDR8+XJ06dVLnzp21YMECZWdn67777qvo0gAAAOBhqkQAHjZsmE6fPq3p06crOTlZ7du31/r16wtdGGcWPz8/xcfHFxpGgaqF41z1cYytgeNc9XGMrcHM41xl7gQHAAAAlESlHwMMAAAAuIIADAAAAEshAAMAAMBSCMAAAACwFAKwi1566SU1btxY1atXV5cuXbRz586KLgllsHnzZvXv31+RkZGy2Wz64IMPnJYbhqHp06crIiJC/v7+6tWrl44cOVIxxaJUZs+erRtuuEFBQUGqW7euBg0apMOHDzutc+HCBY0dO1a1atVSjRo1dPvttxe6uQ482+LFi9W2bVvHjRBiY2O1bt06x3KOcdUzZ84c2Ww2TZw40dHGca78ZsyYIZvN5vRo0aKFY7lZx5gA7IJVq1Zp0qRJio+P1969e9WuXTv16dNHqampFV0aSik7O1vt2rXTSy+9VOTyefPmaeHChVqyZIl27NihwMBA9enTRxcuXCjnSlFaCQkJGjt2rLZv366NGzfq4sWL6t27t7Kzsx3rPPLII/roo4/07rvvKiEhQadOndKQIUMqsGq4qn79+pozZ4727Nmj3bt36+abb9bAgQP1zTffSOIYVzW7du3S0qVL1bZtW6d2jnPV0KpVKyUlJTkeW7ZscSwz7RgbKLHOnTsbY8eOdbzOy8szIiMjjdmzZ1dgVTCLJGP16tWO1/n5+UZ4eLjx7LPPOtrS09MNPz8/41//+lcFVAgzpKamGpKMhIQEwzAKjqmvr6/x7rvvOtY5dOiQIcnYtm1bRZUJE9SsWdN47bXXOMZVzNmzZ43o6Ghj48aNRo8ePYwJEyYYhsF3uaqIj4832rVrV+QyM48xPcAllJubqz179qhXr16ONi8vL/Xq1Uvbtm2rwMrgLseOHVNycrLTMbfb7erSpQvHvBLLyMiQJIWGhkqS9uzZo4sXLzod5xYtWqhhw4Yc50oqLy9PK1euVHZ2tmJjYznGVczYsWN12223OR1Pie9yVXLkyBFFRkaqSZMmiouL04kTJySZe4yrxJ3gysPPP/+svLy8QneXCwsL07fffltBVcGdkpOTJanIY355GSqX/Px8TZw4Ud26dVPr1q0lFRznatWqKSQkxGldjnPl8/XXXys2NlYXLlxQjRo1tHr1asXExGj//v0c4ypi5cqV2rt3r3bt2lVoGd/lqqFLly5atmyZmjdvrqSkJM2cOVN/+MMfdODAAVOPMQEYgGWMHTtWBw4ccBpPhqqjefPm2r9/vzIyMvTee+9p+PDhSkhIqOiyYJLExERNmDBBGzduVPXq1Su6HLjJrbfe6njetm1bdenSRY0aNdI777wjf39/0z6HIRAlVLt2bXl7exe60jAlJUXh4eEVVBXc6fJx5ZhXDePGjdPatWv12WefqX79+o728PBw5ebmKj093Wl9jnPlU61aNTVr1kwdO3bU7Nmz1a5dO73wwgsc4ypiz549Sk1NVYcOHeTj4yMfHx8lJCRo4cKF8vHxUVhYGMe5CgoJCdF1112n77//3tTvMgG4hKpVq6aOHTtq06ZNjrb8/Hxt2rRJsbGxFVgZ3CUqKkrh4eFOxzwzM1M7duzgmFcihmFo3LhxWr16tf7zn/8oKirKaXnHjh3l6+vrdJwPHz6sEydOcJwrufz8fOXk5HCMq4iePXvq66+/1v79+x2PTp06KS4uzvGc41z1ZGVl6YcfflBERISp32WGQLhg0qRJGj58uDp16qTOnTtrwYIFys7O1n333VfRpaGUsrKy9P333zteHzt2TPv371doaKgaNmyoiRMnatasWYqOjlZUVJSmTZumyMhIDRo0qOKKhkvGjh2rFStW6MMPP1RQUJBjnJjdbpe/v7/sdrtGjBihSZMmKTQ0VMHBwXr44YcVGxurG2+8sYKrR0lNnTpVt956qxo2bKizZ89qxYoV+vzzz7VhwwaOcRURFBTkGLt/WWBgoGrVquVo5zhXflOmTFH//v3VqFEjnTp1SvHx8fL29tZf//pXc7/LZZipwpJefPFFo2HDhka1atWMzp07G9u3b6/oklAGn332mSGp0GP48OGGYRRMhTZt2jQjLCzM8PPzM3r27GkcPny4YouGS4o6vpKMN99807HO+fPnjTFjxhg1a9Y0AgICjMGDBxtJSUkVVzRcdv/99xuNGjUyqlWrZtSpU8fo2bOn8cknnziWc4yrpiunQTMMjnNVMGzYMCMiIsKoVq2aUa9ePWPYsGHG999/71hu1jG2GYZhmBjcAQAAAI/GGGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAA8FAzZsxQ+/btK7oMAKhyCMAA8Dv33nuvbDZboUffvn0rujS3+OMf/+jYx+rVqysmJkYvv/xyRZcFAG5DAAaAIvTt21dJSUlOj3/9618VXZbbPPjgg0pKStLBgwc1dOhQjR071mP2Nzc3t6JLAFDFEIABoAh+fn4KDw93etSsWdOx3Gaz6bXXXtPgwYMVEBCg6OhorVmzRpKUn5+v+vXra/HixU7b3Ldvn7y8vHT8+HFJUnp6uh544AHVqVNHwcHBuvnmm/Xll18WW1N+fr6eeuop1a9fX35+fmrfvr3Wr1/vWP7jjz/KZrNp5cqV6tq1q6pXr67WrVsrISHhmvsbEBCg8PBwNWnSRDNmzHDanxMnTmjgwIGqUaOGgoODNXToUKWkpEiSMjIy5O3trd27dztqDA0N1Y033ujY9ttvv60GDRo4XicmJmro0KEKCQlRaGioBg4cqB9//NGx/N5779WgQYP09NNPKzIyUs2bN79m/QDgCgIwAJTSzJkzNXToUH311Vfq16+f4uLilJaWJi8vL/31r3/VihUrnNZfvny5unXrpkaNGkmS7rjjDqWmpmrdunXas2ePOnTooJ49eyotLa3Iz3vhhRf0/PPP67nnntNXX32lPn36aMCAATpy5IjTeo8++qgmT56sffv2KTY2Vv3799cvv/zi0r75+/srNzdX+fn5GjhwoNLS0pSQkKCNGzfq6NGjGjZsmCTJbrerffv2+vzzzyVJX3/9tWw2m/bt26esrCxJUkJCgnr06CFJunjxovr06aOgoCB98cUX2rp1q2rUqKG+ffs69fRu2rRJhw8f1saNG7V27VqXageAazIAAE6GDx9ueHt7G4GBgU6Pp59+2rGOJOPJJ590vM7KyjIkGevWrTMMwzD27dtn2Gw24/jx44ZhGEZeXp5Rr149Y/HixYZhGMYXX3xhBAcHGxcuXHD67KZNmxpLly41DMMw4uPjjXbt2jmWRUZGOtVgGIZxww03GGPGjDEMwzCOHTtmSDLmzJnjWH7x4kWjfv36xty5c4vd3x49ehgTJkwwDMMwLl26ZLz11luGJGPRokXGJ598Ynh7exsnTpxwrP/NN98YkoydO3cahmEYkyZNMm677TbDMAxjwYIFxrBhw4x27do5/i2aNWtmvPLKK4ZhGMZbb71lNG/e3MjPz3dsLycnx/D39zc2bNjg+PcPCwszcnJyiq0ZAMrCp0LTNwB4qD/96U+FhjCEhoY6vW7btq3jeWBgoIKDg5WamipJat++vVq2bKkVK1boiSeeUEJCglJTU3XHHXdIkr788ktlZWWpVq1aTts8f/68fvjhh0L1ZGZm6tSpU+rWrZtTe7du3QoNm4iNjXU89/HxUadOnXTo0KGr7u/LL7+s1157Tbm5ufL29tYjjzyi0aNHa9GiRWrQoIHTEIaYmBiFhITo0KFDuuGGG9SjRw+9/vrrysvLU0JCgnr37q3w8HB9/vnnatu2rb7//nv98Y9/dOz3999/r6CgIKfPv3DhgtN+t2nTRtWqVbtqzQBQWgRgAChCYGCgmjVrdtV1fH19nV7bbDbl5+c7XsfFxTkC8IoVK9S3b19H4M3KylJERIRj6MCVQkJCyly/q+Li4vS///u/8vf3V0REhLy8Sj5C7qabbtLZs2e1d+9ebd68Wc8884zCw8M1Z84ctWvXTpGRkYqOjpZUsN8dO3bU8uXLC22nTp06jueBgYFl3ykAKAZjgAHATe666y4dOHBAe/bs0Xvvvae4uDjHsg4dOig5OVk+Pj5q1qyZ06N27dqFthUcHKzIyEht3brVqX3r1q2KiYlxatu+fbvj+aVLl7Rnzx61bNnyqrXa7XY1a9ZM9erVcwq/LVu2VGJiohITEx1tBw8eVHp6uuNzQ0JC1LZtWy1atEi+vr5q0aKFbrrpJu3bt09r1651jP+9vN9HjhxR3bp1C+233W6/ao0AYBYCMAAUIScnR8nJyU6Pn3/+2aVtNG7cWF27dtWIESOUl5enAQMGOJb16tVLsbGxGjRokD755BP9+OOP+u9//6v//d//dcyo8HuPPvqo5s6dq1WrVunw4cN64okntH//fk2YMMFpvZdeekmrV6/Wt99+q7Fjx+rMmTO6//77Xf9H+LXONm3aKC4uTnv37tXOnTt1zz33qEePHurUqZNjvT/+8Y9avny5I+yGhoaqZcuWWrVqlVMAjouLU+3atTVw4EB98cUXOnbsmD7//HONHz9eJ0+eLFWNAOAqAjAAFGH9+vWKiIhwenTv3t3l7cTFxenLL7/U4MGD5e/v72i32Wz6+OOPddNNN+m+++7TddddpzvvvFPHjx9XWFhYkdsaP368Jk2apMmTJ6tNmzZav3691qxZ4xhecNmcOXMcww+2bNmiNWvWFNmrXBI2m00ffvihatasqZtuukm9evVSkyZNtGrVKqf1evTooby8PMdYX6kgFP++LSAgQJs3b1bDhg01ZMgQtWzZUiNGjNCFCxcUHBxcqhoBwFU2wzCMii4CAFB2P/74o6KiorRv3z5uoQwAV0EPMAAAACyFAAwAAABLYQgEAAAALIUeYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCn/H1ZrfIetmV45AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.savefig(\"Proj_EnvelopePower.png\") # Save the plot as a PNG file\n", + "\n", + "!cp Proj_EnvelopePower.png \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"\n", + "\n", + "!ls \"/content/drive/My Drive/Mini-Project_ColabNotebooks/SBCP_2024/Results_Figures\"\n" + ], + "metadata": { + "id": "Su22h0nrio3Z" + }, + "id": "Su22h0nrio3Z", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Example project 2: Weight matrix analyis" + ], + "metadata": { + "id": "aM2fl6UF6aTi" + }, + "id": "aM2fl6UF6aTi" + }, + { + "cell_type": "code", + "source": [ + "# TRAINING\n", + "\n", + "# Training parameters\n", + "nb_epochs = 10 # is quick, it won't have converged.\n", + "# Note: An epoch is one complete pass through the entire training dataset.\n", + "# During an epoch, the neural network processes every example in the dataset once.\n", + "# Completing an epoch means that every data point has been used for calculating the loss and updating the model parameters.\n", + "# Multiple epochs are usually required for the network to converge to an optimal set of parameters.\n", + "lr = 0.01 # learning rate\n", + "\n", + "# Generate the training data\n", + "ipds, spikes, _ = random_ipd_input_signal(num_samples) # num_samples = batch_size * num_training\n", + "\n", + "# Initialise a weight matrices\n", + "W1, W2 = init_weight_matrices()\n", + "\n", + "# Optimiser and loss function\n", + "optimizer = torch.optim.Adam([W1, W2], lr=lr)\n", + "log_softmax_fn = nn.LogSoftmax(dim=1)\n", + "loss_fn = nn.NLLLoss()\n", + "\n", + "print(f\"Want loss for epoch 1 to be about {-np.log(1/num_classes):.2f}, multiply m by constant to get this\")\n", + "\n", + "loss_hist = []\n", + "for e in range(nb_epochs):\n", + " local_loss = []\n", + " for spike_batch, ipd_batch in data_generator(discretise(ipds), spikes):\n", + " # Run network\n", + " output = snn(spike_batch, W1, W2)\n", + "\n", + " # Compute cross entropy loss\n", + " m = torch.sum(output, 1)*0.01 # Agregation fuction: Sum across time dimension. Note: We want loss for epoch 1 to be about -np.log(1/num_classes), multiply m by a constant to get this\n", + " loss = loss_fn(log_softmax_fn(m), ipd_batch)\n", + " local_loss.append(loss.item())\n", + "\n", + " # The softmax function transforms the output of a neural network's final layer into a probability\n", + " # distribution over multiple classes in such a way that increasing the score of one class\n", + " # decreases the probabilities of the other classes. It does this by exponentiating each logit\n", + " # and then normalizing these values so that they sum to 1. This is important because it ensures that\n", + " # the predicted values for each class sum up to 1.0. This probability distribution allows us to\n", + " # interpret the network's output as the likelihood of each class being the correct class.\n", + " # Training Objective: The training process aims to increase the probability of the correct class.\n", + " # As the model updates its weights to increase the probability (and hence the log probability) of the\n", + " # correct class, the softmax function inherently decreases the probabilities of the other classes due\n", + " # to the normalization step.\n", + " # Using it with the negative log likelihood loss encourages the model to increase the log probability\n", + " # of the correct class.\n", + " # Interpretability: The softmax function's output can be interpreted as class probabilities, which is\n", + " # valuable not only for making predictions but also for understanding the model's confidence in those\n", + " # predictions. This can be useful for post-processing or decision-making based on the network's output\n", + " # probabilities.\n", + "\n", + " # Update gradients\n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " loss_hist.append(np.mean(local_loss))\n", + " print(\"Epoch %i: loss=%.5f\"%(e+1, np.mean(local_loss)))\n", + "\n", + "# Plot the loss function over time\n", + "plt.plot(loss_hist)\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.tight_layout()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 683 + }, + "id": "f4v0OcbUeQJl", + "outputId": "9171d19d-9d0d-48ae-ef73-b18a16bd459f" + }, + "id": "f4v0OcbUeQJl", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Want loss for epoch 1 to be about 2.48, multiply m by constant to get this\n", + "Epoch 1: loss=3.01142\n", + "Epoch 2: loss=1.55636\n", + "Epoch 3: loss=1.22104\n", + "Epoch 4: loss=1.03283\n", + "Epoch 5: loss=0.92237\n", + "Epoch 6: loss=0.82222\n", + "Epoch 7: loss=0.73452\n", + "Epoch 8: loss=0.67997\n", + "Epoch 9: loss=0.63810\n", + "Epoch 10: loss=0.59215\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBjElEQVR4nO3deXyU5b3///dkkkwWsodsJJCwg8i+BVxQULR+rdSl1dqCS7VasFJOz/fI6bFaW4utX61taUFOq9QqdS3qz51F3AAJq4DsSwghC9lmsk6Smfn9ETISSYYkJnPP8no+HveD5L7vmfmkUXn3uj/XdZlcLpdLAAAA8HshRhcAAACAnkGwAwAACBAEOwAAgABBsAMAAAgQBDsAAIAAQbADAAAIEAQ7AACAAEGwAwAACBChRhfgbU6nU6dOnVJMTIxMJpPR5QAAAHjkcrlUXV2tjIwMhYR4HpMLumB36tQpZWVlGV0GAABAlxQUFCgzM9PjPUEX7GJiYiS1/I8TGxtrcDUAAACe2Ww2ZWVluTOMJ0EX7Fofv8bGxhLsAACA3+hMCxmTJwAAAAIEwQ4AACBAEOwAAAACBMEOAAAgQBDsAAAAAgTBDgAAIEAQ7AAAAAIEwQ4AACBAEOwAAAACBMEOAAAgQBDsAAAAAgTBDgAAIEAQ7AAAAAKEocFu2bJlGj16tGJjYxUbG6vc3Fy9++67Hl/zyiuvaPjw4YqIiNCFF16od955x0vVAgAA+DZDg11mZqYee+wxbdu2TVu3btXll1+u6667Tnv37m33/o0bN+qWW27RnXfeqR07dmjOnDmaM2eO9uzZ4+XKPdtTaNWjb3+pl/JOGF0KAAAIIiaXy+UyuoizJSYm6vHHH9edd955zrXvfe97qq2t1VtvveU+N3XqVI0dO1bLly/v1PvbbDbFxcXJarUqNja2x+o+26rPT+i/V+/WlJxEvfTj3F75DAAAEBy6kl18psfO4XDoxRdfVG1trXJz2w9DmzZt0qxZs9qcmz17tjZt2tTh+9rtdtlstjZHb8sdlCRJ2nGiSg1Njl7/PAAAAMkHgt3u3bvVp08fWSwW3XPPPVq9erVGjhzZ7r3FxcVKTU1tcy41NVXFxcUdvv+SJUsUFxfnPrKysnq0/vZkJ0UpLTZCjQ6ntudX9vrnAQAASD4Q7IYNG6adO3fq888/17333qt58+bpyy+/7LH3X7x4saxWq/soKCjosffuiMlkco/abTpa3uufBwAAIEmhRhcQHh6uwYMHS5ImTJigvLw8/fGPf9TTTz99zr1paWkqKSlpc66kpERpaWkdvr/FYpHFYunZojshd2CSVu8o1KYjBDsAAOAdho/YfZ3T6ZTdbm/3Wm5urtatW9fm3Jo1azrsyTNS64jdrpNVqmtsNrgaAAAQDAwdsVu8eLGuvvpq9e/fX9XV1Vq1apU2bNig999/X5I0d+5c9evXT0uWLJEk3X///br00kv1xBNP6JprrtGLL76orVu3asWKFUb+GO3KSoxSv/hIFVbVa+vxSl0ytK/RJQEAgABn6IhdaWmp5s6dq2HDhmnmzJnKy8vT+++/ryuuuEKSdOLECRUVFbnvnzZtmlatWqUVK1ZozJgxevXVV/X6669r1KhRRv0IHtFnBwAAvMnn1rHrbd5Yx67Vq9tO6uev7NLYrHi9Pn96r34WAAAITH65jl0gah2x211oVY2dPjsAANC7CHa9qF98pPonRsnhdCnvWIXR5QAAgABHsOtluQPpswMAAN5BsOtl7gkUrGcHAAB6GcGul7UGu72nrLLWNxlcDQAACGQEu16WGhuhgcnRcrqkLfTZAQCAXkSw84KpPI4FAABeQLDzAiZQAAAAbyDYecHUM8Fuf7FNVXWNBlcDAAACFcHOC/rGWDQkpY9cLmnzUfrsAABA7yDYeUnr7NjNPI4FAAC9hGDnJe4+OyZQAACAXkKw85IpZ4LdgZJqldfYDa4GAAAEIoKdlyRGh2t4Wowk+uwAAEDvINh5kXt7saNlBlcCAAACEcHOi+izAwAAvYlg50VTcpJkMklHTteq1NZgdDkAACDAEOy8KC4qTBdkxEpiFwoAANDzCHZe1vo4lvXsAABATyPYeZl7AgV9dgAAoIcR7LxsUnaizCEmHS+vU5G13uhyAABAACHYeVlMRJhG9YuTxKgdAADoWQQ7A7DsCQAA6A0EOwN8tVAxwQ4AAPQcgp0BJg5IUGiISScr61VQUWd0OQAAIEAQ7AwQbQnVmKx4SYzaAQCAnkOwM4h7PTv67AAAQA8h2Bnk7D47l8tlcDUAACAQEOwMMr5/gsLNISqyNii/nD47AADwzRHsDBIZbtZY+uwAAEAPItgZaCrbiwEAgB5EsDOQe6Fi+uwAAEAPINgZaFz/eIWHhuh0tV1HTtcaXQ4AAPBzBDsDRYSZNaF/giT67AAAwDdHsDNY67InrGcHAAC+KYKdwdzBjj47AADwDRHsDDYmM16RYWaV1zbqYEmN0eUAAAA/RrAzWHhoiCZmn+mzO1JmcDUAAMCfEex8wNSzlj0BAADoLoKdD2jts/v8WIWcTvrsAABA9xDsfMCF/eIUHW5WVV2T9hXbjC4HAAD4KYKdDwgzh2hSTqIkafPRCoOrAQAA/opg5yPc24uxnh0AAOgmgp2P+KrPrlwO+uwAAEA3EOx8xAUZcYqJCFV1Q7O+PEWfHQAA6DqCnY8wh5g05Uyf3aajrGcHAAC6jmDnQ6bSZwcAAL4Bgp0Pae2zyzteqWaH0+BqAACAvyHY+ZARabGKjwpTjb1ZuwutRpcDAAD8DMHOh4S06bPjcSwAAOgagp2PYT07AADQXQQ7H5M7KFmStPV4pRqb6bMDAACdR7DzMUNT+ygpOlz1TQ59cbLK6HIAAIAfIdj5GJPJxLInAACgWwh2PmjqmWVPmEABAAC6gmDng1onUGzLr5S92WFwNQAAwF8Q7HzQoL7R6htjkb3ZqR0nqowuBwAA+AmCnQ8ymUwsewIAALqMYOejcumzAwAAXUSw81GtI3Y7T1SpoYk+OwAAcH4EOx81IClKabERanQ4tS2/0uhyAACAHyDY+SiTyfTV41j67AAAQCcQ7HyYewIFfXYAAKATCHY+rHXEbldBlWrtzQZXAwAAfB3BzodlJUapX3ykmp0ubaXPDgAAnIehwW7JkiWaNGmSYmJilJKSojlz5ujAgQMeX7Ny5UqZTKY2R0REhJcq9j767AAAQGcZGuw++ugjzZ8/X5s3b9aaNWvU1NSkK6+8UrW1tR5fFxsbq6KiIveRn5/vpYq9jz47AADQWaFGfvh7773X5vuVK1cqJSVF27Zt0yWXXNLh60wmk9LS0nq7PJ/QOmK3p9Cq6oYmxUSEGVwRAADwVT7VY2e1WiVJiYmJHu+rqanRgAEDlJWVpeuuu0579+71RnmGyIiP1ICkKDmcLuUdrzC6HAAA4MN8Jtg5nU4tXLhQ06dP16hRozq8b9iwYXrmmWf0xhtv6Pnnn5fT6dS0adN08uTJdu+32+2y2WxtDn/DvrEAAKAzfCbYzZ8/X3v27NGLL77o8b7c3FzNnTtXY8eO1aWXXqp///vf6tu3r55++ul271+yZIni4uLcR1ZWVm+U36vYNxYAAHSGTwS7BQsW6K233tKHH36ozMzMLr02LCxM48aN0+HDh9u9vnjxYlmtVvdRUFDQEyV7VeuI3d5TNlnrmgyuBgAA+CpDg53L5dKCBQu0evVqrV+/Xjk5OV1+D4fDod27dys9Pb3d6xaLRbGxsW0Of5MSG6GBfaPlckmfH2PUDgAAtM/QYDd//nw9//zzWrVqlWJiYlRcXKzi4mLV19e775k7d64WL17s/v6RRx7RBx98oKNHj2r79u36wQ9+oPz8fP3oRz8y4kfwGpY9AQAA52NosFu2bJmsVqtmzJih9PR09/HSSy+57zlx4oSKiorc31dWVuquu+7SiBEj9K1vfUs2m00bN27UyJEjjfgRvIaFigEAwPmYXC6Xy+givMlmsykuLk5Wq9WvHsuW1dg18TdrJUk7HrxCCdHhBlcEAAC8oSvZxScmT+D8kvtYNDS1jyT67AAAQPsIdn6E9ewAAIAnBDs/wnp2AADAE4KdH5mSkySTSTpYUqOyGrvR5QAAAB9DsPMjCdHhGp7W0jS5mVE7AADwNQQ7P0OfHQAA6AjBzs/QZwcAADpCsPMzk3MSFWKSjp6uVYmtwehyAACADyHY+Zm4yDBdkBEniT47AADQFsHOD7G9GAAAaA/Bzg+5J1AwYgcAAM5CsPNDk3ISZQ4xKb+8Tqeq6o0uBwAA+AiCnR/qYwnVhf1a+ux4HAsAAFoR7PwUy54AAICvI9j5qaksVAwAAL6GYOenJg5IUGiISYVV9SqoqDO6HAAA4AMIdn4q2hKqMVnxkhi1AwAALQh2foxlTwAAwNkIdn7s7IWKXS6XwdUAAACjEez82IQBCQo3h6jY1qDj5fTZAQAQ7Ah2fiwizKyx/eMl0WcHAAAIdn6PPjsAANCKYOfn6LMDAACtCHZ+blz/eFlCQ1RWY9eR0zVGlwMAAAxEsPNzllCzJgxIkESfHQAAwY5gFwDoswMAABLBLiC09tltPlohp5M+OwAAghXBLgCMzoxXZJhZFbWNOlhabXQ5AADAIAS7ABAeGqKJ2fTZAQAQ7Ah2AeLsZU8AAEBwItgFiNYJFJ8fo88OAIBgRbALEBf2i1MfS6is9U36sshmdDkAAMAABLsAEWoO0aQzfXabWfYEAICgRLALIF8te0KwAwAgGBHsAkjuwGRJLX12DvrsAAAIOgS7ADIyI1axEaGqbmjW3lNWo8sBAABeRrALIOYQkybnsOwJAADBimAXYNzr2dFnBwBA0CHYBZjW9ezyjlWoyeE0uBoAAOBNBLsAMzwtRglRYaptdGh3IX12AAAEE4JdgAkJMWkKfXYAAAQlgl0AYj07AACCE8EuALUGu63HK9XYTJ8dAADBgmAXgIak9FFSdLjqmxzadbLK6HIAAICXEOwCkMlk0tSB9NkBABBsCHYBauoggh0AAMGGYBegWtez23aiUg1NDoOrAQAA3kCwC1CD+karb4xFjc1O7ThRZXQ5AADACwh2AcpkMrlH7dheDACA4ECwC2Du9ezoswMAICgQ7AJY64jdjoJK1TfSZwcAQKAj2AWwAUlRSo+LUJPDpW35lUaXAwAAehnBLoC17bMrM7gaAADQ2wh2AY717AAACB4EuwDXOmL3xUmrau3NBlcDAAB6E8EuwGUlRikzIVLNTpfyjlcYXQ4AAOhFBLsgwHp2AAAEB4JdEGA9OwAAggPBLgi0BrvdhVbZGpoMrgYAAPQWgl0QSI+LVHZSlJwuKe8YfXYAAAQqgl2QyGXZEwAAAh7BLkhMZQIFAAABj2AXJFpnxn5ZZFNVXaPB1QAAgN5AsAsSKbERGtQ3Wi6X9Dl9dgAABCSCXRChzw4AgMBGsAsiuQOTJUmb6bMDACAgGRrslixZokmTJikmJkYpKSmaM2eODhw4cN7XvfLKKxo+fLgiIiJ04YUX6p133vFCtf5v6sBESdL+4mqV19gNrgYAAPQ0Q4PdRx99pPnz52vz5s1as2aNmpqadOWVV6q2trbD12zcuFG33HKL7rzzTu3YsUNz5szRnDlztGfPHi9W7p+S+lg0LDVGkrSFPjsAAAKOyeVyuYwuotXp06eVkpKijz76SJdcckm793zve99TbW2t3nrrLfe5qVOnauzYsVq+fPl5P8NmsykuLk5Wq1WxsbE9Vru/ePjNvVq58bjm5g7QI9eNMrocAABwHl3JLj7VY2e1WiVJiYmJHd6zadMmzZo1q8252bNna9OmTe3eb7fbZbPZ2hzBzL2eHRMoAAAIOD4T7JxOpxYuXKjp06dr1KiOR5KKi4uVmpra5lxqaqqKi4vbvX/JkiWKi4tzH1lZWT1at7+ZOjBRJpN0qLRGp6vpswMAIJD4TLCbP3++9uzZoxdffLFH33fx4sWyWq3uo6CgoEff39/ER4VrRFrLMC6zYwEACCw+EewWLFigt956Sx9++KEyMzM93puWlqaSkpI250pKSpSWltbu/RaLRbGxsW2OYOdez45gBwBAQDE02LlcLi1YsECrV6/W+vXrlZOTc97X5Obmat26dW3OrVmzRrm5ub1VZsBp3V5sM312AAAEFEOD3fz58/X8889r1apViomJUXFxsYqLi1VfX+++Z+7cuVq8eLH7+/vvv1/vvfeennjiCe3fv18PP/ywtm7dqgULFhjxI/ilSTmJCjFJR8tqVWJrMLocAADQQwwNdsuWLZPVatWMGTOUnp7uPl566SX3PSdOnFBRUZH7+2nTpmnVqlVasWKFxowZo1dffVWvv/66xwkXaCsuMkwXZMRJYnYsAACBJNTID+/MEnobNmw459xNN92km266qRcqCh65g5K0u9CqTUfKNWdcP6PLAQAAPcAnJk/A+1r77JhAAQBA4CDYBalJOYkyh5h0oqJOhVX1538BAADweQS7INXHEqoL+9FnBwBAICHYBTH3enYEOwAAAgLBLoi517M7Wt6piSwAAMC3EeyC2MTsBIWZTSqsqldBBX12AAD4O4JdEIsKD9WYzHhJ0qajZcYWAwAAvjGCXZCjzw4AgMBBsAtyZ69nR58dAAD+jWAX5MYPSFC4OUQlNruOldUaXQ4AAPgGCHZBLiLMrHH94yWxCwUAAP6uW8GuoKBAJ0+edH+/ZcsWLVy4UCtWrOixwuA99NkBABAYuhXsvv/97+vDDz+UJBUXF+uKK67Qli1b9Itf/EKPPPJIjxaI3vfVenYV9NkBAODHuhXs9uzZo8mTJ0uSXn75ZY0aNUobN27UCy+8oJUrV/ZkffCCsf3jZQkNUVmNXYdLa4wuBwAAdFO3gl1TU5MsFoskae3atfr2t78tSRo+fLiKiop6rjp4hSXUrInZCZLoswMAwJ91K9hdcMEFWr58uT755BOtWbNGV111lSTp1KlTSkpK6tEC4R3uZU/oswMAwG91K9j97ne/09NPP60ZM2bolltu0ZgxYyRJb775pvsRLfxL6wSKzUfL5XTSZwcAgD8K7c6LZsyYobKyMtlsNiUkJLjP33333YqKiuqx4uA9ozPjFRVuVmVdkw6UVGtEeqzRJQEAgC7q1ohdfX297Ha7O9Tl5+frqaee0oEDB5SSktKjBcI7wswhmpidKInHsQAA+KtuBbvrrrtOzz33nCSpqqpKU6ZM0RNPPKE5c+Zo2bJlPVogvOfs7cUAAID/6Vaw2759uy6++GJJ0quvvqrU1FTl5+frueee05/+9KceLRDe09pn9/nRcjnoswMAwO90K9jV1dUpJiZGkvTBBx/o+uuvV0hIiKZOnar8/PweLRDeMyojVn0sobI1NGtfkc3ocgAAQBd1K9gNHjxYr7/+ugoKCvT+++/ryiuvlCSVlpYqNpame38Vag7R5Bz67AAA8FfdCna//OUv9fOf/1zZ2dmaPHmycnNzJbWM3o0bN65HC4R30WcHAID/6tZyJzfeeKMuuugiFRUVudewk6SZM2fqO9/5To8VB+9r7bPLO1ahZodToeZuZX8AAGCAbgU7SUpLS1NaWppOnjwpScrMzGRx4gAwIj1WsREtfXZ7T9k0Jive6JIAAEAndWs4xul06pFHHlFcXJwGDBigAQMGKD4+Xr/+9a/ldDp7ukZ4kTnEpCk8jgUAwC91K9j94he/0NKlS/XYY49px44d2rFjh37729/qz3/+sx588MGerhFexr6xAAD4p249iv3HP/6hv/3tb/r2t7/tPjd69Gj169dPP/nJT/Too4/2WIHwvqlngl3e8Qo1OZwKo88OAAC/0K2/sSsqKjR8+PBzzg8fPlwVFRXfuCgYa3hajBKiwlTX6NAXJ61GlwMAADqpW8FuzJgxWrp06Tnnly5dqtGjR3/jomCskBCTpuS0jNptps8OAAC/0a1Hsb///e91zTXXaO3ate417DZt2qSCggK98847PVogjJE7KEnv7S3WpiPlmn/ZYKPLAQAAndCtEbtLL71UBw8e1He+8x1VVVWpqqpK119/vfbu3at//vOfPV0jDNC6nt3W/ArZmx0GVwMAADrD5HK5emy39127dmn8+PFyOHw3CNhsNsXFxclqtbL9mQcul0uTHl2rsppGvfzjXPdWYwAAwLu6kl2Y7oh2mUxnrWfHsicAAPgFgh069NW+sWUGVwIAADqDYIcOtfbZbT9RpYYm3328DgAAWnRpVuz111/v8XpVVdU3qQU+ZmBytFJiLCqttmv7iUpNG5RsdEkAAMCDLgW7uLi4816fO3fuNyoIvsNkMil3UJLe2HlKm4+UE+wAAPBxXQp2zz77bG/VAR+VO7Al2G1ioWIAAHwePXbwqLXPbmdBleob6bMDAMCXEezgUf/EKGXERajJ4dLWfPYBBgDAlxHs4JHJZNLUQaxnBwCAPyDY4by+Ws+OYAcAgC8j2OG8WvvsvjhpVY292eBqAABARwh2OK/MhChlJUbK4XQp7zh9dgAA+CqCHTql9XHsZvrsAADwWQQ7dErr41j67AAA8F0EO3RK7sCWXSf2FFpla2gyuBoAANAegh06JS0uQjnJ0XK6pC1H6bMDAMAXEezQaVNZ9gQAAJ9GsEOn5bJQMQAAPo1gh06bOjBRkrSv2KaqukaDqwEAAF9HsEOnpcREaHBKH7lc0mb67AAA8DkEO3SJez07+uwAAPA5BDt0CX12AAD4LoIduqR1ZuyBkmqV19gNrgYAAJyNYIcuSYwO1/C0GEn02QEA4GsIduiyqfTZAQDgkwh26DIWKgYAwDcR7NBlUwcmymSSDpfWaN2+EqPLAQAAZxDs0GXxUeG6bkyGJOnuf27Tq9tOGlwRAACQCHbopsdvGqPrx/eTw+nSz1/ZpeUfHZHL5TK6LAAAghrBDt0SZg7REzeN0Y8vGShJeuzd/Xr07X1yOgl3AAAYhWCHbjOZTFr8rRH6xbdGSJL+9ukxLXp5pxqbnQZXBgBAcDI02H388ce69tprlZGRIZPJpNdff93j/Rs2bJDJZDrnKC4u9k7BaNddlwzUk98do9AQk17feUo/em6rau3NRpcFAEDQMTTY1dbWasyYMfrLX/7SpdcdOHBARUVF7iMlJaWXKkRnXT8+U/87b6Iiw8z6+OBpff9vn6uittHosgAACCqhRn741VdfrauvvrrLr0tJSVF8fHzPF4Rv5LJhKXrhrim6Y2WedhVU6cblG/XcHZOVmRBldGkAAAQFv+yxGzt2rNLT03XFFVfos88+83iv3W6XzWZrc6D3jO+foFfvyVVGXISOnq7VDcs26kBxtdFlAQAQFPwq2KWnp2v58uV67bXX9NprrykrK0szZszQ9u3bO3zNkiVLFBcX5z6ysrK8WHFwGpwSo9d+Mk1DUvqoxGbXTcs3Ku84+8oCANDbTC4fWXzMZDJp9erVmjNnTpded+mll6p///765z//2e51u90uu93u/t5msykrK0tWq1WxsbHfpGScR1Vdo+78x1Zty6+UJTRES78/XleMTDW6LAAA/IrNZlNcXFynsotfjdi1Z/LkyTp8+HCH1y0Wi2JjY9sc8I74qHA9f+cUzRyeInuzUz/+51a9nFdgdFkAAAQsvw92O3fuVHp6utFloAOR4WY9/cMJumlCppwu6f++9oX+8uFhdqkAAKAXGDortqamps1o27Fjx7Rz504lJiaqf//+Wrx4sQoLC/Xcc89Jkp566inl5OToggsuUENDg/72t79p/fr1+uCDD4z6EdAJoeYQ/f7G0UqOsWjZhiN6/P0DKqux68FrRiokxGR0eQAABAxDg93WrVt12WWXub9ftGiRJGnevHlauXKlioqKdOLECff1xsZG/cd//IcKCwsVFRWl0aNHa+3atW3eA77JZDLpv64aruQ+Fv36rS/17GfHVV7TqP930xiFh/r9wDEAAD7BZyZPeEtXGhDRO97YWaj/eHmXmp0uXTwkWct+MEF9LIb+fwwAAHxWUE2egP+5bmw//f22SYoKN+uTQ2X6/v9uVnmN/fwvBAAAHhHsYIhLh/bVqrumKiEqTF+ctOrG5ZtUUFFndFkAAPg1gh0MMzYrXq/eO0394iN1rKxll4p9RewMAgBAdxHsYKhBffvotXunaVhqjEqr7fru05v0+dFyo8sCAMAvEexguLS4CL3841xNyk5QdUOzfvjMFr2/t9josgAA8DsEO/iEuKgw/fPOKZo1IlWNzU7d+/w2/WvLifO/EAAAuBHs4DMiwsxa/oPx+t7ELDld0uJ/79af1x1ilwoAADqJYAefEmoO0WM3XKgFlw2WJD2x5qAefnOvnE7CHQAA50Owg88xmUz6+exhevjakTKZpH9sytd9L+6QvdlhdGkAAPg0gh181m3Tc/THm8cpzGzS218U6Y6VeaqxNxtdFgAAPotgB5/27TEZeva2yYoON+uzw+W6ecUmlbFLBQAA7SLYweddNCRZ/7p7qpKiw7Wn0KYbl23UiXJ2qQAA4OsIdvALozNbdqnITIjU8fI63bB8o/aeshpdFgAAPoVgB7+Rkxyt1+6dpuFpMTpdbdfNT2/WpiPsUgEAQCuCHfxKamyEXvpxribnJKra3qx5z2zRu7uLjC4LAACfQLCD34mLDNNzd0zW7AtS1ehw6iertuv5zflGlwUAgOEIdvBLEWFm/fXWCbplcn+5XNL/vL5HT609yC4VAICgRrCD3zKHmPTb74zSTy9v2aXiqbWH9OAbe+RglwoAQJAi2MGvmUwmLbpymB657gKZTNLzm0/ovn9tZ5cKAEBQItghIMzNzdbSW8Yr3Byid3YX67Zn8lTd0GR0WQAAeBXBDgHjmtHpWnn7JPWxhGrT0XJ97+nNKq1uMLosAAC8hmCHgDJtcLJevHuqkvuE68sim25ctkn55bVGlwUAgFcQ7BBwRvWL06v3TFP/xCidqKjTDcs2ak8hu1QAAAIfwQ4BKTs5Wq/em6uR6bEqq2nUzSs2a+PhMqPLAgCgVxHsELBSYiL04o+naurARNXYm3Xbs3l6+wt2qQAABC6CHQJabESYVt4+WVePSlOjw6kF/9quf246bnRZAAD0CoIdAl5EmFlLvz9et05p2aXiwTf26skPDrBLBQAg4BDsEBTMISb9Zs4oLZw1RJL0p/WH9d+r2aUCABBYCHYIGiaTSQtnDdVv5oySyST9a8sJ/eSFbWpoYpcKAEBgINgh6Pxg6gD99fstu1S8v7dE857ZIhu7VAAAAgDBDkHp6gvT9Y87JivGEqrPj1W07FJhY5cKAIB/I9ghaOUOStKLP56q5D4W7Suy6YblG3WsjF0qAAD+i2CHoHZBRpz+fe80DUiKUkFFvW5ctlG7T7JLBQDAPxHsEPT6J0Xp1XumaVS/WJXXNurmFZv06SF2qQAA+B+CHSCpb4xF/7prqqYPTlJto0O3r9yi/2/XKaPLAgCgSwh2wBkxEWF65rZJumZ0upocLv30xR16+M29TKoAAPgNgh1wFkuoWX+6eZzm5Q6QyyWt3Hhclzz+oR59+0uV19iNLg8AAI9MriDbV8lmsykuLk5Wq1WxsbFGlwMf9umhMj255oC2n6iSJEWFmzVvWrbuvnigEqLDjS0OABA0upJdCHaABy6XSxsOntYf1hzUF2dmy/axhOqO6dm68+KBiosMM7hCAECgI9h5QLBDd7hcLq3dV6on1xzUviKbJCkmIlR3XTxQt0/PVkwEAQ8A0DsIdh4Q7PBNOJ0uffBlsf6w5pAOlFRLkuKjwnT3JQM1Lzdb0ZZQgysEAAQagp0HBDv0BKfTpbd3F+mptQd15HTLbhVJ0eG659JB+sHUAYoMNxtcIQAgUBDsPCDYoSc5nC69uatQf1x7SMfL6yS1rIn3kxmDdMvk/ooII+ABAL4Zgp0HBDv0hmaHU//eUag/rTukk5X1kqS02AjNv3ywvjsxU5ZQAh4AoHsIdh4Q7NCbGpudenXbSS1df0inrC0LG/eLj9R9lw/WDRMyFWZm6UgAQNcQ7Dwg2MEb7M0OvZRXoKXrD6u0umVh4/6JUfrpzCGaMzZDoQQ8AEAnEew8INjBmxqaHHrh8xNatuGwymoaJUk5ydG6f+YQXTsmQ+YQk8EVAgB8HcHOA4IdjFDX2Kx/bsrX8o+OqLKuSZI0JKWPFs4aqqtHpSmEgAcA6ADBzgOCHYxUY2/WPzYe14qPj8pa3xLwhqfF6GdXDNWVI1NlMhHwAABtEew8INjBF9gamvTMp8f090+OqdreLEka1S9Wi64YqsuGpRDwAABuBDsPCHbwJVV1jfrbJ8f07GfHVNvokCSNzYrXoiuG6uIhyQQ8AADBzhOCHXxRRW2jnv74iJ7bmK/6ppaAN3FAghZdMVTTBicbXB0AwEgEOw8IdvBlp6vtWv7RET2/OV/2ZqckaerARP3HlcM0KTvR4OoAAEYg2HlAsIM/KLE16K8fHta/thSo0dES8C4ekqyfXTFU4/snGFwdAMCbCHYeEOzgTwqr6vWXDw/r5bwCNTtb/lW9bFhf/eyKoRqdGW9scQAAryDYeUCwgz8qqKjTn9cf0mvbC+U4E/CuGJmqn80aqpEZ/HMMAIGMYOcBwQ7+7HhZrf607pBe31moM/lO37owTQtnDdXQ1BhjiwMA9AqCnQcEOwSCw6U1+uO6Q3rri1NyuSSTSbp2dIbunzVEg/r2Mbo8AEAPIth5QLBDIDlQXK2n1h7Uu3uKJUkhJmnOuH766eVDlJ0cbXB1AICeQLDzgGCHQLT3lFV/WHNIa/eVSJLMISbdOD5TCy4frKzEKIOrAwB8EwQ7Dwh2CGRfnKzSk2sOasOB05KkMLNJ352YpfmXDVZGfKTB1QEAuoNg5wHBDsFgW36lnlp7UJ8cKpMkhZtD9P0p/fWTGYOUEhthcHUAgK4g2HlAsEMw+fxouZ5cc1CfH6uQJFlCQ/TDqQN0z4xBSu5jMbg6AEBnEOw8INgh2LhcLm06Uq4n1hzUtvxKSVJkmFnzpmXrrotzlETAAwCfRrDzgGCHYOVyufTxoTI9+cEB7TppldQyyWLigATNHJGimSNSWSoFAHxQV7JLiJdqatfHH3+sa6+9VhkZGTKZTHr99dfP+5oNGzZo/PjxslgsGjx4sFauXNnrdQKBwGQy6dKhffX6/On6+7yJGpMZJ4fTpc+PVei37+zXzCc+0mX/b4N+/daX2nikTE1n9qgFAPiPUCM/vLa2VmPGjNEdd9yh66+//rz3Hzt2TNdcc43uuecevfDCC1q3bp1+9KMfKT09XbNnz/ZCxYD/M5lMmjkiVTNHpKqgok7r9pVo3f5SbT5armNltfr7p8f090+PKSYiVJcO7auZI1I0Y2iKEqLDjS4dAHAePvMo1mQyafXq1ZozZ06H9/zXf/2X3n77be3Zs8d97uabb1ZVVZXee++9Tn0Oj2KB9tXYm/XJwdNat79UH+4vVXlto/taiEmaMCBBM0ekataIFA3q20cmk8nAagEgeHQluxg6YtdVmzZt0qxZs9qcmz17thYuXGhMQUAA6WMJ1dUXpuvqC9PlcLq0s6BK6/eXaN2+Uu0vrlbe8UrlHa/UY+/uV//EKM0ckaJZI1I1KTtR4aGGdnUAAM7wq2BXXFys1NTUNudSU1Nls9lUX1+vyMhzF2C12+2y2+3u7202W6/XCfg7c4hJEwYkaMKABP3n7OE6WVmn9ftLtW5fqTYdKdeJijo9+9lxPfvZccVYQnXJ0L66fHiKLhueokQe2QKAYfwq2HXHkiVL9Ktf/croMgC/lpkQpbm52Zqbm61ae7M+OVSm9ftLtH7/aZXV2PX27iK9vbtIJpM0vv+ZWbbDUzU0lUe2AOBNfhXs0tLSVFJS0uZcSUmJYmNj2x2tk6TFixdr0aJF7u9tNpuysrJ6tU4gkEVbQnXVqDRdNSpNTqdLXxRaWyZg7CvVl0U2bcuv1Lb8Sv3+vQPKTIjUrBGpunx4iqYMTJQl1Gx0+QAQ0Pwq2OXm5uqdd95pc27NmjXKzc3t8DUWi0UWCwuwAr0hJMSksVnxGpsVr/+4cphOVdWfeWRbos+OlOtkZb1WbjyulRuPKzrcrIuHtMyyvWx4CjtfAEAvMHRWbE1NjQ4fPixJGjdunJ588klddtllSkxMVP/+/bV48WIVFhbqueeek9Sy3MmoUaM0f/583XHHHVq/fr1++tOf6u233+70cifMigW8o66xWZ8dLncvp3K6+qteV5NJGpsV7x7NG54WwyNbAOiA3+w8sWHDBl122WXnnJ83b55Wrlyp2267TcePH9eGDRvavOZnP/uZvvzyS2VmZurBBx/Ubbfd1unPJNgB3ud0urTnlFVr95Vq/f4S7SlsO4mpX3ykLh+eopkjUjR1YJIiwnhkCwCt/CbYGYFgBxiv2NrgfmT76eEy2Zu/2uUiKtysiwYna9aIVM0Y3lcpMREGVgoAxiPYeUCwA3xLfaNDG4+UuUfzSmz2NtfHZMVr5pnRvJHpsTyyBRB0CHYeEOwA3+VyubT3lE3r9pVq3f4SfXHS2uZ6elyELh/esjBy7iAe2QIIDgQ7Dwh2gP8otbU8sl27r1SfHj6thqavHtlGhpk1fXDymTXzUpQSyyNbAIGJYOcBwQ7wTw1NDm06Uq61+0q0fn+piqwNba6Pzoxzj+ZdkMEjWwCBg2DnAcEO8H8ul0tfFtm0fl+p1u4v1a6CqjbXU2Mtunx4qmYOT1HuoCRFW/xqyU4AaINg5wHBDgg8pdUN2rD/tNbtL9Enh8pU1+hwXwszmzS+f4IuHpKsi4f01ah+cTKHMJoHwH8Q7Dwg2AGBraHJoc1Hy7V+f6nW7y/Vycr6NtfjIsM0fXCSLh7SVxcNTlZWYpRBlQJA5xDsPCDYAcHD5XIpv7xOnxwu06eHTmvj4XJV25vb3JOTHK2LBifr4iHJyh2UpJiIMIOqBYD2Eew8INgBwavZ4dSuk1Z9cui0Pj1Uph0FVXI4v/pPoPnM3rctj22TNSYzXqHmEAMrBgCCnUcEOwCtbA1N2nykXJ8eLtMnh8p0rKy2zfUYS6hyByXp4qF9dfHgZA1IimK2LQCvI9h5QLAD0JGCijp9erhMnx4q06eHy2Stb2pzPTMhUhcP6auLhyRr2qAkxUeFG1QpgGBCsPOAYAegMxxOl/YUWvXp4TJ9fPC0tp+oVJPjq/9chpikCzPjdcmQZF00OFnj+icoPJTHtgB6HsHOA4IdgO6otTfr82Pl+uRQy4jeodKaNtejws3KHZiki84sqzKobzSPbQH0CIKdBwQ7AD2hyFqvTw+19OZ9drhM5bWNba6nx0W0zLYd2lfTByUpqY/FoEoB+DuCnQcEOwA9zels2QmjtT9vy/EKNTY729wzql+sLhrcV5cMSdaE7ARZQs0GVQvA3xDsPCDYAeht9Y0O5R2v0CeHTuuTQ2XaX1zd5npEWIgm5yS19OcNSdaw1Bge2wLoEMHOA4IdAG8rrW7QZ2eWVPnkUJlOV9vbXE+JsZx5bJus6YOTlRITYVClAHwRwc4Dgh0AI7lcLh0sqXGP5n1+rFwNTW0f2w5Pi9HFQ5J10ZC+mpydqMhwHtsCwYxg5wHBDoAvaWhyaHt+pT45XKZPDp3WnkJbm+vhoSGalJ3g3tt2ZHqsQkJ4bAsEE4KdBwQ7AL6svMauz46U69MzI3pF1oY215OiwzV9cPKZZVWSlR4XaVClALyFYOcBwQ6Av3C5XDpyutYd8jYfLVdto6PNPQOTozUxO0GTshM1OSdR/RPZ9gwINAQ7Dwh2APxVY7NTO05Uuve2/eJklZxf+y94SoxFk3ISNTk7UROzEzQ8LVZmHt0Cfo1g5wHBDkCgsNY1aWt+hfKOVyrveIW+OFnVZtszSYqJCNWEAS0jepOyEzU6M04RYUzGAPwJwc4Dgh2AQNXQ5NDOgirlHatQXn6ltudXqsbe3OaecHOIxmTFuYPehOwExUaEGVQxgM4g2HlAsAMQLJodTu0vrtaWYxXKO95ylNW03frMZJKGp8VqcnaCJuW0hL3UWNbRA3wJwc4Dgh2AYOVyuXS8vE55xyq05UzQyy+vO+e+/olRZyZjtDzCzUmOZkIGYCCCnQcEOwD4Sqmtwd2jt+VYhfYV2/T1vxWS+4Rr4oBE96SMEekxCjWHGFMwEIQIdh4Q7ACgY7aGJm3Lr9TW4xXKO1apnSer1NjcdmeM6HCzxp81IWNc/3gmZAC9iGDnAcEOADqvocmh3YVWbTlWoa3HK7Q1v1LVDW0nZISZTRrVL06TzwS9idkJio8KN6hiIPAQ7Dwg2AFA9zmcLh0orm55dHu8QnnHKlRabT/nvqGpfdyLJk/KTlRGPDtkAN1FsPOAYAcAPcflcqmgot4d8vLyK3T0dO059/WLj9SkMzNvJ2cnanBKHyZkAJ1EsPOAYAcAvausxq6txyu05VjLpIy9p6zn7JCREBWmidmJLWEvO1Gj+sUpjAkZQLsIdh4Q7ADAu2rszdpxotK9zMqOE1Wyf21CRmSYWeP6x7eZkBFtCTWoYsC3EOw8INgBgLEam53ac8ra8uj2eMuWaNb6pjb3mENMGpURq/EDEjQ4pY9ykqKV0zdaabERPMJF0CHYeUCwAwDf4nS6dKi0xr07Rt6xCp2yNrR7b2SYWdnJ0RqYHK3s5CjlJPdRzpnvE6KZiYvARLDzgGAHAL7vZGWd8o5X6IuTVh0vq9Xx8jqdqKiT4+vNemeJjwpTTnJ0y+hecssIX05yyxEVzmNd+C+CnQcEOwDwT00Opwoq6nSsrFbHymp1tKxWx898XdTBCF+rtNgI9wjfwOSvgl9WQpTCQ5m0Ad/WlezC/4UBAPiFMHOIBvbto4F9+5xzra6xWcfLWkLf8fJaHT1dq2NlNTpWVqvKuiYV2xpUbGvQ5qMVbV5nDjEpMyHSPbLXEvr6KDs5ShlxkQoJoZ8P/oUROwBAQKuqa3SP8rWO9B073fJ1fZOjw9dZQkOU3c5j3ZzkaCVFhzOJA17Do1gPCHYAAKllceXSavuZ0b2vRviOldXqREWdmhwd//UYExHqfqSb7R7taxnpi4kI8+JPgWBAsPOAYAcAOJ9mh1OFVfXu0b3j5WdG+07X6pS1Xp7+5uwbYzlnAsfA5Gj1T4qSJdTsvR8CAYNg5wHBDgDwTTQ0OZRfXnfW492vRvrKaho7fJ3J1LK12le9fC2jfVmJLf18keGEPrSPYOcBwQ4A0FtsDU3umbqtj3hbJ3PU2Js9vjY+KkzpcZHKiItQenxEy9etf8ZFKjXOwohfkGJWLAAABoiNCNPozHiNzoxvc97lcqmspvGsEb4690jfqaoG1dibVVXXpKq6Ju0rsnX4/sl9LGfC3teC35k/U2IsCmXP3aDGiB0AAAazNTSpqKpBp6z1OlVV7/66qKpBRdZ6FVkbztlftz3mEJNSYiwtwS/+zOjfWcEvPT5CydEWlnHxM4zYAQDgR2IjwhSbFqZhaTHtXne5XKqobVSRtaEl+FnbBr9TVQ0qsTWo2elSkbWhZcHmE1Xtvle4OUSpcRb3Y9+M+MhzQmBcZBjLufgpgh0AAD7OZDIpqY9FSX0sGtUvrt17HE6XymrsXwW/M3+2Br8ia71Kq+1qdDhVUFGvgor6Dj8vMsys9PgIZcRFth39O+vPPhYihC/itwIAQAAwh5iUGhuh1NgIjevgniaHUyW2hrbBr6pep876vqK2UfVNDh093TLpoyMxEaEtwc89waNt8EuPi1BEGJM9vI1gBwBAkAgzhygzIUqZCVEd3tPQ5GgT+Nx/Wr/q/atuaFZ1Q7MONFTrQEl1h++VGB2ujPgIZcZHKTMh8swRpX5nvmYx555HsAMAAG4RYWb31mkdqbE3nxv8vtb7V9/kUEVtoypqG7WnsP2ZvnGRYW0Cnzv4xUcqMzFSsQS/LiPYAQCALuljCdWQ1BgNSe14soe1vkmnqhpUWFWvwso6naysbzmqWr6uqmuStb7l2Huq/eAXGxHaNvC5Q2DL93GRBL+vI9gBAIAeZTKZFB8VrviocI3MaH95jhp7swor63XSHfq+Cn+FVfWqqG2UraFZXxbZ9GUHa/vFnBX8+sW3HfnLSohSbGRo0M3uZR07AADgc2rtzSqsahv4TlbWnQmD9Sqv7Xj7tlYxltCzRvmiznns6y/LurCOHQAA8GvRllANTY3R0A4e99Y1NrtDnjv8VZ0Z8ausU1lNo6rtzdpfXK39xe1P8OhjCT1rpK9tn19mQqTio/wj+J2NYAcAAPxOVLjnPr/6RocKq+pU0M5o38nKepXV2FVjb9aBko5n9kaFmzsc7ctMiFKCDwY/gh0AAAg4keFmDU6J0eAUT8Hvq9G+wqq2o3+nq+2qa3ToYEmNDpbUtP8ZYS3B74qRqfq/Vw3vzR+n0wh2AAAg6LQEvz4anNKn3esNTQ532GtvkkdptV31TQ4dKq3R2Kx47xbvAcEOAADgayLCzBrUt48G9e04+J2qahnpS4gK93J1HSPYAQAAdFFEmFkD+/bRwA6Cn1FCjC4AAAAAPYNgBwAAECAIdgAAAAGCYAcAABAgCHYAAAABgmAHAAAQIAh2AAAAAcIngt1f/vIXZWdnKyIiQlOmTNGWLVs6vHflypUymUxtjoiICC9WCwAA4JsMD3YvvfSSFi1apIceekjbt2/XmDFjNHv2bJWWlnb4mtjYWBUVFbmP/Px8L1YMAADgmwwPdk8++aTuuusu3X777Ro5cqSWL1+uqKgoPfPMMx2+xmQyKS0tzX2kpqZ6sWIAAADfZGiwa2xs1LZt2zRr1iz3uZCQEM2aNUubNm3q8HU1NTUaMGCAsrKydN1112nv3r0d3mu322Wz2docAAAAgcjQYFdWViaHw3HOiFtqaqqKi4vbfc2wYcP0zDPP6I033tDzzz8vp9OpadOm6eTJk+3ev2TJEsXFxbmPrKysHv85AAAAfIHhj2K7Kjc3V3PnztXYsWN16aWX6t///rf69u2rp59+ut37Fy9eLKvV6j4KCgq8XDEAAIB3hBr54cnJyTKbzSopKWlzvqSkRGlpaZ16j7CwMI0bN06HDx9u97rFYpHFYvnGtQIAAPg6Q0fswsPDNWHCBK1bt859zul0at26dcrNze3UezgcDu3evVvp6em9VSYAAIBfMHTETpIWLVqkefPmaeLEiZo8ebKeeuop1dbW6vbbb5ckzZ07V/369dOSJUskSY888oimTp2qwYMHq6qqSo8//rjy8/P1ox/9qFOf53K5JIlJFAAAwC+0ZpbWDOOJ4cHue9/7nk6fPq1f/vKXKi4u1tixY/Xee++5J1ScOHFCISFfDSxWVlbqrrvuUnFxsRISEjRhwgRt3LhRI0eO7NTnVVdXSxKTKAAAgF+prq5WXFycx3tMrs7EvwDidDp16tQpxcTEyGQy9drn2Gw2ZWVlqaCgQLGxsb32Oeg9/A79G78//8fv0P/xO+wZLpdL1dXVysjIaDPY1R7DR+y8LSQkRJmZmV77vNjYWP5h9nP8Dv0bvz//x+/Q//E7/ObON1LXyu+WOwEAAED7CHYAAAABgmDXSywWix566CHW0PNj/A79G78//8fv0P/xO/S+oJs8AQAAEKgYsQMAAAgQBDsAAIAAQbADAAAIEAS7XvCXv/xF2dnZioiI0JQpU7RlyxajS0InLVmyRJMmTVJMTIxSUlI0Z84cHThwwOiy8A089thjMplMWrhwodGloAsKCwv1gx/8QElJSYqMjNSFF16orVu3Gl0WOsnhcOjBBx9UTk6OIiMjNWjQIP3617/u1JZY+GYIdj3spZde0qJFi/TQQw9p+/btGjNmjGbPnq3S0lKjS0MnfPTRR5o/f742b96sNWvWqKmpSVdeeaVqa2uNLg3dkJeXp6efflqjR482uhR0QWVlpaZPn66wsDC9++67+vLLL/XEE08oISHB6NLQSb/73e+0bNkyLV26VPv27dPvfvc7/f73v9ef//xno0sLeMyK7WFTpkzRpEmTtHTpUkktW5hlZWXpvvvu0wMPPGBwdeiq06dPKyUlRR999JEuueQSo8tBF9TU1Gj8+PH661//qt/85jcaO3asnnrqKaPLQic88MAD+uyzz/TJJ58YXQq66f/8n/+j1NRU/f3vf3efu+GGGxQZGannn3/ewMoCHyN2PaixsVHbtm3TrFmz3OdCQkI0a9Ysbdq0ycDK0F1Wq1WSlJiYaHAl6Kr58+frmmuuafPvI/zDm2++qYkTJ+qmm25SSkqKxo0bp//93/81uix0wbRp07Ru3TodPHhQkrRr1y59+umnuvrqqw2uLPAF3V6xvamsrEwOh0Opqaltzqempmr//v0GVYXucjqdWrhwoaZPn65Ro0YZXQ664MUXX9T27duVl5dndCnohqNHj2rZsmVatGiR/vu//1t5eXn66U9/qvDwcM2bN8/o8tAJDzzwgGw2m4YPHy6z2SyHw6FHH31Ut956q9GlBTyCHdCB+fPna8+ePfr000+NLgVdUFBQoPvvv19r1qxRRESE0eWgG5xOpyZOnKjf/va3kqRx48Zpz549Wr58OcHOT7z88st64YUXtGrVKl1wwQXauXOnFi5cqIyMDH6HvYxg14OSk5NlNptVUlLS5nxJSYnS0tIMqgrdsWDBAr311lv6+OOPlZmZaXQ56IJt27aptLRU48ePd59zOBz6+OOPtXTpUtntdpnNZgMrxPmkp6dr5MiRbc6NGDFCr732mkEVoav+8z//Uw888IBuvvlmSdKFF16o/Px8LVmyhGDXy+ix60Hh4eGaMGGC1q1b5z7ndDq1bt065ebmGlgZOsvlcmnBggVavXq11q9fr5ycHKNLQhfNnDlTu3fv1s6dO93HxIkTdeutt2rnzp2EOj8wffr0c5YZOnjwoAYMGGBQReiquro6hYS0jRhms1lOp9OgioIHI3Y9bNGiRZo3b54mTpyoyZMn66mnnlJtba1uv/12o0tDJ8yfP1+rVq3SG2+8oZiYGBUXF0uS4uLiFBkZaXB16IyYmJhzeiKjo6OVlJREr6Sf+NnPfqZp06bpt7/9rb773e9qy5YtWrFihVasWGF0aeika6+9Vo8++qj69++vCy64QDt27NCTTz6pO+64w+jSAh7LnfSCpUuX6vHHH1dxcbHGjh2rP/3pT5oyZYrRZaETTCZTu+efffZZ3Xbbbd4tBj1mxowZLHfiZ9566y0tXrxYhw4dUk5OjhYtWqS77rrL6LLQSdXV1XrwwQe1evVqlZaWKiMjQ7fccot++ctfKjw83OjyAhrBDgAAIEDQYwcAABAgCHYAAAABgmAHAAAQIAh2AAAAAYJgBwAAECAIdgAAAAGCYAcAABAgCHYAAAABgmAHAAYzmUx6/fXXjS4DQAAg2AEIarfddptMJtM5x1VXXWV0aQDQZaFGFwAARrvqqqv07LPPtjlnsVgMqgYAuo8ROwBBz2KxKC0trc2RkJAgqeUx6bJly3T11VcrMjJSAwcO1Kuvvtrm9bt379bll1+uyMhIJSUl6e6771ZNTU2be5555hldcMEFslgsSk9P14IFC9pcLysr03e+8x1FRUVpyJAhevPNN3v3hwYQkAh2AHAeDz74oG644Qbt2rVLt956q26++Wbt27dPklRbW6vZs2crISFBeXl5euWVV7R27do2wW3ZsmWaP3++7r77bu3evVtvvvmmBg8e3OYzfvWrX+m73/2uvvjiC33rW9/SrbfeqoqKCq/+nAACgAsAgti8efNcZrPZFR0d3eZ49NFHXS6XyyXJdc8997R5zZQpU1z33nuvy+VyuVasWOFKSEhw1dTUuK+//fbbrpCQEFdxcbHL5XK5MjIyXL/4xS86rEGS63/+53/c39fU1Lgkud59990e+zkBBAd67AAEvcsuu0zLli1rcy4xMdH9dW5ubptrubm52rlzpyRp3759GjNmjKKjo93Xp0+fLqfTqQMHDshkMunUqVOaOXOmxxpGjx7t/jo6OlqxsbEqLS3t7o8EIEgR7AAEvejo6HMejfaUyMjITt0XFhbW5nuTySSn09kbJQEIYPTYAcB5bN68+ZzvR4wYIUkaMWKEdu3apdraWvf1zz77TCEhIRo2bJhiYmKUnZ2tdevWebVmAMGJETsAQc9ut6u4uLjNudDQUCUnJ0uSXnnlFU2cOFEXXXSRXnjhBW3ZskV///vfJUm33nqrHnroIc2bN08PP/ywTp8+rfvuu08//OEPlZqaKkl6+OGHdc899yglJUVXX321qqur9dlnn+m+++7z7g8KIOAR7AAEvffee0/p6eltzg0bNkz79++X1DJj9cUXX9RPfvITpaen61//+pdGjhwpSYqKitL777+v+++/X5MmTVJUVJRuuOEGPfnkk+73mjdvnhoaGvSHP/xBP//5z5WcnKwbb7zRez8ggKBhcrlcLqOLAABfZTKZtHr1as2ZM8foUgDgvOixAwAACBAEOwAAgABBjx0AeEC3CgB/wogdAABAgCDYAQAABAiCHQAAQIAg2AEAAAQIgh0AAECAINgBAAAECIIdAABAgCDYAQAABAiCHQAAQID4/wGdlFg4SQyl7wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "416c6383", + "metadata": { + "id": "416c6383", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 320 + }, + "outputId": "0a756baa-c60d-46b9-eed7-51c2f29f2fbe" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAGFCAYAAAD3rgD8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZxcVZk+/txbe+/73tnDDgGCZAD9jowZArghM+MCCIKio/JVyYjCDJuoREQwiowZVBbnKwPOjDL+JooDkU0JKAkBgpA96SS9793Vtd57f39kut7nnFSn0p2qSgLn+Xz68zlddc495557bt37nvd5n9fyPM+DgYGBgYGBgYGBgYGBgYHBjGEf7gEYGBgYGBgYGBgYGBgYGBztMMa1gYGBgYGBgYGBgYGBgcEhwhjXBgYGBgYGBgYGBgYGBgaHCGNcGxgYGBgYGBgYGBgYGBgcIoxxbWBgYGBgYGBgYGBgYGBwiDDGtYGBgYGBgYGBgYGBgYHBIcIY1wYGBgYGBgYGBgYGBgYGhwhjXBsYGBgYGBgYGBgYGBgYHCKMcW1gYGBgYGBgYGBgYGBgcIgwxrWBgYGBgYGBgYGBgYGBwSHCf7gHcCTAdV10dnaivLwclmUd7uEYGBgYFA2e52FsbAwtLS2w7fzst8bjcSSTyRm3DwaDCIfD02pz77334s4770R3dzcWLVqEe+65B2eeeeaU9YeHh/FP//RP+MUvfoHBwUHMnj0bK1euxIUXXjjjcRvkH+b5bGBg8HbFkfh8Bqb3jH722Wdx5513Yt26dejq6sIvf/lLXHTRRQds8/TTT2P58uV4/fXX0d7ejhtvvBGf+MQnDmnMxYQxrgF0dnaivb39cA/DwMDA4LBh9+7daGtrO+TjxONxzJ1dhu5eZ8bHaGpqwo4dOw764f3oo49i+fLlWLVqFZYsWYKVK1di2bJl2LRpExoaGvarn0wm8dd//ddoaGjAf/zHf6C1tRW7du1CVVXVjMdsUBiY57OBgcHbHUfS8xmY3jM6Go1i0aJFuOqqq3DxxRfnrL9jxw68973vxd///d/jZz/7GdasWYNPfepTaG5uxrJlyw5p3MWC5Xmed7gHcbgxMjKCqqoqzLvvWvhKQkjtKM98Z+nrj2bLPy676Ik6V9rUJzJlZzygNA8M+TLlVF06Uw7vkXqXXbxGafPjl94l/6Ro50q6hEWfe2Vy3P3a2HICvhKpx+O0kqp3IDAq7d0g9UlzkaqWY/3t6S8p7X/x3BLpMy7HrlvUmyl39VRJf93UCQDwcKjP8HEjmfInF/xBafKv3xPv09BJ0ugj/+f5TPk///udmbJTot4GPtrUS5XJRAcH5fp5PmmTbE4p7f0DMp82Hct/wlimnNhVJv3F1Dl3InJsOyHfuUG6flF1FzNyylCmHHu1OlNOl8v43/9OuTaPr1a9eu6x45lyajSUKVtJXnMyluCw2r8XkLHxGnJD8nma5pLrA4Adk+PxsZ0wHddVmsBKST/pMqk3/5HhTHnrxytpkGp7m9r7onQ/z5KLZkXlmvO9AADJWvqB8NM66ZQ1fOZ7Xs+Ut43UKe2HJyJyLFoPHnXj19ZGsknWmm9Q1plTLveglZAD+OLadaJ161Sn4cbi6PyHb2F4eBiVlZU4VIyOjqKyshI71s1GRfn0d9pHx1zMXbwLIyMjqKioOKg2S5YswTve8Q784Ac/ALDP29ne3o7/+3//L66//vr96q9atQp33nkn3nzzTQQCgf2+NzhyMPl8Pv6B/wtfSSh3g0NEPFkcn0MxnfCxgUjuSnlCpKN495N36mhxOtp4cL9D+YBXxHXhOzTn5bQQOWugKP0MDpTlrpQnlFTEC96HM5HA1k+tPGKez8DMntGTsCwrp+f6q1/9KlavXo2NGzdmPvvoRz+K4eFhPP744zMac7FhPNdAhmpmhcP7/krlAe5qBgAbeol2eZkOdcruTfMcMXI6NjYrzb2FYniXbhYjPl0t/awefIfSJjwk9Ty6Yv6FYqg5b5RKuSamtHfJuA7toF2mQarE51Wr7iikq+Q8q5vlYRb/U630WSq/0q3Vco4AEImVyLHIiC2vknENvSk3aLJF7d8/KsaNRfsGNbXDmXJDpbqhEHbIOCSjKxWWH163QQwgWzPabFsmxM+2ZYMcyz8uX5T0qS8vqWPpGuyVOZ/V3Jcpd24Qj9r4sapxbk2QQUfGbZw2ZNKt2s5PRPpxmuTcgqNyLp1Wk9SvVl9UHXrbKxmW7+JkaCJNC8VVfz5cMoLdajmf4F45llMhYw73yjkCQKJF2iQbkRWhveqLW7JJLly4W47ntNKaicg4A6OaoVpHc1hGxv1Y9pd4n7bvE56Q8rJlsnHx29+ckSmP+Gsy5bYG9d7o3UEnWi4HDw/IWFKV6uL0p+j3qU3mLNJBvycLZP0FtqhrM02/aYEhwI3vm9N8U24ryu0ZP7yBfS8BjFAohFBo/+uSTCaxbt063HDDDZnPbNvG0qVLsXbt2qzH/tWvfoWzzjoLn//85/Ff//VfqK+vxyWXXIKvfvWr8Pl8WdsYHB5MrktfSagoxrXPXxzj0LKK59ewJ6YXYnEo8IWKaFyXFMk6DBVv/rwiKiH5imnIF+HeBYq81kuKdw8fac9n4OCf0dPF2rVrsXTpUuWzZcuW4Utf+tIhH7tYMMY1IRENwnaDiAyyp1et45AXLkkvqYk2+ZEfjIox6YbUF2NrWF6g+Vgevc+VBtUHRk+9GACWQzfYVnmZTjWR12pQXdx2tRwvTuP0DclD0C0hj2JINdrsMVkmIyN0bnPIuxeXE3htvFVpzw8L3qyoDollso0MYPauAyp7IFWdncoSsFTjOh2WebLIbt043JIp+8lTqRswTpn04x+W82eDmr2o6Yj2I9tN14DqDdJGg4/srMhO9YUkNkcGbfVLn/YEsQi0Ll2XvZVybuyVP7miM1NeXzJfae8jb3uihs6/n7zwNJfpUnUAQbpvUo5mhU4ea0TWSaJevZahTuknWSnHDtFx0zrDIJr94RCrlWtm09Jwtd/9SJfUS1TLhWJvcaqM73ONoUBz88SO4zJlZh4kHOljKK4aunW1skHWNy5sA4fWr/6yxV79eAV525t4zciJJrW17RH7watKwp0ozO6747lwZvDu4Xj7xqtTgW+55Rbceuut+9Xv7++H4zhobFR3ZBobG/Hmm29m7WP79u343e9+h0svvRS//vWvsXXrVnzuc59DKpXCLbfcMv1BGxQciZQfvlThX1kioeIYbBPx4hgbAOArT+WulCfMXbanaH1t6pxiFzbPcBYW3kM5CS9ZPOvaihVvIzG+qSZ3pXwgWDyDNxbM/p6TT7gxN3elGWCmz+fJtsDBP6Oni+7u7qzP89HRUcRiMUQixWPizBTGuDYwMDAwyDtceHB1Hv5BtgP2xZgx5SwfO+KZPlwXDQ0NuO++++Dz+bB48WLs3bsXd955pzGuDQwMDAze0pjp83myLVDYZ/TRDmNcE9qbB+EvDaF3u3g3Od4TAFza6IvslenjOJnyVuFbJ3vFGwUAvlMkTjg9KPETHlHEXC3oJtwp/cRbiBZcSjtaFO9phVUvrj8g/7vkOef4XabUJqumpp84CaLbEnXZR/GyH6pdp7R5ASdLPYof3jkiO5keefiDPeqytMlb75Ln1qF5Whzaqw6ULxttBJ9SLfV6u2ZlyqOl6jn7ozIGjhN2KJzHC8jngUGNIs3ewYjUqwjLDvgAdRlr0+Lk6dImamluyGuphcajPCLHjlZKmADH+Q+lxXPu17y+Tru0D79JscDkRebYcp92znyvOHXi/XFHxbvrVZB3Naq2534CY3Jy8UaaG21Tn5kc6RqZp6YXiInho7jkCnWebfKEef4pYrvp3rRHp/7J/PAx6zPlnw6enSkPx2Qua0uiSpstnRIawOfCnm+3XB1zvErKQfL2sx4Crz9dNyLUKeshXm7BdQvDDXThYiZ77pOtKioqDiqeq66uDj6fDz09PcrnPT09aGpqytqmubkZgUBAoYAff/zx6O7uRjKZRLAIHgkDAwMDA4PDgZk+nyfbAgf/jJ4umpqasj7PKyoqjgqvNWCMawWdA5WwY2E484Sv6+9RX7ICJGKWKiehJhL0GhzPHmMMAPEeMXoiLHRF77dn1u1S2vy8ndRu2Z4eI0N3lIxmLeSJ360DREVWxJhc5m5rgmZEnw4OST/xejIuyRjalFDjzNk4CvXLmKvDEhc6MCHx2zpFWzG8e2XJzq/sz5R3plWhB0V4jUSrBpMy/6MLyQDTqOipKt6skHliypZNQlepKs2Coc0ONsgmUkR9Lqf6Po3uTNc2MCZ9JubIBfQSqqUZoMBxpo8zrXjnuMyzpdvztHHCa4gp8kwjCw2o/fN6sDnkoFzaR7ZTLHeDOmdeqQwoSZsYgT45VqpRpWzaRGXnMAs7TfNJRd+ISoNLVdAaCEs51sKCckTFD6tr00fhEM/3z8uUWVDM75PzHE+qO7ut9cOZcu82uW84FlzfhPAi8p1NMfAcZpCSZb6faE28keZ9JADEDk01dCo4ngdnBnqZ020TDAaxePFirFmzJiOS4rou1qxZg2uuuSZrm3POOQcPP/wwXNfNpDfZvHkzmpubjWF9hCK+twx2pPDxlIm6RO5KeQBroRQc48V71Xt9ojV3pTyhrHYid6U8IB4r3m+CU6DNzmxYeMLe3JXyhC1798/aUAj4A4V5nmXDMc29uSsdIlLRJHblrjZtzPT5PNm2kDjrrLPw61//WvnsiSeewFlnnVXQfvOJIv66GxgYGBgY5B/Lly/Hj370Izz00EN444038NnPfhbRaBRXXnklAODyyy9XBM8++9nPYnBwEF/84hexefNmrF69Grfffjs+//nPH65TMDAwMDAweMthfHwcGzZswIYNGwDsS7W1YcMGdHR0AABuuOEGXH755Zn6f//3f4/t27fjK1/5Ct5880388z//M37+85/j2muvPRzDnxGM55rg9YXhhcOwDpAGh8HUUfaolraIq6hfU7G2yTsXb5COwiRa9caoSmUM9MmxWWA0cLwo9UWHhSqhi1T4SL3b2iJe9eo2oajHO8Wj6VfFxhVxKyXdEtFYY0RX701qNBHyPKdInXB+hXietwRkt9vTROB8I7RM6XJsp7RGe6s1+j3pj7AIV1dMxhbukbHE2jSF8mFSnibKeHiAKLVMkR5T59wNkiBVrayHd9R3ZMq/c0SwwTqAiEmcxepIXC4wrrbZHSTBEKKiu+TsaSmRa74pra1tdvaSJ32qsXl+/X/y9hJbINhN1GuaJi+okZLSdD9QG+X8R6dWomVxMSsdy1rH1rj0nALNIhd/kqj4LHznOOpcMGNhz7Mi7mFT+rOzG3Zkys91qyJyfzdbqOQ/9st9HyIldRZUAwArQSELRMVP19N6JBE+K6aOmecg3G8roR75xKHGXE8HH/nIR9DX14ebb74Z3d3dOPXUU/H4449nRFE6OjoyHmpgnxDLb3/7W1x77bU45ZRT0Nraii9+8Yv46le/Ou2+DQwMDAwMjibkI+b6YPHSSy/h3HPPzfy/fPlyAMAVV1yBBx98EF1dXRlDGwDmzp2L1atX49prr8X3vvc9tLW14cc//vFRk+MaMMa1gYGBgUEB4MKDUyTjGgCuueaaKWngTz/99H6fnXXWWXjhhRdm1JeBgYGBgcHRipk+nyfbTgfvfve74R2ASv7ggw9mbfPyyy9Pd2hHDIxxTSifMwJfSRzDXeLd9GzV66MIVZETjHNB+zhpshZL6w0Gs37HaYCCthYMy5nByNOW2CLj9LPX0a/26afYVoc8z8NDEpjp51zQWvywRR7OcJ14BFM7JTDWobjaE0vUOJ7/nDhTxk+CZh1R8TZ7ZXTOmqeUj+0FKJaV5nlbQkvJQdeGY45HE+LGTZGAFsexAoBH86x4cakasxXS5doPBzkDA7slzva1FhHL45h9jkUH1Dh1Zgh4pXQtU6oXNlIuDIVkvwR0czq4ltAw9a96jsN7ZG1ymizl/CmWeL+YaZpDl2KRnSo5l0CveJfDWs7q+FwZf6Ka6SM0Tt3zTOPhtZWslnNRUsHpaTroJuaYZb7POJZbS+2tiMXF57CggXT6y7WSt372sd1K+8e7T5R+yAvN99x+Yyb6CgvcpSlWz26VWEQ3TgHYAFwSSyt5Vx+ciQRwN/KOYnquDd768E9YsIsQj5q2ihNf65UVLzbUFyteBOD844sXx7t5V3bBwnyjum4sd6U8YaizMnelPKE8WLwUY9XV40XpZ2iwLHelPOH1zW0F78ONFeYaFdNz/XaEMa4JIwOl+xLQkwo0544FAB+JU9lTPBujCXo4p9WHWqRVfmDSb4pxzOJix5WrKnnrS4VKyvlv20+QF/WuF0kMqUI1mgKviaHlkKIyRsS48ZNQm+tTDb3gqHwXmS0GxGA5qfaRIFjYUueMlcjZoK0Py1wEO2XOdOou55BOk6BVR7fQoKtbVRXmeDWpSNfKeGoiYnQQK1wx+gBNbJxyhMaIyhzsYtEudUOEj8fiYDYZRjznE8doIjq0buxRLhP1WVt/sTESy6INCTYAn+o9JlP2aSEPvG78I2S0UT5rhcptT/0Dyxs8ITKiE0Tx9mnGNZiezOupg0T0mtR5Zpo5j9MlhUAO7XC1jSdWNXdozv0DtHFSQQJicW2zjTarAt3BrJ/XHD+QKX9q1u+V9ne8cV6mHByiMIW5Mq7IdvVlP94g1yBNt2CgX8ac4tOsVRcKU84HKsrgThTmMVAsQTMDAwMDAwODg8eRLGj2VoARNDMwMDAwMDAwMDAwMDAwOEQYzzWhun4MvpIkRv8s4l7pKs0jSeJGTN3lnNf+dkrjpKVLik+Qd6tRPKJMyf2zJmjGHi32VO3aKqkN/OS0tLU+E/OFVuIRXTdSKxTvWEgO7NNy+TJlPbanSr5gxydRh6Oumm6IvXA2CXJtGa6XQ5FzLVGjed7JwxvqkGO3v3O31NHcuIEoiWuR2NgYpUJScgFrFGumooM9e0TRZnG58C7Vu8gp2NINcv6NEaGXdVST17NLbe9Qe4fymbsBmotBlWEQLpN+ElERrmOa/7GVkjpij62lTGmgNF97hT6vMAmSlCJsXJ0zTmvlEpWa6e9MpU9qKddClN+cc7grgmaORgula8ACg6kSSplHafL0tc2pwWKzyYtNbIkgzXOyRWVlsHhg00kyt92vSZhCX5fQ/O4PnaO0P6le2Ccv1hAdkE4zUaelpiOWhMdMGkq/FqqSez4xpKYvStL9HN4cgZMoDNXWBWaY59rAYH+4IQ8IFd5jYqcKTz0HgAVzuorSDwBsShYvPVZftDR3pTyhqrZIVOPu/OfynQol9dHclfKEda/Py10pX/AVx9tpxYvnM6ybO1TwPpyJBPYU4LgzfT5PtjU4MIxxbWBgYGCQdzgzFEyZqciKgYGBgYGBQW7M9Pk82dbgwDDGNcG2/vePnVOapyzeJt4t9lpxWiKXRJJs1dEFl1L5hDopFrVmanET9vxxLCuLHnG6oES95umiWFb2DrYukLRMu7ZKXHaqQR+0FDnOmEW8PJqnMVf1lLFolEfe4liK0gWxaFe52n+S4sxBsax7h8TTd9ycTqVNYILib8NyAh9r+1OmfMfGD0ifWiyuRd5am+aPPdqJuqmvma+S0iJ1i3f0lW4RNON51eOnvSqaAxZ4o9RuKY2hsKB2MFPe+YaIeqTmihfT8Tj+WO3Tojhn1tRj4T72gtuO6jl3WKCHrycJdTmujNnThLpY0CtAceaK6Jim7ZFszj5PPrp+fkrl5oTVeyPWQn32ydpO1coEJIkt4htUJ82pkXpDUamopKyjOPXW0mGl/XN/lhh4lJBHuYMF2dR5cmMyTmY42PLTpMbfe+pvGLM00iUe3APEzh8KHG/f30zaGRgYGBgYGBQGM30+T7Y1ODCMcU0YHCyFHQvDohdWzrcLAIlGMSB8RMNk6mptWOi1o+Wa1URqpwlSW2Zjriygilu5Uxgtitp4DRmDcY3WViMGCItq71gvSoduGYlZaeJeTLdNk6q4S+rQNm00uJ5Gy6GXd69E5ikckPIwqa1Do/UwLdemDYXEAul/S0Kl0rM94Sda+ON9os6sDNNSfy1YvZtp9eHtsnHAxmCqWrvOnVLPJbp1U6XQwgf3yObAyDFq+/A2MY54c8WmDYmkJra3d4RoxTQBge1i9MUWsNCa9gvZLWNO8mYPqY3bREPWdOtgpWRCA6Ri7SPaMeds9ulU/GaZJ98uOX+dfs7wD2TPe80GKa8FXSzPVQx3Msg75LhJWpt6bnHPL/PR0C4Uxd1p2aw6fpbQPyfSKv3/xPmirPvnV2ZnHX9Cp6JTaAcrpMeb6H6kDQVPu86BMTkHZ+EEvIlCqZEaWrhB/uBUp+BFCpOTXUG6OLTSza+1F6UfAAgNF48qO1xSPFq47S/Sr0WgeL9K8Y7y3JXyhLqFg7kr5QlloUTuSnnAzl31uSvlCUOjJbkrHSLcicLcu4YWXlgYQTMDAwMDAwMDAwMDAwMDg0OE8VwTrOEgrHgQwZHsHmkA8EVl55ypvP5h+ZxTcZXsVD1rE7OYbytFzld7TGkvGC/2iLc1WU/t2YtNni49p2VlpQhkDO2uy5Qjxw5nyuN7RLCDUw8Bavohq5G8XKNynr4JGUtLQBN5YGd7v7RpP0b674zIuPyjqndiSs+nX8b5jsgOpc09s3gOpE3nuHh3A5RiLNmqXucUeTh9XeJFjTdTPU5LlVY9opymzaFQgOqQpALb00gLQNvmilOeab6eLk1NeLeWoikiY0u3C0eYqczzS/oz5ec0sT4feYEtYlgwk4HXfEoTJON82OwFZraDkstZ3/4cJ1o2i6ANEVuhVhNBG6B7la4Ne8VZEI5ZDAAQGmfPr7T3j1A98m6zFxtQ05kx5Z093K//WTxUl569Vmn/bM+CTJmp+AkSS7Q1ETbF+07rxhfN7uH3tHlOEJXe6g/BjRWG4+XCgoOpWQcHamdgYGBgYGBQGMz0+TzZ1uDAMMY1Idw2Dl9JCqkxMTTDveoUxSnPs8N5eYlWPDpKQZpa/DNTyTlm2qEQyTU9xyptkhTbG6Y47eQCUfv27SZKb4NqNE2Qsc8GEBvUigo2NNAHDhnUihFML/nPjqrjD3Rnp+72xSQumOdPN7o4NjhNys9+Mmb+FJurDplVpMkgPKNeFMafsIQ+FNqjjlGhYrM9PSDn7IvLwHSFc0WhekjqhX3yeflOqT/QqJ00bZZYZKjx3CS0/MV+W76M7JDrlDxO1sljO0+h42ox06VyvCDlxmYVcA5riHRp7SnUPjaHAoA5fzQZrem6qZW3OU4+3kTq+9omBhv4AdrgCg5T/xZpI2ibGKlyOrab3WhlWroep84bPxzP7nA8+QFUUnfvkk2lEF1nL/tPCwAgTXHvnMM8zdepTOY20KGq97shOjkLWW74/MD19v3NpJ2BgY4T5nQhUBrMXfEQkXSKQD0HsGlz8RS8veMmclfKE45r6M9dKU/oi5blrpQH9PcVj6q936ZzARFLZn83KwT6O6qK01ER+bj11WO5Kx0inGACuwpw3Jk+nyfbGhwYxrg2MDAwMMg7nBnujM90N93AwMDAwMAgN2b6fJ5sa3BgGOOa0FA+Bn9pEtvbxAXn0wSTrImppoxotEHxLCVLtG1IohJHtpFHmbqJp7VcvJRDO0b0ZZtVnEnhO9CvjjnSKt+5RHm354laeHybeLFdLZcoU19tynPMglghysX9cr+6I58upeORKvesMqGP7+0WcbWkppzuVZEXeYL6Jxr0YFrdwS7bLfPcf7p8vvrVk+Uf8vzamogai8gFKDe3l51tvt9us6+MPOyk0N4cljlf35Sd1g9A8fYqnktq4pWpDAXP5XAGOjeq01guO63DZeqcWTS3rFgxlThZskobM//LnZLojOI11ZT4/aQQrijWM0V9RPUqWTQFSVrnfJ0ie2T+483q2mIhQY8mWgmNIDcyK3IDQJxECZkhwgJ3PmII/Gb38Ur76qbRTHl0tDpTdimXtTWu/h6Eu2g9klc8QPcg6kjtvFVd2376ffBa48CEdlIGBgYGBgYGBgYzgjGuDQwMDAzyDuO5NjAwMDAwOPJgPNeFhTGuCZ2DlbDjYdhDlK5I8+JyjliO5eV6yTES+oqqXqOadvHW9rkkrkU5dqvDMaVN91zxLHGKHddHaZHI85qqUT2ao1HxxLO3O9pLKTMoZRh7ygEg1iLHq24lb/eLtVJngcSi19lanDl5O0HlDT3i4WbvLKfBArSUV5R/uLFWvLC6wEKimkTAwnJudY3iKRx5TcbPfewbNKVyUlJ2SZG9oGEt/jhWTXG+FL/96pCcc4JioRGdOvaJc5inKmicMbXPYIWIzaWHJO4/acmx5x0zkCnv6JqltHdoDTsREhQjz7VLw9RzuCtie5RzWl9PmeFrnne+tiwixmubWRT7vqQyT029DDTWTsfVGAYB1kAghgKzMlKU8kyPU/dKZA2Mbq+S49I4fQslRdfSts1K+19ukhh4nuckUVn86s8BkhRnrqTpI9gpFmRTv+M0X+0Ng0hHCxXTZSmpzqbTzsBAxxu7m2BHwrkrHiJaGoYL3geA/cUUCgh+Jyk0xqtCuSvlCfxuU0jMaSteHHlnSWXuSnlCdKQ48wcApU3R3JXyANsuXtB6z9a63JUOEW6sQKkyZ/h8nmxrcGAY45rgOjbg2HCr+WVaU+rlHNIsekSKxuGTieqZVIUw+gfkfx8ZymzYTKS0ByGJOLGh2nCc5Cjs7qiR+tozOzlKDztSRLYSJKBEuYxjmnI2U6ZHx0msjUS8At0y5sgs1epi4SpWnj69cU+m/Ex5VabM6s4AEOwjWi6ptffRXDbPHVbasEHskXH9f5q3Zsq/6BEqfLBLNW7tETmfeBttbtB6CHIu7DpdkpnmltbTSEIeZt6gXBdLe9HySBCLFeZ9JHoV6dQ2QUopNzR9zgrZvXGhgnOOZEAVB7NJoTw2j86flKvdkHbOnDOa+ozR5hDPC9O9AcAig9yjHOoBCmVwg+o8sdhakMT+wkM0Z2Q025otynnTk3QsN0JzMUznrIV58D0c6pdx8jVzdssm1uAsNQfsGe0isPdC7zFyLmRoJ7SMBX5Sf3dZYI42MeJNpFw+om7w8UbSeCIEp0CscOO5NjAwMDAwOPJgPNeFhTGuDQwMDAzyDgc2nBlIt2b3xRsYGBgYGBjkAzN9Pu9ra5ALxrgm2H4HPr+D9Jh4wIJD2uLzstPCE43yTwl5Ie2k2t4lQTSm+yYrpc3Cyj6lTc+elkw5PkvcTD19Qh9ioS99U6lmgXi4+zulTbBOaDrJLvGohQbVMTMN1RmmVFxTeNRLA0IR1+E0yfj95EYMUp/OhObR5HzgdD3iVVIu96ncWV+cUlkRxXvLeIMci9OaaenL7Fj2dCx+SsuUoFzS+4lzkXfRoVCC44/ryZRj22Us47O1nNEh9iLLWJwy+dwbVa9TSbnMe8oTL3aaKP82TabnV73A7BVnD3GI8mlz+INPmyMW8eL0ZQ4xH+zE1D/mgTESFyNvq49Ex+IaQ4BThrEQXryG5qyS2BpD6k8ee6tZlI5F0JKcZk0TnnPJC9yyVLzQe56T3NYpumZDSWJ+AOggETMlNR+RVyIdKquCBQI5NVysTRgSkVq5H1LjKnvGpfVQEY4j7Ux9vxoYHCmw4O3H8CkERmLFocoyC6vQCM0az10pT+jc2Fi0vpyK4rzm74rX5q6UL4wVLz1W/dzB3JXyhME3ijOHdlvx0s6hIpW7zqEiUIQ+DPIOY1wbGBgYGOQd3gxjujwTz2VgYGBgYFAwzPT5PNnW4MAwxjUhORqGnQrDSlG8Y72Wuoe9tSRW5pWId2wiLm6nwKi6CJNVcrxUubQPjki9FzpnK20SteTFpJhXj7yIfvL2OnNVL259qexa91viuU6MZY/5TdSq5+wnj6bnk3K6Ss45XSH914bUnUOOZ+YY2Y2DzdSnfM6eSkCNc+f2gbD0vyupCkuMLKT2lHqoZKF4m1PV5LVMaQwDEqoKUJw4e+g5ftyvCW2xt99P6yTlUioxCoUPaQyJGAlVKbHRlG4rXaJ6cSJ+mY9YGecJk+JIQjyniTZtR5SdwpQKzCZWgUUxvvFm1dvPInDs4XeDxEqgNRPZoWoLxChWP8Cef/a2l2siaC6J+hF7gH/7WVsgXa22D/RTPyTixiJonPqK7wUASNZxyrPsXjUWgRtPqWI/gyMUg01jZoZCQPNw8XXndGwWMQmSuyS23tKeg0FKDberpBbuRGEEU0zMtYGBgYGBwZEHE3NdWBjjmuFY+/7YyNBYrD4SegqQAeH5iWLMzcvUF+4T5nRmylv2zMk6jIBPy/NcKi/QHhmBVS0inDYcopzFmvL09j6h4/CLtWIYJLKfFwDEyQhjQ8VPFFs27iM+VSGJjYvgoBgAPjKaWPWY6doAYE3Bikn3C31vYahH+S48wJR7+XzDXlHrVhS+tescayG1aKIbp5iiPjA1FZ+NcDb0jivrzpTXB0+Q/jRDVTEuWbG+Xii8gTdUivHw7qpMmY31OIlrsaCaDt9QdjoaC5JFtlNYgJZzmjeS0rTufbQ2PFK414XzeIMjTaJ2Hil3+zRaN6v3p2njKlkuY+Nc2FZKHbNDhqoSpkFT6xJ93tbo/wHaeNjRJ6KCKcq5XV4vm1v6jm91hWxEjW0pkf7p3tSp8LyJwWKHHJpgNYvB7AyoBn2aNn6CfgeWvzDUSsez4XhThwFM3a4AgzE46lFeEYevpPCLY3bVUO5KecD2IqqFj3WV566UJ9gNxQszqasujgJ1Ml08Cr9bUZjNzsMNV8/IUiD4N5XlrpQnlJ4yXPA+HH9h7qeZPp/3tc3zYN6CMMa1gYGBgUHe4cKCOwPBFHcKBoCBgYGBgYHBoWOmz+d9bc0zOheMcU2YNbcX/tIQ9qwXATE9z3WA6Nvs9eINoEBEvFaphLrj+cbLQvkmhrWSv3dcz91I9ZiWPrZZxJDC5G2Ot6ue46VzJbfu6tGT5bCj2T3PLJgEAD5KRcRiES5RjOPk3dw8KkJdgJpai0Ww+kZlhzEwIH3otHSbaOJ8LLtM5rnKVqnorG+WbpU2IU65XU8ePI2WHe6mtEbkhWRPYbKRVbt0KjtRqanaM33CVy/pYnEx9VZ0yTtpE683HZf5068TiOEQb6dz3ive5qaFkhu8b1il0ju12c+T10myioTOBtVzZlo1i4Mlaf7Cu4gKbmkU6yoacx9R6SlPuE9LH8bCa+xJ9/zsLSeKtSYCx6EB7C2O7BEvvke3MI8RUEMW/HTN0sRwSa2X+3TO+3Yq7be8KUwKj/JpMyuE5xWAwqyJ7KZ83pQyzUfe6HSpFtpC4oeea8HTUqIZGBgYGBgYGBjMDMa4JozGw/DZIUXp2NNmiA3qJBmBbIx5bfTCP6wa142nCn158LmmrOMIRzRa9V4xYh1S+j3u5I5MedtTc2mQ6svy6nWLMmWOS+V83skgjV9TRGaD3k1QPYqfBamil2lq4f4RNpTY0CVjhGOpdbXyZjLOSLk6PkfmotdRaW/hQTl2nHIGO3WkiE1GR8KnnjMbx2z4p5o4ZzNR3KPqmDlOmtdQypE2I++RHYC0rhBKhwv20uYGx9xra3Num6jMd/6+LVOO0yZAW8lwpvyqxnQL9JBByXnCOTU15Xme0Ix7Di3gNcN5ojle2K+pwrsRNginMPg0KmWqkkIb6Jp5NvVP4/LF1eP6KDQgXUa5vZmy7pt6lzYwInPm0L1lE12dQwaiaZWiHaiTNeDsFlo4G/T6hkKa7iG+NhxznaCNL1Y+B9QNEqcrAjdeGOPaxFwb5BNjOythhwuv5L1ppCZ3pTwgrW+aFRINBUpmnwWcEaXQGBgszrWy64tH1W6rGy5aX1+a+2TR+sIxxenmn179YHE6AhB5rDJ3pUOEkzyyNFEm2xocGMa4NjAwMDDIO2Yec20oZwYGBgYGBoXCocVcm2d0LhjjmhCdCMJGSBFj8oIqDdRHlMrIXvIiTrGR49e8Qv2jog6cIqEiNyLlKs0757B3bkz6//PGWdI/CWL5NdGnd7zrzUx57Rvz5QuXqbNEQ45rNxwNxxuTY4f7ZCys4m3r4ydvpVtB6sZUj8XFHJ2K35fdo8oqyO8I7VXajM4jKjV7+sjzztRnFs0CACRpDfjII0miX+zFdcpU6q1Dnlf/qJzb/Ir+TLnzJVFLDx7gtypZR3MWln6sLtULurtP6MegOWThtfqg0MJtTSiO59ahc2OvPAuIlXSrru+JVhkbzyczITzi5ac1ijXoXlME4WhczHwAAIuo8G6YVP5rhOHACuWxWnWi/aQkz6EZnPNbyT+t9Z8gKnd5WMrjtMx4Pc+KqHlFBxvEW719k4SMKB5+TaE8MMY0fWKC9Mj1iLfIOTuaCBTnE2/7yz1IRxPoQP6xL6Zr+jvcM2ljYGBgYGBgcHCY6fN5sq3BgWGMawMDAwODvMOFDccImhkYGBgYGBxRmOnzeV9b84zOhcNqXD/77LO48847sW7dOnR1deGXv/wlLrroosz3lp6g9X/x7W9/G9dddx0AYM6cOdi1a5fy/YoVK3D99ddPezyuawOuDY9iP8N71FjYRCPFhVZKHFNgu8SCRULiwRrT4lKdcfE22lNs/oxpgmYWiSO5FHNdWisiXtFe8Yjr3rWBOOXSpXRHTXMGMuW+1+ulDy38N0Qx0CyipXjNBihFl6X271IuXs4ZPcFxqSTGxPmjAdXTxhtmHsW4DrpqzmTOM80pouqOkzQrA2sl5j2lpUxzyMPuozhndsoH+6ZOz6Hk0Can9rPbF8hxKaxXidEFEG+gRuytH6JUWFG1TWxUvqMliAQda9N4o/SvsSqSrbSeu+VYfDn5yk60aCnjOGUWMSwUVgAdwDem/vykG0gDgNYWX39mCwCAv1vuJ867XrqXxNVSsp7S2nVOVdP9XCGfszaBTbHhgSH9YST/v/P0HZnyb3eeKmMmz3XAVufsmIreTPmNBomTZ8+57q0P0HcB0jNwKNWJTb8ZzHwAVLG2rVua4cbemqlfDN5acIMuEHJzVzxEfOCDLxS8DwCYG+rLXSlP6EjU5q6UJ/zyl+8sWl9ExCooxnyh3JXyhO4tLbkr5QnXbr+kaH3p+kOFgm/eeO5KecLgeYV/droTceDhgndjkGccVuM6Go1i0aJFuOqqq3DxxRfv931XV5fy/29+8xt88pOfxN/8zd8on9922224+uqrM/+Xl88sp2M4koIvYiM6KD+kTHcGVHEuh17G2egcHRUxIbdKfbFlsTE3zAaYfN5YM6o06YyJaIdvkIzTkIyTRYvizeoL/LZuMZwRkD77hmSe+IU93qzyhVN0nqE58jRzNoqYQ6xdzvPNAVUt3D+YnXp7yjlijLz2jKhopzUaa4o0IxQqM9F1Hx78C6WNTd8lmmRsZUERW9tLVHpd9CkeIhEs0mdLEt3WF5PzSmkUZ6YS84bAWXO3Z8rPjR6XKSs5s6HSr5mWjloZTNyvbigEq+S7BOVm5tzQfjLuUpXa2u6T47HAnEVq7X4ydO20amiyKjqvB36oci7qwLh6zmkSxXOr5EInKqXPkLbZlayk86RNEN5YjTdRDnXNOFaE6KiNUy3jt0ezG7CAqlb+m1dOkjZUjdfCjgn1JfeVHlEL5xzyLokd7ReaQvdQsiG7oBuL9ekMLhZrmz2vF+loAnuQf5iYawMDAwMDgyMPJua6sDisxvUFF1yACy64YMrvm5pUNe3/+q//wrnnnot58+Ypn5eXl+9X18DAwMDg8MGFbfJcGxgYGBgYHGGY6fN5X1vzjM6FoybmuqenB6tXr8ZDDz2033ff+ta38PWvfx2zZs3CJZdcgmuvvRZ+/9SnlkgkkEiIl290dJ+nOB4LwLaC8Mjrp3vXmOKLPULfZm8SZpEA1ZsRMGKzNRWp/0WQaNUlx6l1QnvEo8gCSk31I5lyH3kdPb/q6WqrFyr0rp3ixQ6/ImJK0YWUqkPLe8vU04k+oZhzKi3OMdx2vIwLAF6rJSYBcc47RkWAi9OasVAcoM6ZQtOnYb6/aoPS5n96xZM9TjpfnaPihrcniHqr0YU98vw57LklcTXOvxwYVn+kXNZNo/Rdm4fEq1/5OrEN1JTTCA6Td5KyjQS2y3rivMwAkIwSZZxF4NqFutQfl9zi+u9qukKOV9JBolkV7IaVIqf4AgAfzSfTv9M1Ui/YR8etVOecvfc2Cc8xLV2hywMI9fuy1nMosiJE9H1LbQ6nTdYW539W5o/OOaCJi8Vny++ITWm5mMrOTIyIT723F9YKNfS116tkXEFac/3qb1CC6PsRyhsea9ZYMpmBTZ0n27I8RVgwn3A8C85USo852hkY6Kjc5IcvWPhXlseGzip4HwDQeEZ3UfoBgKpwLHelPCF93ETuSnmC6yt8mAAABHJXyRvajx/KXSlPKPUXL0Xbqxvm5q6UB9iby3JXyhOcGid3pUOEGytMHzN9Pk+2NTgwjhrj+qGHHkJ5efl+9PEvfOELOP3001FTU4Pnn38eN9xwA7q6unD33XdPeawVK1bga1/7WqGHbGBgYGBgYGBgYGBgYPA2wVFjXN9///249NJLEQ6rYl/Lly/PlE855RQEg0F85jOfwYoVKxAKZRehuOGGG5R2o6OjaG9vhxMNwHMDihdW93Txho1HDiUl3Q3FT1tajGZTu6Ti6d4tLkk+7u6BKqUNe6tZKKq3X7ywnLrIDanetT2UoskmT3zbMhGC2/Jqu7Qv0dJK8bmF5LtEu5RDHTLXAzHxiANAsDO7oFR5SLx+AxQvqqfi4tjqBHm4AwOyfHemVNdvvIGOQe2j47J+OM49Xa15/Sj+12uUcTpR2sPm9GVD6t42x2mnqZ+6kmim/MZcEoQbVK9ZrC27FzJNH3sh9TpFKsRD7XVQ/PReOeeKOSTAoW36+2ltsVeZPc+s6GZF1Z8PjhNmrzinhkvW07E0hgSofxZhYyaJniYuPpt23ilmOTzAx6IUXxMHoEHRdXJKpU2YUo7F5qs7/eytDvWzCBnFTNM07Y4SjQLA3hERFFDYE3TObkodc2SHXFvW8fNFZZxuPY1zfOqf+Z1bGwsmaObMUI3UMZQzAwMDAwODgmGmz+d9bc0zOheOCuP6ueeew6ZNm/Doo4/mrLtkyRKk02ns3LkTxx57bNY6oVAoq+Fth9OwI2lYZLTp8f6JGnnpZrVmLldWigE1nFYpKqMTYuiEyehkEbGAo3Ya3iv1EkQFrqoU+tVQUl6sWfQMANqOEZrR7j6JTd+8W5SjvXIScNJVnMloskkQzSKlZl0ci5HiOSNxqKEJoTizonSySTUaw7tpnuaI0WDRsaKudj2ZyUziYAuahYa7tVfUmUPd6pwpwlVk9LlshLNoliYCZ5FBFOySY78ZkTkPEt3e0+5EpqyHyWhjirHVr465rl3U33dT/mS7XMbWM8EUfdW49VNoA68z0PzZcZmLkCYOxkJZrHbNKt685vXfZ1Z4Z4Oa6ynhFwA8m9b9FIYzK3zrwnNsqDLl3COF+2SVtLdH1Aul5F0/TcIh0gMy/xZt1LA6OACMJ2XdxseqpE8ai39iapXVRAutO9oc4A0lXmf7Bi3FVKWriu/lEa5nw52BYIprxFIMsmDk+H3P50Jj9rze3JXygGgymLtSntD1cvE0aZzmRO5KeUJr3XBR+ul4o4iaPnXFo4Vv/FNxqNoAYBXJ2kiXFu/5we9WBYOvMH3M9Pm8r615RufCUWFc/+QnP8HixYuxaNGinHU3bNgA27bR0NCQs66BgYGBQWFgPNcGBgYGBgZHHoznurA4rMb1+Pg4tm7dmvl/x44d2LBhA2pqajBr1iwA+yjb//7v/4677rprv/Zr167Fiy++iHPPPRfl5eVYu3Ytrr32Wlx22WWorq7er34ulJQn4CsB4p54l/VdsMA4eaupPDFHdpdOKh/OlPvKKQ0WAIcEwfzkEQ72y6UobVZTccVsaRMcIk/dPBLUotzQWpppVISE9skpethfFdkpu+g6LTtJ3jGrXzxtnL+XUxqVB9Wd664pnNrDg+LV53RDgf6pl6VvUL5Lz5bz2hJrVOpxbmvLlbH1T4hH0QsydVc9Z6ZC+4nJwFTwIDEKkg2qR4W9pexUb6Od9p5NMpa41h7kyXdJLI1FzCK71Xnq7K+Sfzh8QadfT1bRrgtfd5vDDMjBwgwN9lTv64iK7GwljyoLgPkGVM+7kg+bigEK00hVaXEadGpuWhqlynn+yduveWmVtc7RDxTmwOnfYq1q/5xPOp2me5PYDkwxj6ZVhsVYXP7n0I5Qt1zbWIs6z0oObgrz4HNzSWwu2ajufNuUsqx27hCciQR2I/9wMTPhk+JIFBkYGBgYGLw9MdPn82RbgwPjsBrXL730Es4999zM/5Nx0FdccQUefPBBAMAjjzwCz/PwsY99bL/2oVAIjzzyCG699VYkEgnMnTsX1157rRJPPR2MD0dgJ8JAA72MaovPopdpJf9yTF5yX+1syZT9UXVnqPEkoZx1bRHDO01GW7KzUmkTIIqyb0LG098tMddslyQ1ivKf9wqlyaaX/ppjhMY6RGrjel5cK5o9Bt0/xrmgyYBKa9qaU9y/J8zpzJQ3r50jx42qDZiuGyRDM0Hxz50xdc48Zh/TJTi2RmjhLwwIRdoaVCl6fJ3Ttdmp4KxIrVBytf6ZFt0zIn2myqeOBXbK5Lt4a3bqr27cloSFMh8bpvMZpcHI0oSdUsfMua15PLyJlKwnuvKwSldmI5Q3AYKDVI9ioXUqPMdsB+jYKTIOeUMDACzaOPBIFdulLtNltGi1jVo3ReOh0IgElf29MpcB7ZxTpARvU/8e3Q9Vf5Y2pe9QN57eO/v1TPnRN9+ZKbNBrseZMx2fwwT4HkwMyZhDI/qGgpT7O6oKFnNtYJBPlDZE4SspPC18zyvNBe8DAHzFE2qGNa94Ct52EZWEd20vDkPRlyzeOaWcqcOA8g23oXiL0B8s/L0LAKe27S1KPwCwZaA+d6VDhOMvXpiFQf5wWI3rd7/73fBycPc//elP49Of/nTW704//XS88MILhRiagYGBgcEhYOZ5rmdGVTMwMDAwMDDIjUPLc22e0blwVMRcFwtnH7MNgdIgXnzyxMxnegpYFnpieiZ7W9mDOFSv7tZ1bhdVa5tonJyv1z1hXO10QGjh8SZWbpaiw0rN2qDbOc/1oHixR0g5mz2l4W5dtEmO55BDlOnOHnne+8ZkvIBKV2XvGuecZqGq2Fx1N5XzfLO3N1gtHregrdJ1/bRRz566caLlBnYTFV4VoVco48p8sueaPKKcoxnQKNd0nZqqhPLfsVvmyS3RiDY05yxol6yWerqqu49yfoZ6fVnbVAZlzjo1nYwAqWJPxTZI0w6+p22wu/x7G5I+ky00TvI0R7arbIEUrW13Qr4Ld2S//vsGkV2Vm9KpI9xL+cRb1JPmdWuRkJ9H15bF7XQRtxSdz2dOeC5T/l7fedJnHYUyuOqkPfLmGdIPq7LTbwuHTABArJrOgYTzrB7px6ZD6aEt7BVvnDUIJ5rAHuQfjmfDmYFgykzaGBgYGBgYGBwcZvp8nmxrcGCYGTIwMDAwyDtcWDP+mwnuvfdezJkzB+FwGEuWLMEf//jHg2r3yCOPwLIsXHTRRTPq18DAwMDA4GjCoTyfZ/qMfjvBeK4Ja9cfCzsShkU5ajl3LaCKK6XJ28sR/kN7Jf7X0mJx33Pmxkz5yT8flymn0uSpC6geySiJXQX66JLNlViMFHk6A92qR3CkVtyyQcqnnCgV9x7Hdbo+1dOVpJjfyDY5dmy2fB6idFOza9RUElu2iIea44ftFOU/pnRdnB4JUHMusyCbSynLFlWokkwv+0+Qf+gSbNxFQceU+sk/ru0zcQ5ryift75C5dOlScOwroF53i/IvexSPZjeJFzmwRc0NnmgV732C4pxRQeJyw2r8cVVEjre7jVK7kSBbmnYclbzKgLKGOZaZvfDhPlr/EbU9x3C7w+QFJmetnzQDklVqe45tZu9qmq6zHo/PrIgUxYxXbZY6Y7O5E+2cOTU3eeUdjkene4sF2fQxf+/FpdRGihxb2RmTewEA5jb1Z8rbNrbKsCJ0zTURNntCrjuzSnj+A3OFIRHtU9cWr+15lQNI+ZNYj/yjmJ7rRx99FMuXL8eqVauwZMkSrFy5EsuWLcOmTZsOmDli586d+PKXv4x3vetd0+7ToLhIxAKwrcKnr3IjxZHraTmlOCm/AE3sssDwevdPc1oo2PXFiUd1/MWTcNr9evHSfvkai6e30VA1nrtSHsCaR4VGYrzwa92NFcZMM57rwsIY14RIyz7BlPRGeQF2NAOCBYxA+WuTbWIAV9VInuuJjapq+c7xmkzZGpfpZxXyVEqjGFM/LKwxt4lyNr8oFoRu6FWXxDLlIRbH4pzFtIkQa9OUr3uIlkxGMBsmiVnykOsaVQ2INAnEhUmVfNEJImj2wt5jpP95msgGGQ1MkU5VyPifaTlGacKaKqx8PatpMFPe0yPCNWk9Tzcbx/SywAYYXKLLa7RyppIzRXuwTXJ7u2TA2tqGhqL2TbTgIKlYp6rVMXcNyKaOsglDv4Pb+iQsQTc0k7V0PFbIo7lgVXhbE3lJkJAebyhwyAPDCmr9N5FwGeUdZ4G+tCbCxmPjDaJUKV0/7iapPhSYSh4aoO8oN3SsWe6H4B715Z7p5xa9gPn6aPycWlx7KJUHKLSBhMcStMEX7FV/plksjtcWX+d0mn4zxtX5d4nm/uKLx8KNH5mCZqOjataEUCiEUCj7y8zdd9+Nq6++GldeeSUAYNWqVVi9ejXuv/9+XH/99VnbOI6DSy+9FF/72tfw3HPPYXh4OK/jNzAwMDAwMHj7wWw/GBgYGBjkHZN5NGfyBwDt7e2orKzM/K1YsSJrP8lkEuvWrcPSpcIcsG0bS5cuxdq1a6cc32233YaGhgZ88pOfzO+JGxgYGBgYHME4lOfzTPNjv51gPNeEDO2MPL8s9AUAka3kOTlNPCupreKeipWK51XPq2uTu5epw3HyjllxTVCM0o8kyPH4xptt0oYEsfxaWqfGyFim3LVd2rBwWGwOpRQaV/tn+nvdPPH89vWKhzq8Q+blxGO3Ke1f2Hw8HUvO/7Ve8Rwr9HnN06Z7SCfBXsc3O9U81+WSZQwjx4inL5ok6nGlzCvnJQYAzyKKcDnRwomW7NA60cfIKctYUAxEhbe6xN2ti4OFyEPPtHD24lradbJJ0Ix1s7w28UzWlAqLoccnXnQAsMgrzA5Wvjbs9WTqNgAEyVuerKP1TKlFEsR80NObWJTOjvOGWxPyebhHnaipjpeskjpxnjPNc81CeskKSmtFzlxFrE57pqQb5b5pqpdF19cnKTr8cepDEzQbTwplm9dQiMT2ElpqPaappypkQMEhWpuUc9vVGAJeWNZTeWsUzkRhqJWuZ8GdSZ7r/22ze/duVFTIb8xUXuv+/n44joPGRvU3oLGxEW+++WbWNr///e/xk5/8BBs2bJj2+AwOD0pLE/CV5K53qBgeD+SulAfsebMxd6U8wSstThokAECRaPUAgAJRZnWU1BQvlVksUDxavdepU+4KhwEt3LFQqCgtHhOrf6LwYSqW7eWuNAPM9Pk82dbgwDDGNcHz9v2xInBKi5lOEHXWpVhGm4yO9Jj8OEa09+IY5YB2KzkxMNE4A+rDybdVjCA2wtiA8ZNBeqBwCKZ1W0QL9jhfsHbfeGXSz8CW2kyZ7/n4bDEy1m6fqx6AKcZkwAX9tGlARg4szejiWGA6FOf8DpeoBsJEk8xZYFQmZGCgTNqTQc1GI6CpSBPFOUE5ty0yhmyNyW7TunHo/MsiMs6JIdmQmdCo8EyLZlqvG6G42jF1nmqOkXCEAVeUyNNRuc1nzZZ4+NE9aixqvEnOjenfbESzkrwSCw7VoGf6PtP8A71E669S24c75dhOCeeTl3qc8xwAApT3nOc8STR/iyjSlkYr53vFL/sOmir+1JsovkE5n/4+mU8/Pd9DQ9J+KK5uaITpHoi1y++Bf4g2YbQ815zrne/neDutIXrpDIyp7dN0r4ea0nAChXnxdme4wz2Z5qOiokIxrvOFsbExfPzjH8ePfvQj1NXV5W5gYGBgYGDwFsJMn8+TbQ0ODGNcGxgYGBjkHa5n7xdjfrDtpoO6ujr4fD709PQon/f09KCpaX9xoG3btmHnzp14//vfL326+zYp/H4/Nm3ahPnz50973AYGBgYGBkcDZvp8nmxrcGAY45rgD6bhC6aVvLb6GnKrOM80qViTp7OiVjyICU0AaU8XCZpNyPT7SUAppYlbuSRu5CfhsznzRG10pyVeMzuieqL8dvbc3GVVQnUa6xOPriLsBCAeEpekRYe2FRqxnMvSk19X2j+7+bRMmXPuTsTFw88e6WSj6u4P75I5ZM9lmMScTqrvVtr8KVAl/5CzsaRcPMfxPlJo71LpuuxFtIlVYJFH1yOPtK3R/1noKkQK22MNcs5pFhDT1lmS8jEHyIvtBUhcLK722dMrgmZeY3ZWxFBC2Baedvd7lJvax2rftrRntWwrqoUPUJ5m26G1TeJe7OFnTzWg0uyZPeEfJc99SL03WNWcc9AH6H7ieWLRNAAIUg7teAtR0YmtwBT/dKVGbdOF6CbrUTlE3u2miEovPLtme6b84DpROeUxOxH1OrP3nCne/gFixbQwNU6luYZ75dyqT4oh7RRHcbdQCAaDWLx4MdasWZNJp+W6LtasWYNrrrlmv/rHHXccXnvtNeWzG2+8EWNjY/je976H9vb2YgzbYJoY6S2DHSk8jdUKF4e+yjnqCw17rHivesV87y6dNZq7Uh4wsSv/DJqpYNUV7/fYrU/mrpQnOE5xqMScXaTQ8IdTuSsdIly38H0Y5B/GuDYwMDAwyDscWHBmkA9zJm2WL1+OK664AmeccQbOPPNMrFy5EtFoNKMefvnll6O1tRUrVqxAOBzGSSedpLSvqqoCgP0+NzAwMDAweKthps/nybYGB4YxrgmpRACOHYAdmVq0KbKd8jxTyqrIbpnKytniNRrQNiEDFISdGskef2oltNQ55FFMUr3WUhFQ6t4rOXITDZrn2ZF+OM+w60q9yC7yjuqZkzidN80Ne2c5APuV/lYw2FvNnse2muFMucMVz7m/X/W0cZy7L0ZeVPJin1DepbRZP1eE29K75NgTo+T5IKGnVLnqgeQ4Z47TtcklmaLzcmq03UVKc+YnhkJDpeR63Juk20+75vZI9lvTraAY3XL1u7paOXZ/t+y0Bzk39fzsHlkASlqrZA2tR/LKh3dSKrBy9d6gZabkAGdRQJvinxMNWqwvHS44mD19ly+h/qgz44FFe8peo/u0ntqktXuDvNVKzDexV1KsbTB0AG89MUZYrM6XkGMdX6EyLH7ZsUj6qaeUYyTipuS8BhALyTlwDDvf22lKC5bSvPV+yiO/ZU8D3FhhBGCKRQsHgI985CPo6+vDzTffjO7ubpx66ql4/PHHMyJnHR0dsG1DZTMwMDAwMDC08MLCGNeE+pox+EqTGOgSpV9dAClZJS+t5U2iwj2eEmMmmpQX3olZWs5oNgaYfkb00kC5StVJdROVl9b0GwNCBWdBMd+geln7YmJcstEQITGlofm0C+Cq58ziWtZCMeDSHSKaZREVp5foyYCWz3gK4cMUCVDZ2pwrRkMFGdpE0b5//TlKmxCplxOTGvY8MSQmYjJ+/4Dap0IRpuuUJkM5skfKsfmqAeQnsbTEHJlbm6zB5jrZHOncImsOUEWoEk3ZaUFMtwaAfqcya730HDnnUaLi65sokb3+rN8lac6tKTZa9g2aNhtIMdbz87WVA/P123dATu5N/ZNatj2qKenXkDI/UR+jtL/j0cZPQDPa9bWWC3r2ANDGQ1WlhIPENrFwmfT/dOdCpXmMfiuYis9z4WjU88CInEOqmkToEtI+naTz1IYcr5MPQjvCcAokrupgZjvcMyXlXnPNNVlp4ADw9NNPH7Dtgw8+OMNeDYoGx1I2AAsFr0j01UUn7SxKPwDw5tPF0xBINBZPmTwSLA5ldv5pO4rSDwBs6m3IXSlPcN3ieSBTvZHclfKAoSmyShQCgYqjN6Rqps/nybYGB4Yxrg0MDAwM8o5ieq4NDAwMDAwMDg7Gc11YGOM6CzjFkaWJI7DoUnQ7eQrJO8t068Cw6ilLeURLZs810VVTPQfY4eNUVOSRC+0hirlGca4OiYhSNwklTcRJbI12631DWp5P8nwlRmT8fvLaBaLsdVRF3Jg6G+qiFE0pKXP+Yk4vBAAOUck5/RVT9iuro0qbYTofizx/5ZQLmq+NG9Bo4eR5tkbYo5ud4o6Euk4CIyxIJe339lfJsYg6HIxOzZBgL2agR46VqlU9BDblQ/eG5Bp4YWm/sKY/U/5jtYjrASqtmr2oQUplxtci3KmJwLWSwBvNh1Mm65yF//S0Vnw+PqLMhynns36dkpVEWad81OxtDw1SKEGzuufqBaUeh0Y45JX301zo/cOW/utK5D7bQe05Z3okoHpaaktk3W6qlvuew0/iQXVtMauAvdiJWjk3jxgWOvsGlILv7PNfRXI8iW0rYGAwLTiOg1tvvRX/7//9P3R3d6OlpQWf+MQncOONN8L63zXveR5uueUW/OhHP8Lw8DDOOecc/PCHP8TChQtzHN3AwMDAwODohDGuDQwMDAzyDsez4cxgh3smbQyKjzvuuAM//OEP8dBDD+HEE0/ESy+9hCuvvBKVlZX4whe+AAD49re/je9///t46KGHMHfuXNx0001YtmwZ/vznPyMcLrzyt4GBgYHB/pjp83myrcGBYYxrwuBIKexUGBZ5p1MNqqeJ0w+V9MgCizWJB2x4QGKc9ZCgmrbhTHl8Q630Q95ar0T1rkUoFVWiWj5Ppclr1UTCSuOqR/H0qt2Z8qtlEnvljFNsCnnOnSrVI+rrpmVC8bPsrY5RzLceF+cjzy/HD1/ctiFTvqd1qTQIqp7rMKUzS9STd47il8fGNW8/pTnxKFA4maK41FaJlwltVV/0WKyNPe/s3WTvcrhHvZVSlRTnO0xpoZpJkIw8747GNgj20fE89rBTpSnSQAFqPHO6hFJxxSV+X/ccWzGNsTD5OS1Hl6YppXmBmQmQpthki8S5XCI16GmtAgPkbeU+g+wR17yw5NVngTmOpWbhQTumeYFJg4DnNkjXjOPM0/oyo/XcOy73PWsDBCl+fjAq8w8AbY3DUm8vsTrmUix5VL2fed5s/o5OzV8p7Z0BNQbNjsncPL97LpyJwgRde7DgziCmyzNKpEcFnn/+eXzwgx/Ee9/7XgDAnDlz8G//9m/44x//CGCf13rlypW48cYb8cEPfhAA8NOf/hSNjY147LHH8NGPfjTrcROJBBIJ+W0eHd2Xbmnegm74SwsfT7ltd3FiXje+NLco/QCAHZr6WZFvsBZNocGaFYXEa+uKd63QULw43pLS4vWV1FlfhUKRNBMAIBUN5q50iHBjbu5KM8BMn8+TbQ0ODGNcE8rK4vCVeBi36A06qb6M84v2RBvlmKUX6AAZbb4J9eZLpmnKaX0GhogWXqWOK0YGGRueAT8pOseyv2QDwAuD9GDge4J/69igtdQfQZt/rEjVOt6Yndau5wn1kd3tktG7PSYiXiymxaJrABAnVWmuF28gcTO/2qeblnm3x+QBfO7JGzPl32w8MVNOVqs/YCyixkYsnzOraCe09l6ArpMjc1ZZGsuUY4O0zjRhEcWIpulgKrqeu7S+eThT7h2R8w8SFf/4U0Wtekdazeeb5jzTdA0D0SkUqav1H33a0KANIu6fc2vbcXWhpir5fpI5Y3E0v6b47CNaNN+bPnpnSNP8cZ54AHDStFlCebJDFKYQa5X1p4d5BHqk/Th74mgsY7NJoV9TK980KPcAC7exiGCyXt3s4nud86srQky7ZW0pgoKA8huQ3FsKN66eU75gPNdvbZx99tm47777sHnzZhxzzDF45ZVX8Pvf/x533303AGDHjh3o7u7G0qWycVpZWYklS5Zg7dq1UxrXK1aswNe+9rWinIOBgYHB2xHGc11YGOPawMDAwMDAYFq4/vrrMTo6iuOOOw4+nw+O4+Cb3/wmLr30UgBAd/e+jbzJdGiTaGxszHyXDTfccAOWL1+e+X90dBTt7e1T1jcwMDAwMDiSYIxrQsrxwXV8irBSsFedIou8Q+xhZZEhm4TGJtpVr1O1T7xjUaIVB0bI81uppuIKbRMvVHyWfNe3t0rak0fR1qjoKfKcOtU0HnZosYde81yzUBLnTE4SFd1iL2Rao0hTPmTO2fv6cJN8Tp5aPu6+QbM4GAlq9Uqf7ScNKk12uEK5dztl/p7aKUI6JRWUlkvLM53ys3uPc0OTFzLErtKpad28TkYnKP8x0eUVTzlULyqnkuJ+LM3z29NZlSmH+TpRmjPXI8+zlsOdc4ing0yrlgUVoDzPwX71OitiZ0Tlj88mNzJ5XYMD6px7vino7zRmnY3EnnCnVu4NP+XjDvFcaN52JYf5BAmfUSo23zh55LUNW4uWalWFCJqNbxb6d2mnzMtJ79uptB9JynrgMBEln7fGavCRKCHfqg7fZyx2qP2G8XWvnDcEZ6Iw1EDXs5T1Np12Bkc+fv7zn+NnP/sZHn74YZx44onYsGEDvvSlL6GlpQVXXHHFjI8bCoUQypJOZ3tHA+xI4eO0FRZYAcGMnELDShXnnADAbxfvvPYLBysQInOKR3WPDhXnnABgPFqau9JRBp/2/lxQdBXh9yheGDNtps/nybYGB4YxrgnRgRLYE2FYpHSc0qmv9C/HfzJdN0Qvtnos7mhUFJopzTRSZZR/ukT9cXBsuoHJuKtuGs2UY3vlxZzpvQBQH5Hc1JvJmFiwQLwH2zZKYuBwvxaXSv/GiaLOsbQhorVHTh9Q2g93VGXKTKNNthLFnAzqgGa08flwLC2roqc1qycQlOMx6zU+TjR9NlpsjTpLKtBWRI7lknJzZJscK12qtnfo3dCpEEM5RSrYbgkZQ5raOMrIoO2Sg7mcvlij+1pE7Y+3SHt+WUy4U9/yrJLvBrJvKDB1m2nx+v/82xsitW/ehLI0o9FWmP1e1no+bRNCic0m9fuwiKJjooWOGlHDB0L9PDZeZ5RLmuKq/f1qjB9nD/D7eG6kTnBc6jSE1Jc0/v+VUtFDUPJvB7TfIIs2IUj520ehKaykny7TN1Hk2MMdVXBjhYm5dmDD0WNUDrKdwZGP6667Dtdff32G3n3yySdj165dWLFiBa644go0Ne3bPO3p6UFzc3OmXU9PD0499dTDMWQDAwMDA8z8+TzZdrq49957ceedd6K7uxuLFi3CPffcgzPPPDNr3QcffBBXXnml8lkoFEI8Xph3lULAvMUYGBgYGOQdkzvjM/kzOPIxMTEBW9dA8Pnguvs2c+bOnYumpiasWbMm8/3o6ChefPFFnHXWWUUdq4GBgYGB4FCez9N9Rj/66KNYvnw5brnlFqxfvx6LFi3CsmXL0NvbO2WbiooKdHV1Zf527dp1qKdcVBjPNaGsLgpfSRpj3eVTVyJPEXsnQ6yoLU5gJOpUT9n8Ezoz5Z0vtWXK4T5SHq9UqSYeKWSHKZ+1v4XUpokubWusGNvKTl/eM1glfSgK5eoLU7w1uxeUcwSnKZfyUHeF0p6pq6k6cem1lo1kyv19EpeXbFNPILJdJtqbgt2mqzBP9AjdKUA0WreUPLJM99ZyAXt0na1B8ogO0HVioasRdWBOJbkuyfNbWS6CZukSoePG+tWc06EdsgaYls/j9DRV9fpa8YKOvyBCWUzXTpPr2ytT16YzwqEB9HkFCcrR+tN/X5lJwKEJiRr5PEh97CciR+rzqWoaG3uU03qYBpWZYSGnr9Co7XG1faJBDjCV51fJLR9TT5q9/Uz5jzfJcQf9Muf9CVEU18HeaiX8oUMVRWTFfF4PLnmoeW04GnMtQAJ/vnF7v/CCfMGFDXcG+7czaWNQfLz//e/HN7/5TcyaNQsnnngiXn75Zdx999246qqrAACWZeFLX/oSvvGNb2DhwoWZVFwtLS246KKLpt3fCfM6ESgtvDrvxldnF7wPAJizsKco/QBA11BF7kp5Qn1ptGh9DQ1M/XuaTzjp4v0m+QaLo4AOAPUnTW3c5Bs9W+uK0k8wmM5dKU+IlRQ+BMK1CtPHTJ/Pk22ng7vvvhtXX311xhu9atUqrF69Gvfffz+uv/76rG0sy8qwn45GGOPawMDAwMDAYFq45557cNNNN+Fzn/scent70dLSgs985jO4+eabM3W+8pWvIBqN4tOf/jSGh4fxzne+E48//rjJcW1gYGBwlGMyTeIksullJJNJrFu3DjfccEPmM9u2sXTpUqxdu3bKY4+Pj2P27NlwXRenn346br/9dpx44olT1j/SYIzrLAgMUrxls+pFDe6VnXMWXUrWUi7lMVlckS7Vo7nVJ7FnnPYvRgJK4VK1z9SAeGHZozUwJLu2br24CkN7tPRfFGcbpJjnQJ3sMCcpN7aj5cRkUTdOF+QfkGO5JNrFseAAMNRZmSlzPHvaJaEojsWNqsuSc/6yFzi8W/qPxtRztspkPh3qM1wlMRvxEblOgSF1t1gRa6sST2GsSo4V7KSYay3OHRR/zMJd1izKzb21Supom62xOXLOPhIR4/jjgCZUNVIjQihJjo0nF3NbZAhTgePG2YvMO+l8nqkaddB+GicLjbnkIU/xJqw2ZSkS+OM4b0XPTIvz5vFwDHrpHqk33k45x0fUHddEY/Zd7lA/6QG0TZ2mLjZX7ocWSrPm9sqar94s7ds+pM7//3Qel/XQLILHObMBNW1fkmLrQV5sH6Uy01kZPO8Ll+xCOprATuQfjmfBmQHFeyZtDIqP8vJyrFy5EitXrpyyjmVZuO2223DbbbcVb2AGBgYGBgfETJ/Pk20B7JfF4ZZbbsGtt96qfNbf3w/HcbJmjXjzzTezHv/YY4/F/fffj1NOOQUjIyP4zne+g7PPPhuvv/462trasrY50mCMa0J0LAw7HYbXQDRoLZewnWTRJ6K7El04SVY3C5UBgI8UiRWhIXrnT2nKnkxRdfxSLisVWnF0SKjsiRZVLryUEk2n6EU9tZeoYmzpazecOwVLidkq/AI/1K/S6iO7ScSLDHeXRMhSNOd6/uYgCWLx5gIbU5ZuP5CKmUe05kSP0MetCulTP0fOM5wqp/GQIBa3YWMUAFKktp0kWv0Iq5s2i6HvxFWFUJ6D4DCtmSmMSQBIjdEGQ5hyQ9OGym/3Hp8psyAdAHh0bXxkwMXaaUNlWMZla6q6aVKid2j+Ix0kYkcGNNO1ASBF6uu8IRAiUUBdnIsVdyOdtAlES1sR96pS5yzcRRsXZGczrds3ygJiSnNlDvtHZLPLR8OMNstcPtl1rNLeo/O06LYN0O9MslodM29EhZimzxtUC0XEEG+o9yOr92/rrYM7URiREKMWbpBPbH1uDnxF8Hh72vOzUOj+fWvuSnlCqrLw9NVJbB4qHiuhonE8d6U8YPRAoYJ5RmjeaO5KeUL/UPHOy6oqjoq3V8Tnhy7KejT1kQ+18N27d6OiQl62smV5mAnOOussRZfj7LPPxvHHH49/+Zd/wde//vW89FFomOA2AwMDA4O8w/NsuDP48/R8ZwZ5xVTeAgD47W9/W8SRGBgYGBgcDsz0+czP6IqKCuUvm3FdV1cHn8+Hnh5VY6Knp+egY6oDgQBOO+00bN269dBPvEgwnmuC7XNh+114A+IBtDVKZYLo315YvFvsqfPIA+cm1fYsdMW06nQ5HSumXRbyVgd6iQodkB1if5S8m5XqzvsfOuZmypw+7Nx3vZYpr3nppEw5qe3c26Pk3SNBKPanBcbluCULVUGTMaoYJi90LC3nwkJp++V8rsme/slPLABHoxgzRZlFrwLHUvqyPbJrq2tG8Ps9X0+bPJXpKqJea15cm0XUQGEGPhlXZRXlRfarnmu3nFOJZaf4+jVxrZY2yfXds7FBxk/VhslzrguisVhfspI8x110nWierTG1/1grzZPieaXPU9mZH4BKn1dSrhHbgtOaAep1Zip92ZuUYovOi3NZA0B8Clo4p9BjQTndc82/AZ6b/Zwrdkp9fZ/4jPrdmfJvA6LCxoJw4W51bSXJ+66wZ4jhEJ+Q8w9oOdhZlC0USsFxCiMA48CCs98ZH1w7g8Lh9NNPx5133onPf/7zmc8SiQT+4R/+AT/+8Y+PqnQnBgYGBgbTx0yfz5NtDxbBYBCLFy/GmjVrMkKWrutizZo1uOaaaw6uP8fBa6+9hgsvvHAmwz0sMMa1gYGBgYHB2wQPPvggPvvZz2L16tV44IEH0NXVhUsuuQSu6+K555473MMzMDAwMHgLYfny5bjiiitwxhln4Mwzz8TKlSsRjUYz6uGXX345WltbsWLFCgDAbbfdhr/4i7/AggULMDw8jDvvvBO7du3Cpz71qcN5GtOCMa4JcxsG4C8NYXNURMdCHVowLosOURyTb0Smsvm4/ky5/1k5FgBUHD+cKQ/vFe+iL0GCYgvU2JT0iHihfOwJ7xIKhqs6txT4OACUvMJvDInAAMeMpyq0mGvytlfXSbqn6Ctq+qjM59srlf/ZcZYgL/SugepMWfH2+zVaKIeDU5wxexSR1FI0kUfPo7j3VD+l7CLRM3e/FE8UC1tC9UI0Nx570dU54/+Z7WAHpDw6Kl7k0LjGcIjIBQ33kueb0l2xABgABGyaQ1629RKbv7h1b6b88iY1/jdZn50hoMTwk+taj9nm+GX2/Nt0LBbuC/ar7VM1dD9xWixidQR7NA0EOnaalmOqgl3sUtS9/YjSGJitwFnJyCPtlqqe80CfTLRDcfKe4pWnVGCaIJpL36VrZW5sEhh0NaYVH5vjxJWUYb3ym8FrBgB8xF5xHBuOU6BUXN7M4qddL3cdg5njwx/+MM4++2xceeWVOPHEExGNRvGJT3wCd911F0pKSnIf4DDh9g//K0rKD/CgyxNWXvmxgvcBAPZzfypKPwCQ/qvFRetr+98W/hpNoiRUnDje0ZCTu1KeYNvF+wE8sbWraH31x0pzV8oDoonCp+ubxAfOfrHgfSTGU7inAMed6fN5su108JGPfAR9fX24+eab0d3djVNPPRWPP/54RuSso6MDti3vIUNDQ7j66qvR3d2N6upqLF68GM8//zxOOOGEGY33cMAY14T+iVL4EFIUrWOzVIp0iAwIfpnmF9vhWPZ8twBQRouZRUZ8ZIx5e1WKsJ8OEZ8lD5N5syRH4Y43SIV8t/o2HjxJ6Mcx+rzvT5xbemoRN1arHh0QC8ahfNSsoq7nomZaLhtN1eUyrr5dIgaV1lWoB0jQqlImw08GiFWvtkmHxOhhWq1zkswAP8QSWv7jADEjPTJUmFLLiuIsyAYAaTLaOJ90MED0/w45Z0URHYA1hXq70ySGMufCBoDeRjke04ot2oTpbJKND1tT3maDOk0K6aB5UhTi/eovLBukrMIdos0BEI0alkalZ5o/CZfZPJeaHajQumkXRzEoaUMjXaIeIDRIm0q0CeOny8F0a0fbREnRZpGvnATyRmWemOKu52Nf0Cr3MAu/ObSJlNZEEV0OU2BRwEqq1ybr3N+h/p6k6Np68SDceIHyaP5vfNZM2hkUHslkEo7jwHEcNDc3m/RYBgYGBm8TzPT5PNl2urjmmmumpIE//fTTyv/f/e538d3vfncmQzticFjfYp599lm8//3vR0tLCyzLwmOPPaZ8/4lPfAKWZSl/559/vlJncHAQl156KSoqKlBVVYVPfvKTGB8vjoKkgYGBgUF2uLBm/GdQODzyyCM4+eSTUVlZic2bN2P16tW477778K53vQvbt28/3MMzMDAwMCgwDuX5bJ7RuXFYPdfRaBSLFi3CVVddhYsvvjhrnfPPPx8PPPBA5n9dje7SSy9FV1cXnnjiCaRSKVx55ZX49Kc/jYcffngG4wnB9sLwyNMV6lRp4Uo+Y6aLco5doiqNaWJCfT3kOeSvaJuDabB6RT8Jmg3ViUfKTx5hnelxTsuOTPm3m4SKXXH8QKY8+nptpsw5qwHVE+0XZ7OSI483svQUS4FxYgKQ6FRtRA7WTXRbK67u+djknIzskSUbb5DrVBlRPb8jlD7LI89pIJCd3qWxdZV0RUxFd8Q5rIzTK1GPy1TuNHlkU+T5LTluOFN2t6lUeuUaMl05TaJVbRolbkQ8Txan6aqXei1lI5ny7tlyzQGVoeDQPQBicjgl8jkLkAGATcOxaW6SldnvmZSWv5lzS7tJat9IOdwHVcqXZ5MQHlHG+fpxnm4WFAQAj1KOBcay09cVhoS+fOje9Og0/SOUJ5vo6v+nfZvS/L4/n5MpJ1qpT2rP4nb7OqJ81nSv8Zrh5ZxuVNdJeIf8htac3Y90OIFdyD9MnusjE5/85Cfxne98B5/97GcBAH/913+N1157DZ/5zGdw6qmnYnS0eKmApoPvbD8P/tL8pHo5ELo/XfAuAADuZe8oTkeAmmqzwLAminf/du/OHpqWb1Q3Fe+eSDnFo9W/sq09d6U8wYoW6bz052UB8fOuMwvehxuLA/ivvB83H3muDabGYTWuL7jgAlxwwQUHrBMKhaaUa3/jjTfw+OOP409/+hPOOOMMAMA999yDCy+8EN/5znfQ0tKStV0ikUAiIfTayZcJX8CBL+Ag5UxtAATpZTy5ULjDLil8K3GVGnX25Pl7MuVNz4qKN8fP2qUqxdgbFYOCKdM+erFn4143jjcMZM+nOTYeyfo5004B1aBNnSgGcWirtOe4XP/g1BsSAcq53NNIORbJgPSPqsZ1upTVkeXzcL/UqztJVSgfjxI1f7YYFzUBGefQoFjKulq4RTtzFlHBFeOKf2AS6o8Nx1m7ZHiHqmXNjHdIfkC/pkqvhAnQGuIHVEgzbjlkgDcWLdrgea1bwgf8/ep18lPcN6uS8+aKTefPOccBIEGhBZEdFCZAlzOdIOVx7RnICttKnDRtSCiGOgCHN2W87PRxt4ruJ0edZ76/lbzhNGdMsU/WTq1Wzix7l3J++9+UOi92z1LanzNLNr6e2XUysiHYpV4njo1P1VGc9picv2+X3JtOpTpmXsOVoTjS6QQM3j5Yv349jj1W1Vuorq7Gz3/+c/zrv/7rYRqVgYGBgYHBWwNHfHDb008/jYaGBhx77LH47Gc/i4EB8bauXbsWVVVVGcMaAJYuXQrbtvHii1MLDaxYsQKVlZWZv/b24u3eGRgYGLwdMNMcmibmurA49thjkU6n8eSTT+Jf/uVfMDa2T6Sys7MTH/rQhw7z6AwMDAwMCo1DeT6bZ3RuHNGCZueffz4uvvhizJ07F9u2bcM//uM/4oILLsDatWvh8/nQ3d2NhoYGpY3f70dNTQ26u7unPO4NN9yA5cuXZ/4fHR1Fe3s70kk/XL8ffvIA6eJaSXZK7xLvaJKElRxXFl5EUxt/PSKeQ5sYrl5YPGhWv0p9C5OSt0c5j4eHiMpNdN3AkOb5pfGwt/Bdc4Wi+lSv5LmG5rlmUTdrSMaWriMXGNGV/VFNKIsF2Zrln1PrRbn66T/LubDgEqBSjFnQjCnB2/bUK218JOIVIY/soCXe8opq8cJPdKlzzmfgtIq32YnK9WShrrQmssuKzgHybiZsEg2iOj5NxZq99Uqe7hGmW6vXqaxGzsfZXpUppyakz0Q7UdzrNIaERSJwAzKe6GxSSyePdmhQ9Zz7o7KgmWHAecqV3Nra73OwV+aJ23MuZ7d8as9xqpqE48irn6J7xqeFHARGstObvIC0STKrRMuTzVR49nYHNFbAJEbG1IXywePWZ8q/qz4ua3vdWx7so3MjhXUWZ0vQ56x2DgCJOvlu93AVnInCeK5dWDNTCzfxXAXFrl27cP7556OjowOJRAJ//dd/jfLyctxxxx1IJBJYtWrV4R5iVvRuqYddBNE1nVFTMOjhXwWEVUQF6oXH781dKU/YsrGtKP1EY4UPR5iEt604qtoAUHb8SO5KeUJdezR3pTxgT1917kp5wvxZU9sZ+UI6msCe3NWmjZk+nyfbGhwYR7Rx/dGPfjRTPvnkk3HKKadg/vz5ePrpp/Ge97xnxscNhUL7xW4bGBgYGOQP3gyFTzzz4C4ovvjFL+KMM87AK6+8gtpa2dT80Ic+hKuvvvowjszAwMDAoBiY6fN5sq3BgXFEG9c65s2bh7q6OmzduhXvec970NTUhN7eXqVOOp3G4ODglHHaB0I67odt+VFC3izP1lI0kehRnEWPBqVesnHq1EElZeIlGq8jzx9rPoU1z3Ere/uy5+/l/L+6p+r4mp5M+Q8QD+/TWxdK9wcQgWDvIIeTs5hSmuJvldhZqPHDNnloBxLixeN0U+Fudc453VKIzjNdKv00Nw4rbTop6XG6Tj63aGpGh8iLqHnL/cPk7dwt3hK3WVyVyUpiBGhOCI6TTlVQXDAJdbXM78uU94bV3dbIdtn84fhtr0b6twZUca/xATmfMC0tvk6zGyUH+44/qeEQFjmyOZVVpFPmPNYulZKVU+f2TjbRwWg9clqtwKjanj3ELG6WrCJBv0F1baQptjlEsclJ8mLbnBtei62PtUt7TsGnyCbQPW+nph5za8tgpty/R9LcuTTkphpVGOfJkRPlHxY1ZN0EnYHFAneU2izeSJ9TnL+/L7sXHQAW1vYhFU5i05Q1Zg7Xm6Hn2oilFBTPPfccnn/+eQSD6u/HnDlzsHdv8byOBgYGBgaHBzN9Pk+2NTgwjirjes+ePRgYGEBz8z5q9VlnnYXh4WGsW7cOixcvBgD87ne/g+u6WLJkyfQ7SFtA2kKsUV6Y/ZrypUtGIBvErGjNao+JetXqineVIRuY+uxpyp7hHjlerE06apol8ec9SbIgNdGmaFpeophy7esSo5F11xRhJ6gGDFOcmbrsRGjOohotvSy7UFXPhFC0PaKie7Y6/hDRhdmYYaPx7IYdSpv/2CPGdcl2Of/yd8pmDNP3B3aoxi1fZxYkQ0KuRZA2YRJNuqKzFC3aYQl3SfvuahE082kicMmKKdYZ5dzW81SD1hpTqZOkKt47LuvP0YTvXDJIOZzB46HR5k6oX73O8UZqv1PGybneeS4TYS18IJV94wohXrOqQWDRd5YjAw2Qen6yWQx934BmaPqJ8j3O4RdShSnqtnaZg0TT57zxadqciDUQXTum0lqbgmRsKyJy0j7Yr9LveTys5O4jyrpHGwq6wKFbKfMxlgojnTIPyrcTXNeF4+xPSd6zZw/Ky8uztDgyUDJrFL6SwovvjXUXZw6sePFUoT1/8WjhW17PLqBaCFTPG8xdKQ8YGsr+3lYIeA2p3JXyhJpQMnelPKF7uCJ3pTwgECyeWvimXdN34k0X+9TCDY42HNao9PHxcWzYsAEbNmwAAOzYsQMbNmxAR0cHxsfHcd111+GFF17Azp07sWbNGnzwgx/EggULsGzZMgDA8ccfj/PPPx9XX301/vjHP+IPf/gDrrnmGnz0ox+dUincwMDAwKDwMGIpRybOO+88rFy5MvO/ZVkYHx/HLbfcggsvvPDwDczAwMDAoCgwgmaFxWH1XL/00ks499xzM/9PioxdccUV+OEPf4hXX30VDz30EIaHh9HS0oLzzjsPX//615V46Z/97Ge45ppr8J73vAe2beNv/uZv8P3vf39mA/J7gN9T8lz7J9QpYo/WvIUiZrB9u3it6iOy05QcVvMX171DKNr9L0kb9kLGm9Wdy1gb7TqTIFQJpZVShKI0WvjWQfJqR0hcirzlnIZJT5RtkSc+xSJYnD6LBJjSWoompqiG9ornsWdA5sai89fTLYX7yaNH43ddGddz3fPVMdM1nJgvu7NNQSnv2CvzYif0cybPH40n0J39lglpnzM1nz3E8WNkbdRVisDHcIeaFo1nwKLrkab59+1VvbAejTldxrnRZc4bZsn6G/Gpa5Mp9x6dTpLSVXGatVirukNskxc1Nk88TNaotIl0U/s2dZ0HiIrP4wfnCdfo++Ed2QWOQiTIlqqQ4zplantejwkKP2BvMQuywVa9TUqaLr5v6XYMvyHnfEaryrB4fnBepuwjIUVO+ZeoV7nsbhkxSYjyzaEJ6RaZfzeqrhO+Hjs2tMKNF2Zn3NDCj0zcddddWLZsGU444QTE43Fccskl2LJlC+rq6vBv//Zvh3t4BgYGBgYFhqGFFxaH1bh+97vfDc+bmq7029/+Nucxampq8PDDD+dlPJHKOHwlHtzXxOhQ6Lka9rxA9CdSzk6kyUjRmF8jE5R/luOUKV+vbhyDjX0yYt12qkc0Uo7rBYC/aN6VKT++41RpXyUv6YkSaWNrisqKeiofm2LD05UU+9qtvcwPiQHDCtehkBgj6VGKa9aYuxz/a0/IhJZ0ylgGE6pauEeq4nZM6vEmyOw5EvPc2SUq7oB6zvaIXE8fx+/S0ohrhqIVzz6f/k7ZGJozT67LBo82QAD4ifLOBlya4pyZ7g0APlonQaJsc8x2bVgM+u0x9TpzCIOyBug80xVT1IFKkXbHKRSBYvD5fgh3qhea+2caI+dZj7WphmaKQg4cKqcoNIHDFDh+GgBcYplzrL+ywUUPEqdEM3SZUs3RD1HKe0+HembnAqX99afIb9wd45T3nta8HibiG6bQjHIKk6Dz9O2R+0knn3IMerrUVXdy8gh3hoIpRom0sGhra8Mrr7yCRx55BK+++irGx8fxyU9+EpdeeikikUjuAxwmjA+VwI4XXi0cRVLW5k38QqOitjhKzQAwmipeaMGoln2hcB1NrVuRbwRqi0cD5tC4QiM+UhwR4WKGW5S3jeaudIhwQgXM5jHDZ615RufGURVzbWBgYGBgYHBo8Pv9uOyyyw73MAwMDAwMDN5yMMY1IT4egu2E4TVlVxAG1HzEKaLLBoZkt2ysRnbo9NAEl7zSgVH5kj1ituZR9Mg7xuJizSWya7Z7UGLMLW3j/ZkOoUyzQnPLCeK53fWGCDMcKE91cCS7cnSYKMo+baMtTrRWpn+f1bYzU36qh1STNaEuVmhP05ynS8lTN39cbWNLPfcVYSLEKbdo97DssFuahkiyRT5gtkCCcg4ruaz7pg4f4GvmRaS8ftcsqaSJyLFYGwvsWST8Zg2pu+klcyXPdbSemABEpS8PUM7uiOo5YSo7r4FkPdGlSVzO0zbz00R/53P2jZJHmO4t9kgDgEceo8hu8s4SRZxzPAOAQ44si5SzfVyPl5N2Pyqq7sQk4fPkPnRBMxb/Y8o838/xOum0tkL1IL0+IeyXODMRkhyyMTUV3SHFfO4z0BCTSpvVvKn8u+XVJuHGCiNqY2jhRw5+9atfHXTdD3zgAwUciYGBgYHB4YahhRcWxrg2MDAwMMg7jHF95OCiiy5S/rcsa7+QLOt/8xRmUxI3MDAwMHjrwBjXhYUxrgmV1VH4StIY2S5pmUIDqqsrxUJLFeThHpHgTdchj3Sp6h2sKxWP0rAnqQn8I+KdsrV3G/aiciqotW+SiBcJNVlaap1j6yX91Ctl4q3t/Z14zbw5JI42rsVcU5nTLVkpEpoib1h4u9o+eozMkz0mS+65nSLm5KfUSft5keuzv+yFKAvHyIAaK7jk5K2Z8oaN4rluaZf0ZV29VTJmTdCMPYdpit9mbyvn5tbZAgkSweIc5G6IPLIUvxwe1eKfG6jPvZSKzZL2AS1+eIzzdpPoFadm+2PX7EyZUzfpSJewt5hjfCkW2Kd52+l4PvK2cjo7O0054PVfHxLl41zpAU6RpV0mO03p4Oia2XTOHD8d2aO621nIzm2kHN5TaBCkqlXXdYBYDfY8YU84XeItZoG+ZFo96flhuTeRppRtHP/dqgm/UTo8jpcODpIIG+h+0PLO8+/DwtZepKMJ7Eb+YYzrIweuK2vgySefxFe/+lXcfvvtOOusswAAa9euxY033ojbb7/9cA0xJyIV+zRRCo1kojjxtXXVY0XpBwDKgsVLuZRKFy/mNRErzrWKNI/nrnQUon9vZe5KeYJdWpwUWaGq4sWsJ5OFN6GcZGHmzRjXhYUxrglj42HYblgRs0qVTk3X9fpItImEut4zTwy7p/aerLTv6amS9kSRZepnOqT2GdpNuY3JGGAV4QCJSaUXCj0YACqD8mPDdF//kiEpb5Zxpeq1m9lm+jNRX4kGzPT38dnaCxC1Dw5KxWNPE+XqV4bE6NMF2SwWEaNimmxJn5ZbewsppDOtvSwgLxlejOZce2njMXAoAOdsDrCic8PU3h5WkbaoTxah0/Ohe5R/OVUh/fB13u/3jT6wx8kIp1CA9y55PVP+z5ffpTTntR7uk37iDUSxJ+X3yG4tN3dldvo/U6dd+sWxHG2d0HzwphQLcO0XZhHMvgmQXCCbWH4S94q1qGtbWTdEi+dNFO7TG1HzbPMGw+xauZ92vSl5Ufk6pR31BH7dJ78PbPQmaBMLmqCZophO91aiSdYZG+CpWm1DgEI7dvbXwJ0wauFvJ3zpS1/CqlWr8M53vjPz2bJly1BSUoJPf/rTeOONNw7j6AwMDAwMCg1jXBcWJlmZgYGBgYHB2wTbtm1DVVXVfp9XVlZi586dRR+PgYGBgYHBWwnGc01wJgLwvABQQwJOXVq6oFaiVzEtliidQ0mhZHK+WgCIVcmOT3CAqODk6UvUqJ6qBHm42btml4mnKhEiemqPmq6kr0W8aEnK5buoTiipf+on0aOUOuZQrxw7SSnHgkSZ5/RZaY0KH94pAm/xOTJ/fuK/M43YpzHYbKZok+iUnxz0To1KnWX6LXvYoynxPJY1iLhUsk+lR7GH32X6N3lRU1V0niEtfzKxDTwru7hWqiJF9dV1liZacorWo7rmtN1D+oqFutgL+sttp2TK7GkGVFYEi4i5LHxGfcZmafx9BqeGI299uEvKcc3bb1HIAFPMOWWdW6F6YTnthk3UeqtH1hyvp7TmLOf0Xb5RGltz9nXOKbIALbc0ubjZQx/plTkrDamL+8L61zLlzUOSiivJa8tRrzMLHurig5mxzBFvtDWsett9RNOPx/1wE4V5DHiYWcqO4iRCevviHe94B5YvX45//dd/RWPjvtSEPT09uO6663DmmWce5tFNjWQ8ANsO5q54iKisKE7aqrC/ODRZANjRU1u0vtyB4qRcAgC7tjBpinRM9JbmrnQUYsExXUXra+uuxtyV8oDYePHSpumCx4WAGytMmMVMn8+TbQ0ODGNcGxgYGBjkHYYWfmTi/vvvx4c+9CHMmjUL7e3tAIDdu3dj4cKFeOyxxw7v4AwMDAwMCg5DCy8sjHFNCFbE4SsBnB3i6XW0+Odwh+ycJ+aLd8hHMY7dUREqS9Sq3sGmVonL7IlLXDDHfvpj6sJNUWxxiMSxQk0iiDJ2gN3i3qicD3sU/7RRBNFYQClVro45MUt2h30DsivI3upUPaXl2q16FxI1FItLMaKnVu7JlNfVzsmU/ZroFItbKR7ZGtnR4+MCQFOFzM3WKjn/ThIxO669W+r4Vc91mj2aURbKkjr2OHmxU9puKf/40Jwr8cMUfxufq+7AB3poDp3sP2RhjVURJ1YCxzx7dKj6cvHK7CpXReDcMmljkYgXn79TlZ1FAQCgmGE/3Q+c8osFAb1SLU6dztPm2HL+ldJYFSyExwwFTkvl2VInOKTuAispz9gTT7dAspLmMqIxFOi+2fOiCARywI0vIeManlDnfFu8IVPmuHuL5iIwoP5M89pMVU4xn+TRt7TLFGujNGl9QSCu3u/5gjGuj0wsWLAAr776Kp544gm8+eabAIDjjz8eS5cuzSiGGxgYGBi8dWGM68LCGNeEdNIP1++HW0c5jgc0WjgZy16MRKNGiNZNlGQ2pgBgYEToRYpCNr+z6+uWDCVW5fY52dtbjaqhFvTRS/sEqTWTOBXnb/Zr4mBOKruh45ChG9orFlz5Lk2ASQTKlWNNONImvFPKuqHJhirXC5NaeLhPpcLvCAgNzj8m5zzv2M5MuWNIVOEdLc+0TUZXmmjZYaJv87Vwy1WjiwXbmbqbJtGw8hoxdMf6aAMEqgHFolX+walVpENdpOrNat+0IdNTLRcj2K1T0WkTgA1lohFbtInAdG0ACPfLtWXKOa/zFKmo+wbV/pV+aDq5n3Cn+pOlXAM6nDVFPnkW/QI08TyWfLetrB/rYSI8zhPevSVT3vCaKOF7Nql4J1Xj/v1VL2fK/5kSSi7fg6k6TYSN6OtMP7dJqMxPGz+utu/DNPlEUxpuoDCpl4ptXN97772488470d3djUWLFuGee+6Zkub8ox/9CD/96U+xceNGAMDixYtx++23H9G06HzCsiycd955OO+88w73UA4azngAnlN4yufgaFXB+wAAtA0Xpx8A6AznrpMneKWF2azL3llxXvLnLezOXSlP2PF6S/H6erk1d6U8wS6SiLzVUJxQAQBwQoWnhXuBA4TfHQKMcV1YTNu4fvDBB/GJT3xiv8/T6TRuuukmrFixIh/jMjAwMDAwOCg8+uijWL58OVatWoUlS5Zg5cqVWLZsGTZt2oSGhob96j/99NP42Mc+hrPPPhvhcBh33HEHzjvvPLz++utobS3eC+fhwpo1a7BmzRr09vYqabqAfbRxAwMDAwMDg5lh2sb1F77wBaxevRr33Xcfqqv3ef42bdqESy65BAMDA0e1cV1ZOQFfiYOhneTRDKsvHl44u0cxNlfcQTUkVJLW0uBYPcLx9iivrj1KYk4aLZz7YXGpiRGhmEYoxVWsVL2sySryVofFS/VXJ7yZKf/uleOl/z51i9EiTzwLooX3kheXqOTjbZrnu4xVn+Tc6gKSO5Kp31ZUHT/Tkj0eGl2KaLvqRXXJQxii+dzaWZ8pL2wVQbdtKaHyA0CaPNE2ia1xyi0/eUS9MXXOOJWV4uGlMV+1cG2m/P1d5yvtmVVg07HTxKqAlrJMEb4jVoFFgnThgNRJavnQg8y+ICaDGyBaNJ0me6oB1fPN3uL4LLk3IruIoaClH0tS+AOv0wixFfTUeC5Rwf2UD5s9uiywp+SIhiri5vnpmlE4CN+PHJYAqPTtHUPClmDhNpdo+WUl6q76s+PHybFYoI670UXY6DeAc3AHec7byT2thUykyavvCzuwrCMrj+Zkm9HRUeXzUCiEUCh7+Mvdd9+Nq6++GldeeSUAYNWqVVi9ejXuv/9+XH/99fvV/9nPfqb8/+Mf/xj/+Z//iTVr1uDyyy+f9piPJnzta1/DbbfdhjPOOAPNzc2GCm5gYGDwNoPxXBcW0zauX375ZVx22WU4+eST8cADD2Dz5s34yle+gosuugj//M//XIgxFg2ua8NybYWWzS/fAOC59NLMhjapRTMt3DesTjHHrLI6cnA4+4s9ANhRMo4p5601Ie1j8+RlOrhXpc6V0ncDZMR3RGUTwT889VLgPL92mF/EiSJMBow7rlFliFdrUyzoA1v+QvrguOS4OueKonOCKepEl69WDbXT5nVkyi9PiApzMCj1xpPyoq4bTZG9NLftbLTSWGgTQqfeJqso/neK+O3/2H26jGtYM5TLpc8QbZzEg7Rp0Ksa9KnjRD7dv1U2Xoh9j/fP2ZgpP7pJ8twCGv2Zx0M/pEzDjjWrRlm4JztlPdBPavMVdJ01pU0fp1umOGlWFbd05WxWOC/JTkf0k/J4WqOyg/73SunepA0epvWnytQ+eNlURuQEdrXSsTrkWGODKv1/W4Ns9nh036dIFd03ot6bLv0GMJVe2RCISHtHUwtnyry/PAEnUBjj2vMseDN4CE+2mRTbmsQtt9yCW2+9db/6yWQS69atww033JD5zLZtLF26FGvXrt2vfjZMTEwglUqhpqZm2uM92rBq1So8+OCD+PjHP364hzIt+MpSsEuKwC3tLo7a9WB3Ze5KeYKvpTC57LP2tTeSu1Ke4BVBrRkAdgw2F6UfACibPVK0vuJ/ripaX5hXHBV+p7Mkd6V8obowlO1iYKbP58m2BgfGtI3r+fPn4w9/+AO+9KUv4fzzz4fP58NDDz2Ej33sY4UYn4GBgYHBUQgX1oxSfUy22b17NyoqhFEylde6v78fjuNk0kpNorGxMSPYlQtf/epX0dLSgqVLl057vEcbkskkzj777MM9DAMDAwODw4SZPp8n2xocGDMSNFu9ejUeeeQRnHXWWdi8eTN+8pOf4C//8i/R0lI8IYZCIJ70w+cPqKrFmiBZihR5w7WxTNnZJh4pq4HEpIbV9hUnilr48EvitWLqbEhTy2a5X3bcueSp4zaulgq0OiQezR7Ku73tDblenD6Z8yIDKv3Zv1OEUdhTxp5e9qwBQIBEuJjiOr9mIFN+ZVB2GwP96gm4pLbM9HE/efT1PNMbts+Sr/qJ1h2ReWpoFkXxnpT6Ys6eZ59C+SaKNlGUlVzQACKdUi9FwnOsTt3zqvTpVKntOTc0K2yzOJiribA5CWnjUD5yq0w8k//fzpOoE6W5IqIWIq98krzVLHTGzAFAy83M+bwrieKtrBO1/0Qz7QKzthiJ8Flabm8W5wqMMMVCikyRtrSckby23RQJEdJ58rgsTa3cGpN6u/aI+j+I1m4Tk6WtmVT4AAwkRODQY/o29ePoAkEBYkIQeyFG3nJEZXJ9UfWcHfKKN1WNIR1IYDvyj0OlhVdUVCjGdaHwrW99C4888giefvpphMPFE346XPjUpz6Fhx9+GDfddNPhHoqBgYGBwWGAoYUXFtM2rj/zmc/goYcewje/+U0sX74cPT09uOqqq3DyySfjhz/8IT784Q8XYpwGBgYGBgb7oa6uDj6fDz09PcrnPT09aGpqOmDb73znO/jWt76FJ598Eqecckohh3nEIB6P47777succyCg7nLdfffdh2lkBgYGBgYGRz+mbVz/4Q9/wIsvvohFixYBAJqamvDrX/8a9957L6666qqj2rhODEZgx8IID1AanHLVO+gjcau5x4nnddNu8UAlUtljoQHAlxCvLMfCcvx1skb1VAU4/pUcK6Ea8ZwngkKZ9GnpwzZskLRAFguHVcrYXI4/9qnnzPHMQfICcxoizhEc2an2b5NDMjZH+izxS5kF3fQ5dzjNFXntUmUyL0peaACBhSKGlAzLd76gtH+lo0361zbi2LtnUW5jH8XjseiZ7gWemJfdW5qmtGR188SLOfQ6eT2h5dAmzzV7vvXNw0CEUshtk3HGF8g4Z1cLc2JTokpp71Cokk3LluPROf0a9NB68ipznmzWCWBvdaJVvTfscfJqk7fdpWvh71fXFseAW+Rt5nR01qBcfz1mW0lzxTHnHSTW10hMlC7VC2zRrcpaByz8lqjR4rwJVUFhlQQoBzfnutfTxKVp3XPOamVc5O13tLgw/i7h+OA4hYljPdSY64NFMBjE4sWLsWbNGlx00UUAANd1sWbNGlxzzTVTtvv2t7+Nb37zm/jtb3+LM844Y9rjPFrx6quv4tRTTwWATCqySRzJ4mZNtSPwlxY+drizuzF3pTygqW0wd6U8YSxWPEZGtDSYu1KeYJcXJ+a1pb54cdDJAv0eZ8N4eXadkkIg7C9OX4HZY7kr5QkTPaW5Kx0qYkfW83myrcGBMW3jet26dVlj3z7/+c8f9fFqdsKGbdlIkzHjaiJJFtHE+6JCBXdJEdtn0wv/uDrF6Qp6gWYxIqZ4a0JVrFDN31UeI8Z1b5fc5Io6N4DTTtyRKb+8TejSddUiMDEwRAaIRr3lPpkKzarFgX45z4pd6pz1nCsGgM2bCCQOx+rSev5kVtpiwyBAQlPJRapYRirFVGL5vKJC6qXpIRZPqi8fgQEZpxNm5WcytAayzwsAWEQFdyhPto8o8p+b/0ymfMcf/1YdPz30PNoQUAx1TVzLG5RzSDfRGhgRo2/PiIjo6OEDTJGemC0vLUyLZ6MxoIU88KYQ3ycezRkrd7NyOKAq7rMRzYJi8SbVmPSRWJnLgl6U290h5XVPU85WNmXoqzRt8Ngk9peqVOfcpWOz8BiHCZTslknbvVPdRPk/S7Zmys/RJla6knOLa6KKdA7BvuxrkH+3An3qhgSrn/dYdXBjhTFYipnnevny5bjiiitwxhln4Mwzz8TKlSsRjUYz6uGXX345WltbM9ks7rjjDtx88814+OGHMWfOHHR378tjW1ZWhrKysin7eSvgqaeeOtxDMDAwMDA4jDC08MJi2sZ1KBTCtm3b8MADD2Dbtm343ve+h4aGBvzmN7/BrFmzch/AwMDAwOAtj2J5rgHgIx/5CPr6+nDzzTeju7sbp556Kh5//PGMyFlHRwdsUqD/4Q9/iGQyib/9W3VTaypFcgMDAwMDg7cKjOe6sJi2cf3MM8/gggsuwDnnnINnn30W3/zmN9HQ0IBXXnkFP/nJT/Af//EfhRhnUeBVpuBFfAhsIepvneoFDgyKF6h/r3gBI7vJ09bKAlBqH4kJoo620ZdEV01q4lbh7uy0kIFh8bBwXuQDIbhHPHX98Sr5nMSgklr+Yfac81gsl4S6yBs2cLLWKXvaKK3UMWWSZ3p91QIai+ap80mfPvL28/2dTqhL+ZhZ3Zlyx2syTynyVkfHxdPrVWtz3pWd/s5pjNijrgua+UdozOSt5vYrXpHc1m6JRoWvFg8tex5TjUQ3n1DPmVNb8ZidWllnFWGhSw/VaKm0SBQvTTm0OX0cU7d1b70dI5o+swqmyJbCabn2HZCYHJTmTknZFVLn2dc/BWVqhzA5wompPd8pmudwF3l4qRsiWMAp1WjYdN86NSR8RinnOGRg3nw1LnhuqE/+IYaCR8cN9k8dZsEhFJxKLVAp1znl0wQCR4mJEHLhucWjBhYS11xzzZQ08Kefflr5f+fOnYUf0BGEiy++GA8++CAqKipw8cUXH7DuL37xiyKNanrYu7cGdqQI9Obyg3uWHipqIxO5K+UJPb3FS/s1e0Fv7kp5wq5d9bkr5QGdvVVF6QcAMFQ8Wr0XKc5aB4BYf3FSZNkTU7xwFAC+qSO+8gYOsTM4ejBt4/r666/HN77xDSxfvhzl5RJA+ld/9Vf4wQ9+kNfBGRgYGBgcnfBmSDszu+L5R2VlZSaeurKyeIaWgYGBgcGRh5k+nyfbGhwY0zauX3vtNTz88MP7fd7Q0ID+/v68DOpwwfa7sAOuErupp+5JcSooEtOIzZE23oTsrrthdWsrSKJTTo94yBXvqLaZyN4p9lqFwiRgtUl2BXVBslmni4jVaxQuXz9LPu+zqjEl2KtO589e5DgJlVW8ou68Jiek0wR5xUsoj1Jw+AAppihO14nI5z7yVnsT6nWqC0ts9WZKLVZF8fAeeZHthPpjEW+mON0QxzyTUBelZfMNq7eSTxyHcELUDzk+k0OyTnzaNQt2i7eSU56xu55jsQEgQGNIUvwutzmlZm+mvGunuuvPselhirOPN8jn/nE+Fy3mmuKR07RJzYJmnMqKReP2nQDNM6WPYhG0yHYtTpuF9Ig9Eie2RYrSqkGLueY46algs55ep+pFdlnsbb6sZ4fOM14n57Vjjzrn/Y3lyIbILmK4aEPktcnx2DaJ3WGnXIBwYuoHYfmCYTgTCeyZssbM4QHwZrCzXwRnwNsODzzwQNaygYGBgcHbDzN9Pk+2NTgwpm1cV1VVoaurC3PnzlU+f/nll9Ha2pq3gR0OuK61z5BkAyagGjARUhFOkOgQyFA7sakrU17XL0rdAJDsIyOY6bZkHOqbQlMZngESbUrRS36yReWid8clV2y6Tr4b2FwrlcrJ0NFYKKEupjXL50peXeL+6vmLWZwLldL/jgkRd2IRs3SNOv7ITjGo4mQoK5TYsuyqyYBqBJcE5djpChGES+7Q6IbjUkzOofHQdWLRLTamASDRTArXQzJ/nPe89GRRIB3qVY0sixTfFbV0Nmi1tZmsoXqh7FTf4ZTsTtjRKSjVADxaA8FBWptknCpGP9TQAFY199OcKTmntf55I4tF9XhDQleSZ4OaBdEsUvXnnNO+QXVxMuXdKScRMdpQUsIytKdKkjaVrAHauaKNjxCFQjizVIX0AO2k+emac551R78ftmenDcZondpjPJdqPRZlS41H4E4UZhfahQVLl9E/yHYGBjoCJSnYJYVXUnb3RnJXygNef7O9KP0AQGC4eArUe3uai9ZXxTHDRelntDv7JmghUL9gIHelPIHFd98qiCaKR6v3F2H+nIlE7kozwEyfz5NtDQ6MaZP5P/rRj+KrX/0quru7YVkWXNfFH/7wB3z5y1/G5ZdfXogxGhgYGBgcZZgUTJnJn4GBgYGBgUFhcCjPZ/OMzo1pe65vv/12fP7zn0d7ezscx8EJJ5wAx3FwySWX4MYbbyzEGIsGX1cIdjikeOQ4xRQAxOuJukrrK9gr9cYXiAcr1Ku2b3/n7kx569amTNktZQUqjW5bLeMJU+qd4QER6lKciK7afiPvJJNH0K0ij1iCPLKj6i53msS20hUyzsBgdtEmW6O1sxeUx9aXkPEHRslrmFa9i7HZ2YXfmCKf1sS9Ng0Kl5k9pH0j0mcF5UxN6Lm9OeXSmIzHphRT6Xqi+Gu09JId0maCPIrREpmMFvKij4xq4mR0buxh5hRL9rA6T4ExFsWjeaIxB4h6wCmuACDBa5u8nf4oXUAqpio1sb8R9lDLCQT65NzYc+xowkH+wezsBxZO43MBgASFKQR6SZCtRXZ77X7Zyba1tFY2jY3DQYJDMpZEXfZQCEA9Hz62SyIkSihAWl0nJ4SFps/X3OHN95S6B8qhGYFxErFLsqAdsQg0WjgfLhhKwXGKkyvWwMDAwMDAwOCtjmkb18FgED/60Y9w0003YePGjRgfH8dpp52GhQsXFmJ8RYXbHAdKADcu0+IfVKfII/qxFyPlZMqNXREUo82npZDd1Vsj/1AsKufS9ce0XSGy+xRaLBnKnGM42K2OubJd6M/uLhGzsU4XWrKzUT5PtKvUVWsiO6WMKeL8Aq/Twl2OrSUV5aqgqKUyLVyPOQcbRGQEM/XYiqjc14qwTDyTrFIxGdwIGfpOqU5xJiovGV1OaXaKtq7WniYjOtjDBhyNMSRj3KvlJk+WsFq0zFmSc7BrCuUJYjMGhqSNQ3H/L/dK6IZPW2e8hh3Koe1UZN/48R1AlZOp8BzKwBoEej53NhqZip0W4W/lmgNAooHmgHNr02YLt+AYaUCdA6aicz5vjhl3NMYof+c1kkHfSTnHKf7c1Ta+BhzZ7EnTPcCbKEFNEZ03G7iNnxT/UxwioOkBsBJ6enM53Lh2w+YJrmfBKlKea4O3PlLDIdiJUO6Khwhfc2FomDrKSorTDwCMe0XM3V7EgMxi0bXLm8aK0g8A9PUUT3DQDhZPLbyiPJa7Uh4w1l+au1KeYEWnbUJNG24snrvSTI47w+fzZFuDA2PGK2PWrFkmr7WBgYGBQVZ43gwFzYxaioGBgYGBQcEw0+fzZFuDA+OgjOvly5cf9AHvvvvuGQ/mcMNN+AHbr9Bw9TzVgR6mnoqH10eesmryyLraRnu6j4SzSETMJWGldIO6m+iSh5xp6oFy6d/bJe6x9Bx1p6s6LDuG7IiPd1Oe7GbK0asJTSkeStqwStZmF9Cq/qPmCWMNLqKS7xwlQTUWxNYc5by7xuJqAREER3xc7XM4RjmsyVvZ3jyYKQ+My5ylSrUd3Cm89XwuHAqQrNdUo+h8eJ6qXpc2PcfL/LNQHgAkaqegbxONWffwM+OAc4O75FU/v/2NTPkXL79TaR/qJ4VrFrWm+WOBP8WjDQAj2QXJPKI4+0eJbt08tQhdqpwo4sQc0HNrhyhMIk5CfnYJCcrRPaeL/TmltLbp3NKVlLN7cGoxIP+A1IuR2BLfz55N86Jt+P6y9zT5h7+jsaQq1UasEJ4man5kL7EFyjmuQFOyJ1ZGqsqBGyuM92KmsVkmnqvwWLNmDdasWYPe3l64Wp7z+++//zCNysDAwMCgGDiU2GnzjM6NgzKuX375ZeX/9evXI51O49hjjwUAbN68GT6fD4sXL87/CA0MDAwMjjoY4/rIxNe+9jXcdtttOOOMM9Dc3JzJf21gYGBg8PaAMa4Li4Myrp966qlM+e6770Z5eTkeeughVFfvy408NDSEK6+8Eu9617um1fmzzz6LO++8E+vWrUNXVxd++ctf4qKLLgIApFIp3Hjjjfj1r3+N7du3o7KyEkuXLsW3vvUttLS0ZI4xZ84c7Nq1SznuihUrcP31109rLABgh9Kww2n4yDusxw8rIBEq9qj1xCT1lafn1eVYXk8OHiIPGAuIAUCQRZTI0ZamBZ6uJi9gVB30UJwCRenQZa2jmfJYF8UuaaG0aU4ZRumSInvIc0sx305Y87SNZ5/PeFo+T1VQ/mnNixzaS2wBjktlh6KWczngI28MxcWeVCNp0v4QU9PJMYIkrsXX1qEX0VQViYtp+dD9dM2SjdJ+dIG0+asGEbN6qpK8+FBjeVOVVCYRNT0W3h+i3Nx2dt7OzgnpJ9GsenHZE29Rc4uYCw5dJ104j69tiMTV+NIoscCWOkY7zN/Rmqmk9acJv/F65mtgk+eW80T7htT2LJDmBkjUj8LDEm00T3H15kjV0wAS8h2LAnL6Nf8ClVVyXHlPpryuYg4dmPKpa/nM/Xw/UTy3khqNYr45RRkA5YLUNI8ULM+1wZGJVatW4cEHH8THP/7xwz2UacFO2bB9005wMm24Q8VJ5TPRW/j48QzCxUu5VN02krtSnpB2C78egOKkXMogWZxzAgArVLyY6+G+IsX9F2/6gKpk7jqHilAR+jDIO6Ydc33XXXfhf/7nfzKGNQBUV1fjG9/4Bs477zz8wz/8w0EfKxqNYtGiRbjqqqtw8cUXK99NTExg/fr1uOmmm7Bo0SIMDQ3hi1/8Ij7wgQ/gpZdeUuredtttuPrqqzP/l5fPTOTCH3RgBx0kq+QHJ6yJg7GKcpqMHoTkixI/0cU1ASaHxJ08ooUniMYb7lGNpthsOV6QaOl11SKy0dMvOaOtGvVmXFwnCuW/rhQV7cSoGN1hEt2KN6l0XZ9u0EzWo5zTrE5c2q0+iGJNZGiRUNPZTTsy5f/aJespvEt7uaEpTDeICEx4J6myD6jzXHmSGDE9ZMRtG5V54hyPoS4t/zEJb3FogBskFW4yoFmQDVCp7QHi4vvJ6NxKY9ENTY8MzRQZysHu7BsNAIAOuZ4OrWHu/9gyMeZeGjxOaa5Q21m4LEVrkzY69FSHSdps4A0iRQmedkRSter4XaL2u7U06TQ3rmZoxucSFXyE5oYU3rmJpW3C8HVimr1D773+PjpuvbohEdota7VuSXem3LlNePUOGd2xEVURbW+8SsZJ15bXn/4bwqrkvk65tnwudpvETHg9ap+86VwViSPtFiiPphE0OyKRTCZx9tlnH+5hGBgYGBgcJhhBs8Ji2sb16Ogo+vr69vu8r68PY2PTU1S84IILcMEFF2T9rrKyEk888YTy2Q9+8AOceeaZ6OjoUMTUysvL0dTUpB/CwMDAwOAwwQiaHZn41Kc+hYcffhg33XTT4R6KgYGBgcFhgBE0KyymbVx/6EMfwpVXXom77roLZ555JgDgxRdfxHXXXbef9znfGBkZgWVZqKqqUj7/1re+ha9//euYNWsWLrnkElx77bXw+6c+tUQigURCvDWjo/vo0cmhMOx4WBWjqlI9ZS6nTOIFRp6+zqikUtC9i94s4ZuGNwmnM07e6VirRpdlzzF9NfCKeKEVthxRQgHgf4KqhzIbUpR6Kdylzl2qnPMfk9eMKO7sXeN0UQBgkyM9RNTdfspzzaJZ8VbNO0gePVD7ILHPklVKE2zrFs+hv1/aJ2dL+zlVIm62oVY9AKeC4vRnTFHmXMaBYY1t0EpeYBKnKqf810FKCO7Uquc8Vf5k9i77NYozp7yCX/p0/TK2N8ZlE0r3iHp0PCX9VDVR0SmUIV2pMhzYq83XME2CXCFiSIT3qGyB+FxiJewS13G8jZgbA+o8s9gX56D2NdKiozAPnWHA4Rj8HTMsFJqZRgtnD3NXX/YUKol6uc51tePKd8eVirf7hcTJmTKHHDhV6jwHyJPOG8jpOvLid4m3mlklAOARRbRruALORGFSfex7eM8k5roAgzHIIB6P47777sOTTz6JU045BYGAeh8eqaKk/qYofCWFp7Em+iO5K+UB5XNHc1fKExKvVOeulCcM+SpyV8oTmtoHc1fKAwZGipfeadHxu3JXyhO6o8VJZQYAY+HihEFM9BUxFdfEtE2o6fcRL0xIwkyfz5NtDQ6Maa+MVatW4ctf/jIuueQSpFL7Xub8fj8++clP4s4778z7ACcRj8fx1a9+FR/72MdQUSE/3l/4whdw+umno6amBs8//zxuuOEGdHV1HfAFYcWKFfja175WsLEaGBgYvN1hBM2OTLz66qs49dRTAQAbN25UvjPiZgYGBgZvfRhBs8Ji2sZ1SUkJ/vmf/xl33nkntm3bBgCYP38+SksLt1uUSqXw4Q9/GJ7n4Yc//KHyHacJO+WUUxAMBvGZz3wGK1asQCiUfafshhtuUNqNjo6ivb0dVsSBFXEAit10K7R0QRQ/iQjFZpOnbf5J/ZnyrnrxLgOAlWSPKO1I8U6QtisUHMmeCitN3l6XPI2uJl5SERGP4Igr3uKSMvl8gmJUE0HVO8CiTxYdOq2MX8YYHlb7j7ZkT2XUNSGbJOHOqZXj4o1yDXzjcqwYCYXp8b/lZcIQiEI8+Xv6ZAc/VUMCWDFNqKqCYuNZT26EvLs8/0H1ogUpfVM6Qh7ucalXHxEv5mZXDWtw6c7k6+mj/tOatxs+GgOJjZGDHK3h4Uz5xUZtbfu5vRQjOySuODafPMJa/HK8XcbDKdPS5Ajideppt6c9JGtAYUtEyfOsif35xymtVBPNx6iMmS9NcFi9zvFZfD7yHae7CnfRmputznlgnPQEAjLRdr+0YfbLwIAq6lI9X2Kj45yajK5FZLuqQcACd+lyiq0nPQaei+Be9d7ykxBeLByBGzMPyrcTWKDUwMDAwMDAIL+YMaehtLQUp5xySj7HkhWThvWuXbvwu9/9TvFaZ8OSJUuQTqexc+fOTKowHaFQKKvh7cV88OBDkASYfH3aiy1RngMNks/a8Uk9ly09TbXZJoqyU0oWDClEsrgYoFLGWUDJaRHj2L9XzsfVaNlBPwuPyedzaoRSteXPMq/75WzmDQFWe+acx3TKE3VTGzCBXjn/q9r/kCnf2Pg3mXKkUz1/NlR9ZAjwuSSr1XMeGaLNHqL4/sVsoVy93Nkm4xpTDQymCLNQaJLyCvOGQHy2KgoV3iTXgzcnYpQ/etMgbbyk1DljtXG27lMNYjSF96hrU6HT0wXhmYn4iDqsbSi4NE9Mv2bhOuVgmlo4f2fRdy4pkgaJPp8uV6+ZR2rXQRL14zzXPs0QTFbTxYln34TijQqfxirl9ZhqJIVxmlo3xDmvtZAJUpJPT0gj/nXh3ODhEtU4H3dk48cXJYo6/TbEW9RBB0jJ3mfRvUHrLE0GdLJeO2lWiPUsdVMmj/Cw3z7hQbczKA727NmnE9/W1paj5uFHciiyL2yrwLCKQD0HgMpIYcIxsmH8tIGi9WUliqO2DgB9Q8WhNbfXDxWln2Kjd2tt7kp5QtWc4aL0M1HEB4hXV3glby9WmD5m+nyebGtwYExbtD4ajeKmm27C2WefjQULFmDevHnKXz4xaVhv2bIFTz75JGprc/8QbNiwAbZto6GhIWddAwMDA4PCYJJ2NpM/g8LBdV3cdtttqKysxOzZszF79mxUVVXh61//Olx3evF9e/fuxWWXXYba2lpEIhGcfPLJSjYPz/Nw8803o7m5GZFIBEuXLsWWLVvyfUoGBgYGBtPAoTyfzTM6N6btuf7Upz6FZ555Bh//+MfR3Nx8SDFa4+Pj2Lp1a+b/HTt2YMOGDaipqUFzczP+9m//FuvXr8d///d/w3EcdHfvE/+pqalBMBjE2rVr8eKLL+Lcc89FeXk51q5di2uvvRaXXXaZkirsYBGsjsMuAZJEI/aPqZRmpuL6p1hgYynxW1kJdf8iMl9ETKJ7ZNc1MEr01jL1Bccak8tkk1PZS8jYWFjJ0jySoxNyPkxffn1bq4yLxK3CGo000ZjdW815lj3a7a/erHq+4/UyH+zp+8arF9LJIHsZav5eO5E9/ZWjUeE/uuhPmfK/vbQkU2bPrUUpnjjdGaDSv9nzHBig3NxEXbaHp6a1J+pkbnx0zY6vJTGrV7U81+yEpWXGYlZ6yjQWOEtXkFhak5xbCavLaVtrYWIM8Jj9lOc6RXRlWxP3Ypq8IpDXK+ecqCWhtTLdI0vjJ/o3r9lktZYDvZ893DJRVbOGM+Vhp4rGqDEUKD+8f0DmlpkDTnDqfVolHIDYJ7xmfTR/8RGVMfOrTmH/OCXZw0Qie9XfIPbEOxFij9Chbbqfg5rYnhuU/+e9axfS0QLluTau6yMS//RP/4Sf/OQn+Na3voVzzjkHAPD73/8et956K+LxOL75zW8e1HGGhoZwzjnn4Nxzz8VvfvMb1NfXY8uWLcqz99vf/ja+//3v46GHHsLcuXNx0003YdmyZfjzn/+McLjwXmgDAwMDgywwruuCYtrG9W9+8xusXr0681A+FLz00ks499xzM/9PxkFfccUVuPXWW/GrX/0KADLiK5N46qmn8O53vxuhUAiPPPIIbr31ViQSCcydOxfXXnutEk89HSSHw7ATYfhHyWjVDN0QGZ6Rekk9Nlwp9ZrC8jm/WANAMilTHhyiGE+KX01VqH2y4RoLEiW0hJSryaBmYxAASkJiUMbopf+T7/h9pvyzjr/KlBMajTQ4wOdABgSxvxyqEm2ZesOFNwcWtezNlF95XRTNPW1V8vkwxbxsE1Hk56jG8S+3LsqU/WQQ14UkzvmERjFuN+xaoLR3yDjlqxEkyn5gTE5aV4VPVpERSuP3S4gt0pTzWTd0Oe11inJW82aPrlDORqBN6y5Axu3EqTJnfo0Kz/H0oEOnarPnv9bj3ENEJU/S/cCbIIrR6qrjT1EOaVbId2n970fL5hAIKg7vrMqUw320CaTNsxuR7/j83Smo0hwzDmjXNpa9H47fDlWLFgAAlAUlnCBCceqxWTIXE23qJgpvajAV3DfFxlO8Sb2fPQpV2f3rOXASBaKnznSH2+yKFxQPPfQQfvzjH+MDH/hA5rNTTjkFra2t+NznPnfQxvUdd9yB9vZ2PPDAA5nP5s6dmyl7noeVK1fixhtvxAc/+EEAwE9/+lM0Njbisccew0c/+tFpjXvB/C74SwuvODyeKg6tOeRP566UJ+zZUjwmX8uC/VO1FgrdA9kzNOQbO7c1FqUfAGiZ05+7Ur5QlcpdJ08Y2V4cxXq7iIafFynCs0oPv8sXDsUDbZ7ROTFt47q6uho1NTV56fzd7343vANouh/oOwA4/fTT8cILL+RlLAYGBgYGBm91DA4O4rjj9k/PeNxxx2Fw8OBTG/3qV7/CsmXL8Hd/93d45plnMsb51VdfDWAfE627uxtLly7NtKmsrMSSJUuwdu3aKY3rqVJlGhgYGBgYHA2YtnH99a9/HTfffDMeeughlJSU5G5wFCFYtY8W7lJOQ9VrC7jE/i0Jyq4fOxFT5LZiMSYA8Drk2AHyViuiTVG1z3SZ7HCz18p1ZYddUa7WxLlnV8oL00BaNkZ+vv00qcTUY01RmUWjOGeukleYVJstRz3nWBvtjtI4O8dl15lpyJ4mKMN5qtlz6h5g9dZXiId6T7ms0wCpoMUdEpeLTB1rqOSTZo8y0cL1jbzQEFOE6Quqd1plR6a8PnG80j7RKp74yE5S62Yvpl8LHyCaPnuR2YvJtPCkrhZOO6SRvXLOcd60Z0Fxbc7SrCo/1TyVaGJaPP44U7yljZ8o+uydBTRRuwb5p6JBrv9ErErGqCmsc5+8npm+zt52PTd4msIcLPouVZGdbeA46r0VS1POarpvI7tIaE0TKHQpBISnMN6SXdBOz1ufoHkaPyEBN6aK8eUL+/JozqydQeGwaNEi/OAHP8D3v/995fMf/OAHWLRo0RSt9sf27dvxwx/+EMuXL8c//uM/4k9/+hO+8IUvIBgM4oorrsiEcTU2ql6/xsbGzHfZYFJlGhgYGBQWM30+T7Y1ODCmbVzfdddd2LZtGxobGzFnzhwEAmqs6fr16/M2OAMDAwODoxMmz/WRiW9/+9t473vfiyeffBJnnXUWAGDt2rXYvXs3fv3rXx/0cVzXxRlnnIHbb78dAHDaaadh48aNWLVqFa644ooZj2+qVJkGBgYGBvmByXNdWEzbuL7ooosKMIwjA5Mx1xalwfFs1dPEKZtG4+KSZG/z7LB4it1y1TvY3iYpMbpeltzGaYqrLduuXpaJEHm3yPPrBTn/MXn96lTvXENYvHjsUYxNyPjZCZpsUtsHKX8up+lyibjgH5YxJyvUG89Hnjub4k9PXSQySr0vNGfKCS3e1ZsiiMYljzCLkwHAcEzEckIUc/yHPlG0D/no2mixuBxbnSQvsp9SszHbgK8FAFj9csAkeeVBqZN2x4VFoJ+jRcJx8XpiDnCM79DUImrMNnCJ+VAXID0ATayPPaLMCuA1x15Q169dF05/RT++HgmXhSmVHOd/3jc48qCOSL0ApcaLtatrk9edkgGP1gPfs4FxNZ6ShdP4PNlDreSQj0y9Zesp+eBJUGyB0FpdV11oFzW/kil/r1QEBtlbrj/GOFZeyftNTBhOJxSfpc0zDcHXH4QVn55C9EHDs2YWm2Ue3AXFX/7lX2Lz5s2499578eabbwIALr74Ynzuc59DS0vLQR+nubkZJ5xwgvLZ8ccfj//8z/8EADQ17Xu+9fT0oLlZft97enr201FhTJUqs+NPbbCLIILWtmRv7kp5wNZNzbkr5QvBAt3jWTA4XjxGY0lpcdKZWUXqBwDG44XXFZhEXe1Y7kp5Qp9z4DS6+YJVxKDrYKTwMesOCpTua6bP58m2BgfEtI3rW265pRDjOCIQGPLBjvkUqqejKRq7YRLX6ha1b57IZ/oWZsohLRdx55BQ5DwSoAoMkXGs0bqZIqu8tFeIMZKkfLmIqwd4bo8YlC49ZP3bI5myojaeUNszXZWpw0wF5/zDgXHN0GSxNsoTPZyS/hX6vPbbyErqftrE8NHzTv+Jq6IcorubxbisDNLno0JL11XdmcptjcvVZSPYo+uiq2hw+ACff0mnlNd2i/iPnVZ/rLwYCaeRoZWm9xYWAAPUTRAepy8ic/7quHiAnHJ1bVusdq2sB6L80ymnKtXrzNeJDbhwFymckyAdtHO2Ruleoa9i8yhPere6ocBib0yLn4iTEU/tWSgNAPxRMkhpPOm2g3ughTsoNIPmPE0bBxN9EgpS1igbXQDwzKD8VjgVsk59JHyYLlHn2UfihX66B1lEzWZRRq09/+6gJQ5MFO/F0eDwIpVK4fzzz8eqVasOWrhsKpxzzjnYtGmT8tnmzZsxe/ZsAPvEzZqamrBmzZqMMT06OooXX3wRn/3sZw+pbwMDAwMDgyMV0zauDQwMDAwMcsHEXB95CAQCePXVV/NyrGuvvRZnn302br/9dnz4wx/GH//4R9x333247777AACWZeFLX/oSvvGNb2DhwoWZVFwtLS1vaQacgYGBwZEOE3NdWByUcV1TU4PNmzejrq4O1dXVB8xtPR210SMNlvO/f+To8Y+oXlxOE5yaJx4fjyi2OkWZUXmszM/QTklNkCIvoqUpdbFHjT16qW5yY7J3O6x6JGdXD2XKf94t3nYWujqQOJh/nAWdSOiqQTxtQU0EjWGTg9VKSb3TK0TQ67n6YzJlzuUMqJ7zBHkUrV3kNXTUNTkYlblhEbYdQ0LFHh0gcbmo2p49t+wdVNKcUZHFsABVhIoF4kiDDu9olPNf41fzXPOY2dsPyuft1+aJKc6c/zlJ4v6jaQoFGFIvOudsTtN6ZBE9TrGlp5lTUsjRNXOEoKB4euNzVCEtj+jXoT1ybpYjB9NzeyvXgAXFYjQ3LAKo0SPTRNP2aPxhWlucs9ofU69zooaOVy/nYw0Rrb1B0m9Fgirb4G8b1mXKrzwvXmzO5+7Vaum/Rqj/dvpBYvIHhVZ4SfU6cR77cPMoHLswgmYmz/WRicsuuyyT5/pQ8I53vAO//OUvccMNN+C2227D3LlzsXLlSlx66aWZOl/5ylcQjUbx6U9/GsPDw3jnO9+Jxx9/fEY5rkv3AL4iZMnaXtOUu1IecPU7nylKPwCwrPy1ovX1y5HFReuLw5wKiUc7indO0SeLl/ZrYurIsrwjFMldJx/wpkijWQgkqwo/gZxmN68ocp7re++9F3feeSe6u7uxaNEi3HPPPTjzzDOnrP/v//7vuOmmm7Bz504sXLgQd9xxBy688MIZDrj4OCjj+rvf/S7Ky/cZZStXrizkeA4rkvVp2JE07OjUeXFZaTcUlBf9FMVrpojXzQYPAIxtFCOKJ9/fTQZEg0bj5Ny69MPB8aZekuKah9QNgWNP7smUt4zNyZQDx0ssaLRPjNFgr2Z00e9HQleYnuyfuhxv1yjWTDGmU3t2QIwJNhRTjSol14rKeNjoYeqxm1TPecnCXZny7984OVNupnNOpaVNSjfoac6pGkJkwLFBbWm5CO20tE82i0FV0kXK36RW7movjUEyjpn+ziELutp3ZGf2H3p7r7zIXnPOmkz5TxMnKfU8srGskexUeO4/OKKec5IvCO9B0N5AnJTjbS1m3KuR73g++PzZ0Ac0Kne1zIfF9G+6luFubeOK1mO8Tv7hjQLe6OA6AODRRpa/U+aZDfJUn7xVjPvU9v89IOrMHFueLst+zwOATeMJ9NJ9QwrlCpVfD42n61FXFkXaKpRauBE0OxKRTqdx//3348knn8TixYtRWlqqfH/33Xcf9LHe97734X3ve9+U31uWhdtuuw233XbbjMdrYGBgYJBfFFPQ7NFHH8Xy5cuxatUqLFmyBCtXrsSyZcuwadMmNDQ07Ff/+eefx8c+9jGsWLEC73vf+/Dwww/joosuwvr163HSSSdl6eHIw0EZ16z8eSgqoAYGBgYGbyMYL/QRh40bN+L0008HsC9GmnEgVpqBgYGBwVsIRXo+33333bj66qtx5ZVXAgBWrVqF1atX4/7778f111+/X/3vfe97OP/883HdddcB2JcC+oknnsAPfvADrFq1qjiDPkSYmGuCHUnDLkkr1FEvqk5RZA/RoiPiNWJBqgUVfZny9hp1V8Zm0Sk6dKxdvG6lO9U+nbB4oeLkBWUV5FgrqXgnNS8qua4457C7WdQbfeTdSzaoHlGmkTJYIZ3zVJftVL3IThV5FEl0qq1kOFN+hTx9ke2qWmashdoz8zhGlVKqR/P1QaH28SbbiZVdmXJfVDw2uiBakPJUM2WeadFMhdfFvRTGA9FyK3bJuTz9hlDhfZp3UmEL0Pkzq8LS6L5+mo8oKUS7JGj22Y1C2WQWBgD4R+R4afKCeqRczlRyVjEHAJeuM1OxOWSBr5Mu4pbmPNe0HlOsfq/vmNIxFFX61gn5/I0yqa4xSfjhwmvLoYwB7AVm7zIAgDzkzFBgj7K9IJopx/pVJd3mecLxVnKY87g0sT2X1oqi2M4MF/L2W1rIBP/uDE5E4BSKdmZwROKpp5463EOYEYZOcWBHnNwVDxVFUtb+8TPvLko/APCT1LlF6+vExTuL1tef9xRHcb2majx3pTwh/Fd9uSvlCX17qorWl/4cKxSq5w7lrpQnDG+pyV3pEGGljtwNz9HRUeX/bJkekskk1q1bhxtuuCHzmW3bWLp0KdauXZv1uGvXrlXSMQLAsmXL8Nhjj+Vn4EWAeasyMDAwMMg7JmlnM/kzMDAwMDAwKAwO5fk8+Yxub29HZWVl5m/FihX79dPf3w/HcdDYqGoJNDY2oru7O+vYuru7p1X/SITxXBP8u8LwhcNKXOl+QlUVFPMcIo9iTHZrQjZ5oDTvYqpRvFvBTvFuBYYpdY6m9cJe4WAfeco4TzB7PivU3f2uuKScUsJiZ4t3z94mHjU7pS4Lzv/L/Tgc4zpGcdH9qndwgkThHBLn6k2IuBqLUe0H6j/eLO0je+S47zhpm9Kkc1zOmY89mBJvdSwhgb2cZxwAwHnDW8UNGNok8bMpXifa+DnFUzpCDAPSLQuXiavZ7VSDrjmWmL3F7FGF5mBJ0mXmmHE/xU9/5v/8PlO+Y8sHlPa8bL0pPKIsTmdrHtG0Lf2w55+9sOwtT9eofAErll3rIEJx9szQAADfOMWmU+hwclTuR4vGr6elYnjkFfP3E8OEiBjsnQaAMKXa49zkjCq6zmNazHUP3QMh0jpIVpOgnLZzzf8rLBP2dlPZ1c45QcIyi2r6kQolURC5IyNodkTi3HPPPSD9+3e/+10RR2NgYGBgUHTkQdBs9+7dqKgQBqzutX47wxjXjMmc6iRO5Wg0UpfEuUrJuB4n1d7+hNBQdbVx/3x50WZ7LEi5gHXHjUc0tWSN9F/WLFSlaKe8pOsy+RUBMQ7DPWSM7CJatAwZyTrVgAn1SpsgCUKx6JSfNiFSMpR9bYbJuCQV6tbwcKb8RzYaNUIF04lsmrSJ2TLOdTtnKW0WzxEl7r5gdvVNHxk6tqZ8zcZyeozyNDc5WdukIuqkp2jjI0CGZqqccl6HxRqMptVJSzTrRPV9CNE6SdRr12mY2jcQdbhFrn8/XZzAuLZxxArng7RuLc6ZPHU+creSxjwsP7KJ2uxUztBedUMhSfWUzQo2GrWQB95ESNaSen2p3I++3TJnSY1+H9kr6zlRL8fmTYRkg/xjRdX7OU7q9eWvyq5Yokr66R8uw1SI+OTYiVZSwmeKfFD7DQpM8UQk4TmmxTtj6gOP76c/bZ8Nt2B5ri0oynbTamdQKEzmnJ5EKpXChg0bsHHjxiNaU6WxfRC+0sK/vI1EiyNr3D57uCj9AMCO3trclfKE17a3Fq2v0spC/XapGBopzV0pT/AHihD68L/gUKpCwykrTrjF2GvFW+tufXaB37z24S/Uepjp83myLVBRUaEY19lQV1cHn8+Hnp4e5fOenh40NWXPzNDU1DSt+kcijHFtYGBgYJB/GM91Bh0dHWhvb9/PY+x5Hnbv3o1Zs2ZN0TL/+O53v5v181tvvRXj48WLLTUwMDAwOEwoUiquYDCIxYsXY82aNbjooosAAK7rYs2aNbjmmmuytjnrrLOwZs0afOlLX8p89sQTT+Css86a4YAPjEI8n6dtXEejUXzrW9/CmjVr0NvbC9dVd6O2b98+7UEcKUi1JWFHbFjDpCalbbZxWqKWCgnm37lROLmnvUO8pi/hOKV9WUS8lfFBSt1DTrygthlrsTgUp7zqIQ/5GOXrbVdTWb3QNVv6bGChKqI1R6cOv0+0sqAUDWWYKeqcC1g9VqIuuyCWQx5qzpmcqlF3A600ea6JEutSGiQ3ru7Acv5iH+Umfn1Adr74+u0eqFLaK/R5oj+zF5/pwp465Qr7ITWL+Mrdcs3LQ9JoUEur5RslbzEJhSVrKBVcv3rOgTHyXPI1iIu3582oePFdTaeOPdlMy1byZ5MXPtasjllJrcURC7R+mS6vC6p5xGVOE5MhVcMsAF3sj1KDkVc/1UaCZLTOI51qe05751VwmjAK89hN+dT96lPFoXObaKZxUm50z6ZzGVe99VUBYbKw2F+AxOX0kANmjAQG5Xw4B3t6YXYRPACw6LJZE2FF/MygMJg7dy66urr2SzsyODiIuXPnwnGK562aCpdddhnOPPNMfOc73zncQzEwMDAweItg+fLluOKKK3DGGWfgzDPPxMqVKxGNRjPq4ZdffjlaW1szMdtf/OIX8Zd/+Ze466678N73vhePPPIIXnrpJdx3330FGV8hns/TNq4/9alP4ZlnnsHHP/5xNDc3m9QdBgYGBgb7w3iuM/A8L+uzcnx8HOFwOEuL4mPt2rVHzFgMDAwMDAqIInmuAeAjH/kI+vr6cPPNN6O7uxunnnoqHn/88YxoWUdHB2xbHApnn302Hn74Ydx44434x3/8RyxcuBCPPfZYwXJcF+L5PG3j+je/+Q1Wr16Nc845Z0YdHg2waJNCEZCCKjy2tas+U3ZJdOyV0XY5lhY6O7KR4kFIeMymPvWYSi9MY6Drb5F30qGYX29EdUm2tIqHdsgnHnY/eUfTlO4o0KO2t1NSL1FP3mKuRl7HwKgWIzqP01fJkuuOU6wGO+e1OCCO1WHvnK+XBMlq1Yl++c9zM2V/uYxnxXG/yJRv2fJB6UOLrWdROyUshcqpCkp3VartbJHn2h6Qcda+Lm7CuR+XlBt7R6ZOKcLxt35iGFhaKqvxWRRnTSJWflqzVzT8IVN+rlJlVYDWmY88oi597oSkT8tV+1eEtsjb7FIqrnStlMO7VS9uYq7MjX+veI75NNPa/RgaoNhkiqe2iGGSIA+7T9dAIK2ANCi2npgEHJcda9SvsxSZ4RAvpdR6QWnjhNX2q3ecmCl7FFudpP6DverPNMfzKw85midfh8SN+jVWBd9D8QUJuDGddpEneJMiFjNo9xbBZDoRy7Jw0003oaREhCMdx8GLL764Xwx0oXHxxRcr/3ueh66uLrz00ku46aabijqW6WBwtAR2uvDGv+tOzeLKJ7bsbchdKU/wxosYAVjEHDSJLQeO98wXnMYC/UZmAWu8FBq+Yv7W+oqza9r6js6i9AMA7WWFT/uViibx80IceKbP58m208Q111wzJQ386aef3u+zv/u7v8Pf/d3fTbuf6aCQz+dp/+JWV1ejpqbwud0OByyfC8vvqkaL9oPAxjK/wLPRnXSlrLwIQ81ZZyezU5c5XzEAeKwiTOrAbNywARTU6ML9EyLGwX2e/BdbM+VX/zSf6qg3DgtnhXtkLN4URs+4sND/d3BUpukMkjy1Tc8uW8tZzRTbBNGiI12U87ldNa5rKiW38NgueYm5d+9fybHSRFEPq9fZThBFukGMPm9AjBaFIqwZuoqhQ7TevlPk5XBxMJq1DqBulvCaSbESvKde59I9RLluJeOW8qTvTMqGkH9co9LT+TjUT6ibRb/k84BmqPI5MIvGC9CaHyRBtjqNFu5m/8Hm9airfbNiu1svi8iLSj8+Wj9uSNv4IYPWR5tVNm08sYgdi4bta0RfEf3aqZb12Fopuax3u1VK848v/GOm/OArf50p8+ZOUgsZ4LXG14Dp3rx+XO1BmKY59Lz9BRDzhZkeu1DjORx4+eWXAewzYF977TUEg7KhFAwGsWjRInz5y18u6pgqKyuV/23bxrHHHovbbrsN5513XlHHYmBgYGBQfBzKs/+t8owu5PN52sb117/+ddx888146KGHFCvfwMDAwMAggyLTwu+9917ceeed6O7uxqJFi3DPPffgzDPPnLL+v//7v+Omm27Czp07sXDhQtxxxx248MILZ9b5FHjqqacAAFdeeSW+973v5VRWLQYeeOCBwz0EAwMDA4PDiSLSwo9UFPL5PG3j+q677sK2bdvQ2NiIOXPmIBBQKSzr16/P2+CKDc+z4LmW4kUNDKhTxN7iynJJdzNmTZG+Q6NIebVy8NAO8WJa5JBLa4dScutybmFqE9kj44xrQlHLWt/IlH/+x7/MlN94cmGm7GdxLt07x9pYJJZmU25rpkWHtqtrIkWOkngTpS9LCfWXPfyeli+YPYIK9bZR6nEuYQBYUNWfKa+3xXO9sFyo2BNp2aUajavpG5KUjxwT5OEmzy17p8Pd6jphryx7R52wNNo2Xif1GzRBM/Yq0+UIcZ7zavU6p8pJEIuo/dx/rV/UgF1NnCvQL8dOEVuBxfY4tVyqWh2zR5T/NOUzR4hE9JIyLhaHA4B4O133KaiFOhXeqaP0VbQejz1xT6a8eWObHFZjZTBjhFkhNs2/x+wVbW0Guik0oTn7WDZvbpEG2q31VM0xmTKnQmMmSnivdj9RmASzBZR7k6joXpdKpXXKOe7FUn9TjlI8+uijWL58OVatWoUlS5Zg5cqVWLZsGTZt2rSfSAkAPP/88/jYxz6GFStW4H3vex8efvhhXHTRRVi/fn1B4rqONIN2eHgY//Ef/4Ft27bhuuuuQ01NDdavX4/Gxka0thYvldJ04PO78PkLn87HsoojLhfUQ4kKiDFfcdKLAYAzUjxaM9pjuevkAcVLWAWk48Xr7aQziydA/MqbxcmIsHNb9tSrhcCeiuqC91G4VJkGkyjE83naxvWklPpbEdZAEFY4qMTfasxbOEQrHRuXB1aaaJgnlndlyn+yhW4NqPG38VmUi5dVfzUDItAnDyumdLqkIu2OkQWkjfnlYYkBj5Pyt02xzXwsneLMeXH9pKSeojikUIcYyq4aSqtQVzme/J012zLlV2MLZPhDqmXFsd18PZwaOZfxCdWAeCkm55wmJfM3RkUtfDg+9QsHxwPHKWaXz4U3YfT3sTBR1tMU8x0elPLr3RJnzXG9gErr5fhlj4xBVuEGgATlQE+TAWWVyPi7aafDH1OvM29wsHI153Z3KygWeZt6oWOzKR80rRkvSCEPFOOsU/HZ8EyXy1jYCE9Wqy/XQVp3fLxtf5QHuY+Vz6vUDQGHNypp3Sux/UmaCy0fOufD9nfKfFDEA4KnDGfKqZR6nU+slN+KTeVi1Nh0bfV5cmjjgmPwebPHpbg9XaeDjfW/uPA1JMeTeAQFQBFjru+++25cffXVGfXRVatWYfXq1bj//vtx/fXX71f/e9/7Hs4//3xcd911APYxsp544gn84Ac/wKpVq6Y/5hw4krJsvPrqq3jPe96Dqqoq7Ny5E1dffTVqamrwi1/8Ah0dHfjpT39atLEYGBgYGBwGFDnm+khGIZ7P0zaub7nllml3YmBgYGDw9oLlKTqH02oHAKOjo8rnoVAIoVBov/rJZBLr1q3DDTfckPnMtm0sXboUa9euzdrH2rVrM2Imk1i2bBkee+yx6Q/4IHAkZdlYvnw5rrzySnz7299GeXl55vMLL7wQl1xyyWEbl4GBgYFBcTDT5/Nk27cSCvF8nrGE5Lp16/DGG/voxieeeCJOO+20Qx7M4YYvYcG2LKRJBdo6AI00FBa3Vaoi+1TqeXXZC5Xm6adubE2Y0qVqgVHxVCUjMs5Ek4xFV9uuCgp9nQXa2AsJ8pSx6JlezxpmjjipiJPoUtWr6jnHGkl4jb56bVw8dawo7fnVOQ+SJ5s93x5RbxvbBpQ2FSGh0mx/TV4gzyFv+f8XO1mOpXn7mabPtGbXR15Mcny7GkXbTyJaKfI02uQFXdggFPXX2qb2oitezNDUv2qVm2XexuaSuBa1/2Sl5GD/juYR9eg8LaI/+EZ5PZBydrsmtEWXjfOu+/pIHIyE5yzN8870ZD/leWa6tKcJDPK6Y8q620pUqgExyJj6DgAppv/TGkjXZ8/tbo9q9H8OEwgSXZvycR9XPZgp98VEXBAAdseEVqaoktM82Untt4XmiSn/4Z1EUSf2jV/Pk01r6OmXj4cbKxDt7BBjrtvb/3/23jzMjqpOH3+rbt2t931LOulsQMIuCASQLSiLXx2F0R8OOoIILoAKKIIjsrggI46Igqgj4BYZHdFxmWEEBEYQMhBAthCyke6k97377vdW/f7I5H7ec3I7ne7cumnCeZ8nz1N9U6fq1Klzb9XnfN7P+7YrH19//fW44YYbdtl9cHAQuVwub+uxE83NzXj11VcLnqK3t7fg/r29vbPo8PSYSy4bTz/9NL7//e/v8vm8efN8u/5ioKY8Aafcf1p49+aG6XcqApqW9ZXkPAAw2lc5/U5FQlXbRMnONdFVGg0Dr6x0FP7yptj0OxUJW0ZKJ05sZaao9SoySnmv3N4SuBf4xQo3Ndd5+PF8nnFw3d/fj/POOw+PPvooampqAOyo3zr11FNx3333obGxcfcHMDAwMDAwmAZdXV2KwEihrPUbBXPJZSMcDu/CCgCA1157zTy/DQwMDAzeVPDj+Tzj4Pryyy/HxMQEXn75ZSxfvhwA8Morr+DDH/4wPvWpT+EXv/hFUTtYSnj2jn+Rbsq0tWl2QWTRtKROsqXrXlmc3548XF4CE/NVi6hwr9Q7eiTOwnZBejlDhrKinN1in+sgZfqyHepSV3NYVpIDQ3J+RdiIfaa1Wly2cgpwLSrVe4bo/Ent/YzrhwMp+XwgWUHnpP5Xq2PO5AEWcOK6WN1u6JVO8o0mK6WFIRE66x+R1fxshZoRcck+yiKP0AANbY4WLXWhLYX9QJ7H2ajMreGEqO3r7bnOmG2Z+PpT81SKQ7omRPvJ5zx/RmgZNKTVticqyeKJGQo0NOEh9tnW2s+X82TIMs3lumC6TqVeGKrAGmdkmVXgaR7wzE/iOmd29XKjJO4VUM/JGWYWy+MMOdt/BSfU9ikSHrPHaJ7Qd2hZZX9++8XOI5T28yrEpitdJedk+zNPW/BnZgozGdgOL0T3L12tCQTS96bu+QBy6QC2wQfsZc11VVXVHql3NjQ0IBAIoK9PzQT29fWhpaWlYJuWlpYZ7b+3mEsuG+9+97tx00034Ze/3OGealkWOjs78fnPfx7nnnvuPu2bgYGBgUEJYGqu8/Dj+Tzj4PqBBx7AQw89lA+sAWDFihW444473vgemf9Hk0jVT61cbVEUGiO1aX6ZPrSsK7/927HjlPap9sKKwiyIxYJqABAakpfpxAIJ1lmYiIWe3JTKcd4wIWq57KGdI6GsKFFKdYo0B0dMN+WXfiUA0OIfDpqYbpvKFfaZdjT/ZKbJZ6jPAQp0GqIqlWq0QmjWMaKvPxcXE+6lLULLfv2lDqW9QnkmujRGZZyYyq4HiqE++TtO4rvhMbnOlnLJHvUmVIoqB5dM4+XxcwZ0FWnaj1jm7MH+dEpU0T3t288iZBzEM0WZadV60OcQfZwXF1h4LvK6LDwl29SFJ8UbnALV0BgtKOjnjJHaN6vq83eAIu3wgDq3km2kEE5iZSzwx8rrGS1QdcgPOzpAfuTEwny0W1T53bg66I7FvzVy/1JMf9UWFAJ0To/mCY8//85EtqgZ3+RC+b8xx4Gb9MvoGiWx4gqFQjjqqKPw8MMP5wU3XdfFww8/jMsuu6xgm5UrV+Lhhx/GZz7zmfxnDz74IFauXDmLDhfGkUceqdRubdy4cU64bHzzm9/E3//936OpqQmJRAInn3wyent7sXLlSnz1q18tWT9milAgByfgP+WTF0P9RMguHX3VqchMv1ORMN5XMf1ORUKgLj39TkXAAW2lo/BvHqiffqciIZEOTb9TkWAnSxOQRefFp9+pSGhZ6H8JRDaWQuf0u80cb3JauN/P5xkH167r7nJiAAgGg7sorBkYGBgYvElRQp/rK6+8Eh/+8Idx9NFH45hjjsFtt92GWCyWVw//x3/8R8ybNw8333wzAODTn/40Tj75ZHzzm9/EO9/5Ttx333145pln8IMf/GAWHS6MueqsUV1djQcffBCPP/44XnjhBUxOTuItb3kLTj/99H3dNQMDAwODUuBNHlz7/XyecXB92mmn4dOf/jR+8YtfoK1th3/r9u3bccUVV2DVqlVF72ApYf3fP85acXYZUC23+iZkhTZDdkshSkPvIkBFfwaIYs7Z6oC2wqd48/ImLbAH4syDVftsc3aMMn8hoqgnG2gfbeXeJlp0pkauLThCgmbkrV3zkppeTLaTBzZZXJUvplVn8tbeVVyMKPMsyDZfKM4bh1QRmuYqWVHcPCg0j+XR7vz2r18RET6vUV0YYt/qdBVRbOdTn0n4zdMsmhLNPJ4kaJaVi+scFzErne6crqM5SD7fdpBEx3LqIld4iCjzxKbl8exwRvLbmUr1mgN8DdSdSLech/279R9Ynqchoo97IyS0RRR33cuaBc5cEuvzyBZMl6nMEGMjukXOk6DsLNO9mZWyo6N0HkqL8/c+00LHGlfHnFkFqRr5nK/z/R1r89u/dQ5X2r88IDRk/g4HKXPPom2AWkLgTSXwRJl79pYHgDAxXjwbsPzKKJQwuP7//r//DwMDA/jSl76E3t5eHHHEEXjggQfyomWdnZ2wbbm/xx9/PFavXo0vfvGL+MIXvoBly5bht7/9bVE9rue6s8aJJ56IE088cV93w8DAwMCg1HiTB9d+P59nHFx/97vfxbvf/W50dHTk1Vy7urpwyCGH4Gc/+1nRO2hgYGBgYDAdLrvssilp4I8++ugun73vfe/D+973Pp97NTfx8MMPT+npeffdd++jXhkYGBgYGLzxMePgur29Hc8++yweeuihvM3J8uXL9wtK2U5BM2tSsj6RQS29xis2Ur6LLGUan5pcIv/hTJ25ztZKm3AP3QpNLCDJomiUhctStpwzylZEreVaVC7Ca8/XivBadJtcZ7q58DkAwCXRpgj1kzNi4X75PKvpAQSohjpHJT4O1ZyFhikL3q7WUbkR+T+uH86WyfmjIbWmrDIoymnRrZKpi7lSf1pbLXXaw/1qXaqr37edSMj5Q5S5z2jiYpGNVFtsU205nWZ+5Wh+e2JUVYEjrTdEqE44NyEqauk69T5XbqVsJR2Oz3lwSIqxdU0KIg8oTIxc+RSsBs2yLdRPtclc/0114iHKgisnBIAqsukaJg0AuhdcYwxAsZZLzMsW/Fz5zmpWXvxd9yqILUD32ekjbQWtxI8z+VmvcM362jH5oejeojIs2haJwN4ksVcsLuUKqcEPi7JxzTcn9fnznJbdTlGtO7NXio69FDTbn1BbW1vQO9OyLEQiESxduhQXXHBBnsbuJ2688UbcdNNNOProo/e55/ZM0DdWiUDGf+ubyurE9DsVARtemTf9TkVC+fzS2WPFhkun6l9XM1mS86zbULp7tbBjYPqdioSu/trpdyoS2g4tTd36tp7SuTKEa0em32kvYfulM2EEzfLw4/k8o+A6k8kgGo3i+eefx9vf/na8/e1vn0nzXfA///M/+MY3voG1a9eip6cHv/nNbxQevOd5uP766/HDH/4Qo6OjOOGEE/C9730Py5aJQNDw8DAuv/xy/P73v4dt2zj33HPx7W9/GxUVMxfVyNZmYEcDSnCZ6FAndpACiIhN6rx9MpRhki3WRRxyIVKhJoVsDkZYURsAnGG6TRTPKLRwUht3NeXp9RPNBffLHC4PJrtHImI7NfUXJ0NCVbxwwL7Qtqadwi/3FgVkNkUDKaZba/3n4CpHwVWwUx7iTuOY0uaFrfIwDJJYWsoltXQSugqOq4FiurbwD5pDwRiLsNlDapCiiIVREGnTtZ1UvyG//Vw7rdRADUJZcd4i5evwFvVFMzaPzpMhJXWinE+SWrhbrl2jTd7WJNAX6aWFjwamLmtU+HmFhYD4Wrhf0KaZR+rj1hRrG86oWjPAmkA8b9MH0Jixqrz2i+dR4BreJkE0L/DYpLxta773LDYY7WefcTluMivXf8ABUpYAABZd6AD9VvD1h3rUucXXyd9HVm9XfLq1cY5QaYaVA7Cb7/vewPKmvo/Ttdvf8KUvfQlf/epXcdZZZ+GYY44BAPzv//4vHnjgAVx66aXYsmULPvGJTyCbzeLiiy/2tS933XUX7r33XnzoQx/y9TwGBgYGBnMTs30+72y7P8GP5/OMgutgMIgFCxYglyvOSkosFsPhhx+Oj3zkIzjnnHN2+f9//ud/xu23344f//jHWLRoEa677jqcccYZeOWVVxCJ7Agszj//fPT09ODBBx9EJpPBhRdeiEsuuQSrV68uSh8NDAwMDGaBEtZcz3U8/vjj+MpXvoKPf/zjyuff//738ac//Qm//vWvcdhhh+H222/3PbhOp9M4/vjjfT2HgYGBgcEcxpu85prhx/N5xrTwf/qnf8IXvvAF/PSnP91r0+2zzjoLZ511VsH/8zwPt912G774xS/i7/7u7wAAP/nJT9Dc3Izf/va3OO+887Bu3To88MADePrpp3H00UcDAL7zne/g7LPPxq233poXXNtTlG8MIRAOYfIgEjBKqJkypnumszJ8LtGd310tsu3/bqlWXMgUzvyxjVCgX8tU0VpGpoZSxCT05ZAYUjqizvzTG9flt19uojGJS6eDlKnULZqyDZQFo0MHyQqKhd5cjWnKftg58rBOkxUXiyylWtUMKFtzZeulL+kysrtKaZYSTHEm+6QwpdVHhojd0KKm2wPjdG/J55iz8A5Zgek08gz5ZrOfdCAtn6+LiRc3ZxMBIEVCXaEBEldrwpQIjVLJQLl8zvdvI80/K6OVPEwBtnkLDzB1Qt0v0s2lATIeaaIh26OyT3Szes1pmtss9seCbNkadWGPPZ/TbUL5qKyQDP1EgksutD5PYWfH2Xaez9kyjaJNgmaZavq8UuZwBZUovLyd/NcBHDyvR66FvoPcF539kqbvB4u15Vy6OLYf61d/w5QyEw9wE6Wz6Xmz4r//+79xyy237PL5qlWrcNVVVwEAzj77bFxzzTW+9+WjH/0oVq9ejeuuu873cxUT2bQD15nxK8uMkeoun36nIoBtBP3G5Gh0+p2KhFJWGQTsKQQdi4y61rHpdyoStv2tdfqdioWpyt98QFesYfqdigC7RFZ6ALB50H/btFw8Of1OBnsFP57PsxI027hxI9ra2rBw4UKUl6sPomL5dW7ZsgW9vb1KLXd1dTWOPfZYPPnkkzjvvPPw5JNPoqamJh9YA8Dpp58O27axZs0avPe97y147FQqhVRKXnjHx3f4DcdXJGFHgchGodsqNGhoCss5omFWyEv/mvjS/LZes52uphfo+sIMAF0tO8O1tVQzGtrO9cdcl6r2+alRqbPmWolgmSwieA4FyjWaOrEjxyurkHGLk380q0OzLzEAxNukb5Ftcp5lR/Xnt9cFpI+WVsvrUNCRpWCCg7naxWqdXIZUuUH3s9yW/jc3ywOzr48iIwC5avI5Jm9nm0uOq2nM9R906mdwkkoJBmTMX5+QH2ZLa+6xhzYpl2dI0TqnLaJkMxxc0//ReC50ZC45GhU+QJRnXhxgWjn7f1ua6TT3Obpd+uyQhzoHdolKdf5bIVKiZ8o7lUl4lvrlyHGwS7ToINUpsS80B7AAkCLfdK+M2hDNP91AN0fzvWeF8hQp7tuD8vm8I0bl84DaPkkLTMl55AdOwb0+NwCqB6frSVLQzUr+XHICqCUs1RuAXNrBNv0UBkVFXV0dfv/73+OKK65QPv/973+fX6SOxWKorKws1LyoSCaT+MEPfoCHHnoIhx122C7Wmv/yL//iex8MDAwMDAzmAvx4Ps84uC6Vd2dvby8A5K1UdqK5uTn/f729vWhqUlN5juOgrq4uv08h3HzzzbjxxhuL3GMDAwMDg52wMMua66L3ZN/juuuuwyc+8Qk88sgj+Zqup59+Gv/5n/+Ju+66CwDw4IMP4uSTT/a9Ly+88AKOOOIIAMBLL72k/N8bRdzMwMDAwGD2mO3zeWfb/Ql+PJ9nHFzPde/OPcG1116LK6+8Mv/3+Pg42tvbEQxlYYezSubY05mz9HdyXAS1WNjoZ5vfmt9OtKnZufAgqfu6lF1qIW/sqJrdsigj6U3hB52mrBeSaqfH05IF5IxckFRRk6zCrH1znG1ynTk6lkNtWDwwNKp+Y5MkgsX08QdWr5RT8oKQxvTizCln7t/+7qfz2ywiBwD/Nbkiv50gb+Nf9gjLYTJJqqYa/Z/vc7aNMvwkSMZKyxntq8RZ3CTRojdfIvu8NRLPb29o0VgMzhR0N7ai1ihduUNF/TzXTZLtdG+u7hYRwowm2maT4jvT39n/mtjGyjXqfU4skGt2RuS4TEVncT0AcOJUGrBYqFBejNprKpUeKcaDmBQTLworwItO/QRhxoEzSCJy1H+mjme1YyXpvvH1MK09RSpqHQ3DSvvAP8p25CIS2yNWQq5KPadLzBKb+sZMgizdP12sj5Xg4383gVw8BfghUWHUwvO4+OKLsWLFCnz3u9/F/fffDwA48MAD8dhjj+Xrn3fSz/zGI488UpLzFBuRsjQCZf7PDXd+evqdioBSrmNUBktX+rG8vn/6nYqEnnhVSc5THS4dNTfdVxr6NADEOkpDqwcAKxmYfqciIFRXuntlrfV//ll6yWOxYNTC8/Dj+ex/AdMs0dLSAgDo6+tDa6vUoPT19eVX3VtaWtDfr/6QZ7NZDA8P59sXQjgcRjhcOrsIAwMDgzcdjKCZghNOOAEnnHDCvu6GgYGBgcGbHUbQTEGxn88zDq5t294tdaxYSuKLFi1CS0sLHn744XwwPT4+jjVr1uATn/gEAGDlypUYHR3F2rVrcdRRRwEA/vznP8N1XRx77LEzPmemrwx2NIIAZY3caq3+OCarb+W1kvl1SZypjDyXJ7TsXO4gsb/K9Up2MbpJgv1Em1ZkyRlKTjDzUHOdspZtP7RG7H82uKrl006EqTY8qwkouSTaxNss7sY1vpkqtQNZsnwKkggYC6elGtm+TG3P9kksovZUX0d++x3zXlXa2CR0YjXJSmaCbJG4LlcfM67nTs6nmnHKFHJGOKjZiAbbJYuceUVWN93FMjfOrBdK5vPDB6oHoA6lKPMeIuZDLqz+wqWJSeFQ5tQl3YCaoGTLdYYCzycWymJBtsR8uU/lr6s/H0oNOi1S2+yyRkJdOV03iGgiXryw/ZwzrM0tmkTMHuF56hHzId2o1XlTVtwlJgbXJbPOgqvVuTskSsgUK9ZTWBYVf8+nBxYo7Su2b8lvJ1vJS5V1E/QHGbEn+DvINmfsv63bj7H4YbyrEm7CJ6/rN3lwPT4+jqqqqvz27rBzPwMDAwMDA9/xJg+u/X4+zzi4/s1vfqP8nclk8Nxzz+HHP/7xjOuYJycnsXHjxvzfW7ZswfPPP4+6ujosWLAAn/nMZ/CVr3wFy5Yty1txtbW15eu+ly9fjjPPPBMXX3wx7rrrLmQyGVx22WU477zzZqwUDuzwarZyQHCCFHjLNSoL0SHYozaxWCKIKFGwcpUq7SZC1FmLzsPqwOylDAC5SGGKZ3yRnCfaKS/ISY1i/PIYqU/Sl8IhcaVJDuA0/2J+gWe6rt0dLrjP+DJ1cSBAft5Ms2f6eOwAuv5h7fqJipulxY73LRTxvD/1rVDazK8WsbLXNklAcyj5DD+RXJTftnbjrW1RsM8Udfas1gPVGKmzWgtIkYto0d3pWjmuxvzJtkqbQK+MMwvX5epVqp9NCuccUFpxGc+yACnha57NLDYWJm9lphGzOne8VZ3bzMzP1ZLwGVHuWazO0RaeFPo/jz/NHw6AAfU+KTR5jk0pUN2dCBt7aKcpOI1uk3HlxQVAXVRicTGeTyMk3R7U1G2tAImtsVd9kL4zFeo5WT0+Qwsa2Sr63tM1ZyMa9Y/HKW3Dc0tHDXwzoba2Fj09PWhqakJNTU3BRWnP82BZVtEWpfdnxAZ3LH77jYa20ihDD22tnX6nIiFml+5t+K+vl+66wkOloRqXFGXT71IsHH3Exul3KhIcqzTPma0TpZt/p59XHAHn3SE1mcE3vun7ad508Pv5POPgeqctFuPv//7vcfDBB+Pf/u3fcNFFF+3xsZ555hmceuqp+b931kF/+MMfxr333ourr74asVgMl1xyCUZHR3HiiSfigQceyHtcA8DPf/5zXHbZZVi1ahVs28a5556L22+/faaXZWBgYGBQRFjeLAXN9oNVcWAHi2qn0ugbtc7ZwMDAwGD/w2yfzzvbvtHh9/O5aDXXxx13HC655JLpdySccsop8Lyp75JlWbjppptw0003TblPXV0dVq8ujhqPW5UFolm4E5JGZI9mAMiSTzN7Ryp0cYey2NvUlVWrVa43RRlBl7JLgSpVUMXuptV6WlyxY6y8RpsBdUxf3S715y5l0sd7RUWMF7aT7er5mYrtkSiFQ5n3LF1LWZc6reJLSRBsjOjW9TS27KikWQexFZGVkvMPZqT/y6oGlDbP9Lfntzmr/vzQ/Pz2wQ2iKP/kOtWvkPUamG7LSBHF2Eqp+wRIxMum/6s7Qvq5Iro9v60LZXEHsmRZFSHRMTeqzq2yhUJtiXXJ2PB82JaQVd1dritNAnvkDc50cRbbC46q5880Uyadfn3ZZznZIjdTFwvMkZ0dz23FD16zr2P6PouAZclKjK3U9MVznmt8B0IDhW3udDDLJTQu25Md0s+KgLA9uodVetGyecIqYbo235tMSqVts+82HVoVSGyiC9WE7/i3ypm04folNPMmp4WzsmgpVMD3BJlMBh/72Mdw3XXXYdGiRdM3MDAwMDDY//Amp4X7/XwuSnCdSCRw++23Y968edPvPIfhDAVhR4JINU9tQu+MUV0nKXR7FAx1jtXktxOtajAQ2CAv1xYFPUGiQmezqthakIIz5UWfYiP22LVcNWg6delr+e1HHj80v12+hIKxTeLzHNmqcpSZss5q3clmuTamIetexME+iQZYRTnAMTwd15lU+5+pZVqv/N/6cbFps7WoaXHNUH57TZuM+QQphNfUS828Xr/MNcdcJ54jWnJwlGi82jcp1yK0bndUxrOtQiiHv+wXVXndm5zVy8s75eDx+YXVqQEgsZnmFg2hQ2rfQymhKOc0n2n2cOZaZIcWmKwMUby15uz5zAFgkr5PQfr+2NqChGdTPXmdtMml5WAhreaaa4sZoRapLU/3Cc/Oi6r7R2muJxbKhIx0yecWsfqzVWqfOdhP0/oM+3zHczLn6qqo5h1Ark7uGdPvHSnZ34UK7xKVPUvlHFxywIs7urAnz+1MYwZuwicl4Td5cK3jL3/5C77//e9j8+bN+NWvfoV58+bhpz/9KRYtWoQTTzyxJH0IBoP49a9/jeuuu64k5ysmAhMB2Bn/acDj1f5TzwEAFaVT8O5oG5p+pyJhLFGi8QMwlisNBbhu6fD0OxUJwxvqSnau9YNN0+9UJFRGUtPvVAR0b62ffqci4Sedx/t+DjeRBPCfxT/wmzy41lHs57NuNDUtamtrUVdXl/9XW1uLyspK3H333fjGN74x4w4YGBgYGOx/2Ek7m82//Q2//vWvccYZZyAajeLZZ59FKrXjRXNsbAxf+9rXStqX97znPfjtb39b0nMaGBgYGMwd7M3zeX97RvvxfJ5x5vq2225T/rZtG42NjTj22GNRW1s6IQE/kGtJwYtaCJKvc0DPrlGGlT2nOaMWWELZzQl1/SJDys0sVKTk0zLamodb2D+Xs6g2iVPltOZDKcnc5crk/Kk0ZbeYYa7RSF2iAluT1IaygHa8MEUdUCm6uaj00yGhKnuUBLSq1CxuuI9oxQsou+jIyr++ApsgKq01IX2umS/Z6j9tPkjOMaSpuhNNm9WimaKcJFX3SK/6VQpVyCptnLLAg4mK/HYd+VwHNBE7/vFy+b8q5ZqtCZXhkK0rnAlxiUpfRiULlqbKbpFntENZeUq8KjToZLt6vuCQXGeWxozHJklsj8C4OmacIXdikjnm7DBnvgHVN16hnL8m4xwhobGk5tDHVHL+3qXqaM7TLpFe9fzJRhJEa5b7mXAoW+2IQ4ClPZW8517ObwffI6vgzJ5xtGu2ib6fpX4qaulMHddse5n9YoVcWDkjaOY3vvKVr+Cuu+7CP/7jP+K+++7Lf37CCSfgK1/5Skn7smzZMtx000144okncNRRR6G8XJXt/9SnPlXS/hgYGBgYGOwr+PF8nnFw/eEPf3hWJzIwMDAweBPBs3blpO9pu/0M69evx0knnbTL59XV1RgdHS1pX370ox+hpqYGa9euxdq1a5X/syzLBNcGBgYG+ztm+3ze2XY/gh/P51nVXM+F2jE/UFaRQqAMSFOqLqnXX1Oyr6NxJL/9+qSkirLj5KWgjTDbUuVQWPQqslg1TY6RIbDiAd0g2VFno4ir2VoC88VtUgvvjFPNa2NhG6NcZOovDmfOuS43R9mwyKDaPka6OW45ZeQ2UY0uCbpFetRBU2pRh2ScKx25/g8vfUppc/+2I/PbXSNSAxZLyzlbamSct1dIphMAApTtzLRI6s91KCVINcpZzf841y3HC1JGNpklQTJwXbc6ZqkmydaGSDgs0Ede1jGtNp1r7XOF7+FLA5K61W1MsnEZJxY0i5AgmfKbqiU8WTjOIdEsZlhYWZr/Vep3Kydl/wiQ8J3D3uhaySVbYbFwF2e7LRIH08X+MjUkJEi16QESF+OxyFSp7fkeBIN0TvLJ3pJqlH5l1QtwWuV+sJVZmH22NSYHC59xzXiSBPacRlE6C7ykZibTbfIDYQ+HYCV9ylybmus8WlpasHHjRnR0dCifP/7441i8eHFJ+7Jly5aSnq9YqFw6ikBZePod9xKpTNF0XneL6obE9DsVCVu7S1eH6sVLM34AEJ0/Of1ORcBgV01JzgMA1oyLNWePidHS+X6lt5SG2RqoKh0TSxdl9QVzTXB0Z9v9CH48n2f8K/jrX/8aH/rQh3D++ecX5Kb/53/6UHhfIsT6ynf4aJJIUqRPHSIWceohMSL2BbYPlodmokGNdMtq5P8yr0l7DogTWyu5CYLsn8t6ZptJrZwVnbUAoKVOhMt6eySAShN1moNrV6OFc0DPwVW2joIJoqUnWjRvb6LSZqNM/WVFaaIOt2kLGhw/EUW2K1aT3x5JR8HoJVVmph+z8NyBNX357e4seYEDSDWRCFcfC3VRoL9NPk+1qPeZ/ZSZ1h1PSZsDW+X8L9V3qO3ZQ5uunz3Pbc2zuapeVLDGByS4t2lBp7VSFhRed2qU9jny1sYE0fQpgGW1fB0pEp4LkigdB6oW0bjTmm4LLzzxfM7QOTN16txU6PS0oMDzhL8zunCdR3/nyokKTkEwK3frCxrsDR58RlYHLNL0qSN1suYK9WUw2ytzIDFP/Nj5/ttJ9ZxM6+bAX3E22EqlINrCD88ntyoLNzi1gOPe4M1uxcW4+OKL8elPfxp33303LMtCd3c3nnzySXz2s5/dZ+Ji6XQaW7ZswZIlS+A4pQuIDAwMDAz2Ld7sVlwMP57PM36izqXaMQMDAwMDg7mKLVu2YNGiRbjmmmvgui5WrVqFeDyOk046CeFwGJ/97Gdx+eWXl7RP8Xgcl19+OX784x8DAF577TUsXrwYl19+OebNm4drrrmmpP0xMDAwMDAoNfx8Ps84uJ5LtWPFRqQhjkCZi+R2yfqxSBKgZgFBgmAhyrRl2a4oplI64q5klLhNjtyv2NYKAAKK5VNh6itnt3JVanbRpmUm9ile3Cz2HF2d82gf7fxMka0hujLRijnTlmpUxyzNbGW2f9oo45eaT0JbCU3ci47NmdOGiGQEh1MqvWlpi/hJr++RjOAoUfb/mhG+erZay7b3TJFJp7FkGnSkR/UiZosovuZwUDKdL49RtlyjK/N9ji+kvpFlV0are0n3y7yNdkp/WNxqw3YRfvMa1XkS6GchPzouzbPQYOGMMKBaPCm+6/Qro8xZTSyQ5yZnsZnuzZ7VAJChuRbZJheaO4i8rLbIPdeF69jOLrFELtoi/rnNgmgLdHWwwoyNMAkcJukG9E2q5QfNlcRScej6x6SNk1DHiX3fky0yngqrgKfMiPp9ir4uPzbZgyfhQrumYsHQwrFkyRIsXLgQp556Kk499VSsW7cOExMTmJycxIoVK1ChlaOUAtdeey3+9re/4dFHH8WZZ56Z//z000/HDTfcMGeD67Gt1TuYZT4j3BqffqcioDzk0/euAAZHQ9PvVCyUTc1uKjZS20rz/XGaktPvVCR4JaxnzcVKx1hJLS7NGFpDpZvrXp3/32EvMceezzvb7gfw8/k842/WXKodMzAwMDCYo5gt7Ww/eXADwJ///Gc8+uijePTRR/GLX/wC6XQaixcvxmmnnYbTTjsNp5xyCpqbm0vap9/+9rf4t3/7Nxx33HGwLHmRP/jgg7Fp06aS9sXAwMDAYB9gbyy19pNntJ/P5xkH13OxdqxYCAQ8BAJqBtPS6lpZeGreoZL53drXlt/mFtF5ao1lfFiyaOlWqtMlGyBbs0hySRCKbaG8MG2zUFJWXfnsHpJaULYy2twpWUybak8tbeHZUWq+C9eismiVknWEWqccHCYRN8rARTpltdHS9CjYFomzmJytjgTUmufnn5eFHo/qlKvKZfW0Oirb8ZTUaANqtjo0QIJilIbnGuOAlhANTFL9MP0QJRslI3ls3ev57Y2TC5X2bF/GDIF0LWXBtSxs5kDJvKbqpA3XP5dXyjVPJlShK667T9P5rbScJ8PWT4NqRpTvc5pr0Gk6WiTOwTXOu4CTR2R5t0v9MGXLkyTUhVHJwjNDJLFg6tp4tmxjVkKaRM+iW9RV8cQiWVXmemz+Di0MD+a3R4ZUPYXm9sICgSyUkmxSmSBRYlWEaW7y74Qi/KYNGQuf1ZSlkDOZa99wyimn4JRTTgEAJJNJ/PWvf80/zH/84x8jk8ngoIMOwssvv7z7AxURAwMDaGpq2uXzWCymBNsGBgYGBvspTOba1+fzjIPruVQ7VmzEJ8OwcxF4pGit03VzSXm53tonCpwcWOSS5Pc7qNLYODhzKABLUWBgafpC6TZ5+Q11k7gWBeFZooJbUfUALGi2nYSqLFpIcMulfXSbRnGuLRwEeRR08JfN1oLryAAFZySOlawnunkFBeCT6gseqyOnySe7c0TUJ6vLVOXV1gOEFt7/gqw8sRLs1h56wdSUq0N9RDEmmrxFitwshuXqQ0TiYC7RrSM05q8nZP5wMA0AzjgFfTzMdJ88je6boyA4RIEeK497XMqgUax1sa98nweJ4kzHymrBsatOmzwCwzSW1H87ri3C1Mg9cIN0Lb3SXvedd0lJnPvj0rXYFIDbWpmGTQtRPM68WOTSIlaiXV15CvI8ocA/0yTf50pbFjQsRx2zTK0I8YW4/IMXqzRV9zSVMLh0Ti6fYLpa5DX1N8h15Dzj6+vgJn2i65ngWkEkEsFpp52GE088Eaeeeir+67/+C9///vfx6quvlrQfRx99NP74xz/mn9c7A+p//dd/xcqVK0val5lg0fIeOOX+q4V3DpZG1fj1bQ0lOQ8ANCwZLtm5Bnuqp9+pSOg4pLsk52GXD7/Ru27XhS/fUEIKf6S8NGUQibRP6tqFkPNfLtzz6xwmuFZQ7OfzjH8xLMvCP/3TP+Fzn/scNm7cuE9rxwwMDAwMDOYy0uk0nnrqKTzyyCN49NFHsWbNGrS3t+Okk07Cd7/7XZx88skl7c/XvvY1nHXWWXjllVeQzWbx7W9/G6+88gr++te/4rHHHitpXwwMDAwMDPYV/Ho+z3o5LhQKYcWKFbNtPifhxR14nqNQenNaRjFXRrRYsrBJlRF1eHiKFB6AcIdYIWVfFSqyQj9vUzNJ0XVCf04wXZlouZwFtMfV1f2qBXK8IRLeqjh6LL8de0pW0TlrBqgZWtBCJ/sPZ2lcdEG2DDFhWasjNCb7pShZoNDAAXiVcs0sEHdYs6xaj2fU7NyWIfF58ubJ9SdjkvmP1JMtWqdKkeYsYI5EuDhT6EXk8+CAShdOEkOAWM2oikhGe8u4ZK7DGsWahfSyRL8PDshxme0AAI1NwlAY2y730yGf7FwVze0GNVvP3srBSdlOzJP9mJWgfzeYPp8JyHZolES/SOjN08oX+N6y73kmSMwFbW5FuqnPlO3n8UuxZZx2TmZ88I2yqEwj0ivn0FkliaVyP0NkzeZm5D79euCo/HZ704jS3iJzby75UNgaDWp2gfuTihYuE0iE6P7Nn9pqK1CZAeL+ZK6NFRdw2mmnYc2aNVi0aBFOPvlkfOxjH8Pq1avR2to6fWOfcOKJJ+L555/H17/+dRx66KH405/+hLe85S148sknceihh+6zfhkYGBgYlAbGisvf5/OMg+tYLIavf/3rePjhh9Hf3w9X48Nu3rx5rzu1r2ClLVgBS1HbDvVrQ0Tv5g3LRJF46GWJIJPtRH/JqJSO+Bj5MZPSsTNKL/ATqmczU84DFERniK7t0Uu2a6szf8ugBHFM5xjslhd7h2jZ2Tr1ZTzSLYFCch4FdLQIEenjumB1TgTo3T1FQU90SAZzZAV5aQe19iNUi0ox6Ch5W7+ltktps6GvMb/tDspiQ/kCCUAPburNb7/w/EFKew5IgsOF61qRoHGZr1KenDJaEBiVfpYHZb8sFdamNbVyXjjJVLKvMdGqJ9SAfDxGHua0IBCoknu2pFnqfzcMzFfa89jyPQsS/TxDNd+sqA5otHJFhZsoylvlXujXrCiMU3DN2gLOgLpwpdSzN9DCF/U5S7R+DloBwKbvHftHZ0kVn68l2arR6FghnTfp0g6plEUgF+r5J7bIAo8blbp7j6ltwanHicsHeDyD44WvH1DHwKtKw9pfnpRzEH/5y1/Q2tqaF0c5+eSTUV9fP31Dn7FkyRL88Ic/3NfdmBHGUxEEAv7TwjOp0lCAA+ESqmpnS0eVbV8wOP1ORcLmLSUSA7RL9xtpBUp3rmB1avqdioRkd/n0OxUBjSUsgSgFcvEUtu3rTuyn8PP5POOnyEc/+lE89thj+NCHPoTW1lYjgGJgYGBgsCtMzTVGR0fxl7/8BY8++ihuueUWfOADH8ABBxyAk08+Of8wb2xsnP5ARcTJJ5+Miy66CO973/sQjUanb2BgYGBgsH/B1Fz7+nyecXD9X//1X/jjH/+IE044YVYnnMuwXAtWzlIyp5zNAlRBsu2vC/WWRYxtUh22mtSVwaWt/fntzU+J/zKLIQVcTbQpyNtESybhtegmWdFPLFazqEfNk6zuEwMH5LdrWySLO5oQXjZnqgFVhdkZkmvjLKaToGvOTd1/FoiLN0ibHFG/2aMZADJVJE5Fl7Zug3hzn3WCquZXHpVxH88IrT5FWYmGkDAPEgtVijVnCzOcrSTRMCVrmVYZCrkQCZJNIRSWyUk2wdM0K5gKHN1OnttNciz2UgaAbBsJd5HYnZeUudGxTBTuNyfblfacuc5Rgoip0Ewxz1RpImzEZPDoPoe2U4afqewaRZtV0bOgkgc2StfGiYXHmKafI+E2LmuwR9UDJNulP0Ga20yRT9N1KmKHUEtAIsTEmFgifdmalBKFreOqWFLFMikNsVPMSpHzBEbU7wOrl3tTJKQ8u/DvBABkLZp3CQdu0p9MnaGFA+Xl5TjzzDPzftITExN4/PHH8cgjj+Cf//mfcf7552PZsmV46aWXStanI488Mi9A+v73vx8XXXQRjjvuuJKd38DAwMBg38LQwv19Ps9Yhq62thZ1dXXT72hgYGBgYGCQR3l5Oerq6lBXV4fa2lo4joN169aVtA+33XYburu7cc8996C/vx8nnXQSVqxYgVtvvRV9fX0l7YuBgYGBgcFcQDGfzzNOWXz5y1/Gl770Jfz4xz9GWVnZ9A3eQAi2xRAoyyHVL9flVqtZH498ehGSDBLXIrMYUqBTFdrqKZdMVZZqJFmQzHXUZSEWamIbHZdvH9d7TqrprIGEKLnblGGdpBpdtlvSvYAd8qbmXCP7H7NQGftiA2oWLUxZzGzZFCUFenaSPZdJ3MuimrW4qwqKjW6tkfNTFtAdFBrkX8s66CRqX4KDcrzsPMmCc50z90v3fM5WyhiyxVJ5UI51SI3U4nZVqnUeVqxwSpJr7tPVuueztGFxK64T7opJ5nQXn+kKGSeP7m2YRPCy9ZTpHVB/Ptj+yhkv3H+2wtKF7xSbM7asYj/1MrXPOSrj4syzYl9GgmipZq3OkbLnDnnYe5Qs9ig7HuxR51mmsbB9GCPtSr+qQiqTxX5afrjDJ71Fzknfc13DgMXeONtPp0GWavPD29U+s26A1ZyAa/tokbKfrHDPFq7r4plnnsGjjz6KRx55BE888QRisRjmzZuHU089FXfccQdOPfXUkvfLcRycc845OOecc9Df348f/OAHuO666/CFL3wBZ599Nj71qU/htNNOK3m/doeR9XWwI5Hpd9xL8PPCT+QSpauDdiOZ6XcqEgbGS+ccE6oqTc2wu6U09cIAYC+KTb9TkeCWwEpqJ8Kt8ZKcZyLu/2/ETkRC/n+vcn7qJZjns2/P5xkH19/85jexadMmNDc3o6OjA8GgSll89tlnZ9WRuYBMykEu4CBM4lzJhZqv7Yj8GC1aLjIDm/5XKN78Yp9pVr98NtFVw/10HhJBs3QBown5sXCj8n+sMM0+0ahRz1kfkR/rjXRo16UXePas1sQ7suQ/zAsKwT55aU810jhVaT84o+rL/U7Uvkpq4RTAJRZpL/scxFPfyivlwfpvW96iNIm0yjUn++TByHTlsXFaHNKumRcImL2cm0pQTPuRsqcQJemLi/Dd37aKoJgVV39AWYmdj50j/+xgpyruk6aFn0SHjKFNixBdozVyWO2abaI481JDqonE3cgbm0skACDZTPOE5zDvxoOplT94tKgU4e8G+3Tr40rXkGlhETIKICdYEE9rT2OTbKIx5/3oUrIaFZ4XC1I1RMWmfrWGRZX/qa4Opf3iBtmPVdlZkE2fW1wmwCJy2Sa554GhqVXlea45HuD59YA1NdeoqalBLBZDS0sLTj31VHzrW9/CKaecgiVLluzrrgEA/vd//xf33HMP7rvvPjQ1NeGCCy7A9u3b8f/+3//DJz/5Sdx66637uosGBgYGBsWGqbn29fk84+D6Pe95z16f1MDAwMBg/4apuQa+8Y1v4NRTT8UBBxww/c4lQn9/P37605/innvuwYYNG/Cud70Lv/jFL3DGGWfkBUovuOACnHnmmSa4NjAwMNgPYWqu/X0+zzi4vv7664veibmCxS2DcMrD2EgWRaEeNTPv0Ygls0SXpYymkvXSfXW3CmUqQJk6K0XZpAo1c5tiW6WYZNdSi8UviWm8iKm39akNi6lvsvmPh6zJb/+8S4zSbc3uKEO2RCzg5EwSRTtLWXBHPX+EKMqqXRFzd2Uz2K+en0XcmHq8uF7Euf6/lqeVNt/eKJTGREAy1BZZZJVXyPilN9co7Tlbyn3jTCULbaUbVYZDZZlkmCfmyfVUh8lzPCwZdXdCpTJl6ilbTJ7Z4c2yX0bzmeYMNfolq+2FpM+TdJ9sTYSNryeQkm3Oe7KAVqZc/YWNbiOxOxKhU74b1OXQsJqtZxG3ALECmAqve2uz+CBbtrkN8h0KE3U6qWdxJ7m0gjLPXJpB42qPqXPTTso4uQvJv4z2u3/D4dJ/neLlFC4zyUXkmkMj6n1iH3i3nDy86Vr0cWKwb3xmJAI3MeWueweTucbHPvaxfd2FXTB//nwsWbIEH/nIR3DBBRcUVEM97LDD8Na3vnUf9G5q5Gqz8KL+U7bDFaWhGh/QPFCS8wDAuu0tJTvX/MaRkp1rPOm/NRsAjJSVTlU/11e6c3nlpbODKxXCJSyBmJj0/1658SnKJ/cWJnPt6/O5dAUXBgYGBgYGBvsUDz/8MNatW4fPfe5zU9qMVFVV4ZFHHpnRcb/+9a/Dsix85jOfyX+WTCZx6aWXor6+HhUVFTj33HONaJqBgYGBwX4NfzxY3qDY9Fob7GgEqJWVr3SVumoU3SL1w119Ig7lUKYtW0crZ7qtVqNk1FyuBY3KCmI2rd4WXl0MUC2mtU1WbdnuymulDBqAQ9tFOOvFZxflt3/64EmyE2WHdaGrSI/0h7PoSnaXL1OrGbc4CUz9jFONK2fjghPqmIXI4onFmBh/Hlmu/N1WITZjwxNimZYjVkEkKFmQlJZQ5PsRGJB77hVOdCrZTQCY6Jba6iDZV00ulHuWIVuwUEq95hxlyDMkXOZSP/WxUMT2aM44Y3KeyDxJU8Ym1XnGAnsWzTOXRMQ8EheL9E4ttJGtnGJFnLOzUXVtj7PV/D3hmuDAoFq/HyTdgTT13+mRcWabO91mLhelmm0SMrJJbChMNc6JxVpWiya0x9oCVHN9woIt+e1nelX7s1xjdX6bLbd4brmalZtbJmPL18OiiopAX0Zb+SaxuHB9Arm4+ntRLBha+NzE2972tqIf8+mnn8b3v/99HHbYYcrnV1xxBf74xz/iV7/6Faqrq3HZZZfhnHPOwRNPPFH0PhgYGBgY7BkMLdxfmOCaUZEBogHYFEwFJ9UAINFGtOJyCQByMaGHBCekva68HSTl3nQd062J0to0tXpvppIUxlvkpdgdIXqUFtBnyUSZ1c9r6ifz22Ov10gfR9Sgiam0NokhsTezR3TrUKXafzdUWNDMUyjiss30YACwiK7skaDbRFqueSihKtcnMzKeNjEJA+RfPGBJYKMx2RGmoIX7yfRvh1TZnX71Gu0OEVTzRoX+fUhdT367e0jOn41ov1Y8NjQcuQa5F4FRTa2b1ecp0OP2iYR8rtOy2bfaiREtvEb28Sg4TtdqCuukah8ktfAsBbARClR5QWVHp2kMiFbNZQVZjYrOPvQ8hwJTUKnY1xoAItvkPHaKRMBaZb9EFVH0+zS1cKK8V70q1zZ+sLQfSctvg+tNTfFisUIWTrR1P3BSaWcROS5ZcCtYhE5dUHBoseyUd7+M9GQam6fs1V7A0MLnLP793/8dv/zlL9HZ2Yl0Wv29nqko6eTkJM4//3z88Ic/xFe+8pX852NjY/jRj36E1atX55XH77nnHixfvhxPPfXUjL21A6MObJ882RmprE80TA0vTsyffqcioa5pfPqdioTXNzWX7FyWvnDoE5zJ0pE8vQ6/6nR2heuWZvwAoKysNOUWGT/VtTW4w4XfbYt6jsTUJV57BUML9xWGFm5gYGBgUHx4e/HPwDfcfvvtuPDCC9Hc3IznnnsOxxxzDOrr67F582acddZZMz7epZdeine+8504/fTTlc/Xrl2LTCajfH7QQQdhwYIFePLJJ6c8XiqVwvj4uPLPwMDAwKCI2Jvns3lGT4sZLwPfdNNN+OxnP7uLx3UikcA3vvENfOlLXypa50oNL+bAcx1FtClVp9FbaTmiukxWGPuqhAacq5I20U41a5SgzBn7RDOtW888M8UzPExUalvErWz2f9Z8cdd3y0pydDNlzqtJNIppydrpQ4OFpwlnEfm7lhlURR4coi+zOFndK7LPZAedXvOc5jGPbpWBCi2WcU7n1NXK5fX9+e2nXfGQ5uzs8iVCl381odJ1PYey5azHli78uU6lDweJPk/39snujvx2Q40wB4a3qmMWIKGsDGWkeW7orAp7kawMuyR8xj7Jbpyo6JruR8tyGbPurTJmVkrO4xDFXaelK8JzdDuUzDnZTele2CyQx9fM98zTpqJN8zZE3w2+ZvYZh2bFlSKWBNt/WUQLD43RPdcXxVm7kH4SOSM+3CHMhfaaUaV5oq4tv83iaBn+DmtfB2YPcLY/RBnpJAmisTgeAGSo1GXDeCOyMX8yCoYWPjdx55134gc/+AE+8IEP4N5778XVV1+NxYsX40tf+hKGh4dndKz77rsPzz77LJ5++uld/q+3txehUAg1NTXK583Nzejt7Z3ymDfffDNuvPHGGfXDwMDAwGDPYWjh/mLGwfWNN96Ij3/847sE1/F4HDfeeOMbOriGteOfR0GC7ovLwdXQuLw0W0QlYx9ZDiYAwIqQZy+9NDMNOdugBmoBopIn5hMtvUmox7m/CcU4o1FPXepbgAK91LDcQ54IrhZA2Pwun+FgRrZTNtHFw2r/s1X8h7SJtVLQNsljrtUfE/U3sZDq4amjFUGV2rhlvE72a6EFDaoz7hmXjun0shzR5/lGOUPsmSy7KL7UABJbZbHFJZ/wyRgtiFTG5XxaXW1QUWLnbfJVrlcXfjg851pivrZojZQSZMvUhZ/ubhmzAFHec6QhkCF1azulXnOWvNZDY0Tlpp8KFoh3NOq2QkunhQMuhdBZ1TYtEKToe8PK51zKwf7PAJCrkDFMzCfKPdV/833OafR9K0MLZG+ZkM9fkPt/SK2UAjzatVRp3zYh58yJhIOqYq75kfPfvAjA3xOeM45G/2f6vOtZu6Wq748YHh7G5Zdfjt///vewbRvnnnsuvv3tb6OiomLK/a+//nr86U9/QmdnJxobG/Ge97wHX/7yl1FdXV2wzVxGZ2cnjj/+eABANBrFxMSOefuhD30Ixx13HL773e/u0XG6urrw6U9/Gg8++CAikcj0DfYQ1157La688sr83+Pj42hvb8exx76KYLn/NMx41v9zAMBYunSq0Btfay3ZuQ44oHv6nYqEjd2FBfmKjUoq8/Ibo1RG5jdCG0o3B914ac6VrStd5Ge1+6NXopwjNHWZqMHcxYxp4Z7n5b0wGX/7299QV1dXoIWBgYGBwZsOc5Rydv755+Pll1/Ggw8+iD/84Q/4n//5H1xyySVT7t/d3Y3u7m7ceuuteOmll3DvvffigQcewEUXXeRvR31CS0tLPkO9YMECPPXUUwCALVu2wPP2fPDXrl2L/v5+vOUtb4HjOHAcB4899hhuv/12OI6D5uZmpNNpjI6OKu36+vrQ0jK1NVQ4HEZVVZXyz8DAwMCgiDC0cF+xx5nr2tpaWJYFy7JwwAEHKAF2LpfD5OQkPv7xj/vSyVIhUJWGXWYjsFlW2Dxt+YFpqakxWq0nETKb1LLLXlRX67JHCZXcXi/tXVosD4bUbHea6NehAclCxRw5tsVq21vULEL04LH89mSrtK9sFFpyulvSZizmBAAOeX2rXsQyOGHKjtUdp/p39myS1WWvSo4dJT/tiWVyjeEBNdPGY+7Zcs7mMskUVjoqtfWxzZIhtEPSZzdKFHtSC3er1DFnr+1MKym8c4aZ1phcLVvP/8fCY3aV9PPchX/Lb/9w+8lK8xRPG/JcDvXKsQJJdXLGA7LizZTvHKlgV0Tl/IMV6gp5sJeuuUHaRDeSZzbTvbVLVlgF9DkLdTFSmjc4K7TbaekLq5XrP+p2loQAqT0sEgSjDLvCSAAQJCFBzkrnSKgs2FVY3A5QKe9lERnbsSrJgr40IlmjXE69Z4OHSVo/SF+bLAsXJjRWRUXhOZgjmr5VTb9Hw+rvAf/WbOlugJvwafV9DgqarVu3Dg888ACefvppHH300QCA73znOzj77LNx6623oq2tbZc2hxxyCH7961/n/16yZAm++tWv4oMf/CCy2SwcXQ1xjuO0007D7373Oxx55JG48MILccUVV+Df//3f8cwzz+Ccc87Z4+OsWrUKL774ovLZhRdeiIMOOgif//zn0d7ejmAwiIcffhjnnnsuAGD9+vXo7OzEypUri3pNBgYGBgYzgBE08xV7/FZw2223wfM8fOQjH8GNN96o0OFCoRA6OjrMA9PAwMDAAMDe11zrQlbhcBjhcLhAiz3Hk08+iZqamnxgDQCnn346bNvGmjVr8N73vnePjjM2Noaqqqo3XGANAD/4wQ/g/l99xk4P6r/+9a9497vfjY997GN7fJzKykoccsghymfl5eWor6/Pf37RRRfhyiuvRF1dHaqqqnD55Zdj5cqVM1YKNzAwMDAoHkzNtb/Y4zeDD3/4wwCARYsW4fjjj0cwGJymRXHQ0dGBrVu37vL5Jz/5Sdxxxx045ZRT8Nhjjyn/97GPfQx33XXXjM/ljoaBVBgWXVpOy7pxLSOv3oQ7yb+Ysk6xxZpq1LjsF6IaSRY0szVBM48yl1yP3NgqGenRv4mXsy6AlMmQOBNZUXmNVMu7h1+WENkipWtYaEqO1f16g9IGZNPFglzpSqrfHpLt5AK1xiRM4lCeLfu9MiBCbW1V6ov4CYvEXOiJR+QFkErDEW8icbQedT6nKXtvj1IWNcoZRcrca9l2FnsLUGKQM5c/3yAv+NFtmq0Wi4VRupRFw/Sijtr5NB/cmoLtR16SexPQ50lLYZ/kZDOlZ+kyQ4N6cT5fM9X8kgYB1/PbahIZIPupqWrGI31TjzOLrfF3xqI5Zw+r48y17i4LhdE5k1SLrXu4swVbLEG+85RtT5HYnm590rRW2COxdsl2c7ZaF44LdZMoYZt8VwIx+ZxP42q/8lnqm2V7sObok7K9XRUZvP7663HDDTfs1TF7e3vR1NSkfOY4Durq6nYrssUYHBzEl7/85d1SyecybNuGTQyg8847D+edd54v5/rWt76Vr2tPpVI444wzcOedd87qWC/evwKBcPFqu6dCqsb3UwAAnNI5LqH8mLHpdyoSKkP+16HuxPL2PfvO7i1KqUuxqGZmooJ7g3WvHFCyc4VHSvOcSZdSBmNg7xZ79wjJufl8Ntg9ZrzsvmjRIvT09Ez5/wsWLNirDul4+umnkcvJy/1LL72Et7/97Xjf+96X/+ziiy/GTTfdlP9bF1vbU9gpC7ZlKVTP8JDm+UyBX02DvBiP2vJizOJkGUttX7NUfjgne0SRmcWdkkPaCwS90DMtOkVeztzntEbrbiB/weFyoQJnJ+WHwaqgoEFT6+ZjJ9uIuku0ZKYeWzGN1h2Q/SLbZWzKBuRYYwfSOTWf0RQFNw559jqktFbmqAH5y0NS08d0Xxbaml8tLxyvRWqU9mESkeOVh3SQlKMpgMtoZYFMM8/Rocsjci2HNYvwy9OV6gGyREsOVMm1WduEL86LGwCQGpN5z0J8rMrttcsbndenzrNIp1xzhucDU9zHaUFGZ3sT/ZqD62S79J/PoYuDKcE9i7DR4kqmUhMUYw/wysL0c/a81tW++R4GKTjPklq5FSf/7jF1ESZFPtNlT4qIWeoguZZ3tL2a3/73+BFK+3S13ANFFZ0WUXTfeS5VcQZ4POn6R+hetqi/ByH6fUpXBOBmtEEpFvaSFt7V1aXU2+4ua33NNdfglltu2e1h161bN4vOqBgfH8c73/lOrFixYq8D/VLihRde2ON9DzvssFmf59FHH1X+jkQiuOOOO3DHHXfM+pgGBgYGBkWGoYX7ihkH1x0dHQUFzXaCA+FioLFRVYP8+te/jiVLluDkk6VGtaysbLcCKQYGBgYGpcXe0sJnImZ11VVX4YILLtjtPosXL0ZLSwv6+/uVz7PZLIaHh6d9hkxMTODMM89EZWUlfvOb35SMvVUMHHHEEbAsa1rBMsuyiv4MNzAwMDCYW5irtPCZunkAKCqDuViYcXD93HPPKX9nMhk899xz+Jd/+Rd89atfLVrHCiGdTuNnP/sZrrzySiXA//nPf46f/exnaGlpwbve9S5cd911u81ep1IppFKSzd1Z22c1J2GVAW4PZfQ06i3ThycikkWMdLF/tGSQwoOaXdEi8pam7F5iCWUnE1omiTK5WcoQj4/INbKgWahPfemr6hCa1jjRTVlbib2lOYMHAMkWOSdnq9mXOB3hz9VrztGxOdsaGZaMWnBCslK2ZpfEq2SJDhLNIjGrrJaSbCgT64whkGczvTeOpeQ+cwbz//ZEIYTJCzlVvxuhrXGi39dInyujci/Y8iVbpb7Q2pQtzYXp2uj+6xn+2mqx9hodrZH2RANurhURuMEuVWwvcqSwKpI9EtQE2BaL7h/7SgOqLVWyjdgGdD+TrSSUplHhQfOWaeGJRcRK0Oy/GM4YZZ5pnJiWbmlxQ4Iy4SwixmJ9Ocri61R2pqIn6+VYzNBYPynlC/EBVUTO8shnmyjvbOGnlAIAmpAelYwwFZ6syDhTDajfdTuYAzI+BVMlFDRrbGzcZSG2EFauXInR0VGsXbsWRx11FADgz3/+M1zXxbHHHjtlu/HxcZxxxhkIh8P43e9+V1TrqVJgy5Yt+7oLe434kQnYZf6nTELhzPQ7FQHz60ZKch4AeK2zdMmHTYGG6XcqEkaHpn7hLiaiVaWjumc2V06/U5Fw4Bml+1145aXislqnghcp3eKgU6bXtvmA+BwTHN3Z1iecf/756OnpwYMPPohMJoMLL7wQl1xyCVavXr3bdsViMBcLMw6uDz/8bdFhmAAAqFZJREFU8F0+O/roo9HW1oZvfOMbM1IbnSl++9vfYnR0VMlQ/MM//AMWLlyItrY2vPDCC/j85z+P9evX4/7775/yODfffDNuvPFG3/ppYGBg8KbHHFQLX758Oc4880xcfPHFuOuuu5DJZHDZZZfhvPPOyyuFb9++HatWrcJPfvITHHPMMRgfH8c73vEOxONx/OxnP8P4+Hh+QbaxsRGBgE+0+iJi4cKF+7oLBgYGBgZzBXMwuJ6Nm8dOzDUGc9GkTg888EA8/fTTxTpcQfzoRz/CWWedpQwwi8oceuihaG1txapVq7Bp0yYsWbKk4HGuvfZaXHnllfm/x8fH0d7ejkAwh0AwB5cyynpdqEvJvgBxI7hesma9tJ/oUNsnemRVMkhZM5vsmoLzY0qbbJdku5yY7Jeu51psFsBSmmPzBppwZLGEFL0UkpVY5HW1ttGjl0fOsKapLphFszItau1rZKtkaJPzJCswcDhZkVHWjTP/AOCVc7ZWMoqxAVmZ2qBZHF1w0FP57fWQFdNUrRw750obTxON4gxlYgFl7idlLBxiAVjaAibbHQW2ynhWtQtj4sVnF0l7LXPOx7ZHSSiLspjpJvWkGRLOUuYAZTp7t4kXfUSzeBrtKUzBDY5TRpqs1CxXDSosopxGyL4qsZgyz2k6Vqu2wsxTmLO11MaZUM9pq6X28jmxP1iLhjPigJbtrpdr89jmjNonW7Q+s/tXE9Wzvybf2aawsAXaF6k2dbFWyWon5sv9DJHWQ0b/PtB3PdJPVmI0h/k6mSEDAIkO+q5Hssi5JVh9n0P4+c9/jssuuwyrVq3K085uv/32/P9nMhmsX78e8fgOJsizzz6LNWvWAACWLl2qHGvLli3o6OgoWd8NDAwMDAzmAort6LE3bh4zZTD7jRkH1/pgep6Hnp4e3HDDDVi2bFnROqZj69ateOihh3abkQaQp/Zt3LhxyuB6qgkQDOYQCGaRphfm4JgatCUXSXCUG5FjBIhqGWvjl1lNgIm8eC3yhmahrVRQnRBeOQWE5HEbJKEr52V5mU8eoNJIQmF5ec70y+pAgNSZszXSr1TT1EFPmNXGA4Up7qkDVRlUDqitUGEqdSBF6tIxNRhItsl5Ij2yHX6r0JgTKZX6+vvth8ofDXLPIuvk+hdUCS1vKKZSSlmF2mK1a6J4h7bQHNLYyplaus8U+GdJjcotI9GySTVozNB9jtDYpmks9UWUVFLGIEBK5kyR5mvR2werZZwC62Q+Mf09QuJiioo2VCV6Re2bFySIYq4HfUwZZ/o9L1Q4E1qgSJRxK1k4g5haINdlj6jzJEilDVlauGH6OAezrFwOAGFSTK9eKrT8YUfGL5GTC+jaJiUKADAvQUEwjw0vfHjq5FJE3WgzQ99h0Pcsk1avmUtYUo4HN1FYCG5vYWGq4orp2/mJurq63VLMOjo6lNrkU045ZdpaZQP/YQdysAP+Uz6PaN3u+zkAoHOitiTnAYC3r3ilZOcay0Sn36lI2BTw57dLx+QzpaO65+pLR2t+5eXSULUBlEwEK9RbOi2MwEH+lwvksv4sfs/2+byzLVB8R4/ZunnMhsHsN2YcXNfU1OwiaOZ5Htrb23HfffcVrWM67rnnHjQ1NeGd73znbvd7/vnnAQCtra2+9cXAwMDAYBrMQVq4gYGBgYHBmx5FoIXvqaOH324es2Ew+40ZB9ePPPKI8rdt22hsbMTSpUvhOEVjmStwXRf33HMPPvzhDyvn2LRpE1avXo2zzz4b9fX1eOGFF3DFFVfgpJNOmpWdyORIGexkBDZlhixXowtT5strkKxZNkRZaN5HGxKHrJiy5bTCRplSr1xduWRrK6aB4nDJECcWUhZRE0SLVBFddVIyaopQkkOiTRNado8yyYoHNWfxiHtraRRti0SodhUO+7/jLqQMpJbFjfSS0BNnKrPy+bw61cfzdbY56yS7I7q3/XGh6LMVGgAk2c6MbK2YSs+lAHp7pgvbJC7V2S+07Lo28qXeIJ8DgEcMh8Q8Wp0nirSlCZpVNwurZNQS9kNgnLPAci06QyG0gQTy6JJDoyRoRtfMol2ASu232ZuaPMA5I6/PBZvmSYrZDklmSKhzIzBG2XJieICdxKiUghkSAJBimzCi76fpOlngT8+2c4a+b5tkonhkntzekd+OVqsr3ckamYNsbZZqkD+Y4QAADpWQKElt+j6zKCLT3QHApkx2IJSDlfUnU7K3auEGBgYGBgYGxUcx1ML31NGjFG4ejD1hMPuNGUfDbIFVKjz00EPo7OzERz7yEeXzUCiEhx56CLfddhtisRja29tx7rnn4otf/OKszmMFXFgazchOTU2cyExSnTQFMPzC7S3R6qcHhDLlhUmdmNShdWXKRFKCniwdO0MK2xYFXexxDACTm6vl/0ht1aOXdlZB1wMQVi7m+mnuC9Nr0yvUQlgvJ8e2R2TMqjrl/OMHk7qx5uubbCaKNS00OERXHomrVLSjFnXmt59OS22zMyB9SVGNsqUJxDL9XfHZVryQOShRFxS8CNfD070lz/GREVE63WWWsf9yL1Px+SRqk5qoLKIMVtKYUaCusFtT6jjnaNEx1UhUcp5bNGdZqRpQKdNcsx6g6cxjltOUv3kRIkDzhNXOs1rNdK6aqOSkis1Bc5A8yzOaNzgoWOeFoxAtHKQbpM+utvATIt9vLyB95utPEl0/rCkRB4kWnqWAnhek7Lh6Ti6b4MUORT2+UjoQ0NT3AzTO6dGQb7Rwk7me20in0+jv74frqvd/wYISUkVngC8c/gDKKvwXj+vNVk+/UxGQdv2/lp145M9HlOxc7CLiN3bR7fAJVnVp6OeApjfiMyI9/iTECiGtP3t9QvWRgyU5DwAkM/6Pn+XMsefzzrYzgN9uHjrmAoN5VjNj/fr1+M53vpNP4y9fvhyXXXYZDjrooKJ2bife8Y53FKx5a29v38XbzMDAwMDAwKAwNmzYgI985CP461//qnzueZ7xuTYwMDAw2CeYjZtHsRnMxcKMg+tf//rXOO+883D00Udj5cqVAICnnnoKhx56KO677z6ce+65Re9kyeBZgGfBjVJGWaNYs9BVsE5SctYw0a1pVN0u1de2YYWsqg2/KtTlIPnqsrASAES7KYtH2cKO+XKs17eICIAiGgbApZUvFjNKchaSkluZau3lio7H1FWm4boRyuBltCxuBakgk9gE6TypXt4Vav9ZxCxTJdffUikqzB2VQ0qbx7sWU0dJ/Z2OneJVR12QjM7DbAYWfuPsts6v8Wzpc7pR2hxcR/e/TOZG54hGeaHMJWc0gyRCpytfT6ZlQHnOJJuJss9aWFH1PufIq5w9qDlDnSKtCVYRB1QqOGeBg1ukX6GBwuMCAB6ptzN7gqsMdJ9pBt8zzsqnSSBG99bma0vXWAXbgATNcnVq5jkZomw1ZYSV3wD6PpdVaRRtup4I3zNiS3haIihJ38coZR6SdC2BXmKY1KqDlmD6fMgFPB8zCiYLPedwwQUXwHEc/OEPf0Bra+suGioGBgYGBm8CzMHn80zdPIrNYC4WZhxcX3311bj22msVs25gh0rc1Vdf/cYOrg0MDAwMigJTcz038fzzz2Pt2rW+Mc0MDAwMDOY2ilFz7Qdm6uYxVxnMMw6ue3p68I//+I+7fP7BD34Q3/jGN4rSqX0FLxGAh4CS9eNMNQCEhyUL1XbwaH67a7NkIZWsW7tqSxWwKdvL4lKUxfMSao1kjsSNOIvVM0JCAkHKPtlqnyPVkkV0+wrbFHDuwnK1TAZl7xVBMaoFDZCgV/kisSQCgNEBqS3m7KadI0Ew8i+2tMS5R13mzPNYSoTKumzV1iRH6U6LMulsneQskmMl2rSUKA9Bgr4mNLTcz6xcIgC1Bp26iYlMBIUQHlKzwKkGYkgQqyFTx2OmtplIyLGTJFam+IRTRje6lakDarY1Tedh4TTOPOu1+cyq4JppnrNcv6yvmip2dORHzuJk6Vp1coSpnjpFvt9WGXmTDxBbo1kTcSOxtjB5S7M4G2fEQ2PqNfOY5dqFyZIdlgL2Izq68tvPvST1/wCwMCb9ydDX2Rmm36Aa7QtBfUvS70akj3QfDpnMbwe6NGs/6nO4IY6c45OdiKm5npNYsWIFBgdLV5dYLPzzz/8egXDh389iIt5eGt/36PbS1buWTUy/T7GQPLF0JzuiZWp7nmJiy0j99DsVCW+bt6lk53p029KSnevUeVtKcp4XhtpKch4ASD48fR3xXiM1x57PO9sa7BYz/nU/5ZRT8Je//AVLl6pfyscffxxve9vbitaxfYGm9hEEysPoC9fIhxpjMkciZoOThQPqgGhWwRtVA5jmBfLS25+hLybFSeEKVRAsNUG3iVjq6QF5adYDLUbGIVou+edyAOLGpL3uMx1cLg/LWD/R3FlLiRYhdM9pZAqLrWWJSs5CVywaBqiBlkcU977emvx2x4HD3AS1lRLg95GgVNnfpC8Rh+jqg+o50y1MZZfxT8+Xe5PsKOzZDQA5WuwI9EmgNZGS7dFJEWHLaYs4HFArASUFVp7GZXdpUYRFUVjQKlcn16XTjVnEjEXl0qScXraRAtVGrfyABPIiJJCXpIULpmUnFqvzPENjwIsNuTIS8GpSadUc0PPYhKO03xi9kGtfkywJ/OVIpT/A3wf6zqQ0b28WyHNCJNZGFPGucVn4sTVa+GSr9I3Pzwt8liZ8xGOg3CcSjHFJOBFa+YBNiueJsQhcdf2vaDCZ67mJW265BVdffTW+9rWv4dBDD0UwqP5e74n6q4GBgYHBGxdzNXO9v2DGwfW73/1ufP7zn8fatWtx3HHHAdhRc/2rX/0KN954I373u98p+xoYGBgYGBjMDZx++ukAgFWrVimfG0EzAwMDAwODvceMg+tPfvKTAIA777wTd955Z8H/A/CGfEhPpsIIBMKKz7JXqVLEPKJcJylDm+6QdHXli5KdjHarWacXa4WywhRzpiEnKjQjdhIes8mKin2CmS5tJzShKaL1ss8z3MICTEHdC3gDZTIaSGiJ9byIbry4URUXW98t1i6c+fM2kP3X5NRe2JzFTM6TOVVTLyyA3piabRkYlr896luqTq6tNSx0mwHNM5oF1jJkwxHaRkwEaqKXD7g1cp02fQ2q6ZwJ8htOakxEps+XdZEtWJ2cx9E8l6vLJQWZ3iL+yWxXxVZm7C0OaHZsdOwQWVxxtltnOHCGnH3XmeKcIvs0Pi6gjnOygbLo3TLmkddVJkiKaOYOUdGTOcncRplhrrnfBCgrbZPlGDMR0m3kua1ZcfEccKkUIUdWaM0Vwvzgew4ArlOY5sr2d7oIGyhbzsJrYaLs55bLd8PapIoqcptIVQo5JwVfYGjhcxKPPPLIvu7CrJDoyMCO+m9fZaWmZoEVE1x64zcSi0tDdQeAQ5sHSnaudX177n27N3Cc0r3L/vHxo0p2ruVHbC3Zuf6nqzR+w6nXSse8aXqH/2UJ2VgK+K4PBza0cF8x4+Ba98Tcn5CYDMHOhZUXZmdAfZm3KR6xW2mGUV0yK2rHF6oPtY5moS93DogHm0f11+V1Kk8z3iMFvWFSiw4eNZLfHh+SF+icphaeI7VsfgGvaZCX/tG+qWuKbGKyBkZlynC9KlN6GyLyYg8AG5McwJDn7zgFRlS/na5V+8/K0xEKbicrJTBpqlDPGY5Im/g4UXepHHzriNB1k63qfeJgX1FSpxciptcqCyUAElO8BGY92W9RrcyFF8tVb1WvTgIeu1+umRdK0pr3Zm+PXE+YppAXoDpzqo1Ph9X2GaK8p8n/Odxf2MNdr7nmemabauhZW4DbMN0cACKd5EedpECVvoKerspOVHSHqP1ZCuJTdM9CmsJ5LkK11aSqHSGfa6Z+25ofOusBOK9ImYZNdPW++bLQoZRVAGBWu00v9SFWhdf8xHkhjOusMxVUcjFJg6aNc3Sz/F/r0jFkQyn4UeVnaOFzEyeffPK+7oKBgYGBwT6EoYX7i9Is0RoYGBgYvLng7cU/A1/xl7/8BR/84Adx/PHHY/v27QCAn/70p3j88cf3cc8MDAwMDHzH3jyfzTN6WsxKrvLhhx/Gww8/jP7+/l0y2XfffXdROrYv4OVseDkb4eGplas5q1oRlExXmjJt3m6WLLZ2U4aYxL28sJwoNqiq+3IfWB040VtJO5Evc1rtgEcZymwUBcHn8LSkK18P04JZYTtCns/P9rQr7VmAianDk200zpSR5WwcACSJ+eWyUBdRtYIB9UaxdatdIed3g9LPhoqY9GVIH3PqW7NQuZ2tki1n6jbTnXc0oowoqT1XBiUj/WKnlAjo88xNMhOC1Ocpi+lWq9n2ilpJyycHJBPOq4ycLQ72qxTlbKtkrjlzn64u/Euq08I525oitfLgCN9n2Z8VxQE1i+xGZDxZxdvS2I0ZmpCpKZTIFRVyzVubmRyuQxl66guLw9lJ9buVIc55YrGMLWfhncDUlEIWP3SJceIFCnuTA2qZgaLQTkwKNyI7uePqfWbK/uu99XDjPqmRGsxJ/PrXv8aHPvQhnH/++Xj22WeRSu2YhGNjY/ja176G//zP/9zHPSyM4JADO+K/wjar/vsJbzA8/U5FQl3TeMnO9eIrC6bfqUgI1pbmXgUC1vQ7FQludWb6nYqEdc8uLNm5AsnSjKHX4ZNCZwH0bPBfLdxNmOfzGxEzzlzfeOONeMc73oGHH34Yg4ODGBkZUf4ZGBgYGBiYVfG5ia985Su466678MMf/lBRCj/hhBPw7LPP7sOeGRgYGBiUBCZz7StmvAx811134d5778WHPvQhP/qzTxGpTCJQBqSqyKM3qM6iSK9kt5YdLcIdL75ck99WMk3aJPSy7LlFXsKUqZy/rF9p0/ucpG6zlZQhpWx3sE8yZdlyLYtKGfLgBFmGked2pplWSzWf7Jo6yvC+KnW9Lln/ZEhQra1K9bncso1MoPnYlHVkca3wdjXTxpnsBNVGk5MXXnld9TYsq5LVPpcEzTgL3zUg12Il1Gw519azZ3amirKLJHbHGXkAsOl4HombTWQkW+GmKSOrfxNpmLI1JEhGdbn2mNooVSZ/B8eptrmWC3spI6strXk0B3P6HNp5XLJJ0/1g2U+cs9UsGsbZZa9Cy+iS8Bn7kTNbIaMxBCJdJAo3j7Ly5bKdqqPvsyaWx/XgNtlnceY6QJ8nm9Rr5jrpcBfZlC2UlHRVSLaHatRV6GS9fDeCYyS8R5l/SxPb42tg33EWKrN7hGER0RgGPJ65jqzC8igmTM313MT69etx0kkn7fJ5dXU1RkdHS98hAwMDA4OSwtRc+4sZB9fpdBrHH3+8H33Z50hORGBnI4iSOFWiQ1VUTiyQl/tntwj9KZxhcSuaeRE1gGhrlex+NwlQMd16JK5ytzlYZp9oDiC9TRK02RotPLRFXsAnF0l/2irG8ttDA0JvydarAcTYVqEYh1hYeFACG6brsv83oIpO5WhxoYKEFifoWDlVQw42ndMicTY+VmuLyppwaUDjMaHPpyjQdIdkzPRFFBa1418S9p+2RqR9tkILRtkCm4LWWFoujsXhchrFG3QPmXLPAWR4QA3ok9VybJeVaIlWbpFPey5aOIAGgLJODkjpHM27CfposShDi0CBrdKvIFG0dUE1Fo5jUUAWcfOi6vfJc+h+0DhnAnSwchlbR1sE4X46RIVnb2um0jvamPNDJkWCcA6J0G2vlu+PrS1cRQfk73hbYfo5L5QAqjd3mmnu5AHvVkqfkzH1Z54XBOABnl8PytmucJsHt69oaWnBxo0b0dHRoXz++OOPY/HixfumU3uATFUOdnTqEouiIe4/9RwAgs2lo6+Ovzy1YGmxYbX65D5QAJmRwm4LRT9PaOpnZbFRXlu6eZEtT0+/U5HguqWhhbsDU9Q++gA7VYJrSvt0jr3JQJtn9LSYMS38ox/9KFavXu1HXwwMDAwM9hNYnjfrfwb+4eKLL8anP/1prFmzBpZlobu7Gz//+c/x2c9+Fp/4xCf2dfcMDAwMDHzG3jyfzTN6esx4iTaZTOIHP/gBHnroIRx22GFKzRYA/Mu//EvROldqBEI52OEcEu1TZ6qyjeTTzJkyylymq4i6O6K2HyqXrG6wh6jclEFLxFWhE87WOjE5dtyRFTqLaKTQBDGyZeQTTBTrv22dLzux3U9A/eIwRZfFznKUledsWDqjTisWzsoSrXpkKR2MvqwBfTGVFu44c59Jynl0/+COGrG56i0XhgB7JttLRQAs061m2xVMFPYVZtEvpj4DKuWaxdHKQ3Jx/TTmzqBGK6dbqFiT0eovZ7EB1fd7LE6CZtWSSQi+Liv9Gc3yLNIj48lUcmeSMsd0z1m0C1BF2dj3m63UOLtsa1R8xVuabMYUyy9tbvLYBOKU7V8g9zaxkTLHGkEgy5RzEp5j+rs9LuOiW3HxfGBv9Gw9eWMT/d/dpgrnZSnxwkwCZ5JF3DRaN2VROMPtOcRQoPsUHFbHWfG6HwvBS+y/9ooGu+Kaa66B67pYtWoV4vE4TjrpJITDYXz2s5/F5Zdfvq+7Z2BgYGBg8IbGjIPrF154AUcccQQA4KWXXlL+z/KreM/AwMDA4I0FQwufk7AsC//0T/+Ez33uc9i4cSMmJyexYsUKVFRUTN/YwMDAwOCND0ML9xUzDq4feeQRP/oxJ9BYNw6nPIWBrub8Z65WixvskwyjS5L/FokxpWpp//kiBgYAC+ulNnjzFnmZ8SgbFQyp6TVvTDLUKar/BNUcc70rtNoWt0HaJMopi5Wh7Bhdp56RTJLlFtd12ly/2yDZybKg2v8MiUaBsvAV2+VYkwdQBnBYnZZcz82ZuroFo/ntZbUDmAoW1Zxy5jIVo/pnrZSPM/SKCBbdJ4eOy7W7AODMk8ypvUWy4gNUj85Z+Gy1ZhHVT2MwFQVHK+qIJ+V62GIqSfXHIRK0y0hCdwdo2vCYJ+fTnKP7p2eBE80yBpFB6hx9Z7iWOt2sHYDqkUM9VIPP4mLDaoY/N4UegXJYGtp0gyZIRtnzEGktZCvonImpFw05q9y2bDC/3b2JNAzI/s3W6hGTQ1QfRt9hh+vs29Q+B4i9wtnuSD9/H+WilUw1oIxzsCHhmxWXETSb2wiFQlixYsW+7sYew6lOwy6bcSXbjFFbHZt+pyKgraJ09lh9NaVbOOndXjv9TkVCeXNp7lVsuHR1vLH+3bDo3sBYvLR3+p2KgC1DpbtXbpP/Netuwp9zGEEzf1Ea5Y43CPoHq2DHI3DYR7ZaDZqsrLyMtzdKoPx6TF7661+SfUbC6kMtViUPg2wlU4zpJV8LOtIsEN5L1N0OeVH3SBGbRasAwCKxNa+cBKlYOZoCSKbxAio13g0WFn3K5WSfunmqIMdkpCq/bSdILK5B2ke7KGCIqN9cXuBwaczqohLAPrVpkdLm+KWb5Q8WJJuk7QgJXY2oVHymG1tlsp9HitipNgk6o51q0JeC0H9dohuX868SBVPRzeqCRqqhcNDIVPTgpPqiGW2Wl7WkK/POIRXqZB0rhyvNlQWC8BAppDeT0BZRpDNV6n3iIDRJ/WcqdY7KJyzNM5oXTjgIz5Fauj2hzu3QUOGSBRZPYbG5wLjWflT2S5D6OZdisDhdpF+lWKdpsWUiKXMoTOUXmdqpBX5Y0Cwxn+jjtCDF928X0BxK1dEPF4m6RAbUcU4sJpr+3jxhp4PJXM8ZnHPOOXu87/333+9jTwwMDAwM9jlM5tpX7HFwvacPZ/NgNjAwMDAwmeu5g2pSrPc8D7/5zW9QXV2No48+GgCwdu1ajI6OzigINzAwMDB4Y8Jkrv3FHgfX/HDeXxGKZhCIBpBolGFhX2EACJK4U2dfXX47ulUylxmyymFfaQAIO5QtneCsm7SpLVMzv7220KxS7ZJ1qqgUOmd2U43s06DZFTG1nTJywaikFNOUkQ11q1lY5VjMKidxMl7J0q24gqMkdkZ9C43LwSYWU3Zas2gKkWeyfj924rCF25W/J8lP2qMsIFueLW0RKvmrg5qlB7sVkS2WLjw2FVzKtnLmv45E1EYHJbuc0vyb3QhleMmKgWlIXkztc5JE3dgyi9kCAWIAZ8vUeeLSzWWKN99bl5gPwQmdvk9Mhmhh+zLOtnuaLVWaGBMpLm2gjLZufcEsB/6/xISMDdO9cypBAeka6ucIZ5tpbGicsjF1/kWIvj4RJYFBYj401ojQ3PDfhC4OaMJ3xDBJN5KH+riauWZrMi5TyXAb8vlOhLU5S7e2pWYC2WAKm2GwP+Oee+7Jb3/+85/H+9//ftx1110IBHbMrVwuh09+8pOoqqqa6hD7HK5r7VLy5AdGXmrw/RwAMBQsnT2WV186y6VAKezS/g+JeGj6nYqATx5XunLID1b9rWTnanVKVy6w6pV3l+Q8Lf9TOu2niQX+W8HlSudsZ1BE7HFwzQ/n/RWpvnLY0QjCRDXdhaJMI+aSCjB7ATMNNj5PfdBs7mySP6jONkx0061b1Rdwi+iezoA8TEINE/ntJAX0umdz3bzR/Pbwtpr8djpOL90U6Li7eV5xABUeJ4o0BXNL6weVNus8eWFjGm94vLDHMCY16i35B4c7JToaTxfeBoDaiCxQhEjtPFUr/d/YK+McHFeDpiwFhx6X8NDvNlOc3bD6g86Ueycm/8c112UbZaB1irVXz1RoubZcrnAACwBpqiG3k7RfFdHaHRrb3fhUR7ZRoB6lOusYjWXT1C9Rih85fYdYLd7TPOB54Yc9wPneWOoaBDyr8HjwgkiOnn+7U/sOUslFJkgnopKLbJneAVp4Ia2EHORejMVkAmXb1Cdl5FkZZ1Y75/mU085pcbDN05aCc3dQ5kxEUwtPtkg/R+JR5BKFF6z2GoYWPidx99134/HHH88H1gAQCARw5ZVX4vjjj8c3vvGNfdg7AwMDAwPfYWjhvsJ/dRADAwMDgzcddtLOZvPPwD9ks1m8+uqru3z+6quvwnWNLZuBgYHB/o69eT6bZ/T0MIJmhJoFowiUhTGaFro3C2gBUJSsA2H5vxx5FrOKcrRHzRolDpD/DFJG1SbqrxVUX3A8zgLqqbv/A6tNBzTq6sTLRD+rkv1q6kRcbXxzjZwjqp2fRJuilNFM1VEWkjK1EUdND6re2OQrXE6ZNsqWZ6s05WzKVrOImE3f8IGRSqVNjrzGMyRK58QKi0PltGw999kihXQWoWO6eqZGuy9jMk6K8rhXmLKkZ1Q9UiLnH7LIVhkLzkACADvhuURKCPKcpYx2SlPXDhF9n48dIhXqNLMoRtWxZMYEXyazPYIjdF80UVmHMtTZVmErZDxSDtfmBjMuIl1yE10qucjWyrWEe7SfPLptWZqbFs0TFjHjOQ+o33v0kohdNX3PST0/NaH6XGfKp1jf5Kx+Sh1nZkxwtlspZSD6fkqbc1xmEA1lkMtok69YMJnrOYkLL7wQF110ETZt2oRjjjkGALBmzRp8/etfx4UXXriPezc17N4I7Ij/NEy7ozQK1AvqR0tyHgDY+nxbyc7llfCt0g2VZjHoV1vfUpLzAMD3hk4u2bn43dJ3JAq/exUbzR8enH6nImGyu8b3c/ilFm4y1/7CBNcGBgYGBr7ArHDPPdx6661oaWnBN7/5TfT09AAAWltb8bnPfQ5XXXXVPu6dgYGBgUEpYJ7P/sEE14TJyQhsN6LUdTpD6hDlyK4osF1W0TOUOc6FKGum1cWyZXF6nqxIhbZL1q21ZYSboHurZJ4jVBfasFzEseI9IsKSWqz61uZYrIwEkBoOlBX60UoRtohuVdO4uTCJUNFCpxMnz+SgbDtadj1AmbIM1RKPL6LsLotbaUJXSm0xrbQOjkmfczk1A/iOeUJ7XL3xhPx2kJISiRRldLUFcBais0blPvOPUZKy6FyjDKjewimqGa8KSZtR2oftonZ0qPCvnuKnre3Ddmyc+cxadP8CtK0JmqVI+I1rpjMkzsXZ0WyNlkWmDL9DftRsK5WuI7srjUXA2XvP5Zpxso/TBO24nywKWLZkTPr/vKTI01XqOEe7ZQ4k5pMIHdlfsehYeFg9f7JF+lY5X6zQJraJzsCKA/vy28+9VKO0H1sm2yxIxtlqO66eM0DCbVny+WYPdouyBJ6W3bGoHr0ynEI2axRT3kywbRtXX301rr76aoyP75izc1nIzMDAwMDA4I0EE1wTysrSCJRZGC0ncSxNuTq6RQLP6DFCP4mvleDWogja1dSJy6ok8E1sEyozK28n0mqgxt68TLl6bYNQvcJMCU2ot5Vp4kx/TmVlP6bU7qJczeqfFPSwUBj7L1cF1eA+RaJRHAA4FOim6d2OaciAGkw45OEdapFoLBdUA72nhxZKG1oEYLp0uJyox4465kx/5v54U6z0pTVaOKtq84JAPCXjnJ1HQc2Eev7QAFGx6wsLh+kBfXqpiLi55LvuVZBy+Bgpb+tq33yb6dC8oMD3nMcIAEJ9NIda5d4Exug8mcI0ZkATHht1Cu6n0wBZITxdTUH8uIiIhfeUOcj0f5qPvCCR08tEaLFpcgs5KlCg/3J/S36bF10AdW6zIBmifM/URQim9mdI7TwwROJoC+TLlR5Vf4R4UWVwshy5uE+PAc+b+gszXTuDkuCNFFRn6zOwo/5TS+dVT06/UxGgu2r4iV1+t3xEsLp0i3XVZaU5l13CFF/AKQ3VHQDCFT6VBBVADP6XdACAVcJ7FazwX4Xftf2ihc/y+byzrcFuYYJrAwMDA4Oiw/hczx0ceeSRsKw9q6989tlnfe6NgYGBgcG+hPG59hcmuCaMj0VhpyNqqkubRUmyHwpQ5jfZTAJQIyRGldNEoxxpz27WAbLDGR1WvQeDtHClCCih8OecRQaAaB8JVTXKfl3dItwWoMw5++0CgGUTlZiyoG6Q6O9Ei39o44FKe4cy59YoZf4HpC8JSe4h3aiusgdHC1N0M3HJyOmvjdF6WZHNNMm2RSnZbFLuk6vZHQU4W0hDzuJonJFl6jMAOJR5ZbpyuoquhTKG+o8V07/Zf5kp8smF6oqmQ+fxiIof6qcs9hS0fkDNVjNP3qVMZ9qWvpRtV7NImXKilbM3Nd1OtrtyNcs4JQtNGVmej44m7pUl329mVUTL5PNkA11/uTq3EhHyAB9h4TSy1aK5vYuQB9mZOW1SpoENkpVi3/q4p2YKIwPSPlZG94xE/PSSAc5+89zg/XJj0p5ZEIA6h8ZCZXCNFdd+j/e85z357WQyiTvvvBMrVqzAypUrAQBPPfUUXn75ZXzyk5/cRz00MDAwMCgZjKCZrzDBtYGBgYFB0WG5u/qS72k7g+Li+uuvz29/9KMfxac+9Sl8+ctf3mWfrq6uUnfNwMDAwKDEmO3zeWdbg93DBNcEL+bAcx2EBzjzrO1ESZ6m5VKbFdsu9dNsKxUcV7ODBzb057efe0mEltiiKlKh1hFlAnLAHGVYw3WSEfMGJdvNGUQASNWScFa1at8k/aTstF4LS2JhnBFliyO26IrOH1XajwWl/tWySaiKSnAU+y9N0CzTQMJhVBueo3Sv66qd3jwiWXmQgFPFVvl4Ygll4S21fpmzlW4DZat7qWaaxNmCmvBdtk3uYZDss8qiklGd6JLspq2X8nIpFF8akyriahbXikqj4IQ0SlMNfVkXZcE1PYB0o7Qv30RZ3DBZjhHDIT5f6zTftin6nJwn59BtsfjYnMnn7WyjWiMWpvmQXihjns0QQ4Ay74FRrc6cMs9ZYjso/WcRNd36hWzzuAwp01K4lo0t9wBNxM2RAyhMlITahq3dOFttU4Y/V8EDqPZBsYaLO7toNBjs3/jVr36FZ555ZpfPP/jBD+Loo4/G3XffvQ96tQfYm0zLDNC9vsn/kwCw6kpXm1z5WnD6nYqEyFDpfk8GTyvNuZbMGyjJeQCgZd5Eyc4VChR+H/QDSxeVZgxzupiLj/iPiUN9P4dnmzTxGxFz+q3qhhtuwI033qh8duCBB+LVV3coQSeTSVx11VW47777kEqlcMYZZ+DOO+9Ec3PzrM5nV2ZglwWQIjGhYJ+qnJ0hheTNXY3yH/SS7ZBSb2y++sV4+ukD8tsBeunloDmV0ATN6BBehAKliARqMdonoNE8+aWbecFOv1xbslV+ZCNa0MO+upE+oqHScVk1WULpHeBAT/mh4E1Wrs6o/XeIZp9qkP1YzCSWUO9TY4UIOiVHa/LbuQgFU6QWHulWr5nPE94u90MJeunr4+o6OyRQZhFdOZ6kxQGiKHtJ9Zo9Cs4cCujRKNfsxdR5kh2k1QqiryvjzLT6qqkDxRzdxBSphbPytK0pd7PQluJn3lqYup0t06j0LLxHwaVL28F+XXiOrmFc/i88X0T13G3kLa0/qNhDnAJ1nXIvJ9Qe3FRC0t4wmt/ePCa/Qf2kau866vkVf3sK9G1659HHKTgp+7EHd7KRFicmp/ZgZz/xD576BFKTGXwDPsDQwuckotEonnjiCSxbtkz5/IknnkCkBD7SBgYGBgb7GIYW7ivmdHANAAcffDAeeuih/N+OI12+4oor8Mc//hG/+tWvUF1djcsuuwznnHMOnnjiiX3RVQMDAwOD/4MRNJub+MxnPoNPfOITePbZZ3HMMccAANasWYO7774b11133T7unYGBgYGB3zCCZv5izgfXjuOgpaVll8/Hxsbwox/9CKtXr8Zpp50GALjnnnuwfPlyPPXUUzjuuONmfK6m+nE45Sl0vy62Ws6kyqnMRkmcizLETOkMj0imaGy5OgvrF4qH9eC2mvw2+1cndRonZY6jWyU7l24obNFla4xU5YtA2cngEhFgcjslu8ZZWwBApRwwQRlmpuR6lO0vD6kdGG4h+jSJkwWYFcd9DKvnz5VpA/J/iJGgmddZpvxfc7vUDm6hzGmArNSYDst0ZQCwyYM5tUiyoF5aPmeLrqwmaBYckbnBYmf1VZJRH3uBfLq17GSGMqxcWhBISko52aJSuqJtUqYQ7yfKOWXFucxhF+E6suZKU+abs6ts5eZq4mCeQ98HmmdhEudKtcu9yGkicm6j/F+wS9owxdnVyzToEnjMY5UyTl6DHJfnLACkyKs8m7UL7sdsi/R8LaNNNmtb+8SPPkhsiyCJIGqkDEx27MFTSpv+KWKZBMYL+1kHKHOdq1fntjUqnehM1CGdmGNWH8bmw1dcc801WLx4Mb797W/jZz/7GQBg+fLluOeee/D+979/H/duahzY0QOnPDz9jnuJ9dtmx3ybKdyJ0lG1WcjUb6SOiU2/U5HQXFWac23ctOs7qF8oq49Pv1OREO8rnR1c16KakpxnaKx01xQO+0+rt4Pu9DvNBsaKy1fM+eB6w4YNaGtrQyQSwcqVK3HzzTdjwYIFWLt2LTKZDE4//fT8vgcddBAWLFiAJ598crfBdSqVQiolkd34+DgAIJYKIxAIw6EX1kSH9uLJftIUtHDQmKol2maP2jw9T/azKThn5eSKZtVnM9ZNftikFMyvGZlmohFr1FmHD0e01mRcAogA11JXqBFMoJ/OxIEG0U1t8uIeqVWJ4eyNnGmXcXfWSj8jndIXXXmbvYAzFGhliD4fXaLWKaVdVuUmKjsH6lw/m1UjGLdWxtMeKbyIwLWrVk5tz/XMTP/u6xcv5PKjR/PbyU5VRdpjb+wFtDgxLCeNblO/vsmEzBOL5hPX7PL80eu8sxwsJ+U8LpUi8JzV64dz5bQfjTnTukNEsXfVOBfW6BT14DQWul+rRbTsDK0wLWgbym9ve0FejFztF8+iEg6mpad5gYmmoz2ifrc8GufyBnnRS3hCr01R+YGrmW7bpH4eZop3Gz20dSo7jUeQfMudmHye4gWtXq3MhObDX544GG5S9aU32P/x/ve/f04H0gYGBgYGBm9UlK7yfxY49thjce+99+KBBx7A9773PWzZsgVve9vbMDExgd7eXoRCIdTU1Chtmpub0dvbu9vj3nzzzaiurs7/a29v9/EqDAwMDN582Ek7m80/AwMDAwMDA3+wN89n84yeHnM6c33WWWfltw877DAce+yxWLhwIX75y18iGtVls/Yc1157La688sr83+Pj42hvb0c6E0Agow2Jq2bn2P+Ys2hK5nijZIomNNpnYkgoK9FhWdtIkIDSUU1quvupLslIZqvknGU20cU3kWpynZodiwzLdnyx9KepYTy/3ZcQ5fJwj0ZXo29SmpTHw0OUESYBq3RaU84mynN4i2T00pRFZYpzpF9tn2gnWivdj3ltcmHbO+u5CdYHRPGVWQVpSRwjWkWiVy+rmeNUo/THq5N7E9lMGUny49Yp1kpGkbKjaaLVJzbJOT3Nyzi6WVK36YNEFZ4JvtkK9ZyhFqGTZbplnrF/tUPm6pY+t4dJEGyYst3VpDZP/bS0zDWXRvD1p4l6zQwBXWGdhfe4n4mF5FOuKaSz1ziXQ6RylDmn68/VqRTpyOvyveH7GekhJgqpxe+yHEl/T2yVyWWRlzSyxFbRhOv4IZWcT32jsdSvOdLL85nGfIJNzDndrnaZ2xxz3HpkYmlshQ+Yo4Jmw8PDuPzyy/H73/8etm3j3HPPxbe//W1UVFRM29bzPJx99tl44IEH8Jvf/Ebxj57LqKurw2uvvYaGhgbU1tbCsgqX2gA7xmcuYsP2Jthl/guuuenA9DsVAYFYac4DAM7S0ilQBwKl8+mZTPpfJgBgl/dAPxEfLpt+p2JBd7/YDxCNFHbq8AOuV7p5UXQYQTNfMaeDax01NTU44IADsHHjRrz97W9HOp3G6Oiokr3u6+srWKPNCIfDCIdL9KNsYGBg8CbEXBU0O//889HT04MHH3wQmUwGF154IS655BKsXr162ra33XbbbgPTuYpvfetbqKzcsUh722237dvOGBgYGBjsUxhBM3/xhgquJycnsWnTJnzoQx/CUUcdhWAwiIcffhjnnnsuAGD9+vXo7OzEypUrZ3X8imgagaiFyUnJFOfKNFuoycJMesU7lnYJD2ntl0pdZprqjJ0hSa89vXWhenA6BGcbc+TtzHWtXPsKAJPt0jnOgg29IFZiYapr9gLaN4f+5OtXhM+oDjQ7omYXOEOfo4xeNiptottJXKxVq6ulbJ9Hftg9A5IpDFSoq5Vnd7yS3/5l7zH57apnKIt4jNR/T2qLnVx379L5U3VUcx2RbWdsanGaVLNkwW1e1ad3dDuuzpNksxw7tEnGM0fiWKFRtU2IarM5qewSw4Kz6Lv4J9LfqYbCVlgsVOZMqJkXmzI+KRKI43p6ZijoYoGJRcIQCHGdMM0tPdtu8VSny+HvRpjmXzal3idFyI6yvYlFMmY2Cb3tznOSa9A5ix4qk+vKxNXvBo+BMyl947EID6rjnFhMOhDEBMgRk8EOEaumSvvNout86rkD4CZ8qrmeg4Jm69atwwMPPICnn34aRx99NADgO9/5Ds4++2zceuutaGtrm7Lt888/j29+85t45pln0Nra6lsf/cCHP/zhgtsGBgYGBm9CGEEzXzGng+vPfvazeNe73oWFCxeiu7sb119/PQKBAD7wgQ+guroaF110Ea688krU1dWhqqoKl19+OVauXDkrpXAAiCWDCNghJNsL01gBNVCK1At3NUU0XH6xZkotAKRI4TpHqr+hAXmBbq4fU9psGxD1Ug7W0w0UKFEiPlCpRYp0bF5xCiwWpbN0j/SfhZEAKME9iyHxf2Ra5IW/vU2lFXY5QtnmoMmJS2fGl1HHNKYS+/+CAt2qJhn/xN9quQn+1jJPekltWMRrPCaBjr5kwkEbj1mIqPBJFl7TDpBZLH0Ldsl5AnUSyGTopoVH1AOkiNrP4lQWCdKxajQApMdIIbuCBK0GZMyrNsn+Y0vVPjP1LVcl7cN95DPexAG4eqNYiTy6WQLqxDwKqKmsgr3RATWITbcUpnZZmjhnpkH2ixLFe37laH77+TqZf55Gg2PF93RTYeVPpruzzzug3ie7XRbOMsNyz132YNdE3MKkmJ+hygRrUvrFnt8AEOqW+8kuAZkmKk3ZKufX/cz5eqyMpX6/5hB2Ck3uRDEYR08++SRqamrygTUAnH766bBtG2vWrMF73/vegu3i8Tj+4R/+AXfccce0zKi5Cn08p0JVVdX0O+0DONsisEvgw23lpt+nGIgePjL9TkWCbZeO/hssIS18YKhy+p2KAL2cx0/ULxuafqciYWBr7fQ7FQllwdLQtUf+tzRq/wCw8MRO38+RDaSw3vezGBQbczq43rZtGz7wgQ9gaGgIjY2NOPHEE/HUU0+hsXFHxvVb3/pWvmYulUrhjDPOwJ133rmPe21gYGBgsLe0cF1o8vrrr8cNN9ywV33q7e1FU1OT8pnjOKirq9utEOYVV1yB448/Hn/3d3+3V+ffl6ipqdktpd3zPFiWhVyuRNGlgYGBgcE+gaGF+4s5HVzfd999u/3/SCSCO+64A3fccUdRzmfbgG17sFLkC6xldThzloRkCgOc9KImOc1Wyh2l1BVbHOWIFp1Vb4tH9j0Wcc49or4ylVtfpQ6NSYfYp9fNkZUYeSkzdRtQaeaZOhJQIkGq0Ha5rrKFqn0ZZyQztXKsdBXbPRF1eVzNDnImIUN2UROTMv45zad6Y69Q3tlKaqKDsrBjlLnWROAUb+daYhgMy3VGuinrWaO1306ZQ/LZ9jIkiFdNFPMJdWWcywzY25yzxYG4Ok+sBZIGtbcKE4Hty5L1dB6N4pyrZssv8vAu37NfUhYkU7LaNH89EvFhGysACI4TE4KE8yIbiO2hzU2LyimYFt41LivyCnVco5Xz8UKDNE/pfnKmN1Wr3mdmeTTUCBOkt1tEaRoXScZwoFvNvKVriHLP057uTSClsxoKlwZMxRbQfbKVe9uaguebzzX2StCsq6tLyaLuLmt9zTXX4JZbbtntYdetWzeLzgC/+93v8Oc//xnPPffcrNrPFTzyyCP57Z3CbP/6r/+KefPm7aaVgYGBgcF+ByNo5ivmdHBdaiTjQdgIKXXF+hxiyneOvOoDSfZipvpljYbq1FBw2ysv2iw6ODapKqEHR8h3m16aQ0S/SpfJdi6m1pXm5sn/hbvIT/oAuRjF19fRgp4KqhkdkRdcVo7mF/hQQKuZpt1cGo9MRWGPX1ZtBoBIDwUDRItm+vyQRgVqP6Evv70515Dfbvqj7NNJ5ZVumXafqDY5spWClvky/gGuk9YCmGwNLRb0S3u7Q6jDXEvs6awzmieJsFw/zwXdszlHKu0RqqHHYqKij8rc2oV6naHglvrP3tpcV52pU2nUDgX7rFxtkU+44t+sIU1Bo0ULMuyHnW5U21sZHjjZXlI7mN+eGJf7n9Ko3y7Fujmaz1ymkSO1e14AAFRa+HhCDsa+5yMTEmizCjsAZA4jKjl9b7l8QqeFOzTvWIkftAjC5w9oOhH8W2VHM8h5/tD19jZzXVVVtccU5auuugoXXHDBbvdZvHgxWlpa0N/fr3yezWYxPDw8Jd37z3/+MzZt2rSL7eO5556Lt73tbXj00Uf3qI/7GieffLLydyAQwHHHHYfFixfvox7NDJm2NOyo//RcL1MaCnC6s3r6nYqEqbRi/MABK18v2bmGx8qn36kIWHxYV0nOAwB2CdOCdQfFp9+pSIgEpn72FxPp2tIxb1I5/0OorE9MIpO59hcmuDYwMDAwKD5cb8e/2bSbIRobG/PlQrvDypUrMTo6irVr1+Koo44CsCN4dl0Xxx57bME211xzDT760Y8qnx166KH41re+hXe9610z7quBgYGBgcE+xWyfzzvbGuwWJrgmeGMheOmQIgzE4kGARpEl6iavljU8L5mheLO6YpwuoyEvY7osZTF3M28DMVLerqTMLykK50Iqrbqsj/rTQjRU8gLmbHW0U1O+JqNgm1XJKaPI1Nn+mOoXy2rTYcpCRwfl8+EjaXVOpysTdXeqFXhVaA0I0yqpNyzZ9gx3jfZxRtSvQrqeMs+jhcfJJVpzIK73q7CSeyQk58yx8rqekZ2QMedsqeLZXK9lHClzzN7QSMjn7B+9Cy2DlyNpODmLDaZy5zSKNc8NygJz5luBrkpPtHL2UFdU6TWwwFi6Ws75v5s6ZB8aChaEA4BIP3nNEyuBv+dBUvT2Dtb8YvskKz3ZK5MrSqUYWaKiu1XqNWdJ+IxLUPg+6/fJpVITl8okotuofKBexiLbqM6TLGXm2qsnkXVS2Iw3B5YvX44zzzwTF198Me666y5kMhlcdtllOO+88/JK4du3b8eqVavwk5/8BMcccwxaWloKZrUXLFiARYsWlfoSDAwMDAwMDOYwSscVMjAwMDB488Dbi38+4uc//zkOOuggrFq1CmeffTZOPPFE/OAHP8j/fyaTwfr16xGPl44yua/wRvTsNjAwMDDYS+zN89kkrqeFyVwTPMeD53gIkEiSLqDE4ljBKqqf3i61rNkIZaA0DR47yCJWZLdDtZ8rWtWawBfHRDU30kN9myfHSpH/sW4bka6kLFoN1QxTpjJCWS+9/pczr1znywJMDmXU39K4TWn/0N+Erpmj8ciUk8cvWTS5mtBVpp6sqEjcKUjCbQnNG3soIRlFxX84S4Jgo+RfrNWZcxaR5wBn3vm4ujc3Mwz4enIkIhci+62MJpyXpXpme6m85LtdUmMW7FcZBhkSSONx4nvDmgGBMfXrz8J1XKfLn/NxdT90nid8PzPE6rAT1C/N5zrdJp1LsuVd3xSTDqoGQYB8t6urZcxG50t7K6OeU/HWpu+WR0ObZrG7fplXAOBF5doOXNyT3940viC/XUapc3dIq7km4bZoD2krcG1/TP1COsTSyIJ9y2knlhDYRdBM2pQdkEY26I+gmYVZ1lwXvScq6urqsHr16in/v6OjA940Pp7T/f9cxDnnnKP8nUwm8fGPfxzl5Wrd6v3331/Kbu05xoJAOjj9fnuJQGkcg5DTdD58PVe7T172BfBa7/TlGcWCEyxNfe220ZqSnAcAYr2lqSMHgKq2iel3KhLGe0tjm1bbMVqS8wBAmU/PTsZcez7vbGuwe5jgmlDRPIlAWQYTkB8BXS2c6b9uDdFFaSSTdRSYlas//p5C0aWX5CrZ77U+7eHENs/seTwkAT33027SHqSjEhDotNhCx93lm0M07SApKjNdlhWpnxtU1Wc5IHejJLwWkZf8bO1uxC4o8A0OSP+3DYgidMVWNegabZVr5nuQqJP95h8qwdC2F1TaJ99n7lsuSWrjDVMEgFDHwy0jcTBHtlk3hwXQdnSAKOfPyXxMLSXl8Qn1nOXNIo4V3y4UZZt+m3ennK2sRtL/cdCaq6QAXqOFB8co8GZvdBrLXIW0T4e183N/SGGc1bF5QQMAottJZZ8UypP8Ek7XrCuUs5I9U7E5hg+SIndap6jT92n9JlLIoznTUCH3pbOpRm1P3cnSnGFBtbQm8Jej8Qj2Sm0GCwFy+YStL8I0S/SwZaAebtynF2/P232Ny+7aGRQd1dWqgNYHP/jBvT7mzTffjPvvvx+vvvoqotEojj/+eNxyyy048MAD8/skk0lcddVVuO+++xTLzObm0vnRGhgYGBgQZvt83tnWYLcwwbWBgYGBQdGxt2rhBsXFPffcU/RjPvbYY7j00kvx1re+FdlsFl/4whfwjne8A6+88ko+I37FFVfgj3/8I371q1+huroal112Gc455xw88cQTRe+PgYGBgcH0MGrh/sIE14TYeAR2JgKLsmO6gBZnfThX6lbL59ky4T5z1gsAQiuEhpMeoEwCZdQ8T8vOkcAY00UtoqWzaFd2Qs1UVfbJsZNkyxUicS2PhJmULDaAAPlOc0aPqdAeZbePbdqqtP+Pinr5gy7NptPYcTlwaFgb8yrKdpOIWm21ZARHm1T/4Cxl9R3KvEaH5FhbNzflt4NaRpRF7QJE/Q2+LmPrxHbjc03Hm4otkD1YfJExodYPWEGyLCMRLGeAygLK1XPG+oRO5hD9mrPoLPzGWWgAANmkBUggL032VeyRrFtxpeuJ4ryNSh7oh9gNS78ivSrbgLPdTMVnWnkuql6zQqe3C//ic5mE/lBgb2+LKBb8FfQc+kMXYaMdmTLP11a/QuZpn0YLz1K2PUtlErrl11RgsTlmr2RIxCygifUFaQ6F62PI5UpjkWKw/+GBBx5Q/r733nvR1NSEtWvX4qSTTsLY2Bh+9KMfYfXq1TjttNMA7Ajyly9fjqeeegrHHXfcLsdMpVJIpVL5v8fH/88nviYNlMCKKxcrzWtRIOH/texEpMV/+upOxLtKQ/8FgMjCsel3KgJSKf/LEXairn20ZOca7i6dHVyotjSlCROv1JXkPADgLfefIJ2Lp6bfyWDOwQiaGRgYGBgUH0Ys5U2HsbEdwU5d3Y4X3LVr1yKTyeD000/P73PQQQdhwYIFePLJJwse4+abb0Z1dXX+X3t7e8H9DAwMDAxmCSNo5itM5ppQVZ1AoMxFrEdqeTN1anaPazRzVDQbIusgtjtKtKizMLNdVnWV8k/O7uXUNY8ALY6xUNSyA0U4bMvGjvw2Z8AAwCNF2FAv2TVlqBabakn5WgDApT+V2mBKAwaH5Ljb4jVKe86IckY2VUMiZhWSPXO1zHsgSbXtLKIW4Ppf9ZRHrtiS335u48L8dqKeLK5I9MrZpoqIOFslRZ5syRXc5uykE1PHnOtkIzTmySbKfL8oddHZZvUCwl0krnWIsB28DdLG1cS5UEljSNlarnP3bPmc65UB9dqUOl+qreZstR3TMs8kaJZsYxEzmn80t5JN6jU7rGdAh+aMbLhb7TPXkOfIZq25Wsass0fmuVupWZ6RfVkgXtgKiwXpODsNAGGqjQ4cLlmUOKQzr/RLPb+mxwaLxpDtx7KUubc1mzeXvk/8exBIESuBsmLZRjVrFdgmczu+qRpu0p+MguV5sGZRmzWbNgb7Hq7r4jOf+QxOOOEEHHLIIQCA3t5ehEIh1NTUKPs2Nzejt7e34HGuvfZaXHnllfm/x8fHTYBtYGBgUETM9vm8s63B7mGCa0Ii5SAQCCr0VD3QZIqtXUEqwPSS68TpZVwL+piimqlkFWp5mz/glC6lzYspEgjLSvsNPUJrzs6TvlgZ9WW8bEC2k03STw5aWHQqo1GcWRGZFZXTLXJOpnj/v8YXlPZrXy3sBRsiL+BMK9GAtfPzwgMLUg2NTa2qOZyU/4t0SjARGZFrmdhN4Qh7NlvVEpw4rwv9PF0r/bS1QNcqkwFJV1HQOEYlA+SlrPtkp5ZIwBN6VQK1TIdQhOyBkNLGZUEwOhwHhLWvyfV3r1Kvn4XL+N4ognoUdHMwB6i21x55MedIrE/hW2uBJlPxw10k1EXjlJyvSvlyyQKjd1QWsTxaXLDH1IUbnk8ZUgVnJXRWTrc1KifPgWU1o/nt17bJPWNBs7ExlYaXbJDx4NICmxaUXE0UMbpZxibRRmJ79L1nsUSnX50nvFhVdtiIf7QzF6pq+UzaGbzhcOmll+Kll17C448/vlfHCYfDCIfDu3z+D4c+jXCF//Tcn7x4rO/nAICcXUKqcXnpbOViFdHpdyoSJreWhtYcnV86Ve2Jl+un36lIsEpYLlCqeKzsoNHSnAjA6FDF9DvtJdyET2HabJ/PO9sa7BaGFm5gYGBgYGAwa1x22WX4wx/+gEceeQTz58/Pf97S0oJ0Oo3R0VFl/76+PrS0tMDAwMDAwGB/g8lcE7ycDTdnw6IsbLZcXW7zqihzRqk6tjvKkcWQW6uuDAYpI5cloaYU0aX7Y+pqWGSrrOInSVwqsFFWiIOUReRsGqD6SWcq5f8qFozL+V+skQaaiJtF4kpsq2UlycuYRLfu2nyS0j7UTyJYFUQFp2OFtsu4eNqsdCaIFk6L/cFWuRfxkEa/d6XPqcWSBbZelANkKIuc6VDvE9P/OVvN9lOc3bSoFAAArGG5Hs4UWuTfnJskobiw2n97UNozW8IjcTTdszlcIRnIFE0Bvk/pShLd6tFo5ZyhZrG6SK7gPk6/mjXm7026nqjL5CfO9PlkpXrNCitiIWXoh+Vz3YqLlwdDw/J/hxwuNmsvrl8mx21VM98s7sXXxrRs9gl3tfvE4oeb+xqkDX2Hsu7Ua5gu+c4H+0isjs4fGtBs3ui7xiwVZhJkSezOC2lMFEfum50LIJcrnP3fWxha+P4Pz/Nw+eWX4ze/+Q0effRRLFqkspSOOuooBINBPPzwwzj33HMBAOvXr0dnZydWrly5L7psYGBg8KaHoYX7CxNcE8rLUwiUAaNVEkzpat+BAQrI6CU3Uy0vsOXbqU1KfXFNtZGK71hhdeLqsFoDOUDHZip3lqjDOapT1utCs8TS4uAgvokoVWXky6wFqhzEhSjQzrLnrzv1C7oifk6e1ezrm6Wg33O082cpGKBg5ojm7fntp9bVKG0Gx2iBgsZmcp4cK1gl4+e8pFLMk02kUL5I9vP65P67NXIvc65G8aN4RqnbpxrfuvVyLRMdU6tOcnCeoqCVvdEBIJekevJBWkSoJv/jBI25lCIDAGyKO5mWHOyTQD9H84T7AqhK5KzQzkErB40Iau3JQ5xDYF54yGlzg4NYLufoHBfdhBwJyYf61PvEi00BKtkIjlP9coS0BSbU+5RYRIsy4zJOYV5ooOA1KfH3jnOS+jrXdtu8WKZ5a3NpSYR833lRjRcELO03zKLygUQ8BDfuE8drtsIn5rn9hsGll16K1atX4z/+4z9QWVmZr6Ourq5GNBpFdXU1LrroIlx55ZWoq6tDVVUVLr/8cqxcubKgUvju8Mv1R8Iui0y/416irLw06rz1TSMlOQ8AjMRLR9W2Ev4s1hVC7eLhkpxndGPpFKirV5TmmgCgIlw6Wvi2DU3T71QETFSWLqwJDPlf2mElc9PvNBvsjTCZeUZPCxNcGxgYGBgUH543u0I7syr+hsH3vvc9AMApp5yifH7PPffgggsuAAB861vfgm3bOPfcc5FKpXDGGWfgzjvvLHFPDQwMDAzymO3zeWdbg93CBNcEz7N2/Csn6nWfKqySWCqr2iTCjUAvZfeiJBQW0yihrbJSmGP/Y1bU1oS2FLEs2s4S3ZezWZ5ORY/JNbC6cbKVjaZJwEkXiaLUc7Jdjs1Kx5xtbqtQvSf76iWLqFBcmWJMGfFMo6robFO2PkkCTs/1Sm1faFTNKDbXj+a3twzIqn1oXPo5PixZkJyWhWX6P7MCwpOU0UxzRldtzz7FFlHM0x2SBU+QcnimWVtBprnh0hwKUYmALqKWXi7HYHGwYD/RrcmC1A1qP5CsKk9e4woVnzK60OxMmZbsOsyEoH1Ikdverq76JhbS3KLPmdZsJaemWLMQXkOZiIgNVNL826b+5KVrif5NfWPfds6I637moW65hoojhvLbsV5JUS+ukc/XjTUq7VOcEKEx8wJynuDo1Or9uuJ6Hi3yOxV4Xc32sVhfeUUSOdufTJ3l7eorvqftDN4Y8PbgJSsSieCOO+7AHXfcUYIeGRgYGBhMh9k+n3e2Ndg9jKCZgYGBgYGBgYGBgYGBgcFewmSuCalMAIGMowiI6ZkqhkfiVkESalLKj12tlpYLkCkjx2JODSti3AKbWJyKVowiVZJxSnIWvV/NtqcrKfNLll3lDWLPERsmcbQJzW6IxiBC/s/sMZxYSOJiWdX6h0WXslSzG6QscJbErZxhzX+ZxK1C5NEbo/o7u0FdStuyTTKEVo1kREdWSBu2GENWPadiBUX2TynyLQ+Tf3W2Sj1/muqsQyOU4SdbhQCV1jv9U9fucFac66T1+l83U3itLEPe5IE0CcppFk/OIHmgd8g1OyN0nTQWZZvU+5xsLPxdCY9QXTDNJTeijplFmVubaplyJPql1+OzbzQLzHWOSLY6OMI7qX2L9Mm1peoLC7exXZdyLKj2XVmqrU6RcNqzXcKwKNOHiLPVVIMeoax+coHKauCaRq45Zw9yzlbntHHm73cqFYSb8qumy9DCDYqHXG8ZvIj/NddJjRHkF7KH++MvXwiHkz6J3zjtoIdLdq4fd5VGFC/7eunyUGMNZdPvVCSMjtaU7FyB+tJoGTivlW78+H3WL/iWJTa0cF9hgmtCTXkCTrmL7nZ5gDsDatDDAgY5Eopiv9nqV2RYw8PqgzrRSOq+pKKcJv/gZ7a1K21YYMylt3P3dRLtaiBKrTbvk2ybSN2J9YuIF6se6z8YoZHCwTEfK0iBmb1UC4A4gCiT68ySXLhLn3sB7UGWLCyQ0txI9PP/Uum2438vLy7JTuEvV22UfYYbqZ8Brc820ZfHCvdToWVH1QCFSwYyFURzj7OAlXycq9iNqBTT54m6nK52p9wv2CsHz86Xh5pLStERjZbNiyU2KZkHyfPaC0j/WfQNANwquk4K9NkO26EFFVZeB4Aca8rR7eCFJ2jvvelmkj6jhaul9YP57b81ycKRE1MXBBgRKpngsfXoPrM4HABl3rCX7LgjF5MloblASiv5oIUfu0t+d5ItpCKu/QZxsMzCZ+xekKbSiki32j7JiulDEbia0n2xYLnqnJpJOwMDAwMDAwN/MNvn8862fuGrX/0q/vjHP+L5559HKBTaxcaxEDzPw/XXX48f/vCHGB0dxQknnIDvfe97WLZs2bRt/YKhhRsYGBgYFB87V8Zn88/AwMDAwMDAH+zN89nHZ3Q6ncb73vc+fOITn9jjNv/8z/+M22+/HXfddRfWrFmD8vJynHHGGUgmS8cO0mEy14Te7XWwoxHAIXuelJZdm4IxFumRocwRKztVp01CEkriLGSOKKkdDaoVw6YtkqH20txGMlBMZc9pXrzBSdnmqVbbJpnf8fWkrKTbH9MqFVNkWfSKbbXGUyp1LzgsGcFclGyEBokuzBZj5eqyWCBO1FeyG4qlJAsZqlA7XRaWsUlT5tGm5GqA/JNzFWpGMk0U5wBlnm2i3CdbpE3kdZWKz1AyjUvkZiQTkt1kQTdAZR+kyQ+dmQNurebZHJT9FCrw2BSUc21pjdkXPE8TURmLKAmC6X7kKYez3XRw6gqL0+kicNxPZgVwht/WdN/Yzi5H8ybNtRn0pU1ofuaKNRd1h+3PeCwtnXpfJvdg24BQ0dlia8mR22Sf9QuU5oqFHn3ukKgg070BwCYhwRT5piMs9z9IAosK3V1rv2MOzTGrDxNbGxRAoDkBuwQ0zGymNFZS3Rsbp9+pSNhuN0y/U5Hw5PjBJTuXYu3oI5zjYtPvVKxzbSwdrTmzsDRUbQDIjk/NGismDl/1WknOAwDPr1nq+zlYXLW4B8ZeW3GNj48rH4fDYYTDU78L7wluvPFGAMC99967Z13xPNx222344he/iL/7u78DAPzkJz9Bc3Mzfvvb3+K8887bq/7MFiZzbWBgYGBgYGBgYGBgYLBHaG9vR3V1df7fzTffXPI+bNmyBb29vTj99NPzn1VXV+PYY4/Fk08+WfL+7ITJXBPscBZ2JAuLspP6qlG2UTJVAcoUpZpknSK4eeqVb2+SBJSozjq0nVb1FqptcpQ5DCS5/rlwRjPXpGbnIuvl2JkuyZSNJmpkH7JYSixWVzM9mzK8VXLODGUELUqglQc1ASbOfNeRXdSkjLOlJmHV9pTFDFOG97C39OS312drlDZVEcnRD1ZL51I1ci0epYdZtAtQhbJyJEoXoprhTI201+vUs3QP2IoL/bIqXdkp1zKxSM0eMkPATsl+XJsd3azZxLVKpwM85rSPk+S/1Gx/dDsJl1FGwEnIfimyLONafECzeaMsOGe7UyQA5sTU81t0OZkWGT8Wl8tUquOsMEvIsmw4IePMegD6ciLbd3HmmmuZmSHiDKir7zZ9b1vfKvNxW3dLfrt7vEr6oiVAgjUyT92Y9Jm/Z5EulXmQ0Wvtd/atX/rC89fW2Ddcm15Rk0Au5JcVlwdrFvSx2bQxMDAwMDAw2DPM9vm8sy0AdHV1oapK3m/2Nms9G/T29gIAmpublc+bm5vz/7cvYIJrghPOIhDOIt1AL9YJbYg4oCQBIkUgnGms7erbdJiou/FxaZ+tkLf+zuFapQ0rArPnbsu8kfz2aKdMLMtVA4AMU6apvUWBbjJAbTTqa5DOz7ReJTii7+hgXKU1KYrOOe4Afc4s4jI10MySWFguLgd7asui/HaNtp7RNVgj/SeKLit0B4hir//EsG92ep6MUzokx4pukTHLlmtHoIA8PERBJ9F40/KbpOwDqIJWLDBvRUhEr1U9pcXK9N5U90n6mWxTVzRYpZ3pdnxvwkNE5a9VgzxeBOIyiXQ1HYvE7dKtKt3ZonvLCwcJ3m8XtXCam7QIMTRKpRQkCJjTBMnsCfKKp0UcpqwrQat2/jRRtntHRTiPFbmDATmnM662j3VKaQCXJjB1W19Q4P0s9rpnPTkKwAMx9fvM9zOZCMFN+KROYtTCDYqIhppJOOW7WYUtEsaTpXlB9CpLVw842V8+/U5FQlYXffQRwZrS0Jrrayan36lI6G0sYYAyVZ2jD7Ci2el3KgJefviAkpwHANw6/+e6m/OLFr73auFVVVVKcD0VrrnmGtxyyy273WfdunU46KCDZtefOQgTXBsYGBgYFB8eFDbAjNoZGBgYGBgY+IPZPp93tp0BrrrqKlxwwQW73Wfx4sWz6kpLyw6WYF9fH1pbJePU19eHI444YlbHLAZMcE1Ix8Kw3TAsyhqxFzUARWnKa5eVZ7szUmgXuK6aNSqPiO9Noleya0yxnXfomNJmS5AyYkRL7u0SETK7lqnj6mpk5TZZMRw7gDLvtE+kV6450a5eM1v3MH06RxlBptdGPJ2GKpvs0csZtEyLnCOkWQfx9XC2dH4jZe6jbUqbtjoRWtgal8xj+GXp/wRbYWkiatlaEm7bJFZOFif4KaPI5QIAEHl9CvGOCGVExblJye4CUMbMK5f75/SRz7jWJEtUapD9U46suEJP0UUH1WvmzKet0N/JlooyxbogGdO/WewtkCD7OSpr8DQ/WT6ekq3n1XV9pZ2+qgG6fIXyT8yLXQQKWayMBc3i3EY+z9pqe4es+RrmixDhkCXf2VSGROA04b3mw4S21P8c0Zr4/mu/0qF+YmIQ+0KxDyP2R0BjRfC8md88hGwshddRfBhauIGBgYGBwdxDMWjhe4rGxkY0Nvoj4Lho0SK0tLTg4YcfzgfT4+PjWLNmzYwUx4sNE1wTbCcHO5iDlaZhSakvplzzGtwggQ6/2LoBUjoeUik+wxQ1cC0xt++fqFDa8Mu9y7W4ZRQNMY20SQ300hV8m6l9tywIJBZRjfCkes0O0UozNVQnTi/tXCN8XOtWpf1/bauWNiOkVLxIFhqcbRLAaqx2pBvkOjnQytDCRUW3Ss/p6hdqPdfsuuRLnCO6eWhQu89Ei07T4kJwUIIpV6kFUPvM9fRhOnZZNV0zeS5PrtBUrLspiM5SLTQtAuxOKVVZkIhJ+3gDU6/Vrz/X2kc38bwlKjgtgiiLUAAS86jOmuq32Q87SLX9gbS68JQMF74eDnQ9zY88NIUqebhMrmW0Ra7FGdXucw0tXGyj73MDBadENw+NqcExe9D3/U2CY5cWJI5s6stvb7TluwAAvUPyd5DuWXIhfR+1cWYPdlbpV3eSTUtjrvGxN25thpvYd3YVBgZ7ir6hKtiJyPQ77iWa6sen36kIGF7bVJLzAECwhNK1mdrS0cK9rtIoa/eOlpCqXcK1xara+PQ7FQnjPZXT71QEpJckpt+pSDhi4bbpd9pLZGJpdPl+lrmDzs5ODA8Po7OzE7lcDs8//zwAYOnSpaio2BEbHXTQQbj55pvx3ve+F5Zl4TOf+Qy+8pWvYNmyZVi0aBGuu+46tLW14T3vec8+uw4TXBsYGBgYFB8eZllzXfSeGBgYGBgYGOzEbJ/PO9v6hC996Uv48Y9/nP/7yCOPBAA88sgjOOWUUwAA69evx9iYMHyvvvpqxGIxXHLJJRgdHcWJJ56IBx54AJGI/4uxU8EE1wQ3HQACAYDUpe0JdYgsEvTiLKjLbUhBmDO6ABCljFqKVuFZdOrAY/qVNmvLJbulnH+cfIEpoRYc0H2NicrO4k6cbqXj8j4AYI8wR1c2M1WFRZMyrqYuRlToXIRoxaMyTqwTxf7fAJAlVe4wCWUFlsrnsXp1ad5NkxcwCZLFE5QRVgTA1C5zRpNp6kpGkzP8WkbVC8s1p+pobIdlpV1J0Gt05wxlJB1aiM1VUlZAo9/b5M+uZphlzMIkqDV86NQibEy/D8QLj5MXVdP1YRqnxBLmaFMfh6YWgfO4BMMmhgNntLUuJ9qJpUFjGCHuc7if5kKL5hlNPtmZSjm/TdlyZkuw2vmO/5RNt1KOHemU6xxKipiQpTW3SewsScJtwV4ZSz0TlKsoLAzDbIc0f88i2vd5XK6549BuZGMp+LL+bgTNDAwMDAwM5h6KIGjmB+69995pPa497fyWZeGmm27CTTfd5Fu/ZgoTXBsYGBgYFB8udLe3PW9nYGBgYGBg4A9m+3ze2dZgt5jTwfXNN9+M+++/H6+++iqi0SiOP/543HLLLTjwwAPz+5xyyil47LHHlHYf+9jHcNddd834fDWNkwiUZTDSJ9LyboWaNbKo/pIzb5ypCsbk87Kt6hDHyiRb7VFGyspJdm3jcIPShutKU5Q55XSvspKTnPobE6SaU3ux2EukRimLPqZmnhUPZ/ZPpoy0S35br0+K0Bqgjg1nHoN8XeSfrGeuOaue7JDMfywt2b3yPvU+RdtEXKp7kwgppCkLDsoAupNTCJABSHO2kzLUFo+Tq/aZhdvCJFaXaSRf4yAxD8bVeeLVS+bXS0i9F4tZ6YJmKbvwaiLXOSfo1jhaaVImSqwIynYqVl7u1HNLsamieRLpKuy/nGnW/NAnWBCtcJ19cFRlKKSptjncI+NUu0wuLkkiZuFedZy5Np4F3tjiKknCdSFNHCzdJP2cR4JmfUNSf711u3yf6+PqPcokdJbJDvA47fIAdAszSdKN0pdAhWT0A71qXSLX42/tq4cb96fm2giaGRQTVn8YVsT/2te+0YbpdyoCag4bnn6nIsHSHxY+YmSoNLW1AJB1SnNdHR390+9UJMTSU7+LFBsDfdXT71QkNLSPluQ86Wxg+p2KhHV9Lb6fIzfHns872xrsHnM6uH7sscdw6aWX4q1vfSuy2Sy+8IUv4B3veAdeeeUVlJcL1fLiiy9W6ABlZbMTuRgdqoAdjygBjK2pC7MYUIA8bq0ROWe2jILBZnWJxyOKLr8Y26T6Oz4ZBcMlii4HMDb5Blrj8tKR04ShWNAoS4Js3hCdh/yTdbXxVHPh4DI4RJRaElE7uXGD0v7uelHy5utkX2FQYMhjvKOj1M2t5H9cKYF2epk6leMD8tDwSPgtvEXau4Gp6fscwATIWzVAyuEZui+7C47TOToP0dXT9FxzNeVt9hpn4TIW10q1qMJ1AVIVB4nVufQ+Gh2S84wv0xYESGCM51mqne4H9avsdTUwZOGyCImDsbc3C505A1O/RGTJD55LDnSKc2CoMGU/SSJwilhfXH3wcpmFR8f2pgi005qvZbRTzr/dkpWLSEKOW1ErXvepWi04oGPz2CTm073UX4zpu2JN0njyOFHJgk6/59+DXDIAN1W6lxEDAwMDAwMDg/0Zczq4fuCBB5S/7733XjQ1NWHt2rU46aST8p+XlZXlvc72BKlUCqmUBGbj46VRBzUwMDB408DUXBsYGBgYGMw9zNGa6/0Fczq41rFTHa6uTqUd//znP8fPfvYztLS04F3veheuu+663Wavb775Ztx44427fB4IZ2FHskg3kV1WQqWhRreQINMhkhFjAarwMGUE68lHC0A4LBmp3Gax3OKM3MImlS62OSW05uhmyXxFjxnNbw/H5VZyRhkAYm1Eix2Uz1OUhfOClMHTxLkUP2TKbnIWnO2u7gmuVJqzlVKORLDYW9rmcU5o1kOKcbhshoMylmWdauY30SyZ26Ca4JVDNcm98bLqfQ72k6AU23eRLRdnq8PDavtEFWWBOStNmdOgJDRhbVfvWbJB2pR1y7Hi86mUIKWe04vL3GCGuE1T0M7x55ogGjMJqH2GMtLscx5fqA6sTZZRyYVyUnuEhM7IriugWUy5Ya45kM1AYgq2A4DEYvkOhrfJeZa8RSZ699Z6aa+NGQ9UjjK4gQnZztWTB/t2NVuvZIXp0EnK9reVi93J+LBYxAEAWifym5MZKUfhjPruSg7Yzo91BN1yudGuLnxH30dnKAg36ZN1jgmuDd6ImEIwsNgY21w7/U5FQtOBAyU7V33DxPQ7FQnZXGk8xsaTpbPimoyXTuH44MXbS3audc8vLMl5lPcIn2Gl/Z9/bsInZpkJrn3FGya4dl0Xn/nMZ3DCCSfgkEMOyX/+D//wD1i4cCHa2trwwgsv4POf/zzWr1+P+++/f8pjXXvttbjyyivzf4+Pj6O9vd3X/hsYGBi8qWCCawMDAwMDg7kHE1z7ijdMcH3ppZfipZdewuOPP658fskll+S3Dz30ULS2tmLVqlXYtGkTlixZUvBY4XAY4fCuK5G5ySC8XBABykhy1goAMpyFpZrlIJWlpiixrtcz5jgLSplbrivd3NWotAlR/WqW6m8nqDY7TNY9XKMLAHWvyjV0n0gZ7nG6FqqFdqd28oLDGT3KyHJd9uLWIaX5lmGpufZIIM6mutpgv6zWUgJvxzlpzF2qjc6QCJyd0epK55EIxOsyTlkp1Udwm8yBdL1md8SCXpTFdiiLyvtwRhZQ7bsy1VTnTiJw4WFpn42q2cXgJDMJ6LjDZCvVqqXkaRWV51mWWBVDB8v9d7U6c5cs2Gw6NGfxuWY+pNVcZ6pozGjOcrY5uVDGyRnQ6tQpq+zRgrDaL3WcOJOcVaUKZB/SUNDrj91o4e8gszcsql92tTLxLP0+XHz0X/Lb9/7xtPx2vE36WNGjzpOhcek027dxn/Vz8njk6uT8LBznhqTPIV0EjuZ6YH4M8EkwxcDAwMDAwMDgzYY3RHB92WWX4Q9/+AP+53/+B/Pnz9/tvsceeywAYOPGjVMG11OhunmHWvhoQOjaLJgEANlaorXSSzerBpdvljbh7eqbccfbevLbr28QmowuTqWAvaXrScSMxLE8Cm7tpPoyHW8g4bEaohWTAJZHwkq7qBMTZZrF0nahj08Bj8TSQAEUk3c4gHA1Wp5LgWe4T66lukwUocs71XPmBuUeMqudFbInm6emwzJlOkvCdcEuubcWd1MbMw5gLKLlBitlFSZGQVeySe0Le427QRKnosUJpi4DWqD1uiwcJNvk89r1Mhg9J6n3L0TUdl4sCZFoF1+np7OV+HA0BTOktu3Q90n3fFbmeXVhinimVu0zz4cgsRF74qIWx4Ju4SGNxmXJ34pnNgm6BYgKzwtigErR/vmGo6n/cp+GxmRFp6ZFW1DI0nnofqbnyzwJ9qq/IW4V/QYNy3jyYolH3+1URJuc5CeeGonA1VTjiwZjxWVQRLhBDwjt2TNnbxDaWhoKsDeFu4Mf6N1WN/1ORYKVLA1VGwCibZPT71QEzK8pzXkAYGS4YvqdioSXXy0dY/OEY14tyXm2x0qngL6yYYvv50hNZnCbHwc2Vly+Yk4H157n4fLLL8dvfvMbPProo1i0aNG0bZ5//nkAQGtrq8+9MzAwMDCYCsaKy8DAwMDAYO7BWHH5izkdXF966aVYvXo1/uM//gOVlZXo7e0FAFRXVyMajWLTpk1YvXo1zj77bNTX1+OFF17AFVdcgZNOOgmHHXbYjM83GQvD9iII9ZC9j0YXjjANlSmmlJ3MkpZaqlHNwm7obpI/qmj5h7JOgbB6TiULynZJ1CbSLbcytVSleUbG5P8UcTGncLaaRasAINtAGT2i5XLmPkReyo2Hqqu8ryeEFs4U1eQCskiiU1iagAN7G3O2dF7FWH57IqeKgIRGCotApOq8gvt42mI7MwRAPsvsx409/H3xKFNYUS73JmkRR107P2dk3SmyNbkqdZ44/UQLdgrPzXgT222pc5Oz1Qorg7zB2cbJ0SzbmDLP9lfM/uD2imc7AC8qf3OGm8sPFKEvACnKynPGJOvKdnCC+jVfo++TbzVbbnlVctxcJZUvDGs/mTTMiW7JOLC3+VsO78pvb7AOUppHq2Q+ZPvEHzZHc87Vf6WJ/cF9s6lkIEBjiV41E5erJpp9eVajYBQRpubawMDAwMBg7sHUXPuKOR1cf+973wMAnHLKKcrn99xzDy644AKEQiE89NBDuO222xCLxdDe3o5zzz0XX/ziF2d1vpqqBAJlLgYbJUix0urLfLJDggZngIMG2c8RcWDkNOquF+M6YfqcAl03oHIuot2F62TT1RQAlFFwrr1MB5JE8aWX/sQUFGNPZ5FuL+wlzN7MGVLtTGZVKr1DwU1yfmHPYZvGj+uSASBNXuEceJc7cqzOQ9RC7SyNBwdXHEfkaJh4cQAAchG6H1QLG6T9ODi0NVV5RbGS6H8jAxJARXdDyWHKNKtl5+bLPXfT2twimn6aFgG4TCA4QYFVXOszzQemTyfm0eIOLa6kNT91vuZIJ+kEUG16poHKFzS1cFZs5+9GlsoE9DINi3zjs0TFbi0Te73t5bK442jfR65HZ1F6jxS6Q1Qbntbq3Lm2vmGxqPwPbKuRvkRkEWiTVong0ZeN69m5flr3rXf5u0ILcRbJhVtdstjEix4AkCujBZaQq/ShqHC9XT2697SdgYEGrzynLMD5hRIIAAMA6jtGSnMiAIM9paPK7o/Y+MLuyxGLimDpfv8OPXRryc71zLbSUNBTw1OIr/iA1zc2+34ON5EE8HsfDjzL5/POtga7xZwOrr1pVkfa29vx2GOPlag3BgYGBgYGBgYGBgYGBgaFMaeD61JjeHMt7GhEEfwJTmhKu5WSRWO6bmBS9mPPa1aUBjS1aVL1ZqXgxfMGlTY9r8mqKdNiQxHyXJ6QTFWiQ82ujS4pTGVXVNFr5LoimpdvksTagqOFqeQZoigntMy1wtimjCDTpcnKG7aWXQwkC4/ZWHpqP0ibMtScxVayk61CyU05arZfoa9T5jZH2lIOUad1oSumG8MiijXRmFkUIqT5ZDNlnmnAgV65ZkvL8OdIeI1ZAex5bBHH2HPUuRmmcgjO6gcmCmeUdRXr0Cgdm7LoivAZq3BrbGRFrZuHg+jaTIPe0SHapu9GPCudYxE/faXWomy5cp2pwsJrrJwOAB79ObxO/LRBHvBPD4pwYU4bs3SSBNmswmOm/4Z4dD+dwSlcAuh7lq6eem5m0jaQ8EmdxNDCDQwMDAwM5h4MLdxXmODawMDAwMAHzPbhbR7cBgYGBgYG/mEvgmvzjJ4WJrgmRObtsOKKj0nNhpVVh8geJesbssSxqRa0rFeyRpOaZzRn0aLb5NhJyuj1jVcqbVhQilEdTeW3hxdQRjOuZn7Do5KZGj2E06WFxblSmoibYr/EwmcsaEX1ns1U7woAGygrb5EtV0O9eCcNbhKrEM60AoBLzhThXhmznpjUWYfH1Oxbpp6Ey9iuKUbiVhFJz7paFjhJ2X8rTnOALjlL2f7goDpP2Cs820THovrrYEz2SQfUuleuLY/0ybZiF+Vqbei+hwfIvotqbMPjMraelkXlzKdiOUcZ6TTP3y71mrl9moT8bK6tH2f9APX8bB+Vy1BKmuamrYnduWWUxR2X/3vh9Xn57SAJ12Vqdcszue9ZFlhjz/By1gOYuuazqkFu6HiPfIeDAWmTqlXvWXuz1F1uTRB9g/zjoptUVkWC7qdNBIc0Wcs5Q3RvtBpSrjO305YiUlhUzNHM9fDwMC6//HL8/ve/h23bOPfcc/Htb38bFRW7t8B58skn8U//9E9Ys2YNAoEAjjjiCPz3f/83otHS1fi9mWGPO7DTJXhl8enroGNe5dj0OxUJw6Pl0+9UJJQ3JqffqUjIZErzClu1eLQk5wGA0aHSWXG9uG5Byc6li5H6hWCDX96SuyLXWzb9TnsLv0QgTObaV5jgmpDaXgE7EkGEKLrJFpW7yuJiCdLQylZTYBAmGnYzvf0CSkDEisr8+YJaVehkY45ORDFgOls46EONek7PlpdzpnVnWoguPC59tjW6bo4ENpj+7FCgw9TtZ7arP9gs1OSOSEQ3kBGRFYcEwXKa0LfnyDnTtbIdIBptpE/7QXXphZfp6xRYKGMWVoNr9g/ma85FSSiMBLl06i7TykHUXcyXfk4ukGOFxtUfUFZ1T7QR3ZvG3KtUbxRTlDOVJOLGYntEAQ7ENFV4ovZHtpEH90KZTyxUpl+z4k0dLDzOLG5naYsDmRzRyknEK0gifLsE5ES5zzZJP6uqZZwT22X+7+IN3iBtQuRJz/M5VSfXFR5UVySYcj0Rl+9plBY3jj5OTNj/FJ9aGIcXgdjnWhc040Uxm14ueREk10LX1an2WaGmL0jAivv0Mux6mNUKt89iKeeffz56enrw4IMPIpPJ4MILL8Qll1yC1atXT9nmySefxJlnnolrr70W3/nOd+A4Dv72t7/Btkvn6WtgYGBgYFAUzPb5nG9rsDuY4NrAwMDAYM5hfFxlwITDYYTD4Sn23jOsW7cODzzwAJ5++mkcffTRAIDvfOc7OPvss3Hrrbeira2tYLsrrrgCn/rUp3DNNdfkPzvwwAP3qi8GBgYGBgYG+x9McM2oTQFlFjKs5qRZfyRbyDpngiiuZBc0uYjaJNVMGWfr2ArJpYzoAVX9SptXy8XCgD2fJ0eJvk6iV8EB9bYG40R9JcbRwnlD+e2tKfHfZo9jAAjSdXIWjbPA7F98zpKXlPa/HDwmvx3pIT/uGsoIsyCYpq8UIaGtTKX85/zK0fx2b2M9N0H1y3KesbcIfd7pk7RdpI8EtIbU7J5CvyaKLii7apM4HdtAAUCSbMpAmfewQ/ZdRFHPalngLNlisQgYC9/p42RxRpPYAgpdu4oy3xpDIDRIImiUeQ5zFpsE2cpeV9PIWaJPRzbLeCYbqSyA5r/u383WbkzlVrzmtQXTMPU5ReefJIE/t47NudVBUxgb6cKsEs7WJ5tVtkCQqOjHnPRqfvuZh5bntx/rWSqnT6gXMJ6U3xq2+bJHWFBNo9ORtVpyPvv5yaY9rKX4CSxKZzk5wJma6r5X8Nwd/2bTDjvcIBjXX389brjhhr3q0pNPPomampp8YA0Ap59+Omzbxpo1a/De9753lzb9/f1Ys2YNzj//fBx//PHYtGkTDjroIHz1q1/FiSeeuFf9MdhzNB84AKd87xZX9gRpnTrlE2xrFt+NWSK4eWrxz2JjYn5pxg/YVWDSL4zqDEQfEdpemmsCgODB49PvVCTEBktAoQbguaVjEy04uMf3c2RjKXROv9vMMdvn8862BruFCa4Jbjy4g1tLgU1ki/owZ29jDs5yY/ICzoFJpk59cbWqiO5JXspM9311TPPOo5fmDFFUgxFSLqeXaU/7bUnWyQeOlDmj73HJ0gQpuEs3aLxwOp4SxFOgz4rczw6rL8XKIgIFVKEo1SLTw9/VVKz5b/Z8rguJofhgTB3nyYU0tlwnTbXEuVaixQ+rwbVFdS6sfM0UZa5d1QNdhRZN7VOjcp01PaRu3TY19RekaO2McXCs+VTTM9mmOlqXFkS4Zj48oLbPVrKUOgqDPuegGYBC/+b7zEFrqkXuuTOm/vywWrjL/0X3P9SrtknNy9D/yQB85N1i0XfXk6fkt9k/GlBV2ZO08MTfx1SjzJPgmPrimKFFlae2LJIu0z7lITlHelQds/6E/L5YycILH/oiBPeB76fNJeOk8J8OaBoM5GGeHI7C1Xywi4a9rLnu6upCVRXpKuxl1hoAent70dTUpHzmOA7q6urQ29tbsM3mzZsBADfccANuvfVWHHHEEfjJT36CVatW4aWXXsKyZcv2ul8GBgYGBgYlg6m59hWmYMzAwMDAoPhwvdn/A1BVVaX8211wfc0118CyrN3+e/XVV6dsv9vLcHcsiHzsYx/DhRdeiCOPPBLf+ta3cOCBB+Luu++e1TENDAwMDAz2Gfbm+WxqrqeFyVwTnMo07DIbuTSJflWqk4gzgon5lCrixCkLOGmZriyJcLHHLisppnLqbWE/YptVjKm9S/6/XlTNPJc/IRm94UNZ3KqwIFdIo5WzUFVoeHq67jUd/6m0/+STl9C1yOdBoujmOLtcro55mATm0kQlf2WkJb9d1q0qr9pZyU45ROvlLKRHgl5elZ6tlz44A9JeyQizcnRQoxuzYjspqaNaMq0Z0qnL6XEDU4HDcp4sK8cHtR84ogvbNDfQIrT4dKVkztN1ap8DcfJGZvoz9SVM2WFLYxMnKYucqqLxI+peqJ9KKTS1chZe44xsdCuXBajX7JBKf5bo748MHCA7MfOjSr1mzmR7Nn/PpANc/pBpVD3kA5x9j8nYpog+H89IHzWyARqrJ/Pb28coi00MkUyNNrdYdZXuTZbmIKuFZ+vUuZ1cRNn+bSG4SZ9onCVUC7/qqqtwwQUX7HafxYsXo6WlBf39atlNNpvF8PAwWlpaCrZrbW0FAKxYsUL5fPny5ejs9IWwZ1AAvVsaYEf9pzd7VmleHAfLK6ffqUgI66UlfqKE793svuInyqpKp4CePSAz/U5FQmpj1fQ7FQmhhbHpdyoC3K2lU8ZP1ExOv9NeIpfxiYJtMte+wgTXBgYGBgZvaDQ2NqKxsXHa/VauXInR0VGsXbsWRx11FADgz3/+M1zXxbHHHluwTUdHB9ra2rB+/Xrl89deew1nnXXW3nfewMDAwMDAYL+BCa4J9utR2JEIXMpUhcbUFd9UA4tL0aopZwopI5vV/JMtamP3S8bIoXrT2nBcadPFlk+1tKoZKyx84WbV9FislTyT+znzTl7EZIW1i90RZc6zFVTzPUYZ5Wbp12+GRSwIUAW1uJY2OymZuggnSivV1egE+UmzuNaKWqmRXLf4UKUNr2hbZeRHTbZM3JdcSLtPk/KfnKHla2Ff5ay2ABwkay3F/otBHyv3FVAKNpx+ya5yzbijibnw/yU6SIAlJf0Mxmluj2o113Rt7NudJRE5Zg5wLTkAWORNHekkb+4pLOecUfXnJ0eCZlx/zRoCbBcGADZleNnmKxKgOUPZ9rTmc50kyysWx8lyX1JkH6bZlwUn5Pysx8D7/cOCZ/Lbq0NqMBa2WaCO/bQLe9ADUGgenGEPjpBYIGtDaAI5rI9gudYufulFg4dZZq6L3pM8li9fjjPPPBMXX3wx7rrrLmQyGVx22WU477zz8krh27dvx6pVq/CTn/wExxxzDCzLwuc+9zlcf/31OPzww3HEEUfgxz/+MV599VX8+7//u3+dNTAwMDAw8AOzfT7vbGuwW5jgmlB1+BACZWGMPdeQ/yxTpc4ipo6G+khEjJiVoQOE/pJ5WY26vGVC0c2SH3aaKMZbx2qVNqFxoqiSmXGgQygp3muixuQGdaNo2UzVy0t7+Ra5/bGlFNxpXsBM1w2xBzgLglEAN5hWaTnOJAXhHUKvipSRmFSTXJeudu6Q4FJingRNa3rFT7s6qwbHUQqiE/Pkc14c8Mqk/9HXVY4y05KTFKiy0JUzUVhoDFCDOKbS5xqnoLFpCyIcXLLnMhN8s/Uq3VdZuOkjnjnRHIOTcv3JJm1ukxI5B2QZoqKzH3cupAZlOVoESSylvtFgBshnnT3DAVUgj4XreEFDD+jdcrnmDHGu68PyHWSKtpXQeNn0JwfRypxbQCJsQ9qCAInF2XXy3ba6RMn/nk3HyTnC6pgNDNB3na6Nz+PogmPMCmexPA7uiTqu+5Hn6DuQrfTgJrSSiP+/vTOPj6o6+/hv9pnsBMhGCAmIAi5hpxGBIthoeSuIn0ot1qBYi8DLVgooBUSriIJ1o2Lty1pU1IK4gSDKvsnqQljEAAGSIEsSssySmfP+QXPvc24myZDMTMjk+X4+fLi5c+4959x7Z859zvOc3+MvghgWfi2sWLECY8eOxYABA6DX63H//ffjtddeUz53uVw4evQoysrUSc4JEybAbrdj4sSJuHTpEtLT07Fhwwa0a9cuoG1lVGwJpTCEBehZJZSeD05YKRX0DDSOlsFToDZYgxOqDQD3d91beyE/EGkIXlh4UYWt9kJ+4sPSbkGrK3pbRO2F/EDRzYH/jajk0sHao6Xqi8ceoGePw8IDChvXDMMwjP/xeFBVRt/X4wJHbGws3nnnnWo/T01NhfDy8jBt2jQpzzXDMAzDNErqOj4rxzI1wcY14creFjBYrdDRkFyNXoGRhGg725cr25aj6mxjaZEquqLXCjCdUGfFdUS4y0PCQNNiLknH7GsVo2zbzpLQT4e6baZCW5pUVtbLJP8xCd0t7UA8bVTcS3M8/Zt68gURUKKpq05cVj3/gJybWk/EwXQRav00vFVonkonEVSj/W/RXvUs6YpkRTADyR8shbyT60zzlJcnyrOdFuI915vITHyh93Bpa75GuI5ECEBHvLV29XhnTPUeWUngjoiLUe80rsjeCEHDhYlTRE/ORXOQ0iUCACBIO6lHl+aSplEMbov8A2vNJWHVNAc6jXwmz5L2OXO2JP0knnxBQ/Y1YkNUUIx6wo8XqTPKNpKPW7rmADzEq05zeNMQdypOp20zTanpKSPeZlKsQ3NVQOvM5Wjp+JvScpTt7UfUfNhUhMztlL3tNHrEFet9kNO1VL9bLs1zYv6ZRg8I6Owab76/uE491wzDMAzTpGHPdUDhVFwMwzAMwzAMwzAMU0/Yc01wxrqht7khzDQtlWYtLVnXaDyjeqjLk1RPk4F42swX5PkLe4J6vKGEijZ5F2MC5LQ8dppKyqW2zZ6qeqoMGnGu8p+IJ51oS9l+VL27rmiyLlcj4kaFz+j6Xx1ZF+pKVE98U6yc6maXJ1Y9nqwfDbOonkLqPKPr2gGNs5Jsp0RcVrZPRMdLx5QlkrRENMUUjRYg6bfMGtEnBxG6osJxOqP3Gbvytg6v+wHZI2ui6+xE9evg9OQRMNE121aabku+T9RbTa+zs5l6LcIuqO0vTdbMrVGBNZLxhnpr6dIzy0X5+LJU72sIpfXbZJ2+1luvL/GeEkpP1rnT5w+Q08FRb7+BCIVJKb80z5b1PPECR5Nn28dlgy6y7r1HB9ULvXdfe2X7l7GqyvSHBapOAAAcKkhSto0/Ew0HcmndzeXrqiORBHpyn6mIntNJxAKL5PtE12bHtb0Id6kDpxAA2HPN+JEwi7OKZkEgKDUGZ81rhSt4r19UwyPQhLUK3vrkz3JuDko9Fd8HL2VVWOdLtRfyE4ZLwXsGi7tV/47kTyKiy2sv5CeiUgP/rFeUOpBTe7Frhz3XAYWNa4I5oQyGMA9cJE+eVtCMCld5iFCQ7RwJMSYv8FQMCQBMkarR5naqgzhVB77kCJPrLKPhviRcmApCkTBarV1Aw8Iv36budyVTFW3VAqGiYVc/VI93JHo3oEwF6vGpXS5Kn+0lAzudnLhwJkbZpkO/R6ucTYwrF+n/RXKdDA6NoBkxmqg6MlVapqHsBqfmpY0oKEvK1TR9NVGFN1yQBdE8ZIKG3r+4FPXa5BWo95/mfwZkoSyqSE3rFxrjlAqPuUj0sb4ZeeZMJHxe8/voJBM35ovkmpPrZySTRdp85FIoNxEeooJkZmIYar9bphKytIHMO9Dr5zZrDHIy8aQjj+3pfDKhQ/KBezS5wanYF1Vbp0a49TTNhY1qcZL89NQ4P+1ormxf7iB/t7sk/KBsb80ngi9EFMiSKz9bdvIdpNfcReLvjeRa6jRfZ3pvy36Kg9sRoBcEj0CdZEU9PHAzDMMwTMCo6/isHMvUBBvXDMMwjN8RwgMhrl34pC7HMAzDMAzjG3UdnyuPZWqGjWuC47IVersVCCdCXS6N6BPxqNFwWSq6RcNdabouAHBRbykJY/WQ7TKX7KlyJaieR+sp1fNI0/VIXreK6t1rVHirIowIfdEnQRNWDiLuZCKe+4pwqlSlbp4ul1OJeYgX1kxCieN6qXmqzxyLU+so0PRf8iiqm+dKVPesOVa+zlS4iqbfovdGX6aeTBvWTQXe6DPgjiCiW8Rr6o7VhO6W0uus7i8qJyH6JPWTVrSRhj/bk8m56fOouc2GSLWc/pRaj7tCfWbK4onnOVKulPaHhpULovBHU7l5NDncaXt0RNzL1cx7jDVdFgHInnDqIabeepoLG5DFzqi4WftW6tKEoyUkF5smQIGK52nTbFUiCfJpfg/MBeoxpxNilG0PSUtWXKHei4g82Y0cYyIhbCbvkSiOZM2zRQXWiKich6iruUmueCrOBgBGEibuaAZ47DwLzVz/XLwUAT35/QwUN6QVBLwOAPjxVHzthfyELj44IbkA4AxiuLu92FJ7IT8QdVthUOoBgNJvY2sv5CfcLYKXNs1y2lx7IT9QEl9DeJmfcZ+OCXwdgYosYwIKG9cEW/NyGMI8KCtWB3Drmep/vB0t1BdbdxR5maXq2q2c0jGWk+r57EQF2pqn3oqyNrKhaPuJ5GwmqtY6kqeZGoOIkF/GPUYSiktUnCtaquXM+aROjXFu+dn78VRF2t5G7efNEXnS8Tt16roouv41xqoaFufIomvJ6ARgIGtx3cSgj7SoLwyeEnmQMBFDS1JUJpMYNP+2xyR/FQTJnyxI/mJzDgnlp0afZv2zh4bsk0Xjbrdap7mQ5u/WDHLkcLpm2UFCt6258hplVxQx6MmEAlX4jj1C1rm3kPssKXyT5kjGMbXtNTmj6ZpfOqHiIsrXlnyidq/J+U3D9On6cdMVYujr5etspGvGiPL3yQvqCwpVmNca1+UkhznI5AJd5kGfWUeCJsaa2KUWKh1OztU1Ql3RvDOpu3T4nvNtlG3jRaK2ToxjQ2H1P9NmMllGf4901axfB+SJi+ZdzsNdGqAXbyHqFj7G67kYhmEYJnDUdXyuPJapETauGYZhGP8j6rimiwduhmEYhgkcdR2flWOZmmDjmuAoM0EPsyRmpRUkM5P8xyJW9XrpClX3lj6cqFBny8qj1DtoJV48Fwkrj7WVScf8TLzCtpNUeEwtYy0g3uVy2T3njCTeWhJurD9HvNXEm6VVFqWeLio6RT3vljPquba3aycdbyCOMR25tj+XqcJxbiJi5lb1n/57ELlmxPNvuVmt35MvJyTXu71HHBhjiLjXFaK6rA3/J55vA/HqS2rV5PdFr4l4chJVW0FyU9vLiDhWGxK5kC9/Fe1ErdxBPLJG4h22J8qeX8mTTMOqSTsvtyd90TgsaT5qe7z6h7QUwFb9jyrNxw0i9kaXFVTQr4PmVFR93E48xHaT9zIAYKf5ycmtGdwuW9lef6inWr9GhM1wmYT/k2fTHkdVzdVN6xk5qsSeot6n8jLybJJojzvDflK2l57TigWS556Iq9FrrhUkc5J83A6j2n56bcrT1HaZz8ltNpDIkPNHW8JjD5SgmUd+qHyF13MxXgiPtMMQFviXOosmW0egsJ4KTphssHFFBa9fMTcUBqUe+4HghWqb0wuDVleYPni/tfpWwanL+VPw7pWjQ+CVyT1l19n4DPAY7QNsXDMMwzD+hz3XDMMwDHP9wZ7rgMLGNUVH/lXi1qz/JV5h93nVU+UmOZNbxhYr25dNsuearid2EO+YIGJGep3mwSVroMvbEXejnYqLkVzEGs+1qUz9zE7ycZvIelWaokibbog6gT1EUIquuXZFqse3tMhe5O+IaIaerKuNMqt9KSit/lHUO+maW3X/zdHq2u7vy2VPtYMImtF7KIgXmDoonDGaNdtE3Eq0VSMJHPnq/aT30iAvrYeBpM+qIPezeYL6bFzJaaFs2zVrealoFZ1cdJF18lZNiiYp5RidWCQaAFGn1XpyO8ltNl2maeZIWicizmYsJV50zXPmttI80WQtMPFom4tJ/m29xgtNvMBUCJDmCXdFynVK6dRIe664iKAb9bZr1lwbSZQGzQGvI2vj6ZpxmgsbAKxn1HsQ0V29txfi1fbnEkU7Y6l8n23kO0CjIqgXW6tBYCF10qgOqocAcl2cCZrUdjTN3BWDzzm9GYZhGIZhmJph45pgslTAYKmA3UHiQI2yoeuK9j5jYySiQxWtiGGRIsfe6otIWC55sXerEdJweWQxIisRV6qIIAY1USSm4draXMBh+eTlmghC2fKJQnkC6YvmZd5JBK2o0UiNXh0RRpicsF46/iudasWZiFJxu6gLyvaxyARUhyGPCHoRQ6HQpRq6JTfHScdQI04Y1GsWn6bWmX+OKM9q7jM14isKVcPdWkiUlsmkgTBoxL2IEQqdWv/lIvVGEz026O3y8dTQcjVX7zMVvXI2k0NzqEFsKqT5pNV2liTSZ6t6q4o+c3RCxkjO64jV1B9DDH+iak8nKqjR6I6WDU1qUNNlEvTeaOed6MQDFbtrQSZ46Lmo6BoAOOLI0gaSa5w+29Zz1V9zB/m7JQnxtp1WjzFR61UzcZVzieTjJvec5kmviJWvk5EI3EFHn3O1LWYSlg69RviOqJ8LgyzM50+ExwNRh7AzTvPBeKOkIAJ6W+DVwgutwVHWdqQFT8Eb+uB5mkRZ8F4rS0oD/zwAgOmW4toL+YmIID1/AJCfo12DFzgMMc7aC/kBU0JZ7YX8RHzMlYDXUVHqwOkAnLeu4zPAY7QvsHHNMAzD+B8OC2cYhmGY6w8OCw8obFwTnHnh0Nus0BNHk+WS7Goqb0VFm4hHjaTecVQQoawiWUzI8jMVbfLuEdYKqtCQbzdJcWSKJKJXzUnuW5P84EvePhISeqWzOkNKU4RpPd80dJbmtnZHqmUEEbD6olQTb0xmzZ2pqjhDoVP1PNty1FBXj+appN5qCxEXyytX81yHnyiUjilNUGdknTHq/jKnd0Evk0ZchnqlaSowQfJkm4gXW/K0AtARQSo3SctlNqn3tixV7ZdJk2OZ5jangmA0fN8TrvE8k/B3Gr4tiOdcGNX91LsNAK5EtU7PBfV60HzUNM+06Yr83dCRnKPUoyvCaPow8n3QLLmgaesEWfIgp0+Tj7GneE8nF2ssVc9FPPpOTYQCFZKjYen6K0Qo7ILaT6GNcLCqfcvfp0ZfuJLV+zwzZ4iyrXPKz8nNcWqu990JJHyF1GM5qxFRoyJuRCzPfFa9Z1LOcGP1A6GpSA+3JmrCb3hE1VADX+CBm2EYhmECR13HZ4DHaB9g45phGIbxP0JAXvx/LccxDMMwDBMQ6jo+K8cyNcHGNUFYPFf/kdkcu0V+iOi6zIr26toOt5ukyCIpebReo3LiraSeuwqyLvYkWYcJABVExIp68SouqOuN6HpNnV327hW1JWnCStT2hBFPH2k+hGYZUwUR+6LeTioA5UhQv6RnHc3kExARMVGuXr+8sihl2xlFvPMRGo8s8RZTD/Ft0WeV7T3N5DXbV1LVbRdpf+Fl1TtIshihQnOfzETcy0m82A4iGqUj94JuA4A9nqzHJh5mJ0nFZSRpoFzN5D4bz5Nypd7X4rpMmpRpxENMIyzo2n4TWSJk0DwnyCfRA6QeI/FcO22kLy01KWsqvHvFDZeqWUutibAwk3XajkTv65e1gmQ6IoRH1w5vvXiD+geJqjBoIknocmgqEGcn6a7sLUmZPNnbX96aPLcpJGVGiVpPlJlEa+jlDpy4rIra2c7Q72P1gmb0furpc0o8/zrieTdqUusZy0iqwWQXPOUawTOG8TMLFizASy+9hPz8fKSnp+P1119Hz549az+QYCjTQ+8JUJQFQZsKM2D1pAVvbeipy81qL+QnSgtiglaXITY4aoxUCDXQ5J8L3r0K1jpoADCbg5PirqIi8L8RlViMge+TIQh1MP4nZIxrfwzexiID9A6DpPzs0Kg4u6KI0NF3qgpwOck53LGVGur5XUlruRIaCktzAZP9LSNlte3SfBIuaibHRKsvxRUR5Lx2jUIRsTqowjMRMUYFEZrSDiM0fzLNuUvVzm0k3Ldbv5PS8Z+c/4V6TLLaZiPNsUgFVzTiK0ZinNEQ60iDnZQplY4x2NXOURXshLSfle2zl+KVbY/GoNcXEOMkVq3HkK3eC6rOTQ0WQM5nTm954g1q/efsqmGl04RI06Uw9tbE+KH5uLU3ioT8W0j7aejPlTQilBahmbUkLxD0OlOhMLr8waB5zmg5PXlO7K3U9huK1WPoUgAAKKfhzrT/5Lul1yiUC/J9kITbnKqhriMCO3rNJAgVZZMipIh6v6B579vKvwf6YvXc4cfUZQ6OZurJOkedUbbXx7SVjg83qz82F8h3Q08U2p3xcp10CUFFFAnTJ5MjksK+Qf4+0aUltublcAcoj6bwCGmi0ufjeFY8pFi5ciUmTZqEhQsXolevXnjllVeQmZmJo0ePIi4urvYTMAzDMH6lruMzwGO0LwRviieAVA7es2bNwv79+5Geno7MzEycP3++oZvGMAzTNBGeuv9jQoaXX34Zf/zjH/HII4+gU6dOWLhwIcLCwrBo0aKGbhrDMEzTpD7jM4/RtRISnms6eAPAwoUL8dlnn2HRokWYNm2az+dxh3kgbB5UtCRiVpfkMFJ3c9W75KhQP7NcVD1NZ4pUoS2dWX4IdeR8HpIbWhIw0giamS+RnMdu4rW6oVxtFxG9gqbOMNVZiou9SLgpEeqiivw6l+zdM10hf9PwKCKmZG+h1r+xUBY0c0jXU21/x9tUD39uaTKpQ/aI0pB56jkNI3HpOrsc3kSbSUOufy6OULZt+USoLUyeZ6LePU+e6pF0E0+n5SIRp2shX3PqOTSS9E9uEtYopcvSpFuqIHm6qbeXeri14l70OntI+3XE8W0j8032OLnNNG+5hYSsU4E5mpbLLX81pAgHPXmGbKfUgrRObT51Wr+DeLHNZD9N5QXI10OQ70CsVY1kOEeE1zya8H9PM+ItvkzE7kjKMxrybyqRfzJpDm3qrdaTdp13qcp/bovc6cQwNU7/lEmNZJDE6rQRCqQLgnjYpTzjNId7khz2bSapxRy5EfDYAzMMsOeacTqd2LdvH5588klln16vx8CBA7Fz506vxzgcDjgcqtpkcfHVNEg3dTkNU7jZ6zH+5IfcxIDXAQDiUuD7otQVGbzQUlNy8MLdxbGI2gv5o56g1HKVyFsKg1ZXyano2gv5CXuz4ISgd07NDUo9AJAcVhjwOpwGF7YE4LzsuQ4sjd649ufgravQQefSwUTWIlPVXS1Uldut2l/o0Fy1YHaej6SHwEwMIkeYuk3DQFuHF0rH5OhSvNdfQEJfyRpN7fpfFwn/pvG61DgT5Emga3wBwEUmAeh6aH0hmSggOY5/E3tAOn5bfrqyTZWOLaQtkiJ6uGz0mcnEhbM5qZ/MCLiby9c5/Cy5HsQ6bJGmhtznxaoDszZ0loZ5V0R7n6WrsNEQbc1zQmwoPTH6isvUBe3UgKf3HwAEuZ8G0hYa1uwO09RJXqDcZOLHQ66ZuZjkX9aohdO1vXSyxU6WRtjO0HBzuXqqfk8nG2gOdhFBXvIuyi+XTqLWbT6jfuYga7v1Ttk4pc8GnSC54lKvs5FMDrnkxwTWHLLOuzkx/Mn1NxWRZ6GG3wP6CDjJM+MhMz2Wy7Kh29p2Wdn+BmnKtoGEm7sj5SULHroEnVwP+f6R7RKNKjwJJTeW6qtoNPgN4UHdBM14VjxUuHDhAtxuN+Lj46X98fHxOHLkiNdj5syZg9mzZwejeQzDME2Tuo7PyrFMTTR649qfg7fHbv/v/0RASmN0eUx0Mal6+egLqquUpDQql9czuu3Eu1hOXpqJR9ZZIs/wVbYLgCQa5aHrQt3EmNSs33WT93lPudp+D2kLNa7dGgElKf2TgaxRJd5JKopUdkU2Btyk/bR+R4l6DO2jRy9/cT1kbS+9ZuUlxDh3a64zSblF+1NRqk6q0DqrrEulz0C5d9EUqV0GzY8NNYJJqiNB1rfW5DGk99NDj6f3X2PQe8qpJ588ZwZ12+0g++2aPpPrJEiX6T1zO6o3rqXrRNtp9/6cuB2a+1xO7w0xTul5XZoIA3JtPGStPr3Pbge55qbq++wpJ+0xVHP9a1hIQ8XR6O+GkzznFRXycyp9B8hvhXT/jPLzp6PPHRkcdTSllqP25xe42rfK74G/Z6Mr4KqTy6cCLLDWlHnyyScxadIk5e+ioiKkpKSgojQ4ni9PgDQItIjy4L2giiCKInk8watLF6g0gg2Iu8xReyE/oX0/DSjW4Hx/XUH6nQAApyfwY5Wz9God18v4rBzL1IhONHL//rlz59CqVSvs2LEDGRkZyv4pU6Zg8+bN2L17d5VjtJ7rs2fPolOnTlXKMQzDNBVyc3ORnJxce8FasNvtSEtLQ35+fu2FqyEhIQE5OTmwWq21F2auW5xOJ8LCwvDhhx9iyJAhyv6srCwUFhZizZo1tZ7jzJkzaN26da3lGIZhQpXraXwGeIyujUbvuW7RogUMBgMKCgqk/QUFBUhISPB6jMVigcWihoNGRETg8OHD6NSpE3JzcxEVFeX1uFCmuLgYrVu35v430f4DfA2aav+FELhy5QqSkpL8cj6r1YqcnBw4nXX3IJjNZh60QwCz2Yxu3bph48aNinHt8XiwceNGjB071qdzJCUlITc3F5GRkdDpfFvCEKrf5VDsF/ep8RCK/bre+3Q9js8Aj9G10eiNa38M3nq9Hq1atQIAREVFXZdfsGDB/W/a/Qf4GjTF/kdH+1fYxmq18sDLAAAmTZqErKwsdO/eHT179sQrr7yC0tJSRYC0NvR6fZ09NqH6XQ7FfnGfGg+h2K/ruU88Pjc+Gr1xDdR/8GYYhmEYxv8MGzYMP//8M2bOnIn8/Hx07twZ69atq6KTwjAMwzChQEgY1zx4MwzDMMz1ydixY32OJGMYhmGYxkxIGNdA/Qdvi8WCWbNmSWuxmxLc/6bdf4CvQVPvP8OECqH6XQ7FfnGfGg+h2K9Q7BPT8DR6tXCGYRiGYRiGYRiGaWhCL0kgwzAMwzAMwzAMwwQZNq4ZhmEYhmEYhmEYpp6wcc0wDMMwDMMwDMMw9YSNa4ZhGIZhGIZhGIapJ2xc/5cFCxYgNTUVVqsVvXr1wp49exq6SQFhzpw56NGjByIjIxEXF4chQ4bg6NGjUhm73Y4xY8agefPmiIiIwP3334+CgoIGanHgeOGFF6DT6TBhwgRlX1Po+9mzZ/HQQw+hefPmsNlsuPXWW7F3717lcyEEZs6cicTERNhsNgwcOBDHjx9vwBb7D7fbjRkzZiAtLQ02mw3t2rXDs88+C6rrGMr9Z5imQCiN576M2Y0db2NxY6W28bWx4cuY2RjYsmULfvOb3yApKQk6nQ4fffSR9DmP+4w/YeMawMqVKzFp0iTMmjUL+/fvR3p6OjIzM3H+/PmGbprf2bx5M8aMGYNdu3Zhw4YNcLlc+NWvfoXS0lKlzMSJE/HJJ5/ggw8+wObNm3Hu3DkMHTq0AVvtf7755hu89dZbuO2226T9od73y5cvo3fv3jCZTFi7di0OHz6M+fPno1mzZkqZF198Ea+99hoWLlyI3bt3Izw8HJmZmbDb7Q3Ycv8wd+5cvPnmm3jjjTeQnZ2NuXPn4sUXX8Trr7+ulAnl/jNMqBNq47kvY3ZjprqxuDHiy/ja2PBlzGwMlJaWIj09HQsWLPD6OY/7jF8RjOjZs6cYM2aM8rfb7RZJSUlizpw5Ddiq4HD+/HkBQGzevFkIIURhYaEwmUzigw8+UMpkZ2cLAGLnzp0N1Uy/cuXKFdG+fXuxYcMG0a9fPzF+/HghRNPo+9SpU8Udd9xR7ecej0ckJCSIl156SdlXWFgoLBaLePfdd4PRxIAyaNAg8eijj0r7hg4dKoYPHy6ECP3+M0yoE+rjuXbMbsxUNxY3VmobXxsjtY2ZjREAYvXq1crfPO4z/qbJe66dTif27duHgQMHKvv0ej0GDhyInTt3NmDLgkNRUREAIDY2FgCwb98+uFwu6Xp06NABKSkpIXM9xowZg0GDBkl9BJpG3z/++GN0794dv/3tbxEXF4cuXbrg7bffVj7PyclBfn6+dA2io6PRq1evkLgGt99+OzZu3Ihjx44BAA4dOoRt27bhnnvuARD6/WeYUKYpjOfaMbsxU91Y3FipbXxtjNQ2ZoYCPO4z/sbY0A1oaC5cuAC32434+Hhpf3x8PI4cOdJArQoOHo8HEyZMQO/evXHLLbcAAPLz82E2mxETEyOVjY+PR35+fgO00r+899572L9/P7755psqn4V63wHgp59+wptvvolJkybhqaeewjfffINx48bBbDYjKytL6ae370MoXINp06ahuLgYHTp0gMFggNvtxnPPPYfhw4cDQMj3n2FCmVAfz72N2Y2Vmsbixkpt42tjpLYxMxTgcZ/xN03euG7KjBkzBt9//z22bdvW0E0JCrm5uRg/fjw2bNgAq9Xa0M1pEDweD7p3747nn38eANClSxd8//33WLhwYaMd/K+F999/HytWrMA777yDm2++GQcPHsSECROQlJTUJPrPMEzjJVTG7FAdi0NxfOUxk2GunSYfFt6iRQsYDIYqitAFBQVISEhooFYFnrFjx+LTTz/F119/jeTkZGV/QkICnE4nCgsLpfKhcD327duH8+fPo2vXrjAajTAajdi8eTNee+01GI1GxMfHh2zfK0lMTESnTp2kfR07dsTp06cBQOlnqH4f/vKXv2DatGn43e9+h1tvvRV/+MMfMHHiRMyZMwdA6PefYUKZUB7PqxuzGyO1jcVut7uhm1gnahtfGyO1jZmhAI/7jL9p8sa12WxGt27dsHHjRmWfx+PBxo0bkZGR0YAtCwxCCIwdOxarV6/GV199hbS0NOnzbt26wWQySdfj6NGjOH36dKO/HgMGDMB3332HgwcPKv+6d++O4cOHK9uh2vdKevfuXSWNy7Fjx9CmTRsAQFpaGhISEqRrUFxcjN27d4fENSgrK4NeL//sGQwGeDweAKHff4YJZUJxPK9tzG6M1DYWGwyGhm5inahtfG2M1DZmhgI87jN+p6EV1a4H3nvvPWGxWMSSJUvE4cOHxeOPPy5iYmJEfn5+QzfN7zzxxBMiOjpabNq0SeTl5Sn/ysrKlDKjRo0SKSkp4quvvhJ79+4VGRkZIiMjowFbHTi0CqWh3vc9e/YIo9EonnvuOXH8+HGxYsUKERYWJv79738rZV544QURExMj1qxZI7799lsxePBgkZaWJsrLyxuw5f4hKytLtGrVSnz66aciJydHrFq1SrRo0UJMmTJFKRPK/WeYUCfUxnNfxuxQIBTUwn0ZXxsbvoyZjYErV66IAwcOiAMHDggA4uWXXxYHDhwQp06dEkLwuM/4Fzau/8vrr78uUlJShNlsFj179hS7du1q6CYFBABe/y1evFgpU15eLkaPHi2aNWsmwsLCxH333Sfy8vIartEBRDugN4W+f/LJJ+KWW24RFotFdOjQQfzzn/+UPvd4PGLGjBkiPj5eWCwWMWDAAHH06NEGaq1/KS4uFuPHjxcpKSnCarWKtm3biunTpwuHw6GUCeX+M0xTIJTGc1/G7FAgFIxrIWofXxsbvoyZjYGvv/7a6/coKytLCMHjPuNfdEIIEWxvOcMwDMMwDMMwDMOEEk1+zTXDMAzDMAzDMAzD1Bc2rhmGYRiGYRiGYRimnrBxzTAMwzAMwzAMwzD1hI1rhmEYhmEYhmEYhqknbFwzDMMwDMMwDMMwTD1h45phGIZhGIZhGIZh6gkb1wzDMAzDMAzDMAxTT9i4ZhiGYRiGYRiGYZh6wsY1U2+WLFmCmJiYGss8/fTT6Ny5c41lRowYgSFDhvitXd44efIkdDodDh48GNB6GBV/3VedToePPvqo3udhGIZhmMaIP8ZBX97ZGIapO2xcM9VSnVG0adMm6HQ6FBYWAgCGDRuGY8eOBbdxTKPh1VdfxZIlSxq6GQzDMEwN5Obm4tFHH0VSUhLMZjPatGmD8ePH4+LFi9d0nkBPYjflida8vDzcc889Dd0MhmFqgI1rpt7YbDbExcU1dDMaFU6ns6GbIBHI9kRHR/MsOcMwzHXMTz/9hO7du+P48eN499138eOPP2LhwoXYuHEjMjIycOnSpYZuYqPB5XIF7NwJCQmwWCwBOz/DMPWHjWum3ngLMXrhhRcQHx+PyMhIjBw5Ena7Xfrc7XZj0qRJiImJQfPmzTFlyhQIIaQyHo8Hc+bMQVpaGmw2G9LT0/Hhhx8qn1d60Ddu3Iju3bsjLCwMt99+O44ePepz291uN0aOHKnUcdNNN+HVV19VPt+yZQtMJhPy8/Ol4yZMmIA+ffoof2/btg19+vSBzWZD69atMW7cOJSWliqfp6am4tlnn8XDDz+MqKgoPP74417b88tf/hLjxo3DlClTEBsbi4SEBDz99NNSmcLCQjz22GNo2bIloqKicOedd+LQoUPK594iDiZMmIBf/vKXUj1jx47FhAkT0KJFC2RmZgIANm/ejJ49e8JisSAxMRHTpk1DRUXFNbVPi7Y9vpzj+PHj6Nu3L6xWKzp16oQNGzZUOW9ubi4eeOABxMTEIDY2FoMHD8bJkycBAEeOHEFYWBjeeecdpfz7778Pm82Gw4cP19hehmGYpsaYMWNgNpuxfv169OvXDykpKbjnnnvw5Zdf4uzZs5g+fbpS1pvnOCYmRolQSktLAwB06dIFOp1OGXsqx4LZs2cr49eoUaOkyd3U1FS88sor0rk7d+6sjBGpqakAgPvuuw86nU75W0ul93zVqlXo378/wsLCkJ6ejp07d0rlahu7a+trZT0rV65Ev379YLVasWLFCng8HjzzzDNITk6GxWJB586dsW7dumtunxbaHl/PsWTJEqSkpCAsLAz33Xef10iENWvWoGvXrrBarWjbti1mz56tjP3PPPMMkpKSpOMGDRqE/v37w+Px1NhehmmKsHHN+J33338fTz/9NJ5//nns3bsXiYmJ+Mc//iGVmT9/PpYsWYJFixZh27ZtuHTpElavXi2VmTNnDpYtW4aFCxfihx9+wMSJE/HQQw9h8+bNUrnp06dj/vz52Lt3L4xGIx599FGf2+rxeJCcnIwPPvgAhw8fxsyZM/HUU0/h/fffBwD07dsXbdu2xfLly5VjXC4XVqxYodRz4sQJ3H333bj//vvx7bffYuXKldi2bRvGjh0r1TVv3jykp6fjwIEDmDFjRrVtWrp0KcLDw7F79268+OKLeOaZZyTj8re//S3Onz+PtWvXYt++fejatSsGDBhwzZ6FpUuXwmw2Y/v27Vi4cCHOnj2LX//61+jRowcOHTqEN998E//3f/+Hv/3tb9fUPl/rru4cHo8HQ4cOhdlsxu7du7Fw4UJMnTpVOt7lciEzMxORkZHYunUrtm/fjoiICNx9991wOp3o0KED5s2bh9GjR+P06dM4c+YMRo0ahblz56JTp07X1FaGYZhQ5tKlS/jiiy8wevRo2Gw26bOEhAQMHz4cK1eurDIBXh179uwBAHz55ZfIy8vDqlWrlM82btyI7OxsbNq0Ce+++y5WrVqF2bNn+9zWb775BgCwePFi5OXlKX9Xx/Tp0zF58mQcPHgQN954Ix588EHFaPR17PaFadOmYfz48cjOzkZmZiZeffVVzJ8/H/PmzcO3336LzMxM3HvvvTh+/LjP7fOVms6xe/dujBw5EmPHjsXBgwfRv3//KmP61q1b8fDDD2P8+PE4fPgw3nrrLSxZsgTPPfeccv7U1FQ89thjAIAFCxZgx44dWLp0KfR6NiMYpgqCYaohKytLGAwGER4eLv2zWq0CgLh8+bIQQojFixeL6Oho5biMjAwxevRo6Vy9evUS6enpyt+JiYnixRdfVP52uVwiOTlZDB48WAghhN1uF2FhYWLHjh3SeUaOHCkefPBBIYQQX3/9tQAgvvzyS+Xzzz77TAAQ5eXlXvuUk5MjAIgDBw5U2+8xY8aI+++/X/l77ty5omPHjsrf//nPf0RERIQoKSlR2vT4449L59i6davQ6/VKO9q0aSOGDBlSbZ2V9OvXT9xxxx3Svh49eoipU6cq542KihJ2u10q065dO/HWW28JIa7et8rrWMn48eNFv379pHq6dOkilXnqqafETTfdJDwej7JvwYIFIiIiQrjdbp/a5w1te2o7xxdffCGMRqM4e/as8vnatWsFALF69WohhBDLly+v0laHwyFsNpv44osvlH2DBg0Sffr0EQMGDBC/+tWvpPIMwzCMELt27ZJ+X7W8/PLLAoAoKCgQQgivZaOjo8XixYuFENWPs1lZWSI2NlaUlpYq+958801pjGnTpo34+9//Lh2Xnp4uZs2apfxdU1srqWzDv/71L2XfDz/8IACI7OxsIYRvY7evfX3llVekMklJSeK5556T9vXo0UN5N/Klfd6g7fHlHA8++KD49a9/LZ1j2LBh0jvbgAEDxPPPPy+VWb58uUhMTFT+PnHihIiMjBRTp04VNptNrFixoto2MkxTh6ecmBrp378/Dh48KP3717/+VeMx2dnZ6NWrl7QvIyND2S4qKkJeXp5Uxmg0onv37srfP/74I8rKynDXXXchIiJC+bds2TKcOHFCOvdtt92mbCcmJgIAzp8/73MfFyxYgG7duqFly5aIiIjAP//5T5w+fVr5fMSIEfjxxx+xa9cuAFdDrB544AGEh4cDAA4dOoQlS5ZI7czMzITH40FOTo5yHtq/mqD9qexTZX8OHTqEkpISNG/eXKovJyenynWpjW7dukl/Z2dnIyMjAzqdTtnXu3dvlJSU4MyZMz61z1dqOkd2djZat26NpKQk5XP6/ABXr8OPP/6IyMhI5RrExsbCbrdL12HRokX49ttvsX//fixZskTqG8MwDKMifPRM14f09HSEhYUpf2dkZKCkpAS5ubkBqa+m9wNfx25foON7cXExzp07h969e0tlevfujezsbJ/b5ys1naO29zHg6nV45plnpOvwxz/+EXl5eSgrKwMAtG3bFvPmzcPcuXNx77334ve///01tZFhmhLGhm4Ac30THh6OG264QdpHDa1AUVJSAgD47LPP0KpVK+kzrZiHyWRStiuNJ1/XAb333nuYPHky5s+fj4yMDERGRuKll17C7t27lTJxcXH4zW9+g8WLFyMtLQ1r167Fpk2bpLb+6U9/wrhx46qcPyUlRdmuNMZrg/ansk+V/SkpKUFiYqJUfyWV6971en2VlyRvAiu+tuda2hesc5SUlKBbt25YsWJFlc9atmypbB86dAilpaXQ6/XIy8tTXjwYhmGYq9xwww3Q6XTIzs7GfffdV+Xz7OxsNGvWTPlt1el0Po0xdcHX8ctXano/8GXs9rWv/hhPr/X9xV/nKCkpwezZszF06NAqn1mtVmV7y5YtMBgMOHnyJCoqKmA0sgnBMN7gbwbjdzp27Ijdu3fj4YcfVvZVen2Bq+rRiYmJ2L17N/r27QsAqKioUNYPA0CnTp1gsVhw+vRp9OvXL2Bt3b59O26//XaMHj1a2efNA/zYY4/hwQcfRHJyMtq1ayfNSHft2hWHDx+uMgkRCLp27Yr8/HwYjcZqhVxatmyJ77//Xtp38ODBKgatlo4dO+I///kPhBDKAL19+3ZERkYiOTnZL+33hY4dOyI3N1cyhunzA1y9DitXrkRcXByioqK8nufSpUsYMWIEpk+fjry8PAwfPhz79++vsqaQYRimKdO8eXPcdddd+Mc//oGJEydKv5H5+flYsWIFHn74YWVcaNmyJfLy8pQyx48fVzycAGA2mwFcFQzVcujQIZSXlyt17Nq1CxEREWjdurXXcxcXF1fxIptMJq/nvlZ8Gbtr66s3oqKikJSUhO3bt0vvL9u3b0fPnj3r3e5rofJ9jOJtPD169GiN12HlypVYtWoVNm3ahAceeADPPvvsNa2VZ5imBIeFM35n/PjxWLRoERYvXoxjx45h1qxZ+OGHH6qUeeGFF/DRRx/hyJEjGD16tJI3GwAiIyMxefJkTJw4EUuXLsWJEyewf/9+vP7661i6dKnf2tq+fXvs3bsXX3zxBY4dO4YZM2Z4FUjJzMxEVFQU/va3v+GRRx6RPps6dSp27NihCIYcP34ca9asqZMoSm0MHDgQGRkZGDJkCNavX4+TJ09ix44dmD59Ovbu3QsAuPPOO7F3714sW7YMx48fx6xZs6oY294YPXo0cnNz8b//+784cuQI1qxZg1mzZmHSpElBFS0ZOHAgbrzxRmRlZeHQoUPYunWrpFQLAMOHD0eLFi0wePBgbN26FTk5Odi0aRPGjRunRFaMGjUKrVu3xl//+le8/PLLcLvdmDx5ctD6wTAM01h444034HA4kJmZiS1btiA3Nxfr1q3DXXfdhVatWiniVsDVMeaNN97AgQMHsHfvXowaNUqavI2Li4PNZsO6detQUFCAoqIi5TOn04mRI0fi8OHD+PzzzzFr1iyMHTtWGWPuvPNOLF++HFu3bsV3332HrKwsGAwGqa2pqanYuHEj8vPzcfny5Tr32Zexu7a+Vsdf/vIXzJ07FytXrsTRo0cxbdo0HDx4EOPHj69ze+vCuHHjsG7dOsybNw/Hjx/HG2+8IamWA8DMmTOxbNkyzJ49Gz/88AOys7Px3nvv4a9//SuAq9GKTzzxBObOnYs77rgDixcvxvPPP1/FSGcY5ipsXDN+Z9iwYZgxYwamTJmCbt264dSpU3jiiSekMn/+85/xhz/8AVlZWUo4tjYc7dlnn8WMGTMwZ84cdOzYEXfffTc+++wzJc2HP/jTn/6EoUOHYtiwYejVqxcuXrwoebEr0ev1GDFiBNxut+SRB66ud9q8eTOOHTuGPn36oEuXLpg5c6a0Zthf6HQ6fP755+jbty8eeeQR3Hjjjfjd736HU6dOIT4+HsDViYDK69+jRw9cuXKlSpu90apVK3z++efYs2cP0tPTMWrUKIwcOVIZYIOFXq/H6tWrUV5ejp49e+Kxxx6TXuwAICwsDFu2bEFKSgqGDh2Kjh07KinfoqKisGzZMnz++edYvnw5jEYjwsPD8e9//xtvv/021q5dG9T+MAzDXO9UTjS3bdsWDzzwANq1a4fHH38c/fv3x86dOxEbG6uUnT9/Plq3bo0+ffrg97//PSZPniytozYajXjttdfw1ltvISkpCYMHD1Y+GzBgANq3b4++ffti2LBhuPfee6VUjE8++ST69euH//mf/8GgQYMwZMgQtGvXTmrr/PnzsWHDBrRu3RpdunSpc599Gbtr62t1jBs3DpMmTcKf//xn3HrrrVi3bh0+/vhjtG/fvs7trQu/+MUv8Pbbb+PVV19Feno61q9fX2VMz8zMxKeffor169ejR48e+MUvfoG///3vaNOmDYQQGDFiBHr27KlMOmRmZuKJJ57AQw89pCzhYxhGRSeCoWDBMCHAyJEj8fPPP+Pjjz9u6KYwDMMwTKNixIgRKCwsrJI3mmEYJpTgNdcMUwtFRUX47rvv8M4777BhzTAMwzAMwzCMV9i4ZphaGDx4MPbs2YNRo0bhrrvuaujmMAzDMAzDMAxzHcJh4QzDMAzDMAzDMAxTT1jQjGEYhmEYhmEYhmHqCRvXDMMwDMMwDMMwDFNP2LhmGIZhGIZhGIZhmHrCxjXDMAzDMAzDMAzD1BM2rhmGYRiGYRiGYRimnrBxzTAMwzAMwzAMwzD1hI1rhmEYhmEYhmEYhqknbFwzDMMwDMMwDMMwTD35fwBlGt4p7BY6AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.figure(figsize=(10, 4), dpi=100)\n", + "plt.subplot(121)\n", + "plt.imshow(W1.detach().cpu().numpy(), interpolation='nearest', aspect='auto', origin='lower')\n", + "plt.ylabel('Input neuron index')\n", + "plt.xlabel('Hidden layer neuron index')\n", + "plt.colorbar(label=\"Weight\")\n", + "plt.subplot(122)\n", + "plt.imshow(W2.detach().cpu().numpy(), interpolation='nearest', aspect='auto', origin='lower')\n", + "plt.ylabel('Hidden layer neuron index')\n", + "plt.xlabel('Output neuron index')\n", + "plt.colorbar(label=\"Weight\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "source": [ + "W2_ = W2.detach().cpu().numpy()\n", + "W2_.shape\n", + "print(f\"W2_.shape: {W2_.shape}\")\n", + "print(f\"W2_01\")\n", + "print(f\"\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QJe1WmPq9qz1", + "outputId": "f5e03c57-b455-44da-93e4-e91220ef4778" + }, + "id": "QJe1WmPq9qz1", + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(100, 12)" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "markdown", + "id": "d5d19904", + "metadata": { + "id": "d5d19904" + }, + "source": [ + "Hmm, hard to interpret.\n", + "\n", + "**Exercise.** Any ideas?\n", + "\n", + "Here's what Dan Goodmann got so far..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cd305405", + "metadata": { + "id": "cd305405", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 530 + }, + "outputId": "20c04b61-6445-47e3-c09e-c47be96fff1f" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9sAAAEiCAYAAADpi8EkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhdZZU1vs5wp5rnuTIHEgIECIIE/VqUJjgrdrcKKoLgSNsYW4SvZVRBRCBOTRqRQVta7W7x1/0FQYgyqBGZIQyZh0rN83DrTmf4/bH3PrdOSFJ1z1uVxKqznocn1L3nPdM9973v2nvttTXXdV2ECBEiRIgQIUKECBEiRIgQIaYN+pE+gRAhQoQIESJEiBAhQoQIEWK2ISTbIUKECBEiRIgQIUKECBEixDQjJNshQoQIESJEiBAhQoQIESLENCMk2yFChAgRIkSIECFChAgRIsQ0IyTbIUKECBEiRIgQIUKECBEixDQjJNshQoQIESJEiBAhQoQIESLENCMk2yFChAgRIkSIECFChAgRIsQ0IyTbIUKECBEiRIgQIUKECBEixDQjJNshQoQIESJEiBAhQoQIESLENCMk2yFChAgRIkSIECFChAgRIsQ0IyTbIUKECBEiRIgQIUKECBEixDQjJNshZgT33HMPNE3DX/7yF9/rruti6dKl0DQNzz33nO8927bR0tKCt7/97YfzVEOECBHisCKcH0OECDGXMNNzXjinhjiaEZLtEDOC8vJyAMDIyIjv9d/+9rfYvn37Ad/7n//5H7S3t+Pzn//84TnJECFChDgCCOfHECFCzCXM9JwXzqkhjmaEZDvEjOBgE98dd9yB44477qDvNTU14QMf+MBhOccQIUKEOBII58cQIULMJcz0nBfOqSGOZoRkO8SMQCa+0dFR77W2tjb8v//3/7B27VqYpul7b/v27Xj00Udx6aWXwjTNw36+IUKECHG4EM6PIUKEmEuY6TkvnFNDHM0IyXaIGUFZWRkAfyTxzjvvRFlZGc4//3yUlpb63lu/fj0Mw8CnP/3pw36uIUKECHE4Ec6PIUKEmEuY6TkvnFNDHM0IyXaIGcH+kp5cLoe77roLF198MRKJhG/iS6fTuOeee/D+978fTU1NR+ycQ4QIEeJwIJwfQ4QIMZcw03NeOKeGOJoRku0QM4L9J75f/epX6O7uxuc+9zkA8E18v/zlLzEwMIAvfOELR+ZkQ4QIEeIwIpwfQ4QIMZcw03NeOKeGOJoRku0QM4J4PI5oNOrVyNxxxx0499xzsXjxYgA08U18b/ny5TjrrLO88XfccQdOOeUURCIRXHfddYf9/EOECBFipqAyP2YyGVx88cWYN28eysrK8OY3vxmbNm06MhcSIkSIEFPATK8Jwzk1xNGM0BUgxIyhrKwMIyMjePXVV/H4449jw4YN3nsSZXzxxRfx5z//Gd/73vd8YxsbG3Hdddfh/vvvP9ynHSJEiBAzjqDzo2VZWLBgAf7whz+gpaUFv/zlL/He974Xu3fvRklJyZG4lBAhQoSYFDO9Jgzn1BBHKzTXdd0jfRIhZieWLFmC4447DvPnz8eDDz6Ibdu2QddJTPGhD30Iruuirq4O//7v/46Ojg7P4GIiPvvZz6KhoSHMbocIEWJWYTrmR0FTUxP+93//F6tWrTpcpx8iRIgQBWGm14ThnBriaEWY2Q4xYygvL0dnZycef/xxXH311d6kB1CU8bXXXsMjjzyCCy644JCTXogQIULMNkzX/Lht2zYMDAxgyZIlh+O0Q4QIESIQZnpNGM6pIY5WhDXbIWYM5eXleOaZZ5DL5XDxxRf73istLcVf/vIXjI2N4fOf//wROsMQIUKEODKYjvkxlUrhYx/7GK666irPIChEiBAhjkbM9JownFNDHK0IyXaIGYNMVB/96EdRVVXle6+0tBQAsHr1aqxcufKwn1uIECFCHEmozo+5XA5///d/jyVLluCaa66Z2ZMNESJECEXM9JownFNDHK0Ia7ZDHNUIa7ZDhAgRwg/HcXD++ecjmUzigQcegGmGFWEhQoSY/ZipNWE4p4aYSYRPU4ijEpZlwbIs2LYNy7KQTqcRiURgGMaRPrUQIUKEOKL4zGc+g87OTjz88MPhojBEiBCzHjO9Jgzn1BAziTCzHeKoxHXXXYfrr7/e99o999yDT37yk0fmhEKECBHiKMCePXuwYMECxONx30LzN7/5Dd761rcewTMLESJEiJnBTK4Jwzk1xEwjJNshQoQIESJEiBAhQoQIESLENCM0SAsRIkSIECFChAgRIkSIECGmGSHZDhEixBHHD3/4Q0/Gdfrpp+Mvf/nLIbcfGhrCF77wBTQ2NiIWi+GYY47Bgw8+eJjONkSIECFChAgRIkSIyRGS7RAhQhxR/OIXv8DatWtx7bXX4rnnnsPKlSuxZs0a9PT0HHD7bDaLv/3bv8Xu3bvxX//1X9iyZQt+9KMfobm5+TCfeYgQIULMLJ544gm8973vRVNTEzRNw69//etJxzz22GM45ZRTEIvFsGTJEtx7770zfp4hQoQIcbhR6Pz42GOPQdO0N/zX1dU1o+cZWu6BLP87OjpQWloKTdOO9OmECDHjcF0Xo6OjaGpqgq5PLeaWTqeRzWYn3S4ajSIej0/5XG677TZceumluOiiiwAA69evx4YNG3D33XfjyiuvfMP2d999NwYGBvCnP/0JkUgEALBgwYIpHy9EYQjnxxBzEYXOkVOdH4HC5shkMomVK1fi4osvxnnnnTfp9rt27cK73/1ufPazn8XPfvYzbNy4EZdccgkaGxuxZs2aKR0zxNQRzo8h5iKOljVkofOjYMuWLSgrK/P+rqurm/LYQHBDuG1tbS6A8L/wvzn3X1tb25S+I6lUym2oM6a0z4aGBjeVSk1pv5lMxjUMw33ggQd8r3/iE59w3/e+9x1wzDvf+U73ggsucC+99FK3rq7OXbFihfvNb37TtSxrSscMURjC+TH8by7/N5U5spD5EShsjpwIAG+YK/fHFVdc4a5YscL32oc//GF3zZo1BR8vxOQI58fwv7n835FeQ04EMPn8+Pvf/94F4A4ODha8fxWEmW0ApaWlAICF/7YWTn8VAMAxXXqTA5Vu3EG0k7JoDad3AAD2vdZAb1ZlAADRHQkAgJ2gsZXH9wEAhl6ooX3w3TYWj8LZQse0F6boeBZFhqK7OZrDh5fjZ6tsejnqAAAqGkYBAOnnqpBupUjRZ970BADgvl+d7TuP1lXtdL5PN/v2ZY5SiwPNomPUndSNi+f/EQBw540fBAD0nE77eM/pzwEANvxpFY1x+FrSdIJ2lM9Xp+2NMd3bxlpC16h10rUtOGkfAKDzkVYAQHJpjt4fp/OJDtK9yDTwicVslFTQPpJ7KRIVGaXjHvfWHQCAV/68GACQq6N7Edsbo33wvYFF20f6TdhxOkengo4b7aCTz1bTfYn20nlkG+l97BesjnbQc5CrdBDroW3rn6Xj7D3H9J2f3Gs9Q9ekZ/070yXIZwDveMfzAICNj5wMAFi0ei8AIG7Qeby4p4W2HYz67pNVSjdani+nLIdoG12/vYjum7nfs4mxNHZ/++vesz8Zstksunps7Hp2PspKDx7FHBl1sHDVHvT19fmihrFYDLFY7A3b9/X1wbZt1NfX+16vr6/H66+/fsBj7Ny5E7/73e9wwQUX4MEHH8T27dvx+c9/HrlcDtdee+2UrifE1CHPyPJ7/hFG0Rs/w6kgnVX7qVFJGKX6E0rHTuyNKI13TxpRGo/NZZNvc6jjKybbjKklaw+IxBn9Ssce6C9RGl9Ulg481h7PYPsl66Y0R051fgQKnyMLxaZNm3D22Wf7XluzZg0uv/xy5X2HeCO8+fETV8OITl3RNRFDp+SUzqGoPPhznk2rzc3GtiKl8brapSO1QG0H8+b1Ko3fu68m+OCcWiWvVmQpjdd7gs83TjqNtm8c+TVkUJx00knIZDI4/vjjcd111+HMM8+ctn0fCCHZBjzpT84pRfE4Txz8LNgxIifZMhvWEiI1I6ikN8uJ9GhZfgDKaJDGxLOskvbb10qLNc2mv/WOWlgL6EuipcsBAGYlrWhyS2gfxiCNcYromFqMXx+lj2wsR/86x+ow0sUAgG2YT/tP0IRvMwmrZcK3pybG79PfBk+yuVom38UxlMn3ppQWqAYHHbZZtO+oTa/nymnfVg39aw7RvsxxukbNBCwmdvoI36covTei0/2Lgn+YuulfmTTNJF277dK+Hc2BxptGNDq+W0X7PqWRAhovVy2n98fpGq0mej+a5Gvm+diqchEfoHuZS/L58b6jwstb6X4keumNbDltF+NxFv8dcQAjxs9OPV2jKevycnq9eIj+zVTStUSZdOdKaB/WPL7mvgge7z2Brq2SztmJ07PYl6Od1rXQtr02L0AdDpZw8CA2QvtO12VhLeDPYZyeL5u5rBtlst1EP86Fyt6KS+i/g8Hm3be2tvpev/baa3HdddcVdKyDwXEc1NXV4c4774RhGFi1ahXa29txyy23hGR7BiDPiBUphhsJ9mNXUqy2IBpPB/+RjdQZk290CCw5qVNp/JaO+sk3OgTs45WGw82qLeisVPD7l2trVDq2LvNVQGS14IESh8cWMkdONj8CMz9HdnV1HTB4OTIyglQqhURCLfgUwg95PiKIw0Awsm040ck3OgTipcFJV3mVGmEb7FIjQLZaLBN6Qm1+N4qCfWbeeBQHHhtrGVc6dnoo+LEBIKqQb5V57K9tDdnY2Ij169fj1FNPRSaTwV133YW3ve1teOqpp3DKKaco7/9gCMn2BLQ2DmCgk8mJZD/5e5xoN70MQWnzAAAg20Ok0ThxGABgDdBYV+OxPCDeQbc53USTmlXsACaT6Di9ZkboX2eIJl2HFxnxLs6yVvgfaDvDRGvcgJGixdQHq58FAPwZRNqMDI3ZPUzZejfGhK+bzkdn8u+M03jb1bAqRllwL7PO67QTK+n1ns55AICRYhprJmlfVgntW3igG3EQGTB91+ImaJuyOBG9fr6kVAtP9pwJz1TzeQ7RwbMaUJqgMclymlwig3T9g1YRnwdfQyttF3+dFhRClCVLbQzkM9t2DbFrZ4Rme7eMM+x8TTJWstTpest3TzRbg1VF59rwZ84uGxwoKKNtdQ6KuBy0kGw/NAlE5L+C/3AMqQd+MrAaADCUomuoLkoCALZ11HnHBfJZaod/aNMVtJ9oRwTy2y33XqP4AWIddN/G5wVLdzlw4eDgC2B5r62t7Q1RyQOhpqYGhmGgu7vb93p3dzcaGhoOOKaxsRGRSASGkf+RXb58Obq6upDNZhGNqi1cQoQIESIIJpsfZRtg6nNkiL8OjLVoMOIBZSRlasHIWCQ4YY6bamQ73qsmnclWKA2HXawWTOwbUyOseir48TPjapGGplY15VBntjbwWCflTL7RgcZN8xqyUBx77LE49thjvb9Xr16NHTt24Pbbb8dPf/rTaTnGgRCS7Qno6C+Hu4gk4WY3LdgjY5y5LHVhVdKkNDBGBM8qooci3U1f1gRnRk2ee06r2QMA+GUrF97zs2mOGtA42+vwd425ECJ0eE/SDIe/yA5HT5P0b5SlxOlaxyODWzKURRBSGOsjMlIZJylx/3g1XQtnpT3y3UOPweLyPuy2KGAgZE3L0b4HsnSNI0t5LMvFcxUSNGCZO2dR9KSBXAVfAwcWhFiOc6Y2K1l0g6XnLGuPjLKMfAHdDDejI6LzPjgw4PJt2T1G1yRSeIeDEN59LaFz0Dg7E+vXka7lfYl6oJQz2Tvpy5yu42sppp1mOYAQ6WX5eD190Hp/xFM+6BZPHvyPMUzHy5Xx/YrTvynOuIus3OHXjbSBP/UtonPl90yDzmOMlRPNtUMAgJ4d9Dlna/jaODjgsmJBtzQY/Bzl+HdEpKDpev5MhoNN8jnXRs49+ESZYzVCWVmZb6I8GKLRKFatWoWNGzfiAx/4AADKXG/cuBGXXXbZAceceeaZuP/+++E4jmfMsXXrVjQ2NoZEewaRbi/xVDOFIlOTUTq2oyK3G1P7mXtlXM3lvqRaMXuRUnumbUdtMbz0uPbAY7e1q5nOmBF78o0OgWMaD9zRYCrIJbPYU+iYSeZH2qawObJQNDQ0HDB4WVZWFma1ZxBGBgiaYzVjaoTXUagVSVtq86OjmJl2FNUrsXq1+bWiKKU0viMevNTFTande1nbB8VAT3BVgJ0ONna615DTgdNOOw1/+MMfZvQYIdmeALc3Dq2IZg4z5Z+8NCdPSoubiLn0lXP2kklZuo4WhPE++ve1EcrMRXppHCczEVk+guQQ/egJCTQqaTGqcf1LZQtly9Md1Xw+NDYjtdsRyVhqSHHGvCfLDyaT6BzXRSwuI6n1tggtGoVkG8P88fOl7hyuQXslZ+u5BEjk150p2ne8m/aZamHp+RCdv82Z7ng//Z1uzHnk2WH5uFtN9+1NtVSL/DvWNmv7yRzTXKutsWQ+MqajLUrZeXB23OE1f1MR3actlhTX8z9M4Pfft2vms8w6BxKiXUxWee6QunhwHX2c3/fOayT/62L2sdTQ8k96Uptt8HOkcXQgy1l7k4Mmts2y8gob+54g2YzO8v/VdbsAAE92UT3638+nzPddJj1XUi8uknQtwyqDuAurljP5LO/XUv6a8VhnsIlyqlHJQrB27VpceOGFOPXUU3Haaadh3bp1SCaTnjv5Jz7xCTQ3N+Omm24CAHzuc5/DD37wA/zTP/0T/vEf/xHbtm3DjTfeiC9+8YuBrilEiBAhpgOFZLZnCmeccQYefPBB32uPPPIIzjjjjBk97lxHSbsLIyBx7FmklrVrauyefKODoDelltm1FROO4vsTFGXFaoQza6vJ0Etag3tyqHrXv7JdLRBcPhh8rB0wfj4Ta0hVvPDCC2hsVCt5mgwh2Z6A0gXDGB2mLILLGTNPAq0BFmdxDV3cwfi9gajvb68+V/fLjnUmXpltZRD/NSF+JmdTbSbRQ4M0AZolkkHmLCaTyngNTTC53SWwOTO7oogyEP89fhodj2Xke5NEoN0SPh8moDLOjXAmVXewI8O1XsJd+dxHMsRuc+UiCeexfE0eueVERLTHhFUqaV76J8KmXS83NdG++H3JwEtGXmTSbjHfk5yGRCl9s7N9lA53OGDQFBvifdHf8X30WWS4Dt07r4zUM9veuTscmbMr6LiRHiLO8Xb6N72Qjpmp5JvAGXoIkc7o3j3OVspzQ5t40VpXtqU/5RmQjLjD38DIoIH0ApE10E4e2PQmAMD8Y6n/30NdK2gsy+DlWfCOxdGc6JAOi7NZevM4Xys9Tw5Lz4tW9wG3oWA4cGFP80T54Q9/GL29vbjmmmvQ1dWFk046CQ899JBXd7h3715fa4nW1lY8/PDD+NKXvoQTTzwRzc3N+Kd/+id89atfLfyCQkwZ5rgGPWCW1NLUsrNuSfAMp6Eg8wOAxcuDZ3YBYOueA5dDTBWVNaNK4wc7ypXGl0aDmy9VVo4pHXtwQM0g7ZWtLYHHOqnCr3uy+VG2KQRjY2PYvn279/euXbvwwgsvoKqqCvPmzcNVV12F9vZ2/OQnPwEAfPazn8UPfvADXHHFFbj44ovxu9/9Dr/85S+xYcOGgq8nxNSRLdVgRAPSp5wa7bLc4HNcKquYmlaErJeDortbbX5rblRgnAD6dlQFHtt0jJo5W7ZcjcKNNyh4WqSDkeLpXkMWOj+uW7cOCxcuxIoVK5BOp3HXXXfhd7/7HX77298Gup6pIiTbEzDcXwydM6eZBs4Mjkh9c367ZIYXjpz5TDTTgsJ6nbK/IgFfVkrRxueKKTNpcz1P63Fd6HyKpcAsM468zO7kXAMsMl+TZewO16dGR+jvxHwiZgOlCc8BPK7ROUudtxDj2jidn7huS3ZTDMwslkXv7apCZTPVB6fZ3M2qpn1WJYi0cWLbI6ZeaXcpbZfirHC0M+LVEsu2IjfSmRTKtY0fk/HdT31E/hVjOSA1yuFTDhBIzfbve44BkM8gy/00h9nMrJiDA5Kt1vNfZAl0xJhci/u5wX+DJene/d3L0n3ezjXy+3e4dkAUEeJmL3XhNl+b2c/Z5zKWfKc5qBNxEemKev8PAFXLqR7nknkkb7n5tXMA5F3IUwtp34mdfF51bFqXACJ9bH4nl8vPpGTDB8xg0eyc6+T3eZD3g+Cyyy47qGz8sccee8NrZ5xxBv785z8HOlaIECFCzAQmmx9lm0LwzDPP4KyzzvL+Xrt2LQDgwgsvxL333ovOzk7s3bvXe3/hwoXYsGEDvvSlL+G73/0uWlpacNddd4U9tmcYjgkE9eMzKxQs/wH0jQfPTmdyajSgdK9aJtJMqwVDRyvUAhVdA2pSZa0y+GfXM6QWTNR1tXvvzA8eSHXGg42d7jVkofNjNpvFl7/8ZbS3t6OoqAgnnngiHn30Ud8+ZgIh2Z6AytpRJHcT6bUk25nMm2Ml2tlxu5XrlCVbOs4kqZ7JLmdXX2UZudeiicul9myvg8ncUWp3M4vpwXU525qopsx1Ksau4Ez6JQqY2ldBO9DgZdSTDu1USJjOMuxtQ2SCIFnnDBN6qUeXNlmtb2lDhDeKiFM3S8FHuW7YM9ziSKxkxzHOj5Itsmkgvofug9S2W9yWqz5BmZq9lWxA1knb2bydXcxS8Qif34CBeAmNzSRJZi+Z/mPLqSZvn85ymjqu826nTLzXaitreNcsddQOZ5clwy5lAlmuaY+xkZzF5+PJyO28ZF0Mz3JFXNvPdf3yeUkdeGo+k24OcEQH2PiuiU3ZUgYajqdr6XqZMrq9bNZ3d4xaEhxfSxnup6o4ksunkWFHeJeDG+6I6dW2xyroucoMsrO6qC52BKvdc+BZDxz0/RCzE07MBWLBftx1xczNkgXBHcG3ZNWkdr1JNZllRbVidrdLbTFYVJtUGv/sK4uCDzbUFoOa4kK8ZmHwrJU9nsG+AsdMNj9iCu/vj7e97W1wD1HjeO+99x5wzPPPP1/gkUKoIFsBGAGNre2smpR5YCR4+62Ioi/C4HFKwz3VX1DES9V2kIipBTqGFBzBTVNtxXRMrVpmfPPTC4MPDpzZnt41ZKHz4xVXXIErrriiwKOoIyTbE6BrE3r+MaFKt9AXUUsZ+T7GLA2WbR2uu41x/2WpqxYImfMcqS3Nq9nNsFmXy1lUIXjNS6gWec92Iv+5OjkY/SM9v61SFy6f66gUMvP5SZunFEcuPXk2Z6Gz4pzJmdT2wXIsW0A9xCPjnLFlA6+PtjwNALh58/v818JkVufzF/KdqcnfA6OcVQLcIuLFribftUgQwOW+1yKjBtfE5zI6llSTA/zu1ygSmFtIJNJ2JZPM+9LFsMx3KzxyrtuGZ5omn7Er7uRsRif3TeTaEc60e5JwDuhlG3PeuRp8H0yug7f3M0TzzNWq2XSNua7Bju12lYXBJLc1k3p8zsY3Fw8BAJ58lbL44HZwkmkXszonxU7oRa7Xv9tTBPC5e0GSRLCJ0p5EAjSZhDJEiBAhZismmx9lmxCzD67peoq2QqEpkq7iRHDCODqmZppnZtUCqaooV6zZHhxV6xOu9QUvkcpZagXvQ2VqgVwn4DoQCF5bPVfXkCHZnoCBgWIYnF0VU6wMuzcb47qX2ayOUyRtRLK6XMeY4bprIaAlbC3u7EfuYLjIVDFJFXOIqhwfj/7c9VwLj2VZNEuxJZNqcS23k7Chs8maI3U7TL5cbngf57YQQ1xzDs4WSHZV59rfzBIb2zKUjReSanJm+6Feqhf2SoM0f721ZObjO7nHd9xFrpKvu4Neczjr3FBOme2BfZShHT6GtovvoIlHghPSNivbkEP7MGdz+cQiO+kHIrVEJOr8Be3iDK4EPGJ+J3QtB2jsbBzh1mLSIk2MxgwhpI10vsYeOi9RAgjM/rxmTAiv3DfJqDseQWcyvped2CtEXcAE3zRR10oTZ5tFAZbl8yibN27RZL5iMdWOvvrifN8xM5IdZ1WEntGQbuDgApN/IfDi9J5rDfYDZbv5PogHez/E7IRdmYMbtKeppZah3Ppy6+QbHQSxIbVjDxUptoZRXEgjojY+vbd08o0OgZqlA4HHlsTUsk679wRvTQMAgwoZP2mJWQgmmx9lmxCzD6W7ASMg7+prVMtsF9UEJ9u2gpM5ABi9amQ9XaM0HN1dFUrjm5qCz28A0JkKXvdsFKll1XtH1X6bjGTw38agqqO5uoYMyfYEaENRRNlMR4i1keR+1nbeeVtqtot205dsfJ6kUekf6Q99TDHJgp/qJqKareXtbM0jxGLeU15OUr/BNpp5EscOAQDG9pGEcP8aX62e06sjURjjNFk2RVgyJ5yeI26tx9C+OhK0b3OEHdD3J5mmjTclyAH7+/Pki0TvdYwR2Y1wzXi2mbPOYhbWyW2zGvkaow7AJF7q3cV5uzJG9d/76vmG8aHSbGom90R6nMfbokgnuEd5K01OkhFeXERO60+y7N/ol6AEk9uefN03QG3PxDRNCLAELjzjMVnbjnE2WmTmgxyUYEfxWL/uXa9H0FlyLkGKGBN0eZ7MYbE85/sopnspzcusCwF/5VUiGBes3gQAeKJ7Cd0uvsUZNpSTQIInmdcBI+n/AZUymAz3G3f7g0VULWjIHcJD01L215z9eP3117Fs2bIDvvfwww+HtZUhQvyVYrL5UbYJMfuQbNBgxIJ9tony4LWzAGBowRnK6Y17J9/oEPhzvFJpvKNYamLE1GTwQ0nFdnijwWlUqaL5pWWrBZLTkeD33gnIiufqGjIk2xMQbxmDs4u+eHGu302zEZmdMbxs7sgIfzlZAm5wBFzcoaUVwsZuapwu/ZDjLDPPLknBaOMMbB0RpnEm8EIEhWR7NdBykvw/NvfpNkcMj6w+MULHi3T5I229KTZh0PxkUqTX0j/cdHQ8nVo4cVOPpJ5a2wYAeESjTENsn5+ICgGMcusvI216teFeHfMgHTBu0N+lu2lMf73fvExjsinnmam2YbIDfGIXXXd2GWVmf737RB4jLcjohKOD/j7Xoj5IdBqwWW2fWsBRRTEvYyJs1eTrqIG8lD7dwLX6/Dnnyh1EOAATHeJ9afS3KADEJV3Iv3xWkiWXz8DIaF6E2RZ38f1+hNr2ULAkJtlw5u3yWVkVefM4S667hK4lwnX5TozHBpzPHJf+O9T7IQ6NU045Bbfccgu+8IUveK9lMhl8+ctfxl133YV0Wm3hNVM4bkEnIsXBUjeq7VW2bA1ed+0uU+vDuqyuT2l8b1LNBKevVy0zrSkm1lXcivv2VqgdXG0tidrK4ItZO5opuM/2ZPOjbBNi9sHIAUbQ59VQ+5L2DAefY1Qz29kKtQc6Mqp2fLsjYKE8w5qnRtZlPRgE/bvUAhV6tZpySNa2gcYGNMOdq2vIkGxPQF3pKPa2UAbXy5COT7xFnC2N0pczWyQF1EwEdzBh5rVJ2mKTLDZWS3E2WNfyNdgR7tOcaKa/HXbR1hdRzXZ6B5FuMfMS122dDTWciIsYG7A930cLUnHIlv5i80oo493eRdJ0kVi7PEnq47yvhIUBiybtkja6pr5TaFcbXjqB/qd6PxdtlshHOLrnTkiIyyLP4JZjJtejN8bp2p5rEAIqbJFJtnzZxIesxILriOKAj8+b1JfSYmqohM5b42uRevD9peLZCneChTr/a4phGr/AAQ6Ta7Xz9fJSl81qBwvI8ucm153Yx0GaRn9JgcsXJQoFYcpSW52us72Ai8jvDQ4g/KZtOQCgsoH6OY6M0AQtbu/aGAcxOqVfuIsIPxOo4RrxZg4o8POGgA6aNjTYh4g8Huq9EIR7770Xn/vc57Bhwwbcc8896OzsxPnnnw/HcfDkk08e6dMLESJEQEw2P8o2IWYfMtUu9HgwplCXUAuwxnktEAS9Y2pS5P3L6wqFqVZynTfpDQgno0iDAtbpA/kWuoEPbSpeux38s9MCjp2ra8iQbE9Ax0A59EGuAY75Xbc1O/9adpRIkdQ7VLUSme11WGrNZliVcZpFusQdnOtnHcP06h1yVTRJjiTZPZufs2QPT4A8kXiEvYm2r2xmMv5UNVJLKLpVw9lfIZbgf1/oJhIuJFbqrEU2LaZd9dWjcPhBl97STpyOX1NPRG/45WrfWK/XuFfLTf+kG23EO+k4qUrO9nIW/KVBOp8MZ6eR9GdOxDwuV8bHSBmIltGPkTVIqoIs99hYdAy1x9rVOY/Oiz8jz/V7SFpr0a703AQ5P5ubyb0VpDg4IPfFMxfjz0wCHtDgEfdULR0g1cpjhOyL6oGDEVJbnuPWcpKRd4tsjOysoDG8f2Mp1XCf3bIVAPDAlhN915TlqI78WImLujOhJ7GeE9k6/8OBjebawYKzNsDcnSinE//wD/+A1atX46KLLsKKFSuQTCbxyU9+ErfeeiuKitTMWmYSr7U1QE8EyyI01Q2pHVxBJinzdVCMVaiZ2MjcHhQLWtQy6x1F5Urjk8PBz7+4Qc0JXdcVe/BuD14QGqTPdki25y7iPcFl5H0KmWkAWKygvqkuVlP+dBRXKI3PqV26l9AIikjAkjqBqyDashVbvjmO4lyiMjzg2Lm6hgzJ9gQ4tg6nUkgQ18GKgZkORLhmN34CZxizJO/r66d/DXGiZsI3npN+3EyemPzWLRtA194qeo/XkNkR/sJLeyluCeaywZeXFWfCNyIOklWO1585MY/OXWTQUq98Sj01MHm8tILOj+uKo72cXeW69N7+UjQuHKLjigE3k+3/00hN43/VTZl2cUPXh7nHM7u263zfon2G15IKci18b4cztHhzB+iaNV5Iiwu41MAbLJdOdJhIFbNJGe3Rq4nuSdNMrUv9ORNOneu+U4v4vLiu2Yk5eVdx3oe0SpPzlAy2xmRcoo8RVh1I+7NcmYMolwbEB/mcR/192cV8Tvp/O9zHXR/i82F1hDFsItan+67fbqOAy8A8+vfUVpLy/5l7iwvplv7gJtexO47mBRDSDbrv3CVIkswG+4HJuTpyXmTlQO8H2u2cRDabhW3bsG0bjY2NiMfVSFmIECGOLCabH2mbw3QyIQ4rHBPQAq6oy0vU0rtl0eCZcZUe3QBgjquRI0ctForSeSNK48fH1ci23Rd8vKtoHOqMBi/xAfJryEDHDmiQNlfXkCHZngDdtOEw4ZLe2F5W0847kxcxOdSZjDksNZeMbLac3l9aTj3wuvdRq6v0PCJ13b3lnnRbgjhVS8gRsa+DshDRGsoIZDtpIowNcDaTyaQ9xDXbluaR+OKIv37DbqDjmcz8orwPmydHSRbJtaYrdJQaNOkb3ENP48z1trE62lbqzrnWXJzQBSZLijKt2bwcW9pbsUpg+bJuAEBqJ+1zbD63PxPncN6nzU7s7oiOIu6lmHNpYrM4468LUWcpjxB0IcSxNu6B7snwDU+mLXXmNk8a0vNcILVE7rC/vVeagwjRQcOT5Ker+Jy5XZnG9elCskVSLzLzbJW/Tt2Ju2g6m8j0vifJGC3H1z/IfcL2snzc8wbgH6kEO5xL+UC030CqhQIb0q89N0YBIYfvW2ks2I+zDR32IQop1URNcwM///nP8bnPfQ5vfetbsXXrVrzwwgu46KKL8PDDD+OnP/0pFi1S6Gs8g9DgeoGxQjGcUgskSEAwCGLz1NqjdGyuVxpvl6l9K/akq5XGQ3FBVrswuFvvwGtq5663qGXdUJabfJuDIVL42MnmR9omxGyElQDcgNNcb3uF0rHTueBL+WLFPtMRNfEKHLXDY7StTGl8vFHtAtxs8N+2RIVakKWkQa1mu8uoCjzWSQUrXZira8iQbE9AdiQOQ+dsITtjC7ExkrrXSms8TSzHc+ZmY6pcKRP1YXr9zx3UokncqyW76sZcLxpoL6QvW20xLQj7NCLbmVF/1jfDtdKmZ45F/1oVFqwy2lc1u3xL1lnMwTYPNPrOQ0ijZO1lu0jcwp4sye6Gl9I90bnGt2gpzYi5SiaP3D7LKeKsL2fRhfibPRGYKQk+sEM3y+5zbDPucEBQas5TLH+WLDW4TtsqcpEwLd5GnNvon+EMEdFMi78PudR/6wNitsZEudHypO8SGHCiHIRgR3MxYUuxUiAiwQIh9lwflXPMfO9yUZYzYRfTuUgfj2VZu8jMpb5aPs9sjQ19v/6CIn0fy9GNGhgu9l27BCMiTEQsblvnllieuVt2D9ey85go1823Idgk67qa187sYO+HODQ+9alP4Tvf+Q4+97nPAQD+9m//Fi+//DI+85nP4KSTTsLIiFqkPkSIEEcGk82Psk2I2Qc36npB/kJRVK0WVIoYwSlKTGEsAEhX1qBwFByxgXwL26Cw69Syyyoy8vExRQm76lyiMj7g2Lm6hgzJ9kRMLPjn75+0oYqMaXBNzurKJkz8jlvQAQDYtm+Bb3cyAbrFRLBcJqgVTSMYinGhCtcr7+ylDICQIXEwl2yrmFCkmVQKqTMHTY+4Jww6MyFpMglJWwip5ZXstLZf4N7qi2NpjLLO8X4hyvTeC+1UZy112HJ/Uk0sqeYMr0hAov1GvgVZxk9Il5V0AQCeix5H++D2WR6p5Sw0ailqF3ktgaG2CgB5Yp5mqbVI0gXGoD+LIxLxxE5WAgwbXpBEWn5J6zTX8BvZSUDBYtm99KoWV3Utp3kO4NnSvGkavceZbibAnuqB1f8OZ+J1fuYiAzp29RIBzrHpWmktBWBk8qksox/k0W1U1yvPiGTaPfdyS8u72DdSBtvmuiRLAh8BjTXmar3NdOK5557Dscce63utsrISv/zlL/HTn/70CJ3V5CgtS8MoCrYwml8xqHTsnQo126Odam7eep1a9qCmUi1zkrXUFpNO2ZFzt3cCGkYJzC1qBZ3FJw4FHmubhX/uYc323IXmBHf+11Q5kwJB2ddXoXTsWHBvNho/onbxYwvVfB2ccUUpdlPwQImuq82PtmLrL60o+IenaUEz23NzDRmS7QmYt7AHXVuo9ZXIjiOcpbaLXK+OOZIgMpTL0CLotecpg214BJ3GjIkxDr8uWfLRrZWIC3nmvtFnLyQTrA0j5PotWXAh0iIRNrjWV+R1TiaBNBPKrSMky5aabIOzm70jtGCJ9NNYyZJLX2bZXi/JoUIf57F0zlYz95QWz7VakVDTRcW7uDaYCaLUp2frLY/web3B+bv5eC+lzYs6RQIuxnFMQPmXx0ob+WvngEW6lc+nnchzw1JyI+8dooy8Xe0/D7mP0p4iNqB5WWb5YRRH8fge1mVrnG3mHtixXs7Is8GbBA+cqOs5k7umEHbONouTOSsBhBgnuGWaREPlGHpag8nXb3GAJ/ccycYXvGc3AGDb6xTwcNlczRz0Z80lq59oi3i16gaTaotboolbu5xvoci5BnKHCOXm3NkqApo+HHvssbAsC4899hh27NiB888/H6Wlpejo6MAHP/jBI316IUKECIjJ5kfaJpwjZyOs4uBu5Gp0DyiLBw8IRhUdrXsa1EqEYv1qhFHKI4PCblAoNQFgvBw8ICiJncDHLlfU4Ktw/YBj5+oaMiTbEzCSjnt1vC7fGclMZqttj1i6LZyt5B7L9SdRNnjgyQbf/uIJzjS3UzpTWhQsO2Evdvx+IR+ASM+GZ1cCyNvpi1FbNiottZggMomUdgVuheW5apdwzbY5LORQiLK0nWIiKPXfjUwyua45vcBGj01ZoPgAjUmzgYJdw7JxJm0ZIcZMpIXI5xrEbMzw3NpFFi73NMc9d4ffQYzekppCnjOj3OPck92bwMIWqn/v+AO1L0vX0wfVUjQEAHiJv7uRbiazUnIvnmdsRDZe7HpqAbmXYlYmMmwJcDgJIar7EVO+n7ly27t+l23kZd8GS/QNVgJYJSyVl8l1vx7akeEIbAlO5Ca4nQNIWmwOV0P3y26jzLbMV0L+Lf68XT3fIzzDMnuvVpyDDrb0ii8QczUqOZ3Ys2cPzj33XOzduxeZTAZ/+7d/i9LSUtx8883IZDJYv379kT7FA2J0dzn0gCZuW4aD14YBgJVQWBXUKTq+jqv9TPYPqF27XquWmW6pGVIaf/nCR4MPPkbp0PiXl96vND7x6+AaVzsbupGHmDpc0/XUb4WiSLFuuq2nMvDYomI15U6iS43sGmqHx+gKtXund6h1AAncWx3It70NiOObO5XGb2Y/qUAwgp37XF1DhmR7ApLjUTgl4ozN2WHOBCbazTeUKJhMqPpGqJY2V+N3nK5gUmaXcyaZ3a9f3TwPLkunJTv5pre+DgDY9Npi2rkjmVI/qfVaOLHrdbzX8GquxSxMAgROGcuh+XWRgItMW1qUCSHVNOBNsXYAwMii/Qic9CJkgur9qGT5fhlMFKV1WpEDm2XrNpNVc4SOv7iM2lR0PEO15PuXOWW5N7TGTuhaZwxtvfxjEsubgAFAbZQy2zoHJ+VabHH5ZsIvLdyKugyMN9u+a5BAhsvpe6vC3z/dk8HzviWIoRVbcOJc419FAQup+05VM3HnmndRO4iBm2dyxvvKNORQGqeLGJNAD1/rvAQZFA3U0Y/Czi2kpPCCA7xP6XWerXAQ66b7k+ZWcfJMiOlb66kd2IvCYbs67EM4SdruLLWSnEb80z/9E0499VS8+OKLqK7OG0h98IMfxKWXXnoEzyxEiBAqmGx+pG3COXI2wjVcb71WKPoH1MolTl7QFnhsZ1LNYGxM0cNQ1Y1cEixB4SqyIOmAEwR6sVpmuyupViLl9Ae/+U4q2HXP1TVkSLYnwHF0r81TnOW+4kBulWcR2UlZnUSMSNEoS7ttNjnQ9yPjoywj11gWLE7QxdXjXh9tIVv9aTa/4jrhhgXUP7r3lVoay/OJuJKLrDxb4XgyHFOTPstcA82mZeOSKWVpsbQEE+IlgSTX1jDAM5+Ymkl9c80yqrns30TZ+xwHJWwm9AZnoT2H8968TMQzVWN1yBM7l9AYnmckk5uuk35ZfFqDXGed1JAaof/nW48Mb7tljJyCJZOcbaZrlHZoIhWXaWG8yc7XXnPwwwscSOkzk1arjtUFTL7lfkmW3OyKwWJyXdzOyoMcO4Pz/RHnc4t/z0S5oHP2PCKu99DxllN2AQAe3n0SHUeCIuwmf0xZDwDgtTrK7gtxF/IfEdI9rHstvqQFmgQwRMa+c4dfhTFVONC8XuwHez/EofHkk0/iT3/6E6JR/w/dggUL0N7efoTOanI4UQeIBfuBfd/7/6x07IWx3sBj92bUHLEfeOAtSuM5HhgYo4aaiU7XNoXsBYAv7Tw/8FhRfwWFsUjNSX7gnOCqAGc8Ddxf4JhJ5kfZJsTsg2Zr3u97oairUTPFtJzg37PahJqnxHAwkZyHSWJTk0LBzgMAkCtXI7zmcHAa5QypRRrMmuBEHwBifcGfGzsTbOxcXUOGZHsC4okc0kx+JFsskmy7LE9wR1iC61RI7ygmYXEhlfR3fRVNoB0pkhEaA0x+YzFP1ptuJCK1o4tINSK0j95BilgJgUqz5DvHpC22gFZw9uZyz+H69X6q2TYH/NnUE88kEvfy41QrLRnRHCvsJCsMS8P9A2+m1zjzKj2cS6Kk9WlvFNLG5x9j2TRLgbKcSTVSEeSYpEoWV75DZyzcCQB4cmQZgHyWWrLPkiVHNe00bUYRraD/z0iLL1YESFsziS6avTR5iWRe47p0k4mybule7bjcN1kQitlZZIz/ltZuFXSDMuW0jxgT1my56wUZRHGQbmATOn6OJLMu79vsUq6P+PteO1EXv3nxeHpPDNf5vu0aJ7LwYjfVbIs5npPYT4Uh7u91eXm7yP7l3ouMvbW+F9R9vTDkXBPZQ9bbzM6JcjrhOA5s+411Sfv27UNpqVqkOkSIEEcOk82PtE04R85GmCO61w62UKSzatlZvTg46co6ajQg1aBI+BRrtrOVajW+mmKv66BqBjq22lzQvkexLWRD8EBD0NZfc3UNGZLtCUinIl6/ZiFcko3FvrhHZsBO2NrrRLpT8/0GC1GePIqW0euxfUQAM2zE0FA7jF4mha5JE1VLLWWO9+wm0h1/kSTDSW65JbLyCJP/8V7uv63lTbpalg8DAF6u5gU7p8OlP3OWjdES7abvvCWLDw14b8ULAIDf9hDpHmP1dscIsXx9nIMRIrdnMmcLqWVpeq7URYTrvWUut7iee+sgBQXKX2HCXsP3bYjJIpc4RnbS/c3W2Mgmo779u62UsehLs/yK50uLe9oW7ZU+1/5WYel6C8a4FHLzmCr6PKO9PKbcL1XXWUIvWXLJwMf6DO81m0tZY73+58YW93guR/DOn8/HC6bMz0Af9isOJCiSMGgfS6spu/fyKxW07yjfc45OZjirn9gT9RzePej+7H3QfskOdDiH6JHoKDluzA2cc845WLduHe68804AgKZpGBsbw7XXXot3vetdR/jsDo7yLSaMaLCfjF8PnqF07PpTuwKPrYir9TK1lqnpJB1DbTGqap7UulzNCb7YDF4T+dILC5WOrW9Vk9faVcEX4k6q8LGTzY+0TThHzkboGQ1GwKyc+NgERdoOPksMptVS04lONbKqyPU9n5ygkDX/kYBTqpZVL6lS+21K7g1eQiDdegrFXF1DhmQ7RIgQU4btarAPEXk81HshCLfeeivWrFmD4447Dul0Gueffz62bduGmpoa/Md//MeRPr0QIUIExGTzo2wTIkSIEHMRc3UNGZLtCbCTEUTT/sykfO6ukTeZ8noYswS4oZUMrLraqnxj2vorAOQz2lIj3NNXlm8fxTLsfWwApnNGvWXNHgDAtpdaabsiziDLOcTYFbzVRmwv1fT1pygbLn20pW64NEYS7H6WFnt9rEUqzhnvSL+J3TlKM6fr/Nskx7j+nK/dYjm0OKG79RnvHtLFup5ZmkjMLR5bU0Q1Qq9xf0SpQ0+1+KN8ljjDx2wkuFesu5dl4u10PmULuCaPk0cm32PJTkvWWgp7tKTpya8luCYmddla3pZVBOB9SX24REBFop2enwU4qhrvl23FWG+/yJ3tb7MW76LtU4spa6QPRxDr87cYE+OOtiQ9G+3DpPsXVQH4fByOMCZ20b1xooCRpP07tZyVGvN/1ffurEMQ2NBhHyIqac/SqOR0oqWlBS+++CJ+/vOf46WXXsLY2Bg+9alP4YILLkAioVgAFyJEiCOGyeZH2iacI2cj7GIXbsDWX3ZWLbOdsoJntheWDSgd+5nKYGsJQaxPjVw5ijXXsl4OimydwvED1vgL0im1mm8pQQw01g5okDZH15Ah2Z4APW5BY1WGmDZkqrgWOKnBTNIXo7ycyOKQRRK3kXEifnH+0kp9dYQbzsfb2WyNey1XlI9jkCdXqeNuOYakfm29ZFy1tY2Mv1yWmehi2sVEUefabq0r9gY3xJycM9cFD47TAl6MwLJcVxxv4/NdQIRMG9GRdNiMR9TXXEe9pJEkzNt7yJwr1kVjpeZYiKkjJNzN3weRm0Q7aczrCbq2KEvihVSKRD3OpFNk1FpfBDWtZBjXxo7ceintu3tcJPMsqWapv9xr5KTXN51fbFD36pbFYExMzuTzk2sXkzhPZsT/SDmBqxtvINVieCb16kKARXrusnldtoLbog1LazdAO5nKAKx+ukaNAxlijDaWpc8mPVpB++B9muP+H+pMUy4/iXOwRO61XIMTDdpn25ykR+LsjEpON0zTxMc+9rEjfRoFYXi5BT0RbGExf1GP0rGT2eCLis7ng5kBCuxGtd40zYqtt/a+pnb+qFGTkW9+OrgUXFNcYYhPSlDI70QgGIWPnWx+pG3COXI2wom6b2ytMkVojpoUWldwCetIBm+PByDvPhsQtpr/o9e6NShyLWqtw7Sx4MdXqfcGAGtE0cr9iPTZnptryJBsT0BRaQY54nTej3xkjEncmIbxBfTje3zpEACgt5Tqq22unzaZCEf76LYWN5JBWkqn96ODTLAXuZ5TuNT8lsUoQyuGVvK4JXZzSynORmebmMD20QzlxFzPhKuUTcw695v8hrithESxIn3+j90YYCI/P41tKSLC4kIuPwJ949zbOSpZV3/m2OQ+29J7L9oe8SJ+QkCFx0vf1+4ttM+0RAY5GOAMiYM215i3mejoq8DEG+M6/i+kVzvN90l6e0tbCQmUpJqtfPs0+b4zMU3Pp/tn9HNddcRPsiNcG5+ryJuOORabzZXKNfr7oXsqAhEksApBTOlS3IZMT+mwLH4+OHAhWXDpsz2apn9FFRHjvu8pNqXznM7HjHw/du5Hnq2nA0rv8qqWIQRpFuLg0DKfoL+7P/zhD3HLLbegq6sLK1euxPe//32cdtppk477+c9/jo9+9KN4//vfj1//+tcBjz7z+J//+Z8pb/u+971vBs8kRIgQM4XJ5kfZJsTsg6sHb/3lpNWW4p1DwWtvdcVez46iqYRq6y1JsARFTvH6owPBAyXOMWpO8CVFaoHgwV4FQ1Yn2Ew23WvIJ554ArfccgueffZZdHZ24oEHHsAHPvCBQ4557LHHsHbtWrzyyitobW3F1772NXzyk58s8MiFISTbEzA2lIBeJw2bmWxy66RcOaCniAS91EGtVEwmufXHU9amcxuRb4sn3GwHRQwjnP01uN1TX1cZvDbVnP19tZ2yF9KLu+oYynIOspGakEwt6Ze5m6O6R77SVsS3reC4BR0AgK2bFvB5+1ttRZncZpIRdKTonF1J8vI8cmwVZbb/3E9fTm0g6rs/VnU+ow2wYZit+fYlGeTuYdqHtKyS7LBdQn+nm/kzsPMEuShO0ceUtEoY4Z1yVxtpHyYu5LJPk4Ml2VrOAg8ZHtEVMh8dYNbNUnCZ/EVuHmG38hwT1mi7BEo0r0e3dN6wSvzty5wc75MVChn+1+yJ+vfdkPV+9Fz+PCtepfeK30QT6rvnvwIA+MXr1IpIyLjI2mODeUWAPBMZbp8WGxbyz5faFiyaPbm5ReE/PL/4xS+wdu1arF+/HqeffjrWrVuHNWvWYMuWLairO7hEbffu3fjnf/5nvPWtby34mIcb+0/+mqbB3a+fpKbxZ3QAp/KjAcV1SRhFwTLb+15sVDq2oZB80BapmcjoipH2PQFLNgRGVnExqWi+5NQFv/lmVE3ieVKLWiu8bf21gcfaZuEL2akZpCn2OgpxVMKNOoFluUXliiaOVvDveHE8eHs8AMip8T2YapeOsSa1OQbjajQo0xxcPaP1qJWNpRrVAgXxtuCZcTsdlGxP7xoymUxi5cqVuPjii3HeeedNuv2uXbvw7ne/G5/97Gfxs5/9DBs3bsQll1yCxsZGrFmzpqBjF4KQbE/A6mN24LlNJwPI9+4TObJm52XkQvwGuca3YyfVOUu7LOld5xzHPUL7KbOdFpt9DbClbpgP1Cpu5ANEuoe5RloIaLxL5Mbc35q/I04sL0XpHaXjSFZTCJc4iYv8ObWQzl9c0oX0RivTiOoiTab9Czkb4+xqhL+c4r4tmW7vhgnZLrHzLb3kO8lrxoYKyvjvbaPzlb7V4pgtsvss9+d2imwY7Ogb6zF875VH6Yeig+e7CNdC7x9wsLLSVgzwFFvcMzjbxOSGs+WJnXxf+PNyxunv+F7//YLr5ok5c/94DzusswJBPhuNywBcJuMivxeCnHM0fOa4JwEA3+09h/ZRw4oDZvI/f/1UGit16BLM4B/4VCXfhJwOrZvG6rypKDWEoNdVDwZq/WW7OuxDNMY81HsHw2233YZLL70UF110EQBg/fr12LBhA+6++25ceeWVBz6ObeOCCy7A9ddfjyeffBJDQ0MFH/dwwpkQBX700Ufx1a9+FTfeeCPOOINcujdt2oSvfe1ruPHGG4/UKYYIEUIRk82Psk2I2Qc9YUEPGIwcH1QjXaJYC4Rj1Mi2ambbiquNj/YoysjL1bQmkf7gN0Cp3htAaZHaZ9fbEPy5C9r6a7rXkO985zvxzne+c8rbr1+/HgsXLsStt94KAFi+fDn+8Ic/4Pbbbw/J9uHCpueOhcHmVGJWJdJhq8Tx9A2D7ZQVFNnuO07bDAB49FXqG52zmJxFiFglRU7NraWwMONJVyJdtO1wNc04IknJFNMX2OuXLNlyjqIldtC41PwcYlwLPb+KCPu2bUSuJUOs59gArMpfRywmYiJdd2wdK8tIXPy8eRydK5PWzXs4hSz9rLneWWTjOhu2mXvpOhxzQs21GMqxmZjLmSK9gSaKyDaSk0vrqgxnoVHGkvmhCCoStG0bt9KKsGzdcv2tyLzWVo7I4OnvOLfkshKulwV3uNZH5OQmKw+yFbQvyT4LQbW4Bl+CLpqlef3YK7bSPkbng3fmDz7oTPZtPrYEFkS6bvZE8d2nzub36B/J5nWk6PNc2NAHANixmfptuwm+Txxc0cdZ/q7nrzGykAIbyd4i3ikdd0H5AJ5D4ci5BsxD1tsUFmnNZrN49tlncdVVV3mv6bqOs88+G5s2bTrouBtuuAF1dXX41Kc+hSeffLKgYx5pXH755Vi/fj3e8pa3eK+tWbMGRUVF+PSnP43XXnvtCJ7dwZFJRaBrwSLhTkJtQdN0YvCab68EJSDcHrWiQr1WLfVjm2r3ru0VtZpvoz74gq6uYkzp2KIiC4rMWPDPzkkVvjyabH6kbWanAdBcBz0vwZbUK5ftVTq2rgWfI7b2qSlvdAVbBAAw1fgikvVq82NRm2LbtZrgx9fjamQ7nVOjcMIvAiFgy7WpriFHRkZ8r8diMcRiigX+oMTG2Wef7XttzZo1uPzyy5X3fSiEZHsCEk1JuDuJlEjmOce9oZHVkWW37IoqqrMY30wu0bvHyIVcjBKkzjvHEmIxuhI54MKGXmx/iliZENLKItLSDIokRQy9+vxO3ZFuzvpWSXYVyMzjWm3OYFsshY9zvffK40hG/uf2Y2hfi/iamJBJJjlXZuDxJtpGlJNS+zyvgRwr93WTHNSSaKAQaV6QCqmE43rZb8l6S1Z6oIWiaQ4TYl3qnKQemzO1Ua5vzlU66OxnSb4ELPh7vqOXm3Qzuc1W83mJTp/PT+ra9ayGjBi38WQhSgSBFhUjOZaNsxmcSP4tIcy25k1WuWJt4qXmXdr5dGPcex1sVCZ9sKOsLnAigMaLaoN7cWfF+40DCqUR+lWKsiQ8w4EhieyKLD7WY+T7jlv87LHLvcMZ9WeeWYogmNxJkt6b6kTZ19cH27ZRX1/ve72+vh6vv/76AY/xhz/8AT/+8Y/xwgsvFHj2Rwd27NiBioqKN7xeXl6O3bt3H/bzCREixPRgam7kYWZ7NkKzdGhWsM92e3+N0rHHR4Knh0sq1MpspOtNUBhptTIZMboNivHlamw/okCYswNqaf20YiDWUKh31wJ+blNdQ7a2tvpev/baa3HdddcFOuZEdHV1HXC9OTIyglQqNWMdYUKyPQGZVAQ6k1+Rbye2M0E4eQS57cR+UsXs3i0ZRfgzuGkmUhqbXrgsLcrwfPra6y3QWDptcm1xfWIUANC5k9y+ReqdYqdwnYm8xedVs4jIb29PGeK76BxXHLsDAPDnrct5Wzqvl3safecHJl76frWArgm83kEPYSmVjGP4GM7OsxuwzW0WxMTLlTrTUs5sc9bXLnK9/Ut9uUi/wdE4rZMmGglyxcS1nTPbQm61MRM6y8ilNtptoQmyqpiCFN0GfUHEPV2UKHLNQjLtYgfRXiGnYizGbbs4gCFBEY1r9EXqo7Hrd7w7v71sm62g43kO7BJg4cksW8Z1+zyvi8TeI8X1WTTU0k3v7aU6Q5Mnsyxf9FiWndj5mDGW9EvwQLLluTId0UH+HLiWyxFjuzjd2+JKPxmeKhxXg3Mocwt+b6YmytHRUXz84x/Hj370I9TUqC1QjhTe9KY3Ye3atfjpT3/qTfrd3d34yle+MiVTuCOF4uIMjKJgY4fG1LSG+16vn3yjg8AtVqzpU8zKI0CGdCKKqtQWw6mIWjbA7Qi+IOyPqPkPlBWrLYT7xoPXJGoBjJMmmx9lmxCzD9E+A0Y8WJZ03C1RO3Zd8DmiOKbmxj1arpba1hSVQ1aposdJWi2znRsN/ttmVKrde9tWdLFXGB60Gmaqa8i2tjaUleWN/6Yjq30kEZLtCXBdICo1tLb0oGaS11sEnQmbNUofekIcpdmYzJFJR4gWt+cytnPrLf5OZ2ssmEx4939gJWOtcaZWXLe9ft/cOqp/WzUA4lfp+fSF3bSTW7RIVpeJZ9Rksi9RLM0vsZZsrDGuIc7uhuNcyxHh9mH9/fRjICRbyKtXk8xZYulJrWU16DyP6NJjms+rJMHHGKTgxThn2iWD7GVhEyyFHtVQxa6N/Q7VeVtJenTnzSfp/Mg+kkKlua2ZZLLzfa1p+0yt7RF2yehLpl8c4sVtPN5BY+wiMcmj18VYLjKke9cmbcIksr0/6RcTkHytPcvvmTgbAxH09dI1iKwqNkjbDKbps4jz55hqpedM+oNrnF0Xo7tslYN0K998XuhHRtk8jZ+nWFkwAmK5JnKHsA9lc/YpT5Q1NTUwDAPd3d2+17u7u9HQ8Eb5644dO7B79268973v9V6TemjTNLFlyxYsXrx4ytdzJHD33Xfjgx/8IObNm+cFJdra2rB06dKj2lE9RIgQh8Zk8yNtc5hOJsRhRaYpBz0RjLhp42qEL5sKTviGdbVMnjaiFkhVrfneX5lYKERdGhSSdAsCQ7FmW8UYDwCssuCBCidgIHWqa8iysjLfGnK60NDQcMD1ZllZ2YxltYGQbPtgRi3PuEpIklMhpmauVzddVk3EL8MS4H2dLCNnV0OTpcI53t5hua84Yy9Y1IPdGhEr6Vtr6nkjNiAv7RntJZIrMuR0jKXpfFp6ToOr03HPPoHcqp/YSiZvYoo1zi2jhFRLG6j4Hn8P6HiPgeNruwAAT0cq+Lrpn6JSIshpdkePd9J5CPHTOcCgMcl1I65nGCeTaYzrpkfr6HwskXzzvZa2ZpEuab3FRDStobuHXdLr/QGNwQy3JOMn2WXTM0PqsTl0J7XRWtL02pXpNn9eLNuW4ECeZPOzwPfAHOEggLT3cjTPQC/Cn7lIojwJOpuqpaU9FwclJNtvMYHHhJYhMv3GuAd7Q4KehdVVOwEA9z7b5DuWzUEJIe5u3IbJph1Ok2SG6O94Dx2/YmEwC1AbGuz93ef2ex+Y+kQZjUaxatUqbNy40XPsdhwHGzduxGWXXfaG7ZctW4aXX37Z99rXvvY1jI6O4rvf/e4bMupHI5YsWYKXXnoJjzzyiCeVX758Oc4++2zPkXyqsG0b1113Hf793/8dXV1daGpqwic/+Ul87Wtf8/blui6uvfZa/OhHP8LQ0BDOPPNM3HHHHVi6tLBSguGeEuiJYFlOLa6YfcgFD8Hro2o/c6p+VsXzgqlIBON71BYcWo1azbhTGzz7YttqWVxLMXNjxoNn3Ryn8LGTzY+yTYjZh0RlCkZRMBXMuCLhVcnOphQdyuIKra8AwDEVya6j9n1S9ROBAl82FacClf7qAGAMBH9unIDP3FTXkDOFM844Aw8++KDvtUceecQzq50phGR7AnKZiNcrWzKi4kydarGQaKPbVT6fCEw/r2EinOLODfszo1pGyBm7XvPrzcXD6Gonk6tMHZNBm8aKSZfDltmJPUw85bnmeUHaUjkRePLhF/ton0KyhRS2VA0BAPY6RNzNPpZrM9k1uH1Xus7GcaWdAIDnFpKc3dpDY7yaoKj0lWZZNGehJZMr7te5Yhd2lb/+3ORgRF05mea0Z/nx4/ukD/sfR4ezr6lSoKaaxvR10cIzKoZni/3kVWq0s1X8GTDhj+/m+u9SB3yr4fDhpGRAtyQ7zxfB9zq634QkLu+am5eolrzMz0ktTxS8LyHZHoHnYE6OJeySnbaqLC/wIvJ6I0PbLi+jAMgDe1fS2FquHedouBilpWJs6tcT8Z4ji2t6ckz+TTbH29ERrCWO4+peDfnB3i8Ua9euxYUXXohTTz0Vp512GtatW4dkMum5k3/iE59Ac3MzbrrpJsTjcRx//PG+8VL/vP/rRzM0TcM555yDc845R2k/N998M+644w7cd999WLFiBZ555hlcdNFFKC8vxxe/+EUAwLe//W1873vfw3333YeFCxfi6quvxpo1a/Dqq68iHle0gg0RIoSHyeZH2SbE7EMuY8I2gqVpVx2zW+nYcSM44+tOKfRaBrC7t0VpfHxAjVwlW9QCueao2vfRSgQnvNn2YqVja4rmm7rCrQ9aDTPda8ixsTFs377d+3vXrl144YUXUFVVhXnz5uGqq65Ce3s7fvKTnwAAPvvZz+IHP/gBrrjiClx88cX43e9+h1/+8pfYsGFDsAuaIkKyPQG1VaMYGmKn8ZzU4hJZKW0YxViOiF4ySxPq+Dw2LRPj6bg/SxkppYxArouzr/wMvdZf50m/jQH6CHpTRGqFjCVYMjy4mL9MHL0TqbW2lMintbcYGkf/ezj7KwZf2G8OkBYH4lTtETLpTZ3UcfdzZwIAYlwHHhGjtEUUYBhP0eRg9nN9umRs+dotJtSJfSZSi7mOm6XnmQV0LRKNa6yhGuUO7k8uUudMgz+jYPZG0Gf7+0JbC+h8RjhrL8GIRLvfYTzL16ZNDFLwB2ZzRNM15b4Y3n2gjUW7z/vi2mhps+FWZb2WXslm3lRc5pmgy70+GITow9JQUU6KidQWiXLTvh7roAxkip87ydrL+dnyvLFzfq7ShpFhEp/lG8GHEefM6O5gJMvGoSOPQX72PvzhD6O3txfXXHMNurq6cNJJJ+Ghhx7y6pn37t0LXaW46CjExo0bsXHjRvT09PjaggEkM58q/vSnP+H9738/3v3udwMAFixYgP/4j//AX/7yFwCU1V63bh2+9rWv4f3vfz8A4Cc/+Qnq6+vx61//Gh/5yEemftK25gWzCoWrmOFcefzuwGNff0ytrCBTryb1S0TVahoXn7xLafyWHjW3YUchc5RT7CM7qFinFylTbAJcICabH2WbELMP9kAMbirY8/p89xKlY6tkZ2tahtSO3aLYOmxYMasfsCTOO35WTcfuKqi23IhiZlppdH7tHwROJNjY6V5DPvPMMzjrrLO8v9euXQsAuPDCC3Hvvfeis7MTe/fm3f4XLlyIDRs24Etf+hK++93voqWlBXfdddeMtv0CApDte++9F5/85Cff8LplWbj66qtx0003Tcd5HTFERsXUi2t+WUqc3FnuZXUl6xwZYnLjMnGRLx1nNXPd+00iUhutu4jt4yw4Z4grYyQV7mJp8Hiai3vFTXtQ0rH0T2aYjmlaGiJJz8abDs8yaWkJlsqxhJiNvaQu3BY5tLSlKnZQXkmEb0hcxpnIlbJBmVyzw5OE1HBrw0JyJ2TVM9I+TeTOtE07t+JxOYMbTfoDG0IiI9wrOled71/pDtI1unHaZmkVtcP6SyVJ+SXTLIQ0yjXncq3xDgOpZq6X5vOzufe1lAmIHDtXzfviDHy8TZzD2a28XEOcjc6E1MdYUpVupH2Ks7ooFMTl3uTzk31B11BTRM/AroTI1+k8EhFarFcX0WezpZKeK1FdpKMs3eeZNzJsIFPNx+fghwSPxLX99LM3Y0eAr2rOMWE4B582ck6wH4/LLrvsgLJxAHjssccOOfbee+8NdMwjheuvvx433HADTj31VDQ2NhYsHZ+I1atX484778TWrVtxzDHH4MUXX8Qf/vAH3HbbbQAoytvV1eVrdVFeXo7TTz8dmzZtKoxshwgR4pCYbH6kbeZ20fZsXUO6ETcweXJVpdQKhE/WFUExOq5ocFasdu2RtuAmiACQqwhOOIH8Wi4IvGRL0PGKQWwlFXrAsdO9hnzb294G9xDtFA+0Pnzb296G559/vqDjqKLgp+SLX/wiNmzYgDvvvBOVldT6asuWLTj//PPR39//VztRAsDAcDEMJtc5bp+lsRFXUbeOVAN9MYbYLEwSFlUcGRx7gUzLckxm3SKaABNcG52h24WcZSDTwHXDLMM+pYL6W79UQlkYW/qDMnG3uXbcYKMvcDY2ktSQ4iy5R8yZ+EqG+LyWFwAA32/mBTcTwDjXnIv7t6u5GB3jAAHXSLqcEs6yg7jVTJmC2Hbup80xACH4QiqzFQ7iQpa5n3eEDbwMdmtPsVTflhZW0tbLFUJPf06sZ5ass8WmZYNpv0O3tp9RiMjLHY6H5BptL2Agzu5iTuLwnC111NLL29tHVEi6tDfTkOMfCslgS4s2naX5bnyC3B95EzPJtFtyuxty6Bmj50qijVHO9A8k6Rpb6ofodTF2Y8d6LWn4zltP5lt/meW0jd3PrdnYJO+pdmkIXhhcaHAOEZV0w3rESbF+/Xrce++9+PjHP668ryuvvBIjIyNYtmwZDMOAbdv45je/iQsuuAAAtbkAcMBWF/Le/shkMshk8hlBaeO2aEkXzOJgC6sdbWrZ1c3PLAw8Vo+pLeZKG0aVxqcUMycvPxv82gEAdWrZ3aLi4OOzipmboEoKQS4ZfCHupApfCE82P8o2cxmzdQ2pWVpwsyzF51xl/L6hCqVDO4q+CqrfBkfRpNo11OYoqy64p0WsWM2NPLdPTYauK5i7aQF7dM/VNWTBZPv555/Hxz72MZxwwgm45557sHXrVlxxxRX4wAc+gH/913+diXM8bCgpSSPVy39k/aRovMX2ajsiTDgNbiuStfg28jMSEUfzCvpbeioLyY2YttdWSkjRnwcW+vbhRY2ifstwcb+WOud0ve0RcoluGvz9dZgw70yRTFsk1iJVT3NtsryernNgmJzltejadG5rcNYJmwEAv9m8gq65UlqX8fnwhJWuz9dKZ3gbl+UmEW6xVc7tulIDzDQdv5GaXLvn2D1qorZxCADQM0znFeWs/fKTiDDsssgYS5wlRdoTSfpr4a1KB3LTJRgi+xKTNa93drlfBi+yc5Mlzcaw4T0fBq9HxUlRzPBsdqr3emCzuiDVzCUITPwj3RGMSf0s73N0Pt8X/ny3DNDnKHJ2r/93LUv5+ZnSLS0v223jlmhSWsAv5zqDTdK2q8M+RE3Nod4LQchms1i9evW07OuXv/wlfvazn+H+++/HihUr8MILL+Dyyy9HU1MTLrzwwkD7vOmmm3D99ddPy/mFCDGXMNn8KNsUih/+8Ie45ZZb0NXVhZUrV+L73//+QdsE3nvvvZ7fhSAWiyGdVpP7Thdm6xrSSOrQAxJPq16NdElSKAiW1XZPvtEh8EKbWs22ppaYhh1Xyw5riq0hje7gbN9tV7t4TaFeHAhed60ydq6uIQv+hi5evBh//OMfcfnll+Pcc8+FYRi477778NGPfnQmzu+wImcbnnQ42iNZTSZNcdeT6epclzveSttWGtyLmuUo4kytcVYxtoMIT3oe/d3bXoEIkz89lz82ANiV/MWX71BWGkbTCyIPFoOwbIOVjzAx6c+VMsll46xXhqiFkstkNstZdYmGirQ53qOj9Xjq373LoSy900Hn/vvdVDdcVMa120z2c2KnKMEJ6WsdczwCLhlrIfkj42wAxhl4IcJCSKXuWcZraR3dHRV0jnLdXH8uPfmsYr/ZmxWVTDM7nLMRWbTPzEvKObMvTuVgsio9sF1jvwy7zC6i2jcBu5o+U5MN2MRxXYIRnnHcuN8wzRhjwi8frwVUlJGMfGwrZbKLO+g8j3/PbgDAcJbumygojAkZdiDvTq65gC3PAN/LGD/Pcp/KFgwhCKbaIzHEwXHJJZfg/vvvx9VXX628r6985Su48sorPTn4CSecgD179uCmm27ChRde6LVP6+7uRmNjozeuu7sbJ5100gH3edVVV3l1TwBltltbW7Fzb11wN3IJLgaErVCTqOXUjm3qaos5Ty0UEIkFapn15KDa8ceSatkTFRjlaiQEncENALV04QRmJvps/+IXv8DatWuxfv16nH766Vi3bh3WrFmDLVu2oK7uwIqRsrIybNmyxftbpVRlujFb15BWTfDWX2ZMrZK/paUv8NjSiJryxR5Xs35KDKs9m66hNt5OqZ2/JFaCQFrlBoWrGChQCdI4CPa7OFfXkIHu9IYNG/Dzn/8cZ5xxBrZu3Yof//jH+Ju/+Rs0NTVN9/kdViT7i2BonNWslPph+kfPaF6mNcYERmTSI0mqFzbFibuETc6KWMKr8w8+E9HKhhGk2okwSSa2NkGGZ1uZnC1ZQhnbHZvJeSve5ydnac6Wa+MGYpxJT5zSDwAY2lsBgLKlAJBt5iw4k+xIn+k7tkigc6UuLD5AJErbirt/ekwaRItjWr7WGAA0dtJ2uH44sSPq1eLYHPizuadfjmugHW6T4XLtNEqYGHfSAOmH7URdaJzhT3N7MFm8Z/ar/ZCaeyfiJ/+SpZ4o9ZLvdIxrfiSYIq0kdG8edH2vG+NS1w84XFsf59+6cf4KSKAj1if7lnvNQQpxB2dneLvIhWnIOdI+omM0pi426vv3xeLFvC+RUoj6gYMDpgtj1N9nXCTzBsvIh9v8hnNTRc41oLsHX1DkXMU2GnMA6XQad955Jx599FGceOKJiET8MmOpt54KxsfH32AeZxiGZ7q2cOFCNDQ0YOPGjR65HhkZwVNPPYXPfe5zB9xnLBY7aF/0ECFCHByTzY+0TWFz5G233YZLL73Uy1avX78eGzZswN13340rr7zygGM0TfMCbUcjZuMaUh8zoVvByEtlw7DSsYdTwYNKpzbvVjr2Y9nlSuNVVcOS3AqKSSwWJoUYDwdBpDZYC1aBJP6Cwu5WKLMJKCOfq2vIgh+zz3zmM7jvvvvwzW9+E2vXrkV3dzcuvvhinHDCCbjjjjvwD//wDzNxnocFJTVJjI/slwUw84QxJvXS7DwtPZYXH9cBANj9DMlp4r30EKbKaQJ0uSY6zqZoZpPjZZOlt7Pu6ZHp9X0DFTS2SBgfZ0ab/WTTjTqw2CxskNtiiemBtJdqLqGJvK+X6jazLXTQxE6/kzeQrw8e76ZsRoSzpU4xk1fJYDPRE2MPbYBJJ/cDTzVbnju2Xe7PpJeX0gRjFVFENdVHwYrYLrpfkr33jhF1UFtNRHPszySlluy0xYzcZZMzWyZensBtdqpM8L13tbwpnagKMlWcgeexnkSejdtylX6XeflB1WxAk+AHd9KS7LI+xnXzHLncn/x6ZnlMfiOjmpfxTzfQmAGTrq0vQ7XcAiHZniJhr7/2XstpcJhci0Gbzb/FES4LMKxgE6UDHQ4OPvZQ74UgvPTSSx7x3bx5s++9QjNQ733ve/HNb34T8+bNw4oVK/D888/jtttuw8UXX+zt7/LLL8c3vvENLF261Gv91dTU5PU1nyqOW9SBSHGwH+fNLwXzCBAsWBpc6tg5qNanurZYzUBosL9k8o0OATvgd1VgDKjVjNce3xN4bPf2GqVjR6NqmZtUwL7HAOBohY+dbH6UbYC8F4LgQEGubDaLZ599FldddZX3mq7rOPvss7Fp06aDHmNsbAzz58+H4zg45ZRTcOONN2LFihWFXs6MYDavIYNiPKMoJ1ZwuvpNj2LLzKgaOZokNjUpsgpkF8ivkQKjNrj6Jjt4ZFtvGgrGfEH7o8/VNWTBZPuPf/wjnnrqKaxcST1/Gxoa8OCDD+KHP/whLr744r/6iVJaNuUa6QsUbRcHaiDLfamzo/SDmOikbbcbJM8UL5iU9FZm84NcPxFXIUf9gyVwuFdyjKXMWQ6vRTkbHamhBV6WDdSEXIq8Xep2zf4IHJZnVzbQj/dgB7cA44yx5fjdqkU6IgZbQoLjbREkU3Q+Wgldg837iFeQfDw9zC3B2B1dJOka9xBPVdD20Y6olzkHZ5JFnq3No9dHt1fQ67yeSi3gdmgs+ZZMcqTHxHBVgq+bj8dp6ZbEICZCsulClGWhKeeSq7K83tZSo+0wUc/JnCvBCi4LkOy4pyLn67GKXM80rXgfvTbWKm24uI3Zfm2DYn2sMmjx1+KnFubQxLXsDrdwq9xK27R8kK7xtx3LJg7xZPliqCZeAdmmHMCE3HOLlyw4j138pr3YjcJhuxrsQ8h8DvVeCMLvf//7advX97//fVx99dX4/Oc/j56eHjQ1NeEzn/kMrrnmGm+bK664AslkEp/+9KcxNDSEt7zlLXjooYfCHtshQkwzJpsfZRsAaG1t9b1+7bXX4rrrrvO91tfXB9u2D2hw+Prrrx9w/8ceeyzuvvtunHjiiRgeHsZ3vvMdrF69Gq+88gpaWtTqa6cDs3UNqdl5M9XDjeJYcML3pso9Ssd+NTNPaXyAmJYPouwMitwk7Vkng8mtfYPAXnB4WxO+4fgKYx0jYOuvObqGLJhsP/vssweUGH7hC1/wtZf5a0RyNA5NXMi5f7K4XDsRF1HO2ma5iFfk4gbX44pUVwIzOZYMSzbTZgfxkuIMkoOlAIAMy6KL2dUsx8Qp187ZGK+J934mYgzNyROpwT7aZ6KNZdpM0KVJvDis63xtUZZPSxDAibqQxJrL+nGXM8OZbppQtLKc7zzEpCtXyo8Sy6edyITMMNdPZzkrPyw1jI1E4O10wn9eQ+I4nj+v3ChHftkMw+SgxMPtJGESR3GXr9ngCTjVykEJbs+gpwxYXBdv8zUm9uYd1IF8djoXY7LN9z7GZQPyOdsJB4kODn7wx+XJtis469zJgQPm3JK1NkZE8g3v/PuGKQMmc1iyka7h0c5j6dr4PDTOyEf42cxWsikcB1Ni+yL5wAr3Y8dr9GxIPf+uXipjKBRztd7maEVpaSnWrVuHdevWHXQbTdNwww034IYbblA61vYnF8AISNDdJrVe011/aA48VkXmBwBbFbMPZfVjSuNHukqVxscWjUy+0SHQNxj8+FqFWs21qzifaAo9woOMLaRmu62tDWVledXFdJVunHHGGTjjjDO8v1evXo3ly5fj3/7t3/D1r399Wo6hglm7hnQRuB1SSsE1HwCiZnAFSHdWTfnjFinWDduKfh5xxbZpimQ/3RL8ty1eojY/ZjqDE30AiIwGD1Q46WCf21xdQxZMtmOxGHbs2IF77rkHO3bswHe/+13U1dXhN7/5DebNKyzC9cQTT+CWW27Bs88+i87OTjzwwAM+aeMnP/lJ3Hfffb4xa9aswUMPPeT9PTAwgH/8x3/E//7v/0LXdXzoQx/Cd7/7XZSUFC7d0w0nT7KZwGY4m+3GbY+cuUzCHOlPzTJps5+zqKUsaRbjBWnT1UPvJyNxmNLCqpy+qH/cS27k0lbqrLe+DADY+AxJfLK8WNVHmLyxTNkFEGGDhqKllA0f5blH+kKn2BFbpOeeIVlVvo6ZXtdhi5v2YF4qDQCRY2nBltpHCy+ZoKSGXO6JzqTXqrDy7tgiRQerBgzad3kFG4KZRLadUqkT92djzZSGphYybuveTIYw8n0cYuLuSYHMfA9sIN9rXLLB2qiGVDOfq0dW+e9cPrAC5DPxXk07B0Kk9twcNL1sfMnrXJvNx/cM0fbLbEudv0jlhWy7cRuu4z+fst18zjz21FpqD/dwpJbPi/fZxaZsFdJmzPUCFml2zI+wBF5k62Ys2A+kNUm9jTVL621Ucd555+Hee+9FWVkZzjvvvENu+6tf/eownVWIECGmE5PNj7QNz+9lZT6yfSDU1NTAMAx0d/vLKLq7u6dckx2JRHDyySdj+/btU9p+pjFb15BaQxpaQO7jKrb+Gt5eGXjsawk1l/pIl6IEXnHJkCtTI9uyDgwMhc9OtUQo0awWyM1tCR5oCcqJ5+oasmCy/fjjj+Od73wnzjzzTDzxxBP45je/ibq6Orz44ov48Y9/jP/6r/+a8r6SySRWrlyJiy+++KAL0HPPPRf33HOP9/f+EdELLrgAnZ2deOSRR5DL5XDRRRfh05/+NO6///5CLw0L6/qx0yUyGeNsp0Qq7XLHc89uXEZuWH1PkHy8bPkQAGConYigwU7d9hIiYha3qzLkS90Z88y/BIakM5kIvzZIsjHJpufKmAgysa+soRrm5ItV3j6SO0l+LG0DM0ym9/TTROwFCUxhyPxPdILTOZuXaUw4Xc7e5/r4V4Tl5Y5Xt8zZVo5uOjFJjWseqZd/JXChs6HXCNfHx6RNFjt5xnuYlHNtda7CQYQdgb3Mfi3Jb1Y1twMAnt9C2d9srT+AIMoBYdvauOFlmyVQIL0GRf4fZam39Ev36q05iBJlwqxbGiy+/d6Ez5dvMqlF0t/izXMfl3ZnxdyirDcCmwM9rtebluu/+dylN6FV7e/RLn0mZZxmIV8T3kPPntxLcTC3A7YocdxDRx4dxba6sxXl5eVePXZ5eTBzuiONG//hpygqDRbNXneRmtOw/uTTgcdab1+ldOydf6eWeSlSkHgCwIiiU7Gqic6K5s7AY/tSak7mScVa1vetfirw2MxYDt8vcMxk86NsM1VEo1GsWrUKGzdu9Eik4zjYuHEjLrvssintw7ZtvPzyy3jXu9419QPPIGbrGtLKGtCNYHOFdHkJivGy4HNUaVRNyiyKyaAwUoq9vxS5ma7Y8MAcCn7vc6aan4al2Gkj4OMKIHit/VxdQxZMtq+88kp84xvfwNq1a1FampeXvf3tb8cPfvCDgvb1zne+E+985zsPuU0sFjtoBPe1117DQw89hKeffhqnnnoqAKphfNe73oXvfOc7BTtb9o0Xe3XOqXlcU83EzB41PQIzlPIbWZW44njN5IzJpdtOZJJbV3utvxbN68Gu17jOu40m/ujxlOUVb8Lep8XMzC9rl3rmkX5ieXZL1qsrl4dfsqtCEitLad+9eyhSa1VJJp5l0dJPesyAxj2brRhNApI1tY+nM5OFW4Yz6xH+jXCZ1EnmNNtgeZOwlfSbmEUjnPnfS+cjtePafvXpdgP9CMR2xdFTT9tKNldjx/KOBiIuQpi9emquIRfXdFEdOKbrEV6pp44xuQf35hZXb8lO2ywb1+U6xBSt3vIiG0JmxRncKqKNYgMcLOGghckTu2SebX5WclU2jFKW6I9E+FrpPTGtW9JMRkUie7c5SGLxvh1RF7g6cuV8Pi30uZl76VnM8X2x08EmecfVvbKEg70f4o2YuNib+P8hQoSYPZhsfpRtCsHatWtx4YUX4tRTT8Vpp52GdevWIZlMeu7kn/jEJ9Dc3IybbroJAHDDDTfgzW9+M5YsWYKhoSHccsst2LNnDy655JJgFzXNmLVryIwB6MEYyPiAmhxYC+gMDQA7+oKVlHlQDOaZiu3fc4pkO1un2Gd7JDhjNRKKrb961UpPXAWDtKBj5+oasmCy/fLLLx8w4ldXV4e+vuC9/g6Gxx57DHV1daisrMTb3/52fOMb30B1NU0OmzZtQkVFhTdJAsDZZ58NXdfx1FNP4YMf/GBBx0omY3CZLMU6/MZacLS8GRZnKkaZaPV2M+GTZ4+fFcmEeoSPZeSDNQmYTIQlwHNm0y4AwMNbKAtdtpzaeI28wv2u4/66XHOcj+FqHvmTWuMI93AWiXN1gjbu4iyqTMw6zzGJffQYpOsclCdozDDXYLtMRCMR/6TgOZ5LP2e+NzYrr7S07jmpS6baYvKaY+JbtGyIrm1Hue9eeFlgltikW7LAMAU4ND6OOEA2sdN623zuPc3BCFvaYXHwxGZX2mi/kXeA5/uQLc9/xkBeLi5mZg47sGfrOQDDzuuubsDs9vc2F0M2KS1wuXZcWpJJ9tzkwIJnqKK7cEXCzy7uac6a/5/WHQCAO189ky6p2fJtJ/J7uYFGWvPupTySVj1ddHwXTc5lK0cQxBbFgeZl2A/2fojZie/sPAdmcbAf965Pqx3b+dibgg+OqC0GtXG1Z7qrrWryjQ4BMb4MipxiTeSLO1on3+gg0JJqx0ap2kL4l52nBR7rpNIA/r/CxkwyP8o2heDDH/4went7cc0116CrqwsnnXQSHnroIc80be/evb72f4ODg7j00kvR1dWFyspKrFq1Cn/6059w3HHHFXTcmcKsXUMabl5WWCBi5WqMM1ob/HtyfG2X0rE3G2ot5pINatldWXsGhZQ+BkVUwaDNVmjZBuT9loJCkmNBoKWDjZ2ra8iCyXZFRQU6OzuxcOFC3+vPP/88mpuDm9gcCOeeey7OO+88LFy4EDt27MD//b//F+985zuxadMmGIaBrq4u1NXV+caYpomqqip0dR18AslkMshk8tIZacFhRGzYGT/hki9SdmkaDtdgi6xX6oNPWLwPALDlCbon4mKtFxM5c0eInElG2dDzLtZCol/o99+70TF/CzLJWgoxzq0gAh3bnvCk0uZ+ztvSZ7u7nqPHPCeYI1wvXiw1vvR6vE9HzfFU9z2W5Oz9fCJpVRE6xuAAsWmps9H4i6Hxl9Yjj64GZPzycYfJd6ySfljG9lK9iCnO2aIIkHZivFCL9RueKkC+hxr/qL3cRQoB6VdtjomJGO9LVNx8XnbCRYbVAoldQprpPSvD9d38uyW10540nIMEQs7tYhua6892OxWcerf9z5F83l77MN4sW52v/+akPBw2cDNfp8/6qS6qYztzHgVkHt9zAiYiynXpIqHP1VjQ2YXc2EPPkS19xvk+lMeC/bjnHAPa/jUQ+70fIkSIEHMRk82Psk2huOyyyw4qG3/sscd8f99+++24/fbbCz7G4cJf+xryYOvHSHEWelEw4mXl1Jo9Z4aDk7bnc2oO9en+xOQbHQLxIcVMpiI3cxTJuigLg41VbFsWVxtvlwS/eU4qWFZ+rq4hC/6Gf+QjH8FXv/pV/Od//ic0TYPjOPjjH/+If/7nf8YnPvGJaT25j3zkI97/n3DCCTjxxBOxePFiPPbYY3jHO94ReL833XQTrr/++je8bmVNmExShBhnhVfviSPLsmObW2mJnPeVBBE+nUtP5Aug9VEWSHpPu1wgMTRYDafI365J2nMJ0XvrQspm/l56IDLZFnm7Nkj7tmpsgDPA4v4thCrdSP9zUi3VNT/2KkVzRUosmV2Rkbu6gR37yHzLYJl2gsnrgEaEvaySSP44vy9fVbuZncWTdE9iPQYsVkZJLXGEs84ZXZo++027hPx7pmzS97rcQUkVHdfeWUHXwD2pM9xqy67hwIbG8vd+2mdyPteSM/mODRgwk/l2bkDeKM4zWeO5X9qsyXZinOaU5gmy9OAWM7Ucf8YG39vIsH8ycyNiZiaGcqwyyMIj4pE+f6R3eJRu5PuXPQcA+F3lMt92Qtijvflac5GvZ7juXGrEMzX0977hCgSBg0mcJGdpVDIE0LOtFnpAN3JNLUEJlAaX22mKMsely9uVxm/brLaYTaYUpYI71OqmS5YPBx5b06rWo3xfb3DjJwBYPC941s5KZrCvwDGTzY+yzVzGX/sa8mDrR910YJjByE+uT+07Lj4zQWDWHKF+ZdMESWgEhVuvVrPuZIPf+0iRWsF4bkAtM57oDB7ksTPBxs7VNWTBd+vGG2/EF77wBbS2tsK2bRx33HGwbRvnn38+vva1r83EOXpYtGgRampqsH37drzjHe9AQ0MDenp6fNtYloWBgYFDOnVeddVVWLt2rff3yMgIWltbYaVNlDA5cnWuSWb5b7rJgjnAbZ7q/dnMohL6so7VSNE0/eMw6Rb3a09nruVNtoQELa8it9E/gsjuY9uX0q72k9F5LuGSKE1rsFhKIplYyRDrTGL7M0TWpBY63sWycalZlpZWxQ4a64cAAB3s/GXV8Cnz8z8yyAyaCbuYQxht9KV3uD95tlz3SLNkqnPs4q2xLLtpcS8AoD1OC6rETvrB8Rzgq7iWuz+KsX46btzIXzcAzK8n2dmup0nqKG2xpIZaWnNJC7Bsed64LdvAG/NnIDXZkRF+v8IvJxe3b3kOrErLczvPMun2nC35I0+1cl9wlrN7ogh+rqQuO1vhoLmJHNf79pE8UJzKG6oocv7o8Ap6QcoUpOWFBIZFfh+3kea2rCLlN3v9BH5xVR+2oHC4k0iA3Fk6UYYIESLEZJhsfpRt5jL+2teQB1s/ZlMR6AgmiZY1UVBYC4PL0JdX9Ssd+9WA/i8CW8FgDMgnQYIitlUtM5+pDR6ssEYVa/UDli0ITIVYqBYwRjFX15AFk+1oNIof/ehHuPrqq7F582aMjY3h5JNPxtKlS2fi/HzYt28f+vv70dhImeQzzjgDQ0NDePbZZ7FqFTnO/u53v4PjODj99NMPup9YLHbgnpaWhlQ993FmQia9quHma5ylBk6+ZOlOf4sIyRhLRjfeTdunWmgHDfP60Z1lFsty46TFrtFMYo1OIq/iQSBSF+kRLVliq9iFneBzlnZiJX75c/c4ZaXFjdzVOcvLmduJ/aVX15FU+b/2Edku2knnVfoW+kGSrH7/rkrf/RGJONiJPTqsIdMgtcR8OhydiHfSNl2VJCOXOudsmevbXmfTNd3SgFrp382BhRYi4j1jdO+FeDpMekV14MrvAAc6Yn060vW8zW7avxjdyTVk4n4peprrrBGTz4bGaTEbmk0HkH6F2UYi8AZLzqXtmz4m6gbwdfBp8a6jw7pnimdxoCBVx9lprutpiHLtpieR5xZlUlsu15rRvd7vrvSJl/vDrebGcsEi6XO1R2IIoGjeCIyiYL+wo4q9orWAPT0BNRMYANj2ipq0tXLRgNL4wcHC21hOhKvoFlyl4KbeNaTWwzcSVZNEbNkTvJ6UarYLHFNAn+25ir/2NeTB1o9uyoRb+JIaABBtGA80zju2Qj/5vQFVbgLl51nVU8NSO36mXi2zr6IqcBXJsmuoXbutIKgIetfm6hoysIZg3rx5BfdE3B9jY2O+3o+7du3CCy+8gKqqKlRVVeH666/Hhz70ITQ0NGDHjh244oorsGTJEqxZswYAsHz5cpx77rm49NJLsX79euRyOVx22WX4yEc+UrATOQDAdOHqQrbZIIy/R4uWdmHnTiJDtdyXMDtExl41b6KsdN8z9L44Y6eZeKVa+AvFMuWiSC4vWeZJcvsAk292J3SZsEsNsjheaUz0cyybhp6vV5YMt2QzY+xS3t1P5ymTktQcx/uYtPExHcfAk12LaVs2GBtfTAuthij9u6udzlP6gUvrL4f3GenKP1KxLn/2Xghx+hi6fzXlFFYbYqdsr+EVX6vF12i0R7w+lFIfYzIRr5tH937YoGuULL3Lp5FliZHUs6eaLejiOL+IiIPG7t+JLt6Ga7ojHHH1anLE4I0DIvFdeQlPrF9qtNlRvcT/GYjzuUzMIl0X91I9lyfqkhWPv0bnc2ozBUD+NLCI7geXOoifQKaW68K5LVukN+KpCqwmukaH5f1yrXs6Anw/AFiT1NtYs7TeZrqxceNGbNy4ET09PXAcvwzu7rvvPkJnFSJECBVMNj/KNiFm3xpSy+jQ9GAZ6sZKNRPEtBVcDlyVUCP6mqZGGEf2qmWW3bja8WO9at9HW+H43vo+IKSsNPDxk8FVCUFbf83VNeSUvqETJTOT4bbbbpvyts888wzOOuusNxznwgsvxB133IGXXnoJ9913H4aGhtDU1IRzzjkHX//6131RxZ/97Ge47LLL8I53vAO6ruNDH/oQvve97035HCYiUZ6GtoMi8V6WlbHvz80A17ZkLD8RHx5nEyqRc7PrtxBpaQclpNhp1bz6XJEPvbmRvKEf2nUSbVNBxCnDhhuSLfdqH0V2FHdgsfN1jMmiNkgEL8utyGIxbsE1wlJv/n6J1FrcGIs6dAxkSMbuch23nqLjSKBh/gKSfnd0NvrOR+ce5F4vcRdIS9uytP8azA76/BYsomt+wSUCb6ZFWk27sMo5ONCShcH3MNrHBJOl5tVxIuw7U0I8/fXowuCtsvzrUa4Fd8ZYTcDye/k84+xEL/uSzJiY06VaaPtcieO1BcslpW6e/2WZuMN1/J50Xwg1BxTEJd3JaR7J1pKm7z48vnsJAODKEx8GANw8xkZ8/PmJgsIYYrVDqQODz8PYR5+5TF8icw9aZjRXnSSnE9dffz1uuOEGnHrqqWhsbPT6bx/tGBssgp4OWCOmWDctXSKCoKxarW54JKeWlR9RlApiRE2mGalWczoWNVMQpIfValFVFA0AUNoSnMTYscJVHDPhRj4bMBfWkG6xBTcRTImxd1t9oHHesWPBs7NVi9XIdsRQbXStNlw1EZpTNSlTOH+7WtFJfUxtfjQVPvqgMvK5uoacEtl+/vnnfX8/99xzsCwLxx57LABg69atMAzDk+FMFW9729vgugd/2B5++OFJ91FVVXXANhJBkB6LQWvw19iKeVeuzEFkkB7s0SqaqD0HaibVkRF/mykhqi7LfkUC3lg0grYBippKUPDxvYt5H7Rt03FEave8RjK4/c3PosP5WuR4Oy3GDH7405zplEz2GS27AQC/7+aaX35d6tEtzv5axTqMxWP0Hmf4nRcpY5xmg6KuIVp4Sm10VpzQOZCQYbMuN+Ii0usPSsj1yw/Sc3s4qs0SeanDFim/xrJ3bTCCooU0KyRrOWDA2fhSbvQtUnrJosv9ynJLDDE7cyOAFfdL8o0RJsL82QupdpkgJNqYxHKGW4zI7DigcW9uQ6KjMk8I15d6dQ7EyHnYzFlERu5EXS/7Ls9PuoZ2Ul1GZOGVcZKzpllCLwEXaSMm5Nwudrx9ROq4c/tWMkny3NEDGnPMVQnQdGL9+vW499578fGPf/xIn0qIECGmEaGM/MCYC2tILepAiwYjbtWK7f2S6WjgsVUxNbK9o6dGafz+JrKFwq5XI8tGSo3tq/TpFpViUEj5YlDYCv5qdsCPba6uIadEtn//+997/3/bbbehtLQU9913HyorqW53cHAQF110Ed761rfOzFkeJpRXJjHGtYUxdhDPiYS4zII2zC7WNpPqYvqS1xQToRlyuZUV9z+WdlNCSKWeedPriwGWGUtd8LG1VBP9Ygkdv+d3RKzcBeyyzTW/8hhK3bGW0z0CFd9J2ySPoS+/Pkof75O7SX4svb09oryfsUNsABjmNg6nn0DSrBc2E9luaiUTjc6eCjoWy8iF8ImjuRBVO+Z6gYQMS6bFFM6JMXnlbHOcgxSZOt5HO9e4a3mTulExZmOptHzT/9I5HwC8GmWBtD+L9kq2V/qUu962BpNUqc/XLTa+k28F/3CK8Zz0L5e5QLdc2Hz9uu0vHUjsI+IscnuHe3Rn91Mq5KQGvy8CfREFOuxOIsYi98+ykmJxnI1c2H3ey5Y3s+yd6/jhAtEBlquDJVp8DfK8LW7sRRsKx1ydKKcT2WwWq1evPtKnUTASZWkYRcEi8dmMWna2pnI08NiSqKLjq6W2IMqk1K490TimNF4Vfe3lgcfqxWo117EKtax8Nqvgtpst/NxDsn1gzIU1pNEdgx4PpuRIl6o95xkFk7KEoSZFLk6ouXmPVKh1SyjqUJufxxvVyLokuwJBteuZYpcPLbggIvDYubqGLPiX6NZbb8Vvf/tbb5IEgMrKSnzjG9/AOeecgy9/+cvTeoKHE6Nj8bwJWrE/2+r2RpFjWfY7FhER/X079Tvu7q6gbTgzKplGi83DYm1s9CV9p2sdr62VtZSiiuVRmmwlI2uePkj/bqV952pFr8210ewubcddL8M+Nt/1bRPl9k/Hnkx1zS8OEjEV6bomkm/+xyqCJz/exjXk8oUqidCC1U3xtRX5ZfCiABCzscig7pFngdQkaymxFHf5fohcmyXZZdI2awK55S+gPsYEnBUA7z79FQDAfz9PP9LyucV7aWy6zt/jO9EW8eT1kvn3ep7zt0Gz/T2xJagiEmxP0RB1PTKfXUIBF5Nl2yk2VZP7KSUF+aw5vexyAMc1XMyvps98z+sl+esGYHFw58Feet6EMHvGHiwjl1py6C4yDX4CnqtmUs+KiL39+e9vIbAcHdohZKWWguR0ruCSSy7B/fffj6uvvvpIn0qIECGmEZPNj7LNXMZsXUNa5Rb0gDLyzGvBA1oAoCn0ik4sUwtG1harlekM1qgZQKZMtWAmFGvOpaQxCERdGhRucEEDAEBTiDMEdYGfqTXkD3/4Q9xyyy3o6urCypUr8f3vfx+nnXbaAbe99957cdFFF/lei8ViSKfVgl6HQsFke2RkBL29vW94vbe3F6OjwbMPRwPs8Qhc7q8d5ZZOmWaeiAzXyygOZilbKAZVqQr6wkivZTFIy1QxmRRXbmkxVZJDJsaZz24iZ71NNOFIL++VNZTFfLqPo345Olash527a6S/s+7VYFtMCuO7KbqaXkDnbnKKXTK5Bl+SLllpljib44BdxRlYS+TO9F4yR9/qkjqaWLO99OMgwQFxJRcCn6twPPduCTa4ml9qnSvL8fts8MZZ3xx/BkJ2YWle7bXIsoVoPrDjRDofJtAS0BDJt8PycpHO+wwlpG6eyb+4pKc5SKCxMkAy4VKT75RxqUHagM5Zea2b7rncW4vPV2q6jRHed2P+cwPyddeaDVjMwIX0J3ronIvZDfhdtS8DALYOUs22uMhLll/KFuQzAQBrAU0e2lCUr4WfzYA9El0cuqYm6M9WIRPlj370I/zkJz/B5s2bAQCrVq3CjTfeeNDtjzak02nceeedePTRR3HiiSciEvEvFgqpWTycyKYj0PVgv+7lZWoLsrgZPIS/q7ta6dhOv1rdsV6tlvkZ71HL/KhiyTGdgcdu36NWi5oaU1tISzlYEDipwjNmk82Pss1cxmxdQ0bLMtCLgpGnrKKjtqagINmdVJsfd3arycjNbjXGaDeoBQtUybZK0biTUrt2r1tSQJTuCj4/2plg1z0Ta8hf/OIXWLt2LdavX4/TTz8d69atw5o1a7BlyxbU1dUdcExZWRm2bMk3wJ1p75yCV9wf/OAHcdFFF+HWW2/1FrdPPfUUvvKVr+C8886b9hM8nIiWpYFubiUlPan3spv04jQMzhJ2JUkuLhGthmbKSHanadKRbKYp9d6sgBan7FjDKEb3W8D1JDm6xwTw6c1Uwy1S4VwpHSszjxZu0lrKiQC5WiKQcSa1mSrO3HKG+6TyfQCAZ6sX0Hntk97QbAwmBLbK8MY0lNGP3vYKOq8Olo8va+2i100i29JmTK5ZpPP6mIZcjhdKMhnxtXkZYs7YphfSNUVk0t2vGCTeGfF6gks2WiJ6taW0iN9TSgEQp4Rr21mmLedlV0wIeHBmWHqWS723lAy4YnAnJFYy7PJtyYkJmu4FI6RG2mU30ijX93t16ELymR9ny/1O8LEuE/ue4hZDPP8ZGdr3EBvw7UjTpCFKAHGCj/RLTTlfR7mbvwY2GJJ5RNrP6X3BJvmZkAAVOlE+9thj+OhHP4rVq1cjHo/j5ptvxjnnnINXXnkFzc1qbZoOB1566SWcdNJJAOAFDAR/LWZpIUKEeCNCGfnkmK1rSNsy4AYsOTEq1AijrkAYt/XUKh27sXpYaXzbkBrhjCbUZPC5gIkHDwr3PqLoRq4PKta7K9x6O+Blz8Qa8rbbbsOll17qZavXr1+PDRs24O6778aVV155wDGapqGhIXhryEJR8FO2fv16/PM//zPOP/985HJsjmWa+NSnPoVbbrll2k/wcMLKmgC3mzL7xfCLSVTK9IwcxI1cSGP/MGUevJpoUU/LM2PlTdYAwLB1bxutnohm1GACxc7g0r5LDMfE5drO+Ymfbbpee6nSPSwnZvNc2Xacv1Fx6SvN5FZIsLweHwDivZRp3xWp5mui81l0bAcAYO8gSb9sli3pTCYtzkbHOUudK3PgsKkac1sv42qx1Lu0iojyaC8Req8/OBN+cyBfkxzrZEIptdgcuOiupIuNdkV87+tCqDmTqzHxtxMu4uxoLtlw+dxyXFsufb+9scK9ObMd7zDz18jxBG0/kzyRcYvM3puQuce5/CkKCs0GjnvbNgDACy9Tjb3LbcGybB3+3goymfnv3Gl8P/m8a8Tojfttm3l3eGktIecpmfdUebCCm6NhovzZz37m+/uuu+7Cf//3f2Pjxo34xCc+UfDxDzcm1i/+NcEei8C1g2UaB0Yq1A7eMhR8bIeCCwwAt1jRbVeRXC1a2qU0ftcrwdr8eeOfDx7A0hW7uGh1aqoAOxY8c+NGCl/Eh2R7cszWNaQzGAUCGpXJWjIotPHg41fwuiMo9o4EK0kTREbUJolsVI2sG0Vqhc9OTkE9o6iAN9SmR8SGggcK7GywsdO9hsxms3j22Wdx1VVXea/puo6zzz4bmzZtOui4sbExzJ8/H47j4JRTTsGNN96IFStWFHTsQlAw2S4qKsK//uu/4pZbbsGOHTsAAIsXL0Zx8ZGVuk0HysvHMdJDWWs7ziQ7nieAqYXEVKpY0mhxHazWTalrl02wdHa3ljpmIY8iaR4fTiDB9dSpYq75rWCSze7Wbz/udQDA715cTvtit2uNib7IzePtES/rPdbChLxEmizT8WsiZLAjmWxpLSVZX69fngMkW/lcmeDF+Bq2d1D0c2kzydt35Og+WUyopQWB1GmbIzpcJupSPy1kVbK7Fy+lL8L39pxL58EBBp3HSZ9tZPW8FJ+z8BrL6eMRej3L5DoqAREOUjgRzXeN8T7dI+RCjNPz6HNN7OFgBGeOs6xIkM8kwUEJqQt34i7MMb/0W6T8UistsnbX5HvAigl5NkRVoNkadg1SgEPk7NI2rKSIZtQnxpbRtiI5k7lOJOv8fOlpHVG5tlapGWAHdg4KGE6wHxjL0YEp1NuMjPjdVWOxmK/diiDoRDkR4+PjyOVyqKqqmtL2RxP27SPVSUtLyxE+kxAhQqhisvnR22YOY7auIYuax2AUBcuyjg2otQd0aoIHBOcXDSgdu31Mrd5cta2ykVBw+QJgpxUz2+ng32dvTRx0vFoc2VPfBjq2HmzsdK8h+/r6YNs26uv9JUv19fV4/fXXD3iMY489FnfffTdOPPFEDA8P4zvf+Q5Wr16NV155ZcbWYoGfsuLiYpx44onTeS5HHI6je9lojyTxTODE8zXIktmWvsYiUZYa3+iQn1jpSSbSbCigjZtILSISFGUnw2L+u5+J+t4kRQvNIf9HJMZaelzIUsQz8HLG/FlUnSXE92x7M401/Nlor544I9lyDblKusaTF+0FADw/TvXB0Si9PpbltmfSe7pdWpAJGeZ99hpe1C5b4fqPxyT/v9pO8d2vTCn3C+dARDrKhL/HQG4ZGcmZ27mnORPR9y4gGe4vtrxl4qV7+5SskqgKUo0W4t37uXhz2zLpra5L2zfxStDFbM0v39YzGqwi/4+cOe6vg0dCpOn8jHCgQ7L80uPRdIHyBB1wTzNvu5e2HR2gzP+OOu6Bzs9VjmvHDc5ii2GFOa7lST0bttgs1ZIMvFESjGy7rgb3EJFHea+1tdX3+rXXXovrrrvuDdsHmSj3x1e/+lU0NTXh7LPPntL2RxqO4+Ab3/gGbr31VoyNUSCstLQUX/7yl/Ev//Iv0PWjczFulOSgFwVcGXWp1T0PdAVf0BlNaqYnRntCabyrUDcMALsGGpXGl8xXk3mmX60IPniRWq2+3aHYo7xSTWJaKCabH2WbELNvDZkej0JHsHlOi6ipZ3QjOGkrMdXSo62lQ0rju2OKNd9taoxT9dsYVWhdptKjG8h7KgVFWiE/YQd8bKZ7DRkEZ5xxBs444wzv79WrV2P58uX4t3/7N3z961+flmPsj4LJdjKZxLe+9S1s3LgRPT09cBz/JLFz585pO7nDjXTWzNfpitEX177Gq1OwdxDp0epYyjxE25StoJrtoWeIDEmmNLZPNMZMbvn5cooc7z3JXlZyr8NuNl3b8RpJ/2QOFUMwkzOW5m6aYOyY6xFeIVuRgXwLKABYXEVtu17k6GmE63UdrgmWjLeZNLyAwgs7qQd2rI8z1gk637pGquXuzhE5EiKd7xfIWeli18vkJ7g1Q84WEks3ovsl2ofNRl9iVCa10yLvdqIubG6bZrMxnMZk8X93H0+HFeduJq8xVgJkmWSLrNw1tbyxmBi1Sdsy7z7S6xl2T5f7qI+LuoAJazbvmC511pJJlmuRz8vJmb7zkH1rLEHSRjXs2cc/OpxJ1zmo09JIkef+DEX+pf+31I5LsAX8g230GEgxYUeSe7BzwMdmgl5fPoYg31QH2iHNLeS9trY2lJWVea8fKCI5HfjWt76Fn//853jssccQjyuGeQ8T/uVf/gU//vGP8a1vfQtnnnkmAOAPf/gDrrvuOqTTaXzzm988wmcYIkSIIJhsfpRt5jJm7RpScwPX79bVqBnDjWeD65FfHFLL5G3tVav5Vu1zrdr+yqpUC3TkFBizqSD/B/LJk6DQFWKRbsCx072GrKmpgWEY6O7u9r3e3d095ZrsSCSCk08+Gdu3b5/S9kFQMNm+5JJL8Pjjj+PjH/84GhsbZ5WhT2YggaJBv0u0OHgvXNaPLW1EdjJMnCQ7bWSIvEq2VTLcWTYqi0iWlblArCqFTJTdq7k2/IUXqE5XE6l3Oe3bkUwys27JPEeZBGt23nwrsZsdzvlLkGI38iKT/hV5u1ybXSqto8QgTPdMyiJLScKRjbOLNfecfnEvTcyiIBHyprGUx+AMllVqe2R2fJGfgFpcU16ziEjk4CtEMvUxyfbu13ZNAyJsgmHuYKf1JXS8+ZUU6NiSqaDz4USIzuppycDbpjDmPFkWEzVRHHgkmx3opc2Yw8ReXMjNvnxdurThktp7bYAzyBxZkXpqIezRvTy2ngM2LBnXnLzKQSTv4mYvqIhSQCbC5msiAZL6eauESxNa8r8+4gFgc4ZH/s7awTKU9iRtG2x+r6yszDdRHgwqE+V3vvMdfOtb3/Jcvf9acN999+Guu+7C+973Pu+1E088Ec3Nzfj85z9/1JLthuphmMXBssQdXWqu1A0twaWOoym1IEyyWK0mUC9Vy6421aplpoN+1wVjpcEXo3FTbSEbma9IQroVpMkB3Mgnmx9lm7mM2bqGtJMRuAGLcHsG1RzBoeBmvv0IP49BW0gJ7Hq1+TW2Wy0RkG4IzvY1xblZs//6vjvTvYaMRqNYtWoVNm7ciA984AMASD24ceNGXHbZZVM7J9vGyy+/jHe9611T2j4ICibbv/nNb7BhwwYvIzOboGf0fMsolgdLK6veZAkcroU2dH6PyZhVxuSHo1TiTB3r8dcxy9/lx6TQ00mLAKmvPnnFLgDA8zsoo1xTSfK7/kEmbzyZyj7EZMxOOIj00XmU7aHjdp/FjtNC+lkKLzXKXp2IJrJ2fj+pIbuSjpvLSRaXNi3j1j0WTw7pLC1gxQnbjkudMZPIfsM7R40z2jabqBmcef/84scBADf/5e/omLyoc6P+TLdV4sAdoONZ3Mcbw/Sjtm+4nI9LL0smeXw+TcCScRcCGxnSvCCIfLaukFXOEEvtttToC7kW6bdMrsa47rVeMNjgzua6c8k+ew7r0sWMAx06lwdI73anyM7LwVkRUNRGJ922m4IR/+d0iro9yQEXq1zM3zTfMaO9+Xsvz7H0ZZda8Z50sB/36Ta3CDpRfvvb38Y3v/lNPPzwwzj11FMLOuaRxsDAAJYtW/aG15ctW4aBAbX6uRAhQhw5hAZpk2O2riHL64LXbA8PqtWrawPBM9sLqtR+c3KKhHFrn2KpSFYtWKAqxVaBqGODQrVmu7jjr98gDQDWrl2LCy+8EKeeeipOO+00rFu3Dslk0jPd/cQnPoHm5mbcdNNNAIAbbrgBb37zm7FkyRIMDQ3hlltuwZ49e3DJJZcEuqapoGCyXVlZ+VdpRDQVuOU5RPbRF99iuXKEJ7G+9nIk2GnbbBZpMo3LjHNGsoVf4GiTyJXjXf7JqH+oxDMD2x/RfUTO+tIV9DfLlLNs2iXEXfapObpHoPpP4J0I6eLa52NKyNTsuYolvE8xDeP2VOP5DLLFbRCOmUcOuHtfJum8TKjJMfp2u5yBFzMvz11dZC1aXkZuDvNxmGTLNje9SMZoDhuW2ZVEYoUY5uo5Iz5uenXUnjN4Nd3rsjhllAfFDZ3l+VbW3/JLstRWsev1o44wed5/rpbabYkWi1menANiLNfum/C57qIfy3jGT8hzfE1xdh0XczgxBbGlP6ateT3OtbS/H/mixZT1XRjj3qQcjHD5OYv2+RUNuVLXU7NFyun+5AwuHWDnTzdgxmmq9TaFoNCJ8uabb8Y111yD+++/HwsWLEBXFz2rJSUlKCkpCXBVhxcrV67ED37wA3zve9/zvf6DH/wAK1euPEJnNTna26ugJwL+upceeL6bKqoT44HHdveoGfjMX9KjNH7PHjWZpbRdDIxBtcy8q2BAlFJcSOvjagtphVJWT/lUCMKa7ckxW9eQI/vKAs+PB1sPThUqrv1lETVPi6c75iuNl/VhUFh1am3TrCa1mnVdDz7JpOrVrl3WsEGh0mI86NiZWEN++MMfRm9vL6655hp0dXXhpJNOwkMPPeR5Ae3du9fnhTM4OIhLL70UXV1dqKysxKpVq/CnP/0Jxx13XOEXNEUUTLa//vWv45prrsF9992HoiLFiNRRBt10vEylVz8s9cylOaQWsNnVOE2oDkfEpM+f3U1yFI948r8i2xYyFIvnYG5hB3NeDcw7heTQL7OipXYe/d2r7ddWQYg8n5cxriHNcvGyF2lRlR2nnUg/5iLu9ySmYZJ9llpfm/1/jIwJl7PcNXHKZG/lWvEKzua7Tt4cDADSjZzJjUk2mqXZxbZnICftCewYj2V+mR2k+2jwPZD2XWLuJeZmbtRBhPeV5ayuvHdiVTsAYM9uWtBKJj7OCgBuTe21wNItzWv5ZYnbuBjXSQ00y8VFXq9xvbMoxBI7OfM9L+cFYMQ8LVchcnXOeA8f+Csm/cgjHVy7b7qwF9PnJC3b0uwwumsfXVtffalvH4k9HOThQ8hnoeU0zwQPu+kiJQggKDp2DPsOeGaHhjtJVPJwTJR33HEHstks/u7v/s63n+k00JhJfPvb38a73/1uPProo55Jx6ZNm9DW1oYHH3zwCJ9diBAhgmKy+VG2mcuYrWtI13C99VyhkBK/oHDiwYNSzYkhpWNDjWtjU3KJ0vhIl1owMVerJkN3reD3PqoWJ0BcLQ6MdJWCG3km2NiZWEMCwGWXXXZQNeRjjz3m+/v222/H7bffHug4QVHwN/zWW2/Fjh07UF9fjwULFiAS8ctXnnvuuWk7ucMNx9HyBI+JVoJrbDPlGsBEc0VDJwDg2T6qs872MnGWLKr0yuZnZn+SGzFs5LiGONtEX/SuNLfS4nZX/VtZ5ssO3WLAJf2mNU5MppotLzUrZFDk2Cinfe0aJxmyyMetKqnx5lZXTKhzpa5nPCZw2SCuKEpjrLIUnfcujuCSmTKyC3jC4ms3+yIeyc40cq3zoLi1040pPoFqEQd7iERqXL/u1ZJLHVLEQZZ7YEtWWTCUo0iBOL575833KzrAnwWTXzvmekoAqQk3+Zw9czPelwRcRMIvQQIJniTaIp7UXBuT3mL+Xt2SWbdLWfLNwRJP7cC/zdkFWWj9HGnhzLW4sttsuBfh6I30gPdc3uXz3Jn/0Unx5yFt1CQIIbL1zFiwCLyN/HfkoO8HQCET5e7duwMd42jB3/zN32Dr1q344Q9/6Dmun3feefj85z+Ppia1nsgziUhRcDdyR9HR+5XXWyff6CCIDKllD9q71dzAy44ZUho/0lU6+UaHQO2SfqXxUjZ1JJDMqC2kTYVzt8cLz3hNNj9628xhzNo1pIt8O84C4UQV3ciLgxPGHWNqbuCDGbWAiaFw7gCg3G9ARf4CINoV/PeluF3p0GCrosAobVOYH7PBxs7UGvJoR8FkW+oqZyOMzphXvyF10Olazm5qQLSHXhtbQqQoxn+3vqUNALB9Oxk6OcWidZYsNO0zzg7ZQ/0lkOStEPjNsqBjYudUiEZdXK25fpkl11aZyNyNfLsySfpKoI333ZshaW1khAmfRT9uqfl+2bueA6xxuqYtA5QSFuLZO0z7KGODpIwYtjF5wyhLmbkO2qrNwWYSW7SL3htnApgsohNsYgI/PCJO3XwdkknmemN9KILIqEjz/W7xEU2c1NnlWz4v6USW9LuF58ptRIaFXHPrr17OwA/4yb454A9iSB20HDtT6SDC/b5FiqSz07u4juu8b1FMRNmAL1OTVybIsWWMw/JFTwFg0fkeF2/33Scx5BNXclE7RMZ0aFmR3fP+OQrJmyISC/YTNRMSoLmEXC6Hc889F+vXrz9qjdBChAgRDKGMfHLM2jWkhsB9pFRdpZ1McMIXNdQk7Ko12/awWkBNEhxBIaWbQZGtVjm+2r0z1TorwlUwJww6dq6uIQsm29dee+1MnMdRAacxDUfnPshcX+xyptdNmZ55WlmUCKf0Yd7Tw/VHEb/5ldcwXjo1leZrgcWkK9pF25a3UsbY2UP1hdoplPW1N9PfGcm6jvu/nJqTJ1JCCsU1G1z7Ky7WktkWeTuY3Elkz0hr0Lgvc1mcLk5yIrkU7XyYfxRsJp7StkGk33ZxPistdUgWk+totxBP2qQsRsdoZ5O4bJHUILNjtpjVJRxkODEmTtwSFHm+p5nPg0l+ib+nt13mD3wYE2oAJdMuigMpCxATOiGvkoW22MNEMuKZOgcQkzUOUsg04ZhyfyTAIXXy9L5I10XC70ZcuOxornewGRwHjB2+5/02BTykh7cEI+R+STDASrgwudY/J4oA6dfOsRF7e7BsmeNq0KbZ3GIuIRKJ4KWXXjrSpxEIuaEY9Eww51ajUa0urqQo+PgxV7GOX9E/RzUzXdqg5sjd261Ws65Hgy8my0pTSsce7VM0jkoGl+c6qcJrWSebH2WbuYzZuobUixWUP8ngBmcA8n1lgxxb8XnUVQp/AegBvBEmwlHMTIsfUlCoqArspBrZ1tROHTmFn0Y7oAR+rq4h1QpFZhmcjAmTnaskexjplsxlFgYTqkomr0IarV6W5LLk22HpsMV1vE6Kxkm2PFKahbuHjdgW0A96ZZwWJdIiO91F3wJX+jEnxcyMJyZ+HrPVtietrvxLxPdehCXUu0dYki6l0OK/xQ+1SNMjSSA9RvsY4nY50jqrVXo9j9F5S/9x7Ef+5djRHhPZWn/bK4kAVrxCx+teTtfoSfWr/VlqcFZYs/PBBjF1c5jIn9v6GgDgV8+/ha6lj+udxZOIz1/KAuwyGxj2y8Pd/ZzMRfYuyJVyhjsmruVMynsNpLkMQC9iqTw/C1IeYBdLKpnrxMvZnG3Af9/Mfh0p/qGW58fV+Tz5djzQczL9j8xF0rJtP1dyq9zO9wyXtkMcRJLgSLY82CztuvTfod4PcWh87GMf8/pshwgRYvZgsvlRtgkx+6D1xaDFgwUjIzk1giGdVIJA1rNBEdXVGF93k1ow0rEV3cj71Vp/GfuCW4IXt6l97pnKybc5FEyFWKgWkGzP1TXklMh2VVUVtm7dipqaGlRWVh6yL+Jfc+saPWbBGPBniT2MmB7J6k5RfbXUAXvZXZcGxfrpb5F8R6VxPc8JlqvBYpdqcERzMC0pTvqnpJn6XI92lvrHSl041xMn9pleltyOM+mS/tB8DWmL20yVsckZE+UY93X2MqUGPBl7xODJmzOwx1dRnfofUwt9t0Ucz71WZPxs5Coc7xylJVqWe0uPLKF9v72OZNG/L6dggGR7c+X8b22+N7QZ87fUEuwep7EZDkqI1F+Crdq4mJ6JDbjm3ZcYS9OlNNzLAvNgXeRJGt/Pcr73Ymbi5j8H6aUrZmUGZ81Fcu5EpDc2vZ8R53qO6uZqXYDdzqVkQGrbzSUUkFlWSq7kz5Yt4BNmMzqu9zLlcy+aYDLHWXKpLZeLrSwfDmSQ5kzSI9GZ4z1kpwLLsnD33Xfj0UcfxapVq1Bc7M/e3XbbbUfozA4NPadDN4J9vo6iI/Z4j8KCKK5WD1nZMqw03lL8TqjUHQNQbo2jxYIvpod6FVUFqtNJhYIDUazwsZPNj7LNXMNcWEPaFRbcRLCey87+SYsCYYwFf6b6M2rqkfYxNeVMdkxRRq7gBg6Qaa4SFIZ7SaEjhEz54TdIm6tryCmR7dtvvx2lpUT61q1bN5Pnc0RhRm3kKqS1FpM2njutcheI0R9FJv0Ii5zYZhmyy5ntDGdf4930b2o+u4FzlrymchTdfWRKoVXRe6tqqO77wXKqlc6MJHgfXDsuvZ33c61M19teXW5xFy3KUg1MIllmvLqBenj/f3soDBbnPtIySVjcNiK+O4ZYP71YfjwRvG4mnjtG6HzFLCfGraxEzi1KACfKtcrjmidb93pcc9reZJK7nfcp5NZlcpuT1mVdE4IBe+l+2BW2b1/HlhABfWaA+hZ72XSRjXO/8Hh7PusvLdkkGOLVsrOqIVfNwQfO8jvcZkzOU8xM0gtz0Lnft8U16+Jzsr9s3GtZxpzB5PZmFgcUYm1R1JxOLaw6dtAMbDP5Tg3TtbdLO7gu/72X51Bqvo0O0zuu3kJFPW437UMUOuX1wdp9zFUJ0HRi8+bNOOWUUwAAW7du9b13qEVoiBAhjm6EMvIDYy6sIbVxA5objDQbSTWCYVUHI/kA8M6azUrH3ltWrTT+5yOrlMZLV5ugcKNqZN1RIOsJtTiuZ5QceLyCKMENOHauriGnRLYvvPDCA/7/bEN2MA6dv7dCyJwScR2DR+A6khTJk4ywO4/SlXFu55Vmcp1qZiI6IRMKAP0v1sFLEHHm8bfRZQc8p1yJ9LPm7HSpGIAxsUrpHtmSGmedA/Ixzrr2sUGaSKrTzUzwmLSBt4sOA9kKemlHFxE+k3s4Z+fTNgsqKOr8QjVtKPXMUo8u2V8nrXsuwKlmfyutUjZME/mR9MwWgzIhjUKczUHTq6sG94d2TNr3a2NkSif3wOWMslcTXcnZcVYdWOWWR7zlPlgc3YtxYEN6dacXchBiDzHkdAsHTfr5msu1vMEZ9wQHlwpIoEFUDp4TPAdAvIwNZ7btuIvOXn+EWFq31VST5fuyYiLjf85QQ/UcP6PieC79yV0t72qvdxLJloCMy1m+ruFg0q25KgGaTvz+978/0qcQCGZDEkbAfrCZPjU38tKFI4HHZl5U09oNGmVK4xta1TJ1/cNqmaeVy/coje9KBpd5jgaU1QrGexVrtseDV8pp6cJXsqGM/MCYC2tItzh4ZhtHMLu7Q/qjBsRT/QuUxmfHFevVFZ3cXUXlj6w1g8AqUiOW8X61ySQyFnx8UDfyubqGnJ35+hAhQswIaKLUDvHfkT7DuYf29nZ87GMfQ3V1NRKJBE444QQ888wz3vuu6+Kaa65BY2MjEokEzj77bGzbtu0InnGIELMTk8+P4RwZIkSIuYu5uoYMDdImQEvYXsskz9GbpbxI2F6Gc/HxfQCAPbXcHisr2V2O9MjDwv9Gh/2mZpbpwomIAzaNKUtQFnXYoSx0UQn9Pc7y5Aw7wkoNsMhHrFLH6/UVH6IXk01+KVPnOGVm4h3+CGK6nqXp3CM6Ve9651haQtn6JCjzvq+XskO5Kq5R5jr1XBln96UsfZgzy6brZaOl17WVYHMwjqbVJihju9XhlmlimM33xOB9WdW5fC9EduYWT47m+BAA4Kl66fUl29E/iV0UMU4tztcsS8svMYazOOkmn4nLyRh9kO6XpyZgZ1ub5efmmI5cA0vMR+g4koCX3urpeXJcbsXFWft4p5QYcPuxMQ1WhD9jcWPnzHV/Pz0TlYtJEp5u9F+r9NeWWner1PaM/eT8opzNl57iKTdYpnGuSoCmE2edddYh5eK/+93vpryvwcFBnHnmmTjrrLPwm9/8BrW1tdi2bRsqK/PZ3G9/+9v43ve+h/vuuw8LFy7E1VdfjTVr1uDVV19FPK4mwQsRIkQeoYx8DsPVJu2xftChaiXbefXkEUDMCC5hB4BokVqn7GhU7fhj3Wq+EqKqDAJdwVICAKyE2lwSSSow24CHnqtryJBsT4CbMhBhJ2yjlwkMS7MjdeOwDXrN8Rpbs2ybpda2OEIyYffqrVlWHmuj8XZTBmY7MTqH9x81iWhJDcWCKpIebnuViLJXiyzEXsy8Io7X9WG8xk/wpAf0xa1/BAB8rf5DAIBEB52XkGCvPZWd7wk+PMjyPZY9v3k+SRGf72ihfXPdtcijxcNHXK7jHRGk57MMewtdqwQKUmwKIb28xehLjNTkBytXR5NwfF/Uk3zLxcoUkTBYLs3k32uHxVLvdP2EMgCAyLqYpzFxd9gAKMqyd6tUSDd/Nlx7L27kcr+ylY4nA5dHQgIG0rpSPoNcPRuosVrMiYkrOZcHFLuwxulNEV6Kg3qcf4zGbCJGUt8lz1u6SerY6XVDM2BIv3Mm1157CzE7Gg82yc7VHonTiZNOOsn3dy6XwwsvvIDNmzcXLLG8+eab0drainvuucd7beHCvImh67pYt24dvva1r+H9738/AOAnP/kJ6uvr8etf/xof+chHpnys7GACejoYOdcCys8F5YlgHgMAMHZy/+QbHQJaRk3i2Tuo5rbbWjuoNF4VPduD12RWLBhSOnbAacqDWxN8NeumCh8b9tmeu9BHTei5YEtqQ5F05YqCf1HGbLVSj6qYmpv5lqxapKGyVO34qTK1m5+LBKdRiU613xYjozZBRkeDS/CtXFAZ+dxcQ4ZkewKilWlkE7SYNEeZeHE9sTnhARjN0eSkcdY7sZjqCZP7aFEV4RZSUm+tjbIztXTCyhieuZXGJHFknI4r2eBXdlD/6ARHzaTOOFOfJ9kAmXJIP+vKrXSAdC2dX44dwr/x0rv4wPD9K47VeiZPnG3OKn9k5dMAgP945nQ6Dya1GpuEiembZLKFSEf687Xl+pA/k56pofM0MnRvl1dzDfJL7EYuvFVal3ENcrrB8npiW9w3226g4xdJaJDHxjmQIMcy2Y08x1lgPa177cy8enjuqy2tx6ROX4iwGKnJZ5OtZDf3PgNOjE62Yt4QAGDIrqBrMfmesuu82S+ZZb+pnsCJul6QRj4XafOWHqbP8386TqT3i/wKikQ7BwP422wnHM+ITefnRwIJTpT+nXfK7kBu5HDzxz3o+yEOidtvv/2Ar1933XUYGxsraF//8z//gzVr1uDv//7v8fjjj6O5uRmf//zncemllwIAdu3aha6uLpx99tnemPLycpx++unYtGlTQWQ7RIgQk2Cy+RFTeD/EXyWcmBO480EuotjrOqWQXVXskx3T1TLLsYRaZrt3a43SeDHIDYqyjuBjNUXNtKP43Iw2B6eAdjbg2Dm6hgzJ9gRkh+KIcpTNZiIm7bEStaMYKqfXGuKjAPJkKMsPXXSQpcJsXua12mIynIpy5rHIgsMkW0hqUYwmnBQTrU+96Q8AgJ/tfTuAvFlWtF/K7JmYRQFpM5hs8n/xZA5c2UQttl58hUzYpD2VHFsy4SVborAX0P8/sH0lAMBk8lwTIxJwXD0R5Bf2LKHjM/mVn5goZ/Mjo7pnIJetEOM2bmVFamhYjlhm0z8y54sjvAQ8IkOGR051vucRJsjjJ0V5W7+8HrzrXLXfnRwaEOOsd5Y/T8nOe0RYXMnZKVwkWtLb28tGl7jexDC0uwIAEO+lsRI4cBKG77wcYz+SHcnfGzPlHyuS81glSfpLoqQUSLD8PTWPzm+8hVuScZbdyGowJgRQACDd4G+dtu+38xEIk2VuZmlU8nDgYx/7GE477TR85zvfmfKYnTt34o477sDatWvxf//v/8XTTz+NL37xi4hGo7jwwgvR1UXf1/r6et+4+vp67739kclkkMlkvL9HRiiYuGRxJ8ziYFmQsZxaBD9mBl/Q7dumZgDUtKRXaXxXv1prnN076iff6BBoWtCnNB4VwRfDwzvVzOkUu/rAVZFZOgHGTiGzHc6RsxQxO68cKxCq2TxbIbP95pIdSsd+fjzgWoKRGlErZWo4Vm1+7t2s9vuQrg3+2VW/oqb4Gm1RUwUk+oNntu2Ame25uoYsmGwnk0l861vfwsaNG9HT0wPH8d/wnTt3TtvJHW5EK9JAD8mnhdRKT+aiaA5DQuCYDYms2N1LYyKW5ntd5L5WiZ8MOU7Uy64K35xfTrLxfqsKAPDLnSfTG5Ll5RrgbCVntKW11bjm9VjUbM46Sw9nPkYH90GUbK+Qf3EaFyLqTHgaasuIXO8rJYf1COvb0zZL5hP+z10yz0I+c6WO952JDUrGFr5rOrl8LwDgucxyOr9mIvqJ3Vxn3SK1yQ40lkMLURYSKZntrNRs8wIp0c4SflmnSil3woElde8TznXifZET19IiH+c+1pzFFyKr2UC2jsaU1dH9Gk9VAMgrImQf4lou2XMh9lLvYxW70NISpPEHG2yOpqQsdhvnZyaxhyXqJVL/n6+fTzf5ZffiZp/h800uy5OpQuA42iEXoU6QBWoIAMCmTZsKrqF2HAennnoqbrzxRgDAySefjM2bN2P9+vWBXX9vuukmXH/99YHGhggxlzHZ/OhtM4cxa9eQU/jsDwZZJwSFWRW8zObZ5AKlYzfH1MpcSirVZOB9imU6Km7igFpm3FH72GGm1M7dyAUf7wYcO1fXkAWT7UsuuQSPP/44Pv7xj6OxsXFW9YXNDsVhcB2sq3MGlTOmI+mYR57nx4kYO9xXu7WFagI7nyejL4szsyU76faOx5gkMfl1ow6MYSZy3KKpLk5kTQhgapyYqSm10GJ0xcZXUsPtFAHmEB0nW8YEjkmatNA6aSUJhnv+3AgAyHB21d0vbeDE8jLxoRQt+mOcQf5j7yL6W8wwOPsqmewsE2WTa92dmAuXWzJofRwoYLIPjfbZlq7ynYfG0vh0LY+TTPhgXo4uwQaHAxg1kVHfNQvhlMCB3HMhm46ZN4ETIwaXZeNxrqkXYzLUMCEdptdlUk2xwZo5ZHr7EimWPC8RbuUhEnQ5DyHXnkFeIv8ZuJ75HUu/l1BG0XHo/n2g8UUAwHeLqcRACLt8AyW7bxe5AAd+pFY2Pc/fcsxoD5hpnMwEZpZGJacT5513nu9v13XR2dmJZ555BldffXVB+2psbMRxxx3ne2358uX47//+bwBAQwPNSd3d3WhsbPS26e7ufkPtuOCqq67C2rVrvb9HRkbQ2tqKvU+3QA9oqNZyenugcYLtWxon3+hgUGwNMzBWpDS+qDj4QhgANMXxY2m1msya6tHAY3tttbZpmmJqO6ogUbURoJZzKiZZAebIH/7wh7jlllvQ1dWFlStX4vvf/z5OO+20g27/n//5n7j66quxe/duLF26FDfffDPe9a53FXzcmcBsXUNqYyY0O2DNtoLJFgDotYoNlxXQnlFTr2SDypEZsbiaDD1ZrsZ4R5arjFe7djOtNj+qLNcCj52ja8iCP+nf/OY32LBhA84888yZOJ8jisigAaeaCQsTMCfOUuuuUu9mPd67FAAQ20eEpWOQ0qcuS50jg0z8+DsomVGPRJVlkGWzK3BE88l9RGYdXhiaO8kt2qvt5jpnz7WS92WM6Z5hV2TM34M7x2ZlQ7kEnwd/MfkfqS03OYhgpAGZtirYkKiNna/Lo/z3SDmfjz9brY2xC7ku5mKOpwEUdYCcV1EH/bupi4ycdH7dTbEEnUmkxWvcXG3OCzLI/o0EXdtLY610HqVsMCd1z95946w//xblyh3vur06706uDZ+XdywHAI0dxoXNphax8Rz3J89V2F7GfTzNRJ23Eem5yYZ7cu1Wy4EXcPG9Ue/aLCb70mO2pJ4CMY8P0HNns1O+kZWacnZv59IEc0z3pOj6CGfHeRt5RtGQPOB5TIa52iNxOlFe7pcV67qOY489FjfccAPOOeecgvZ15plnYsuWLb7Xtm7divnzSdq3cOFCNDQ0YOPGjR65HhkZwVNPPYXPfe5zB9xnLBZDLKZG0EKEmIuYiT7bv/jFL7B27VqsX78ep59+OtatW4c1a9Zgy5YtqKt7owT2T3/6Ez760Y/ipptuwnve8x7cf//9+MAHPoDnnnsOxx9/fGEHnwHM1jWkmdagB7RothrUTLo0hWxgylYr8dk+qlYzrbpmSI0rmowFlP4L9O7gx4+OqF28Yrm81yEoCGwj2Ni5uoYsmGxXVlaiqqpqJs7liEOz86TM5Myz+G/lFqXhcvZU289QovxYynQP7qYIX06IH6dXhWjJPJzrKgKEgMdp2/mVJMV5tY0kMSKTdvb7hMwxkR+zTLrO8tpMCXRmzBq7fJ9SRnLtJ2uPAZA3HhPinmECqO2JwmXZ8UCyiO8J/b1rkD7zkX6WzDOJFFJrjvlr0KHlpdOeozufp8Nz05vq6bw2mtW+Y0mQQMxGzN6IlyGOSVssfgRHLFYAsIxdTMws/gxEui/12ca47tXSS123zV2w4nvpxNILKKMt8qLYvgifHzucN1j5axTpd4ojClIqwEETi7PSLh8zvocd6TnwYXKgJFPlALV0XG2QM+l1VKudiNIH+nd1zwIAXvwTkW4xtnOrue57mE4h05r1AiquqBjEIZ89CCLLAmbL5qi5xXRionO4Kr70pS9h9erVuPHGG/EP//AP+Mtf/oI777wTd955JwBA0zRcfvnl+MY3voGlS5d6rb+amprwgQ98oKBjFe8DjIDrip1VDcEGMi59y+OBx64pfVnp2A8Mr1IaL+qboPjFXrXjJx9Vq/kej0y+zcEQC9Zh0INrqE0o2YrgJy++KgVhBgzSbrvtNlx66aW46KKLAADr16/Hhg0bcPfdd+PKK698w/bf/e53ce655+IrX/kKAODrX/86HnnkEfzgBz/A+vXrCzv4DGC2riEVOn8hElRpJuOXB1e/OEF7ODGKTLVAgSj3gkJV/eIMqAWWjYXBEhcAkEyqtR2LDisNR/UrwcoJAcCyAn7uc3QNWTDZ/vrXv45rrrkG9913H4qK1OR1RxuytRZMh754khmUGtdY1PIcrXOcshYCOLqZyKLcTLOLSVkdZxOlJoQXDuaQCZeN2HTOgh97QjcAYNvoAgBAZDk7nPfSPY72MJnktUOmPh/SEtI81rpfVpc55RP9RM7MXmlDxeSa+0YLAYQOOHxepy/dAwD4w2snAAAa+XxyFpuHCWHna+OXEUvna8kl2qpbbJTWSKSxiNsdpLj+W8h3lIm0wb8bFrupZ+stJHb7F016OykDLjtzIwDg6XGK2Ls8d2jD/ky77Cs6rCHrObLxP8zt01zrLv213aqc7/zkvITAa5YGi93GNelzyfcj3sWBFv4M0jX0P0L0JbAgr7txG2YHXZMQ8VwvrVTHDNrm//WTaZ3I2a0S/3Ol8z4jPRGv7tvL7Lv+a60uDprZ1uAeIoo+W9s2TDeGhobwX//1X9ixYwe+8pWvoKqqCs899xzq6+vR3Nw85f286U1vwgMPPICrrroKN9xwAxYuXIh169bhggsu8La54oorkEwm8elPfxpDQ0N4y1vegoceeijssR0ixDRjsvlRtgHyxoOCAylKstksnn32WVx11VXea7qu4+yzz8amTZsOuP9Nmzb5ykAAYM2aNfj1r3891cuYUczWNWRkWAssB0/Xq8nAnXTwoNKnap5QOvZN+9TKE4qLghM+ABhtVytV0RUl/Ik/BifMlmIwUrX1lx1VyGxrQTPbc3MNWTDZvvXWW7Fjxw7U19djwYIFiET8X/Lnnntu2k7ucENPWHA4i+gyEU3s4wxyIuLJnZeUkfvhziqScOkicea7mWolAla8m16w49zCiclmZFRDqplrrjkTLDW/YtblbKUJxGDylq2j7SUzKTCSumd8VrKbJcMVTABZ4txSNAQAeJFJXGIn/aCnmng7SfSm4PW8fmWAMlHy3K8o7wQA9CYpsy1yc3Fglwy8ZJCjQzpy5VL/zhtzdrVsDx33sdco024Yfrl5hs9LT7KSIKvDpCQvklx77LCM/HObiVRIUMQcZlM6JpvSq1oy3+laBw7fH69Hdkw05pydF8m3GKTxZ5Dj+nrvplhavj6+mUw+jNdo4pVATL6nN/0rvbGFBHvmGiOmF4yQ3tz6EiLEqT5akDQuojCmZxwn++Z9idO5Y7oe6QcHCITcyzM6mAo2y8/VHonTiZdeegnveMc7UFFRgd27d+PSSy9FVVUVfvWrX2Hv3r34yU9+UtD+3vOe9+A973nPQd/XNA033HADbrjhBqXzHjzRhp4IKLlTrJu+6/G3BR7749xZSsdesWq30vhX9ynUmwOoqiisHdz+iL9d0a13X0XgsTI3BUXlQjXzpaFtwTOo0g2iEBTSZ7u1tdX3+rXXXovrrrvO91pfXx9s2z5gN4HXX3/9gPvv6uoqqPvA4cZsXUNmK13o8WDkp6hd7XuSrAw+/p6+tyodu2dczaDM0NV+GyI1KaXxKxo7lca/hMWBxxa3qX3uhpqdB2wVGbmpQLbn4BqyYLJdqPTwrwnmnjjcapr4PQl0GWejYxb0FJFUr68gk8dcPZuXdbBEl23LpSxbyHC0l83EKhwvGwkmhZ1pruOUpOt8Im/6DiJaeo4ztaY/m2lXWl4f73gfvTbOEnib5dg9GZoM3xB15X2lG2m7xD4Dbzqe2kCIg7mMGcgRyU5l2PiLTeAgRm/N9K2PbSESlyt2vbFSt2xxG5YUCQEQL6FJ0umgfYrcXoixEFM4QJZvj2TSxRn8M/+HWqTdvO19dJ+Eh8p9ktZazJN1W4Ol+1u1CWkVwm5xRlvbrxVXghUAEigxxgwYHJTNjnDvdT6e1wub4Sb8DvCiRhCCHd8X9QziBBV8f0Y5s93Nn2OMVQ7S71uM8OTfbJ2VJ+Liws7nk2GOfVxlPwKJa+eoBGg6sXbtWlx00UX49re/jdLS/ELlXe96F84///wjeGYhQoRQQgEy8ra2NpSV5bNyc8UnYdauITU3/4NbIMYb1X4448XBpdzHFqkFYbaMqLXOGk6pKayyQ2rfm+eHFiiNL+kOTlijo4oGZ4pu5no2+PH1oE7mc3QNWTDZvvbaa2fiPI4OaPCMx6RvobhbF8csjLXShNaXoeyl1HWbi4kUCZeNsuGWBGjElTtbRfsqaRxDsoMW2WIGUBYhshrvZin1Hs4gs0IlW0MET9zBo11So5x3pc7xuj06xKSW65ab40MAgL8IeWVGL1kHkdGMz7fw7O55AIBVC6ieujfqj5AbTPyk37XXumqUTca4n7M+riPHdec5NvyKMLnNlbJRWpyYatKiE880+l0lY3wfM7UWYnQJyNTx59JE96uPLzoytl99+ADPQpoYhOUzzU45H4cn6Uy1P1sX4/qpLL/uBSmEwLIawY24yHIf7yj/2Blt7BbPwRBpQZapFUJM+8jWMaHn7H26JYvSl+hHJ8N9yfuG/PKkhEFjpEWa15osKsqACbMUy+cl426PcjCAP/PndvmzKlOHBhyyxmt2RiWnE08//TT+7d/+7Q2vNzc3HzXZpwOhvnUARsA+28NJNb1c6/yhwGN39VQrHfvlnVOX9R8IxeVq6YfB4WKl8WZEzQBI1DtBYJeoZa1GX1b77Jza4A5Cjhnkvk02P8J7v6yszEe2D4SamhoYhoHu7m7f693d3V6ngf3R0NBQ0PaHG7N1DWmkNOgBs3J2Qo1hpEaDE85NQ4uUjl2fUPOkGM2okeXxUjU3ctVWU8kFwcl2ZEwtsx0JXi4OIK90DDQ28CM7M2vIo71jQ+Bb/eyzz+K1114DAKxYsQInn3zytJ3UkUKuJQtDvvi8RpCa36ayEezeTOnVk99ERPQZLAMAlCSINKYHuOZWapBFwityZamt7i6BOcrGWUzg/9xJ7sHpOpE/s+t20v9lzDSLlJl3OWQiWyFmW7RtpsYvnbaZXBtMkHNVLB+3mGxzRtSJ23CYwImxlzidv9Lf4N0HAGjrr6ATkEw8y5QlGOAagCvBVp7McvM4DdxF96k0RhsMcP25MeKXwWeruF6+z0CEI4C6mNZwO5vXkxQMEAm6kG7JRnvGakz0U42WV5Mtn7GRFld2NiuTz0CTem+ut66SoIGUB7heYCXXwvJw/twSHWJgx1L6MqkHZ3UEtxmTDLyd1jHeyPvnCdhleVWO24hVRCioI+UBkWF/wENqyyMDpmdUZy3dT5Ivmf+BgNFkB959O+j7AXC0T5TTiVgs9oZ6TYBcxGtra4/AGYUIEWJaMNn8iCm8PwHRaBSrVq3Cxo0bvYyw4zjYuHEjLrvssgOOOeOMM7Bx40Zcfvnl3muPPPIIzjjjjKkf+DBgtq0hnQiAgKXTsn4KCukGEwTpgO3KBKaiDFw1EFtTqUb2kxk1c7qkQpwkV6p27ZqjFqQp6gk+Pmif7ZlYQ/41dGwo+FvW09ODj3zkI3jsscdQUVEBgMx+zjrrLPz85z//q18sioGUSJhFEr69sxYOy8FfHKGsoMa8d5gN0kQSrvM+JNPosqu2Z8iV0r1IpjtMs3NTMy2+Bw0i9CYTT4vrhCNcF67n6PVMLbcmi8CTLkW4jYCzSOqm6ePtSnP0XDg/Zyok6yDEzOiJwqqm4z3/KrXlMktpnzct+xUA4Npt76exRX7jMS8YJY7rZQ6cYrkRnNXtp0mt+hWKQiz8ONUStg/7axolYystyTRLw9g8vjaWQ5v8uVxY90cAwJPlFPgQB3NjgDP//Lcd4xZcjpaXWzN5ltZsVjU7hjMRziyk8zTbiSCLqbyQ79j/z96bB8hVlWnjz91q633f0klng4QdiUAAkQ9QUD8dhdGPGQYFURwVVMBBUJFFFB1xRByQ0Z8sLgyj4zI6zDAjKDpoYCAQ1hCyd6f3rbq71rv+/jjve6urQ9Jd5yR06K73n06q6tx77q2qU+d5n+d93lEjrJNmR8w8tUrjPuqsOnDpVzhHiQVmvLMtfI+mmaZVUM1/RDznkWP9QzuPBFBo32XTsdg8jxUECBC+D0a3WMzZMJTf60yHrJPkLJarEpn9N8JCeSDjPe95D26++Wb89Kc/BSBqqru7u/G5z30O559//jzPbt8xNpmA7solaVQdZ7f2yksVA4WNKIBw3ZSN/FY1Ax+vRc3tl1VHsmGo1NApuol3vLlPaXxnpXzNt5O28dNSBx2EPttXXXUVPvShD2HdunU48cQTcfvttyOdTofu5B/84AfR0dGBW2+9FQDw6U9/Gm9961vxzW9+E+9617vw4IMP4umnnw47FMx3LNQ9pJHTYEiyckWqNInQGuXVM+9qUuvWsDHVpTT+lM6dSuOfGVyiND4qpWAphPlneRl8zU41Vt6pUKz5zstfe+BKjj0Ie8g3QseGknchV1xxBaampvDSSy9h7dq1AICXX34ZH/rQh/CpT30K//zP/3zAJ/l6hWb4hTZdDKK4jZYehMDbJjdyBjdspKLbxWwwm3oFXGPbzIZkWggC2YF7JFNRdIyjT94GAHj+qZX0OLGuJIuLDVINt1YAf6lldCGcGaL1O0KFzNzGTCcjMGZQ88Qgx/sNaJ3igutrhD5larfY5N7Ze6Z4rVtgdYFp7aeaxWIfjApwF5hBAZ3yLSUGdvgYsTidEEkXPc4JCL6f7KiNwEDFHrr+DgLIZDq3yxY/zGaKkhPMFNPY6ADLuMX/rQmjcD4+vEXv3xjJ1impMtMxkd8Drsd2KgL4TeKmBmmq9ad7yj3NWeLNPbC57zXL7VnuDaPAPnt14j3oqBGGaD1+LQDgotX/CwC477m3iWutKAbdfL+tCSNksMMWcrSAcU9uWQnQweiR+EZYKA9kfPOb38Rf/uVform5GdlsFm9961sxMDCA9evX4ytf+cp8T68c5SiHZByMPtv/7//9PwwPD+NLX/oSBgYGcNxxx+Hhhx8OTdC6u7uh64VN9ymnnIIHHngAX/ziF/H5z38eq1evxq9+9atDJhG5UPeQ+VYHelyy5EKR2a6Oyyfkao2M0rnHbDVH+RcG1Awko5Zas2nVMh1DAesHhloiVLpumiI+Ij9ellU/0HvIN0rHhpLB9sMPP4xHHnkkXCQB4IgjjsCdd96Jt7/97Qd0cq93BIEWAlJrlFs3iUWwpiqDKW2G5IP9tRrEoOjOGI0Rj7OtP5tghQuqP83lnCTL53QIOdVP//etAIDNj1C7Llq7Wc7O58yR/FyfMkMGObqDJM1kJsb9oFOOYGY5OcAO3aG0mBnVFj805VpVOwIAeEYXYHt1lWChM65gfSdzgs23yRwOGQLhBGqhFdpfMXhl4OnFxPm2pxrF880FwzExQfEnOlwwAnOqSDo9aBUdq8EUTr0+gWxrhFheSkqwpJ/r6506FwEx/i73844SuLbFsVkKn+ukN3JG8pATMl6jHZrTHX7kHgDAqy+KlTdUC2SnmZYB0FMss2cDN1JQDETgtlEtNh3z1Vfbi+7H7+uFezvXpXPChh3qHVIqGDmt8PkgdjzopxIHquOHLfnj7muhUmGfz5cQb5SF8kBGTU0Nfvvb3+Lxxx/H888/j1QqhTe96U04++yz53tq+w3D9GGYcpJBTVNjDyIV8uOnDDWpnjehtiFCp5pbrqIHTthVQTaOOnGH9NjnXlmqdO5d29V6hO+prpMe62ck2MLZ1kd+TYlx+eWX71M2/thjj+312Pvf/368//3vL/k8r0cs1D2knjWgSzpWhWatkjHlyqtn/qP1GKVzn9vwotL4SVvNIG3LHrU1QjW4/FAmVI23VccnV8rfe88G8LjEwDnuIefSGhF443RsKBls+76/V6sGALAsC76vVrsx36GNRkJ5NK+Z3PN4KhWHSyzhkVWiVcBTOrHOJI/OLSWTLJIwcwspi3pSM6vo17rwp7h5s/jzbFJI03NUk62T1DtsU0XHYoMrM1nomR3tFh/AsGaXHcJJmnRavXAYfz67SpyS23XR2xhea72DVEZ8+Z7Oivm4VA++eVLUbCdzxRtXllznSD7N59btgiQ/1k+sM0nSY2Pi70uU0WRJNbOwLO8OCKgaOR15MpdzCSxqCXG+AcosmPTaUG1Adc1scOdXk3x7ewTZZU7RvQwipEQgyTez9gxyXWrHxiDcriNVQnc0fO32/xWbSoNrxel98/g30GX1A10T9TP3M1w3D5jkys6O6pFjkuKayIme269tqRKGTdzvm+fA7vNmWg/VBD5JSDX6PwPzN53+PB5E6TGb4So/t9AWyoMRp512Gk477bT5nkY5ylGOAxRzMaSWNKxeMLFQ95DmpA7DlgPNYTmeZFQu3dsDZK7RGFVrLfjroWOVxmcctZrpyio1A8pEVK1MZ7hB3uBN1SBNU/y6VPTLqwJcR27sXPeQc2mN+EaKksH2mWeeiU9/+tP453/+Z7S3C+att7cXV155Jc4666wDPsHXM4y8Br+GpMwzmMlozIFTXXy72ASLwY7Lt5OADbPk3IPamhRfLDvuI98qAB/XT9dGSMpjFIND7gXN8nJ+XEsyxW0gTzLi2ue5DlgrOu8LKQHOuDY5MMXzYY9sri2fMtGyZBQAUB0VC9iOF4Tb96kE2H+TPVq8ls2++ctO7LBvEIiMAz61pjJpQXEIDOoENFc3C7b8hSXFAD4EkdHCN7LmVTHnqeUktabXXFojzOpuo/cgoHlolMUwJnkxo3vT6YbvD5vUGcPMZBMIZ0M7Yvy5dzczysxK51vckDHn1mcYFQtvyLAz80/3y20qNrjTJ6fJ3Mm13iADtjV1YwCA4ayQOfVkBUsT1nvTfHXbLJqvHwkQ20Ut2ih5ZLKJGt3Tx58/HFIxx7YNC22hPNDx6KOP4tFHH8XQ0NBeG8x77rlnnma1/6ityMKskPt179vRqHTu5tWDs79oH5EcVOsDW92u6Lbbo1azHSTUVAEVzWqWtTvHVXpVq20mVa/dH5BnbnyZPfxs6yPm8PwCj4W8h5SNQNHbIJORB3wnVsgrV4BCiZps1EXUlD8bJruUxo/m1GTkKqqE+LAaWtbVlkeYOYUDSNdsY057yLm2RnyjdGwoGWz/4z/+I97znvegq6sr3FD39PTgqKOOwo9//OMDPsHXMwIdiPUR8Gon+S3VJK+sH8Xml0WLhNSx4k3PLhFgJzpArb5IYsl1u7wGOQQ6GSRpWT10kna7xC96S1Rs6IxRcaxQ7sumZll2DCeAyMmAtI4IHStHviLMEHMP6OFcJR2Dzkmgl5XEXMOs21q4cL7cTXU0VFu8LCJk5UPjYuPqkmTZp3pndsM0aIPixQpya7ea2GYy/nKprmksK2p9+HXMHHOWl+eV77Bh10aKjs/3dJx2RLzgZamtmMXJCFrLoqNstqYju0SMdahW3WfHd+7zTf9naTpL1jnBwE7x0IKQhWZVjE/9tAOiuBk4s1Sff1S57tsiwJ+P+dCpdzi/16urhgAAL3QfBwDoqBQ13Db1fud6dHZeD43vokFYxx+h+2DXFJvh1b1gQAjfS4w5mlsstIXyQMZNN92Em2++GevWrUNbWxs0TW2zUo5ylOMQiYNgkLbQYqHuIeMjgCFJ0roJtaRUqka+1MVRbNZcY6qB5WfGZNuQiuBuQLIxplizbdfIJ0rMnFqSxalQW0vMSYV75x1ck925tEYE3jgdG0oG252dnXjmmWfwyCOPhDLPtWvXHvL1hnOKAMg3FNc1a4R2024kBEFHJ3oAAL+aOBkAkO8srrUNHc2JVYyMisUsu1SA81ivFUqR/bx4buuUqI3mdcsjKXWcGEpeDxkYMmMZ6AWwxRkhBonMoua9YgbenCb1BgotrYwpHY1xwYIkKwXbnKZ6v2czwn1tVatgo3e92CWuqZPQJjHKSIr5+lE/BK2RQfE3Q+1qoxNiHq0VQvo0kKX2XdwvOlo8f3PYClllroNns7qn8qJ2nPsFsjScgTqzv8w0B7qQewGFJIBXT+/LLgEIc+3siif+GASCIxME/ul+m2mtUI+f5zeIEgfMlrdTrTbJxbksgGvPHQLB5qSB+DBJ4YmIe6xP1O37VA9vavzZJGadWUZuE0fma0EkCK+RP5uxnXRty8T/J1cd3LYNC22hPJBx991347777sNFF10031MpKSKGB9OQy2Zzok363AopfLNSzfF1crBy9hftJ4x6NZniYe3yrD4A7BhW61WdteVlnnpObTMY71Azb2pdJq9KcNN5dJc66AC3/lqIsVD3kKllPvSY3JvrR9VAV+fSEemxv59Yo3TuSkMN7OqKdRXrmnuUxv9nv5pxYDypULOt2OlCFWwrrUWyYw9C6683QseGksC24ziIx+PYtGkT3va2t+Ftb3ub0sn/+Mc/4hvf+AY2btyI/v5+/PKXvww33AAQBAFuuOEGfP/730cymcSpp56K7373u1i9enX4mrGxMVxxxRX4zW9+A13Xcf755+Pb3/42KitL3yBpKPR4ZuDMddqDU5VwqOY4Qmg6lDmzoXSe3aqLmVlmE8PWXy5gZJgKpfpuBlL05YsQW56jntlBBRtscZsnctceN8K+0LUvEsPdSYZpVE9dsYJtyIsZWo3a8TDb6i/JYduokHu2VItNyo4RwT6vjYsWLD9/+XgxponMuYhdtauJQV1C57J1BAQwsy18DSQjd8UEuieFLJrBo839v8m4TbdIEu5ZiI7SvST8xtfQZYrWLg7VVXMvcX5PYn3FDuMICu9HhNjuYJwk11w3xb3DSU7ux2n+Gb5x4nVOnY/4TjE2SyCWGWxO2rA0PCCEzp8rp5VeP0mGb9EA+VoUzeMDXRsBAL8yRU3US8OtdI3sOk4S9Bbum07s+XSpb57dz8VrolSz7dkHVwJUSrwRFsoDGbZt45RTTpnvaZSjHOU40FGWke83FvIesmaLBiMiB36mutRA00RWvlzi9K5Xlc497KqV6aSq5CXwALB1Uq1VnJlQSwS7FfKqAlaGykZkUm0xybXJO8m7siVCB2EP+Ubo2FAS2LYsC0uXLoXnKRYKUKTTaRx77LH48Ic/jPPOO2+v5//+7/8ed9xxB+6//34sX74c119/Pc455xy8/PLLiMXE4nLhhReiv78fv/3tb+E4Di655BJcdtlleOCBB0qeT6ADGrlFx0aKQRuWAS6BwSdSwhgN5gwjrToCNP10W0kOkVtS7EbuVgUhWNaoh/LyClErvalOSNXje8iMq6V4bOhATefItbqIUmsxl7433OM5dOImVigyRj26ie30Y+TwTSyxm3ARj4jzVVkiWxnfLRaStC8WxDpqCTY2RKZs5oxvRlYcKzJuwKFezrFtxKrqxLDT2rqkKgkAmEqKxZLU7ogRK+xNiffYrvdQtZtAI0vl6RhHRqjVGNfJ03Q4McL90jlZAVtHZIjdu4sZ9AgB8/Ag1VTDPUbqArpW7nMNI0C2ww3/LZ5E0f/58xRUEiCm+2MOkiyechP5Rg9uUMzKb5wQaoK+nSIB0r5cZK9TlMzRmLRhQE/SdXPSCE0muF8734c8sfbmLsjFQeiR+EZYKA9kfOQjH8EDDzyA66+/fr6nUlIMTlTBcOQ2dVU1alLDrS93SI+tWKJWc50eU9sM1teqGRBt3ip/7QCwrGtYaXzPkLyjd/vRaqz8nn75enEAiNaNS4/VZVQcZRn5fmMh7yEDo0AClBqahEP99HA9eYo058uDRQBYHVUzJt2VU/PziJtqyiXTUvwsynZ2AWDYajIXVWY81i+vHHI9SUXDQdhDAod+x4aSZeRf+MIX8PnPfx4/+tGPUF+v9kP4jne8A+94xzte87kgCHD77bfji1/8Iv7iL/4CAPDDH/4QLS0t+NWvfoULLrgAmzdvxsMPP4ynnnoK69atAwB85zvfwTvf+U7cdtttofnGXMOtc6BHyHyqi5hjAmYx3UeEeltHuW8192umbKaWLTbSYnWNSe7kIWPqTuvHTGzklikBLPhx51ixQdP7BYLmftYcDkmgYQahSZnOuJyAlUamaizTyTPrzAwo96Qm8Gh1R2E2ibrg53eLDZ5F0vM8Lcge/SiEZm91xQsV97v2YgH0Ua5lpycJxLJL++kNWwEAz3YKUMlgl2vhNap/ju6MId1BY6kHN5u6pahmm9ufQSdjNJL8xwYowdDIbLBeAMgUfF4+NisQApfY6Bn5BJOSE7pXeF/sw2jOdrE5XUBAOLpHgGtOdOhJNr5jlt1AfIhN4MSYnCvmddhhQlWg0USG6XPH84r00/xpLk61D43mHhqysRs5qR38vJyD51ydJEuNQ32hPJCRy+Xwve99D4888giOOeaYvZx5/+Ef/mGeZlaOcpRDJcpu5LPHQt1DugkNQVQOKLAHjmx01SWlx7Za8mMB4H/TK5XGb06qea00xdWSmfkBtT7hMQWsb6XUgP5Uh1qiJFYjn0h2XbmF7GDtIQ/1kDJI27ZtG9rb27Fs2TJUVBSbCzzzzDMHZGI7d+7EwMBAUR1PTU0NTjrpJGzYsAEXXHABNmzYgNra2nCRBICzzz4buq7jySefxPve976SzlmxLYLsscQaEgPJLKPtmmFrrffUiGv8V03UbMMpADmg0FfbIKDO5Ybclgq+HraZsgnMnt0k+my/1EyLe0aczMoyMBYPu43FbtbWsBVK3TlBaVCtNLeCsqlmmyXEeWrTxbXbboM4pp3QkclHio7PNcVRQvLjo0Q/s5s6uWn7ZPjFQN+c0kPWm/s/s4kZZ/M2p4UJGwPAPLfU4v7aooxdPEZ1MW5F8X3YRvd+X663XBsfHeZMBxDrYyUAydeJ7dWp/3Z8h5iPTe8Xlwdw1tolVYIxZcBuFxmVqkoBXqeyjLLFH261FbYLI2DP7xW3gwuiQdgfPagS708lqQte6hX36cgO0for7N1Nx+Skj03vq+Zp8Hwu4C82n2OVhZ+R/IU4CBKgxRbPP/88jjvuOADAiy8W9yg9lM3SXNuEb5b8kwEAyPepmdCo9DJNJdX6bKu+JYautpGub5tQGr/nuTal8ZipXiohetJqrJWuWOu/Y0S+Xt2T6bNdlpHPGgt1D+lbgCaJfRJ9ahTlttbm2V+0j3ixSc2gLKGreVJ0VY0qjX9mSG3+Lavk690BYDgnf+/TLWpgWTWspHzbNE2a2cai3EOWvHOaXg9zMIN75u6vn+7AwACam4s/6KZpor6+fr89d/P5PPL5wgeFewJnjsghvqsWQIE55lpgeDrcSgGynsyIftUsNbdrCOw0FGepGJyx6zVLiyO9RsHgjJjPJ5IraBAB94RYwAKTenRzLTk5nicqxfwzOSOsPWYDr0y7OHZsjxi7+gThar3ZEOdgxpt7U7skUY/1mahbIeSeDtVVY5uQWlXo4nwtLWLjNzgokKFXQ4ZfI9xbHHRPgoJ0m45vpUglMCyubdeU2Ahp9LKAWpOZVAfu5At9pF2HwTZ9E+kalpnUXmyy2KXdCd3SxevZyE3L6+F52B3eJBM6BqJZ7uUdIXXDTpLO0kcm0Ii9T/gAMcgWSQ7ZpIwBcZ57hlMLG3abtxvposmIL74zgjzV5+sjYj4dxyXF/w1iuilpwr3YuR5dC/ejJFHPaoW+5+MG3Q/67JE6o/IlU8qNXMMsWUmJYy62+P3vfz/fUyhHOcpxEGK29ZFfs5jjjb6H3Nf+0TcATVJGHlWsvfWy8o7iSyJjSuee8uTrxQEg7aqV6agmM1sSasz4qCcPtiMptblrgdrnxq2UN790Xbm5L9Y9ZMlg+4YbbjgY83hd49Zbb8VNN9201+NWxC20d+JEI7eznoyGruI/3vFmAECW2oNFR8Tjmk/AhtpleWSspRFQDKYZlNkEmLiP9qQtFiwGYxbVOOa4Ppg+geYesTB59HozEoQlDpGkeG2OJNPMeD/8gHBp1tjHggl2bmFFSYC3veepUCL/n6kjxDWS0ddP+0XmN5WjhZEXd+6a1U7JAZKIRwYsOPTxYnDLLt87LhNj3hwT9SJb6X7BnPHl5bJ5M4B3tKgV9/oSRffjmj5hsMKtwHSqX2eGnQ3TuCQqiPrhedgd3uT2XMSOs5TfzJASYIXI/gVpeh3d8CDhAuTWPvUCuaLHi1cRTjiYI1bROZnx5vco1+qF52UmPU9a9K5G8WNofFAcM3YpSfpJFeFRKzB2Otd7rdCVnVuAseyfa9kz75oCSrc1OGj1NuU49COWsGEk5N5ff4ka+6HCLldZajV9axuGlMb3Z9T6bNdE5dkHALAH1djldJf8hlDLqbUVitSrXbu2Uf7ea3mJjWi5ZnvWeKPvIfe1f/QqAgQxOfATO0WN3T28Ii09do+tJuV/dlKNWd7Uq+ZJ4e1U6xaR75YHywCw4n/lPUFyTWqJit63yinNOLyY/Pn9LIANEgMX6R5S7Z06iME9cwcHB9HWVpDBDQ4OhhLM1tZWDA0Vb4Rc18XY2Nh+e+5ed911uOqqq8L/T05OorOzE85gAqDF0q8pdsauqMvCJ3lxgkzEpggceWtEZsyj2o/4durDTW2fZhqpaR5CZpYB5dG1oi53q7+saK5RYs9dkgpziwj+a+S0kO11qhlgESNLPZxZgp5v4lpz7iMtHreGBXh7YrALb+8QrTh0yhZqzWKzk6X6YWZwed4syc4tITadQCQ0wKI1yOoUPwTOy2Lj468Q9+/cBiGh3TR2OKYflJ28IyOFvtH2pLinJgFRn5QHtVYmPB9QaLvGruBh/+0l4tordplhX0ROrLAKyq1jKTxNhzIuQaa45t4co/scmGECht+P0Fm9idhxAujc1oyZZVZM+GE7Nj3M9rFCYnVcmAs9NbwUAFDZuxMAkGujHydSRYSyG0p0GDktrD9nF3Z+r7l8IZuV/IFapBKgcpSjHOWYNcoy8kMmDtYecl/7R9+E9I76mKZ+uYEU3BZUJpZF1GTUvdFapfHmTJKlxLDjauPNrKLLmAK7nNiqlmTR17fM/qL9hQKw1WTbOi7SPWTJS4Ou6/utKzxQLpPLly9Ha2srHn300XBhnJycxJNPPomPf/zjAES/3WQyiY0bN+KEE04AAPzud7+D7/s46aST9nnsaDSKaHRv6YrmAxaBEa+CKW6qCdYCZKmFVpyYEo8AU4wWC22quJa2YBZWzC5mljuId1NrL2J1X5qgHwN2kSbpcIqB50SxUzWzrXpfNHxscrUAlAYtHmEbMWK804fRvMiV3CNW1aXEwvuXPYP/HhSM9pIaIRd/dbsAekeTSdefcsvFtc4wWQvbZFnTTNDoY5KmmkltKUmviEHus4XLLdfCu23ieWNAvDcstfcaHOhUG85gVqM2XAmy82ZjMpaCR8k0jJlcY0q8PtPmh1J3r67YITyU16eKr4WTJWyAx8A5MIPw+lktwGUBzCyH0ngyVbMJ/Mb3kBEfJQHciiCU9fO9HacCdYsTHwZJ1MP50TnI6Zxr3Z2aAG41fQ9pPi73/2RH9QlJCZAP7O93XeE3vxyHeKRHEtDjcpnwxna1uuPR3fKO2Gld7df7z7vkzw0A0VE1dlc51Px/sO64bdJjVUAAAOyeUrv3Z18gX/+bTzn4xjdLGzPb+sivWczxRt9D7mv/aE5pYRlbqbEnXSs1jqMtIb++PpVarnRuX9ESuyqupl7Jemqtx+wqNSbVt+TXd69FTfWkaiYWKPhxyI5drHvIksH2L3/5y6L/O46DZ599Fvfff/9rSmv2F6lUCtu2FX7Id+7ciU2bNqG+vh5Lly7FZz7zGdxyyy1YvXp12Lahvb09rPlZu3Ytzj33XHz0ox/F3XffDcdxcPnll+OCCy4o2YkcAPxqFz4pDtlkzCWTsVQyXmC5TQLd1J5LayPHbgJ23J7LqCbn6T7aoHJ7qrQRgmrucf1Kr8ii+gTgJwfEAsL7xBy5WDMLHZA8z5zS4NJ5Ez3i7cysIkk39WHONdBiSB9il+p3udZXo17MI04VVleLNjFPk+kEA/lNo0sAAEc2ijqmDZtJNs3X5BQvWPkmDxqx0AbJtNktu/44cY4j4r1iPiy9poO5VDMdI0m4HzeQWCbqotI9VUX3bU+2rvj8Nkn5ydiNmW6W9FtJAw63U6OVKjQPo17U/NvhUY2+Tu97aIBHzHOszwyl3OwmyrXr2ox7zctSZJjbrBUvVNaUhsikuIYUOeFXGuJHqG9MLMirO0RChtlpvmYnX2y6ZuSmlTQ0F4Ns/gxzu7eSY5FmJctRjnKUY9YoM9uzxkLdQzp1fkislBq+onS2VwGs92dqlM5tzDM68hNqyRkvrpYssGvl6551R+3ehR5GksHlljLhG5JjF+kesmSwzS0Upsdf/uVf4sgjj8S//Mu/4NJLL53zsZ5++mn8n//zf8L/szTnQx/6EO677z5cc801SKfTuOyyy5BMJnHaaafh4YcfDvsjAsBPfvITXH755TjrrLOg6zrOP/983HHHHaVeFgDAHLWQbyl2P2XHbr/DQUALYvdELQAg20amV1sFGNIIAFrEHLtk/GARyAwBlobQDIv7K/6fVa8CAH7/+NEAgIqVBC63i4Uwtpscsok15zrrXIsXsr1s3GUNCtTFtb/cy5nHmCkCaXXMwor/b5lsgU4L54paIW95sl1c2xTVatc2iFpyj2TTLNdmyXrYRiyph9Jlr1Uw1n5SXEN7pcjC/nRI1L4zG8x14BXdlDRYQvc3pSO7g+4x165TLfZoXrC/HgF0Nhxj+bZJSRPNocSIJ8zIgAI4zdF7btF7zUmBgNqIedRf3bPFgAjJyFmiDQCRViFntwcFjRRQ27I4vW/ZZdRznJzXNSL53eqCuZ5Nxrls3JahZuL11Rmah7gHzNabVKbFTLtPLLrb4IfqAU508G85v19OY9mNfD7CcRx87GMfw/XXX4/ly9UYhdc7jCkDuiOXpJmsUatNQ6V83XVXu5pUbyKrNvcJT42drV+lZmA0tlWtJnPLiHxNY1VM0rGWom+3vJs4APyw+xTpsX42B+A/ShtUBtuzxkLdQ/oNNiAJ3HKuWkVnzpEf/5b2HUrn7suqgfXdo2rrU6xfzdHbUFuiEBgKnTKa5YE6ABhZpeHw6hTAvlcG26XEAavZPvnkk3HZZZeVNOaMM85AsJ96B03TcPPNN+Pmm2/e52vq6+vxwAMyTk97h9eaR2SUjMrCdk8EZPUgBFnGSgKUBDDZuZzlvCEE43ZUfrHxlRcJwv7KHr1kNC9AmketoPI2gSRWsxMz6bPpWoqej3vQM/wi8YdZVi8uzsE1KXrSKppvdJAY3aUEBE0n3FhliS3VpsR5apeIb/V/71gjxpIDOkvRuQaZ2d9cu4sYuYpH2DmdAPAI1QvXk0GaQXJ7lsT4vJ+vot7VU1G49cWbbZ/Y+ASpDFjGriXIkIz6WBNehUUS/1ynA2uUWn9xGcBAscs3tzNjoG6mKdFBjDaD8uiIUWDDXxXXFCMpeI7KvZj55s8Cu5PztXIf8FyTD7NF3I+sSSDbFF4A3F87ePYlcf73ig0kJ4Y4IaQTq+/W+4Vacma7uS6dEj5aRG6hXKw9Eg9UWJaFn//857j++uvneyrlKEc5DnCU+2zLxxt9D6mPRKDH5MCT06hWarK6Xr7uOuupgVU295UNz1Nj9Q1VKbVqa0dbHrBWDKpNfmK1GoTj/b3U2Kzc2MW6hzwgYDubzeKOO+5AR4eaq+B8R6IyD4+8MpjtZFOsrqZx7KLWVe4kFcHR3eMaaQ/FcunYCuEQlibHLTYmQ2Me5jZRx0ztq/HCHnHvTGodpTcV6oIBwIsVrwgM3LW0CY8AVGxEPJYmwsxnJ+ztxOSSxCnWzyZdxJCSA3qVmceHVj0BAPjFnuMBAD3jYiFN2+IYrbXimnorK+naiSltFWjOp1ZlsHy47JbdJ15rEXjlLK4PZsWpDr1ZgNkISZyNQTJFS2tw2E58xsL84rBAtVwX6WbEfFlGHiOJeLig+gVpvEmSambjNWrj5VVT0oQStgbJ8U02nON+2xVBKM9mIB46z9MvAPdWZ1d0gyTgPD+nmllqDZZFxyATtZ35JnFsasNmtolr5ZrzKJutUfKE5eXx3RHkyKDNbBJSdONF8RnknuLakGRG1dcK1u77er4c+433vve9+NWvfoUrr7xyvqdSUlStSsJIyLVpySswLwBQ0yifwt/dp8aOhgaJkhFfotZaZqSnVmm8puj/M5WUL/q2d6qx+ka1msxSqZxUxkl9tvWRX1OOolgIe0iv1kUQl+sL31op72gNABt3L5Ueu6JFzSCNzXNlwxlXA+sKxDKAAiEhG5Ex+ZrzdGfF7C/aTzhL1Wh5Q8GcTstIXvci3UOWvIuoq6srMrcIggBTU1NIJBL48Y9/fEAn93pHerACOkmDYwRkuOa3v746NN3SjxQbvyxJcRO11Jv6VSHzZQCd3S3qiy02vmIV+Y54oZaYwFZrvZCND/SLhccmZjlktOkvA3YGj269F5qDZVuZqSXgGWdmlmuTicFll3T2/yJmtCddi3FbJAEGqE6YWV6W0B9eKxyy+1xRP5xvJgn2IEuzCTzuiSDfSsCOzMKYsc5QS5XD28SxXmzoEq9zuT8X3RtKDuh5HdUNQjM9OSyAu04JjrYq8SO1y6wVY8hkDVPE4lewCVxB8p0n6YxFcnoGwBq5n3MnDE6i8Hvl0DGcejJdSxkh+Od7yO8xy+wD+su1MRoBZ663NtMFYzfraYHuNfrtqSedeEul2Ky7A+J+ZTuWFt0vPVdcpuDU+KHnAHaTYoIZdlYPVMltChZrVvJAxurVq3HzzTfjT3/6E0444QRUVBT/4H7qU5+ap5mVoxzlUIkysz17LNg9ZF4HdLnsTqWpBprOWLlVeuxwTq11lirYRlQtocZ7Ldmo3q40HFpObi8FAPFBNXM4fVDN/dJtlG/J6dtyaozFuocsGWzffvvtRf/XdR1NTU046aSTUFenlsWe74g1ZuCMiw8vy4MZ1ME2ESHQ5XL9LzGjGV+M4ec9Ig25ltpIcqutAgvKAMkj12idPmFs5LWiRdQZ9nR30ON0LGZGa4kFHjVC0MWtvdgQM6xj3ibe5jz1ug3dt2kcA9HGWBpjJGdf1SpMzLb0C2CXJDb/z85yGlPMkocAnq7DyGlhLQ3XNvN8ouTmHjqwG8UJhcwyWnxJ6uwEGuwh8YPALu6cjdzaK2TvATG5xpBg3rgOhxlnbiOmBYW65dCkzix+LSsT+L1g0M0sNpugOU0uYnuo5/UaKqDeKe4Ty+zZFC+7Mk/nJ7DNcvOlrO/WwmRJlMoVcnSRgylx7S1V5LpJ2UhjQjxfcDEXT+davUJygW/luDhvfBdJ4peL5E7JsUjrbQ5k/OAHP0BtbS02btyIjRs3Fj2nadohC7YndtdIu5FH2zJK566IyG8KRpJqdXFQNODJ71HbzJrNahuyQFEn6aXlmX3umiEb2qjaexfUy39ugqzE2HLN9qyxUPeQWsKDFpdbK3ZMqKlvxibkGdKGWjXlzcAetZpr7iwjG7FhtfXNqVT7Qk6ula9Zz9WpyY78FrUkTWuTvIu9l85jj8zARbqHLPlX9EMf+tDBmMchEYYRgCuDmY1liXPH0aPYPSjcKfnrEe8Qi1RmTAAsu41GU31u2M86UlzXHER9BC5rkcXx+0bFF5brgXd0CxCph0Zk4uUhsAoKDCnLoBkUMrtsjZGsnUBYrJvMuQiAcf0wg8ixfAIxQ1zDpk0rxFyJXa6uEJumGmrTkMkL5ptBNrtsc+uLfJ0Pg24Ut6rijFWuSYDEk+p3AQC2pZaJW0G15lxvbNcROB/V4RyepzmTCRyx0hVVYj6prPixYSWATcfidl5OfaF3N98fu5VdyekPyQb3cmhknKCzpJ/paw05kmUjKUA+J1yyS4tZfa6NYQm7TfJyNmvLLrdDlpvf62VRIe8aHxUgu6WzUDoAFCSSOVIXxCnxER02Cu3J+HcsvPfi4FUJyU3obMzNAl0oD2Ts3LlzvqdQjnKU42DEHJjtxb5GLtQ9ZJDXEUgy21lbjR1WAcyupwZ2rUr5hBYAOJ5caRJHeonScNRtVgPriQH569c9tWTimGK9+0CPfKJEGEhKxCLdQ0qlrP/nf/4H//RP/4QdO3bgZz/7GTo6OvCjH/0Iy5cvx2mnnXag5/i6RSYVhUZ1zsy2ejnxZdg92BCCNC9HBlsjZKZGAJP7M+e5LpYOZbeLL2Okj6TWOT3sg6xRjQ/LyHtJ/qyRrb5fwX2ZiSWe4R4Y1Prhh5NZ+NgwAUySUOcaiA2nDB4DVa7xtclIrXu8DjUJIYlvO0ww20PPt4jzUs3l7n5ypqW65gg5nzPzzu7qQTSAz1MlabdPrHOMrm1XVmRzGWSb1IeckwEBXXswbsAj0BxJF9d3B2QkFyG2eaakKDZCLDG93q3w96rRMcboGuh8OtVX+7XiGrmfdWSg2OXdn9LhEjD36bw6LX7cLkynZApfkzfDOTzbSaZrg1YI4p1m8fmp0sViphGT7dQJiX8kWZzEMTg5QWoDPxYU+qATsxN7VXxWfVOMndoqySD4CNnyfT5fjjmFbdvYuXMnVq5cCdM8YF6VBy2Wr+2HWSG3MeoeUWOsdu1plB7buFLNzXukX81tt+uoPqXxqk7FA5vl3cQBKDH7sQq1jXhWUqoYhifPHAUyY2dbHzGH5xdBLMQ9pDFlQpf0pnAa1D7nqUAesB7d3K907hfdVqXxzqQa4OQ9nmzkFcUU6Q75e29XqoFlNj2WDhVgK+NpASzaPWTJK8PPf/5zXHTRRbjwwgvxzDPPIJ8XQGpiYgJf/epX8R//UWKrjEMogowJ0yPQxo7e5A4esVzkE8TejhV/wKNdom7YfYXaUxGbiXYBluKbBfOdZRZ4xAgBnT4pvqjVS8VrR0l6XblOyDvST4hNZshUMphkpntKh0tzZNm6Q2pjVg9GJsTjvKgwox1Q3S7L4Y9p6cOkI0DZTmrHEHSIeeXIkTtGrb+cbsEkM6jzSILtE2AMYh6sYTEmRwkE7hleTe1gdk4KsB0dKe5z7VI9M/cUz7c7aGoWyYiJXnE/TDJR86rJ1KxRjGXTMIvc2rMdxeUAXqUfsvCOIf5GklTzTnL3gAEy3Rc2lnMsSk7QfY71mbAoQcBzz9d7RfeFkyp88RqpHtgBnRMy2VV5RPZQMsYR1/3z4RMAAJ3N4+K15NjGCokwWcI+A3TMfNwLZezZCN2HJcV1RZohl5VcrPU2BzIymQyuuOIK3H///QCAV199FStWrMAVV1yBjo4OXHvttfM8w3KUoxwyUa7Znj0W6h7Sq5I3SOuok5fzAsBYJi49lk1mZSM9pWZwpsmCNh6vVuWD+JDaF1LFhDFfp2gG1qRWphOJytebe5IGaYt1D1ky2L7llltw991344Mf/CAefPDB8PFTTz0Vt9xyywGd3Osdmq3BI+lyhMzEWGLcuDqN0ZcEis11UraegFNmgha6Jm47RUBqSjzOjDg7Ujt1ftiH2ScQtnOEanbogzbSJ4CVSWy0S72eY30CiHGbKqR0xAZZdk21vPQdyBMAjI+Kixg/gszVqBd12IOZ1rqkHceb6noAAFsHhRO2PyKSARVLBdg9snkAAPD8JtECjEEc9xbnpACyFnJUI25SOy4tKe5HhSUed2mVYkaW66rZJZ0NyfQpA5NpMo4jUG9Ui+tfSU6aW4eXFF0L3wOLapUdel9j/WaB/Q7rqYn93R0tmk9Y0x0ryP8BwKQkgBYAOeqXzjXRLjH8DIR1+iyweZlLtfZ87lwbF/prBTk7nf6oKsGIsWv71E6R6PDjQnYfMOtjFc/XnNTDa7AmX3teXtMCXdHeAHHdddfhueeew2OPPYZzzz03fPzss8/GjTfeeMiC7cl8DIYhl8V38mrsrBGV31HlXbXNXOdSNbfeHTtblMaHWUrJ0BR741g18nWBuT41t90mRVWCSngZyZrEcuw3FuoeUs8Y0H25teaY2l6lcx/ePiA99uHhI5XOvWmyU2m8KrjK16kdoP4VNbRe+Yr8GlW9TT5JAgCvrlZLdORd+UyBn12gFPRBipJ3QFu2bMHpp5++1+M1NTVIJpMHYk7zFpqvhcCFwRFLxHt3NYJLdXWqv9WaxSZkVZvoF7bjCWEmxnJggyTVLFtm0B1UuIhvF5vW7AoB9E7oECD3T8OHAQDqWgW4TWYFHR2CbJKom9Qr2qnzYGbZOb34fCyFzzQSW09MNpuMcdspnXIHm7d24B2nil7OFXFxbZOOYOXztFlujAgjsOwyAvt0vxwGjST3hqeF//YiJA+fIfF2qFaIM4PM0MZ7yXStWbw+OqbDbWfnbUoY5MT961otjOR25MSCz2Cby4CYOWYm3Kn2Q7k/t+eK9BbfW66j59pxF9zHmtAwX2IkQBAj8zfui85ycpJ65zrFMbm3NzPvNvdmp7IFY8xCjJIiUyvFMXfnhLpg96T4DFSuJrf7PCdtaOy4mD/XgQfTfu8DvfCZE5dGioCcJPhZpOYWBzJ+9atf4V/+5V9w8sknF7nyHnnkkdi+XdEatRzlKMf8RdkgbdZYqHtIP+YDcTkAEjec2V+0n9iVky+zaY2rtR2LxNTm7jpqNduJQcU+3Xm1L6RfJQ94M0vU3MQ1NX80xBvkjUs9Q/Lki3QPWfKOu7W1Fdu2bUNXV1fR448//jhWrFhxoOY1L2G1p+GmBMDxawQ4CVjiEvFDNpmlwEa3+JL1VwgQxA7dYc0vu1dP8v/pL8wCi5kSxx/OUksrAqgpYnK5HoUNt0wyPePlRbP1UC7O5mkMsKIEIt3EjMWIwSKbiJFsW4t6yPhCypzcXSuORYDOHxEZuD8numgwSb1HxOvdDvHF06eM8NjMVLtVYu5ca1xhidceVSuY254qweqzbJuDlQB2TQAQMGd5NDPCPWkBRENTs0p63+g+crs2t4FA77AZ1ldzT/PwttD5WY4f1p9zL0K6T1xa4FUUQHRYZ05S83wLW9dTfTwZ7QWUCAlIAWD1i/vnNLlhbTiH7YtjV0fo3j61WVzT6W+iedH9qeNa7YLBHA0NXcmjvSRR5zrvVrlaSi0oXOu+ni/H/mN4eBjNzXvX0abT6SLwfajF+JZ66DG5jQWvI7LhZeXZaV9xMzg8qeYmHqlW2xH5O9XYYX15Wu38CnXPqi70Uxk15iYWkX/vPQlFxGzrI79mMceC3UNGfek2VnlfTfmjMl5XRDemQq9mAHAUlTfcRlV6vD1/DK1iowjoCt0WAKAiJj/e88t7yFKi5G/oRz/6UXz605/GPffcA03T0NfXhw0bNuCzn/0srr/++oMxx9ctnLwZSrJzy8i4alxsNJav3YPt/0v9jRl7tYgfcp1YzegQjSWZucbyXqpp8SnrGR0xCu0GasUxGmJiQ7SNhvg+ASliK1lK6JJpF7fFsgYjyJPDNKrZGbvYcKLuFarZJuCZXU5fEgKkDM4rqvL4l50CyMXaxHxyg+TyTQviBLUA4/kwwOcW2d406Xdo3DZjMR3MCDn+c7uF9JtbP5hTtKnjsnQyVrO6o7Ap6ZHtEnPXSVbak6wtugad6ul5DQv7gJOBmmFryLXQPeT3h1/MFxGCbKrN5veVTdn4evQATivLwgmgT5nFr6F55prZmp0ep1O7xHDraQP52qDoWtqioo7riZ4uAMCKRvE416GzdJ3vFysCvGgAt1ncJ2O0UPcOFO61tDJ1kWYlD2SsW7cODz30EK644goACAH2//f//X9Yv3699HG/9rWv4brrrsOnP/3psL1OLpfD1VdfjQcffBD5fB7nnHMO7rrrLrS0KEqby1GOcuwdZWZ71lioe0gtY4RdYkqNn79wvNK5a+vkE2pM7MiGr4gYmdyQDUVDb4ytUWPWq3vkE8GZZvlEJgD4im7kKm0hpccu0j1kyWD72muvhe/7OOuss5DJZHD66acjGo3is5/9bLh5fKPGitYR7EqLWukIAVPuwZxzrULvYgZMbIK1WzAfBoEzLU/gkVoi5LnOOE1u5StyIfMKauP0xFbK6NL39oNHPQkA+EnPWwEAOtUJc39tNmkzUxo0qruwydE4NqPHs8a24DRta4h7VbMztvi7omEU/6/1KQDAt7edCQDIGgJca1R3XVEpiqHtHbXivhAADYF1uiC5tsM2UwI0T3WI89ZEyQwuKoC8T8kIp4GAMRmqRXfQ45V+CK5BjuZBRJwnRdfOigCWerNjOPMa/BvoVASI7yEJPsno9+pJTfXnLGs3iK1npp0VAYHlh3XvfqN4r6MkPWdJupbi2n8C0mYxCNepV7ae0+Avo0JzeuwXW48V52OGxSyoLADAi5FLOiWE2PjOr/DC8/JcOdgUz0nK/cAuVnOLAxlf/epX8Y53vAMvv/wyXNfFt7/9bbz88sv485//jD/84Q9Sx3zqqafwT//0TzjmmGOKHr/yyivx0EMP4Wc/+xlqampw+eWX47zzzsOf/vSnks/h1ckbAEUr1djdw1qGpcdu7lUzAFrSNK40fjKntpkbT6jV9XmDauO5K8R8RFRRlTCVkr92P1P6ZrJskDZ7LNQ95OFH7IFVIYf8Ki219fHJl1fKD1ZkllXBkZVWA5yq36fI1PwZpKmau3HrW9norJb/bXMMG89JjFuse8iSwbamafjCF76Av/u7v8O2bduQSqVwxBFHoLJSTWp3KMT2V9uhN4ofd7ta/NByH+SewTqYBLrcetoAcE12kwBaPrOaZH7mch0vbVYMYiK1PdGwrjpoE1+WozuFpPqFZ5YDAH70W6pp4nZjJJOOUS9lBvC5Zq/AzBJTy19glixz9ozBGPcOj6SKW0gBwO/G1wIA2itFzfjYlKgF8mhBjlnkus2kKl2rQc7jwXRsSYByqk8w2RbVTaeWic0nmyZFCBh7BNSdGkoC0Dn8SFCQ89O9NCcosdAhTMPSBC5Zyq/RvfbZqZ2kRrGBQhbSrZqx0jGIjVOZAL3f/P4GdJsMks5bI0ZoRGb2i2vien2useeWaFxfrZMcNkosdHYF/cgGFgJWJBDtfOrSnQCApwdEPbrXJBJBXKPNixInS3xq0RPrswoGepz5ZKkVSb4i9VlIxSLNSh7IOO2007Bp0yZ87Wtfw9FHH43//u//xpve9CZs2LABRx99dMnHS6VSuPDCC/H973+/yGBoYmICP/jBD/DAAw/gzDNF8uzee+/F2rVr8cQTT+Dkk08+YNdUjnKUA2Vmew6xUPeQWzYvgR6XS2IfddRupXO/67jnpcfuSsv3WgaALX1qKilHvtwcABDvV6O2M21q7HB8RP4LrQq20z1VSuM3K5iHyrqRz+cecmxsDFdccQV+85vfQNd1nH/++fj2t7+937XnjDPO2IsE+djHPoa77767pHNLF3pEIhEcccQRssMPzah0oFNtskVAlNt1VVTY8NL03JT4cnMdtUX1sHY9s87EdjYX1zRwyya9NQd/nNgOAuzszM214rUNKQDAxK5acY7xYsZUzxTMxQJinSNVBPojxYtPEDLc4i8zthqxwAHJ26fsKEazgsnOUb9InduOk7HXsCYAH7cFjhKo5HMwm22mDJhDYh56l5A4BUnBZB9VL/o69o2KY7nsPMfzZINuSnwYSRM+18MTIOXXZLPi/8xGOyTLNqkft1NL94CAtF2nhTX0M526YwSAOSkRaq2JaWbFgEv9y91EEN5TYwYLwsZoMeqPrudJzt0mHs9Sn3JrkGq2azxUvyLOP3mkeM24TW72M+Q6XI7AJQ7cyzsyTMZyLW6oMPArWUZPSghK1pxy5nbsQOmh+bPU2xzE8qdSF8qxsTHccMMN+O///m90d3ejqakJ733ve/HlL38ZNTU1B2+ic4iVK1fi+9///gE51ic/+Um8613vwtlnn10Etjdu3AjHcXD22WeHj61ZswZLly7Fhg0b9gm28/l82I4HACYnReLNSJrQJY318q7ahuaFqSXSY+upbaBs7NqutpnUFGsK2dBRNoIuycQahe/Lzz+RUGPsHEUneX9MfiMu47Y72/rIrynHwttDBkZQKB8rMVxf7Tu+bUoesQ5OqQE2f0BNhm4qro+qBmcJxdZfqQ75evlJRYuCIKGG1lXW9kBy7HzuIS+88EL09/fjt7/9LRzHwSWXXILLLrsMDzzwwH7HffSjH8XNN98c/j+RKN3YruRPSTqdxte+9jU8+uijGBoagu8X35kdO2S28IdGBGkzlBtzv2Q2E6tJZDFYLRYlj3ons6t3loCVRlLm0A2cP4zELkbHiGHWY6Gpg0bmVpwdjO8g4F5D0uU8I1DxJzJS/Ja5FUGYCHIoUWASU80y8fqXxfOpLjoUs510bfHdYsKRFR5sMiJb2yAc1p/yhXkZg9i1KwUD/0qW3L9NNmWjY9uF/zMbH7WIhaf7sqFPTKSxViQUxnaLeRs5Asjceovun5XSoS8XmzafpOWhKViG2HEiclvXinn37SbTNXLuZjdyPxIU5PMG3w/xl2uh2TjNTBXPh+8Bs/d6XkNkrNikjE3gWJqV5x7YVPetEbMdmaD7xHvJAHDp+8sAfaxLJCc6a5NifvXt4rx8n+qKa845oQA9QIRAdY6k5izRd0ixsV32x3kes5KlLpR9fX3o6+vDbbfdhiOOOAK7d+/G3/7t36Kvrw//+q//evAmOku89a1vxaWXXor3v//9iMfVJL4PPvggnnnmGTz11FN7PTcwMIBIJILa2tqix1taWjAwsO9WMbfeeituuukmpXmVoxyLMsrM9qyxUPeQlS0pGAm5soe11fKtuwBga2pvw825hmUqArY6tVIPY0CNmd7LALjESIyoobtYj4r5pzX7S/YTUyvVDNLs1OubjAQwb3vIzZs34+GHH8ZTTz2FdevWAQC+853v4J3vfCduu+02tLe373NsIpFAa6taOVrJYPsjH/kI/vCHP+Ciiy5CW1vbIe2eW3JoBbMGzlAyeBydrIBG7AybTDE406j9ExOQzPa61IPZIOabe1JXNKfhPSeYNYcG+XRsg757+TGBvPgNYmCoM54isB4Z05DXieUmJ0y3mgbRMdNtBDhTfG3sqk2GW9TGy/YNVFIP7J2TQlpktxbXHvdPioMzW+MRE88Xzy3JAqNgeJbdLZIUPpm7sSGHXiWcarnvtUXgNrzPxGrkGzwwJGFZNp8/XiukLG5C3Li+PjFvg1zePZL8O1TvrOd1uGROF5kgpppALv/mcy/qkCUnZomVCfw+6w6Qp/eYa8VZCcHGZF6l+GxklxBLT9L0sEVZjK9Hh/8m0YJDe17cr6PqhALgsZ5VAID2KXEMTxiwF+rBmYGnv1rWCN9bvpcmMf+cNfQ7JLOS81RvI7NQHnXUUfj5z38e/n/lypX4yle+gr/5m7+B67owTfmMtEocf/zxYX3iBz7wAVx66aVSku6enh58+tOfxm9/+1vEJF3CXyuuu+46XHXVVeH/Jycn0dnZiZNOekW6JjHjqm2oJmz5pMS2V9uUzn3YYX1K47f1NSmNr+pScxNPJtXczCNbVeqe1ZJJbr3agqJ1ytc0apHSN7Llmu3ZY6HuIVOjCeiS7vnb69TWiJ1j8lJwV1E9ErZ7lYzpZYwy4VaofX4yjWrztxLy4x3FuevSTrciErXyqicvIqdamusekhV1HNFoFNGovP/Jhg0bUFtbG+4fAeDss8+Grut48skn8b73vW+fY3/yk5/gxz/+MVpbW/Hud78b119/fcnsdsm7zf/8z//EQw89hFNPPbXUoYd8GNU2rAFy32ZjbLpD+YkYQLJwnWqjEy+IjYR7gvjA6lvIdZz2lVZEAC+bZMeRYbGopc04NK6f3inGxI8UztOpNvGaqibB+tp9Almx/Ngk47aCeZeOKAGp+pOFiVD/drFwB+ROHidztanVYh5RmgdfW6CLi21JTKHKFF+gP+wQAE+PiPP4cWLnqWbbZxk0ma05bSRh517aGuBHi5lXI0nSdGqFc/4yYa/w/V5hApfnfRmZiEUGyEE8pyNjiPeFGWyPaqArqR/4SKV43hqg+TRST/FtZKjGLLY/LblAp/Nn9MZkd3euR9dtMpRLFBvN6a4JP85u5CTpJiadkxAWlRQwqGa3dqunWH6veUAiJq5lolrIol8cFyDBo9Y7I8eIL7dFXlEulyWQI7xXWbj3Hv2AaTX0mR0r/mzuHmiAVPgIjeT2+fxBCJWFcnpMTEygurp63oA2ANx+++247bbb8Otf/xr3338/Tj/9dKxatQof/vCHcdFFF83ZKXzjxo0YGhrCm970pvAxz/Pwxz/+Ef/4j/+I//qv/4Jt20gmk0Xs9uDg4H6ztKo/auUox6KN2dZHzOH5BR4LdQ9pxF3oCTmWs3dKraxJV8jg8B5KNnKW2m8FExLS4yWMDKeHbymON+Xvva/opL60Xs28c2uvvCLCz0pe9xz3kJ2dnUUP33DDDbjxxhvlzgmh9JvZctU0TdTX1+9X6ffXf/3XWLZsGdrb2/H888/jc5/7HLZs2YJf/OIXJZ2/5B1nXV0d6uvVDBUO1fCTBeMyjwAYM4MIgGg3GXsRyEmvIOQ3KR6PJFi+LR7WZ7SQYka5qW0CyedIxsv+VQ7Ji6k2Omgidncfn+fIaKE1GEu5+3bRMXnBp/PbVcSCj4q/uaXknE1y5UAXj7883IL2apFNOnW5kHL96fdHiWshsJppJsk5g35KAuhJAqRxBoB6COq5xtkgkoHB40+2CuDE7uBhhpPZfm4JoQN1S0QyIunXFr1m/EVxzQbfx9ZiY7Ac97tmI+8RI2SAWbZuklIhVA/w7yXVRM9k07k9nFsRhPJ0fo+5N7fOIJvNy1jiTcfIEdPNpnbmUATprPgcMajPk6Sf62qaN4oETLqTerITyOb7FumjEoR2G0aa+mpzNzPuu03H1iR/nOcrKym7UE6PkZERfPnLX8Zll10mPY8DFaZp4rzzzsN5552HoaEhfO9738P111+Pz3/+83jnO9+JT33qU6Gp2b7irLPOwgsvvFD02CWXXII1a9bgc5/7HDo7O2FZFh599FGcf/75AIAtW7agu7tbqsXYC784AkZUjrnJ10oNC8NUKDuuOHFC6dxVETXH17WdahJR1dY6y2vHlMZvfvkw6bHRcTXmxVa1VhhWAAK50uc+38z2fBoAzTUW6h5S1wJp0NtRpbZGvdCzbwnsbOFn1RLPYYtbybCG1aTUsRFFsKwIeCOD8l/oXKPa3EcypdcOT48lLfJg3U3n0SMxbq57yJ6eHlRXV4eP72v/eO211+LrX//6fs+5efPmkufJMX2/ePTRR6OtrQ1nnXUWtm/fjpUr594FoORv2Ze//GV86Utfwv333y9VJH4oh57XwIqmsIUTAdPaxhSSuvjBYpm4o4nX1K4Sm5lUv2ALWYacG6WNKS1GzCDnHTOsE2aw2khGMmMVgqF1U+KDpXHrJgKPPC7XTqxrTg9ZXi3NEmVxnlivmGdiWLx24nC6OEog5AnwmWyepftImOJ6XxoVzBczsiy5XlIjfhRejdWKe0ESef6G2FYhweDQ94RZcE8MQQW1czmmRcgzn6oSL+QWXEY19SnfI6huu9ZHfiJB1ybOw3XVQafYhQeD4l7HuslwrHIGqz5J988HQOwzg23ui85j+ZpD4M6SdUpOOFUErD3Aqyr+oWGjNGbSGYSzE3volk5txCwyX8u3uEhsEPLx/Bpx3re3vwIA+NfMceI+1FArNK4dp2QEm+exGsMcjsCL0bzGI0XXEqHPbs6QlI7Nsd5mrlnJg71QckxOTuJd73oXjjjiCKXs6IGO//3f/8W9996LBx98EM3Nzbj44ovR29uL//t//y8+8YlP4Lbbbtvn2KqqKhx11FFFj1VUVKChoSF8/NJLL8VVV12F+vp6VFdX44orrsD69evLTuTlKMfBiHmu2Z5PA6C5xkLdQwaBJt17eEkiqXRud4m8lLlf0SBtrE8tI8ZlfbLhJ9UAa3W3WrLAV8hVRCbUrn1iUq1EKB+Xr/n2Mgd3D1ldXV0EtvcVV199NS6++OL9vmbFihVobW3F0NBQ0eOu62JsbKykeuyTTjoJALBt27aDC7a/+c1vYvv27WhpaUFXVxcsqzgr9cwzz5R6yEMmtJYc/AkCyLR2MYM7FYsj1sPmZWT8NUI1v8vJzIzAW5ZMC9gMK+zHTaB4cjwRysgjg+L41V2CPZlkSTAbjhHIZrCWa6UWUjmuw9Zgx/jfxMTSGLuW2oWNkWv6lADw+ij3HRN/sl0kq3ZNuIQSGxOiTnAUZDRGIH8iL+5P2C8axQtddIjrrP2C3HqS2PpacZ6quLhWruN0yXBO5z7WUbpvdL/gaqirEfXdyWSteA0xtC11os55pEcA89jxIvGR6xdfUoPrreleRMZ0aI54jJ3dTbofuTaSnhPTjsHi9l3Z5bQw5Qs/bOYEgWiaK7PkoekaAXOWfBtTxb26mUU3kwZyDeyKLs67JSXkxJlhsaBqAZmtDRZ7BoQKAGaxo0GBaadacgbZ/HnSJU1RDnRW8vVYKKempnDuueeiqqoKv/zlL/das17vGBoawo9+9CPce++92Lp1K9797nfjn//5n3HOOeeE9YsXX3wxzj333P2C7bnEt771rZDhyufzOOecc3DXXXdJHStzfBZ6Qm5zEImqmegsUZDLvdqtZmyy3VDrTZMcVWtpFK9WY9adHWqb6cPP2Sk99uUXlyqdO4ipSUxNSVkvAECitc18MtvzbQA011ioe0gr6sKQXOe2TMrLeQE1N/OqqJrJFtrVWPmJLWoqB0NNBQ/DVgPboeGwRLjNavXinmK9fG2DvGTMDQ5uzfZco6mpCU1Ns3serF+/HslkEhs3bsQJJ5wAAPjd734H3/dDAD2X2LRpEwCgra00L5iSwfZ73/veUoeUoxzlWCgxx3qbuWYlD/ZCOTk5iXPOOQfRaBS//vWvD6iRmGwsWbIEK1euxIc//GFcfPHFr3n9xxxzDN785jeXfOzHHnus6P+xWAx33nkn7rzzTtnplqMc5ZhrlFCzvdAMgOYa5T1kOcqxiGOefH/Wrl2Lc889Fx/96Edx9913w3EcXH755bjgggvCRGRvby/OOuss/PCHP8SJJ56I7du344EHHsA73/lONDQ04Pnnn8eVV16J008/Hcccc0xJ5y8ZbN9www2lDnnDhGF50IidZimxT6ZdhhaE8t3aLeI1U13EePYL5sAiFlMnIzBriWCH3R7BTJpp8bjd4CNgF0H6s2MrZZXJ2At5YnfJlC22i42+iEklNtiu8cL6ZaeVmOzdgjHOdYgs6/CxZI5FbCcz80EFM8ciO5YeTmArUeoXr3kCALAFgpnIU5spjzKoAdUJMzOb9NVwRwAAqrdJREFUXUqMO7mAm1kNGpeOk9Lc2C2uobpTZMReeGY5AECjeZnE6utJql0mxtZuduF4rMsWf5jFHdgjsqIxGpvsLwZ43FM7R2Zxmm9AC4hBJpOy7ArK7FKWMNfmFZ2L5dr8vEmO4vq0hLBOKgZWkTEbHjLfDeL8QY4lC+JPrpWbigNaM0niXxWfl+aoYO07lwtHtHSbYLrZ1T5CpQ7cmow/U7EhMzRI43mEqosuMWnLkmN8NMzUMuz9/MEImYVycnISb3/725HJZPDjH/8Yk5OT4Qa3qakJhqyUXjEeffRRvOUtb9nva6qrq/H73//+dZpROcpRjgMRs62PmPb8QjMAmmss1D2knTehG3KqKVVfhu4BeXb46KVq3Ra6X5mboee+Ij6qxs5GJtWkIskVajXrsTGVmm3FbguKbuS1MXlm2/HkFBHztYcERFLx8ssvx1lnnRUq/u64447wecdxsGXLFmQyQkkbiUTwyCOP4Pbbb0c6nUZnZyfOP/98fPGLXyz53PNnyXsIhmV58Aj7WFSjnKP+zt54FAbJRdLt/HEgqS45Umtj3EOZarMtqjOmftPsFm1V2zBfEoAqd5iQqkWi1Ad5iHpOkzmXWyuOnW8uBoBRNlIzjBBI5Q8XXxwG2RqbctEY7tltpqlWuV3MN9Yv/kbfPIZsXvxY/Kb3aDGoUVx/bLOY19JqIeccTQs2js3PuB2aT1LxyM5oKMV36uj+EJB3qbjYT1CNNgF0h+5PjK7HputAAOSpSbeRpWNwnXqmGIRbNWK+xmZxf/MNlICgeuvcEic0oQuNzzhBkJpRy02ycpbGc9LAnCLgutyGlisGbPml4vz6uDgftzNzKaHB8nIGxmy6Fh0xULNKfMHHTDH3rCdO2LNHSPk7yP2RpfFGls37uDVZIYHj0OcG9BlwyFGdSyGyrZKuIHOstzkYUepC+cwzz+DJJ58EAKxataroWDt37kRXV9fBm+x+YjagfaiGbnjQDTlZ73FtvUrn7p6qkx77tiNeVjr3hKPWvmq7oZaqTz2tJmP3GtSk2C+/pCAFV1wPIgNqJR/GGnkJvudKJCRLqNleaAZAiz0CT0MgKSnOOGqfc9+RTxw/t2OJ0rkRVVvfdIW5A2o10wDgqFXZKPX5NhSMPwGgvllNwj+Uli9x8jKS+v153EPW19fv17+iq6sLQVCYQGdn517mkbJRBtvTIjWegMnmVz4xtwSagkYbboTAND9Gd88kwy+3ghZMAqBBBYFMMi6LDdGAY7Nh+ykQIxqrJlYzJYBWWIdrUm3vFIE3Bspk3AZHC+lUBrMa1RQHM1oS5JZRLTmBy9gA1f5SLbLmGuioF1/eXWz21k2mXHRfhjJiZQpN4MjgDWRcxoy8U+2HrwHt9bgXdfeQyMLWU61Pcqv4P7faynbQ4k1MsuZqqGkRjGRSEwkMY5IBsDgvJyMiW8XzXPcRSerhfABRD80MP/cqjw0Xg32+b9zGK8/JixzX5tPfCRNeBTeuFn80Ui9wYiPP5mvE6ts0D67BZ2DvxQMM7hGAgn92N/R2AQDiNWLDmKsV9557ZXOPb05amKSoCHQA9Plh3wBm1rmNmWEd3JrtgxGlLpRnnHFG0f8PpfjXf/1X/PSnP0V3dzdsuzhD/EatWSxHORZ7lFKzvdAMgBZ7aEYAzZD7vamU6Ok+PYyofEJN9SfSz6mBZbtGbQK815KN2KjScGiu/PzTinmOnK2WpKlNKNRsO5LM9jzuIeczymB7WmjTGAh9xhfYSZmwCOAxIxqsJJn4sGA+AsrwGWT0xcY22ZwAgC6Nc6ai0AhIsrt2aodwdAzIgCggAMUGbbygsCkWS8XdeBCyp/YR4sMfeGKMPi7e3upucazJI8ksi9yruS0WJwPMBh/jGXEtJyzvBgA8ZQupt0ntGbgdlUYYmxn20Nk8dN32wNR2ECt2Y4+T8/r4uMiqhXeanbsHmLWnxwOgNi4WhZEqmjMB8/CHgkC+R+RAvomYb77P9N740SBkk1kCzy3J2A3dI5DNyQGD7iObsvH76NW4oTM9g2qL3NnZkA25Ylf7SG9xn3SfEh+RSQ2BYRbNK0dsfpRMVyxitl0C7JxU0YndZ8WCU+2HpnyoEgczyATOoGvKTSgw2/tLZC/QhfJAxh133IEvfOELuPjii/Fv//ZvuOSSS7B9+3Y89dRT+OQnPznf09tnfP7Yh5GolNtYDbhqjrW2L7+h+/3vjlM6t5lS28yFZSmSodWoMUdhGYxkxPrltwls0ikbNcePKI3POfJz10yJuc+2PvJrSog3igHQYg/fMQBbbp0Ky+Qkw1MEvCqhYhB2IMKuVRufGFBbH3UF709NbXmUbuHKEdHlf5t02bGLdA9ZBtvTI9DCPtEGM4LEUlv1OWhjxDrTXfOpFrvxCLEhGHtFsMEWOU6zdDjeV9xzuWvJCHbtFLVVLPX26YedZb45BoeUuHJqimXB/CX1Knz4MWo3RS7bQSXV9JIEz2Ncxa7o5ITN8nGnWsyrtWoKXVUizfd4zwo6ATGvNCbPmxeWiNNYTlSw7D06aIYpqoCadNtN4rkj6+l+JcT96x6nrDuBRwaT1rQ+1yk7UnQvcy3FfciZFffImT3s3R1l5lu8zprUQ0abAbC1Uxw7Mlw8z4Dq0znRwQ7x+jR1IV8/g32bJJszz2/XakXPc69vr16s1LmIGYL78PNFn58E1ZvzeWN8DyjBweVeOfpsxPtN5Oi8xgAlZUh2n2Um3pNb5RdrVvJAxl133YXvfe97+Ku/+ivcd999uOaaa7BixQp86UtfwtiYWk/kcpSjHPMX8+lGPt8GQIs9rLgNIyFXf3xK0w6lc+/eOXsyZl8xsxSu5FCsGw4VkJKh+n2qGFBLhmbr5e8f70Vl47CGYaXxFYa8osIOysx2KVEy2L755pvx2c9+di+nymw2i2984xv40pe+dMAm93pHkDWQIBaTQXZ0TCye7Ucm0bNDgMMQfFGPZ0MnYMySZgZrWQK7JPdlUNQ/Xh323uaFKlYjPrj+YLEshL+Kmk//ys6QfmeMsLdzxXJqjzUsGGP+IusErNjYK6wbplMxkJ7Ix9CjCymzx5J0AvDREWJPl4vXZtvd4glm6aNEXxTNA1wqB2HmnbqGYcopdoSOkkFGnswiOFnh1PO8dUxlxZgcycVDczcCuXFi+hmo2jRWowQDA2kjr4VJD2as+X1htpmvIay9ryuWittUgx7tjSDfTAw6tZjRhylZQqoBlrFz33aWsDNIj0wUALbXKSh2d0zQ88d19QAAnn1RqAuWpT0aK+ZhjtFnleuz6di5Ji9sD+YdlRLX2kP+AXR/IvWStYzzWG+zUKK7uxunnHIKACAej2NqShjhXXTRRTj55JPxj//4j/M5vX3G3//kL2FE5dzcM50KLZgAxHvl88KJKaVTI3ea2gGOa923OdVcYud4g9L4t3RsVxr/2J5Vs79oH/F/OnYqnfv50X23q5pL5B6VByHIS6yRJdRsH4yYTwOgucZC3UN6roHAlQNej/QdrnZyBfVKADWwyQSQdGhqYN9Q64yIfI2aQZsvKRIEAKdCbTHoS6kpxlTCTb/xarbnM0rewdx0003427/9270Wykwmg5tuuukNu1ACQHPnOEZq6ZvDBGBK3KKRVEUIsrmvX5AUr21ZKgDNkEM/7PTdjVYKQJyfottMa4o9nIA5VfwFd0xiV8n0isGbnyYHbJIIW2vFxi89VBHOkxMDbG4Gp1ii7hLzzTJplnoziAyIVR8cqEXX4YJZq6sSP8aDJGVOPCeOGTOJNSfwbbcyi05O60vENee6Cn22PUosGIMCRE7lxd9kSkjWvYpikM1glsFjAB0+JRtYEsmyaK9enJ8BM8vHWSpvU015YhuB4CY/rHGOkUQ/117cX5vdyXkh5GSAR0YYTrM4phcNwjlG46QlmtGn3aWyAI/q9w1+P+l9DuX3wxbMCLHzxHD3TIrEh07MdqotVnQsZvk1ktjyvCLjRijf9KnEASR919n8bVIONC3WrOSBjNbWVoyNjWHZsmVYunQpnnjiCRx77LHYuXPnIVtjXo5ylGP2mE9mG5hfA6C5xkLdQ5658lVEKuWQV19GDTTlFcolprpn9w3YXxgTigJZxe+Dq+ZfCd9UY5edCvnxXlzRXE5xMTmpaZf02HzKwZMS4xbrHrLkb0kQBNC0vT9czz33HOrr1ZrTz3ek8tHQPCygWld2jc7lLdhdAmVXvSDAYrxPvPaFOpF9Zxac2d5sJRUQkyRcp9rowAxCNlknd22dGNjQUdovlhRbbLi1lRbGRpIQm4BG7O6KJiEB39JH7bpYZryV6nVTxcZpDCJzHQK81TakMJAWxx8eE38DOna+Xpy/LSrSiMNcE8zzprrCyJ5IeA84CcAO5VziUUPHyJK5Q45IL2biEz1UB14vxps5DTUVQkVg7xQmYV4NMcp0T9n8LaxxJ1AZoZpqBuNmWguBOpvUMUPMzuU8hq8pR+3YIn3i2mK7xN98oweT2PGcJ1Z8Xju5xJQdw3WqHecfFrudTNfo8wYN8ElN4FFdekvlVNF98s1igMz1+5wkANXV2w0eosTke2tFIkjbXhE+BwDRuFxWUvP3X2ekWoO0GOLMM8/Er3/9axx//PG45JJLcOWVV+Jf//Vf8fTTT+O8886b7+ntM7JdDvS4HAvB/gKywUoVmciuUGPVj25Rk+ptHpy7OdVrhWmqMU8PPX6C0vi1x+2WHvvHHjWDrfyrakCg+e3yqgI3nQdKFJnMtj7yaxZzLNQ95GM7V0FPyCWxT162S+nc6Yx8f3b21JENLa3YuktReaTal9mTv3UA1Gq2Yaohy+qoGq3/zFjn7C/aR8gy24t1DzlnsF1XVwdN06BpGg477LCixdLzPKRSKfzt3/7tQZnk6xXZVAQ6gzKSA3MvZb0tCCXc/GHILBObuK4WwQZ3DwtDEe5BXVEvAGKmX+ipo1SDbJ0wjslRAX48kuB4VBvNIKm2UaxAycFiCSF/sQ1yno4k9ZCBbYwJYLUtxwCPDLYmidEmIy2bGG2uWY4RQE5VxdBcKY4RjYnnMpMWjRXn3T0u2FZui8UAPqwtp02xntPC5EN2xgadW38trxP37YUKMoerp7ZZQ3TvCcjbNT4G+sV5o2SeyP3Gud7HpoSGQ8y6TXVI3LYr7Ded10KJtz5V7GjOygVmw2PdZHZGvbG59j3gWvSEB3OE3b6ppp2uP0L9vblfu0M10zEySGPDOX4/AwswXxaZfp1k7oNLRGKBVQz0cOiSHuGadnqCEzOxQSN0VndTNGm6pvgO8f+mN09CSly6SCVABzK+973vwffF5+STn/wkGhoa8Oc//xnvec978LGPfWyeZ1eOcpRDOuZZRn4ox0LfQ9ZVZWFUyCGFoaxa/ykvJ88u6yk1GTeXwsmGb83+mv2FrmbkjsSwGrqb6pC/f4Gkez1HpSkp5aaI6PKJaEfSjXyx7iHn/A29/fbbEQQBPvzhD+Omm25CTU1B9hKJRNDV1YX169cflEm+XhF4OiJjxXXNDEwrLRc2ga5gRiJvdx8BYvriBNSGIT2SKDpWjmq5swNVoVZiplv2TElMWF/N7aSZIGX2vN1FjBzBn+kXWSqWEzODm6J+2ly/zPW8OSJcuM2YYXqwqI8u/w7qlQ69RpyjsVI4sKdG+dro2C0iw2buFpld3dFCppivlXs/V1ligXihu73oGrmFBNenhyCyxkVlnUD7ueGa6YcMgbE1JK7VbRMLACcBZraVMNNaCFK5XZg1zvdHvCZ0Hyeg7FPml+uu+XVOoCG/rzpveq85eeKbRtExWQ6v02fKifvIrigG+eaMnsZcvuBTgiYwik3iWDngRYOQ2fdj5Ho+Wczmdw9KMgiLdKE8kKHrOnS9sIhccMEFuOCCC+ZxRnMLa9SEHpPb1LEfgWwEI/L0Q33zpNK5X3hZoc80AKtO7doNQ3EzW6NCvQCbn1kmPZbXIdkIutQa0fZvla/Z9rNvvJrtQzkW+h4y41gwJFsxVSi2/uLONzJhR9XQbiaqULQMoGqrGtifuR8vNexKtQO4FfJjjSm1a986ruBJgb33mKWEV67ZLinmvHP60Ic+BABYvnw5TjnlFFiWYjrqEIxYVQ6OLVhoBkPci3r1umG88FItgGk1BeyE7XKRNplyEWhcslr0vBx4VqBat4rAZ9SDNUgu0ZwJNbhumerCyXTNaaGNEsnZa+sJ7L4imF6/1odDkvT2asGG79xTWTSGkTlLraPErjLozhJLHdOAl3cJAJygxdsnGTkvaD3D4rzcv5mzimyoxv2sgyo3BPs6vTYgOfmUIzbOPrXJ0PhTSNN1a0kizq2tJkzkE+JF1iSxz3WMMIOi+QV0770ZGWbua53pdEPTNwbZLPVm4BxU0gJE8nI2h+OkhNPAzvEWctSD26oQf/P1ZLpG8iBmzdlpnMF22IKLDNb0vI4oO9EvE4tYdUT8Ha2lPtsN4n21JkjaT8kCTqLwOSPDRigX1/tF8iNGNf/hNTRDKhZrvY1qPP/883N+bdkFuBzleGPGfNdsH8qx0PeQmakodE9ORm7banXP+TH5wmX2B5KNmf5DpYZTqTQ89MWRDdXWZSoydK1DLZlYGVVjtmsi8kkap+xGXlKU/A1fvnw5+vv79/n80qVqLMB8Rm4qhgqWPneJD1J2qQBWz+xciijVFEfH6NNArGF72zgAoI+kzsw6c89qBtQsGUlU5xBsF99QruWN7BQAKrWcjlk5AQAYHRaZK7dBLIgTu0U2OMLfsRErZFpHUiLFxj26PUoCVFLZ2tRIcSswnY7Bi43n6mhrFdfi00Vk0kLelCdw64+KeYe9W0O79GKTM208GrYY45oaBsJpauPFUniuvwbdC2bqGchGhy3kashtnGs3if3WyMBuptFEoptBr/h/2FPc1UIVgUPJD4OczC1ipe0Zbde4bIBl7dxmLDD1MLHiGPRickk3KdHA5zBTxcZozMiznFwLgDxJ4E2S0fdS5l+nhEJ8WPzNtBez4pyA4B8du8kDyPTOr6LWYmnq4U0JDFkfLs0PoPn7Hry/5xZzHHfccdA0bVYDNE3T4HmK7rAHKZxqD3pccm4Ztc2k1SK/KZl8Sc3NW2tT29A443Ib8HC8ottvRZ3ahs6tkGfd2NhSevywmvuRnlc4v1362NnWR37NYo6Fuof0bQMw5JjKukY19c3QHnl6VZtSK1qOjKt9x62U0nDERtTGRyfU1ldbwc3cnVRTBXQuH1caX2kqtP7yJcH2It1DlrwD6urqek1zC45DdaM4lzAiHrKdxSDIbSKTsZwRMsh2NTGu4+I1oxViobP6ia0mgJUl0woGsyYZSWTMOLRmdgsTx3cTZL5FbPNzu5eI57lQl4A6s6wsK/diXgigbHKkDCXVxDKPr2INOrOqdMH0NnISwMmZoRlXV62opx6oEAkENgfTVwk5t9M3Y3GfKphzAULGzYwxs84sOWfJ1BBdmzlSXL9s1xUD6lyHg9oGsSJPkGunViM2wNYusZF16rh3OLmiU3LApLZjASVGYt2RULbOBm5cu87AmZn40MyMjNK4ppvfC7vOh5GhBMFScV+y2wggU/7AZSaZJPTMsOuTZvE1N3iFPugNZJ5GzL+/R0j2Xdqzc2LBTBWXB7C8XM/pCMhhU6Prtqg8gg34AtlFfpFKgFRj586d8z2FcpSjHAc7yjLyWWOh7iHb2sdhVsgB1/G0WlKJ26vKhKpBmF2r9oE2JJJa00OVmc7XKg2HWzl/X+jedK3S+I6KpPRYR/Zrukj3kCWD7Weffbbo/47j4Nlnn8U//MM/4Ctf+coBm9h8RFP9JMa31gIoyG0t6nvtd2WhsWu1wJ+wlghJ97IGkV3asZMk6AR6rAg5mk+IhTRPbCZcPWRXQ9dxchfPVhDQcwhIsZyd6ni5TRUzl3rKhNcowGLCEs85JF0GLUKVveK1qcOK5dHMiDNDWr80idV1xc67GjOi3NY6Taz0zFpydlWkazfTZoHV7RBAVN8pAPowM/DcmoxakkWHuFf3jG+bDmRy4rxcA50jJjkyxW7oPGEUXVuOHNn5XugukG0hYD5CWQB6j5nBtlv4xpAsmxzOQwn4GP2/wt/L4ILrpm1yMGfgHiHFBC/MnIjg0FwN7atFirZvO6kZqE5eJ2YtN0o/yPTZMVkBQJ8JbivmxX3E6F56JI0PXe7pmqwGObZrsUqAVGPZMvm610MlzBobekIui19Xk1Y6d3ulPPMzWKumUxzorVMaX9Gidu1pBYkoMK1N5DzEilWKPcZH1a7db1Zg5bOljy3LyGePhbqHrInlYEk6e0/l1BBvVqFbA3fVkQ1VsK4KrsyM2gHcuBpYVzFoM6vVavVVwDIAGAqLkSf5xi3WPWTJYPvYY4/d67F169ahvb0d3/jGNw7p1jWzxdBINSJsMkVspuaKhaizaRy70gJkNbwoHhuPik1culpsptwqZnUJYBFos7lUm3tRd+XDllosg9ZIoh5QD2WNa5HNYvaVGXffKsiSPU88Vk/1H6mYaJfCbcWyjeLY8Z5ih2xOKPg07/p4Bk9sXw4AOGXVDjFploen6G+MZNLjYoVlFprrfgKqh863O4h3i3nlIZhZn9jdCv42EWhkh+x8Y7Hcnk3OrJSOeIvYbOd8cc9NqlvO1TOIFH8Y4HNbM6eFJNfEJDvVQQh0c3Q+Zpe5HZtGyQdOQjAI96iWXKe+6ZFRI0w2sFySpfPGJLvFi8eznVSHzllYOmaM3NLtiB/+4EZJ3eDUFctXWUaeXVLsos73Ioyoj3w9fZBJhhkbps8C9RCXXtEWaVayHOUoRzlmjTKzPWss1D3keDYOQ5dDnqofCVbYycRME9lSQ9UN3I+ogV0oDjdzatefVVCCq77vk7ZaMrI6Il9i5Mve+EW6h1TsRl+Iww8/HE899dSBOty8RCTuwG4qNudieU73YD3iu6kON8H1yVTDbRIAnWKJt3i+LiE+yAO6YEbynWJVqqzKwd1eKx5jUy6ugSYwZsUFArQJvHLvZw4GeU61H344uWbbSpKsnI4dmRQvnlpB4JpAboRduKf1wD1mWS8AIEUmZtzGjOvQV7UK5vuVEdI0szEZ1VuzJHx6+ARSOVFQT1L05IgAzuxazq7fGsmKmJUI0jHkuCc3t+2iRIJB/g4u1an7dGOYveZ741MSw5oyQ9k1twPjOnOL+5BTosOmBEee6w4ZhOcLZmf87+yUuB/MYHO2lyVWbMbm1BEIpvm6xEbH+i1MxcXCqVECo6lWSOfHnmuieYmhnJjhz6pB7y/XlFuDFhx+jozbsuw4SrelpS4FSqeUFIu1R2I5KKEkWYM7/mKj0rlHLfm666BBbTdoyNapU2QzanV5nzj590rj/6b6OaXxbaa8MuCsl9+jdO7WP6rtpKeWytfLexKl+uU+2/LxRt9Dur6BwJNjibvq1GpvX2pT8IUYVqOmed8hG4EiWFYFZ54i2DcVas5thZZtAGDqar9NtZY82LZNuS4Xi3UPWfI7PTlZLOcLggD9/f248cYbsXr16gM2sfmI/GAFYpliyTD3LvZtIzTbYiY00yE+6Du6ydo5lEOLBXf3bgGSNGIZuXd3pHEKOQLsDLLrO5IAgLE9tQAAm+bBsl9/xn6NAWN0UkeeAOiqBiFD3hwIZjtCraqik8UmXSDm3SZDrmi3WGwn7SgmbfHvupj4EkaoRjxfJ863bUBck0V9pF0CrAEn2Gjd8ip9+FGqG6ZrMMkRm2XkiW3Ux7qajtHAzLGYA/ce9+IBbJKv69RKxqsmJp1aanG9M8vzY3sInJNESE8XO3gD04zh6L3mGneu7+bEBxu58TXzYhBoWgjYOdnAZqRFtdgALFI1OBYNJmWDm+CD6TCp7MCDuNYJquNy28WuL/aMuCbOYvP99egYGoFu6AAIkPvUMik2xu3exDmSWbmM6GKVAJWjHOUox2xRlpHPHgt1DzmeTEC35UBvxFRzBA88BUdwU+0DaWTV3MgDNRW7MjOdr1cD25W98ufPN6qB7dGcWonQQLpaeqwr2fprse4hS36na2tr9zK3CIIAnZ2dePDBBw/YxOYjapcmMdUrQAhLq7m+2Yh6Yd9nrl+O9xOLeph4wBrhdlgEMglYBQzqpqVsuE6Z62yn2DG3WjzOLb4md9SKsWSKxfXgcQKT+Xo/ZGJjlGkqmKeROVcFG2jRuekcDLLz7WKcrgUYHhfu4x6ZwDk1XINdvCKyozmfS6MacpbSR8YNOLV0vRNW0WuDGalMBqYB1Yfzly22W8wv1+qGfb/ZIdzi94XAd57UBBFi9RlURqh22eaER9IIExw8DU6oWNR/26ESTZMTCtS72wkoEUP3D3qAGLXr8knV4NaJ80b7OUsj/rj0Xmh0H1k+nqdaKy8aAAMktyd3dotq8PNT4nGnYsaPGicFCLizDN7I6AXFATH6ebpYVg3ELcneu4tUAlQOQB+IQY/JbSb1LrW65aUNSemxuze1K507UNR/+Ypu4j/b/Sal8d8dfavS+EDFgCirtpNu+ZCa1XCqr1Z6rEzNdllGPnss1D1k4GvS35WqiFrHg4HxeWyjplpzrdYsAbk6xUbbikzq1FL59VFrU7v4prialXtjVP532Y7akNKhLNI9ZMnbiN//vljSpus6mpqasGrVKpjmAVOlz0ukUrGQtTRHyWCK20P1xuAQQPYiBKyY1aQPh90hfpwjvQKAcRutvt0CSMeI3Wxcm0GmX8gq8yuEDtpjuTiZdTUeLr4EySoh4YtTeyovSlJn+n6bGQ2ORW7nNHl2d3SIKZ5cTmCX+27TX2ZlmcEdmagM+2W/veMVAMAD204FAFj0nczmCeTSfWIpvZYUm3AGyrl2J2SX2ZyLW1tVRxy6NmKUuUXYDLMxrr+GEYQ17gwwXY3ug0F/SZadJ9k7s9bsUs7g060ttMUyyeiMa5/teiohIEAcJgF8ZtOpnp5k95qnFdq5rRSt2pxNAqnbxJLH+8T9yi4hKf1Ecd/y6BgnBzxULREZ/6k9Itt4xOGDAIBnX6wFAExQ0p8l4gyydWK62S3drfBDozruh85JGo0YeJX+jAs18/h6h23bGBoagu8X/9q/UVvflKMc5Sivj7PFQt1D1tRmYCTkZL1bdrYpnTs+Jg848wrmaoC67NdR9G+Mqinww8410uMb5KXcyxqTSufePq7W1lKvl792x5H/ri7GNbLku/XWt6plyQ/lSCRsTIVuZgSWdgqQGz9xBJmNAiBrAdc+07hqAZizewQr7BDQ4jZabJbFDMmrW9sRZeYxS+CVnaSJMc674nFmTsO6Zq4fJAAYGTFCI7FqK0evpdeEzuDivzYpRpjtZXBmkklbpNWBZ4mxT40K92QzQ6w4JU6j1HPVManVFzHGfMzpRuI2MdtcL82gPpOnFmkdBPiobVhkmFjoGYtXbI8Fe5XIAPpkUhdUUu029cZm0zJu6xX2yKb5sBzervcQGaR7Su7wxgS9MZTwYGAeSsKTZtHjYYutvBaai9iTQhER3dcPDzP/9B5wksBjBYUGpHbWiH8TgH9pqFVMi5ISYesxkogjzvdAXBuz/E5tAIP6fBtLxZtvJ6kGnzYDo2m5X7jF2iPxQMbWrVvx4Q9/GH/+85+LHg+C4JDus+02ONDjckxlR41aBp79KGQi/I5JhlWjxjrVJNTG64o7E8NU2w1HKyVVMADSUOsxrileu1Wp4EYu4fxU7rM9eyzkPaRsVNZnlMYrdP4KvXTmKyITauOzzWrjY8OKNee6vHpnNJ1QOvfhjUNK418dbZIe62UkZeSLdA8plZrYsmULvvOd72Dz5s0AgLVr1+Lyyy/HmjVrDujkbrzxRtx0001Fjx1++OF45RXBuuZyOVx99dV48MEHkc/ncc455+Cuu+5CS0uL1PkmJ+LQGC3Rj3yOanwN10SO3MUj4wzsSLpsitewIIRrWJJjgpW26DebZejT/81AOT5IDGeTeLynr148T8CdTbE0nZhcApu+ZYSS9Ee2HQ6g0M9bS1KigF2sBXaD3VTc85lZVicTDf0F49Tr2Wmmns+EXl0ydPCpTthgJ2y6NJadGxNmwS2bwCqzwHY1nTdTLBtnJpvNxJh5zy2zYRpcG01JBuolPp3hF/eDLoCod5/ApU0LYqLXgEP9tUPXcdqLc101u7Sz+RmbnPF7YHK9dbMdJj3iCfEm5xppXpRgyMaIdR5nCTrVZddw7zSar6vBbKcf3K0CWLDBXoZq8PlHIZ2ge0BlAKwMYFBujRvhY96EeA0nMvieTnqSLpaLVAJ0IOPiiy+GaZr493//d7S1te2352w5ylGON1CUZeRzioW4hwwCba8SublGPqcGeENCQCICxZptu1ZpODRJ000OVbDuK+YaTIVMR2pUDWyPVKi1tVxak5Qe65g2XpQZuEj3kCV/Q3/+85/jggsuwLp167B+/XoAwBNPPIGjjz4aDz74IM4///wDOsEjjzwSjzzySPj/6TKjK6+8Eg899BB+9rOfoaamBpdffjnOO+88/OlPf5I6V5A2ESPWkxlSZjOb16aQ7hXMNdc+W5PiS8bZpWdfFBJirpWOVYrMj2OQBJwAarQ+i4CcuBn45UnK4tYUG2WwKRcDYpZ5M+h069ywfju+JAkAmLDI1VpnAzAaG2dJNdVyU29vZs89LYDvi+PvGBdgHyw73i3+O7WSQL5G4JFAo09ttIwBYq0bXFgkxWeDL4tqsBNxAUynegSoZLCrMYHCiijOe2QMaOTOzs7hNjH9iR4C5uz+3SReV7Gd5hclF3BKWmSWeIUv84zz5DrEWK635jGcDOC/Lp0j2hOBvUxcm0t90Zk5ZlM1NrJzKXkRnpMd4Lme0/JDVYDTWswksQdAKGunH8cwYUOtzLgm3q30oVNiwKvkyaPoNZzoKDUWq5PkgYxNmzZh48aNB3xjedBjLkBiH9G3RY1+0Orl2eGqV9V2U7FRNWnryJlq41d2DCuNb+2YUhofMeTNm1YtV5u7B3l5LAD829TR0mPDsqsSouxGPnss1D1k1HRhWHIsZ95SWyNUtDu8p5INU42Uh6FYs63aZ9upVAP7uQaF87tq975RsWZ767ww2/O3h/zKV76Chx56CJs2bUIkEkEymZx1TBAEuOGGG/D9738fyWQSp556Kr773e+WbOZY8jf8mmuuwXXXXYebb7656PEbbrgB11xzzQFfKE3TRGtr616PT0xM4Ac/+AEeeOABnHnmmQCAe++9F2vXrsUTTzyBk08+ueRz6VUO8rSpswh0O9QbekdPE0CGZybVwaaXiC/ZU08dBgAw2ImbQHU+S1Je+i4G1NoqEbORpseYBWdwxFStOSTOn2sTG50YAUA2wYpRL2bX0ZBrFXNkrpIXz3CzwH+4nojk0iYx9Nx+rCaRR5qaBjZVCvlxLlkrzhsj0Eg127G+4rHRXnGtIWCGCZ9/d0gmzhnMTI7APbG/ATHMAYFMkwA7msR7EaQtuNxqrKa4pVfIylcXQCsAMHGbrys2ltPzeii3Dg3kyACNWWo3we7p3MaLywaIOR5iCb0PTIp/R5cICb+/hzKVM+49JzRyy2ZIE20u3vbRSfU7OyZEVn1oQiRkfALXofEeAXg26uP5cpu62JCBXBMlCsh5ns3q2PTt/ac/gW+g9CiDbfU44ogjMDKiZvxUjnKU49CLMtiePRbqHjJqujBNObA9odj/Ktw/SoQmXyUCQK31FQDk5PEeACCilktErlkNrMdG5O+9v1rNOHQ8r8aMr6yX34c4URubJcbN5x7Stm28//3vx/r16/GDH/xgTmP+/u//HnfccQfuv/9+LF++HNdffz3OOeccvPzyy4iVYBhbMtju7+/HBz/4wb0e/5u/+Rt84xsy2/f9x9atW9He3o5YLIb169fj1ltvxdKlS7Fx40Y4joOzzz47fO2aNWuwdOlSbNiwYb8LZT6fRz5fyMpwK4rmhkkMDQv2mqUhbpwk2Vk9ZBSj4+LTMLFW/L9hmXBoGKG2XWyElmP8TACZ+3TbjeZebcTC0jQCi9ZKkS70u6kXNYFaVFHfZALO0Z4IAqrdrSDjsTFy4maZuMGXyueIktFboniRSGeiCLrFl7elswcAsJOAqEG161xjzixw2FJruQCbgS3+Hxky4UZY1kytquj/DdVigZl4vpLmQaCXACorBoycQMy5VhfxdrGiZ4aIDc+xSRndP5bZU+22TaCcASrXwvsVHgKTwD3d69CVnfqgc7LEbxL/t3qoFRmxxD6nkbXCtaWrxFyDRmqnxrX25PTuUgaTHw97eS/hGgMNuwcb6H5RqzEqYeBS8lTXPn4U6G3MtxX6bnNywSCw7RGzrpFbe0+27rWPNVsEQXFh/ms9f5BibGwMV1xxBX7zm99A13Wcf/75+Pa3v43KytmlVEEQ4J3vfCcefvhh/PKXv8R73/vegzbP2eLrX/86rrnmGnz1q1/F0UcfDcsqZl6rq+XbcRzMOLyrH2aFXE/WLXvkSns4/Cl5dppLc2Qjf6LahqilWm38tu17A4VSItGgRj1lBuXr5XuW1yqde3RCzT0pGpVn5XVLYtc32/rIr1nE8UbfQ+5r/zgwVg09J+dRoOqroAJQ3Aq1z6Ou0q0AQHxI7fzxETVPjqxi+63MEvmbf3zzoNK5pyRbzXGsqZI/f15z8B8yA+dxD8klJffdd9+cXh8EAW6//XZ88YtfxF/8xV8AAH74wx+ipaUFv/rVr3DBBRfM+dwlf8rOOOMM/M///A9WrVpV9Pjjjz+Ot7zlLaUebr9x0kkn4b777sPhhx+O/v5+3HTTTXjLW96CF198EQMDA4hEIqitrS0a09LSgoGBgf0e99Zbb92rjgcA0vkoTOpVnO0iEMRGZjk9BK/cczrWL56zO8gVmlhqrvmtbBEAMd1HxmlUUxsF4LQQi0ssaZgdJKYzlxGgjJ3FXarRNoZos8tgrdaHTgZs43UC8LEZmNMpfhDMjeIcsW5qUxUpNtxyCEQ6WQvxlSJNaPtcV839oGlBZdkzsat+HYHucQKRBPwDY1ofa5oyM9mDQ8IIrGJdUlxrtwAX3DYjs5SSBdQbOr7HRC4r7qFmFUun+Z6yFN1lM7acGOuTmoDfG93W4FXQY3RtzFhHetmdXBxCSxZL1NngjQ2XtKgPh7ImS9tHAQB7nhcbY24nxm7gzJLbnDRhY3iq5Q6sABWNYlOeDcQCmicVgR9lVp76plPbsFw7bSSZRaf5WRN62NM8z4mXAavovm14ci1kYj57JF544YXo7+/Hb3/7WziOg0suuQSXXXYZHnjggVnH3n777YdMbTRv7s4666yixw91g7RylKMc+49yn+3Z442+h9zX/rGzaVw6Gbl7WDL5TcFdYWQi16gG9F21FuGhUk82kqvVwLKuOH/29pGJF/rU2lK+Z/ULSuN3ZBqlxzoyrREx9z0kJ7E4otEoolG575ds7Ny5EwMDA0UJuZqaGpx00knYsGHDwQXb73nPe/C5z30OGzduDDN/TzzxBH72s5/hpptuwq9//eui16rEO97xjvDfxxxzDE466SQsW7YMP/3pTxGPSxo8Abjuuutw1VVXhf+fnJxEZ2cnbGeaBIgkxWwA5lV5BYC8TQCXKWIas6Mi+87tF7IkFT6hWaDxJ3oEUOT+1gndR3y7QHQ2tV2IjYnTZlaIYzY3ig/aIDGQ0f5ie21uVxAdNcIezrZNNdLEFEd3CtBmEyDl3tMxcg7PdjpF19rRPobebsGubjFEjSUnGGwyyo6T87r/kgDIeWpDFdSLa47tIKDY5IVss0WO4Sy/t4mVz24nkM3M/w7xRbLXiCIeVje5lRoirYKdcfrEvWZTC+7RyBJ1g9p5RccIjJNbOBuGabYWKhR4Xjaxz5xA4FpzlmbxObLLiB0mkG5MmKEyIe8ZRfPy6qkeflckvB8AEKPe7Hn+geOSHR2Y2i1ussYt2VxK4jCLTw/nltBJ6Tp4PrEBfq+Cwo8vm5/Qedg9/YRjt4LK8EuLeTK32Lx5Mx5++GE89dRTWLduHQDgO9/5Dt75znfitttuQ3v7vn+0Nm3ahG9+85t4+umn0dam1mLlQMTM1jdvlNja2ww9IZdJ9221fstGWn68uUpNZ2gYapvRVE5xg6BoIJQZU5MaQrFPuErEY2oaV19RnltylA3SZo03+h5yX/vHvGvCc+WAn5NUYyirRuU/VG6F2nekoldpeLi3lA1NrdkDXMXlkYkNmYhE1da3EVvNIC2ikGnQZMfOcQ/Z2dlZ9PANN9yAG2+8Ue6cksFJt5mGiXMhdWdGySvDJz7xCQDAXXfdhbvuuus1nwNwUBia2tpaHHbYYdi2bRve9ra3wbZtJJPJoszk4ODga9bnTI99ZUgq4zayJB/3EgQQUwUDg9BcistsR+k1q6i9EjHHJrVdemr3MvFCej0DQs/XQzaVWdZUpzg4A6fR50UhSzTP5lfFNcA8r3yjFzKa7rhYsBn0s/O0GyfH7F6SgLcRM8u10mSc1j9cA4PavLyz62UAwE8HTgQAVD9NwO9EsbKlGO+REsCnY+WpFVgQ82BOFEs/8+TmrvPmldYo7hOda6E2YtvFdXgko44kdUSI7SaiHz6xywzgZ/YQzzcW11mzZNycMqDTxj9PUnhm/DkZwSUE2eXUN32AETRJ1X3+i/D98MhYjvtmu3kxhuX2DHqzy6ldF8ndp5vwzDRCi5DDuZOJFc3LTFlF84uSkiG7gjKNrgaPTD/0CEnRq/WieTz1XDGrMNeYa9uGA52V3LBhA2pra0OgDQiGWNd1PPnkk3jf+973muMymQz++q//Gnfeeees68LrFeXWN+Uox8KMcuuv2eONvofc12+ZofswdLnElFEt36IOAHIN8oiRlZiyMXa82ntU/YoaM22l1eav6oaeV+hVnRtWA8vPG2rkwcq6Uemxjid33XPdQ/b09BSV1O1r/3jttdfi61//+n7PuXnz5nk3pC35U+7785flTqVS2L59Oy666CKccMIJsCwLjz76aGiosWXLFnR3d4cOl6VGOmfB7ixmORkgxhqyyBOrymCIWdN8hmp6qWY2MizAT0uD6EmwZ1hkRRic240GAvrcGFSDDRrD7KWxQujK7X5xzjB7RpiJ5cCADqdVLNSd7YIe7zEFO80gkd0aJ1fTwRnrsnyHgHJ1cxbZ5wST/lxrhzj6jPZYk+nY9GmEtUJhP+tRkjhHgvBFzgpBDVs9YqxRL9hxh25CdJyBOhnLEejVSFKfb3NhT1BNdCXJoqk3ZPV2cY4Jxo6c0KAWW9FBMnJrZhDuh3Xe8R0CZGc7CGSTioEN5xgQ2zPcwTVK6DmNDuLEXC+pSgIANtWLe88109x/3G4uzgIyu85Gd/l6H3qnSNo4Y+I++WRWB/oTpQyuQ+uPRv3R2cAt0keSdLPQss3cHaMxftF5ZaVbc5UAHeis5MDAAJqbix2tTdNEfX39fjOMV155JU455ZSw3uZQif/5n//BP/3TP2HHjh342c9+ho6ODvzoRz/C8uXLcdppp8339F4zzD0x6CUYgkwPTXHPHD92XHqsLrkB5rAUme3h0Sql8bwGy0bDavkNFQAM75aXuCYsNeZm/H/Vav2XndYtPdY18thS4piyjHz2WKh7yNpoFlZUbqHb7TZIjeMwFRy9NdWa60E1sByoiZ7gKDLzqsy6H5X/Qlco+mkc19SnNL7ClJcF2K7c2j7XPWR1dfWc/GuuvvpqXHzxxft9zYoVK0qYYSE46TY4OFikihwcHMRxxx1X0rHUviUHOT772c/i3e9+N5YtW4a+vj7ccMMNMAwDf/VXf4WamhpceumluOqqq1BfX4/q6mpcccUVWL9+vZQTOQDoOqBRSyYGIwyscogj7IDCruNU++xTP2twfbBHDDJJioIot5AiJtnXQ6aaN4KRCerpTIZZPrX4YrMwZqmZCXcom2aNmoj0ivMnSL7OINEhJ27ua+3HiA0mNpo3wA7VOU+l4vCIid020ERjxDGmugi0ThDYrp9hQFZHiYYxMZdYnwmbHLD1XgJ8ZLYWkFyf24YF7J5Oiy4bybHU2siY0JaKRUHfLZIPXGeea6CNKDHEXg3Xe5Ok/jXMP1geHkq56f0JSKoaWGzUJo7tkGQ/tpWSKvReaKNWyGz3TIoNaWhU4he/b5ERek9qi0Evu6WbaQ2NtSLBMtAnstRNywU7PNxH5QDU7zv8cdK59r5YVRBJ6nslEvgzy/fFrpM0bZqjBOhAZyVl4te//jV+97vf4dlnn5Uaf7Di5z//OS666CJceOGFeOaZZ0KznYmJCXz1q1/Ff/yHlO1IOcpRjvmOsoz8kIrXcw/50p526TKbIKUIWBXycbyXkg1LQUYNANFxtfPn6tXOz3s02ZBpEcgRVUxGxg218Vsm5JOZbloSqB/gUsSmpiY0NSla2u8jli9fjtbWVjz66KMhuJ6cnMSTTz6Jj3/84yUdS+ob/uijj+LRRx/F0NDQXlnKe+65R+aQrxl79uzBX/3VX2F0dBRNTU047bTT8MQTT4Q39lvf+lboSpzP53HOOefsJUsqJXIZCxbJs/n9Zhbbq0DYMor78jF7adYSQB4QCy2XiU2kBBtrjZPMl4BPxPBhk+O1l6Z+0B3kjE1u1f5h4sShoRbXGVeStHhcgBe30g+BVMQgeTi9JT7Nz6ksNtYq1A8TICUGuaVhAqPEJHSeKlwKd3jCQKH5IXHMbiqN9RPFbdBiuwncLSFH7Iwezsul9mnczkzvIqBHGdXwh4LuYzZqFt033wQ8qkePsRnFCmLHk+Ieh+wzWXdzyzY2WWPpuFPvwqQe01zXrJG5W2g4RmETeGWHczZOs6lOXXN0MH2/sk60UJiaFPcrT0y2zz3OqWacVQ/swM6APl/vYzIrXsyZ5vEpAbrD+vNjiPmmzwwrF5jZNkmO7yYCgJIMfCyDPtf8GbYkayHnKyvZ2tqKoaGhosdd18XY2Ng+JX+/+93vsH379r0McM4//3y85S1vwWOPPTbr/A5G3HLLLbj77rvxwQ9+EA8++GD4+KmnnopbbrllXuY0l3DabehxuV1d4Kixs3a3PP0wvRRIJg5bv0tp/Jiio/aKY3qUxuuKVGr9Gnn2JabQoxsA7Do1SUTekwcxroSEucxszy0W4h6yqioLIyHH2qe666XGcVgplQ+Vooy6Vu0DbSgYjAEFnxzZ8BSYaQCoXDo5+4v2EWcveVXp3NtT8gZnAOAqZGlkx86nyW53dzfGxsbQ3d0Nz/OwadMmAMCqVavCrjZr1qzBrbfeive9733QNA2f+cxncMstt2D16tVh66/29vaSO9qU/Et000034eabb8a6devQ1tZ2UB1+p29EXytisRjuvPNO3HnnnQfkfMFEJJTfsiQ3ZEb1IPzhb9xErtktJAtP0G1MMENKIHLGh8bgvs1VRlhn60XE38QgHbOV2Esy3GKQHe+mFYVWFp1rviMFlnQoTX2Z6bkogen4iPh/WFvDLDBl9KZvRlmeHqVNUjAmQL3DpSX0OPfothsISCeL5+tbgQDc4oRF84pFxDE8rjtn8ErtfRiAhmZjDQ5AAJlNykAtyEL5FN9r/qbSx5JBN7guydPCxZUBMAPywk2g1xIDHh1lU7PizVds0AhbjP3v9i7xGLdyowRGbIhM8ygJwZ8n7okdHEnmTYMJpAbETY6TysEldtyvptp7kpez6iL8keHqAFZaVHiI7yF1QIOYn9tELcgI9LRVp7EDEuEFBffzfT1fQsw1K7l+/Xokk0ls3LgRJ5xwAgABpn3fx0knnfSaY6699lp85CMfKXrs6KOPxre+9S28+93vLmmeBzK2bNmC008/fa/Ha2pqkEwmSzrWrbfeil/84hd45ZVXEI/Hccopp+DrX/86Dj/88PA1uVwOV199NR588MGiDeVM049ylKMcijHb+sivWcSxUPeQtmvCkDRI01aotQdMefIJPdWa7cSA2vunwsoDQGRCbbyVVpvAVIV8mdCWOrXf4JxCMhEAxtLytf5eRlL/f4D3kKXEl770Jdx///3h/48//ngAwrT2jDPOACD2ZxMThQ/VNddcg3Q6jcsuuwzJZBKnnXYaHn744ZJ6bAMSYPvuu+/Gfffdh4suuqjUoYd8BGYQmpsxEGUZtVVtw+8VLKobI7DDXbgslkNTDS29B0e0CSbuhQlRvxrrZxbbQ57Mv7gez64igFVLzDCBxhiBJl6QGLBya6nAKLSVelPTHgDAI88J8MItq7imhWuSeXF1GgjkkgzZ0n1kyTxtNCu+hKFpl0uS7qQZ3iugAPz4fjHA120tNGLjJAOf1yOJfIRqtR06hltPBmqrqMd4j/gBsYYsOCQ557nyNbPywJige1/B/aX1ov/zuMAIwnvI98OhJAq3B2MjMnYpz3Hd/uC0mw6hVDCmxL9rasSck0vEa9iJPTRZ6+cWX+IQ7EKPIXGfg7iHw1cI9/rtk0sBAAlC7v4oMdskZ4+To3moIkiz2zvdRxiFHzBOtIcyckrudEi2bcAsWUmpo84ea9euxbnnnouPfvSjuPvuu+E4Di6//HJccMEFoRN5b28vzjrrLPzwhz/EiSeeiNbW1tdkvZcuXYrly5cfpJnOHq2trdi2bRu6urqKHn/88cdLri36wx/+gE9+8pN485vfDNd18fnPfx5vf/vb8fLLL6OiQnx/rrzySjz00EP42c9+hpqaGlx++eU477zz8Kc//am0iU9YgC1HIyiq3eBJMkYA4HXmlM796oCaRM201NjZPclapfHpATVmvbpd3s19ckCtXr2uK6k0PmHJG0+5EmNnWx/5NYs5Fuoe0nU1BK4ccHMG1Cyxa/rlP1WqbtwxBSd0ALCrFb8Ritgs1a52ALNGfo05qkat5tpRLHj/Y36l9FjPkVRHYn72kIDorz1bj+1gBkuqaRpuvvlm3HzzzUrnLhls27aNU045Remkh2pUtqSQmSxmD5md9Ws1UEvlsEaE+0YHIctKYIdafL06SJs09iFj46/ReHh8vZk2gkmx4jEjysFjwk8gZYQsqgG2UlpYc/PsiDA1YyDuk8u4F6Ne2XUzJH0sTR8W59wzXIfK3eK1ybZE0TVm68XjS44WgJD7SfP94WN7OartbnRDcMrz86nll2WSQzZdKsvMmVE2nhUbtPwqqvGeMlHRIjK/mV7B/uq0vs2skQ4XXm4FNlVo3QYIWTW3/GJAytfgUS9zO6oVHYNrurkmmhMQ8V4z7FGZYxBC8+G6b66fZxaa10YrOaPvtq1jy3bS6NO9bKwU19zdXFt0bS7dT5ak21QW4NH8rIFIWCrAqgWd+rlz+7rdI5KytSDYW7Ix8/mDFD/5yU9w+eWX46yzzgqlf3fccUf4vOM42LJlCzIZNdORgx0f/ehH8elPfxr33HMPNE1DX18fNmzYgM9+9rO4/vrrSzrWww8/XPT/++67D83Nzdi4cSNOP/10TExM4Ac/+AEeeOABnHnmmQCAe++9F2vXrsUTTzwh7W9RjnKU4zVitvWRX7OIYyHvIWUjqFArt8jXReTH1ssnMgEAmhozrMtjVQDTVJeSwcSRbHhT8jr2/+5Vc8i2DMUyG0eeGfdcyXPP4x5yPqPkO/2Rj3wEDzzwQMmbwjdCpCdjIZBikMLgxADg15AUNyEoYwZMkSNE5t8eprpCAloBFW+zBJyZSK3aDuXZLn1RqwbJ8ItqtyMktQ4GBehl0G2QuRmDtlybFxo0nNQsOif/WyU5W7KBOa3jOsk+ItSeih2qPVqn62rSSDaLZIM7Klh8k8BqfFS8dvcO6r9N94ll90acgN4uckBPTzNIo9fOTCS4RwpDMEyJe6FRey6HZNMmOY57FT7Sg+TKTuwzA3iWvTOY5p6wBsn02QWcjcGcehd2AzHEe4gNZxl2lKTfA9xOTDzOrD0z4B4lMRxX20sOM7MnNhu2aZQB4Xr+wKR/hC3dtJB95/M3HCHA9iAx2y4Be+6LyXL7meHUemEyxyH5uEGyf3Zxt5bK/bjPZ71NfX09HnjggX0+39XVtVdWcmbM9vzrEddeey1838dZZ52FTCaD008/HdFoFJ/97GdxxRVXKB2b5U/19SKZsnHjRjiOg7PPPjt8zZo1a7B06VJs2LDhNcF2Pp8PTduAaW3cam1AsmbbS6vJ3Yys/IYu1qq2m8v0qLGzsWVqOsd8Xq0osb4zqTR+rE++Xj5Sp6YqmHpZrZY1WCvPk3iZ0g2AyjXbs8dC3UNalg9DUsWSl2TEOSLyZcOIJhXBsqP2gc42za8MnQ1zZaOmXX59f2vbNqVzq8bveldLj9UkF7L53EPOZ5S8A8rlcvje976HRx55BMcccwwsq3gj8A//8A8HbHKvd1TXZJHbLTYWDrOYLA139LCtFdcJZ6m+2ukVm7Gw9IXBG8mlDfous2x59eF7sHNbF4ACcAqobikyQLXJDjHdxHzyuX0C2SEbrAWwRsWYPZla8RgBTgav+VoaS22zfAL4bJbFwN00vNCh/PgjdgIAnt22TMyngUAayaXNPQR+d3OPaq/ob2zACNuVMfMao2vLNRMgf0GkJF3qrx3tIan1USJ5EWylGnRHA6po7gRmmbUPdPH/sIc4nZ/PySZsDkvU0wYCkpHn2lk+Tvee25aRxJ8Nx/ieM4CN9pFU3Ac8yqq21Ig5d/eL982n+WpUa25kiuusWVLPADs6bMA4VizaGYiDvjwk1AP8/mjkls415C4lAbhPORvimRNGaDriEUhxmwTgMPaQkd3O2c3LXivm2iOxHPsOTdPwhS98AX/3d3+Hbdu2IZVK4YgjjggNOmTD93185jOfwamnnoqjjjoKgGiZFolE9jKJa2lp2WfLtFtvvRU33XST0lzKUY7FGOU+27PHQt1D6logbUao2WqAT7flP1OuYuss1dZbKm3LAMBRy4XCaVSrcZqYktfhP9YnD3aBgjGvbHRWyycKHMPGCxLjFusesmSw/fzzz4cW6C+++GLRcwfT6OL1iGzeDHtDM/BiBlWvdOATWOa+1QxMmc10qrhuWfx4HHaGcJF9IS/k3aDs5db+ZrjUYksjLXViWLwk10xtuWbI2MOWUcQgcw2w3eqEzPX/bXoeALDxleJ6VG4r5rQFRcfipABLnkenueaO5cS/Y93Uymuc2oPN+DFhszGN6lbMXdSmqs4PM4ZaQkzQriZQOEHKADIL42vMrxQsSOQVATqcLmr3NRyBz5Juen8YpNa9KubVdxYdi5h4vuZQwk/g28hrjL8RkKGYR7L/kHYmcMusPTvE52m+uSXEFk8W6mUGkmLFDygJoE9wjTbdc5Jqccs3rinnOnG7zsfq2iQA4NU94vpZRj4xIRJAuUZKXrBigJIlPkn9w3Zf7S48p7iOm53gOcESPUpykfVRqAPf1/PlmFNEIhEcccQRB+x4n/zkJ/Hiiy/i8ccfVzrOddddh6uuuir8/+TkJDo7O/HXRz+FaKUcy/rDF17bxG6u4eny7G59hVpZQboyrjQ+tVueGQaA+BL5mmkAmHpJrYevpqAMUBWSJNYklcYnR+UTWH5WQo0x2/qIOTy/wGOh7iFtx4AhK8sN1K7bUvBXU2Wmraza+HSrGjXNLXjnKwxD/gt9XFOv0rlrLbXftk3jS6THuq7kfV+ke8iSV4bf//73B2Meh0QEnh4CV3aNDqq595cW1pZ4VNPr14kHLAJjLsmM88Qoszt4bLcAlzmSNBvb4rCIebSpzzJnB50q8X9uJ5B/oVaclMCZxk7d9M5pOSOUXd+9QzgcR4a4Vtooei334+bac5NaX7Fpl9XmIEMLl+MTAKYWW9oLVPNLQNnpKu7pzSCbW00FRgCNMpbaWDHQ01rYjZzk2gTY9ZEIzZvuPcnONUdDtFIA77xfuG4AsKtIet0/A1yTOVsQ84oeN4eMsHe6TU7dJpm+MROfo6RJmNBYRqB/jJzg7QLwj1BbrqOOFbXsL2wRmUq7TXxuWLYdtkFjB3g2jeNkha1hx6Bo48AlDK5f/CPkk3meNVhs4hcZpvebPgeao4fMtksGcdymLjDpnnuFREEpoQUBtP3soPf33GKO8847b86v/cUvflHy8S+//HL8+7//O/74xz9iyZLCD2hrayts20YymSxitwcHB/fZMi0aje6zL3o5ylGOfcds6yO/ZjHHQt1DttVOwqyQ6z3c95IaPavSvsquUQP6qsy4qmyYCQXZ8KbUSpzcmFzpAKDWegsAko6au10yK59I9nKyrb8W5x5S7VO2wKKiIo8pqmPmemxjmMBldQCH2jxV9NKHLE8toci1mh2xOUlZExVAdZjGMVvtrsyFpgrM0Lr0mWfwldlObAj1Y+a2TuxyHSHQ7TZ6BZ0zRZgkJeMHNtRyqxhwsZM496AWA45r6cUTm2sBACMTxAjQPFMd4rVWtbgm80XBfOeaqe57uXg8GBT3y6914IWaafGHpfncxqt+izjvVFfxYsmgPGxbVe3By5GMfYRAP7mTm5RVZUdNdidn1tcaFACe+1rnG/ywzpvr0RkIM3gFJUsMMntjkREnBTy6f2ZKD+uFuifrxHPkRB8hQMzJE4MWJmuS5N0xMqebmuZaPinmGuVkAAHiHLVSNMbYbI2SE5ywaSx2to8N62ESh0G9Rp9nzeeEgiRTGGD/7p8Lc51UjpqaArsZBAF++ctfoqamBuvWrQMgaquTyWRJoJyPdcUVV+CXv/wlHnvssb1c1k844QRYloVHH30U559/PgDR2qK7uxvr168v6Vw/3XI89ERp7S44EpKbUI6G5nHpseMZNWZay6o5vtatGFMan9ymVrdcc4Ta+Suj8sz2nq3NSueeqlKs9R+VV0RoOYlN9GzrI+bwfDnekNE7WgM9K7c+BgnFD8U8fqY0RSZSk7OPCcOvVRsf1Km2ypAH+3nF1l1qv6pARUShW4MjOXaR7iHn/E7PdRMow8ocKhEEWugKaRBozK4SH2dNA4wBAm5xknhzf7428aHz2ACMa6YpZRcaMNBfN2eEwChgdjwtzhclh+lcG7uakeyYJcuEpHOdYpyWNkLw3F4ppMGDDQL4MeMZsroE0B3qa60T+M+1i/8/O7AEkaR4rKUhCQDYOSw2qpFJcY5J6vXsERBm5p+TB1Fqm+XZkbBdDxt5aZRBtLsEMM82s0M2fWnp/vl0XyOkCNAdDfZa8RqWdlvkrm1TQjjsFcm172QCF7L2BHJRhZD19bknOBnEcV213kuGdsvs6bcvZIe1aRk9luQ3JoSOa7iK7j2Zr9nUrsukY7OZHYN0loRH+ixUHjcKAEgPCHS9olb8f/OEcLXP856b5h0YnBgqrufnmnMAQKv4/BqkPOAMeKJSbplerPU2qnHvvfeG//7c5z6HD3zgA7j77rthGOSW73n4xCc+gerq0mrpP/nJT+KBBx7Av/3bv6Gqqiqsw66pqUE8HkdNTQ0uvfRSXHXVVaivr0d1dTWuuOIKrF+/vuxEXo5yHOCY75rtr3zlK3jooYewadMmRCIRJJPJWccEQYAbbrgB3//+95FMJnHqqafiu9/9LlavVqsnnRkLfg8ZaNJycFXAmRiVZ1edajXAp1IvDgB2rWLNt2LzkbxiMrW6Tb7MpzmmViLUna5TGr+0Sj4R6+g2NkiMW6x7yDl/y6YzMws18o4RSr4ZBHEEngaLZMYhkRy2m6K/BMZYftxIbtLbWfpMn6FYdR45Lg8eovNRn+0c1XJXNIoVJD0mwK41pRfNK0bGZJoPZJeJMRmXHqN6XZeypRYBYJfk0SYxpDmSR0fINCudiEFvFK/ZuUcAPK1WAM7xIwRY45pxuOIYYT0z1THnyTQuOmDCJVmzTYx2ZJwkzFQLZ5BRrTlUzD4wSGe22prS4DvFkhWHDOIMm4Am1S2b1BIt2yXmY5ILt0vzS2yPINdU/N5Gx4vvrU+ss0agVufe6yTjDkKwW6jB7h4Xi541zkkR8Yfbn+UbiuXsXMvNr3fqfbjEZOdJgv5Mj5ADhy2G+bzEvMcoKZBbSkkB+tEwU3poCBeC7JBJp2vNy9aWBYuybcOBjHvuuQePP/54CLQBwDAMXHXVVTjllFPwjW98Y87H+u53vwsAOOOMM4oev/fee3HxxRcDAL71rW+FrdLy+TzOOecc3HXXXSXP2xtIIIjJMTc5RcdX91h5V+tjW9Tq4s5c86jS+Pt7SlMQzAx3l5rUcKJRUWqo0OfbaFDjXsxX1ebuKjCGUvLWeW79Zds23v/+92P9+vX4wQ9+MKcxf//3f4877rgD999/P5YvX47rr78e55xzDl5++WXEJL/vrxULfQ9ZUZGHIflxTdao3ed8tTxgVG29pRq+GtYNvZJkw6pVW6Mmh+R9If6grVI6t6ofyXhefn1105L3bZHuIee8457OzCzUqK3IYogYY247xTI0r8ZDlhjgmpcJaFK9braJJOdU+8tO2E/v6QRQkID7hJr8XZVAIwEk+lzl2MOG9qTpISHTZpdK3jRExouBNLRCz219FYExBmXU19qlom3ucx0YtHnLFa9yLU0TwH8KkD35l2Jzm+sW1HE1dSgYa6LzGszQEhs8UXwO3dEAAubseeKQGzrLyFll7lXO0CExE09ssF3jh49ZA2KQu0R80X2qQWbgyZImnerBrQmuIWcndB9+Nc2DAHyez0dJCa4799gvji6Zkyg8F7vFCRMtqxqEK+RzzdQyLV3c9zLGPbGppCAg8MFyeBhBuHBOmuLELknnjTyBfkp86D3ih5nbwXFdOANqPa+F0iabVAyxPgLmBOT9Mbkfd83fv2xMVVK2GMJ1Xbzyyis4/PDDix5/5ZVX4Pul3cC5tDKLxWK48847ceedd5Z07HKUoxylxWzrI7/mYAV3Ebjvvvvm9PogCHD77bfji1/8Iv7iL/4CAPDDH/4QLS0t+NWvfoULLrjggM1toe8hk6OV0DOSZTZ71BCn7sh/qOxqRSd0xUSqoQj2fUUnd0fRnK66OSU9dl1rj9K50658f3UAeLZP3iDNy8glwBfrHrJcsz0tBnrroVOWLGydNO17GOunNmDkHZSvp42uXiwV9ojF7GoUEo3tO0XmK7D5eSdk0FnWa9H3lT++ddS7b3ILaYfZ/4uNxIkZjYzpYU32ZF4s9NYYSVOpJ25shNhMrhkn06zQ6Zzqe9P5CCKV4jWJqABlNi2kbBxnkEmYV8kttuhYBKR1YupzrR5iu4pNlkIwuFJcbC5L7cNYZk630yajOU4o+HUOLOpfycfAxIxaPMofcEKE35MsuYNzT+3ABPImA3EaxG8j3R9m1vkc/GPCyQHOBBsTJjy6lzanZ+kDkyUDOa7d5rp1rkfn62AVAhIO9gwLdpxrs1cevwcAsGfLUjGG6/zpks1JZsULbc0AIN/iAlHqe06lD8ys82v8uKTsbJFmJQ9kXHLJJbj00kuxfft2nHjiiQCAJ598El/72tdwySWXzPPs9h1GSxa6JFPoOmqbyb5tTdJje/VGpXNvmDxSaXzoBSEZ5skKVsMAzG1q7LCzTJ75cSfVNoPHnvWq0vhNT8ozR1zyU9qguTPbYf96ivkwJty5cycGBgZw9tlnh4/V1NTgpJNOwoYNGw4o2F7oYURd6DE5PbhvqX1PnEp5wOgpihcMxcJh1T7ZhrzoCQBgD6ndgMgqeXZZ1SAtaqjVH9RXyf+2uHqZ2S4lymB7WuhRF8aYAID8Q+s2kflZ1EO+mUyudswwJEuRVJgYbXb9xjLxx4sXm2S5CS8Ekl6zAGWxLeTETb2mk9la8TjVGmdX5GleBHapXZXjaWG9T4VFbDkD8nqqc06JH3Bthg8Em61FCewe86Z+bHHFeatjYgUbqREHz9dSKytCxCzP5h7QHknqI8QOO7VBeI0uXSPXbGNIbP6qusV5p5YT4x4af4nHmfGO74gi2yZOxF0W+Oto5vhf4rzcbzt0/c4Wm61FxvVCXTwBcwbi+Xo2FSOGm/Y9DrW+Ycm8Mz0hQ/XlY1lxTawyYPAftlljxj1fSLgAgDksjqn3RtD2ZuFovqdPuET3TYr6XW7rYdWK98RPi3PxZyDWw6ZxhZQgt/ri94fPy0x8RY1sVnJx1tscyLjtttvQ2tqKb37zm+jvF+95W1sb/u7v/g5XX331PM+uHOUoh2yUUrPd2dlZ9PgNN9yAG2+88WBN7TWDPR5aWlqKHm9paQmfK8fcwktZCDw5Q76ookdXzXYFo6uYYoJHsVubL3fLwlD0GAt9k2QjlZW/f54iq64aybSCG3lG0o18ke4hy2B7WphRF16MzM64xyYxlVpPDGGpNjOcnQIFRYl1zUyKDJlbKT6E3WOCqeRWTpzEau0YR7Jb/LhpPre7KrSTAgCNgHLOIOBODKjF/ZmJhTXTWog8RzIChDHACjw+GIrOH8rLid30MmLAEzuXo5bG9ozUivONFddXG8TO89eBDdXsDjFfOyJeH98ZCduncW17lHqX51q47zaKHydZNK8/GrVUyLYVXLT5SQbEnAXLkSM816Mzm8TXHB0t9LPm5AcrFeyaYvm9TeZ0Gt2X+A4yy2PTurBmWw8TA6NJUi9w726Sh+vkeM7sOLPmIRjmc9a7Ya9urqu2DKpDJ3O6dLdIBLGqgFlqBv/8uJYzQiUCA3A28+P7kc/KupEvzqzkgQxd13HNNdfgmmuuCdmtUo3R5iMaa1MwK+R2hZM5tQ1dUCVPX6SGKmZ/0X7CrZFUgVCo1gQ21MrLFAFgoElxM63gtqvF1ZiXlx49TGm8Xy//3vnewWW2e3p6ir73+2K1r732Wnz961/f7yE3b96MNWvWlDbXchzQ0OIeNEnFmFuhthWf6pRnxgPFmmkjp/abrymsL0Chk49sBLbaDYjXybPD3VNqnSZUme3lDQoGaTEbW2UGLtI9ZBlsTws7HYXBSDpS7GoWdOagd8emPwSf+iBXxERD6eyAAFxcV91xtJCC77QIRBHrO9BTD72O2W7xWNUe8aWZOIzAPc0pNiAWgmyneD3X3DKz7EWCkD2NMUrlcm4yzGKA5bSKsRGq3+Vzc5uoJU3jSMbbAQDt9QIE7M5QO6qXxPmmuM6a5NMuuW1HtosVT+PcQFUQqgJiu2b8EMQIcJL6hsEuz5sd4U1q26UFgEvsMqiO2aOa7cgTbDcujskgUw8ZdqqRpjp1L+GHTHaulUzWslRzzw7xM4BxCP75R4H/GoV6o5Dxp2RIWIbAcnGWkWf4efF/l2rezVELjUvEwjeqic9L3iH1ACViWo4RTMPQsy3F94v7qFN/dcPWCrXhlFgxKKHBn93Ww8ewCxIRIGTp9/l8OeYcbwSQXY5ylGOOMdv6yK+B+O7P5ft/9dVXh2aH+4oVK1bMaXozo7VVqKgGBwfR1tYWPj44OIjjjjtO6piLNTQtgCZTegD1UpPQGEcirLTauZVl4Fm182fa1c4PU61IOB6RlyW8t2OT0rmfnuhSGv/ySMvsL9pHeBlZGTkW5R6yDLanhW56IUjjHtosZba2RkIA4xtUwzsqMtFjhMZYls2vG5oS4JuBVdgfOeECzEpSKyu7kt8Kek2fAPbZ5STBJsMv7pvMbtyRUSOUX5/cthsA8J97hOsnu3/7y0UywNwjADG3urIbicEl8Oj4Oir7xHF7hgQrz9JpnwzRPMrcRka4LpzZYGrJRX2wfQPhF4rl9VEak6ih+ZCJWOoIqm/uI3BNTudcWz79hyhMEKTFazKNzD6TCznJ7ePbmSUgRpsSDVraQLaD5OO9BdM0oNAezKAWZLlo8beegTI7kEcm9HBhiCbEeZOt4rwmteNiB3OTHN+5J7ZBjHiEDNz8SIDB58TC51OC4PjmQQDANl28nwOj4q9F9yDHrcnSnFShmvzKafPmxAsl3HnMjh65/rdaEEDbT+Zxf88t5jj++OOhzXFD9Mwzzxzk2cjF4Gi1dB/Z5obJ2V+0nxjbKN+v2VLcDDp1asx20KNWMz2QVGSmFb+S1XXyNYmT/VVK57ZXZpXGH7dsj/RYJ22jVPui2dZHfk0p0dTUhKYmec+C/cXy5cvR2tqKRx99NATXk5OTePLJJ/Hxj3/8oJxzwcZYFMjIfVfjg2qLVGJIHvBlmtRggKe4PGWb1Jht3pvKRn2jWvutNbVD0mN782qtu14dV1sXcra8ht+z5X4XF+sesgy2p4VvGwDVKOtUX6y53O4rgM/PUU02g9w4Aa08bURZ4nz4ieJLuLGipvhYkxZ0dtce5g87MegsQ2akSmP4cX2caVbxx6n2Q4mwwyZdxBx7MWJzk2K+pFgOjdzcWvFAlOTUxqoA6Qa9cC8A5Ekenslyq7Fi9pzBJLPlIZhMGQXH8qiYT76ermVMbD5DvpvBfiXXWdPDVfRlDjTolH0sgGZyhCeJ9djRxZJ1Zuu5d3bIAsd9RGmu2ZV20XP6qJgRy9+5rzZ0Slow+KY/2U4nnHuMKOPoEN03ksSzS7tTRcw7AXZOcHCdODTAryLn8G4xj9EcOdKH0xD3g3uwszM7gwGvsiAp4sSFzZ8BNqebFPNZumIYUttQP9i/XeQCrbdRjfe+973hv3O5HO666y4cccQRWL9etIV64okn8NJLL+ETn/jEPM2wHOUoh3LMtj7yaw5SdHd3Y2xsDN3d3fA8D5s2bQIArFq1CpWVIvm/Zs0a3HrrrXjf+94HTdPwmc98BrfccgtWr14dtv5qb28vWrPKMXvojTnoknk1d1wtIZdukd/K+2rebPCt+a073qubTYkxlVYzSNsRa5j9RfuI2nq11l0JS63Yn0sVZcLVJJntRbqHLIPtaVHblMLkFLG/XP9KDKRbEYQgiGU3id3i9qUT1IOaQI9G/ZK3jQkX3Ai5XucJiMIMCi17csULlUWMqL5C1OnlkwTgJ8TjYcsvNgqL+fCp6GZXStR/8DwZFLLrNpuEMdhmIJ/rEl+atG2hYlDMMd4uJM1920XmzCZgDgJ0fqp4hbZb2a6cZNMTRgh8Wc7O/aydJjL6ssjtmwBg0CDAb0CGEyyL1gIgP0OexSx0lkpeGKA7cUpoELgMa7v9wn3mOmm+h7GeYjMxp6XY0I1ryRkgW8lCX+5ov5hr3WoxgRzJx6MDxaZ5LHPXqN1ajuqsIyTvtptddJCMfHBUMNy7e8XnpyEjXuvMqLMOa6340vxCIoZbfhmVZPA3IH7MWRnQMyRZK+RPO9++ni/HXnHDDTeE//7IRz6CT33qU/jyl7+812t6etRagRzM0Iai0CTNdAaTao7gtcfI15ZpUg2TCzE+qsbOuqba+bu65JkTAEjbarvp4cEa6bGNnUmlc9uuWj3l5sFW6bFSrW1mWx/5NQcpvvSlL+H+++8P/3/88ccDAH7/+9/jjDPOAABs2bIFExMT4WuuueYapNNpXHbZZUgmkzjttNPw8MMPH9Ae24shPFdH4Mgx1JZa6S0Sw/KgaWytGgwIu/JIRrgflYzImJoqIG+pUfO9kF8f1zV0K53bVzRYO6x2WHqsbdp4WmbgIt1DlsH2tEiOViJGvbLZvZllt0a9C42yj26CnmuhulhiWfkDpJOJ2GSKgDuxrAzy9LgLbbK49RfLfF3K0gWj5PpAJmEMkvItxaDWGjVDKfpbm4RdwT0N7UXzCPsgEmDla2Iwzm3IslV52KtJnj0sFpAgIc4X3Sle4xvFrD4DPIOMkwyq3Xbq/L1AtO3RWJt7TtMhuNUW/VCxbJyl1vlWBwbVcYPk9T6tj/FRMXZyNQF7koDzvc5T33Q+dmKXFcrGYyTtZsM2lpWzQziHSwZ4rCBgltgYtUImP0fS91D2T+ZqrGYIaEwwA3TbZOAT77bQq1GyhBzUK8l4I19HF0tjeJ7ZJXRPGEzQ+6ulzLDcwKPyA2br+XPm5eU2sYtVAnQg42c/+xmefnrvn6m/+Zu/wbp163DPPffMw6zKUY5yqMbBkJGXEvfdd9+sPbaDGefXNA0333wzbr755oM2r8UQlkLrL0+ypSKHymcqOqZ27qh8HhQAkJHPhwEAnGq1+ccb1EpVGhXaZ43YlUrnbk6oSeCfGVDpsy3HbC/WPWQZbE8LI+rCbiYWk0yz4jtJWnyUHcqco2MEXhvEhy0aFWO8HeKLw2BsWbNYhXbkBTvMrtbxE5MYy4hbb40SO95OjOiIOHS+ntthEVjjuhQCayBQ6Vb6YV31vZaQpHJtMbtus5mZnuVm1FTjGzq9iT9Ry0WiW/wn20I9u2eoVPxmakHmkmP2EEmZuaabarf1SRNRyjhmqwkAM6gmIMotrTSunW4Uzyf6xOszSwrqgoBqoZjg5hZ/usf/n5FYoNc5BKzZUC6zzAldvHPUP1YfJ1k51XIb3Is6WtxnzMgWnyO7wkZ0jxi78k3ijevb3UDzoXtNE2Zwa5A7Obf+ivSK8W5FEDrR5yhB0F4hJEaT5GqPNrGwphxhqsNAfqaCQHM0cEWBXyFuEGdAWcZujpXdyOcr4vE4/vSnP2H16tVFj//pT39auGxSpRp1M7FDvrat+XD57D0ANCjW9LmeGvOi6uSeyqh9po5c0Ss9dvOmZUrnDtdgyeDkq9S5sxIJyRLcyMuxsMIZjkOPy33XavrUGMroqHzHg1SrGgxIdyoy0+NKw+FUqZ2/IqbW+qu9cmL2F+0jaiw1oP/n3cuVxquovjxb8jd9ke4hy2C7HOUox9zD92ept1mgGqADGJ/5zGfw8Y9/HM888wxOPPFEAMCTTz6Je+65B9dff/08z64c5SiHdMy2PvJrylGOcpRjMcYi3UOWwfa08FIWLGq3xMyjwyzxaBwWJcDyVO7qs2M5s7oVxT2Nd/QIRjtCcmWX5NFTqTiiZG7Fkun6V8T5+k4jxnuSzktScL/YRw0mM6QJP5SWr2gbBQDsHBMy8oD7MZMM2hoSWVciRmHStbFLuuMZ0B2SG3dQvdouIQt3qVWttUewLHYDmXJxbTQx3Ga20PKKmWI2T+OezwEZuLF8yaU6a26NxrXIkTEyG2tzQiaf7zU7bo8eaRZdg89GcsTIM/POkvrILiuUHbFDODPVuWXkHD5M8vd8cW/qwrHpWL3WXj0euc6cZdt+fEafa65pJ3k3m5O4DQ4+uu5/AAD3PXQmACDTLuZe2S/mNTopTsaGc3wuPgbPz6t3wjp0PyLOE+E6c3rfjKWSvXsXab3NgYxrr70WK1aswLe//W38+Mc/BgCsXbsW9957Lz7wgQ/M8+zKUY5ySMc812yXYx5Dw+zv/T7CyKuxeXpW3ihLV6wXN9U8vuCqecOFikDZaKqQ3AtRDGflpeAdsaTSuasrJHwlpkVewRPDcyV9AuZxD/mVr3wFDz30EDZt2oRIJIJkMjnrmIsvvrjIBwMAzjnnHDz88MMlnbsMtqdFTUsKU2kBJo1RkvfWkbQ4ZYQS84od4rkouZJ3vaUfALBrq5DM5VtnLHzsHN5AEnXbQEAAWafezplGcq2mll4a1SgHVKcbfjhJvs213sFrtD0IqM4bBBb5sxuCMjY5I5AbHRTnrklkUUF+Dd6IWEBYtc4GZKmW4i8Yy7fdenLI7hH3RnMLc2aAp5GU2aoSWYs0gclcM0nmCSz6FtUZU7LAmDLg1XPPbvH+5NrF/+u2iAn2n06GYyRd5wREpJuyFKwuN1BohcP9x8mszKT3PEy68ftWUywnd6i3eHTQhEUK0/6MKEDnWvLoKB1cIyl9J30mqJbc4D7plKDRsgZ+snUdnU9c9+iEyHDUkswrcIPwfgCAvUTcR2uAgHU1fVbHrDD5wD3L8zG6GHJYt5NycrfFWm9zoOMDH/jAGw5Y+1YAROTe38huNSl0INm/FgAG9kiaAVJoObXdXLxdbTO3pFZt/PiYWl3gS690So899cRXlM7dm5Y3HwKA9Y07pcfmUw5uL3HMfNdsl2P+Ioh7COJyACTXqGYEGETkt/KB2qlhqCmhAcXWYargLGWrTWB1jXyZUtxQcxNvqVQrcUo78uaZLt54Ndu2beP9738/1q9fjx/84AdzHnfuuefi3nvvDf8fjZb+mSmD7WmRSkcR6acWVgQQY9NragksciYuT47PW/uoB2w1fesJ6BhRr+hYoXmXFSDWR27Vq0RmKkYtosJ6a7MYZHPNsdtIX05iV42UgQg5czcdLTZlu7KC2WY2M7eUTLtoKNf2sqs2L7YdlROY8gQI4x7dHOw4yY8z28sJBG6BxY7nr9XblVtpVVI2LqcRXU7HYtDvz9jQe9UezCEClOzsS+9FppkN0QhUthSSI0DBRZ2NwcycFrLvbGbGiRV+DbvG8w8ng3CPas65Vjrf7oQbcdenGvYpOjaZl7HbOBuiBdXiTeC2ZtYYfQUDINsnNsXs2v6mY4Uz9VZtDQAgXi3umzso3JE9uuc+f4spueJVedBJFWDwj/8AGfLVEDufkExnez72++vmHby05NjYGK644gr85je/ga7rOP/88/Htb387bGmzr9iwYQO+8IUv4Mknn4RhGDjuuOPwX//1X4jH4/sdV45ylKMcJcVs62P4mnIstIj0W9Bjcl4oVbvVPhNuhXy/ZF8RBeTVcpnQ1Uqm4bXL16sDwJSiJ8bRS6SaqAIAduXUunSMZtVkAYODtdJj/awkqz6Pe8ibbroJAGY1kZwZ0WgUra1qTn5lsD0taquzGHfJfMrmtlhiJTCHrbD1E8tmPGIYAzLUYulyQEDZN8SHJt5XLHW2a5zQfdIgEGTkCJwR0MpOY3WBEFuGhlrsgu0nfDhkwJNzScpNgC+3pNgZW/fYGZvYzZYCqwoAFaaN7qPE9XOLMQaPGmNqWpcY4HuxYjMxbsmVb/RCQ7bQ5IbYqfFhARbjM6QkzCizEZm3RNxQ3zZCBt8mMM+KAGuKwCNL4um+MbOc7aBEByUn7GgQzodbpLkkhXcaSW1A7yebwPH76pIiIATnaRMusdBtiUkAQG+FSHSwzJ/l7uxDEZCZWYSk6jYZykX6LDSuEIZ6w3tqxTFjwnhjO7cbZ5Mz+myyVJxVDj6/v1EPGjmkaT3UOo7vaYKl8ZJ6t3k0t7jwwgvR39+P3/72t3AcB5dccgkuu+wyPPDAA/scs2HDBpx77rm47rrr8J3vfAemaeK5556Dritqz0qM+vp6vPrqq2hsbERdXR00bd/3f2xM0d71IEVQIc/cKPhUAQAauuRddEb61djR+Y5tz8s7xgIIk7+ycfTRu6XHPr1HnhUHgPyYWkJs17YW6bFiM/mb0gaVDdIWbditDvS4HE3s7pAHywAQ6Z+UHpuol+8TDQCar7a4Z5vVDM54Dy0bbZ0DSuMfGV4rPXZF5YjSuS1dEZgqKMakx85xDzk5WfyZjkajUozygYjHHnsMzc3NqKurw5lnnolbbrkFDQ2lfW/KYHtajO2og0b7MmuKalyrSHIdCWCkqE80AaiwXpmBDNVfc03tig7xRep/VWyWmBGNxBzoUwIEZbsE2EqunMagAzCobZZXK87PDHuOpOzcjxsa4FSLDXCWwLbHCmECdswokyk6dAKC3E6M5z1hF6TFXMfDoDsEi20im5U3qRc2s+cEaqm7F8yUEUqkmd2FRmwzScA5ucXSb2bgmaE1BsR8tJgPj2TqnDhgl22N0rLc6itKygROChhTxYDZjwARau/GAD6UUXE9NXdX4zpr/i0hdppZaegIe5VnXHHhXAbAN0wjwB7OI18sVeea8sACxjbTl5favz01IsoS+J7aOarn14rnzZ/DgO6JOWKF7yl/Buya4vcib8rKh2bbTB6cjeTmzZvx8MMP46mnnsK6dUJu/53vfAfvfOc7cdttt6G9vf01x1155ZX41Kc+hWuvvTZ87PDDDz8oc9xffOtb30JVlUgy3X777a/7+ctRjnK8HjEHsH2Q1shyzHPYOmDIAU9PsQlFIMmoA4AbUwO7ToXaeF9eyQygUG4ofX7FXtUq4/1ALVHBLWdlw7Tk753vyI6d2x6ys7M4UXvDDTfgxhtvlDynfJx77rk477zzsHz5cmzfvh2f//zn8Y53vAMbNmyAYcw9uVYG29Mi1pFC3qkFAGj0IdaTYhHzq13oxGgmBsSXK0XrGwOs+B5qYUWgbXBSbK5ZysxRE89jbCkBSQKP0aQAQ8mjGIEWy7HzDQzi6GGWl+c0cJ+nFmJXtxLY16h2u7FB1HWMbBd6n7AdFKlvowNi3v3pakQnxFingWTjJO220iSPjlG/bWLHc5Qs0DLFvcbdWhfWCDP69Bj1A9coI8atv2yjuHVVbFD8Deucfa1wn4aJMSaGNjrJ9d7ipQwyw1p7AtY2v0c9Zvgam8oAdGb+J4vny/XOHvXo5vdCp3n6CQ/mpPj387s6xDWRzN6p43mJ++SSEiE0eqtglUFhwapuFDdksl98bixDPJevE6/tbBHs3u4sZU2ooD6+nfqk0z3RbcBuYQk8vS90Ccy061NvLGZ7w4YNqK2tDYE2AJx99tnQdR1PPvkk3ve+9+01ZmhoCE8++SQuvPBCnHLKKdi+fTvWrFmDr3zlKzjttNMOyjz3FR/60Ide899vpNAnTei25E+G2n4GHVXy7VXGkhVK565oUjOhcRy1n9nqFUml8clRtZrtFzYvlR4btieUDKtRrSDUG1CQWcrIMcrM9qIN3dGhS4LtXL3a92TysGrpsVOdaoCPfWtkIz6o9n3INyr+uCjGe1s3SY8ddNRUV4FiosDJKpQf5CTB9hz3kD09PaiuLnyu98VqX3vttfj617++31Nu3rwZa9asKX2uAC644ILw30cffTSOOeYYrFy5Eo899hjOOuusOR+nDLanRb63ErGMQG25VgG0WAKerQbcGgJfUWKhW4iJ9YtrgPn/S+sEONrm0QeGW2S7ZmHzWSvGBLr4IDFj7bQScztJbtos47aKnc/NrBEy1E/3ik0Ry4z9cXEtw/SFNrPs6C2OFZgkJ68jx2wtQGyQNjc+yffYJIxAWjhvAvQG9Wvm+XBvbz1thIwrs98YoS/2EnGO1FJiW8l5nevVs+3c65zk3FUuAk5sUE/FUNKfZbdvqmknlj9G/a9zy8T9Zcm4FwsKhmdW8TWx/F6j98/xiAEnmbY1zu7tdP80A26zOH51jbimbC+VBbBbfKN4PkJmevxe5evJkX1EPG7X+JjKiM9JnBIK604WbnX/nSmWkXIChA3SWEbOCRrdMcMkg9dK5+frZ5O8NslNrOcBwX4WWV88d6AlQAMDA2hubi56zDRN1NfXY2DgtWVgO3bsAADceOONuO2223Dcccfhhz/8Ic466yy8+OKLe/W5Ptgx857sK6b/wJSjHOV4A8Vs6yMQrpHlWFihORo0Qw78JAbUAGd0Qv4zpSs4UgOArVilE02qjWdVo2zsSdYqjX+lpk16rDqrrjQ89H56XcfOcQ9ZXV09p73Q1VdfjYsvvni/r1mxYkUpM5z1WI2Njdi2bVsZbEtHXR6ORXoeqk3MtVKd7JQZuninltMHhWTFDM7CumECnIdVDwEAXqkQcgg2JEsl49BIKm1R7a6VIQaUSIhlHaKN1+68ABhs+GVNEYgigOVUBqGx13krXwQA/HRE9O6N9ZMJWy0BYQLEDPpjJLl2qsQDS6qSGGgSUuaal8TYiTcJ8wlzUKC02CBJq0fF/0P2mW3LCaDqWS2sZ84l2NKcAKZJLcmILeea6VAOxPLuaGG+GgNJu1j6blcTIOd2YSPEOhOQjjLoJul6YpcFl1jl2A5KrDSREoDeRzZo82nezFaz0R0z3NERA3k6VorKAvx6dmKjY3KyxC5OyDD4z5GhmzVp4MTThXPv04+IGqA/9K8Sh8pSDQsZeXCdtz7OknRa9KiOPbfEKbDwY8WZS5bTwzy4Wcm5SoDmmpWUCZ/6NX7sYx/DJZdcAgA4/vjj8eijj+Kee+7BrbfeKnVc2aitrd1vrXYQBNA0DZ53aG7GWw4fhlkhlzCxPbUNnT5b7+L9hLVDTaM5tURt7lwqIhvJFjUHIfb5kA3rSPl60PSImoFPoFgPuvTIfumxbjqP7lIHlZntRRtetYsgLmk8qivKgVPyrtaRCbX1wVA0OJtapgY49Uo1R++uejWPlDqF3mcJQ83cbV2L2ufmjwrmcF5GUvF1gNWRTU1NaGpqkpuLROzZswejo6NoaystyVIG29PCz1gAAb7/v70zj6+iyvL47+3vZXnZdyAJiyzaBASh44YKyqgfG9QZGXU+BkUcGlCWUbTblsWlbdSxsdUZp8c2oI023a49LrjQgoosgoILSSAxkEA2IAtkefudP+rcCpWELFWJ2c738+FDXr26VbduVZ13zz2bs1h5CGVmamelGcE6yogt61KTYmVyk4WRkoVJi2x+HSVnoWfHT9ZMmzOAEClBMmTDE6v8YSWXnMovUmlfUiopeZd0B1aV9VqzGlf9dbWi4KhKPymNdhe5b9OkU2b0lv/LhGSx9kacaFCuqT6drkW6hZNbdjCFrrlaGQs1w7pFa/0NRIjmhIPSgkz7eKnsVHQ5xTunai2zsryZtU4q0mbVmixrXIdk6TPqn+M4nTdSBpdDC332JIRUS7ZaN5sUYVmyzSozw1PMtpqtk8bLTm733jQ/7FQv/Y5fbAMAvLDjMgDNyctkHLqHFlHks+FNoGzkdI3+qCB2Fmcqp6HThduVtj4KMahqUp5JNbO5RXsd8ljCBJil1zrF+PsotkQmjvPU6Ew8FBJoN+Yw1DUXoM6uSiYnJ6OqqkqzPRAIoLq6+qxZIqUwHDdunGb72LFjUVLS5Wm0YT799FP1byEErrnmGrz44otIS0v7yfvCMEwP0JF8VPdhBhr241aYnfqm1DEHjYWqWA8c1t02PNZYDpOT5xpTIwIuY++DTDqrF6NJyiItxu6dEb48lmmovd2mv8h6UG+8dyfnkD1BSUkJqqurUVJSgmAwiH379gEARo4cqVa1GTNmDB5//HFcf/31qK+vx5o1a3DjjTciOTkZRUVFWLFiBUaOHImZM2d26dysbJ+BNdIHYZXWXlLE/LKUUxCQz5Z0OyblJtAiGZZaGkq6IVulUkdu3AEzQpGyvBTV7t6unLf6Z9I9mtyQpSs2WcClC7S9+gxrKz2bD2S8DwBYuOMuOq+y3UZW1qBUnCkJm4MSk/nI8n2gJhlhZUpspDmgWNStZIGVyqEgd23hlso/JYk7bteMV8gZVK3dMt5axpYjSlFq/aSLyWRm0v0eVDItIGPdbUK12pppjJGsrAj6IhXF3UcLGZZGSghGFmN5TEdFc3kvT5pyfq+b+k6WJ3uVLD0G2pfiqqlbriPaZ8N60qb+UHx6/BxlJ7mwQmXgpNIt6wRLxV665fsTlL5Y6qxAg3ItXrLCN/qV88kwsIQopbTbsTpSumnBxR+tLUmGkAkBGnsZsy3roHsyKft5oU5rXSdXJTvrAtTZVcns7GzU1tZi7969mDRpEgDgH//4B0KhEKZOndpmm4yMDKSmpqKgoECz/eDBg7j66qs7PGd3M23aNM1ni8WCn//8593q4tSTVBTHw+zSZyUWJmM/oCfCI3W3dRicjBnNZ6UmTdRJmNvYZC5wjjHLj7dQf1iDPb3B0LlDR4zF2zcZqFEe9OvwpmDL9qBFWPTXrK5PM5ZlObpO/4Jt0GCCNIPGWcN1vhPj9XveAECaQT92m0m/fK8LGqu2EBeu36oOAEeO6LcIh5p0qo+9WNFm5cqV2LBhg/p54sSJABRDyGWXXQYAKCgoQF2dogdZLBZ8++232LBhA2pra5GamoqrrroKjzzySJfDIlnZPgPzYRdC8aR41ckSVtKlOahaXKWLcICShJlIOTRXKVLDShbRGIfyIpRSKalgDE16GprddkJ0zIYUSg5Wpa3TrJbPknHCVulyTVbyOjN8Scpx36pWkkdJF2tpkQ3UKw+FU+qfpOg3UaZz6Wo9LqYCecN/BqB5gmiiesw2ikWWxwySFdpUr2yQ8kae23rKAqqiBtspbRZ3FfqojoscXqqpLa3p1iqb+ndThsxYTm71jdq4cKn8yuRsAXKRlwsKsAiYKOGZs4QSsbWItbfKeOcwGQ+uzUou48LNXrMa5+200FiSUu+jBGmy/Jp0JQ3IY3opPpwWL2ynzaoXhdx2y7A9AIBX7Ypi6JBlHmSWeWeLmubB5tJgNqrLrnpmyHrx5AWBkM5fyJBAuzUSe2hVcuzYsfinf/onzJ8/Hy+88AL8fj8WL16Mf/3Xf1UzkR87dgzTp0/Hyy+/jClTpsBkMuG+++7DqlWrkJWVhQkTJmDDhg3Iz8/H66+/3iP9ZBhmENORfFT3YQYaRpRtGSqm/+T624d0xpmr7Q1qEWZja4EwGVzIrfLpX8gFAKuB8lthBouMS4OMXix1+lc6pIdll+mlOSSg1NfuqMa2OONdcrlc+PDDD7vl3Kxsn4E76yTqC5QVQj9ZPaVF0l5pa44LPkdZrff/oGiTYpSiuAQocZqPMkwfqYtR9qfa037K8mXJqIc4qLgshGwyW5nyn5fqSIcXK7emYSRJIkq4Ja2tarmslCBMpHie8ClWACuVKPNlKBYRZxi5Micq55dx4rJkWVOaoijuqhiGqABluCbluokWTKVyL8Ioq/dhstjKcGFSgqWbtPW0WbX8S8VTWuODCS1WAmV5LFJqZRIx6eASiAs0L2hU0moSCVhbPWVFT9TGeUvl0k/WcZmELWg3qeXUmkbSGegiLJScTiZ5kzH2lhal3aQ7fCg8CD+ZneMcyjMhrdImWiSRCwhSuVbHfBi5rJ9sjsE3xyrPkalUWe3MLfq50tahtDl+PEZzftlWHlN1j7eIZsU9IOuhU2I9uo9Bq073oVAI7QtKg3Uf22Hjxo1YvHgxpk+fDrPZjBtvvBF/+MMf1O/9fj8KCgrQ2Ni82rt06VJ4PB4sW7YM1dXVyMrKwscff4wRI0b0WD8HKq7kBljC9D03DVXGLJQyFEYP3gSDExKnMcv0jefvMdTeqJtiXcCY9eT1hkm620Z9YSwTet25+t0cAaB6nwHLjUfHuHckH9V9mIFGMMkL4dKruBqTUSaPfvkYVmVM4WtIMZYTw2wkSReAiopoQ+2R2PEu7eE1sNpQVB9v6Nx2i7HfJkem/lTywUa9Bpvem0P2Jqxsn8HpPfEwh5FSRN5nVrJK+0Y1wVGgTFoa6hThYpbuxEXKRNJE7tmyLFZmtJJ4YW9aNADAdYysjV4r7NLdmizVzhqZSZos3WNI8WrQuqLL/9XFAFtIjZsuqlFeXJnwzEyu3aYI5VjShVm6l8vay7Jf8aMaYSIXZQslTlAt63RNZkrQ1pRCllxS3M0yfqO22aLsrCA3e1pAkHW2gx5ZjkurvKru9+QCLhVsnLZBSKutNILTvjJ5kfQIEHQOqeQ6TmgXKYKOEJylZOUlS7vMvRRqMcayNJgMD5BlvKSib6mzqor5oTplUuc6bNNcm8w2KRO0Sau6dK2X5wqZgRCVT5PJNcfEKTHKR2uUdJ+jM4sBANvzlcRp0jU8SPdfLsDI3AAAYEpQ7r3/NHlsHJc1z3UmHupFF6DY2Fi8+uqrZ/0+IyNDsyopeeCBBzR1tvsS7SVMYximn8Fu5IMWW6kDZqc+d3B7nTGF1+TXvyh14jxjyrLRGuFyHqqXoanGEpwdqjembd+Q9LXutie8xhYjaxqMLaT6C/SHCOlajAR6dQ7Zm7CyfQa+2CBMVN5LKiU+shBajzrVklQWUrrsJ8i6TGW6LPXS3VjrWixjaz0y7tlvgSfDqzlWEyUvk14lrkJFaPujZPIrrXu5tP6aTlrhT1EajY5VlLOdIaWetrTIhjkURc8jy0WTtV71vqH/h0XUoChKSerWmEIxvzIGWi4kUKy2zHDrJTdp6RpvOqMMQ9Nw7cqXVF5t0koltKu5sryZTVrAnTJO26Qq2fKaZLmysBPK+RqGaGthyx8AqcxK45DjpBmNGdpVYNUKnqLNhm6u17rJyPracux9cUF1gcBCrkQy3lvGsjurSAGOkiXL0Cb+uAAuGKMo03v2KiWpLotVYo1fr1RKuu2vVNylrce1yfWCcaTI08KCucmkuu77fBRCUKd8lhbvuKSTONJ2V9pnkArK7uCGG27QfPZ4PFiwYAHCw7VW3zfffPOn7FanCXP4VC+LrtJgNTYpCBioVS09ZvQSlmbMsvxe8bmG2ge+N1YKLmyCscmopVr/2J+aZCygMyLKWJ1td4b+exdo8KK4q41Y2R60BB2A0Bl6HQg3FrgsbPrfUWe1MWW3wWVMvhot3VV2MspQ+4vHFhlqv+OUfi+5UeFVHe/UDt9Z9JcdAwCP00D4gd5kJoN0DsnK9hnYkxsROq5MCqXlWLpCh5yiueY2KVLSFdgWSdnIfUpbGUtb7VXKnkiFVbrLeF0h1XVa6l7Ssl0zXvnsHyJjpanEVprURJX9vCnNCqONynJlTFTKhe2hyaVcKDhxNFo5P+0fkjHSpDz6qV8nvWGweMnaTUqiGuNLlmFpRbf4mpNxAWfENctcaNYQLFRDWmbLluOQOEzpZ3mlMl4yMZksZ2Y7rT2WsAjVHZxKhsMcQ2Nuo1836qaPFjTsJ+naqP9WWhgJhItmSzW5xEr3cFk2TN57Wz15H9CagOx/UGYx95phottSUkELHJR5XWasl+7bMuZcVcJLZOI0qPiC2vj3Eq9Shq1mjPIcTUz+AQDweQWthpJ7q0NmPqdnwhQww0/meitdg+ynHJfGPH3ulSIYhGinRqLgGrJnJSpKOyn4t3/7t17qCcMwPUFH8hFgGTlQMQeaDQZdxRdpTGG1pEfrbhu0G/OuEsa6jrAyYwsNskKOXkqaYg21HxNRobttjd9YacS0qDpD7fPt+hdyRVCfUjxY55CsbJ+Bt8YJM9WiNpECKs5ITKa6u1ia47gBwC8VULJyhuj/Rr+iBPmTqbbyEUUxtJ60NitfAa2kUl2vw1qUnZIuzOSGLMs8BcJDavhDSZMS0yvLYtmpzFPiVEUYHD2ouMtI5dyvKoDKf2X1UbDHat2gZay2au2lsmLSai3d3OV4BSOarfnBWFL+GuQ1KYeqayIrvlcq7HQKshh7htBigIzlMQOWSKotfURpGwwoY9mYJEt+hdTzAs0WcEHu0jIWPuQMNZdPI7dtf4z25ZYeCjJru/wxkcq/TJwm7CEliziAUWnKCmVBPQW5U9ely76Mr5aorv50jfZKK0qSo5U+Ukz5qYByrRHlyudoG1l5ZE1zena8NF6qa7ojhBDVpw1SMjzpvm4lC3cw2sCqZHsJLAboqmR3kJub29tdMMTJ6giYm/T5DI7MrDR07sIjSbrbmpKMWVd9BqzqAOA5ZSzTsHt8raH2Dd8am0wG4/VPfhwl9o53aof6JGMz+WBJtP62Xh1W8Y7ko9yHGXCYAs2L2l3F1mDMuuyo0J91vy4zxtC5jbqR+8ONvQ8JEcYycrttxjyXJod12f9F5eM6Y15PFaeNJXdTSxT9lG0H6RySle0zcMU1wRtQJgfOo9oJkjc+hCBloZau0v40RYl2HFb29VCssbNcGdbGdEVxdf1IycYoztkUFlSVVEQoilLISlZViiMOUEkoWcdZKlaO49r9HCcs8KQr/Tg3ohwAsMOkvMDSpTnaqShpZbJ8Fim5FnKTDtICQ6TDi1C9rP9MiqiM/w3IWHaZHZ1iycPJNZ6Se9mLybpvAYJy8cGljXUOBinGuFYmaKPJHO0m3bpluTFnqQV+NynspPzLGOzYfHKRj6dYcRmHTYdUFWmptzeZVRdruSjhj5WZxK2a80orvnRht1HmcRkmYK22qsnVDp9QJrQy/l2erzl7unIs6R0h7403WSZpAxykIMt9z49QHL13pCpZ5ndXpSvnPUkx56RIW2q1r7G9wgJvvMwWr101lgsHMROPQxdCoN1aSANUUDIMw3RIR/JR3YcZaBjJRi7nFHoJuA1ovAYfx/Cjxg7QmGzs2k/UGFM4Y1OMlSd8v3a87rbJdmNly9xOYwvJtUYyuettO0jnkKxsn4G30QZYtdmiZX1rEeuDqZZqSYdT3HKeolhKBc9Zoa2FHetSVtyOkzIsM3g3pQHOSlKaZQxyJClwZN01l5GSLbNZtyg/JV2cPUkBtXTXdsqwLOsemsjF+3ijEhMqS2wF4+iC6WVx0mKB49wAQrRCag5qFxus0eS2TVnRpUVWkFJuoUUBaZ2GAMykUPoozlNQwjNPI7lQpwc04ybLZHlJgbWeas64bm6R3Vu+jzWjbC2uGTQusjQaKemu5hdYJmCTJdykt4CatJd2dZyUMflUo9rWYntKQFWqZ43IAwB8tH+KcixarbVQCS55LzyJMi5c+c9J984zzIemRroPtKByRdiPAIANZTKEgO6fU8bxU/I3+tpHSdi8VqvaR1nWzF4mx4meiUKdWTBDoeZBbgsxMDNJMkB4pAeWMH0/hA6LsazSziPGLKRG8LuNnTt6ZK2h9p5vjFmm7VnGzh9moLSNOc2YPPD9aOzavWP0x3yHGnVmI29PPgIsIwcojmqT7pwW4Yf1W6YBwFKjP6u078Ihhs7tcxtTjlp6FnaVYfG1htpbOnpfO2B0mH438n2nhxk6d1m1sXwe0nimh5BHZ9tBOodkZftMTFCVJ+kioZZ9qnIgSMnBEmKV1agam6KdSUuxlxQpQW6+ZrnyQ1bpphGkEXoszcoYHV/Wi/ZQEjYbJaWRsb9qMizSgUPkyuw4YYGfsqInOBSB/R25/ZnJMuu2K+etbNDebjU7OR373KhyfN+knMAr3YxpHIQsjyUVO6rDbSP3aDFcWVjwVjSPiYWMuhaKwQ7QeMQlK+N3ulhR+KQyK92g5XvoJ+u+s9R+Rn1o6jx5F7hLlLal45TNthoZY08xyw2y9nlz6a2gUyYrU76Tyrcs0eYzkzI9jBRVCheQCd78kc3x6/L+nfaTe7tU6uk5kjXXZeI7U1BmDKdjUeI051E7IiYr43IiSTlfKfndWxuUfV10H+WChlS65fPnOEpKgUk01zSnZ8CXTOZ5UvpNeg3bwSDE2bK8AR3GKzIMwwxUOpKPAMvIgYq1ScCiM47VFDT2TIgG/YtKVmOGXQR1LjBIfBaDynpIv8IIAHfH7jbUvtCv36ugMWRsIfc7t7EEaVWR+hOXhqz6lOLBOodkZfsMbI4A1AoK0lU8qlkQWGVZqzRS0oZRSa06shqSYhWk5ML+EJWlKpMuzmRljQ6olmmZbCusQta0Ura7KijuO5nO7ZVZuMl1+LRU4kwwUfzDvckfAQD+YVI0TxvF545wnwAAHIxM1lyvpZzctUkRq/W7UH+uEtctFU9hUfqclKkco6LMqRkfqagHainrdW1z1mtBNahtDbIOtHKsmjplgBy09mD2aOtr++OUmyDdpX0xIVV5ttXKJGbKONSnSL8t7Qsqx1wuXlipnTc2hFA0KfEUQy8XDNRa1DIjvYzJl7H6Vm0Wd1Oo2QU/nhY65L7SVd2bSC7qlAROLnA4y5qvDQC8MSEkkOXaVUL10KVAojEuro7VjJNMPCdLgFnJ/R4mE4SFMubLUl9mGjeKFdfr7jZYXYD6O88//zyefPJJVFRUICsrC88++yymTJnSpWPUV0bA7NI3sag16O7mzTTQ3mzsmRSNxn4m6xuMBTXazjPmahhhcOwriuM63uksWKKNlTSyJRuLx0yK1m/xCzR4UdLVRuxGPmjxR5gQ0ql4mgLGrHmhU/plRNSP+mt0A0C9x5h8bEo11BxDI2sNtY+3hHe8Uzt84TFWvssIFgNeR4CS30d3W731sAfpHHLAKNvdMZn0lYfDYleGxEE1i9Us4FahJt/yBsiVmpRsx/EWJcBIEZauk9KKrWbbjvTBG0fJrGwtynCR5fH0BGWCJOPBpVIuLaUBUvKCkYCgFaYPG8i8S5NLH5U9qaUs6a5iyg5Od10q2Q5yAS9vikJ4US0AoCFZmWD5opV9G31ad20buXXKUlIy/lvQKqWt1qwqniZyd5Y1qe02ZVxkCS6p7MpEctKtW1r1Q+FB1cIuLdSynrYgt39VCacyaCHKhC6TncmkZrbTZpgoYZGXFF0RJmPDSVmlc8mYfOEhzVSNWyeX8GF+NaY+lpaHZSZ6n6yfLl3kyUou65Q7KDu6Wj/dGUTFXmUxRGaiX1k8Wxk/n3LMcxMVd6VdyfTjQG0dpGR7KCcAHEHYKYu9muStRXkNmSity4RE+7E6A1RQ9mc2bdqE5cuX44UXXsDUqVOxbt06zJw5EwUFBUhMNFZjlGGYM+hIPgIsI/soRueQvhgBs85SSqFwY0kUhYE62zBmmIYn3uABDJb+SnPWGmr/xzpj2v4Ep64iqgCA7adHGTq3L2BMhbPW6G8f0rvIMkjnkANC2e6uyaRwhBAixctDirG0SAZGNSIYpJhriq2VCkyTrNtMSlqArK6HyRIpk51JZS1wwtlcJ5v+rxtO8eD10tKtKFB0SggyjgSk+zYpl2Yf4E1WlLFjXsoqSS7foknpe3mjEtchY2uCEdp60lIpHh91DLtjFIXvdIayi5/OV1ujKHhWemICdO32Gm09cq9MUBYwqTWoPUnkXk/J1HwUsy1fdBmzY62i7Q1ay63fZlYVYrn4Ib0IbGS4UGPFK1qUGyNl2+eicycE1Psgx9BS3cKCTUq+nSzfssyatDjLHydTg1W1EH9+cqTyBy18WGghRhqnnbI8F8VVe6jylrNcOUDTUIHgMIoRrFfauu20WELeDkU1itu966h8NrRu5HJMzDUW+GihwETKvVykkeXLGpJ0WoyEQLMv/9m+Z/oSTz/9NObPn4/bb78dAPDCCy/gvffew0svvYQHHnig08exNJph1umyJ/NX6CU2U3/7IzXGsu02VEYbam+JNegiKoxNZivKjF2/Eeu03W4sVj8QMOYi6rDqP79FT9uO5KO6D9OX6I45ZNgxEyw6y2gFImy62kmsWWN0t/WHG8z4b2ydwFhGbAD7aozFnA91Vhtq/3btJN1tQwZlu8dgpQwjZdt0tx2kc8gBoWx312TSWmeBjZQTmSXa7ya33+/C0ET1/MamKRbG7+qHKg2lsJAxDPQ5IVJxLW6oIEukLN8V5UcggtpIqylpbVaKAZZlsgK0UipfSZkoTCbF8iYG4SKL7KRphwEA/1f1c+U7Kgllla4m0p2S/reSkiktzpEWD6zVioXW4lE6IGOgkzOVIN9j1UoJnhAp7OZKUuZiFcXQkhdO/ReqYicTyMlhShmpHKvMoyiPMrO49CzxDG1R+ssE1eLvqJTZvpWdT2eSFVqWKCPhJa9JunmrJcE8FnWbrInpSVPOZzmlXKv0AJDZ49V+0f03y7Ji9lCzO7tP+cWR5cTMpNB7KZu7upBH8fyCrqdpuHIO8ykrwg8qHgjeGGXnCe6jAICPoocDAMLtyqT3BN1XM8Wj+yjmXHoIBNwh2GjRQY3Lt2i9K5yx+mK8lHibs0vZgRpv01/x+XzYu3cvfvWrX6nbzGYzZsyYgR07dvRizxhm4NGRfARYRvZFumMOafEKWHQqCpYGY67cJr0uvQD8YcaUbZux3G4IuI2FmpwbXW6ofaqtxlB7Wwc5Gtqjym8swZnXY3CRplG/sh/06Gs7WOeQ/V7Z1jOZ9Hq98Hqb49hOUbxLMCyEUBwpXlIRpc/egA2Ok4pyc7QuCgBgIuXZRPuGKFGZ6t5LbuT2akr8FSRlaGQTguQqLRXwMEpYdXIqWSvrtcnCZB1rWX5KKpVwBOGJV461pVZxI5elqyyUZG3seGVxoLSBVgBJsZcWeKmIhpl9MHl8msNLq/PxU0pciquC3NhJQEvlLVSuKIpBUi4dJ83wUPkpqfDJ7OJBso6prt8UcxygpGxS6ZVKuLXepF6TLNdlot8ml1LeGp7E5oRxAOAgq7l0mZex20Fb84KFzKjuOmLTHEOu2MljeUnpttNnGdttCpog6D7GOpVFirLTsj46jQtlgDfXkBs+xaFLq7+tnuLFXUJVss103VV+paRF0KEcMyVMMeMfsSmLFKFwbVkzuSggbKHmJHAtMpXLrOS+Y/rijERIQLTjAiQG6Kpkf+XEiRMIBoNIStLWqU5KSkJ+fn6bbc4mH0dPLIEtXF9Clx9KjSVyEdX6E8mISGPWVdsQY1Z5cdBYTJ/RNyryvFpD7euPROlu64kxNpGekFFqqP2QsFrdbX0WPz7rYpuO5CPAMrKv0dU55Fnnj04ToNeyHWksUZZ193e629pHTTV0bl+U3gQwCoHTxhTGE15j8rXSH22o/YzwPN1t3zo10dC5zRZjMdty/q6HkE45NljnkP1e2dYzmXz88cexZs2aVttFvRc2mTmbynuFmmiiFgwAJkWQnudULI67T2cCAOwnlAc+QCtcZlJekzIUTbDIS25IpGAFjwgISoYlFUq5QBXyUrKrE8oGIQ25jdKCSxZKabGtMCEYpViVp9v2AAC2HR4N4Iwazo2KFdNnUf4PyuRZx8gySm6O3gYfvNHKeZ3FTXT9ynljEk8CACrDKPu4RSrGZL2O19bKNpksCHm0NbpN5NJdo+Rag1+QdVU5dHP8eo203tM1uwRCVh+1oYWNKFpQOE5KbAXFJjfSfaPuNFL8s7Oouf61zBrfGE4KL7mtBy1UWsuj/PD5MpQfVBmf3hRDCfFIwbYeMyNIWdJrqFak6YSyj6D7ZDsuE9uRi7iMaSe3bp/8nfI1u5z7KM7ac5pc5o8rSnZiUHmeQk2K4qIuCJGXQSCo7C/qQgAdP0Qu5uI43WN67szVtKjSRcEWEN52SzMEYGyFnul9ziYfAw36FSddZZTOQDQZSORiwJUYAEIhY+1NekukdBPBRmMJ0kJNBu6d05iy7TfwzAGAL6RfHvnI2tgVGdmRfARYRvY1ujqHPJt89Ac96ryjq5iOG0uCGIow4Mt9ythiYiDemLJsMZgO3dRkrP+zYn4w1H5frX5l3+w1du2ek8aU7bAy/b8NQVpw4jlk5zCJfr6MUFZWhrS0NHz55ZfIzs5Wt69YsQLbtm3Drl27WrVpuTJ57NgxjBs37ifpL8P0JUpLSzFkSMcxTx6PB5mZmaio6LimZHJyMoqLi+F0GsvCzBjH5/MhLCwMr7/+OmbPnq1uz8nJQW1tLd55551WbVg+MkwznZGRXZGPAMvIvkRX55AsHxmmGZ5Ddo5+b9mOj4+HxWJBZWWlZntlZSWSk5PbbONwOOBwNK8ERkRE4MCBAxg3bhxKS0vhdhuLo/ipOXXqFIYOHcp97wX6a/+FEDh9+jRSUzuXidPpdKK4uBg+X8eWJrvdPqCEZH/Gbrdj0qRJ2LJli6psh0IhbNmyBYsXL26zTVvysbS0FJGRkTCZWrtJ9td3oC/AY6efnh67rsjIrshHgGVkX6Krc0iWjz8dPHb66UvyEeA5ZL9XtvVMJltiNpuRlpYGAHC73f32pea+9x79sf9RUV2LxXQ6nQNOAA4Gli9fjpycHEyePBlTpkzBunXr0NDQoCYD6giz2dyplev++A70FXjs9NOTY9cVGcnysX9idA7J8rHn4bHTT1+Rj8DglpH9XtkGjE8mGYZhBipz5szB8ePHsXLlSlRUVGDChAnYvHlzqxhFhmGYwQjPIRmG6UkGhLLNk0mGYZizs3jx4k57+jAMwwwmeA7JMExPMiCUbcD4ZNLhcGDVqlWaWJz+Ave99+jv/WcYo/A7oB8eO/3w2DHdSU8tSPJzqh8eO/3w2PUt+n02coZhGIZhGIZhGIbpa/RuAVCGYRiGYRiGYRiGGYCwss0wDMMwDMMwDMMw3Qwr2wzDMAzDMAzDMAzTzbCyDeD5559HRkYGnE4npk6dit27d/d2l1rx+OOP44ILLkBkZCQSExMxe/ZsFBQUaPa57LLLYDKZNP8WLFjQSz3Wsnr16lZ9GzNmjPq9x+PBokWLEBcXh4iICNx4442orKzsxR43k5GR0arvJpMJixYtAtC3x51hepL+IDv7Ih3JQ6aZzz77DNdddx1SU1NhMpnw9ttva74XQmDlypVISUmBy+XCjBkzcOjQod7pLMO0gGVk12H52HlYPvYPBr2yvWnTJixfvhyrVq3C119/jaysLMycORNVVVW93TUN27Ztw6JFi7Bz5058/PHH8Pv9uOqqq9DQ0KDZb/78+SgvL1f/PfHEE73U49ace+65mr598cUX6nfLli3D//3f/+Fvf/sbtm3bhrKyMtxwww292NtmvvrqK02/P/74YwDAv/zLv6j79OVxZ5ieoL/Izr5Ke/KQaaahoQFZWVl4/vnn2/z+iSeewB/+8Ae88MIL2LVrF8LDwzFz5kx4PJ6fuKcMo4VlpH5YPnYOlo/9BDHImTJlili0aJH6ORgMitTUVPH444/3Yq86pqqqSgAQ27ZtU7dNmzZNLFmypPc61Q6rVq0SWVlZbX5XW1srbDab+Nvf/qZuy8vLEwDEjh07fqIedp4lS5aIESNGiFAoJITo2+POMD1Ff5WdfYH25CFzdgCIt956S/0cCoVEcnKyePLJJ9VttbW1wuFwiNdee60XesgwzbCM1AfLR32wfOy7DGrLts/nw969ezFjxgx1m9lsxowZM7Bjx45e7FnH1NXVAQBiY2M12zdu3Ij4+Hicd955+NWvfoXGxsbe6F6bHDp0CKmpqRg+fDhuvfVWlJSUAAD27t0Lv9+vuQ9jxozBsGHD+tx98Pl8+POf/4w77rgDJpNJ3d6Xx51hupv+LDv7CmeTh0znKS4uRkVFheY5jIqKwtSpU/k5ZHoVlpHGYPloHJaPfQdrb3egNzlx4gSCwSCSkpI025OSkpCfn99LveqYUCiEpUuX4qKLLsJ5552nbr/llluQnp6O1NRUfPvtt7j//vtRUFCAN998sxd7qzB16lSsX78eo0ePRnl5OdasWYNLLrkE33//PSoqKmC32xEdHa1pk5SUhIqKit7p8Fl4++23UVtbi7lz56rb+vK4M0xP0F9lZ1+hPXkYGRnZ293rN8jfh7aew77228EMLlhG6oflY/fA8rHvMKiV7f7KokWL8P3337eKYbnrrrvUv3/2s58hJSUF06dPR1FREUaMGPFTd1PD1Vdfrf49fvx4TJ06Fenp6fjrX/8Kl8vViz3rGn/6059w9dVXIzU1Vd3Wl8edYZi+R3vycN68eb3YM4ZhmN6F5SMz0BjUbuTx8fGwWCytsl5XVlYiOTm5l3rVPosXL8a7776LTz/9FEOGDGl336lTpwIACgsLf4qudYno6Gicc845KCwsRHJyMnw+H2prazX79LX7cOTIEXzyySe48847292vL487w3QH/VF29mXOlIdM55HPGj+HTF+DZWT3wfJRHywf+w6DWtm22+2YNGkStmzZom4LhULYsmULsrOze7FnrRFCYPHixXjrrbfwj3/8A5mZmR222bdvHwAgJSWlh3vXderr61FUVISUlBRMmjQJNptNcx8KCgpQUlLSp+5Dbm4uEhMTce2117a7X18ed4bpDvqT7OwPnCkPmc6TmZmJ5ORkzXN46tQp7Nq1i59DpldhGdl9sHzUB8vHvsOgdyNfvnw5cnJyMHnyZEyZMgXr1q1DQ0MDbr/99t7umoZFixbh1VdfxTvvvIPIyEg13iIqKgoulwtFRUV49dVXcc011yAuLg7ffvstli1bhksvvRTjx4/v5d4D9957L6677jqkp6ejrKwMq1atgsViwc0334yoqCjMmzcPy5cvR2xsLNxuN+6++25kZ2fj5z//eW93HYDyI5mbm4ucnBxYrc2vTV8fd4bpKfqL7OyLtCcPGS319fUai1ZxcTH27duH2NhYDBs2DEuXLsWjjz6KUaNGITMzEw899BBSU1Mxe/bs3us0w4BlpF5YPnYelo/9hN5Oh94XePbZZ8WwYcOE3W4XU6ZMETt37uztLrUCQJv/cnNzhRBClJSUiEsvvVTExsYKh8MhRo4cKe677z5RV1fXux0n5syZI1JSUoTdbhdpaWlizpw5orCwUP2+qalJLFy4UMTExIiwsDBx/fXXi/Ly8l7ssZYPP/xQABAFBQWa7X193BmmJ+kPsrMv0pE8ZJr59NNP2/zty8nJEUIo5W0eeughkZSUJBwOh5g+fXorOc0wvQXLyK7D8rHzsHzsH5iEEOIn1/AZhmEYhmEYhmEYZgAzqGO2GYZhGIZhGIZhGKYnYGWbYRiGYRiGYRiGYboZVrYZhmEYhmEYhmEYppthZZthGIZhGIZhGIZhuhlWthmGYRiGYRiGYRimm2Flm2EYhmEYhmEYhmG6GVa2GYZhGIZhGIZhGKabYWWbYRiGYRiGYRiGYboZVrYNsH79ekRHR7e7z+rVqzFhwoR295k7dy5mz57dbf1qi8OHD8NkMmHfvn09eh6mme66ryaTCW+//bbh4zAMwxihO2RRZ343GYZh+hssH5mzwcp2G5xNSdq6dStMJhNqa2sBAHPmzMHBgwd/2s4x/YZnnnkG69ev7+1uMEy/oLS0FHfccQdSU1Nht9uRnp6OJUuW4OTJk106Tk8vLA7mxa/y8nJcffXVvd0Nhhl0sHzs+7B8ZM4GK9sGcLlcSExM7O1u9Ct8Pl9vd0FDT/YnKiqKVygZphP8+OOPmDx5Mg4dOoTXXnsNhYWFeOGFF7BlyxZkZ2ejurq6t7vYb/D7/T127OTkZDgcjh47PsMwrWH52H2wfGR6A1a2DdCWu8fvfvc7JCUlITIyEvPmzYPH49F8HwwGsXz5ckRHRyMuLg4rVqyAEEKzTygUwuOPP47MzEy4XC5kZWXh9ddfV7+XFvYtW7Zg8uTJCAsLw4UXXoiCgoJO9z0YDGLevHnqOUaPHo1nnnlG/f6zzz6DzWZDRUWFpt3SpUtxySWXqJ+/+OILXHLJJXC5XBg6dCjuueceNDQ0qN9nZGTgkUcewW233Qa324277rqrzf5cdtlluOeee7BixQrExsYiOTkZq1ev1uxTW1uLO++8EwkJCXC73bjiiiuwf/9+9fu2PBKWLl2Kyy67THOexYsXY+nSpYiPj8fMmTMBANu2bcOUKVPgcDiQkpKCBx54AIFAoEv9a0nL/nTmGIcOHcKll14Kp9OJcePG4eOPP2513NLSUtx0002Ijo5GbGwsZs2ahcOHDwMA8vPzERYWhldffVXd/69//StcLhcOHDjQbn8ZprdYtGgR7HY7PvroI0ybNg3Dhg3D1VdfjU8++QTHjh3Dgw8+qO7bluUkOjpa9SLJzMwEAEycOBEmk0l9/+X7uGbNGlWGLFiwQLPglpGRgXXr1mmOPWHCBPU9zcjIAABcf/31MJlM6ueWSOvRm2++icsvvxxhYWHIysrCjh07NPt1JD87ulZ5nk2bNmHatGlwOp3YuHEjQqEQHn74YQwZMgQOhwMTJkzA5s2bu9y/lpzZn84eY/369Rg2bBjCwsJw/fXXt2mJe+edd3D++efD6XRi+PDhWLNmjSp/H374YaSmpmraXXvttbj88ssRCoXa7S/DDARYPrJ8ZPnYzxFMK3JycsSsWbNabf/0008FAFFTUyOEECI3N1dERUWp32/atEk4HA7x4osvivz8fPHggw+KyMhIkZWVpe6zdu1aERMTI9544w1x4MABMW/ePBEZGak536OPPirGjBkjNm/eLIqKikRubq5wOBxi69atmn5MnTpVbN26Vfzwww/ikksuERdeeOFZr6m4uFgAEN98840QQgifzydWrlwpvvrqK/Hjjz+KP//5zyIsLExs2rRJbXPOOeeIJ554Qv3s8/lEfHy8eOmll4QQQhQWForw8HDx+9//Xhw8eFBs375dTJw4UcydO1dtk56eLtxut3jqqadEYWGhKCwsbLN/06ZNE263W6xevVocPHhQbNiwQZhMJvHRRx+p+8yYMUNcd9114quvvhIHDx4U//Ef/yHi4uLEyZMnz3rflixZIqZNm6Y5T0REhLjvvvtEfn6+yM/PF0ePHhVhYWFi4cKFIi8vT7z11lsiPj5erFq1qkv9a0nL/nR0jGAwKM477zwxffp0sW/fPrFt2zYxceJEAUC89dZb6j0YO3asuOOOO8S3334rDhw4IG655RYxevRo4fV6hRBCPP/88yIqKkocOXJElJaWipiYGPHMM8+ctZ8M05ucPHlSmEwm8dvf/rbN7+fPny9iYmJEKBQSQgjN+yCJiooSubm5Qgghdu/eLQCITz75RJSXl2vkQ0REhJgzZ474/vvvxbvvvisSEhLEr3/9a/U46enp4ve//73m2FlZWaosqKqqEgBEbm6uKC8vF1VVVW32WcrbMWPGiHfffVcUFBSIf/7nfxbp6enC7/cLITonPzu6VnmejIwM8cYbb4gff/xRlJWViaefflq43W7x2muvifz8fLFixQphs9nEwYMHO92/tjizP505xs6dO4XZbBZr164VBQUF4plnnhHR0dGa383PPvtMuN1usX79elFUVCQ++ugjkZGRIVavXi2EECIQCIjs7Gwxe/ZsIYQQzz33nIiOjhZHjhw5az8ZZqDA8pHlI8vH/g8r222Qk5MjLBaLCA8P1/xzOp3tKtvZ2dli4cKFmmNNnTpVo2ynpKRoFFi/3y+GDBmiKmUej0eEhYWJL7/8UnOcefPmiZtvvlkI0axsf/LJJ+r37733ngAgmpqa2rymlsp2WyxatEjceOON6ue1a9eKsWPHqp/feOMNERERIerr69U+3XXXXZpjfP7558JsNqv9SE9PV4VAe0ybNk1cfPHFmm0XXHCBuP/++9Xjut1u4fF4NPuMGDFC/M///I8QovPK9sSJEzX7/PrXvxajR49Wf6yEUBTWiIgIEQwGO9W/tmhL2W7vGB9++KGwWq3i2LFj6vcffPCBRoC/8sorrfrq9XqFy+USH374obrt2muvFZdccomYPn26uOqqqzT7M0xfYufOnW1OmiRPP/20ACAqKyuFEJ2fYLWUdTk5OSI2NlY0NDSo2/77v/9b8553NJk82/lbIvvw4osvqtt++OEHAUDk5eUJITonPzt7revWrdPsk5qaKh577DHNtgsuuED9fepM/9qirclke8e4+eabxTXXXKM5xpw5czS/m9OnT2+lSLzyyisiJSVF/VxUVCQiIyPF/fffL1wul9i4ceNZ+8gwAwmWj82wfFRg+dj/YDfys3D55Zdj3759mn8vvvhiu23y8vIwdepUzbbs7Gz177q6OpSXl2v2sVqtmDx5svq5sLAQjY2NuPLKKxEREaH+e/nll1FUVKQ59vjx49W/U1JSAABVVVWdvsbnn38ekyZNQkJCAiIiIvDHP/4RJSUl6vdz585FYWEhdu7cCUBxd7npppsQHh4OANi/fz/Wr1+v6efMmTMRCoVQXFysHufM62uPM69HXpO8nv3796O+vh5xcXGa8xUXF7cal46YNGmS5nNeXh6ys7NhMpnUbRdddBHq6+tx9OjRTvWvs7R3jLy8PAwdOhSpqanq92c+P4AyDoWFhYiMjFTHIDY2Fh6PRzMOL730Er799lt8/fXXWL9+vebaGKYvIlqE0/QEWVlZCAsLUz9nZ2ejvr4epaWlPXK+9mR0Z+VnZzhTxp46dQplZWW46KKLNPtcdNFFyMvL63T/Okt7x+joNxFQxuHhhx/WjMP8+fNRXl6OxsZGAMDw4cPx1FNPYe3atfjFL36BW265pUt9ZJj+DstHlo8sH/sv1t7uQF8lPDwcI0eO1Gw7U/HqKerr6wEA7733HtLS0jTftUy8YLPZ1L+lMtXZGI2//OUvuPfee/Gf//mfyM7ORmRkJJ588kns2rVL3ScxMRHXXXcdcnNzkZmZiQ8++ABbt27V9PXf//3fcc8997Q6/rBhw9S/pXLeEWdej7wmeT319fVISUnRnF8i4+bNZnOrH6S2kmF0tj9d6d9PdYz6+npMmjQJGzdubPVdQkKC+vf+/fvR0NAAs9mM8vJyVcgzTF9j5MiRMJlMyMvLw/XXX9/q+7y8PMTExKjPt8lk6tR7rofOypDO0p6M7oz87Oy1dodM6+pvSHcdo76+HmvWrMENN9zQ6jun06n+/dlnn8FiseDw4cMIBAKwWnn6wgx8WD6yfGT52P/hu9GNjB07Frt27cJtt92mbpNWYUDJTp2SkoJdu3bh0ksvBQAEAgHs3bsX559/PgBg3LhxcDgcKCkpwbRp03qsr9u3b8eFF16IhQsXqtvashDfeeeduPnmmzFkyBCMGDFCsxp4/vnn48CBA60WJXqC888/HxUVFbBarWdNupGQkIDvv/9es23fvn2tFNyWjB07Fm+88QaEEKow3L59OyIjIzFkyJBu6X9nGDt2LEpLSzXK8ZnPD6CMw6ZNm5CYmAi3293mcaqrqzF37lw8+OCDKC8vx6233oqvv/4aLperx6+BYbpKXFwcrrzySvzXf/0Xli1bpnlOKyoqsHHjRtx2223qu5mQkIDy8nJ1n0OHDqkr/ABgt9sBKEkgW7J//340NTWp59i5cyciIiIwdOjQNo996tSpVlYUm83W5rG7SmfkZ0fX2hZutxupqanYvn275jdk+/btmDJliuF+dwX5m3gmbcm0goKCdsdh06ZNePPNN7F161bcdNNNeOSRR7BmzZoe6TPD9CVYPrJ8ZPnY/2E38m5kyZIleOmll5Cbm4uDBw9i1apV+OGHH1rt87vf/Q5vv/028vPzsXDhQrVuNwBERkbi3nvvxbJly7BhwwYUFRXh66+/xrPPPosNGzZ0W19HjRqFPXv24MMPP8TBgwfx0EMP4auvvmq138yZM+F2u/Hoo4/i9ttv13x3//3348svv8TixYuxb98+HDp0CO+88w4WL17cbf2UzJgxA9nZ2Zg9ezY++ugjHD58GF9++SUefPBB7NmzBwBwxRVXYM+ePXj55Zdx6NAhrFq1qpXy3RYLFy5EaWkp7r77buTn5+Odd97BqlWrsHz5cpjNP90rMmPGDJxzzjnIycnB/v378fnnn2uyjALArbfeivj4eMyaNQuff/45iouLsXXrVtxzzz2q58WCBQswdOhQ/OY3v8HTTz+NYDCIe++99ye7DobpKs899xy8Xi9mzpyJzz77DKWlpdi8eTOuvPJKpKWl4bHHHlP3veKKK/Dcc8/hm2++wZ49e7BgwQLNglpiYiJcLhc2b96MyspK1NXVqd/5fD7MmzcPBw4cwPvvv49Vq1Zh8eLF6nt+xRVX4JVXXsHnn3+O7777Djk5ObBYLJq+ZmRkYMuWLaioqEBNTY3ua+6M/OzoWs/Gfffdh7Vr12LTpk0oKCjAAw88gH379mHJkiW6+6uHe+65B5s3b8ZTTz2FQ4cO4bnnntNk/QWAlStX4uWXX8aaNWvwww8/IC8vD3/5y1/wm9/8BoDiUfbLX/4Sa9euxcUXX4zc3Fz89re/bTUpZZiBCstHlo8sH/s5vRUs3pfRm41cCCEee+wxER8fLyIiIkROTo5YsWKFJkGa3+8XS5YsEW63W0RHR4vly5eL2267TXO+UCgk1q1bJ0aPHi1sNptISEgQM2fOFNu2bWuzH0II8c033wgAori4uM1rapkUw+PxiLlz54qoqCgRHR0tfvnLX4oHHnhA01fJQw89JCwWiygrK2v13e7du8WVV14pIiIiRHh4uBg/frwm8URbCTXaYtq0aWLJkiWabbNmzRI5OTnq51OnTom7775bpKamCpvNJoYOHSpuvfVWUVJSou6zcuVKkZSUJKKiosSyZcvE4sWLWyVIa3keIYTYunWruOCCC4TdbhfJycni/vvv12Sd7Ez/WtJWgrSOjlFQUCAuvvhiYbfbxTnnnCM2b97cKglIeXm5uO2220R8fLxwOBxi+PDhYv78+aKurk5s2LBBhIeHq1k1hRBi165dwmaziffff/+sfWWY3ubw4cMiJydHJCUlqe/33XffLU6cOKHZ79ixY+Kqq64S4eHhYtSoUeL999/XJMURQoj//d//FUOHDhVms1l9/+X7uHLlShEXFyciIiLE/PnzNUkX6+rqxJw5c4Tb7RZDhw4V69evb5UA6O9//7sYOXKksFqtIj09vc1raSsJUU1NjQAgPv30U3VbR/Kzo2s9W7KjYDAoVq9eLdLS0oTNZhNZWVnigw8+6HL/WoI2EgB1dIw//elPYsiQIcLlconrrrtOPPXUU61+Nzdv3iwuvPBC4XK5hNvtFlOmTBF//OMfRSgUEtOnTxczZ87UJHm8++67xYgRI8Tp06fP2leGGUiwfGT5yPKx/2IS4ifIusD0a+bNm4fjx4/j73//e293hWEYRhdz585FbW1tq7qsDMMwgx2WjwzTc3DMNnNW6urq8N133+HVV19lRZthGIZhGIZhGKYLsLLNnJVZs2Zh9+7dWLBgAa688sre7g7DMAzDMAzDMEy/gd3IGYZhGIZhGIZhGKab4WzkDMMwDMMwDMMwDNPNsLLNMAzDMAzDMAzDMN0MK9sMwzAMwzAMwzAM082wss0wDMMwDMMwDMMw3Qwr2wzDMAzDMAzDMAzTzbCyzTAMwzAMwzAMwzDdDCvbDMMwDMMwDMMwDNPNsLLNMAzDMAzDMAzDMN0MK9sMwzAMwzAMwzAM0838P2CIlgDt3TvSAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxcAAAEpCAYAAADhz9/IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAAxOAAAMTgF/d4wjAACxjElEQVR4nOydd3wUZf7H37vZ9F5JQhoQeq8KNkDFjgXL2SvqKZbD9rPdeeqp552e552eBc9esJ6IDQtNQRDpvYYkpPdetvz+eHZ2ZktCAgtJ4Pt+vfKa2ZlnZmezz848n+fbTA6Hw4EgCIIgCIIgCMJBYu7qCxAEQRAEQRAE4chAxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIgCIIgCH5BxIUgCIIfsVqtmEwmFi1aBMAZZ5zBY4891uHj99fe8/z+YPLkyTz00EN+O19X0tn/95H02QVBELoDIi4EQRAM+Huw+fXXX/Pwww8fsvaHg/PPP5/f//73btseeOABTCYTv/zyi2tbc3MzvXv35pVXXjncl+jiUPz/RIAIgiB0HBEXgiAIQrvExsZSVVXlel1VVcWLL75ITEyM2/Y33ngDk8nENddcc9ivURAEQegeiLgQBEFog8mTJ3PHHXdw2WWXER0dTXp6Ov/5z3/c2pSUlHDBBRcQExND3759mTt3rtc5tFnvV155hezsbBwOh2t/S0sLiYmJfPrpp17tO3L+rKws5syZ47bNZDLx/fffu16/8MILDBs2jKioKJKTk7nyyispKyvr8P/BU1z8+9//ZtKkSYwZM8a13Waz8fTTT3PPPfcQFBTU4XN/8cUXpKamul6/+eabmEwmPv/8c0C5gUVFRbF06VIAmpqaeOCBB+jXrx+xsbGceOKJrFmzxnW85/+vuLiY8847z/X/e/fdd73cympra9v8jm+++WaWLl3K008/TUREBBEREa7/Qb9+/YiMjKRXr14iqARBEJyIuBAEQWiHN954gxtuuIHKykqee+45Zs2axc6dO137r7jiChoaGti9ezerVq3i/fffb/Ncl156KUVFRSxevNi17bPPPiMgIIBzzjnH5zGdOX9bJCcn8+mnn1JVVcWKFSvYvn07t912W4ePj4uLo7q6GoD6+nqee+45HnroITfLxdy5c6mtrWXmzJmdurbJkydTVlbGhg0bAPj222/p378/CxYsAHC5XU2cOBFQg/2VK1eyePFiSktLufjiiznttNPcxI+Ryy67DJvNxp49e/jtt9/48MMPvdq09x2/9NJLnHDCCdx7773U1dVRV1fHjh07uPfee/n888+pra1l165dXHfddZ363IIgCEcqIi4EQRDaYcaMGUydOhWz2cyMGTOIi4vjt99+A2Dfvn189913/O1vfyMuLo64uDiefPLJNs8VGRnJxRdf7GZpmDNnDldddRWBgYFe7Tt7/vY+w4ABAzCbzWRmZvJ///d/rsF7RzBaLl566SVGjhzJpEmTiI6OpqqqCofDwVNPPcUf/vAHwsLCsNvtnHDCCSQkJOw3ViEyMpJjjz2WBQsW4HA4+P7773nqqaf49ttvAViwYAFTpkzBYrFQXl7Om2++yQsvvEBaWhoWi4VZs2YRHR3N/Pnzvc6dn5/Pjz/+yF//+ldiY2OJjY3lL3/5i8//T1vfsS8sFgsOh4NNmzZRU1NDREQEJ554Yof/n4IgCEcyIi4EQRDaweiyAxAeHk5tbS2gBq8Affr0ce03rvvihhtu4JNPPqGqqoqcnBx+/PFHbrjhBp9tD+T8vvj000+ZNGkSSUlJREVFceWVV1JRUYHNZuvQ8Zq4aG5u5plnnnEFTGuWiy+++IK8vDxuvfVWAMxmM++99x5///vfO3T+adOmsWDBAtasWUNMTAznn3++yyLw3XffMW3aNACXNeGYY44hJibG9bdv3z7X/8rIvn37AMjMzHRty8rK8mrX3nfsiz59+vDBBx/w+uuvk5GRwfjx4w/IoiQIgnAkIuJCEAThAElLSwMgJyfHtc247otJkya5fP9fe+01jjvuOAYMGHDA54+MjKS+vt71uqCgwG1/fn4+F110Ebfddhu5ubnU1NTw9ttvA7jFfrSH5hb12muv0a9fPyZPngxAdHQ0lZWVPPnkk8yaNYuoqCjXMenp6R06N8Cpp57K0qVL+fzzzznttNMwmUyceuqpzJ07l19//ZVTTz0VUO5dAOvXr6eqqsr119DQwP/93/95nbd3794A7N2717XNuN5RzGbvR+W5557LN998Q1lZGffccw+XX34527dv7/S5BUEQjjREXAiCIBwgvXv35uSTT+bee++lsrKSyspKHnjggf0ed/311/Pqq6+6fP0P5vzjxo3j/fffp6qqipqaGq9Bdl1dHXa7nYSEBEJCQtixY0enXatiY2NpaGjgqaeeckvzGhMTw9dff82GDRu48847O3VOI+PHjyckJIR//vOfLivFtGnTePrpp0lPT3eJr8zMTM477zxuvfVWl0iora3l66+/prCw0Ou8aWlpTJ48mfvvv98lRA4kpWxycrKbcNi2bRtfffUVdXV1WCwWoqOjAQgICOj0uQVBEI40RFwIgiAcBO+88w5BQUFkZWUxZswYLrnkkv0ec9VVV7FlyxZqa2u56KKLDur8jz/+OFFRUaSnpzN27FjOP/98t/2DBg3iySef5KqrriIyMpKrr76aK664olOfMTY2FoCUlBTX4B+U5SIvL4+bbrqJ+Pj4Tp3TiNls5uSTT6ahoYEpU6YASlzU1NS4rBYa7733HmPHjuXUU08lMjKSgQMH8uqrr7ZphXnvvfdwOBxkZmYyevRopk+fDkBISEiHr++uu+5i27ZtxMbGEhMTQ0tLC3/5y1/o3bs3UVFR3HXXXbz11lv069fvAP8DgiAIRw4mR0ft4oIgCILQCd544w127tzJ448/3tWX4mLt2rWMHj2agoICUlJSuvpyBEEQjjhEXAiCIAh+59JLL2X9+vU0NDTQr18/vv76a58ZsQ41GzdupKWlhVGjRlFQUMBVV10FwI8//njYr0UQBOFoQMSFIAiCcMTy888/c+2117Jv3z4iIiI46aST+Oc//ylWC0EQhEOEiAtBEARBEARBEPyCBHQLgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXRFwIgiAIgiAIguAXLF19AZ0hODiYxMTErr4MoR1KS0tpbm7u6svwO9L3uj/S94SuQvqe0FVI3xO6ivb6Xo8SF4mJieTn53f1ZQjtkJaW1tWXcEiQvtf9kb4ndBXS94SuQvqe0FW01/fELUoQBEEQBEEQBL/gV3GxY8cOJk2axIABAxg/fjybNm3yarNo0SJCQ0MZNWqU66+xsdEv759TVs8Dn22g2Wrzy/kEQfADi/4KW744uHM0VUPBWr9czhFDTSF89nuoK+nqKxGOQuqbrbywcCf1zdYOtf9yfSFvLss5tBclHHXkVTRw78fraGyRcV93wq/i4qabbuLGG29k+/bt3HfffVxzzTU+2w0cOJC1a9e6/kJDQ/3y/te8vpL3VuTyvzX7/HI+oefQ1cJWaIPSbbDoCZh7xcGd581z4JWTZCBt5MOrYN17sOp19bp6Hyz5O9jlISscet5cnsPfvt3GfZ+s71D7W99bzZ/med+XBeFguP7NX/lwVT6frhEXqu6E38RFSUkJq1at4oor1CBixowZ5OXlsXPnTn+9xX4prjnygpqEjtHVwlZog3Uf+Oc8hevUsnyXf87X02mug/yVzvUatXzxWPjxMchb2XXXJRw1OBxqOX99YddeiNAldJcJve3FdQBYzCa/nlc4OPwmLvLy8khJScFiUTHiJpOJjIwMcnNzvdru2rWLMWPGMH78eF588cU2z/nss8+Slpbm+qurq2v3Gpqc7lBBFgklOZroDsJWaINNn+nrre08VEq2wtP9YN9v3vsaKvT1it3+u7aeSNFGmHslLHhQ31axB+rLdZHR0v59UhD8QZ3BHWpPWX2Hj3NoqkTo0XSHCT1jX6pubPXbeYWD57CPwseMGUN+fj6rV6/ms88+46WXXuLDDz/02Xb27Nnk5+e7/iIiIto9t9bPmlvt7bZbl1fFrzkV7bYReg7dQdgKHrQ2gbUFqgzfwebPob7Md/u9P0NDGexZoo41krdCX684yi0XJhNsmQdr39e3VeyCLZ/rrxurDvtlCUcflfUtrvWfdpZR1dDSZttWm/5Mbra2/3wWuj/dYUIvt7yBM5//yfW6vK7t/iccfvwmLtLT0yksLMRqVbMZDoeD3NxcMjIy3NpFRUURHR0NqDRWl156KUuXLu30+zW0WNlaVON2g9Oo20+A2bkv/MxFLy3v9HsKPZtDKWwFD/7eH54fDQ6D//9nN8EnN/huX5mjlmvegSdSdDcogNxf9PWj3XKROAgCw8HWDGYL9DlRWS7Kduhtmqq67PKEo4dyw7P34f9tZNSj37Vpwahq0GeV9zf5J3R/usOE3vLdZWwprHG9LhNx0a3wm7hISkpizJgxvPPOOwB88sknpKWlkZ2d7dausLAQu13dXGpra5k/fz6jR4/u9Pv9sruc059byndbir321TdLQOMh4ev/g0eivWeWu5jDLWyF/VBfplx0apwBdqmG3/fuhVCyxfuYyj1qWb4THHbI0Wek2LsMgqMhMqVbiovD6ntsDoDUUWo9YSAkDlZCwyjAxHIhHAYq61tIiAiib2K4a9vuUt8DQqNVo7FVns9HC4dyQq/FwwJWVicxt90Jv7pFvfzyy7z88ssMGDCAp556itdfV1lMbrjhBubNmwco0TF8+HBGjhzJsccey6mnnsq1117b6feKCQsC1E2rrtmKza773tW3dCw1nuCBrRXWvKuWoHzkdy0EpxhkxX/Usr60a66vDQ63sBX2Q66HVbD3WPfXv70J+augxTDLqVkuNEo2q2VLAxSshoxjIT4bynfr/bGbcNh9j3uPUcteQyG+n1ovWK3vF8uFcBioaGghNiyI8CC9Fm+rzT2eYmdJHQs2FVFpsFw0ibjo8XSHCT1NpH56yyTSYkMprxdx0Z3wq7gYOHAgy5cvZ/v27axatYrhw4cDMGfOHKZPnw7ArFmz2LRpE+vWrWPTpk088sgjmEydj/KPdYqLBZuKGfanb1m0TU9R2Z5blPHGZrV1r0FKl7P8Bfj8FvjuT+r1N/8Hb58Hy553b9dUfdgvbX8cTmEr7Ie9HuIieYRaRqZAaByOTZ/BnJNpfu1std3hgMq97sdo1o38lWC3QtZxalDdUqv6aDcJCu0S3+Pe49QyeRgkDdG3a+vtWS6a67rl71foeVTUtxAXHsStU/RJHM+aF2f/ayk3vv0bO0pqXduafNShcjgczP5wLWc9v5RvNxUduosW/EJ3mNBrbFHnDQ0MID4iWGIuuhk9Nq1SbFggAL/lVgLww1ZdXLRX1KfSYJ5tOAQzKB+uyuPK11Zgt3ePwU+n0CwSu36AqjxlxQD44VEoMwyWGisP/7Xth8MpbIV2sDbD9q/dt0UkwW2r4ZblkDISU50aPAQXr4aiDao/Nde4H1OyVVkoNKGSeTxMfgD6T4N178OGjw/Dh9k/XeJ7POgsmPY4jLkaUkbq25MGg8ncvuXimUHwVEbb+wWhA1htdqobW4kLD+L0Ycm8fu14wNtroMkZX/HNxiKvbQ6Hg1vfXc0LC3dSUN3Ep6v3samghnnrCvxyjU2tNhrEi+GQ0dUTeprlIiwogITwIMrrWiQTWSepbWpl9odryelEtreOYtl/k+5JVEggZhNoY/gN+fpsXHviwhhY1tBsIyok0K/Xde/HqqBQWX0zSZEhfj33Icfs7A5VubD4r2BvhYFnwbYvYauhwnI3FBdCN2HpsyouIjwJ6p2CPyxed99JGaniLjR+ewPHiN9hAohKU3EaQREqnWrFbpWaNiAIkoeDJQjOfxn+PQ6+vR/6nwKhsYf7Ex4Qmu9xdHQ0+fn5nHnmmSQkJHDxxRd7tZ09ezazZ892vU5LS3NvEBAIk27zfpOYDAiJ1i0XzXVQV6z/70FZfgThIGhosdLQYsPhgNhw5UEQ71y25TWwdIeeJU7zHli+u5wvNxTy5YZChveOdu0vrOp4LJLN7qCuyUp0mPdz/LTnlrC3vIGcp87q8PmEjqNN6HkyZ84c1/qsWbOYNWvWIXn/RqdwVJaLIFpsdmqbrX4f0x3JLNxWyqer9/HtxiI2PXq6X8/dYy0XZrOJ6FC9E23Yp4uL9tyijJaLQxmbUdvUA2dMNMtFawOseRuyToBx16ltO77X24lPt6Bhtylrhcb6uRCdAac/qW8Li9fXU5SLVI69F/scCTRs/Z43Xvun2nfKn2DoBXDKIwBY3zoPdn6Ho5dTWACExcHpT8HYa8DS9eK9O/geu/6/wZEQEqP/Pv97OvxrjHtsi0Y3i1sRegZbi2oY+ecFvPuLssxpoiI8WE1M1Rmee23FVmjb31qmu0JuLdItl4XVbScMqWlqZe6vua7Uto/N38zIRxdQ4EOQ7C1vAODt5Tm8u2Kv136hZ6NZLkKCAkiICAYkHW1nsTmfA/UtNkpq/Juop8eKC9DjLjypb7ZRXNPENxu9K4dWGywXjS2HLrCsvZzf3Za6EvfXp/0F4vqo9b2G7D3zZ8Mzg9XAUjh6sNu9/fU/nQmPJ6kkAC31KjA7bSxEpeptwuL0dWfmqJX2QSy1DyesNodr+YICSxoMuxAueh3G3wCnPoqlJg+A3NCB7u854mKY+hAEdn119e7ge8xg5fZHTCaExiiXxtxfoHiD2t5Q7n2MFNoTDoAv1xfSanPw2RqVCU57Bkc4xYXRa8DXgB90cbHSUGvqhy3q2TMqPYaS2maf8ZCtNjuT/7aI+z7ZwA9bilmTW8kby3IAyClv263jsflb+Of3O9rcL/RMGlv1mAtNXJTUNLE2r4q/fLm5Z7qmH2ZqGvXfq5Z5tcVqZ03uwXun9GhxEeNhCjWbIC02lPpmK5e++gs3v7PabUYEcMta0Z77FKhZyPdW5FJa2/ksBEb3qx5DfQkEBMOYq+CmpcqFJTod8IhLsLdCbQHsW+3zNMIRys/PKX/9oo36to2fqGV1voqTwKECiyN6qe2mAJVGViOuLx/0e4q/Wy9mqW24a/OLTWdQq4l9kwmOvdW1rzZ68KH5PH6iq32POeNpuPQDGDZDuYk1V8N/T9P3+wrw9oxxEYQO8KMztjHHaRVIjlbWQ01c7N6zk//99ymsNrvLAnH98X3cztHUasfhcFDbpD8jV+ypIDLYwqj0GGx2B6U+0op+u6mICmdtjTs+WMv5Ly5z7WuvMF+LzU5JbbPEXxxhNLbYsJhNBAaY6RWl+mFRTRPnvfAzry7dw87SOpqtNqnc3Q7G/83mAvVMeO777Zz/4jJXYoWFW0u444M1nU6A1GNjLsDbctEnIZzo0EDyKxspcQqCgqpGMuLCCHOmy6tqNAR078dysXRHGQ98toG3f9nL13ec0Klrq+yJ4qKuVKW3nP4vfZslSGX5qS2AuL7udQZ2fg/p4w//dQpdwyo1aGbb1ypTkZHKPVC9T60nDYHwRLUeGgtm9zmMpeZjKKGQ7+1jeMM6jbL4cbxTPJSJ28s4a0SKahRg4V/W87jN8j/KEye4jn1p8S4+WpXHa1ePJyshnO5AV/seYwmCgWeo9ZBo7/2+3BibasBHU0Foi+KaJjYVuIvS4/snACqo1mSC8WWfcV7V/9i1/XTy65TFcmLfeEIDA3hzeQ61TVaaWm00W+202hz0TQxnd6myOvRLiiDFKVa2FtaSFBlCgFmf2DLGVXqKCV/FdD3JrWhgUHLUAXxyoTvS1GojNDAA0EVuscG1p67Zyl+/3saXGwpY/n8nYzZL8hZPaoziwlmQUIuPuunt30iICHIVJ7x1SjYDekV2+Nw93HLhLi5SY0IJD7a4WSTu/Xg9Jz690GWKNVoUthbVtmm6BV18GKtAdpQe5xblcKiYi4gk732aC8Ugj8C4nd97txW6L4ueghUvH/jxUc6Bf62PbC6VOXptil5DlP+/JdQ93sJJSa16ADQTxCPWawgcfgFgYpdHAa5nrBcxuuklii29Xds+/i2fXaX1XPzycrcHieBEE3hGGqugfJcqRqjRXKvc2FoaDtulCT2b4pomBiVH0jtGuSNGBFtcwbMmk4nwIAuRqOfph0s3cN8nyi0vJSaEu08byKtXqRTKTa02apxWi1HpMa7zH5+dQIrz3Ne+8Suv/eReMHNzO8/hwuomcsv1vtzsI93t3vIGlmwv9fJmEHoWNrsD6kq5tfTPpAWq71ITF3kV+niusr6FnPJ6imuaD0lm0J5OY4uNKqe4GJkew5rcKj5fuw+jBjNWPTf+vjpCjxYXceHublHH9o0nIthCvcEiUVbXQlldCztL1MDFOOj/6zdbmfTUj22ePzjwwP89Pc4tqrFSuTtpM85GbM7/WeoY9+1l230Hiwrdk19ehFX/PfDjIzVx4UwraTUI6Io9ULwRAsMgJku5NvU9CTIneZ2muMbd5WFQipoN8Rb6JiqJcg1EANeNb9rQXiQ6/WwFA1r2rOxT9G1NVSqw+/Uz9G3NNfCvsfDCBAShI4xIi+GbO0/klatUUcwnLhjutj88OIBg1D1hY44uctNiwgAIcc4yN1ntroQnyVEhXH98H+49fSCzTx1AarSepOHlxe7iYkthLUNTo/CVPfxv325j2nOLXW4edT4SqizeXspV/13J7175xWuf0DNYn19Fvwe+Yt+Hs5nY/DN/cLwNQFJkMCYT/LxLz0pWUd/immjenwv80cbOkloG//EbPv4tH7MJxmao58YdH6xlXX61z2P2VhxF4kKzXFx5bCZPXziCm0/q58pa4cn2YpWCsTPuSp7l5feHMYDo3wt3cvpzSzp1/GHB4YDvH4HcFe7btUxRviwXl76vUtIONAxOTrgb7tkJQd3DNUXYD9YWFYxdV3zg5whwivkap+XCcK6NG9aoGJzU0bob1GVz4Zzn2FZU67IyOBwOl+VCIz02jLCgAPYZxIXxYVDbZOWzNflc/NJy8ioaOaZPHI+fN1zM3L6Y/jyc+wJc/jFc77Qslm7zbldfBrWFUJ3nXcBQENphaGo02x4/nekjU922hwdbCDGp52sE6jf+n8vHuNLEhjgn65pabS5xERkSyMNnD+GWydmYzSbS48LczqnVLSitbaasrpnhvaNdGao8aWq1s9cZ2O0rY+R7K1SGqx438Se40AL4S4rUM8jsfNYEBpiJDw92udiBygyqeZ+0l0H0SOKX3eX8vLNsv+1+NNSFiwoNZExmjNv+8VmxXHlsJvedPsi1bW87SRN80aPFhRZzkRYbysXj0gkwm1yBZZ5sL1aWi5JOBGcbU+ltL67l3o/XuQ2APPE0vW0tquW9Fbm8vHhXh96vtqmV81/8mSXbS9tvWJUHv73RoXN6UbEbfvoH/HcatBoGeVqmqHAf4qLfVLj0PffsPL3HgkVmjnsMmnhsrHS3OHQGzYWmylkgziAuBtf8pNzn0t1nwq02Oxe+tIz7P1UuEjVNVlcRLY3osEBSY0LdfltFBpen2iYrf5i7jpU5FTS22lzBe4IPIpNh9BXKchQao7atn+vdrtgQlL/pM2WBlPS0wv6o2AMtDQRbArx2RQRbCEU9X8NpJC02lDOGp7j2hziPaWy1uSwLkSHuz+teUSG8e8MxTB+ZSnl9CwXOoPBtRWpycFBypCszkC80txhjKvgAj0mIZLl/9Dyq8mDBw0QXqti2qADVz1oDdDGaEu3+vVbUt7rKDWiTVdWNrR2Kz+mp/O6VX7h8zgqf+6w2OzPfWsV3m4vdArmjQwM5fWgy71x/jGvblEFJPHbeMH4/uR+7nziTYIvZldq5o/RocZEcrW4yqTH6oDc82PumB7CjuJb6Ziub9lXTt4OBoMaA72n/WMKHq/L5cUvbM7++TG9Pf7uVfy/c6aO1N5sLaliTW8VV/13ZfsM5J8MXd0DBmg6d143KHH3d6CKjFTyL8OEW5YuY9M6/t9B11JcY1vcjXg3UNLXy3PfbldDWYm8aK6ChAmuNXnU3wOS02qW5i4tdpfXUNllZl1eFw+FgX6W3OI8KsdA7JpSCqkbXTGWxIdd9sYelo1eUiNoOERKjlr6+76L1+vqvr8E/R8Hcy5VlE6Bky+GPx6gp8H96692LoHhT+21aG2HBQ8qao7HtG3gsSQ2mAQrXw/IX/HttPY1dC5Ur3eo3fe4ODDAT4nSLCjM1E+dhYdDcoppb7a5MUZEhFjVZYSjMelx2Asdnq0BxbaJtj3PWtG9iBImR6vcfFx7kWtfIq1R91jhT3T8pgvNGpXLqkF5M6BPnVutK6CFYm2DZ82RUKnFhsarveah1MzwSDQVrXH0h1mkpq6xvoaHZ3XIx673VXPPGrwB8ujqfhYYZ/J6ObT+pd/dVNfLd5mJmvrWKPYaK3FEhgVgCzBzfP4GrJmZiwcqoYL2Mg9lsIiMujNyjyS1q8oAkXrx8DGcMS3Zt8zUrEWA2sa24llV7K7HaHUwd5D47/8LCnXy53rsmhq86GBX1bZtUfYmLqoZWV4aM/dFkcMPauM+33xvgmjF+e9F6bJW5+z2v+wUZXCB2fKuv1zpFU0QyHSKq9/7bCO6s/wiW/K1r3rvOMMDshGvUE19u4bnvd/Dc9ztUcUWNqly+Wq7E7f9shrgKD8vFpgLVj8vrWyipbXY9/KOcM5ZmE4QHWUiNCaWp1U55fQtVDS1ulgvPB4BYLjqIr8xRGoXr1LLPiVCdq8Tntq+UlaN6H/znOPj5n2rgZ2vHpaB0G3z3J3erx+bP1bbOUL4Lnh0MX93TuePaw26Ht86F/3jH/bix8lVY9i/45AZ923cPg60ZfnNmSHv5BPj2AaoK9/jv+noaGceqBA0//9O9cKaTxhYboSY1cI+g0Subo5bZ55fd5Zh/eoZnAl8kpWk3zDkFvr7Pre2YTOUDfv+nG/jkt3zynQOb9LgwV6zVNZOy+PXBU9ysH/mVDfzt262uuIr7zxjEW9dN4LnfjebVq8bROyaUZqvd63lcWd+y38GZ0HXstiXSagok06bGLxab6g8ZVufv8dc5LredaUOSsZhNVDS0uNIP1ztFxp6yenY5429nf7iOa51Co6fzzcYi/r5Ad3+12x3kVTRQZkjpbHTz31GsJ08xFqP+49lDWDxmMZO+PRt26fHImfHh5FU0dCodbY8WF2aziTOHp2AJ0D/G2Ey9YNcJ/RM4cUAiJw9KIr+ykcXb1ADr5MG93M7zt2+3cet7q7HZHTz6xWbXbEmjD0HQ3qyH1oF9Ud4BU5wxCO2q/67cb5aqS7fdScA/h0NDRbvtmHslfHaz8rnX/KsjU1TcheYiow04I/cjLm5aolLVGgujCWrW9bs/qlnQtlj5Ciz9x+G7JiPG2WvPYok+KK9rZtZ7q10ZWnIrPDIL1RayZ48KuPyPdTpPtl7K3n6XQ7iacZy/voCpf1/E7A/XuQ7ZXFhDnnOQMChFpYSMDAnEbDaRFqusj28t38uoR7/jmQXbXcd5poxOEnHRMSxBbVcx14ohnv5XiM+GgWeqZA5f3wd7FoPDBqteg+eGw5Kn236Pte+q+ielW/Rtq99S29oTJZ5okx6rXuv4MfvDmNWsxnvyyIUWIWx0FYtxVliv3Ot2f819/0743y3QfBQWIQwMhUm3qVidTf/z2t3UanNZLsJNTV6WCy1Byp6ick4rfpUZAT8xdNUD6tlT4S7aspMieO8G5aaxfHc5eZUNmEyQGhPimqHWLJjG+8Pe8gZeWKi7IWfGh7vdL7TaWNe98Ssf/6YKAeaU1TP6se946mu9D6/KqeCKOSv4w9y1R7QbTU8hMDCIHbZUhgfuIzkqhGC7xyx6Uw1XHpsJwJUTM4kND6KiXo+5MLpF1TVb3WqsHMpiyoeDqoYWbn7nN/6zSO/39S1WLpvzC/d9vN6wTf+cO0r0+1ewRR8/WwLM9C5erF7k6R40g1MiyU6K6FTNkB4tLnwxMFnPw3v1xCzeum4CGc4gse+2FBERbGGsc1bEkzeX5fDfn/dw2/tqRtaXtaHCx43GarOTX9ng8u/zRVkHYj3qmtUXd+mEDKobW3nwsw0uNxFfWExOFdneTLS1BbbMg3XvwwvHwLoP1PZRl4G1EQpWu58jopfv82ikjFRF9gR3vrpHzegt+3fbbRoroLW+ayqbu7lF7V9cPP7lFuavL2S9M3NEbZNVXbuTgrw9JFIFQKkjhpdt57Ckvz77+ORXW9ld5h4AtqWwxmVaHeIUF1GhatYxNUYNAN74WQ0y9lU1csrgJFf2GGOGGPGZ7gRWpwUowEcQrCkAEvrDrFXwu/fg7H+ozFKfOwsYaoJ046dq2doIK15xj9XSRIqxcntzrXPZiZSfRlHe0gCL/6ZcP+s67sLnhbEmz662swK6/jdGAa6Jsord2LZ+49o8omYR9o2fqqxoRyNDnNXgteeGgUaDuPBludAGMSNM+vcSUuMUlQa3KI1J2QmkRIewuaCGvIpGNai0BLjERXK0mpAwWhy0HP0anjEd2jUt21XO3R+to8Vqd1UK14KF95TVc9mcFfy0s4zP1uxjyY6D6IOCX0iPC6Pv0HEk2ks5Lj2QCIenuKjmqolZrH9kGsN6RxMXFkRRdRNWZ9+oa7ZisztcsTi7DIHfPT018X9/zvHaVl7XQl5Fo8v9aUdx22UXvOq9afc2g6fCXadk882dJxLfiQyNR5y4MAZvRThvLMYcyGmxoQRZfH/sR+erPP0NLVYcDofXPz0i2OLTcnHn3LUc/9eFrjz9CRHeD/K3f9nLvHU+6gMY0Dr+hWN7c8UxGazOrWLRtg7c2BrKfW/f9JkSFaA6TFM11BUpq4WWqnLnD843L4LAcAiO2P/7Cd5oKXmL1rXdRpsB1QZfhxNPt6jNn7tX2jbicJC9dy4fBT1CH5Oa8a1vtkJLAw1m1T8+WrSSBFM1VocZe4gS6+vyqtheXIvd7qC4pokRacotp3dMKCYTrM2tIq+igSCLmT7OuCctT/7w3qptjfM3MCYjhgfOHEykc39qtB5XlRTZ8Ruc4CRlpPe2mHSVAcxkUn+DzlaTCw4P03d0mlrO/wN8fY97rJYvcdHkfFjX7Nu/VVXDOLj86GpY+LhKWrFlXseO90W5IZGGp7iwWWHRX2ku3Y3DeO2b58GnN+rCpGQzdZu+dju0NDjDqzDkUUN0hnqWlGzx2tXQYrBc0OSVKt7knCGYYN7q2hbQ4vzf+xAXoCYhdpTUsru0jvRYNeiZMSaN+04fxHH93GvoBAZ4Z4/zTPCi+eNrDHjoax77Qj33NUvLit3ltFjtrsrihdXuMV+v/7yHAQ99TfUhzjpVXtfM52t91K05SglJVYVbx5p2uLKSuWiuwWw2uZ4nseGBXtkHjdYKLXsotF8/pSewKsf7HquNRUtrm6lqaOHUfyzhlnfdJwTOciZb8JoU1zKAGj0Vvv8TPDeifQuwB0fkHfLRc4cSGWxhsHN21GgW7W0I/m6LVpuDvIpGL7eo2PBAN8tFRX0Lz32/nfnOeI1VOeoG+di5w/jhrpPcjv34t3xuf3+NW6f2RBMXEcGBTB+lYhq82vvwdWXjp/DLf9R6fbnqAHY7fHQNfHG72n7SvSqLDKjBZdoEFTex5h31oK0rgcj9WC0Exb7f4K3zVICjhtmZSKB4k+8foN2uV0ruCnFhnJWt3gcfXgUvHee77Z7F3NrwIuPN25liXqsOb7ZBawOlQSqQP5lKEkzV2MIS+PGeqYDq49P+sYSy+masdgcj02L4fvaJfPL7SRzTJ45F20vZWFBDemyo66GvPQz6JUa4fpsnDUjk01uOo29ihGvmMSMuzBVblRwtlotO40tc9HG/R2EyQcoo73bBkSq2QpuoMNa2ac9yMedUeLqP73uWJ8bB5Y4FEO1MGFGdt/9j28JluTBB4Vr3fRs/gUVPsOXfF7Erz/B7/fBKFXeiFYS0WwnfswCrQ39UrmlI6pTv8RGF2QyJA32KizOHpxBqcmaLMjUSGx6k0p6/OEndF3crd4sJ5q00OwJZYjPUyWis1JMJGBiaGkWrzUF9i420uFBoriV2y7v8/rjeLnfoYb3Vc/6KYzOJDw9ypbwFvFLTexbeBah1uszEh6tJC83ieorTfbrIQ1z8+YvNtFjtrNrbQeHcQRwOh8ttFGDmW6u444O1HUotelSQNBiA4U0+4iTq3SdYPV3y6putbi49Ow1uQZ5V5/eHw+HoVkWSqxtbvUSzJi5qm60s3ObuqWA2wWtXjyM7SU0UeqXp9WG5YN9qNVHkq1RBGxyR4uKqiVls+PNprkCVXoaZzpSY9gcmj507FIA1eZU0GSwXQRYzcWHKj++3vZVMevIH7vpwrQp0dbIuvwqAsGBLm7m4H3NaR3yhfckRIRaXP6lX6lxf/vKrXoNv/k891J8fpTJ6lG13bxOZorszJQ+HAAuMvVb5JW+drywa+3OJEhTmQNi9UGWi0fzKtcrIFbvh2UHetQOaq/UZ4c64i/iL+hJVMRvcBwY+XLSsu/T6LKkm9WArrG7A0VJPmSmORkcQgyLqSDDVEBCRSEyo+41te5G6sSVHh5CdFElydAgXjEmjxWqntLaZ9Lgw10Nfc4symUycNFBlKhtpqNrb6jRrZ8aH8fylo9n459NcWWeETpA8wnvb+Ou9t6WO8t62e5F7sT2jpVSzUriJC+c2q3PmcMsX+78+o7joPQ6udVoLtLTHnWXpM7DseTCZYdBZyophjJNwZstKpJLKivatwxZ7E8vtQ3A4XaWscdkuC9tRSeJgdT/xsEr9efpQEkLU7zWCJvUM/OkfULJJBdW/NR0Tdkabd7De0YdSDAkHHDbVBz64HDZ8DF/cCfmrGJIa5WqSHhsGv70J8++Ez29xbX/rumN494Zj+NM5Q/nt4VP54a7Jrn2eblExHoMwI5qnw+7SOixmE2MyYwgwm/hyQyGnP7fEVatHc44w+q37g3dX5HLC0wtZsEll4dvoHPS25c5y1JF+DAQEMTz/fe99NfvcYrw8XfLqmm1u4sI4aZvj4b67P95YlsOoR7/jt736PWtHcS3vruh8vaD6ZivH//VHPlp14JMoNU2tbhlTwV08fbra3fr1xrUTOHlwLy4/JoO+ieE8PcPj2RDkFBfaJJLNqjKT9h6tT6J2gCNSXHhinOnUvgTP3NcxYYE8cf5wJjpNrXd8sJZP1+hfygNnDHIFCb24cCcF1U0sdLosXTMpC8BVwCUiOICokECv9wDlE6pl0PHEmPtb8ystrmlyy0L12+atPo8FlPWiuUb5xnvWwYhMVqLiso/gknfVtrFXQ0AwLPm7GjCIuOgYvYZCcLQKWn0qXcVaeM6wGlN9gvuDuEssF2WqD4TFu6fmLPXuT427l9HscMZCmNRAsqWpARMOcuvNlJniGRHVQHpQHZaoXl7F7DQfZqP70pnDU1xif0xGrMtyobk9AZw3qjcWs4kpA/V0yFowZUp0KIEB5jbr2AhtcOqjEN/fNesHQEymslr4smb42uYphmsNM/2elgu73bt/r3rd+5xFG9RESWWOeohp4uK21XD9d8plK6IXFKyFHx7VYzIcjvZjlrZ/C2vfU8eAEvS9xwAO3RpRvQ92qgKDrQ4L1oYq/fjj/+BabciYjAPVt4tD+mJyuoedPXWy18zoUYXWl7RJCocD6koJMtkJcArKMFMTSXi7Oo007SbK1Mhqe39qHB4p4fN/VRNdCx5SWbrmnMzkAYmu+8G4rFiVwQuU5ck5Wx0XHsRxztS14B6T5e0WpX9v04b0Iitej53RMgvtLq0nIz6MYEsASZHBlNY2s7Wolp+c8RxanY0N7WV0PAA+Wa0CzJftUp8r2GmZaTlarWSehMW5FfItccTo+xw2twQOnimKPS0XxmxJNU3e7m2F1Y2MenSBS+gZeX+lmvD4case63rhS8t58LON7Xqm+GJveQP5lY0ur5eOsCqngkfmbXIVba5uaCU6NJBv7zyR26ZmA+7iwjMOSSvXkBQVwo93TWZclkdyHi3eTLNclG5V673HduajHR3iopcPt6j1f5rGi5ePcW3/96VjuOyYDPolRrjEAqj0edsfP4OrJ2URFxZEs9Xu1hkvnZDOI9OHupmlwoIsmM0mrwfQPacNBOB1QwDOvHUFBhOWOm94kIVgSwCxYYHMX1/IsEe+ZXWu6nzrtu6gTX4yZCJa8R/3fZHOYkYDpuk1KiKSlMAo3uB8LeKiQ5gDVFpGUD+67/6oakCMvkINjADWf+ieotM4M9sV4qKxCkJjISoVWgzvn7/KvZ2tldCStayyD6TQEUdvp+UizFkcq94eRJUlHlPFbkytDSrDkAcr96iHo1HURwRb+Om+Kax44GRum5rtusFFGcTFhD5xbH/8DEZn6AkXtBgnT/9toYMcdwfctso9Le2M1+DqNmIZNLeoQWfD+JlgNgzOrv9eFdlsT1y01AEe7i25y937vM0KLx0Pf+8P/xyp3De130dMph7PEJMBFbuUFUITKD89C4/GtZ3x7L2L4X+/11+fcBf0crrfFG1QwuIfQ12iOs1USmBzBQRFwl3b4GQ9he6v1dFstyv31IDkobqrVsIA3+99tNBLWffJU+le2fgJ/D0b/poFNvV7HWvawbDvLvU69NQAdb9ZY+9PNR7iQstOY+hfIXsX8vqEfWz/00mc0D/R3Q/c09UN4H+3EvBoLCbUfTcsyH2m1Wi5ePnKscyeNtD1uq7JSqvNTm5FA30TlMuIsTCb5puvTfa1my6+DYzpQD2pc7lFq9+cFhvqWXT0qOYY9dt+uvUS12/ThcHK6Sku6lrcxYUWj2Exm6hp9LZCfrwqn6qGVh76n3dcYmiQ+n6MMbnaudflVXXiw+gJgjqSTbSxxcaa3EoufGk5byzLYU95PXa7g9pmK1EhgQxMjlS/EdzFhSdhQR4TdHWl7i6JNuf/SbNc7PtNLXuP69iHcnJUiIuQwADXrGmKMzA0PNjiJjq0m47JZOJP5wwhyDlrEBYUQJDFjMmki4VfDSrz5EFqQK75r4F+c/B0jTp/dG9So0Nc6raouonb31/Dyc8oX9TaJivhQQEui0dSpLo+hwOWOf0u68vbCfBqbVAzj1rxLAMvr653U9oujrtTX9cq+gr7xzgTrBGdrtJ6ggpE/fk5XbgZxUWTf2e8OkRzrfKd96xPku/hv1q0AYutkdWO/hSQQKqpjP6mfD4OegSABkKoCUzQsxA5xcUkQ3Cl9vvwzOoUGRJIr6gQTCYTqTGhBAaY6JPoPsDwtIJo1o/esfuPlRLaIciQqCGwHdfQ6N5wxzqYMQfO+jtkGuJyIpKU9aumUD14Ns/T44jaiydy2FTaa40GDx/yHQvU7yM4SrlramjpYEHvb5pFomCtcnOadzu8e5GyZnj4XXP993DyH5XFFpQ1cdtXaOJnkykbi8nOAPtu7MGR6rOZTOC0VtQHxLDWrn7PSdmjIWMiRKVBfL+2/ntHB1knKAvo2vfUw2nte2q7YdLCbHIQVJ3jdeilUep+uNren2pPy0Wej8rCH10LH11D0PcPqte+YnuMrH0HcLgmQ0wm9/uJ0XJhMpkYZnC7qm2yklvRgNXuoJ/zvmScINlSWENds9WV0nNveUOngrobW2wc++QPXP3flTRbva1vmlu0xRmYromL6m7k39/lZE6E2Vv5NOxi6vF4JtTqVgZt7KThablwnS4+zKflYq8z9iXTYNnSCHO65TYYSg9oSXxW51Z17HM4Ka9vdlv6otVpuZqzdDfnv7jMbXttsxWHQ69VobkZt+e2GW4UF3uWqomBla/o27QYucYq9fve8JF6nSbiwidaDEOqIebC6I8ZG+5+09GEhNG/29jm/NG9efHyMZw8WAW4ZCfpKXA1cZERF+ZKpQlqFiQqNJAaZydfa1C5OWX11DVb3dxEkgyViDcV1GC12bHX7KcAWsJAOP0pyJikctcDDksoTy4s4M1lPnwCo3vDlf+DyFRVUEvoGGOuUu4mmqUC1OA9LE5ZCDQK1qplV7pFORzqwe9LXOz9GVDpHF9dspuqrYsA+I3BNIamkGiq4e3w5+lrVjfuRoKpD0nRj3cGeL1+7XiW3jvFdS6AXu0EXveKCuGn+6Zy6fj2K72/ce0EHjhzEFMGdjyQTPCBMQvc/tKoxmapmgbgPuEQkaQsX7WFqqr3h1e6Zqpdgz5PF6r+09TS2c8A31aHxkrvyY1ww3deV+IeSF61FxY9qapF71igRHLhGvfjtfiRyGQIjYPizbD9GzAHUnH7bt5oUYkIokyNNFv0+7cmxMod4bxsO5u3Qi5n2PjJMPk++MNGsBzl2cosQTDid1C+Uw089ixuu+05z7u9jGvYA5GpPHzpVGYcN8y9redEhzlQFywFzu/W2L/auY8uuX0si++Z7LVds2Ro44G+iRF8Met4JvSJo7bJ6nJJ0mI9rDZ9RnddXhW/Ol0+taDxuz5ax9X/XdluyniNopomKupbWLy9lP/+lOO1XxMX2ky6lrq3I7PaRxVRKTx8zlDqcD5fIlPVsrZIWdGeHUJykHsQfmVDK8UegfkAWfHh1DS2Yrc7aLHaXd/jtiLVt7RZ/pV7Ksj6vy9ZuaeCUGcf0jxNAIItatua3I67N4FKGQu+SxwAfLe5mP4Pfs2qnAqvrFa1TVbXWFITFUZPACNGkRQWbLDm7XYmpfntTX2bNpHTWKGySuYshdFX7r8GmgdHjbhIiQ4lwGxys1YY/TE9g1LjnUo01GBWNbo5jcmM5czhKa6Zkd+f1I9bJvfjL+cPc4mQJy4YztybJvL0jBH86ZwhmEwmJS6cqlILAAe44rUVrMmtIiI4ANa8C41VTDH9hgWnCbagmpzyBuIc++m88dkw6lK47ms4/yUA7BG9AFPbBVD6TYG7tkDW8e2fW9CJ76fcTdInwBnOqtuZzkrAxuJhWiXkxi4SFyVb1cDOYXeKi1TXrsqkY1QAevU+Fm0r4S9fbaFw3XdYCaA8drRLRCRb813H1DuCKYseqp/fabkItgSQZsgCFRYUQOR+4iN6RYW4FcD0RXpcGDee2M9rBlLoJEbLRVuF9XxhtIIGhir3SnurcnUy4hIXHn27z0kqPmnvz/DuxfDN/d51ViJ6OcWFR/0hh2F2tzrPlW0IUAHaxsQEW+frQn7wdJj2F5VmF5Q1otdQ2LcK9iyBrOPZXWNil13/LdSjP3ytFrVeXVOHNTabq/7vRaLDgvVzdSN27NjBpEmTGDBgAOPHj2fTpk0+27322mv079+ffv36MXPmTFpbDzKN6oSZypXs0xvBboWR3i5QDDpbud2Gevh0Jw7gnJGpDOuX6b7dahj8Rac7Y2WcBDstDL4SB/gg3tJMZny413aTycTy+6fy3Ww9U9rwtGhSokNosdl5f0UuYUEBrkxRRupbbFz7uhJApw5RA63vtxSzeHspOeUNXu09MQ4gPYOIHQ69BoM2k67dG9saeB7NnDUihXPGO90TE52ubXVF8PF1ULOP1Ep3K9i6vCqe/3EnoMfbhgcFEBcehN0BxbVNDHjoa576ZitNrTZXAWPtf//yYpXW+q3lOa7YnOIaNcNvtdldlbC3Fde6xcjuD5dbVJ3v7/idX9SE8EuLd7tiejVqm1pdfUW3XBjd8/Wxq7G2m5vlQnN7tRvuB5rlosEpLkBZgDvJUSMu7jltIP++dDSBhsGMlrEmKMDs5ZupCQnj9r7O3Pzx4UGutJgaGfFh3Hv6IC4/Rr9hJkQEkx4XxsXj07n2OJUzOyrEQk1jKw6Hg3V5VQRbzNx4Yl/yKxsZbNrLJPMmlQnj4+u4Lvd+zjQrP9S8ikZW7qkgyVSF1WGmwtFGPQqjyT4kGiJTaY7KAuhW6dOOKI65Ee7dA6mj1Wu7UVysVUu3mIvDmC3qxWPgjbPUuofl4u/7lEho2bWE9St+4I3AvzK4Zhnr7H3pnZRAU1iK1+kaCKE2wfDQN8wum0wm+jndAzPiwkQQdCfMAXq2sMBOuJhpA37tIaSJ05yf3Ns1VauZw+3fuG+PSFIWhML1sONb+OVF78J4tlY9JsjI8bNh6PlqBnvrfPj4WjSXJSp2qfeL7aNmLpf9C358TBUGPP9lmDTL/VxJQ5TAtrVA9inkVjSw06H/FupM+kB0gUNVhl7TmNjta6rcdNNN3HjjjWzfvp377ruPa665xqvNnj17ePjhh1m6dCk7d+6kuLiYV155xftknSGuD1z8hrJyTZwFx97i3SZxkFrGZnkc63xG+XDfdfWz+H56bAfolt+mdiwXNsMAqZ17bEp0qNcMr+bFsLmwhjOHp7jGBg+fPYQzhyfzwmVj3NpPHZSI0YNT87Wvbmhts6K3cbtnvSyj3782CahVjhbLhW+CQp2CUxMXWq0uIMrRdszB+aPV776+xeYajGsZlV5evJu95Q2u4nva4F9LVxwZEuj6rjbkV3Phf5Yx6OFvaHbG0jgceIkAXzz51Rau/u9KV+2zumarz6LNmmv9rtI69pR7igvd1Uv7HOGG8Wr/Xro1Ns7pDmgy4ZaqGbPzd2Acs2hZ/mzNsHeZmrDuRApa16k7fUQPZVjvaM4Y7j5Y0mZZY8ICvQZCCT4qER7TN57F90xm5YOn+NzfEaJCArHaHdQ1W9mQX83INFUs7PiYMr4Ovp9Hqx9QDZ0m4l4mfcb7lSW7SDRVUU4UtQ41u7aawXxkPZFCh3N2yNMf+Oov2D3xKQCqOlG6XegkYYbZuUvfU+4gGZNUoTpbq2+3qPJdymd8yd9VJfXOsGepyh/fmQrGwZE0hqoZuQZHMD/alBjaOO+f3LrnNiYHKCvLT/ZhZCdFUBs3zOsUjY5gAmP0GV/CE9z2P3PRCJ65aCSvXtU5/0zhMKC5RnVKXMSopVbFWhMXnoO3pmo1uF/6jPv2sHg1SNQeWKDq7BhprFDn8xQXUSlw0Ru6r6+1Ca78TA1ay3cq96yoVDhhtnoAxveHY27SUykaMcZI9Z1MXkUjNYTTEqx+tzUO/Zh3Y27kouY/8oN9rJtranejpKSEVatWccUVqn7RjBkzyMvLY+fOnW7tPv74Y6ZPn05ycjImk4mbb76Z99/3kc6zs2SfAneshdP+4ttlQhMV/aaq4nsa2jPKV4zfgNNV+uCkoUoQalTlqpFbU7XKcAje4sLobtfUuQkcozvycdl6/Fh6XBgvXj6Ws0aksOfJM13bM+LCGGAYvGkuzmf9aymjH/vOlcnHSIVBUHg+i/OrdMuH5uqiuUm1JVaOerT7WUQvNZFaW+TqU4HO4owB2AjG/f/35+lD6R0TylkjUlwi84Nf9WBwY/xDWV2zm1UpPCjANaBvsdlZtbfSJUS0ZEE7S1W/3FpU40rEY6SqoYWXl+xm8fZScg11TXxZqIqc6Y/3lNV7JQNQblHqujTLhXEce+7IVN6+fgLf3nmiq3+HB1ncx7paalmjt4WxLlFdkT5p2kmOGnHhiwCzibCgAJ+5rzXLRaNHle7M+HCfKWY7iqYwv9tcTG2z1ZX6dnSsR0CP8+EdY6rj9qnZBAaYyClvIM1SQ4UpzhXM9F7ridxjvZkCh/OGGOchLhKyKTOrfdVO30LhENNvKlz+EfQ9San/fau93aIq98KrU5XP+I+PweOJquBUR3nzbJU/vj1/Z8+qt0ERnPGGKixW5oiikHhW2Qcwhi0Emaw8F/cQN7fcycvWczhlSC+aeo0h1+6eDaqBYPV7CXZmH/KY0chOimTG2DTS4/bj1y8cfjTXqM64RTlnAl3iIv0Y3+2aqlWhPU/CE9xnoEHlpAc4/a/Qd4q+3VNcaGiCJq6vcuGMz1bufI0Vyk1rwky47Tflpnj6k7y1PIfXf94DQLPVph7KxmtIGkJepXqom2NUetlqmy4iIsPC+NWhZt0TD3AS6XCQl5dHSkoKFoteKyYjI4PcXPfaILm5uWRm6hb1rKwsrzYazz77LGlpaa6/uroO1nLw9d2ljVfLkx9WIkTD03JhtGCc8VdV4+Ske9wHNS216n7WXKNXjHdlKKtXgd//MIiRTlqHjS7SWT7cqUD9f/949hASI4Pp3yuSEwckEh8eRFSIhTW5ldQ3W8mvVCJ61V7fg0rP9fpmKw98toFvN+rByCv2VHDBiz+7BrHiFtUGQU5xFxoDEclKXGh9yVnI9t+Bz7Mt5BoC0Mdx4cEWFt8zmX9fOtoVq5BXoU9+rMtT/cpiNtFstdPQYnNV925stfkMAAc4pq+aqNAyNZ3+3FIuMARga2h9xJMdJXWc/+LPboKkvRonbjEXPmItLhmfzgn9ExmYHOmyzIV6eOi4rH32ViXIF//NW5inulvtOspRLS5AZXkyzkBoaOKiocXbVHUwRDm/5PdWqJv7OSOVNSUlwndxkitHRjF72kAuHpcOOIinkj59+pIQrwSDZsH40nYs+WlnQUiU1zm0m5TDofw5txbVeFdlFPyPVgF590JlwQhPAkzqofjpTJVhZ8ZrKl0mKH/wtsj7Vd0wP7tZWTw0bB43usYqvY6FRyE/R3AkRU4LV5mzgNVc22QAakPTuPTqW1kbcSL3nzeOUekxxIQFcVHLn9jZ5wrXOQKwK7fzW3+BS95xi+EQujnBEco1qjPuapovrhbErGVDc8PZp8t3eu8KS3CfgQYVWA3KH18bgELbqbA1kZw42PsafMyY//HzTfz5C/Uewx9ZwLkv/KxbLnoNA7OZ3IoGokIsWKKVi4Slpcp1vDGTT1JUJ4TYEcDs2bPJz893/UVEtOF+60mAYXBz6mNw80+QNEjfZiy+5Wm5iEyBcdfBuS8q4ZBxrBIraePgik/1++PKV1VfcFnPnJaLJX+DTZ+6X08nxUVUyP7FBcB1x/fh1wdPISokkHtPG8iSe6cwsV886/KrOfaJH1ztPjPUyNKoqFe/pYSIYCqdWaaW7ijjvRW5PP/jTkIDA1wJYIxZhyobWmRS0BfBznFbSLS6D9QVQ5Dzu6tWcYJnBCgPkI8uTuH/zhjEzBOUe7olQGUANQ7KNRfIZbtUNjstA2h5XYvLclHV0OpaB/i/M/Q+Pi4zDrNJiQtjgL+nxaEtcfHc99tZk1vF3R8pDwK73UFBVRMnDtAn+AYl62NVY8yFMdbis1sm8fmtx7lVp9fERbinuGhxTh7YWmHz/2Dh41CT7+7K6Kuwagc46itSzb1xoiutuhFtJkML3vEXWidYtbeSgb0iXVmm0kJ9z05Eofzs/u+MQUxMNRPwdSsBMSmEBJigEi6YOJhvf4b/2s4gMXsQv/dxjhqPsvcXvrScMRkxfHrLcT5aC34jbZyaLV7+oqrQPf4GVf9i63y1f/wNMPxCtZ7zs+/BGSj/9jfOUjN+FbugzFDrZPvXKr3muS8oYfn9n1QBxUm3uQ/cUEGrTQSzwj6I1fb+AMy3Hcu9yWtIPOlGIqPD+OWBk13tpwxMZNmY4cSddQm8uwkK1mDGoVwCoxJFWPQ0wuIhpBNudODtDmUyqYGf0SoWGqNeG7cFRagHV3iCc1bbhKv+RfFGNesYGKquScPTwqEx6GzY9SOMvUa9Nj7sIr3jgjSaWpXVYkthDbbACAJmrXJZ2vIrGsiID3N9rqgW3aXGOFOspZjsjqSnp1NYWIjVasViseBwOMjNzSUjI8OtXUZGBrt26RMSOTk5Xm38Sniinv7XFzFOK0pgqHJxComGs//hu232yXpF+EVPqGVYnLKoFW2AhU/C9gXex3m6TG39SqVg7jfV59tEtJE5sj0sAWYsAWb+cv5wWm0Oftyq96FvNxXxl/OGuaXW1tyb+iaEszavCofDQWG1PtC84YQ+rM2rosAjq5HdoSYIO3pdRw0Dz4Cx1yr3vO3fKkGp9ZXqPLfYgjFhJYwZM97rFNGGQfnpw5J5a/leljszhvVLjGBrUS0n/m2hq02+0+J57qhUrjg2k3GZsTz1taqZkxwdTGZ8ODtL6lzB3gAltU2kxYZ5nWPqoCS3PqMF+WtlEMrqm2mx2cmIC+XHu07iw1X5XD0pk+82F/PHzzdR22R1edFEh+r911gnSkNzi/KqcaFl4LNb3d0Ko9Phd+/Bps/atlbvh6PechEaFOBKI2ZEC+T2t+XCmP52TGaMa31kQhtfhfOBHRkSyNl9nNcZmezyNzxt7AB+ffAUAFbsKXdlOTBizBKl7e9sPubuTpdlTWmPgECVgavZab4fNkOfWbGEwAl3621jM1X+/2Yfbgha8GyFc4Cwz1D4bvPnqqbGMmfKxwrl9sSyf+kzxE7+tkjN5lzS8kf+alXZXRoJYeOp78GIi73eNj4imGcvHqWseJd9RNOJD3D6737vKtQj9DBOfwoufnP/7YyMuQqOuVlZqTQu+1BZETQXhHAfwX7JI9QDyhKsYiCMmX+aqiDC2YeMMTttDUjHXgt3blAFQMHdTB/lLi6MbqzGQlJbCmsgoT8rCqwUVjdSWNNEemyYcqkCXrCfj8PhYHNBjVsAbXcujpyUlMSYMWN45x313XzyySekpaWRne1uXZoxYwbz5s2jqKgIh8PBSy+9xO9+97tDd2Ft1VGZ8hCMvEylstU4/k5dNLZFnxPdRWhwlJq1rtgFi59S7qHZp7gf4+naMW8WfHk3bP1SBalu/xYq9rh2RwYfeJHOhIhgnjhf77vXTMqior6Fk59dzLMLdFfBioYWAswm0uJCabEpd5t9zlnsZy4ayZ2nDHCbgTayrx33mKOWsDg45zklTjWrp/aMrM5n8V2G1Pq+XDZxn/Gf7KwEr8VQ9Ev0tmDlOb+vXlEhjM+Kc4tfiA8PJjspgr3lDWwp0vufUWg0ttjIcQZma5XnNTRrllb+QOsbvWPC6JsYwf+dMYiU6FCnF4uKyalp9LZceDHnVIZsfxHQq3O7MIoLY1yoJVhN9kx9yN3q2AmOenHRFprCa26nouaBYDTDaQFAANGmNjIMGGcD65x+mRG9dP/p4CgSIoIICjCzaFspM/6zjIr6FrfMA0ZxsbWoC6pDHwa6LGvK/jj9KZUac9DZkH6sXn32mJvcB0aaGbLKRy0Sz/zv4J1pZetX3m12L3J7ub3KtzuMZyV5n0QkEjL1Ps4ckbb/tkL3JGmwXlm+o1iClR98tOF7T5+g3OJuXQGnPaECej2Z8ap7DZgr/wcXvq6/1gSJcdCozWh7Yja7F9QzrntYLozBmMaJlhV7Ksgtb+CSV35h2rNLcDhUsC5Jg7lj0CK+ahrBs99t58znl7rcFswmfcDRXXn55Zd5+eWXGTBgAE899RSvv67+xzfccAPz5qkq7H379uXPf/4zxx13HNnZ2SQmJnLTTTcduouyhPreftI9cP5/3LdNeUClTm+PyGS4a7v+OiTa2/2338nur5tr1Exs5V41aGooh8o98MFl8PoZqpL7godczX15L1C6Dd4+3+Vig8PhHcfmJDk6hMfPG8Y9pw1k2hA10N1TVs/zP+5kZ0mdK4tUbFiQq5BfVWMr+6oaMZngnJGpBJhNbu5ZAINT1OfUCu8KbeDpHtlYQS+bHsfiJi4qc1wuw1GGGf/+SZFuhY9TY7z7sWbVNFo8NEtDdGggo9JjsNodzFtb4Nr/n0U7+d+afdjsDk57bgnv/JKLxWxyuTv1Swx381TV0tpqwd7G2myg6p8EBpiobWrVs0W1Ud8CWyvkryRj/T8BX5YL5wSMtdm9uGln4vLa4Kh3i2qLURkxANwy2b/VWI0K02gqa7Nqc2Olqj5rDoBaZ5aViF7qAb/3Z4hKxWQy0eKcYmtosTHmse8YkhLFF7cdT4DZvb7FNoO4KKpu4vWf93DZMRk+c4L3FLSsKQsWKPP4jBkzmDVrFjt37nSbxTNmTQG4+eabeeKJJ7j11lsP3cXF9YFL3tZfZx6nvjfNj1hDG1hV5ri7hzgckG+wVJgtapZh8Nmw9n29FkDJJnWssdBY3i9ub1HrUDfL1OgQUmNCXUGHHRIXguBJZDJMvFXdnzRGXaEGclG93WM7QqJUQLaGFjdhFBcdjQUxtvOI0zC6NG0p1O91q3IqXFZjLa2k5luvBW3/60fdLXH6yFSev/TAsqQcTgYOHMjy5cu9ts+ZM8ft9cyZM5k5c+bhuiz/Y6zcHhKt+9trZE6EKQ/CmrdVZqnmWvi7cv3kOqfblMNjotBwX9UqOrulmP/v6SppwIaP4Pg/qOrwPz0Ld6xXlmYPrjhWbfOsvn3Ks4s5dUgvKhpaiAsPJNaZQObh/21kdW4lvSJDXNW4m1vdr3FcZixbCmvcntuCD8ISvLdpleMBygzi4p8j1fKRardBeUp0CCkxIZTXt2A2wXHZ6pwPnjmYiBAL767Yy8Z9asLCKAIX/OFEft5VRlZCOGOcLknGmJvvt5SwNq+K5OgQl2Cw2h1kxocz/7bjSY8L45Z3f+Pnncodq6i6CZvdweLtyoV1jIebk8lkUilxm6wU1TQRFx7kVuzZjVb3+ivhwQGw4WM1DolK0ffbW6HaECfkh0KhYrlog94xoWx97HTunjbQr+d1s1zEGpRxU5XvA6py4dE4FexbZxAXY66C29e40kqOTIt2O2xzYQ3fbVbKvS3LxeNfbublJbv5w9y1B/6BugHdKmvK/rj0fbh7p3pAGtEsFx5B2JRsVn1j9JUw6Xb1AAWVZceY/hZUoHdLGxYwcGUYe+CswVxiqIwd3439yoUegDlA9cuoNDjzb3DZB76FgjGzWP9Tnduc4iDrhM695yXvKough7XDWIzKaLnYVVrHL7vL3dpmJajJnQQftSxEcB8EHgMav6FZqcwWXVzEZCiXvdTRcNK9auBvMuu+9wBl293Pc8m70P801cYpjIf1jmberOP4xyWjVJuCtXqGvyrnM+KnZ9WyaINaaln/PAi2BPDSFWN56Cw9/fF3m4tdlosYp+Xix60lVDW0uo0DPGtaDE2NIshiZltxbYeqgB+1hBsmKbRYw6V/17eV7YAd36mYRwPGyV5LgJnkKPVdRARbSI8LY+dfzmDmiX25dEKGa5/ncVkJ4a76ZqPSY3xeXlldC28tz/HaPqx3NNGhgVw1Mcu1zWp3sK+yke82FzO8d7TPzIsRwRbyKxrYVFDDxL7xXvtdtLq706VRAp9cDyucFkTjeEFzqYa2rY+dwK/iolv6vR8EIYEBbgFZ/sAYc2F0i3KzXPjyYV7wsEFceO9/7Zrx/HjXSXzy+4n8dcZwgixm3lymbnxGcWHMEvXlBuWiY5NMFF4ccNaU/RESrfubG4k1WC6MLHQGMY66DKY9pgK1L34bhl6gz9Zo6UIrdqubhWHAlZeoV6Ktc1ouYkJ103xoYIC3qVQQOstJ98LsTb5rTGiEG/p9P2cK2sheMGuViuPoDIPPVhbBAPe+axycbTX4PeeUN7Bsp7u46JugftPRPvyV40VcdB6tkJ6xpog/0Vxf6or1e16v4TD4HL2NyaSER56hQnPBGvfzpI6ChP5qttbghjoiLUafAd5mcDMt3uz+fK5xury8fT78c4TPOLnThyVz/fF9OGuEEkRBAWYqG1qJCw/ySn1vLNTYL9H9ORMdGkjfhHAWbSvl+L8uZHPBYSzA2pMwWi4SB7lPVsT1Ve4/39wP825zO8wze5LmgqSNiSyGosvG+4SvewaoGN40p1i8ZFy6276vNhSRFhvKdcf18SrKeNrQZD67ZRKzT1VVxz/+LY/aJitnDPdRPwY1jiyobsLhgEnZ7YkLXeg/dt4wLh3qvD/XO12gjOKiVnfl6naWi27r996NMCreXsY0h03V6oZ55t/Vg9qTsu36Tc2HuEiICKZvYgRjM+O4ZHwGg1Oi2OPMPlDdaHWvyuhEmwhxs6D0QIxZU4B2s6bs3as/TA551pTOEJmi4ihylupfTOl2lVlq8HTInKS2BQTCkOnKSVhzKclyZv2qzFE3UYNP+stFA1zrtU7LRUxYoOsBJzO0wmFDS1caleZuuUvo374o6QTldXrMhRYgGRViocVqdxWkAiWqezkL5Gl+7Tee2Nfl7uCVD17YP9MeV7ERh0pcnHSfWg45T/cV91VfIzjKPTYib4Wq3I5J3TOjeuvpcI1pvY3sXqzOk36ssh4b49c0QaLFwmkxGR6YTCZeuGwMV0/MdLktJ0eHuCZ2NEpr9T577+kD+ZfBHc9qd7hmrvdVNXLZnF/ILT9ElqGejDExRHAknHiP/lqrl1K+UxXi1LDbMZlMvH39BH64S03CJTtTATf6qJZtFBTDekd77dd49uJRPHruUJ6a4Z2g4vzRvfnjOUNcotPI6IxYl7h8b6Wylp08yHd6buMk9XH9fLiEaRgsF1cek0GfcOfkS2OVWra04ZHhh5gLv4mLLq8W2kMwdgq3YnxN1Sql44SZMOA05S6QMVHf39qgMlwERegZh9ohMSKI8npVXbKmsZXMOP2YfonhjHHGlAC0WHu25aLbZk3pDOYAGHaBepBpZvdSleKOQWf5PMShiYu0CdhNFjZvWoujpd6tf3zXOhIHJmwOE02oh1p0aKDLNC8uUcJh5b69MGvlITu9FnMRa5gdHpEW41o/ZbCamMlKCHdlehmVHsPSe6dw/xmDVHpa/J8l8KjAHKAsUYeKgWfAHytUfIVmSfB0LwUlCowUb1RupwNOVxn7TCZVzR3c03prNNeqjHyZx0HKCBUcvsOQnMDTuuwrCYeBDEM845iMWDf/+OykCGZP0yeAQgIDOGdkKgOdtbcCzCbumjaAu04dwCtXjuX0ock9fjLwkGCM3QqKUAVsT7xXCQtXFjqPcU6LchE/oX+ia1CfGq3+t76cOYzB3wntFNec0CeOqyZmuVfCdqK5T7XFcKdoKatrISkymAG9fHtMaImGhvWOIjO+nYmZFoMQbW3QRYUmvttyo+5Olose5ffehQQGtPEvb6rWb5QxGXD3dvfqtQCt9e6uBe0QHx5Mq81BcU0zZXXNJEeHcPIg9WCtbmzl1CG6uc1YB0NjX1Ujj8/f7JZ1ClSu7u4YXNYts6Z0lhFOofOLShtHpTNVYmwfn803VjqrizoSKDQlEly1C5OthTpHMNuPeYL3HadRTBwN5kjqCEXVGlCWC23wJe4fwmElNKZDkyOeVDW0MGfpbpdlwmqzuwpILdpWwitL1Ax0mTPmor+hMKpxlvEip6tCnwT3B3J6XJhrpvmUwUmu4Fyhm6GlxdSK5PkSF1qshJHoNBULdObf1GstoUC5D3Gx4SOVNKPvZOViA5DnFMSmAO84Cx9xF+o6KqG5jizD4G9sZizDekdxxrBkPrp5It/PPolJPmae37xuAnedOoDThiYzKDmK207uz7ShyTw1Y4T7pKSgCDQILmeafqY+CDcuarsWjmctFCA6zLe7E0BNo/KM6J/UcRfpT2+ZxIc3TeSaSVnMmpLtsoy0RUZ8mKtQXnZShE+BAqqYH8DME/q22QZwj39qrNJFhRbj29KGFaw7WS4OBYfM772L+fSWSSy6e7L7xqZq7/SiWoxFsOEG2lYVWw8SItWg8e1fcmi22pk8MJHbT1azNUNSo7lsQgYTslRAsK9y9m/8vIc5P+1hoaHIC8DT327l/Bd/9qo62dVoWVO2b9/OqlWrGD5czVbMmTOH6dOnu9rNnDmTXbt2sWvXLl577TUCAw88v7nfSZ+gHmjr3leBZ1oe9jjf4uLXUvXzfXdLKztbE+lnVjE0X2ypYdriLO5vvhqASke4U1yombCIYAsxYUFkxocxso0ANKHjHGmxZt2R//60h8e/3MKxT/5AdUMrf/1mKyMeWUBJbRPP/7CDJ77aSk1TKxX1zQRZzGQYgiCHG8TFCf0T6JcYzuSBPuLagMz4cOZcPV7cBbs7wy9Sy74nee/TBMe46/VtUb3d20QmKzdkLYi1rhSe7ger/gvfP6IGpKMu1V2QtYmelJHKcuFwqMByaNty8dcs+OdIt0yMqTGhBFsC+M8VYxmfFef7OJR7zm0n9xchcSAEeYwT25qQ9SEu0mJ8J8gBPQHEReM6no59TEYsE/rE8cj0odx9WseSA913uhK010zKarPN3y8aye1TszlnxH4K2RoDupuqdXHRWAV2u5qw9pVMoztZLo4Iv3d/suN7+Pl5921VeVBbxJiMWLISDLN3VblQX+o9CzNshlqeY6he6isY2Aea2e6FhbsIspg5f3RvRqbH8OFNE/n7RSOIDgvkw5snMjI9xi3gW3Mr+GW3mv1Zk1fldt78ykYaWmw+BYlwkJhMqhZAUASsfEU90ALD27w5/hp2Ip/bJvHG3gRyHfpgqQH3WYf3Wk7kI5t6CMeEBmIymQgwm1h8zxTuPGUAwsEhsWaHnnX5yg2m1eZga1ENry5Vg7356wpdGfC2FtZSXNNMYkSwm7tfdlIEI9KiuW1qNmFBFn64a7KrEJXQQznpPlVY0VfdlgtfVxmhhl2gb4vyGISZTCrQt9wpLko2qTz/P/9TDcKOn62ex6FOAWBrUWKi11DlTtNQobtfebpJgR4311BGepwasGZ3Ysa7J9BtJ1U80xS3JS48Cy2iLJ7vzTyGN66d4LXv8mMy+eDGY5l5Ql+vff5kyqAk1v7xVKYN9R3MDcoCNnvawP0nHDJaLpqq3C0X2r7odDB7TLIGHrzrnd/ExRHh9+5P3p0B3z0MtYZCLs8Ng2cGwodXwdJn1LbaYnjO6RPo6S6QdRw8XKZEhvYD8ZVJygdGn8Dj+sW7fOwn9Ilz5fQGFeyouUV9vaGQMY99x0er8thUoB7maz0qeVc2KPFR22RFOASExSnf4PxfIednZbVoyzQaOYA7WmfRRDDlZn0WzOqRRu5F27m8GXQpwRZzu2ZfofNIrNmhx+FwsGGfnq2noFqfjfvXjztc8RGrcyvZVlzLkNQoN3e/yBAL82Ydz11+TisudCHmAPdiikZ6DVHZxEINlgFPcQEQ3xeq86C1SX9Oa0Ih3jmANPryh8ToWf2q9urBwb4sF836wDXYbGLJPVP49JZJ+/1YPYluO6niabnwkQAH8Gm5AJjUL4FYH5bLALOJY/vGt++G5CdiwvxkOXUTFwbLRWuDbrULCocp97sfZzp4aeBXt6gjwu/d32hZJqx6Rgg2f64K8oB7yjvPgCPQM6xoN9KOukUZxMWQ1Kg220WHBlLfYqPZauOZ71Q+8Hs+Xu8KaFq/r4pWm+4CVVmvhIivOA3BTww5Vy3trW1XLQYiDMkBTIYb6IlDs7zaZsSFMax3tMufU/APEmt26NlX1UhFfYvL13nJdr2SrJYRCmDur3nY7A7GZsYSH67f/yJCJNXyUYmxDpCnWxRAXD/AAZ/OhB0L3PdFpnqfIzQWYrLUesVufeBWuVdVQjZirLPRUE5GfFjbVZR7IN17UsVjHGUUiEaa2yhc3JOw23ymQnZhdIsyxlwAvOx0hwoKU5a6GxdDhNNaYnOvt3Ig+FVcHBF+7x3F4Wg7GMZYsXbXQrX0FfS17F8w/061Pul2ld2gLVziomNuUYmRuvIdmNy+uAB4/ocd7CypcwX6hgSamTEmjaZWOztL6nA4HDgcDqrEcnHo6X+qLiraiLcAPWMEQEisPjMXHhnj1fb4/gm8e8MxPHdJ9686fLRzpMaaHSgbnC5RU50JKb7frGLRHjhzkKuN2YQr9faYjFjiDG5R4VLH5ehkv5YLZzraLfNg4yfu+6KcQcDGVLehMbrlotjgAtRcA0ufdT++wTCIq/GdqrYn060nVYzpZkFN0Gp9IesECHJOsGmWC4dD/a2bq9K/9yS+ugee7K1ngfKkLbcoI3ab8o5IHQUW533TOBl+gHTrgO5uzarX4IkUVcnTkzpDEHTOUrU0Vj/UWPCQWmadoAqkJQ3ybqOhiYsDcItqb7Zaq7vxwsJd9E0IZ/7tJ3DPaQNZdPcUxmWpG+vcX/MY9/j3jHv8e+qdLgi1EnNx6AgMhVtXqJonWmEqH9QbCiJGxusPz8go72C0E/snEhIYQJBFfvL+RGLN/E9tU6tbNeLtxWqQcUJ/NbFS6+z3F45N55TBvUiICOLkwbpFd0RatJtblATFHqVYDK4lbVoufB0XqidXCQjUYytCY/VJn+KNajl+JiQMhJ/+ATbDhJvRclG974Au/2jjoCdVrvlKJUQZcLr3Ps2yf/lHcOVnar2pRgU1vzgR3jgLPrsR3rv4oD7DYWfVa2q54mXf+z0DurUsUUaMiYQCnONGT0vcAXDkjzRWvwXvXqQ6kT/56Tm1NBbX0TAW1aktUqrYl7gAlRJPS4/XHhkTVdBNr6EdujyjCbZPQnib7YyFYR46ezC9Y0K51ZkyTRMoc3/No7y+xa36rVguDjGBoarmSbSPh6KTOsN3kJiiB6hGRcXgOZ4ak+mj2JRw0EismX/ZWVLHqEe/46sNeqxaTrmySIxIjyYwQHXs2LBA4sKDeOmKMfx031T+duEIbp+azZ/OGUJIYADx7eShF45CjO5NGgltJLOISnGPc9OODYlRg1RLKBQ5xUV4AgyYBtZGPaMUuIsLrfjtEUS3nFTJOg6u+tx3quuYTOVSHhiqB3w310LFLijdAnt/Vtu0DJ09hXRnQoPlL6gkA54Y61h4ukUBXPQGHPt7/XXyMLXsoIdMe/RscdFUDV/e7fufqjHvNuVPafyx+wPN9OYrH3B1nloGhoHDpjqxduO55B044W697fR/dayi6cAz4MGidt1kjBizCLRZWwN3ETI20/0GnOB0LfBVrVKyRR16NuRX09DStoirM1guMtN103NASIQraP/N6ybw4U0T2+0DwsEhsWb+obaplTW5ldjsDn7aWeranlNeT0JEEFEhga4Jj77OoleWADMhgQHEhAUxe9pArj1O3R+lfosA6BkYfQXhhscrP3Mtra2GZ10EzaUmNFadJyYDap2CISgCEp3Pb63oKbjX2jgC3aJ63KTK2f+Aq9S9mBCnJaq5Rq+yruHLfa47o8VGNFfD4qe99xstF3VFSlyY9CKODD1frwsCMP3fcPZzMOaag760nj3i2PY1/Pqq8pncH758zQ6GVk1cBMHmefDiJD2+QrNcaJUhGyuV5cISAgPPguxT9PN00BIBQEDnfIe/uv0EV1n7tjBaLozr0H4VSrFcHFryKhqY/sJPvLms7eqv9S1WhqZG8fq14xmQZphpCIokJSYEkwmOz05gQp+286kLB89RFWt2iNhZUsfwRxbw0P/UjPBveyuZs3Q39c1WcsrqyXLWCrA4LRd927HGAm5VkIWjmD9shv/La3t/6ijoPdZ9m6e40CwXoTFqacxSFRypF9ozigvjZGZbRfZ6OD1qUiW6t+52brRc5K9S68fdqYRibQ+zXLQ2Kve+3mPVWLhspwrw1iwWmriI7w+bPlPFIdsTUMERMO5aMB+8NOjZkW5VzsAgY4co2ap+5GnjYfdCfbu/xYVmubC2KH/Lkk3w9nkwa5UuLnoNg7wV6r3LdqhKy2azHhQGviuM+on2skRptNiUVcLXxE5ipC4uUqNDKKjWA6XEcnFoyatswOGA/Mo2kgagYi5SokOY4lkQLCicc0eG0y8xQvzNhR7Bl+tVAUgtScH24joe/3ILJbXNVDa0uuoCaZMamuWiPX43Pp3eMQefr13owQR3wG8/zKNCdpSnuHBmG9KCu2OzDOePhESne1XJVvh8llrXCuxFpsDm/6nifOOu68yVd3u0SRVP5syZ4/Z65syZzJw583Bd1v4JDAdMynJRvFHFsZ7yiHKJWve+Gq99+6Aqwpg2ViXuWfSEyqjky72uK2ltUGPI056A/54G3z4ABauV4Lj+Wz2ge9Jt8MXtar3vZFjztj75fYjo4eLCOSNQ5/TP3b0I3nKm8QyOdk815m9xYXcOrst3qC8zMgVqC1X9ipY6lSdYc3eq2K2udYTTHKil+2rL5/MwMnlAEsN6R/HHs70tKCGBAUQEW6hrtjI8LdpNXIjl4tBSVqfMnVXOlL8tVjvvrdjLRePSCQ+20Gy10WpzEB7s4yccFM41x3XMfU4QDicOh4N56wrolxjBMEPl7GW7yny21zJFaXFjWgps48RHWzw1Y8TBXq5wNNBvqgranjgLlv7d25IRaoi5AN0vHdRxwZGqENnGj/XtfU4ETHD9AnjzHDVY7X9auzF0wmHCbFbfW/kuNRE96Gw1uxrpHJdt/BTWvqv+HqlWbvXL/qXiNiZ0I5EEyjIRmaKKSQ69ADZ9qrbXl6oxb2sDBATBiIthw0eq3ZQHIftk6NO+V8vB0sPFhdPcqVkujMHVnjmMG9uJyzgYNnyklqc/Cb++BuvnKotFSIw+46FdV+ootTSb4a5tvgOPDjOx4UHMv81H+XcnCRFB1DVbSfWYAZRsUYeWslqVCq7amcf/09X5PPLFZn7eVc6rV42jvllZnHyKC4sEswrdj8XbS3lvxV6+3VTM0NQovrz9BBpbbEz/90/sKPGddvLXHHXf1tyiTh+WzFcbiqRei+A/wuPhfudY4rg7vO+fYYaYC4CUUfo+zcUmfYIeawmwZ4kSJTEZKuvfuxfCT8/CWc8cko8gdJKwWCjZrNa1ulLapG+5e60OapzZvrpjsHdro15N+4yn1VhTG+vuXabERWCo+rtmvn7c0PMP+aX17JgLzS1Ks1zUFLbd1p+WC0OaRJqcIiZllJrxcNihbLu6EWk3Iy0WI9VQYyAy2btMfTdEi7voFeUeuC6Wi0NLWZ0SF5UNLTgcDlfw9nfOHP9aGtoIo7i45F0YdqF+kxSOWOqbrTwybxMV9Qdf7Ohwce/H6/h2k+q/24pqcTgcrMmrdAmL47LVZExsWCD3nq6qaVud1TyznQX0/n7RSL6Ydbyb1UMQ/EZgiLePcOpoNfur+ewnDdH3ac/w81+Gm3+Ca7/R92mipP+pKlPRvtWH7rqFzjHhRn1dS12rWS4K1uj7HA4921ddMeT9Cs8OgQpDZrCupLVBJQ4CleHphu9V0iCAnJ+c4iOsSy6t54oLu12PbdAsF7XtpHzbuwy2OX/4Dge8dwn8r+0aAj7Riub5yhUcFqfS0oGKxwiL0wPAqnOVm9Qh9nE7FOjiIpgJWepmGRMWKOLiEKOJi00FNQx8+Bs+XKXPin29oZBb3lUPKrcCYYPPhgtf80swltC9+cd323ljWQ6PfrFp/407wdvLc9haVHPAxxvrUwA8Mm8Tf5i7FofDQUV9C+MyY7l0QgZWu4PS2mbW5FYB8NHNE7n/DOVGevNJ/bhlcjaDU1TMWGCAyeUWFRZkYXiaCAvhMNL/VHioRI+1MNbP0GI6AgLV8z3jWL1+RuoYvV3iICjd5j4xKXQdx9wMg6erzJ3ad6iJC6MIrC3ULRe1xcoyULPPO8sUqIH8li9g9+JDeukubK0qG2mgwaskvp9y8wpPgl0/qjGriItOUlekxz3UFat/dG2Re6aHQWfD3U4T19b58MFlKpI+Zyls/0b51HWUwnWqaN6ip+ATD787U4Dy4TMGhoXGuVf3TBjQLdygOkuCs9J3r6gQ3rxuAsv+byop0aES0H2I0WIuQMVbaIXEAH7/7mo27FMWs4iQnu3ZKBwYxU63OWM64oOlor6Fhz/fxGtLD2xWbs7S3RzzxA/klqtJmKZWGx/8msu8dQVUNrTSanOQGR/ucmm6c+5aXly4E4vZxLDUaIb1jmb1w6cy84S+AK5g7Mz4cCn+KHQtntaMflPV0viM19pd+SnM/FFZMzQSB0FrvbvrlNB1mAPgkrfh5If1bZq4sBmqU5dsMVguivQ4X01wGFnwEMy9At65QM8meijRgrUD3V3WMZlg0JkqnqRkk4iLTqO5RGFSIuOxBOWOlDBA/2dGpbr/+B02KFyrgnNc2zo4k7DzB7Vc9CTs/M59X2iM+kK1GAtwd4sCFYfRAxmcEkWwxUx2YgShQQGkxoQSGWIRy8UhRrNcGIkMsTD7VPckABHBknLzaKTJWXvGnylXq53B0gc6cfDJ6n2U1DZz0zu/4XA4WL23kqZWOza7gxW7VWrOmLBABjrFxbJd5dS32IgODSQ0SH2OuPAgV42emDCVqjc2TFL2Ct2MSz+Au3f4dm2OzVIu0kYLcqJy86N022G5POEAiOrtPRAv3aqLi9piXRz6KoxYtkMt7dbOiUibFb64Q01gdwYtzawv8TDkPH3dU3wcJnquuHDYlS9kykj37VGpuvUiMtm7NsS+36DY4ErQXNv++9is8ONflFtVW2giItwgLsLilDVDozP1LLoRl47PYOWDp5BkiLmICgmkprEVu11MvP7go1V5PPvddteML0B5nbcvfXJUCLef3J81D5/q2uYzoFs4YmlqtbFidzk5ZSqPeZAfiyNqmZgO1BqiFd3cUlhDTnkDP+3UM0D97MwGFRMa6BaMbTGbuGR8Or7QCkhGSB8XuhuWYFWtu6NotTBKtrTdxm5X4wxxneoaAgL1TGFaZrCiDbqQqC+Fyhy1Xu3DclFriPnV2nWE0q3w2xuw8RP12lj4zpNdC+GDy5VlpC3LBUDWCRDprGfh8C6CfDjoueIicxLcuAj6T3PfHpmiFwmJ9FEsJG+leydo8J0C0cXO72HJ08paERoH132r8h8b0cSFm+Uizt2U2kMtF2azyau4XmZ8GFa7g/zKdn4EQodoarVxz8fref6HHTz5tXrwOBwOSn1YLpKjlcCLlerDRy0r91RwySu/uIKg/emeqFkjD9QqqYkTgDW5lXyzqYiQQPWIWbZTt1zEhAVx3+mDeOPa8az90zTunjbQ5/kuGJ0GwOXHZPrcLwg9Bk1cLPwLbPhYDT6tHhNIi/8Kr5+h9huxWfXEMcKhJf0YtTSZVGKUXQv1wbnDposGX25RNT7ERUMF1Jd7tzWiTXA310HpdniiN+z43nfbt89TLv77VhksFz7ERYBFZYcadTkc28nYYj/Rc8WFxqhLIfN4/XVkiu4751kMB9QX47Drr/f3xbcYUiQmDVEBW2f+HWYuhGRnHnWXuDDGXMS4n6eHWi58MaCXCoDaVrwfq4+wX7Yb/oeaK1Rts5UWq92rbVKkbj26ZlIWACnRIV7thCOXURkxbnMWlQ3e4qKp1cbuUt+pXdtDEyp1ByoumqyEOd2b/vnDDnaX1nP1xCxiwwLZ7bS0RIcpYfz7yf2YPDCJiGCLyw3Kk1OG9GL9I9M4ZUivA7oeQeg2hMfDjNdUspcVL8O/xsKKl9S+1ka1bfFT6nXeL+7HLvsn/GMYNFYd1ks+KunlzATWWKnGbFom0iCPYozFG2H127qVqbkWWmohY6J6rYmLD6+C9y5q/z21MWZLvUqP67BB8QbvdkaLVmVO++ICVHD3eS/C8Avbf/9DRM8XF3F94dov9YG9w65ndYjJcG/be5y+rqWT82W5KN4ETc6MKbVF+nYtgNxsht5j9CqcmrgICocAZ45sz0qO7ZVc72EM6KXcGraLuDhoNhXomXmqnAPFBc50nf2T3G9oydF6/vU/nj2Eb+48gbGZ3axiqHBIiQoJpG+CnhiissHbfe4Pc9cy9ZnFLtepjlLjirk4cMvFsFSVyWlveQMBZhNXT8qify/dDaqz8RNRIRJvIRwhDHemCc9fqfzytToLy1+Ar+/V23nGZRSsUdWky3cdvms9Wsk+RVmZZrzmXixx0Fnu7exWmDcLdjjjb7VxYto4leBHExelW5U1oj00y0VLHTQ4J7t9CUktpgOgYC0UrVfrXRSwvT96vrjQuOJjJR6GzYCJt8IVnyjhAbplY/DZenstVqOhHObdDstfVK/ry+E/k+CNM9XrOoO4GHW5+3vanGJDExcmk56OVqvq+fvlcMMP3tkmejDaYGFrkYiLg2WzU1wkR4VQ3dhKq83OMwu2ERsWyA0nuFfZ7pOgiw2z2cSg5CiEo4+0WP1hsru0nsvn/MLu0jp+2lHGaf9Ywtcb1T1rVyesF2/8vIfvtyhRW9fceVcrh8NBdWMrUaGBnDZUWRr+PH0oqTGhZMTp1xsTKi59wlGMccKzOh+szcpqAWqQaDIrMWG3ubcDPVORcOgIiYZbVyghmGBInnLCXfp6oCHrZ+5ytdTiMqIzIDpNiQtbK9SXKYtGix5P6YXLLapWuVGB73IH2nsB/PoqzP+D83q6JmB7fxw54iJ1NMz8QRUSCY1VClTjio/hnl3uwd/aetkOWP2m+gO92F7RBnj3IljvrMB9xzoYc5X7e2qWDGPgtmax0Ja9hig1ewQREWwhLTaU7SIuXFQ3tvLmshxXkPtby3OY/LeFrmJ3bbGpoJro0EAGp0RS1dhKfmUjhdVNXDAmjYhgNWubFBnMxzdP5LxRR471SzhwPKtT/7yznEte+YWfdpa5uSp2NDC7sr6FR77YzPdbSgBoarXTarPTYrV71a1oi8ZWG1a7g6hQC0+cP5xv7zyRK45VsRKZRnEhmZ+Eo5kYQ/KCmn0qLX59CZz8J7h/H0y6Tc1gGzMHacHDrgyZwmGh38kQnQ6/e19l+7pzA5z7Ipx4t94mZ6laanG8USnKc6Yyx1nR23n/rC9p+31cblH7sVy0lQxAxEUXEhiqLApJhrgHTVxoKWbLd6oAK2Pg1I4FynIRHKU6jKf1weZ0STAW1dHcszzzXx9hDOwVya7SOp+xAUcjH/+Wz5/mbWJljpp5+OPnm8gpb2DjPt+BeP/9aQ9vLc9he3Edg5IjiQ0LosVqJ6dcubL0jgnl1CG9uPLYTN6beSzjsuKw+DEzkNBzmTU1m8uOyeCkAYmubaW1zfzgtDwYt81ZupsLXvy53cxuWwq9i+btKatn1KML+GhVfpvHtVjtrM5VkzE1jUrIRIUEEh8R7Eo3C5ARr4uLaBEXwtGM0XJRU6C7QKWNU+7WA89S1otPblABvq1N+sBUxMXhJSoF/rBR1YwA9d2NvhwmzlLeKAPPVAX3mmt1y0VkqrJctNSp0ggadT7EhcMBC5+EPU6B0lKviwtPy0Vznfr+TT5Sj4tbVDfAmDpOi7nQAmfsViUwfJmjItoIKNTcosyGB2ZUb/XamDnqCOTBswaz5N4pBAYcOe5eB0NxjSqaU1bX7JbBR8vq43A4+GBlLnOW7qbZauPR+Zv54+ebqGu20ich3DXo0qxBydEhBFnMPHbeMLI9Yi+Eo5vIkECeOH+4q4K1htbXNIqqm1i4rYTVuVVU+IjN0NjsQ1ys3FNBQ4uNFXsq+GZjoSstbGOLjbd/2cvHv+Vzy7urueDFZWzIr3b1+ahQb/FgdIuKlLSywtGMUVxYmyBvhVqP76+WGcfASfdBxS7Y+7N7ViIRF90DS5ASg/2mquDr7d/qrmuRyXp8rbHSd12x93mq9qog/u1fq9fNbVgufn0NnuwNO76F6N4qHsRIN7VcHF13epNJRfNX5ijfuoBg92qMW+frMRNG2rJCaOIiwGC5mPKAymDVA6txd4a+iTLgNVLmrJhc2dDKL7v0DGQvLd7F3vJ64iOCeerrrQAMSXUfFGbEh9FqVTPLWiXuXlHBCEJ7BO1H2BfVNLHPmS66tLaZ1XsrKaltdrkraWwu8BYXmjXjk9X5fLI6n9+NT+epGSN4d8VeHv/S3Tz/wa+57HD22ygfFeMz4/V7oekIij0ThE7jmWRm9yKViUjLcAkqzT5AxR6wGLIBirjoXgw5D76+D9bPVRaoSGeNNa3Ompu48GG5MCYLAhWb0ajFXBg8Hr6crZZ2q4rpGH4hJPSHl09U27up5eLoEhcA13ylRIbJBJG91A82KFJ9sQv/4vsYLQ7Dk35TYd17kDRY3xbdW/0JRxVl9WpmuKq+hbwKPXgrv7KRV5fucasV8s1G95tKZlw4pbXK8rGtWA3qjGlnBcEXWi2UtNhQnzVnCqubKKhS/aq0tpnHvtxMUXUTF49LJ8iijNYOh4MNPlz3PF2l1uZVAXomswCzCZvT1erdFfqgx7MmDkiFbUFwEZOllsFRKgNUUzWkjHJ3uY51JvKo2A0hzokoU4Cq+uxwHFHJYXo0EYlqDLhjgXp97K3KtS3KOf4r2J+4KHR/3Vynl0aoKYCFT0D2qe5tNHEaZRhjdlPLxdHlFgXqy9d+nOe+AFMeVJml2qOh3Pf2s/+hiur1m+LfaxQ6jN1u57bbbqNfv35kZ2fz73//u822WVlZDBw4kFGjRjFq1Cjmzp3rt+swWi72ltfjmbq/2lBgbP5695tKZnwYMc78/9uL1AxwklguhP0w84S+9E0I5z+Xj/W5f0N+NS02FRP1295K8ioaabU53FJI//mLzV7uVODtKhUZYqGktolVeyuYNqQX3955Alcem0mAR0f35RZlMpm4ZXI/7p42wGufIBxVxPdT44bTDBOZCf3d20T1Vl4VlXuU9QJUjGhrQ9tjEaFrOOk+fX3o+WqpuUUZxYMWN7P4b7Dpf879HpYLhw1qnbEbtmZVVPG1U9zbaAkBjG73YrnohvQ5Uf0BXPYhvHex+/7eY1WQ96mP+D4+MEQV1RO6jHfeeYfNmzezfft2qqurGT16NFOmTGHoUN9FC+fOncuoUaP89v55FQ38ad4m12CssqGFvIpGUmNCmTIwibd/0dMHpkaHUFDdREV9C5EhFlcl5Iz4MNcsdIvNTlx4EMEWH4FbgmCgb2IEP949GYC48CAq6t3jKjRhAfD5Wt13e1NBNcN6R9NsVfETw3tHM/PEvtz+/hpXm6ZW90QN6/KqmfaPJdgdcMbwZLKTInnsvGG8v9LdVaOtuhT3nj7ogD6jIBxRmEww7jplsZj/B+XqEu8hLsxmiM1U9bYK10N4EvSdrGbCawp8u24LXUP6eLhlhcrupWUFNdY0s4Qo9/m6EvW38HG1fWi1t+UCVH8wkjpGicpS5VJNdJpaGq1XYrno5gw4TZm4jPSdAr//yT2trdCtmDt3LjNnziQgIIC4uDguueQS3n///cP2/l9vLOTHrbrJU4mLBtJjw3jo7MGsfPBklx/6yYP1xAAn9E/AZFIuI1EhgcQYZnyTIsVqIXSO/fWZnHLdVU8r3LirpB6b3cFJAxLJ3k8MVYvNTlVDK3dPG8B5o3ST/Pmj3V1Ao0KP7vkqQegQIdFw13aY9jhMmOm9P66vCuauK4IT74E4p6uUrwGp0LUkDYKRl+gDfqNVIXGgEoO1hXraWg1Py4Uvrv9O1d3Q3KB8WSlEXPQAIgxBVb9fBifM7rprETpEbm4umZl6gGpWVha5uW0Hvl111VUMHz6c66+/ntLS0jbbPfvss6Slpbn+6up015FNBdXc8u5vLNtV5lVIMKesntpmKxlxYQRbAkiKDGF0RiwBZhNTB+nZyrITIxiUHMWw3qqiseYWBdArSuIthM6R5NFnJmR5V24f0CuCmLBAFm0rZXVupSu+Z2ByJCnR3n1uYK9Ir203nNDXLSj70XOHMf+2412vw4NEXBwOuos7qHAQhMeruhZh3r9VQtRzgeBoGHu1PhuupTwVui9Gq8KoK5T1Yd9qWPmqvt3a3LZQNAbxBzjvp1d+puqsDTIUgg529hFxi+oBRBpSzvby7VYjHF4mTpzIjh07fO5bs2aNz+1tsWTJEjIyMmhtbeWhhx7i6quv5quvvvLZdvbs2cyerYvLtLQ017rV5uCrDUUMSo5im6e4cM4QG3P7PzJ9KHkVDWQatqXFhfHeDccQ4Mz4YwyE7Zt4ZGcaE/xPLw/LxenDkl01VzTGZMTicMDcVXnc9t4azh6pspoMSo4kNjyIB88cTGx4EHd/pAp4XTI+nSGpUSzbWcbzP+4kwGwiJNDdXS80KIBhvaP55+9G8fFv+fSO7Z6zaEcaXe0OKhxiRlyiXKIufhMswSoTEYi46CkER0NzNYy4SLnXb//avcJ2dX7blovYPlC6xdsCMv1f7u1u+01Ztyzd09NBxIURo+VC6BYsX7683f0ZGRns3buXiRMnApCTk0NGRkabbQECAwO58847GTDgwAJMB/SKxGyCjfuqfQbDgsrgo9EnIZw+CeFu1brTY8OIDdetFdGhgcSFBxEaGMCdJ0vgq9A5PK1d0aGBLL5nMhv31XDreypryZiMWC4en06Lzc5na/bxy+4KggLMZCUoMTvzxL7UN1v587xNjEiP5upJWQSYTazJrQJo13Xq3FG9OXeUZMk7XLTlDvr444939aUJ/iD7ZPWnEeVMb1or4qJHcNMiVasiNBbSxsIJd0HBGhXDu/cnFahvLLJnJCJJiYu26qu52iWqv26KuEUZMRbZE3oEF110Ea+++io2m42Kigrmzp3LJZdc4tWuvr6eqqoq1+v333+f0aNHH9B7hgYFkJUQzoLNxW1WKE+P8zZVhgdbCA9SM79pHjO8AWYTC++ezJJ7p0gVY6HTjM6IIchiZmSaMpVHhQaSGR/OWSNS3NoADHe64q3LqyI7KYJAQ+X38GALKx88hXeuP8aVCeqS8elMGZjIC5ePOUyfRtgfXeEOKnQhITHK/aVGYi56BHF9obfhfnnyH5Vr03G3q9fvzlDLkBjvY6c8qB/TgxFxYSRSLBc9jSuvvJJBgwbRv39/xo8fz+zZsxk+fDgA8+bN44YbbgCguLiYKVOmMGLECIYPH87ixYt56623Dvh9jdWRbzqpL2MzY5k2RJ9pGOJRPVkjKSqEALPJp497dGigV2pPQegIJw/uxfbHz2BIqlNcGIrZ3XRSXxIjg+nntDwMNRRxnDzQe+YrNCjALa4iLjyI16+dIJXiDyMTJ04kISHB519eXl6nzrVkyRLWr1/P6tWrSUhI4Oqrr26z7ezZs8nPz3f9RUTId94tMJlUcTZxi+rZRKfr68Nm+BYQGcfAI9Uw8IzDd12HAHGLMrI/M5TQ7QgICOCFF17wuW/69OlMnz4dgL59+3Y6RqM9+hlcRG6b2p+IYAvXvr4SgFMG9/LyTdcYnR5DYmQwlgDR9YL/iQtXVi9jgoD7zxjM/WfohT6NFeLPHmFImyh0G7qjO6jQxUSlQtH6rr4K4WCIMYiLc57X65ZohZyPIERcGNHERW/fRakEQWNcZiwAN57Yl4hg9TOaeUJfCqub+PO5bScDePaSUTgcjsNyjcLRx+XHZJIQEcyAXm3POEeGBLoqbA9O8c4IJXR/NHfQiy66iOrqaubOncv8+fO92tXX19Pa2kpMTAxwcO6gQhcTmaLSmbY0QFD3zBAk7IfgSJhwE6SOguAI9XfnBqgvg1enwKjLu/oK/YaICyPBEXDHevcofUHwwQn9E/jy9uPd3J8mZSfwzZ0n7vdYo8uJIPiT1JhQrj2uz37bLb9/KiZM0hd7KFdeeSW//vor/fv3x2QyebmDzps3jzlz5lBcXMyMGTOw2Ww4HA769u17UO6gQhcy8VYYfQWYZdjWoznzaffXMRnq79aVENeva67pECC91JPYzP23EY56TCYTQ53+7YLQ00iKlFoqPZmucgcVupDUUV19BcKhJHFgV1+BXxHHb0EQBEEQBEEQ/ILJ0YMcwIODg0lMPPR5fevq6g5LlozD9T6H871KS0tpbm4+5O9zuJG+1/3fS/rewSF978CRvndwSN87cKTvHRzS9w6c9vpejxIXh4u0tDTy8/OPmPc53O8lHDjS94SuQvqe0FVI3xO6Cul7hwZxixIEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuPDB7Nmzj6j3OdzvJRw40veErkL6ntBVSN8Tugrpe4cGibkQBEEQBEEQBMEviOVCEARBEARBEAS/IOJCEARBEARBEAS/IOJCEARBEARBEAS/IOLCySOPPEJiYiKjRo1i1KhRXH755a59drud2267jX79+pGdnc2///3vg36/HTt2MGnSJAYMGMD48ePZtGnTQZ9TIysri4EDB7o+y9y5cw/5ewoHjvQ9oauQvid0FdL3hK5C+t5hwCE4HA6H409/+pPjjjvu8LnvzTffdEydOtVhtVod5eXljoyMDMfGjRsP6v2mTJnieP311x0Oh8Px0UcfOcaNG3dQ5zOSmZnpWLNmzWF9T+HAkb4ndBXS94SuQvqe0FVI3zv0iOWiA8ydO5eZM2cSEBBAXFwcl1xyCe+///4Bn6+kpIRVq1ZxxRVXADBjxgzy8vLYuXOnvy65W7yncPBI3xO6Cul7QlchfU/oKqTv+QcRFwY++ugjRo4cydSpU1m4cKFre25uLpmZma7XWVlZ5ObmHvD75OXlkZKSgsViAcBkMpGRkXFQ5/TkqquuYvjw4Vx//fWUlpYelvcUDhzpe0JXIX1P6Cqk7wldhfS9Q8tRIy4mTpxIQkKCz7+8vDxuvvlmcnJyWLduHY899hiXXHIJe/fu7erLPiCWLFnC+vXrWb16NQkJCVx99dVdfUlHNdL3hK5C+p7QVUjfE7oK6Xtdj6WrL+BwsXz58g63Pe644xg9ejSrVq0iMzOTjIwM9u7dy8SJEwHIyckhIyPjgK8lPT2dwsJCrFYrFosFh8NBbm7uQZ3TiHaewMBA7rzzTgYMGHDI31NoG+l70ve6Cul70ve6Cul70ve6Cul7Xd/3jhrLxf7Iz893re/YsYO1a9cyfPhwAC666CJeffVVbDYbFRUVzJ07l0suueSA3yspKYkxY8bwzjvvAPDJJ5+QlpZGdnb2wX0IoL6+nqqqKtfr999/n9GjRx/S9xQODul7QlchfU/oKqTvCV2F9L3DwGENH+/GXHXVVY6hQ4c6Ro4c6RgzZozjo48+cu2zWq2OW265xdGnTx9H3759Hc8999xBv9/WrVsdxx57rKN///6OsWPHOtavX3/Q53Q4HI5du3Y5Ro0a5Rg+fLhj2LBhjunTpzv27NlzSN9TODik7wldhfQ9oauQvid0FdL3Dj0mh8PhOHxSRhAEQRAEQRCEIxVxixIEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS+IuBAEQRAEQRAEwS/4VVzs2LGDSZMmMWDAAMaPH8+mTZu82ixatIjQ0FBGjRrl+mtsbPTnZQiCIAiCIAiC0AVY/Hmym266iRtvvJFrrrmGjz/+mGuuuYZff/3Vq93AgQNZu3Ztp88fHBxMYmKiH65UOFSUlpbS3Nzc1ZchCIIgCIIgdAF+ExclJSWsWrWKBQsWADBjxgxmzZrFzp07yc7O9st7JCYmkp+f75dzCYeGtLS0rr4EQRAEQRAEoYvwm1tUXl4eKSkpWCxKr5hMJjIyMsjNzfVqu2vXLsaMGcP48eN58cUX2zzns88+S1pamuuvrq7OX5d76GisgtLtXX0VgiAIgiAIgnDY8atbVEcYM2YM+fn5REdHk5+fz5lnnklCQgIXX3yxV9vZs2cze/Zs1+seMSv+w59h3Vy4dxcEhnb11QiCIAiCIAjCYcNvlov09HQKCwuxWq0AOBwOcnNzycjIcGsXFRVFdHQ0oMTCpZdeytKlS/11GYeW/N/gb/2hYE3bbUq2QGs91Ba1f67CdVBT4N/rEwRBEARBEIQuxG/iIikpiTFjxvDOO+8A8Mknn5CWluYVb1FYWIjdbgegtraW+fPnM3r0aH9dxqHlo6uhvgRWv912m6o8tawrabuN3QavnwXf3O/f6xMEQRAEQRCELsSvqWhffvllXn75ZQYMGMBTTz3F66+/DsANN9zAvHnzACU6hg8fzsiRIzn22GM59dRTufbaa/15GR3no2th/h861ra2CKqdwqGxwncbWyvUOq0RdcVtn6u+FFpq9fMJgiAIgiAIwhGAX2MuBg4cyPLly722z5kzx7U+a9YsZs2a5c+3PXB2/gDh8b73bfsaeo+FiCT1Ot+QUrd4E5TtgKXPwBlPQ0iU2l5TAA5llXETFw4HvP87CIqAC1/T3aHqSv37eQRBEARBEAShCznsAd3dhtYmaK5W6wVrIDQWYrPU692LlBgYch5c/KbaVu8UAkERUL4T3pyurBTpE2DcdWpflSEz1g+PQf4q5UZVsFa3dlz4GtQWOs9ZooSHyXToPqcgCIIgCIIgHCb86hbVo6h3xkQ0V8Nb58JX9+j7Fv1VLbd+qVsX6svVss9JyjqhuT8Z084a3Zyaq2H9B7DrR283Ks1yYW2Cljr47Q0o2+mXj3VIsDa7CydBEARBEARB8MGRLy7WfQAfXA7OIHIXRpekpmqDq1IJ5C6DiF5gb4UNH6ntDWVqOfIS9/PsW6WvV3UghmLLF0q0aBRtgC/ugH+P7djnAeWW9f0j3p/pUPHLi/CvceLGJQiCIAiCILTLkS8uPrsJts6HhnL37Z4B19p+zf1p+EVqWbAGmmv17QNOh5kL4cR7IWMSFK4Ha4vaV7ln/9cz9wrYvVB/XdGBYzxZ/Tb89A8o2+a+va4EKnM6f779UbodbM0SgC4IgiAIgiC0y5EvLjS2fQnLndXAy3bAnsXu+xvKVfxDvdNCEZsFUWnKcvFkGmz8BIKjwBIMvcfA1Aehzwlq0F28UR1TtEEd0xkqdunrLQ36ut0GGz5WsSGeaG5Wnulu5/8B3jinc+/fETQXMk+BJgiCIAiCIAgGeqy4+GV3OWc9v5TF29tw1Vn1OrZ/GupnfHEHfHs/FG2EDy6DFS+5t7e1qPgHzf0pLB4SBwIOvU2YR2ap3uPUct9vKi6hdCukjABLSMc/SMVufb1ks76+9Fn45Hr4+TnvYxor1bLe47NX5yvrgt3mvn3FK7Dju45fkyfa+4i4EARBEARBENqhx4qLiGALmwpqWLmnjQHv/DsJqNztvf3bB6Bsu/d2UFYLLXA7PMEpLgyEJ7i/7u2Mk8hfpYSF3QrJw+H3y2Dqw3q7YRfC2Gt8v6dRXMw5GTZ+qtY3fqKWZTu8j3GJizL37c21gEPFkGg4HPD1PfDuhb7fvyNo7+P5foIgCIIgCIJgoMeKi0HJkYQFBbAqp9J7p8PhvU3D0x3KSEOFPjsfFg8JA9z3hyd6vI6H2D4qqLtwvdqWPALi+8EIQ+D3sBkw4nf66xPvgWu/UevlHgJoz2J1HZoAqi3yvk6XuPBwi2qpc98P3kKjszgcYrkQBEEQBEEQOkSPFReWADNjMmJZm1dFi9Uja1IbQc22gOD2T9pQbnCLSoCYdPf95gDvY9LGqboXO51uRykj1NIoRCKS3F2qhpwLaeMBk6rUDXDJO2AyKzGRtxIcTtemks1qgF+5Vz++Lbeo5lr3/dpn0vBsD21nnHI4lBWnqVq5jIH+vxEEQRAEQRAEH/RYcQEwNjOWZqudTQXVbMiv5pF/PI/9r33htWk+2y9oGYH9/FfgzL9DaJyyOhhpKNddf8LioO9UOO0JyD7Fud+HlSTreLXc/DkkDISYDPU6MASCo9V6eKK7S1VUbwiwQGiMvi06TQWD1xZClVNIxPVVwdtLn4F/joDN85QY8OUWZbNCqzMgvMEZ8N3apBfsA293sPJd8Ggs/DoHL5b/G/7WV1Uq16gXy4UgCIIgCILQNj1aXExIC2aGeQnrdu1jweYikstXYG4sh/oSHHhXva5yRFDb/wKYMBNmb4FbVyqRYXJaJBrK1V9INAQEgtkME29VhfNAuUF5MvQCCAxT64POct8X4bRehCeqc2qExqplmEFwBEdBVArUFOoF6wacoZbLnlfL5S9Ac40q4gcqW9Tqt+Ddi92tFdr6m+eoAoEanvEb275Sy0VPeX+u1W+p5dp39W3iFiUIgiAIgiC0Q88VF3Y7E9bczzNBLzFgzePsKasn1aQGvxc0P8Iv0/7ndUg1EVQ2OF18AkPAEgTTn4ezn1XbFjwIOUvdB/0Ax/4epjwEZ/3D+zpCopTAABgy3X1fVKoSFUFh7i5VJqfwMbpKBUVAZLJyXSrfqVyksqeqfU01alm80dvNad5tsONbvdgfKGuHzaqyWNmt+nZPcdFY5fwMMfq2/N/g3+N1FypjHQ5xixIEQRAEQRDawdLVF3DArP+AwO1f0kwQk2q+5hNOJtVUTpkjitWOATy4DH70OKTaEU5VY6v7xsHnqJn+L+7QtwWFubcJCIST7mn7Wk77Cwy7AFJHu28//Sl3MTD1YWWh0DC6SgVHQmQq4FAxF1FpkDTUudMZiN1SB7sMn6rKEIex7F/6emMl1OTrcRsa5TvdX2vB4karylvT9cBwUOcBZd0Ry4UgCIIgCILQDj3XcjH8IjjlEV7LVi5DEyrmk2Iqp8ChrAG7y+qZ3vwYS1Kvx+5QloIqwvl+czGfr92Hw5k5aXdpHfO21bufu2hD564lNAayT/be3mso9DlRf33i3XDMjfrrsDh9PTBUuUWBsjzEZChLRlCk+zlzf3GueLh91Rbo642V7gHgGjX73F9rBfw0EWJtdhcWRuKz1XltVt/7BUEQBEEQhKOenisuAgLh+D+QOOh41tv7cE7Acnqbyil06K5G6x39qDrmbupQRe2qHBH8e+FO7vhgLQ98tpFWm52LXlrO7R+s45mkv8B1C1QBPGONCgPldc3c8cEaSmub/fMZjO5XJpPTcuEkNlNtS3Smw+01TC3zf1XLvpP1tn2nuJ935SvKAmEkZaQqsmek3CkutEDtnKW+r9McCOkT1LpYLwRBEARBEIQ26Lniwsnpw5L51HYCYSY14C9wxHPK4CTX/kHJkdQSDkC1cwnw2Zp8ftldTnm9isGY3zAMMo6BBwqVhcEHj87fzOdrC/jbt1v9c/GeRfk0ywXoWae0Wht9TgJMuivU8X+AC19XsSD9pu7/vRIGQlMVtNSrCt6NVXqdDC2WQgsk96TXEIjNUuslm6B02/7fTxAEQRAEQTjq6LkxF04iQwJp6D8dclR2o0JHHNlJkVx3fB8+X1NAv8QI9pjDwVFGtSPCdVxTq505S1Wwckp0CAVVjTgcDkzmtvVWQVUjoGps+IUwj+xTKSMh83gVfzH8IrVNExeJA1S62uo857Fx0NeZxWrDx/t/r+g0tSzdCq9OhbQJ+r7WBhWzUVfi+9jkEfrxn94ILQ1w7y7lyiUIgiAIgiAITnq85QLg0cv1mfs6wsiMD2NSvwT+euEIAswmWgKUqKhyKMtFbFggAIu3l5IVH8bkgYk0W+1UNrgHe6/cU0Ftk75N2x8TGuifC/fMShUcCdd+CZd9oKp8Aww4XVkd+pwIcX304xIH6cdFpbJfonurpRazkb9SLWMy1XLBQ3rKW0+ieuvior4UWuvbLFQoCIIgCIIgHL0cEeIiJDAALngVgJ/sw8iMc8/2ZA9WQdFVKJExeaDuNnXqkF6kRKsZeM0yAbA2r4qLX17O7A/XubZVOdPYWu0O/1y4MaC7LXoNgVkrVUE9rThe38kq5kQj0uBONXEWnPwnmHQ7nHgvJA6GEZeo7FPgHayedYKP6/IQPX1P0sWFxrJ/wZp3wdqy/88gCIIgCIIgHBX0eLcoFyMupiTzHC5ZvY9j+rq7G/UefRrVOxzU71WB3ZMHJvLZGpU5acqgJPZVKlFxy7uraWixccvkfgRalO5avL3UdR7NclHb5KeMSVoxvY5y3J3w6Q1w3B3u243i4pib9HgNgKkPqqUmKgrW6vsCgiB9PKx9R98WHKWyVDWUwfCLVWxHryFOEWHClRZ37buw5QsY+bvOfQZBEARBEAThiOWIsFxoJEWHcuuUbALM7mlaY0+ZTfTvF6Clbx2UrNeaGJ8V57Jc5FY0UFbXzFcbCtldqlKyJkYEU99s5d6P12FzWizyKxt47vvtNLV61JFoh9qmVuqaPURJhNOC0v+0jp1kxEXwUAmkjHDfHhiirwdF4JMop1tU6RZ9W3x/CAh2bxcWr4ue8EQlLEAVHIxMdm+bNs69OKAgCIIgCIJwVHPkWC46QWpMCC9dMRaHw0FggJmUGH1wHhRgZnNhjTY/T5DFzPz1BXy4Sk/junRHGUt3lNFitXPBmN5kJ3nUovDB8EcWEBoYwJbHTtc3BoXDvXvaFgS+sAS3vz+4jWsJjVU1M1pq9W1Jg6D3WPd24Qm6uDAW1wMlUGoL9dcZEzt2zYIgCIIgCMJRwRFludgfGc5YjMiQQE4flswZw5U7UWq0nvXoqomZNLTY+G1vJQBF1U38uNV3FqUXF+3ilGeXsLWopt33tTstHo2+LB1hccoqcLAEOtPsBrQRbG4y6elkQVkthl6gslA9UADZpzivJ0GPBfEUF55xF+nHHPRlC4IgCIIgCEcOR5Xl4us7TqDFavfaHhoUwEVj0xieFk1MmPtAv7HVxrebihmbGcvLV47l4peWs7vMvaL3+rxqN1crTwqqG9vc5zf+sBGa2xc5xGZCsTP24pZfIMD59QeF63Eb4QkQ2oa4GHedsl5s+FBljfK0egiCIAiCIAhHNX61XOzYsYNJkyYxYMAAxo8fz6ZNm3y2e+211+jfvz/9+vVj5syZtLa2+mznb8KDLcSG+7YS/O2ikVw1MYthqbpIuOJYPTB66qAkEiKCiQzx1mPbipWr0edr93Hlaytotdl59IvNTH1mEVabnb3lDa62nYnT6BRhce6WCV8Y9wd4fA4tnW17blF9T4LTn4CblsCNiyC4E+5cgiAIgiAIwhGPX8XFTTfdxI033sj27du57777uOaaa7za7Nmzh4cffpilS5eyc+dOiouLeeWVV/x5GQdFn4Rw7jltIP+79Tg3a8S0Ib0AiPAhLrY7xcUX6wpYuqOMnSV1/PfnPewurWfFngr2GCwdVQ2HR0j5pD3xoYmLsARVUyNxMKSOartt6mh/X50gCIIgCILQw/GbuCgpKWHVqlVcccUVAMyYMYO8vDx27tzp1u7jjz9m+vTpJCcnYzKZuPnmm3n//ff9dRkHjclk4tYp2YxKj6FXlB7onZ2kZukjg71jGrYVKXGhuUstMaSvvXzOCh7630bX66rGLqwLEdun7X29hqtl0iAlKm79pWPF+QRBEARBEATBid/ERV5eHikpKVgsambfZDKRkZFBbm6uW7vc3FwyMzNdr7OysrzaaDz77LOkpaW5/urq6vx1uR0iJVqJi0n94jGZVBpbzXIRHx7ExePSOH1oMiW1zZTUNpHrdH+auyqvzXNW1neh5cIzINtI2liYvRX6nXz4rkcQBEEQBEE4oujW2aJmz55Nfn6+6y8i4vD6+A/rHc27NxzDa1ePd20LDFD/sv69Inj6wpFMHaRqVdz/yQZX5e7dpcqC8ca143nzuglEh+rWjuqutFzE9YWkIXDm333vj0pRWaUEQRAEQRAE4QDwW7ao9PR0CgsLsVqtWCwWHA4Hubm5ZGRkuLXLyMhg165drtc5OTlebboTx2UnuL1utqqA7GCLKh43Y2waH/yayw8e6Wqz4sM4aUAiJpOJX+4/mUXbSvj9u6u7NubCEgS3LO+69xcEQRAEQRCOaPxmuUhKSmLMmDG88847AHzyySekpaWRnZ3t1m7GjBnMmzePoqIiHA4HL730Er/73e/8dRmHnGZnKttgi/rXBZhNPHnBCK92fzxniMuVKjQogJQYVUujqrELxYUgCIIgCIIgHEL86hb18ssv8/LLLzNgwACeeuopXn/9dQBuuOEG5s2bB0Dfvn3585//zHHHHUd2djaJiYncdNNN/ryMQ0pzq1NcBAa4tg1MjuTsESmYTfDxzRN59uKRTB3Uy+24GKdrlGa5cDgc/LyzjFve/Y0ftxYDUNvUyu9eWc5PO8oOx0cRBEEQBEEQBL9icjgcjq6+iI6SlpZGfn5+l17D+vwqLn55OZ/dchyDU/RUtXa7g5qmVq8ifBpVDS2MevQ7Lp2QzpMXjOD299cwb10BAGcMS+Y/V4xlyfZSrvrvSgB2PXEmAeaeF//QHb4jQRAEQRAEoWvo1gHd3ZERaTFsfewMN2EBYDab2hQWAFEhgZhMKltURX0L89YVMDZTFavTrBlF1U2u9t9tLj4EVy8IgiAIgiAIhw4RF4cJs9lEdGggVY0trroYZwxLpm9COOX1zQDkVzW62mttBEEQBEEQBKGnIOLiMJIUGUxBVRPbimoAFasRFx5ERb1KT7uvUhcXlQ1dmLJWEARBEARBEA4AEReHkf69IsmrbGBtXhWgi4vKhlbsdgf7qhoIctbRqBJxIQiCIAiCIPQw/FbnoqtxOByuv+7K4F4RfL/JxA+bi+gVGUhcqIWkyCAsJqisb6a0ppGBvcLJraintqkVm03V1KhttvLJqnyuODYDS8Dh14Mmk8n1JwiCIAiCIAht0eOzRdntdkpKSqiqqurWwgKgscVGudMFKthiJjEymJrGVmqarPSKCqakppmQQDOtNgdmMyRFhgBQ12ylqqGV+IggQg0pcA8nJpOJmJgYkpKSMJvbFjiSLUoQBEEQBOHopcdbLvbu3YvZbCYrK4vAwMCuvpx2abHa2F5SB0BqdChx4UGU17VQWNNIakwojqpG4sKDaWi2Ync4GNArEoDC6iaC6pvpFRVCXFgQTa02woMP71fX2tpKcXExe/fupU+fPof1vQVBEARBEISeQY8WF3a7naamJvr374/F0v0/SojZ/P/t3Xl01dXd7/H3mTJCZAiThCQyxZs05ATDkFBaSRHkkfLYxRCvSKCLh7R6Bbm0vaBF5FEu2tY2gOgVBxxK4TkL7FIeJpeQUqrBRYKEQSSJQgggkBAykPGM94/AITEBEU5CQj6vtbLW+f32Pnvv3zn8cb7s/d0bg6H+f/27dwrAaDTgZzFhMBj5trwOg8FIlyA/HC4PNQ4XJlP9LIXTDQaDEacLSmucnK+oZXCvzgS04iyGyWSib9++5Ofn43a7rzt7ISIiIiIdU9v/RX4dV5ZBtZdcAIPBQHi3IExGA8bLB+Q1PCivS5AfnQMsXKyy43LX548YDAbszvpTweucbtyXV37VOlytGlxcGT/Q5pefiYiIiMjt0a6Di/bouwftmRvMAPTs7H/5Xv2PeKfbg9kIdtfV4MKDx/taRERERKQt0dqWFhAZGUlOTs4N1TWb6gOJjevewRobg9Vq5cihHLZ/9AEutwen24P78kyB0+2mxl4fVNTYXZwtr+HUxWpv+fWcr6ilosZxcw8kIiIiInIDFFzcZhaTkfBuQWx87w3eeecdcnJyyPvqSz7e/Hdq7C6+Olt/4N6V5VNXZi4qah0UX6qjtNpOUUXddfvweDycr6j17lQF4HQ6W+iJRERERKSjuuOWRf3He1mcLKlukbYjugfx1sxhN/3+rKwsFi5cSEVFBS6Xi2eeeYapU6fyH6mPcvybb5g1axZ9+/YlL/9rysvLGDUigZj4+3j2xXS6B/tRdKk+iHA4HLz68v9lf+an2B12wu8ZwPp336Z7926seuMd1q55DYPbidvtZtmyZUz4t4cAeOTfH2TEffFkZWURGBhIRkaGTz4XERERERG4A4OLtqqsrIy0tDS2bdtGnz59uHDhAkOHDiUpKYlNmzYRGRmJzWbDarXy/954m40f/J0Vb/8NgLCuQXQNsniDi/deX0VgYDD/+DSTOqeLZS8s4/eLF7N69WqsiT/lvQkPE9u3C4WFJxk5ciR53xwHwOOBvLw89uzZ0+a37RURERGR9ueOCy5uZWahJWVmZnL8+HEmTJjQ6H5ubi59+/ZtdM9iurqDlNlopFtwfRJ41yA/SqvtfLZrB+Xl5Xy2cysut4fq2joG9L+HS7VOzhSe5Om5aZQUncXPYubixYsc/+Y4xm5hADz22GMKLERERESkRdxxwUVb5fF4iImJITMz83vrmk1GjJe3ffW3XE2LCesaSI/O/hgN8Nqrqxk3bhwVNQ4KSqoI6xpIabWdhf9rNk89/RwPPPTvANw/pD/VNbV0ujyG4ODgFnk+EREREREldLeSpKQkTpw4wc6dO733cnJysNvtTeqGhIRQVXk5kbvBGR4Gg4EAi4mHH36Y9PR0qqur8TMbqamp5vPsg1TWOblUUUbffhEAbPm7jdLSUlwNdpPSERUiIiIi0lIUXLSQ8ePHExYW5v2rqqpi69atLF++nLi4OKKjo1m0aBFud9PzKn72s5/hcjiY8sAonvs/85uUL1y4kGHDhjFixAiG3xfPjEkPcPBQDkaDgfT0Ffzm1zOZ9uBPOHbkMOHh4d6D94BGgYaIiIiIiC8ZPO3ouOWwsDBOnz7tvXa5XOTl5TF48GBMptY9rbqleTweLtU66RRg9i6RupZDp8sAuCvQQkT3YApLqimrqZ8RGdCjEzUOF9+W1QAwqGdnAv1u7rO6kc/7u9+RiIiIiHQcmrloowwGAyGBlu8NLBoKCahP1A7vHkR4tyAAHC43rgZTF5q5EBEREZGWouDiDuBnqv8aOwdczc/3M9ffszu/E1y4FVyIiIiISMvQblF3gP49OuFwuTGbrsaKlsuvax1uaDD5cbKkirCuQd7tbUVEREREfEXBxR3Az2z0zlRcYTbWRxRXci8aOl1areBCRERERHxOy6LuUAaDga5B1w4g2lEev4iIiIi0Ez4JLtxuN3PnzmXAgAEMHDiQ1atXX7NuZGQkUVFRWK1WrFYrNpvNF0OQZvTrFkSPzv7Nljkb5F44nG5yz12i2u6kqs5JwYUqHM6mW+SKiIiIiFyPT5ZFrVu3jqNHj5KXl0d5eTnx8fGMGTOGmJiYZuvbbDasVqsvupbvEWRpfsvYWofLm5dR7XBR53RRUmmntLp+GVXnWjPdOzUfmIiIiIiINMcnMxc2m405c+ZgMpno1q0bKSkpbNiwwRdNt0sNZ2eioqJ46aWXvGXZ2dmkpKTcUDsGg4GysrJmy1asWMG5c+e+t41Av6vx4z2hwfTrWr9F7amLNdQ5XMDVHaTKaxzeutV21w2NUURERETkCp8EF4WFhURERHivIyMjKSwsvGb91NRUYmNjmT17NsXFxdes95e//KXRKdeVlZW+GG6rsNls5OTkkJGRwYsvvsi+ffsASEhI8MlSsBsNLiwmAxaTke7B/nQOsBASaMFkNOB0uymurAOuBhfuBnkYNQ4XTqfTe13rcHGhsmlyuIiIiIjIFTe0LCoxMZH8/Pxmyw4cOPCDOtyzZw/h4eE4HA4WL17MzJkz2bZtW7N1FyxYwIIFC7zXYWFh39/B+keg9MQPGtMN63oPPPpfP+gtffv25d577+XkyZMMHz6c3bt3M3/+fHJycgBYs2YNf/7zn+nUqRO/+MUvWLJkSaNk69dee40PP/yQ4uJilixZwi9/+Uuef/55vv32W1JSUggMDOTdd99tsswsKyuLhQsXUlFRgcvl4plnnmHq1Kl43C7+9y+nceZcEfa6WoYNjWfZy6sAM1l7P2X54t9xX8IwDuUc4D+XPEtKyjQAjhdX4nC5QLkYIiIiInINNxRc7N2797rl4eHhnDx5ksTERAAKCgoIDw+/Zl0Ai8XC/PnzGTx48A8Zb7tz7NgxSkpKuP/++5uUHTlyhKVLl3LgwAF69+7Nc88916SOv78/+/bt49ixYwwbNowZM2awZMkS1q5de83clbKyMtLS0ti2bRt9+vThwoULDB06lKSkJO6++242rF9PmdufGruT1S8s4s01r/E/58wD4ER+Ln9OX8XiP6xiQI9O3javJIA73QouRERERKR5Pknonjp1Km+++SZTp06lvLwcm83Gli1bmtSrqqrC4XDQpUsXADZs2EB8fLwvhnDVD5xZaCkpKSkYjUZyc3NJT0+nR48eTepkZGTw4IMP0rt3bwDmzJnD888/36jO9OnTAbj33nsxm82cO3fue2dwMjMzOX78OBMmTGh0Pzc3lz59+pCens6Hm/+bOruDuupK4u4b7q3TLyKSMWPu52RJFXVON8GXc7otJiN2pxu7U1vYioiIiEjzfBJczJgxg6ysLAYNGoTBYGDBggXExsYCsHnzZjZv3sxbb73F+fPnmTx5Mi6XC4/HQ//+/Xn//fd9MYQ258qsws6dO/n5z39OcnKy9zO5FoPB0OReQECA97XJZGqUB3EtHo+HmJgYMjMzm5StW7eOjIwMtuzYSYXbwg7bO3yyc5e3PDi4E36Xd5FyuK7OUpguj63hPRERERGRhnwSXJhMJl599dVmyyZNmsSkSZMA6N+//w/O0Wjvxo4dy+OPP87ixYv56KOPGpWNGTOGl156iaKiInr27Mnbb799w+2GhIRQXl7ebFlSUhInTpxg586djB07FoCcnByio6MpLS0lNDSUHt27cvbEWf76/nv0uvvqTIjBAH7m+kDC3iC/4sqyKIfLjdvtAYMHk7FpMCQiIiIiHZdO6G4Fzz77LJ9++in79+9vdD82NpbFixczatQohg4dSm1tLXfdddcNtTlv3jzmzJmD1Wr1Jodf0bVrV7Zu3cry5cuJi4sjOjqaRYsW4Xa7SU1Npbq6mqFDYnhy5jSGJIysDxYaMBmNmI0G7M76QKKqztlgRyk4W17L3A1fkPjiLs1kiIiIiIiXwdNwa6I2LiwsjNOnT3uvXS4XeXl5DB48GJOp+cPi2rpLly7RuXNnAFauXMmOHTvYvn17q/TtcLn56mxFo3t3dwkktJM/XxddwuHy0C3Yj/MVtQB4PG6KThXg170vL27P5VKtk88WJTd6/3e/IxERERHpOHyyLEpu3qJFi/jss89wOBzcfffdrFmzptX6tpiMWExGHC43nfzNmI1GQgIs3rJqu6PRYXqB5voA7kRxFSdLqkmI7NpqYxURERGRtk/BxW12rVyV1uJnrg8uLCYj/boFNboPcKn26qndQf71/1z2nbhIjcNF/9Dg1h2siIiIiLRp7Trn4sruSu1oZVeb4395Zyj7dw7HC7A0XWbmbwYDkJFbBMA9Ci5EREREpIF2PXNhNBoJCAjgzJkz9OrVC4vFcruH1O4E+5soqXITYDHgcl1dAhVkNuDxXA44PIDbScn5ixRVu6m9fNbFPQ0O2RMRERERadfBBUBERARFRUUUFBRoBuNmOd2UXzJQca7x1rJFpTXe13aXm96h3fji4tUZDS2LEhEREZGG2n1wYTQa6d27N7169cLj8SjA8KFN275i3eeFePBgd8HmJwcy/4HefPxlESaTgbu7BN7uIYqIiIhIG9Kut6KVluVyezh1sZoah4v/Pvgtvx0XhdFooNbhoqLGQc+QgCbv0XckIiIi0nG1+5kLaTkmo4HIy0uf/kefEO/9AIup2YRvEREREenY2vVuUSIiIiIi0nYouBAREREREZ9oVzkX/v7+9OjRo8X7qayspFOnlt9mtbX6ac2+iouLqaura/F+RERERKTtaVfBRWtpraTk1kx+VqK1iIiIiLQ0LYsSERERERGfUHAhIiIiIiI+oeCiGQsWLLij+mntvkRERESkY1LOhYiIiIiI+IRmLkRERERExCcUXIiIiIiIiE8ouLhs6dKl9OjRA6vVitVqZfr06d4yt9vN3LlzGTBgAAMHDmT16tW33F9+fj5JSUkMHjyYYcOG8eWXX95ym1dERkYSFRXlfRabzdbifYqIiIiImG/3ANqS6dOns2LFiib3161bx9GjR8nLy6O8vJz4+HjGjBlDTEzMTff1q1/9irS0NGbNmsWmTZuYNWsWWVlZtzD6xmw2G1artVX7FBEREZGOTTMXN8BmszFnzhxMJhPdunUjJSWFDRs23HR7RUVFZGdn89hjjwEwefJkTp06xddff+2rIbeJPkVERESkY1Fw0cDGjRuJi4sjOTmZf/zjH977hYWFREREeK8jIyMpLCy86X5OnTpFnz59MJvrJ44MBgPh4eG31OZ3paamEhsby+zZsykuLm6VPkVERESkY+swwUViYiKhoaHN/p06dYpf//rXFBQUcPDgQV544QVSUlI4efLk7R72TdmzZw+HDh3iiy++IDQ0lJkzZ97uIYmIiIhIB9Bhci727t17w3VHjRpFfHw82dnZREREEB4ezsmTJ0lMTASgoKCA8PDwmx5Lv379OHv2LE6nE7PZjMfjobCw8JbabOhKOxaLhfnz5zN48OAW71NEREREpMPMXHyf06dPe1/n5+eTk5NDbGwsAFOnTuXNN9/E5XJx8eJFbDYbKSkpN91Xz549GTp0KOvWrQPggw8+ICwsjIEDB97aQwBVVVWUlZV5rzds2EB8fHyL9ikiIiIiAjqh22vmzJns378fs9mMyWTi6aefZsqUKQC4XC7mzZvH9u3bMRgMzJs3j6eeeuqW+svNzWXWrFmUlJQQEhLCO++84w1mbsXx48eZPHkyLpcLj8dD//79WblyJZGRkS3Wp4iIiIgIKLgQEREREREf0bIoERERERHxCQUXIiIiIiLiEwouRERERETEJxRciIiIiIiITyi4EBERERERn1BwISIiIiIiPtFug4vIyEiioqKwWq1ER0fz6quvArB7926sVuvtHRxQWVmJwWD43noFBQV06dLF5/1PnTr1mqeS//a3v2Xp0qW31P6WLVtIS0u7pTZERERE5M7SboMLAJvNRk5ODtu3b+eZZ57h0KFDt3tIbcK+ffu4ePEiiYmJLdbHxIkT2b9/P/n5+S3Wh4iIiIi0L+06uLgiIiKCqKgo8vLyAHA6nTzxxBPExcURExNDdna29/748eNJSEggJiaGRx99lKqqKgDy8/MZNWoUcXFxxMbGsnjxYgAcDgeLFi1i+PDhWK1Wpk2bRmlpabPjWLNmDYMGDSI+Pp709PRGZVlZWSQnJ5OQkEB8fDwbN25sto3p06eTkJDAkCFDeOihhzh37hwATz75JMuXL/fWy83NpV+/fjidzmbH8eijj3qvz549y/jx44mOjmbs2LGcPn3aW3a95zt79izjxo0jOjqacePG8cgjjzSa8Zg2bRpvvfVWs88hIiIiIh3PHRFcHD58mGPHjhEXFwfAsWPHmDlzJgcPHmTu3Ln8/ve/B8BkMrF+/Xqys7M5cuQId911F6+88goAq1evZuLEiRw8eJDDhw+zYMECAP70pz8RHBzMvn37yMnJaRR4NHTkyBGee+459uzZw4EDB6ipqfGWlZWVkZaWxt/+9jeys7P55JNP+M1vfsOZM2eatLNixQqys7M5dOgQo0eP9v6Ynzt3Lm+88QYulwuA1157jbS0NMxmc5M2du/ezYgRI7zX8+bNY/jw4Rw9epT33nuPXbt2ecuu93zz5s0jMTGRo0eP8v7777N79+5G/SQmJjZqS0REREQ6tqa/TNuRlJQUAgMDCQoKYu3atQwaNIgzZ84wcOBA74/rxMREXn75ZQA8Hg/p6els3boVp9NJeXk5SUlJAPzkJz/hd7/7HZWVlfz0pz9l7NixAHz44YeUl5fzwQcfAGC324mMjGwyloyMDCZMmECfPn0AePzxx3nxxRcByMzM5Pjx40yYMKHRe3Jzc+nfv3+je+vXr+evf/0rtbW11NbWEhoaCkBUVBTR0dF89NFHjB8/ng0bNnD48OFmP5fTp0/Tq1cv7/WuXbu8n0Hfvn2ZNGmSt+x6z9fwfb1792bixImN+undu3ejWRARERER6djadXBhs9maTd4OCAjwvjaZTN6lQ+vXrycjI4N//vOfhISEsGrVKjIyMgCYPHkySUlJfPLJJ6xevZoVK1awbds2PB4Pr7zyCuPGjftBY2uYzO3xeIiJiSEzM7NJvYKCAu/rTz/9lFWrVrF371569uzJ5s2bWbJkibf8qaee4g9/+APFxcU88MADjQKIhoKCgqitrb3hsd3o8303Qb22tpbAwMDvfZ+IiIiIdAx3xLKoG1VaWkpoaCghISFcunSJd99911uWn59Pr169SE1N5Y9//COff/45AA8//DDp6elUV1cDUF1dzZdfftmk7eTkZHbs2OHNkXj99de9ZUlJSZw4cYKdO3d67+Xk5GC325uMr3PnznTv3h273c6aNWsalY8bN45z586xbNkynnzyyWs+55AhQ8jNzfVejx07lrVr1wL1eRSbN2/2ll3v+ZKTk72f0fnz59myZUujfr766ivvUjQRERERkQ4VXKSmplJdXU1UVBQTJkxg9OjR3rJNmzYRGxtLfHw8KSkp3uBg4cKFDBs2jBEjRjBkyBBGjhxJTk5Ok7Z/9KMfsXTpUkaPHk18fDz+/v7esq5du7J161aWL19OXFwc0dHRLFq0CLfb3aiNBx98kKioKKKiohg9enSTWRmDwcDs2bPp2bPndXeCmjJlCh9//LH3euXKlXz++edER0eTmppKcnKyt+x6z7dy5Ur+9a9/ER0dzfTp0xkxYkSjbXN37NjBlClTrjkOEREREelYDB6Px3O7ByE3buLEiaSkpDBjxoxr1qmsrCQpKYm9e/cSHBx8033V1NRgsVgwm82UlJQwcuRI1q1bx4gRI7hw4QLJyclkZ2fj5+d3032IiIiIyJ2jQ81ctGfZ2dkMHDgQo9HYaJvZ5nTq1In09HROnDhxS33m5+eTkJBAXFwcP/7xj3niiSe8ifLffPMNr7/+ugILEREREfHSzIWIiIiIiPiEZi5ERERERMQnFFyIiIiIiIhPKLgQERERERGfUHAhIiIiIiI+oeBCRERERER8QsGFiIiIiIj4xP8HfOAUp89ZTY4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "w1 = W1.detach().cpu().numpy()\n", + "w2 = W2.detach().cpu().numpy()\n", + "\n", + "# for each column of w1, compute the weighted mean and re-order according to that\n", + "A = np.arange(w1.shape[0])[:, None]\n", + "weighted_mean = np.mean((A*w1), axis=0)\n", + "weighted_mean[np.max(np.abs(w1), axis=0)<.5] = np.inf\n", + "I = np.argsort(weighted_mean)\n", + "#w1 = w1[:, I]\n", + "#w2 = w2[I, :]\n", + "\n", + "# Plot the re-ordered weight matrices\n", + "plt.figure(figsize=(10, 3), dpi=100)\n", + "plt.subplot(131)\n", + "plt.imshow(w1, interpolation='nearest', aspect='auto', origin='lower')\n", + "plt.ylabel('Input neuron index')\n", + "plt.xlabel('Hidden layer neuron index')\n", + "plt.title('$W_1$')\n", + "plt.colorbar()\n", + "plt.subplot(132)\n", + "plt.imshow(w2, interpolation='nearest', aspect='auto', origin='lower')\n", + "plt.ylabel('Hidden layer neuron index')\n", + "plt.xlabel('Output neuron index')\n", + "plt.title('$W_2$')\n", + "plt.colorbar()\n", + "plt.subplot(133)\n", + "plt.imshow(w1@w2, interpolation='nearest', aspect='auto', origin='lower')\n", + "plt.ylabel('Input neuron index')\n", + "plt.xlabel('Output neuron index')\n", + "plt.title('$W_1W_2$')\n", + "plt.colorbar()\n", + "plt.tight_layout()\n", + "\n", + "# Plot some sample weights for hidden neurons\n", + "I_nz, = (np.max(np.abs(w1), axis=0)>.5).nonzero()\n", + "plt.figure(figsize=(10, 5), dpi=80)\n", + "phi = np.linspace(-np.pi/2, np.pi/2, w1.shape[0]//2)\n", + "for i, j in list(enumerate(I_nz))[:15]:\n", + " plt.subplot(3, 5, i+1)\n", + " plt.plot(phi*180/np.pi, w1[:w1.shape[0]//2, j], label=\"Left ear\")\n", + " plt.plot(phi*180/np.pi, w1[w1.shape[0]//2:, j], label=\"Right ear\")\n", + "plt.suptitle(\"Individual $W_1$ weights\")\n", + "plt.legend(loc='best')\n", + "plt.xlabel('Phase delay (deg)')\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Make a collection of functions and their docstrings that are defined in this notebook." + ], + "metadata": { + "id": "-soPMuPLpUMm" + }, + "id": "-soPMuPLpUMm" + }, + { + "cell_type": "code", + "source": [ + "import inspect\n", + "\n", + "def example_function1():\n", + " \"\"\"This is a docstring for example_function1.\"\"\"\n", + " pass\n", + "\n", + "def example_function2():\n", + " \"\"\"This is a docstring for example_function2.\"\"\"\n", + " pass\n", + "\n", + "# Extracting names and docstrings of user-defined functions\n", + "functions_info = {name: obj.__doc__ for name, obj in globals().items() if inspect.isfunction(obj)}\n", + "\n", + "# Displaying names and docstrings\n", + "for name, doc in functions_info.items():\n", + " print(f\"Function Name: {name}\\nDescription: {doc}\\n{'-'*40}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TxXcm2l__YDF", + "outputId": "24ddfe8d-5a00-4b6c-cf90-c39609968e98" + }, + "id": "TxXcm2l__YDF", + "execution_count": null, + "outputs": [ + { + "metadata": { + "tags": null + }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Function Name: input_signal\n", + "Description: \n", + " Generate a Poisson spike train based on an input Interaural Phase Difference (IPD) array\n", + " and the delays imposed by the individual auditory nerve fibers.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd : array-like\n", + " An array of true Interaural Phase Differences (IPD). Shape: (num_samples, )\n", + "\n", + " Returns\n", + " -------\n", + " spikes : ndarray\n", + " A binary array indicating spike occurrences, shaped (num_samples, duration_steps, 2*anf_per_ear).\n", + " `spikes[i, j, k]` is 1 if a spike occurred at the jth time step for the ith IPD in the kth auditory nerve fiber,\n", + " and 0 otherwise.\n", + "\n", + " Notes\n", + " -----\n", + " - The function first calculates an array of phases (`phi`) to define the sinudoidal auditory stimulus and adds a random\n", + " phase offset because we want that the system learns to infer the angular location of the sound source indepent of its distance\n", + " to the source.\n", + " - An array of theta values is initialized that will hold the transformed phi values according to the phase delay imposed by the\n", + " individual auditory nerve fibers and the ipd between the two ears.\n", + " - Different phase delays, ranging from 0 to pi/2, are calculated and added with the ipd value to generate theta.\n", + " - Poisson spikes are generated based on the theta values and a sinusoidal modulation of the firing rate.\n", + " - The spikes are returned as a binary array, indicating the occurrence of spikes across auditory nerve fibers and time.\n", + " \n", + "----------------------------------------\n", + "Function Name: random_ipd_input_signal\n", + "Description: \n", + " Generate random Interaural Phase Differences (IPDs) and then corresponding spike arrays using\n", + " the function input_signal(idp).\n", + "\n", + " The function generates `num_samples` IPDs, uniformly distributed in the range (-pi/2, pi/2).\n", + " It then generates corresponding spike arrays using the `input_signal` function.\n", + " Optionally, IPDs and spike arrays can be converted to PyTorch tensors.\n", + "\n", + " Parameters\n", + " ----------\n", + " num_samples : int\n", + " The number of IPD samples to generate.\n", + " tensor : bool, optional\n", + " If True, converts the IPDs and spike arrays to PyTorch tensors before returning them.\n", + " If False, they are returned as NumPy arrays. Default is True.\n", + "\n", + " Returns\n", + " -------\n", + " ipd : ndarray or Tensor\n", + " An array of randomly generated IPDs. Shape: (num_samples, ).\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " spikes : ndarray or Tensor\n", + " A binary array indicating spike occurrences along time, generated by `input_signal` based on `ipd`.\n", + " Returned as a PyTorch tensor if `tensor` is True, otherwise as a NumPy array.\n", + " Shaped: (num_samples, duration_steps, 2*anf_per_ear)\n", + "\n", + " Notes\n", + " -----\n", + " - Ensure that the `input_signal` function is defined in your environment as it is called within this function.\n", + " - If `tensor` is True, ensure that PyTorch is installed and configured in your environment.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipd, spikes = random_ipd_input_signal(50, tensor=False)\n", + " >>> print(ipd.shape, spikes.shape)\n", + " (50,) (50, duration_steps, 2*anf_per_ear)\n", + " \n", + "----------------------------------------\n", + "Function Name: discretise\n", + "Description: \n", + " Discretize Interaural Phase Differences (IPDs) to generate class labels.\n", + "\n", + " The function maps IPDs, which are continuous values in the range (-pi/2, pi/2),\n", + " to discrete classes in the range [0, num_classes-1]. The resulting discrete values\n", + " are suitable for classification tasks.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A tensor containing continuous IPD values. The values should be in the range (-pi/2, pi/2).\n", + "\n", + " Returns\n", + " -------\n", + " Tensor\n", + " A tensor containing the classification of IPD values, in the range [0, num_classes-1].\n", + "\n", + " Notes\n", + " -----\n", + " - Assumes the input `ipds` is a PyTorch tensor.\n", + " - `num_classes` should be defined in the surrounding scope.\n", + " - The output tensor will have the same shape as the input `ipds`.\n", + "\n", + " Examples\n", + " --------\n", + " >>> ipds = torch.tensor([-np.pi/2, 0, np.pi/2])\n", + " >>> ipd_indices = discretise(ipds)\n", + " \n", + "----------------------------------------\n", + "Function Name: continuise\n", + "Description: \n", + " This function maps IPD indices, which are discrete values in the range [0, num_classes-1],\n", + " back to continuous IPD values. The resulting continuous values are suitable for\n", + " representing the midpoints of the original IPD ranges in the continuous domain.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipd_indices : array-like\n", + " An array or tensor of IPD indices, which are discrete values obtained from\n", + " discretizing continuous IPDs into `num_classes` bins by the function discretise(ipds).\n", + "\n", + " Returns\n", + " -------\n", + " array-like\n", + " An array or tensor of continuous IPD midpoints, corresponding to the provided\n", + " `ipd_indices`. The midpoints are computed based on the assumed discretization\n", + " strategy, and are in the range (-pi/2, pi/2).\n", + "\n", + " Notes\n", + " -----\n", + " - `num_classes` should be defined in the surrounding scope and should be the same\n", + " value that was used for discretization.\n", + " - The input `ipd_indices` and the output will have the same shape.\n", + " - The output type (e.g., NumPy array, PyTorch tensor) will match the input type.\n", + " \n", + "----------------------------------------\n", + "Function Name: init_weight_matrix\n", + "Description: \n", + " Initialize a weight matrix for a neural network layer using uniform distribution.\n", + "\n", + " The function initializes a weight matrix, `W`, with dimensions `(input_size, num_classes)`.\n", + " The matrix is initialized using a uniform distribution over `[-bound, bound]`, where\n", + " `bound` is computed as the inverse of the square root of the fan-in (number of input units).\n", + "\n", + " This initialization method helps in achieving faster convergence during training by\n", + " setting initial weights in a range that's inversely proportional to the square root\n", + " of the number of input units.\n", + "\n", + " Returns\n", + " -------\n", + " W = nn.Parameter\n", + " A tensor representing the initialized weight matrix. The tensor has the attribute\n", + " `requires_grad=True`, indicating that gradients will be computed with respect to this tensor\n", + " during the backward pass.\n", + "\n", + " Notes\n", + " -----\n", + " - `input_size` and `num_classes` should be defined in the surrounding scope.\n", + " - The tensor is moved to the device specified by the `device` variable and has the data type\n", + " specified by the `dtype` variable. Both `device` and `dtype` should be defined in the surrounding scope.\n", + " - The `requires_grad=True` argument in `nn.Parameter` ensures that gradients are computed for\n", + " this tensor, enabling learning of its values during optimization.\n", + "\n", + " Examples\n", + " --------\n", + " >>> W = init_weight_matrix()\n", + " >>> print(W.shape)\n", + " (input_size, num_classes)\n", + " \n", + "----------------------------------------\n", + "Function Name: membrane_only\n", + "Description: \n", + " Run a simulation of a membrane potential dynamic in response to input spikes.\n", + "\n", + " This function simulates the evolution of membrane potential `v` across time, given a batch of\n", + " input spike trains `input_spikes` and synaptic weight matrix `W`. The membrane potential is\n", + " updated at each time step based on the previous potential, the input spikes, and the synaptic weights,\n", + " with an exponential decay parameterized by `tau`.\n", + "\n", + " Parameters\n", + " ----------\n", + " input_spikes : Tensor\n", + " A 3D tensor representing a batch of input spike trains.\n", + " Shape: (batch_size, duration_steps, input_size)\n", + " W : Tensor\n", + " A 2D tensor representing the synaptic weight matrix.\n", + " Shape: (input_size, num_classes)\n", + " tau : float, optional\n", + " The time constant for the exponential decay of the membrane potential, in seconds.\n", + " Default is 20 ms.\n", + "\n", + " Returns\n", + " -------\n", + " v_rec : Tensor\n", + " A 3D tensor containing the recorded membrane potentials for each batch, time step, and class.\n", + " Shape: (batch_size, duration_steps, num_classes)\n", + "\n", + " Notes\n", + " -----\n", + " - `batch_size`, `num_classes`, `duration_steps`, `device`, and `dtype` should be defined in the\n", + " surrounding scope or passed as arguments.\n", + " - `input_spikes` should be a binary tensor, where `input_spikes[b, t, i]` is 1 if there is a spike\n", + " from input neuron `i` at time `t` in batch `b`, and 0 otherwise.\n", + " - `W` should contain synaptic weights such that `W[i, j]` is the weight from input neuron `i` to\n", + " output neuron `j`.\n", + "\n", + " Examples\n", + " --------\n", + " >>> input_spikes = torch.tensor([[[1, 0], [0, 1], [1, 1]]], dtype=dtype, device=device)\n", + " >>> W = torch.tensor([[0.5, -0.5], [-0.5, 0.5]], dtype=dtype, device=device)\n", + " >>> v_rec = membrane_only(input_spikes, W)\n", + " >>> print(v_rec.shape)\n", + " (1, 3, 2)\n", + " \n", + "----------------------------------------\n", + "Function Name: data_generator\n", + "Description: \n", + " Generate batches of data, iterating over IPDs and spikes in a randomized order.\n", + "\n", + " This generator function yields shuffled batches of interaural phase differences (IPDs) and spikes,\n", + " facilitating mini-batch gradient descent training of a model. The order of the data is randomized\n", + " to improve learning, mitigating the risk of the model memorizing the order of the training data\n", + " (overfitting) and helping the model generalize better to unseen data.\n", + "\n", + " Parameters\n", + " ----------\n", + " ipds : Tensor\n", + " A 1D tensor of IPD values.\n", + " Shape: (n_samples, )\n", + " spikes : Tensor\n", + " A 3D tensor representing a batch of input spike trains.\n", + " Shape: (n_samples, duration_steps, input_size)\n", + "\n", + " Yields\n", + " ------\n", + " spike_batch : Tensor\n", + " A 3D tensor containing a batch of input spike trains.\n", + " Shape: (batch_size, duration_steps, input_size)\n", + " ipd_batch : Tensor\n", + " A 1D tensor containing a batch of IPD values.\n", + " Shape: (batch_size, )\n", + "\n", + " Notes\n", + " -----\n", + " - `batch_size` should be defined in the surrounding scope or passed as an argument.\n", + " - Ensure that `ipds` and the first dimension of `spikes` have the same size.\n", + " - The generator yields `spike_batch` and `ipd_batch` which are randomly shuffled batches of `spikes` and `ipds` respectively.\n", + " \n", + "----------------------------------------\n", + "Function Name: analyse\n", + "Description: \n", + " Analyse the performance of a classifier on interaural phase difference (IPD) data.\n", + "\n", + " This function evaluates the accuracy and error of a classifier by comparing its\n", + " output with true IPD values. It computes the mean and standard deviation of the\n", + " classifier's accuracy and the absolute error in degrees. Additionally, it can\n", + " generate histograms and a confusion matrix to visualize the results.\n", + "\n", + " Parameters:\n", + " ipds (array): Array of true IPD values.\n", + " spikes (array): Array of spike data corresponding to the IPDs.\n", + " label (str): Label for the data, used in plot titles.\n", + " run (callable): Function that runs the classifier on a batch of spike data.\n", + " plot_analysis (bool): If True, plot histograms and confusion matrix.\n", + "\n", + " Returns:\n", + " tuple: Tuple containing mean and standard deviation of classifier accuracy,\n", + " and mean and standard deviation of absolute error in degrees.\n", + " \n", + "----------------------------------------\n", + "Function Name: run_func\n", + "Description: None\n", + "----------------------------------------\n", + "Function Name: plot_lines_with_colorbar\n", + "Description: \n", + " This function defines the colormap over which the line plot function cycles\n", + " and plots the corresponding colorbar next to the plot\n", + " # Example usage\n", + " x = np.linspace(0, 10, 100)\n", + " ys = [np.sin(x + i) for i in np.arange(0, 2, 0.5)]\n", + "\n", + " plt.figure(figsize=(8, 6))\n", + " plot_lines_with_colorbar(x, ys, cmap_name='jet')\n", + " plt.show()\n", + " \n", + "----------------------------------------\n", + "Function Name: softmax\n", + "Description: None\n", + "----------------------------------------\n", + "Function Name: log_softmax\n", + "Description: None\n", + "----------------------------------------\n", + "Function Name: init_weight_matrices\n", + "Description: None\n", + "----------------------------------------\n", + "Function Name: snn\n", + "Description: None\n", + "----------------------------------------\n", + "Function Name: example_function1\n", + "Description: This is a docstring for example_function1.\n", + "----------------------------------------\n", + "Function Name: example_function2\n", + "Description: This is a docstring for example_function2.\n", + "----------------------------------------\n" + ] + } + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "colab": { + "provenance": [], + "toc_visible": true + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file