-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCF_Hamil.f90
749 lines (748 loc) · 32.6 KB
/
CF_Hamil.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
!***********************************************************************
! *
SUBROUTINE CF_Hamil(NCORE)
! *
! This routine controls the main sequence of routine calls for *
! the calculation of the crystal field splitting. *
! *
! Written by G. Gaigalas and D. Kato *
! NIFS, Japan, September 2013 *
! The last modification made by G. Gaigalas June 2018 *
! *
!***********************************************************************
!
!-----------------------------------------------
! M o d u l e s
!-----------------------------------------------
USE vast_kind_param, ONLY: DOUBLE
USE memory_man_CF
USE parameter_def, ONLY: NNNW
USE CONS_C, ONLY: ZERO
USE decide_C
USE CrysPAR_C
USE jlabl_C, LABJ=>JLBR, LABP=>JLBP
USE prnt_C
USE decide_C
USE syma_C
USE OPT6_C
!GG USE DEF_C, ONLY: CVAC, EMPAM, RBCM, AUCM
USE orb_C
USE foparm_C
USE npar_C
USE iounit_C
USE eigv_C
!-----------------------------------------------
! I n t e r f a c e B l o c k s
!-----------------------------------------------
USE itjpo_I
USE convrt_I
USE MATELT_CF_Hamil_I
USE Ions_param_I
USE Y_K_DK_I
USE RINT_CF_Hamil_I
USE ONESCALAR_I
USE ONEPARTICLEJJ_CF_I
USE WIGNER_3j_I
USE INDEX_I
USE wghtd5gg_I
IMPLICIT NONE
!-----------------------------------------------
! L o c a l P a r a m e t e r s
!-----------------------------------------------
! Matrix elements smaller than CUTOFF are not accumulated
REAL(DOUBLE), PARAMETER :: CUTOFF = 1.0D-12, &
EPS = 1.0D-12, &
Rydberg = 109737.31534D0, &
Convert_meV = 27211.6
INTEGER, PARAMETER :: N_MATRIX = 500, K_MAX_MAX = 20, &
MJ_MAX = 41, LWMAX = 4*N_MATRIX
!-----------------------------------------------
! D u m m y A r g u m e n t s
!-----------------------------------------------
INTEGER, INTENT(IN) :: NCORE
!-----------------------------------------------
! L o c a l V a r i a b l e s
!-----------------------------------------------
LOGICAL :: ldown ! .TRUE. then Big ---> Small
CHARACTER(LEN=4), DIMENSION(N_MATRIX) :: LEV_J, LABP_J
CHARACTER(LEN=11) :: CNUM
REAL(DOUBLE) :: VAL_REAL, VAL_IM, PI, APART, B_Constant_R
REAL(DOUBLE) :: B_Constant_I, q_ion, R_ion, GTheta_ion, Phi_ion
REAL(DOUBLE) :: V_LOC_REAL, V_LOC_IM, B_Constant, ELEMNT_I
REAL(DOUBLE) :: ELEMNT_R, APART_3j, CONTR_R, CONTR_I, HFC_MAX
REAL(DOUBLE) :: PART_R, PART_I, VR_MAX
INTEGER :: FFMIN, FFMAX, FF, I, I1, I2, I3, I4, KAP1, KAP2
INTEGER :: LL1, J1, JSHELL_MIN, K_MIN, K_V, K_Value, Iq_MAX
INTEGER :: K_MAX_G, iq_V, K_MAX, iq_Value, ion_number, IC, IR
INTEGER :: ITJPOC, ITJPOR, IDIFF, K_MAX_2, I_SPIN_ANGULAR=1
INTEGER :: I_COUNT_TNSRJJ, KT, MJ_MAX_C, IAA, LCNUM, IND, IA, IB
INTEGER :: MJ, MJ_MAX_R, MJ_Value, MJ_S, K, IA_GG, MJS_Value, KK
INTEGER :: LOC1, LOC2, II, J, JJ, I_MATRICA, J_MATRICA, JJII
INTEGER :: JSHELL_MAX, JI, I_FIRST, LWORK, IB_GG, J2, INFO, LL2
!
!GG MATRICA
COMPLEX*16, DIMENSION(N_MATRIX,N_MATRIX) :: RMATRICA, VL, VR
COMPLEX*16, DIMENSION(N_MATRIX) :: WR
COMPLEX*16, DIMENSION(4*N_MATRIX) :: WORK, RWORK
REAL(DOUBLE), DIMENSION(K_MAX_MAX*NNNW) :: IA_array, IB_array, &
K_T_array,TNSRJJ_array
REAL(DOUBLE), DIMENSION(N_MATRIX) :: MJ_AR
!GG : WI(N_MATRIX),
REAL(DOUBLE), DIMENSION(NNNW) :: TSHELL
INTEGER, DIMENSION(N_MATRIX) :: INDX, NUMBER_VR, LEV, LEV_MJ, &
LEV_NO
REAL(DOUBLE), DIMENSION(:,:,:,:), pointer :: AMELT_R
REAL(DOUBLE), DIMENSION(:,:,:,:), pointer :: AMELT_I
REAL(DOUBLE), DIMENSION(:,:,:), pointer :: HFC_R
REAL(DOUBLE), DIMENSION(:,:,:), pointer :: HFC_I
REAL(DOUBLE), DIMENSION(:), pointer :: RINTME
!GG MATRICA
!-----------------------------------------------
!
IF(Min_state > NVEC .OR. Max_state > NVEC)THEN
WRITE (istde,*) 'The NVEC = ',NVEC
WRITE (istde,*) 'The Min_state = ',Min_state
WRITE (istde,*) 'The Max_state = ',Max_state
WRITE (istde,*) 'Error in CF_Hamil 1'
STOP
END IF
!
! Initialise
PI = 4.0D00 * DATAN (1.0D00)
DO I2 = 1,N_MATRIX
DO I1 = 1,N_MATRIX
RMATRICA(I1,I2) = CMPLX(ZERO,ZERO)
END DO
END DO
CALL ALLOC &
(AMELT_R,K_MAX_MAX,MJ_MAX,NNNW,NNNW,'AMELT_R','CF_Hamil')
CALL ALLOC &
(AMELT_I,K_MAX_MAX,MJ_MAX,NNNW,NNNW,'AMELT_I','CF_Hamil')
DO I4 = 1,NNNW
DO I3 = 1,NNNW
DO I2 = 1,MJ_MAX
DO I1 = 1,K_MAX_MAX
AMELT_R(I1,I2,I3,I4) = ZERO
AMELT_I(I1,I2,I3,I4) = ZERO
END DO
END DO
END DO
END DO
!GG_Bk WRITE (30,'(A)')' The B^k_q parameters'
!GG_Bk WRITE (30,*) '------------------------------------------', &
!GG_Bk '----------------------------------'
!GG_Bk WRITE (30,*) 'Summation over subshells ', &
!GG_Bk ' The B^k_q parameters'
!GG_Bk WRITE (30,*) ' I K k q', &
!GG_Bk ' Real part Imaginary part'
!GG_Bk WRITE (30,*) ' ', &
!GG_Bk ' (cm^-1) (cm^-1)'
!GG_Bk WRITE (30,*) '------------------------------------------', &
!GG_Bk '----------------------------------'
K_MAX_G = 0
CALL ALLOC (RINTME,ion_max_number,'RINTME','CF_Hamil')
!
! Summation over the subshells
DO I = 1,NW
KAP1 = NAK(I)
!
! Determine the 2*j quantum numbers
IF(KAP1 >= 0) THEN
LL1 = KAP1
ELSE
LL1 = -KAP1-1
END IF
J1 = 2*LL1 - KAP1/IABS(KAP1)
IF(NCORE >= I) THEN
JSHELL_MIN = I
JSHELL_MAX = I
ELSE
JSHELL_MIN = NCORE +1
JSHELL_MAX = NW
END IF
DO J = JSHELL_MIN,JSHELL_MAX
!GG DO J = 1,NW
KAP2 = NAK(J)
WRITE (istde,'(A,2I3)')'Summation over the subshells = ',I,J
!GG_Bk WRITE (30,'(2X,I3,6X,I3)')I,J
!
! Determine the 2*j quantum numbers
IF(KAP2 >= 0) THEN
LL2 = KAP2
ELSE
LL2 = -KAP2-1
END IF
J2 = 2*LL2 - KAP2/IABS(KAP2)
K_MAX = (J1+J2)/2+1
IF(K_MAX_G < K_MAX) K_MAX_G = K_MAX
K_MIN = IABS(J1-J2)/2+1
WRITE (istde,'(10X,4(A,I2))')'2*J1=',J1,' 2*J2=',J2, &
' K_MIN=',K_MIN-1,' K_MAX=',K_MAX-1
WRITE (istde,'(A)')''
IF(K_MAX > K_MAX_MAX) then
WRITE (istde,*) '1 K_MAX > K_MAX_MAX',K_MAX
STOP
END IF
!
! Summation over the k
DO K_V = K_MIN, K_MAX
K_Value = K_V - 1
IF(SYMMETRY == 'C2') THEN
IF(K_Value == 0 ) CYCLE
IF (MOD(K_Value,2) /= 0) CYCLE
END IF
CALL MATELT_CF_Hamil (K_Value,I,J,APART)
!GG CALL MATELT_CF_Hamil_NEW (K_Value,I,J,APART)
Iq_MAX = 2*K_Value + 1
IF (DABS (APART) > EPS) THEN
!
! Summation over the q
DO iq_V = 1, Iq_MAX
iq_Value = iq_V - K_Value - 1
IF(SYMMETRY == 'C2') THEN
IF(MOD(iq_Value,2) /= 0 ) CYCLE
END IF
B_Constant_R = ZERO
B_Constant_I = ZERO
!
! Summation over the ions
DO ion_number = 1, ion_max_number
CALL Ions_param &
(ion_number,q_ion,R_ion,GTheta_ion,Phi_ion)
CALL Y_K_DK(K_Value,-iq_Value, &
GTheta_ion,Phi_ion,VAL_REAL,VAL_IM)
IF(MOD(K_Value,2) /= 0) THEN
V_LOC_REAL = VAL_IM
V_LOC_IM = VAL_REAL
VAL_REAL = V_LOC_REAL
VAL_IM = V_LOC_IM
IF(MOD(K_Value+1,4) /= 0) VAL_REAL=-VAL_REAL
IF(MOD(K_Value+1,4) /=0) VAL_IM=-VAL_IM
ELSE
IF(MOD(K_Value,4) /= 0) VAL_REAL=-VAL_REAL
IF(MOD(K_Value,4) /= 0) VAL_IM=-VAL_IM
END IF
IF(iq_V == 1) THEN
RINTME(ion_number)= &
RINT_CF_Hamil (K_Value,I,J,R_ion)
END IF
!
! B^q_k constant begining
B_Constant &
!GG : + ((-1)**(K_value-iq_Value+1))*DBLE(q_ion)
!GG : = ((-1)**(iq_Value+1)) * DBLE(q_ion)
!GG : = ((-1)**(iq_Value))*DBLE(q_ion)
!GG : = ((-1)**(K_Value+iq_Value+1))*DBLE(q_ion)
!GG GERAS : = ((-1)**(iq_Value)) * DBLE(q_ion)
!GG V9 : = ((-1)**(K_Value-iq_Value+1)) * DBLE(q_ion)
!GG CS : = ((-1)**(iq_Value)) * DBLE(q_ion)
= ((-1)**(K_Value-iq_Value+1)) * DBLE(q_ion) &
* SQRT((4.0*PI)/(2.0*K_Value+1.0))
B_Constant_R = B_Constant_R &
+ B_Constant*RINTME(ion_number)*VAL_REAL
B_Constant_I = B_Constant_I &
+ B_Constant*RINTME(ion_number)*VAL_IM
!
! B^q_k constant end
END DO
!
!GG_Bk WRITE (30,'(25X,I3,1X,I3,3X,E15.7,3X,E15.7)') &
!GG_Bk K_Value,iq_Value, &
!GG_Bk B_Constant_R*Rydberg*2, &
!GG_Bk B_Constant_I*Rydberg*2
!
AMELT_R(K_V,iq_V,I,J) = APART * B_Constant_R
AMELT_I(K_V,iq_V,I,J) = APART * B_Constant_I
WRITE (istde,'(A,I3,A,I3,A,E15.7,A,E15.7)') &
'K_Value =',K_Value,' iq_Value =',iq_Value, &
' AMELT_R =', &
AMELT_R(K_V,iq_V,I,J)*Rydberg*2, &
' AMELT_I =', &
AMELT_I(K_V,iq_V,I,J)*Rydberg*2
END DO
END IF
END DO
END DO
END DO
CALL DALLOC (RINTME,'RINTME','CF_Hamil')
CALL DALLOC (QQ,'QQ','CF_Hamil')
CALL DALLOC (X1,'X1','CF_Hamil')
CALL DALLOC (X2,'X2','CF_Hamil')
CALL DALLOC (X3,'X3','CF_Hamil')
WRITE (istde,*)'Summation over the subshells was completed.'
!
! Set the parity of the one-body operators
!GG IPT = 1
!
! Sweep through the Hamiltonian matrix to determine the
! diagonal and off-diagonal matrix elements
WRITE (29,101) CUTOFF,NVEC
WRITE (29,102)
!
! Allocate storage for local arrays
CALL ALLOC (HFC_R,MJ_MAX,MJ_MAX,NVEC*NVEC,'HFC_R','CF_Hamil')
CALL ALLOC (HFC_I,MJ_MAX,MJ_MAX,NVEC*NVEC,'HFC_I','CF_Hamil')
!
! Initialise
DO I3 = 1,NVEC*NVEC
DO I2 = 1,MJ_MAX
DO I1 = 1,MJ_MAX
HFC_R(I1,I2,I3) = ZERO
HFC_I(I1,I2,I3) = ZERO
END DO
END DO
END DO
!
! Summation over the first configuration
DO IC = 1,NCF
ITJPOC = ITJPO (IC)
!
! Output IC on the screen to show how far the calculation has preceede
IF (MOD(IC,100) == 0) THEN
CALL CONVRT (IC,CNUM,LCNUM)
WRITE (istde,*)'Column '//CNUM(1:LCNUM)//' complete;'
ENDIF
!
! Summation over the second configuration
DO 22 IR = 1,NCF
ITJPOR = ITJPO (IR)
IDIFF = ITJPOC - ITJPOR
!GG IF((IDIFF .EQ. 0) .AND. (IR. GE. IC)
!GG : .OR. IABS(IDIFF) .GT. 0) THEN
K_MAX_2 = (ITJPOC-1+ITJPOR-1)/2 + 1
K_MAX = MIN(K_MAX_G,K_MAX_2)
IF(K_MAX > K_MAX_MAX) then
WRITE (istde,*) '2 K_MAX > K_MAX_MAX',K_MAX
STOP
END IF
K_MIN = IABS(ITJPOC-1-ITJPOR+1)/2 + 1
DO I_SPIN_ANGULAR=1,K_MAX_MAX*NNNW
TNSRJJ_array(I_SPIN_ANGULAR) = ZERO
IA_array(I_SPIN_ANGULAR) = 0
IB_array(I_SPIN_ANGULAR) = 0
K_T_array(I_SPIN_ANGULAR) = -100
END DO
I_COUNT_TNSRJJ = 0
DO K_V = K_MIN, K_MAX
KT = K_V - 1
IF(SYMMETRY == 'C2') THEN
IF(KT == 0 ) CYCLE
IF (MOD(KT,2) /= 0) CYCLE
END IF
DO IND =1,NW
TSHELL(IND) = ZERO
END DO
IF( KT == 0) THEN
CALL ONESCALAR(IC,IR,IA,IB,TSHELL)
ELSE
CALL ONEPARTICLEJJ_CF(KT,IC,IR,IA,IB,TSHELL)
END IF
IF (IA == IB) THEN
DO IAA = 1,NW
IF (DABS (TSHELL(IAA)) > EPS) THEN
I_COUNT_TNSRJJ = I_COUNT_TNSRJJ + 1
IF(I_COUNT_TNSRJJ > K_MAX_MAX*NNNW) THEN
WRITE(istde,*)'Error: CF_Hamil I_COUNT_TNSRJJ 1'
STOP
END IF
TNSRJJ_array(I_COUNT_TNSRJJ) = TSHELL(IAA)
IA_array(I_COUNT_TNSRJJ) = IAA
IB_array(I_COUNT_TNSRJJ) = IAA
K_T_array(I_COUNT_TNSRJJ) = KT
END IF
END DO
ELSE
IF (DABS (TSHELL(1)) > EPS) THEN
I_COUNT_TNSRJJ = I_COUNT_TNSRJJ + 1
IF(I_COUNT_TNSRJJ > K_MAX_MAX*NNNW) THEN
WRITE(istde,*) 'Error: CF_Hamil I_COUNT_TNSRJJ 2'
STOP
END IF
TNSRJJ_array(I_COUNT_TNSRJJ) = TSHELL(1)
IA_array(I_COUNT_TNSRJJ) = IA
IB_array(I_COUNT_TNSRJJ) = IB
K_T_array(I_COUNT_TNSRJJ) = KT
ENDIF
ENDIF
END DO
!GG IF (I_COUNT_TNSRJJ .EQ. 0 ) GO TO 22
IF (I_COUNT_TNSRJJ == 0 ) CYCLE
MJ_MAX_C = 2*ITJPOC
MJ_MAX_R = 2*ITJPOR
IF(MJ_MAX_C > 2*MJ_MAX) THEN
WRITE (istde,*) 'MJ_MAX_C > 2*MJ_MAX',MJ_MAX_C
STOP
END IF
IF(MJ_MAX_R > 2*MJ_MAX) THEN
WRITE (istde,*) 'MJ_MAX_R > 2*MJ_MAX',MJ_MAX_R
STOP
END IF
!
! Summation over the M_J ir M_J'
DO MJ = 2,MJ_MAX_C,2
MJ_Value = (MJ-ITJPOC-1)
DO MJ_S = 2,MJ_MAX_R,2
MJS_Value = (MJ_S-ITJPOR-1)
iq_Value = (MJ_Value-MJS_Value)/2
IF(IABS(iq_Value)+1 > K_MAX) CYCLE
IF(SYMMETRY == 'C2') THEN
IF(MOD(iq_Value,2) /= 0 ) CYCLE
END IF
ELEMNT_I = ZERO
ELEMNT_R = ZERO
DO K_V = IABS(iq_Value)+1, K_MAX
KT = K_V - 1
IF(SYMMETRY == 'C2') THEN
IF(KT == 0 ) CYCLE
IF (MOD(KT,2) /= 0) CYCLE
END IF
iq_V = iq_Value + KT + 1
!
! Summation over the subshells
APART_3j=WIGNER_3j(ITJPOC-1, 2*KT, ITJPOR-1, &
-MJ_Value, 2*iq_Value, MJS_Value)
IF (DABS (APART_3j) < EPS) CYCLE
APART_3j=DSQRT(ITJPOC*1.0D00)*APART_3j
IF(IABS(MOD((ITJPOC-1-MJ_Value)/2,2)) /= 0) &
APART_3j = -APART_3j
!
! Accumulate the contribution from the one-body operators;
DO I_SPIN_ANGULAR = 1,I_COUNT_TNSRJJ
IF(K_T_array(I_SPIN_ANGULAR) /= KT) CYCLE
IA_GG = IA_array(I_SPIN_ANGULAR)
IB_GG = IB_array(I_SPIN_ANGULAR)
ELEMNT_R = ELEMNT_R &
+ AMELT_R(KT+1,iq_V,IA_GG,IB_GG) &
* APART_3j &
* TNSRJJ_array(I_SPIN_ANGULAR)
ELEMNT_I = ELEMNT_I &
+ AMELT_I(KT+1,iq_V,IA_GG,IB_GG) &
* APART_3j &
* TNSRJJ_array(I_SPIN_ANGULAR)
END DO
END DO
!
! Multiply with the configuration expansion coefficients and add the
! contributions from the matrix elements to obtain total contributions
IF(DABS(ELEMNT_R) > EPS.OR.DABS(ELEMNT_I) > EPS)THEN
DO K = Min_state, Max_state
LOC1 = (K-1)*NCF
IF((IDIFF == 0) .AND. (IR /= IC)) THEN
IF (DABS(EVEC(IC+LOC1)) < CUTOFF .AND. &
DABS(EVEC(IR+LOC1)) < CUTOFF) CYCLE
ELSE
IF (DABS(EVEC(IC+LOC1)) < CUTOFF) CYCLE
END IF
DO KK = Min_state, Max_state
LOC2 = (KK-1)*NCF
IF((IDIFF == 0) .AND. (IR /= IC)) THEN
IF (DABS(EVEC(IR+LOC2)) < CUTOFF .AND. &
DABS(EVEC(IC+LOC2)) < CUTOFF) CYCLE
ELSE
IF (DABS(EVEC(IR+LOC2)) < CUTOFF) CYCLE
END IF
!GG IF((IDIFF .EQ. 0) .AND. (IR /= IC)) THEN
!GG IF((IDIFF .EQ. 0) .AND. (IR /= IC)
!GG : THEN .OR. IABS(IDIFF) .GT. 0) THEN
!GG CONTR_R = ELEMNT_R
!GG : *(EVEC(IC+LOC1) * EVEC(IR+LOC2)
!GG : + EVEC(IR+LOC1) * EVEC(IC+LOC2))
!GG CONTR_I = ELEMNT_I
!GG : *(EVEC(IC+LOC1) * EVEC(IR+LOC2)
!GG : + EVEC(IR+LOC1) * EVEC(IC+LOC2))
!GG ELSE
CONTR_R = ELEMNT_R &
* EVEC(IC+LOC1) * EVEC(IR+LOC2)
CONTR_I = ELEMNT_I &
* EVEC(IC+LOC1) * EVEC(IR+LOC2)
!GG ENDIF
HFC_R(MJ/2,MJ_S/2,NVEC*(K-1)+KK) &
= HFC_R(MJ/2,MJ_S/2,NVEC*(K-1)+KK) &
+ CONTR_R
HFC_I(MJ/2,MJ_S/2,NVEC*(K-1)+KK) &
= HFC_I(MJ/2,MJ_S/2,NVEC*(K-1)+KK) &
+ CONTR_I
END DO
END DO
END IF
END DO
END DO
!GG END IF
22 CONTINUE
END DO
CALL DALLOC (AMELT_R,'AMELT_R','CF_Hamil')
CALL DALLOC (AMELT_I,'AMELT_I','CF_Hamil')
!
! Printouts
HFC_MAX = ZERO
I_MATRICA = 0
DO I = Min_state, Max_state
JJ = IATJPO(I)
MJ_MAX_C = 2*JJ
WRITE (29,"(/A)") "The eigenvalues before CF are:"
WRITE (29,"(/A)") " LABJ IVEC"
WRITE(29,"(D20.10,1X,A4,I5)") EVAL(I)+EAV,LABJ(JJ),IVEC(I)
DO MJ = 2,MJ_MAX_C,2
I_MATRICA = I_MATRICA + 1
IF(I_MATRICA > N_MATRIX) THEN
WRITE (istde,*) 'I_MATRICA > N_MATRIX N_MATRIX = ', &
N_MATRIX
STOP
END IF
MJ_Value = (MJ-JJ-1)
!GG MJ_AR(N_MATRIX)
J_MATRICA = 0
DO II = Min_state, Max_state
JJII = IATJPO(II)
MJ_MAX_R = 2*JJII
DO MJ_S = 2,MJ_MAX_R,2
J_MATRICA = J_MATRICA + 1
MJS_Value = (MJ_S-JJII-1)
IF (DABS (HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II)) < EPS)THEN
HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II) = ZERO
END IF
IF (DABS (HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)) < EPS)THEN
HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II) = ZERO
END IF
IF (I_MATRICA == J_MATRICA) THEN
LEV_J(I_MATRICA) = LABJ(JJII)
LEV_MJ(I_MATRICA)= MJS_Value
LEV_NO(I_MATRICA) = II
LEV(I_MATRICA) = IVEC(II)
LABP_J(I_MATRICA) = LABP((IASPAR(II)+3)/2)
END IF
IF (DABS(HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II)) > EPS &
.OR. &
DABS(HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)) > EPS)THEN
IF (I_MATRICA == J_MATRICA) THEN
IF(MJ_Value /= MJS_Value) THEN
WRITE (istde,*) 'Problems in CF_Hamil'
WRITE (istde,*) &
'MJ_Value,MJS_Value',MJ_Value,MJS_Value
STOP
END IF
!GG PART_R =HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II)+EVAL(I)+EAV
PART_R =HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II)+EVAL(I)
PART_I =HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)
RMATRICA(I_MATRICA,J_MATRICA) = CMPLX(PART_R,PART_I)
WRITE (29,113) IVEC(I),LABJ(JJ), &
LABP((IASPAR(I)+3)/2), &
0.5*MJ_Value, &
IVEC(II),LABJ(JJII), &
LABP((IASPAR(II)+3)/2), &
0.5*MJS_Value, &
HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II), &
HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II), &
DBLE(RMATRICA(I_MATRICA,J_MATRICA))
!GG LEV_J(I_MATRICA) = LABJ(JJ)
!GG LEV_MJ(I_MATRICA)= MJ_Value
!GG LEV_NO(I_MATRICA) = I
!GG LEV(I_MATRICA) = IVEC(I)
ELSE
PART_R = HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II)
PART_I = HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)
RMATRICA(I_MATRICA,J_MATRICA) = CMPLX(PART_R,PART_I)
WRITE (29,103) IVEC(I),LABJ(JJ), &
LABP((IASPAR(I)+3)/2), &
0.5*MJ_Value, &
IVEC(II),LABJ(JJII), &
LABP((IASPAR(II)+3)/2), &
0.5*MJS_Value, &
HFC_R(MJ/2,MJ_S/2,NVEC*(I-1)+II), &
HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)
END IF
IF(DABS(HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)) &
> DABS(HFC_MAX)) THEN
HFC_MAX = HFC_I(MJ/2,MJ_S/2,NVEC*(I-1)+II)
END IF
END IF
END DO
END DO
END DO
END DO
!
CALL DALLOC (HFC_R,'HFC_R','CF_Hamil')
CALL DALLOC (HFC_I,'HFC_R','CF_Hamil')
!
WRITE (29,"(/A,D20.10)") &
"The max value of imaginary parts is ", HFC_MAX
!GG CALL DGEEV('N','V',N_MATRIX,RMATRICA,N_MATRIX,
!GG : WR,WI,VL,N_MATRIX,VR,N_MATRIX,WORK,4*N_MATRIX,INFO)
!GG CALL ZGEEV('N','V',N_MATRIX,RMATRICA,N_MATRIX,
!GG : WR,VL,N_MATRIX,VR,N_MATRIX,WORK,4*N_MATRIX,
!GG : RWORK,INFO)
!
! Query the optimal workspace.
!
LWORK = -1
CALL ZGEEV('N','V',N_MATRIX,RMATRICA,N_MATRIX, &
WR,VL,N_MATRIX,VR,N_MATRIX,WORK,LWORK, &
RWORK,INFO)
!
! Solve eigenproblem.
!
LWORK = MIN(LWMAX,INT(WORK(1)))
CALL ZGEEV('N','V',N_MATRIX,RMATRICA,N_MATRIX, &
WR,VL,N_MATRIX,VR,N_MATRIX,WORK,LWORK, &
RWORK,INFO)
!
! Check for convergence.
!
IF(INFO /= 0 ) THEN
WRITE(29,"(/A)") "The algorithm failed to compute eigenvalues"
WRITE(29,"(/A)") "in the program ZGEEV. "
WRITE(29,"(/A,I3)") "INFO = ",INFO
STOP
END IF
DO IND = 1,I_MATRICA
VR_MAX = ZERO
NUMBER_VR(IND) = 0
DO J = 1,I_MATRICA
IF (DABS(REAL(VR(J,IND))) > DABS(VR_MAX)) THEN
VR_MAX = REAL(VR(J,IND))
NUMBER_VR(IND) = J
END IF
END DO
END DO
WRITE (29,"(/A)") "The eigenvalues are:"
DO IND = 1,I_MATRICA
WRITE(29,"(D20.10,2X,D20.10)")DBLE(WR(IND)),AIMAG(WR(IND))
END DO
!
!GG ldown = .TRUE.
ldown = .FALSE.
CALL INDEX(I_MATRICA,DBLE(WR),ldown,INDX)
!
WRITE (29,"(/A)") 'Energy levels for ...'
WRITE (29,105) Rydberg
WRITE (29,*) 'No - Serial number of the state; ', &
'Pos - Position of the state within the '
WRITE (29,*) 'J/P block; Splitting is the energy difference ', &
'from lowest level with same J values'
WRITE (29,*) '------------------------------------------------', &
'------------------------------------'
WRITE (29,*) 'No Pos J 2*M_J Energy Total Levels', &
' Levels Splitting Splitting'
WRITE (29,*) ' (a.u.) (cm^-1)', &
' (meV) (cm^-1) (meV)'
WRITE (29,*) '------------------------------------------------', &
'------------------------------------'
!GG IF(ldown == .TRUE.) then
IF(ldown .EQV. .TRUE.) then
J = 1
IND = INDX(J)
I_FIRST = 1
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,F12.2,F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)), &
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV
DO J = 2,I_MATRICA
IND = INDX(J)
IF(LEV_J(NUMBER_VR(IND)) /= LEV_J(NUMBER_VR(INDX(J-1))) &
.OR. &
LEV(NUMBER_VR(IND)) /= LEV(NUMBER_VR(INDX(J-1)))) THEN
I_FIRST = IND
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,2F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)),&
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV, &
(DBLE(WR(INDX(1)))-DBLE(WR(IND)))*Rydberg*2, &
(DBLE(WR(INDX(1)))-DBLE(WR(IND)))*Convert_meV
ELSE
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,4F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)),&
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV, &
(DBLE(WR(INDX(1)))-DBLE(WR(IND)))*Rydberg*2, &
(DBLE(WR(INDX(1)))-DBLE(WR(IND)))*Convert_meV, &
(DBLE(WR(I_FIRST))-DBLE(WR(IND)))*Rydberg*2, &
(DBLE(WR(I_FIRST))-DBLE(WR(IND)))*Convert_meV
END IF
ENDDO
ELSE
J = 1
IND = INDX(J)
!GG I_FIRST = 1
I_FIRST = IND
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,F12.2,F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)), &
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV
DO J = 2,I_MATRICA
IND = INDX(J)
IF(LEV_J(NUMBER_VR(IND)) /= LEV_J(NUMBER_VR(INDX(J-1))) &
.OR. &
LEV(NUMBER_VR(IND)) /= LEV(NUMBER_VR(INDX(J-1)))) THEN
I_FIRST = IND
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,2F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)),&
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV, &
(DBLE(WR(IND))-DBLE(WR(INDX(1))))*Rydberg*2, &
(DBLE(WR(IND))-DBLE(WR(INDX(1))))*Convert_meV
ELSE
WRITE (29,'(I3,1X,I3,1X,A4,A4,I3,4X,F14.7,4F12.2)') &
NUMBER_VR(IND),LEV(NUMBER_VR(IND)),LEV_J(NUMBER_VR(IND)),&
LABP_J(NUMBER_VR(IND)), &
LEV_MJ(NUMBER_VR(IND)),DBLE(WR(IND))+EAV, &
(DBLE(WR(IND))-DBLE(WR(INDX(1))))*Rydberg*2, &
(DBLE(WR(IND))-DBLE(WR(INDX(1))))*Convert_meV, &
(DBLE(WR(IND))-DBLE(WR(I_FIRST)))*Rydberg*2, &
(DBLE(WR(IND))-DBLE(WR(I_FIRST)))*Convert_meV
END IF
END DO
END IF
WRITE (29,*) '------------------------------------------------', &
'------------------------------------'
WRITE (29,'(A)')' '
WRITE (29,'(A)')'ASF composition '
WRITE (29,'(A)')' '
WRITE (31,'(6X,A,I5)')'The space of CF expansion is ',I_MATRICA
DO IND = 1,I_MATRICA
WRITE (29,'(I3,A,I3,A,A4,A,I3,5X,A,A4,5X,A,I3)')IND, &
' Number of Energy level',LEV_NO(IND), &
' Parity',LABP_J(IND), &
'Pos',LEV(IND),'J=',LEV_J(IND),'2*M_J=',LEV_MJ(IND)
WRITE (31,'(A)')' '
WRITE (31,'(I3,A,I3,A,A4,A,I3,5X,A,A4,5X,A,I3)')IND, &
' Number of Energy level',LEV_NO(IND), &
' Parity',LABP_J(IND), &
'Pos',LEV(IND),'J=',LEV_J(IND),'2*M_J=',LEV_MJ(IND)
END DO
WRITE (31,'(A)')' '
WRITE (31,'(A)')'End of the list of CF expansion.'
DO J = 1,I_MATRICA
IND = INDX(J)
WRITE (31,'(A)')' '
WRITE (31,'(A,I3,A,I3,A,A4,A,I3,5X,A,A4,5X,A,I3)') &
'Energy level No. before CF ',LEV_NO(NUMBER_VR(IND)), &
' after CF ',NUMBER_VR(IND), &
' Parity',LABP_J(NUMBER_VR(IND)), &
'Pos',LEV(NUMBER_VR(IND)),'J=',LEV_J(NUMBER_VR(IND)), &
'2*M_J=',LEV_MJ(NUMBER_VR(IND))
WRITE (31,'(6X,A,F14.7,2X,I5)') &
'Energy = ',DBLE(WR(IND))+EAV,NUMBER_VR(IND)
WRITE(31,999)(DBLE(VR(JI,IND)),JI=1,I_MATRICA)
WRITE (31,'(A)')' '
!
WRITE (29,'(F14.7)')DBLE(WR(IND))+EAV
WRITE(29,999)(DBLE(VR(JI,IND)),JI=1,I_MATRICA)
WRITE (29,'(A)')' '
END DO
!
CALL WGHTD5gg(iatjpo(Min_state),iaspar(Min_state),Min_state, &
Max_state)
!
101 FORMAT (//' CUTOFF set to ',1PD22.15,'NVEC = ',I10)
102 FORMAT (/' Crystal field matrix elements :'//, &
' Lev1 J Par MJ Lev2 J Par MJ',4X,'CF Real (a.u.)', &
6X,'CF Imaginary (a.u.)'/)
103 FORMAT (1X,1I3,1X,2A4,F4.1,2X,I3,1X,2A4,F4.1,1P,1D20.10, &
1D20.10)
113 FORMAT (1X,1I3,1X,2A4,F4.1,2X,I3,1X,2A4,F4.1,1P,1D20.10, &
1D20.10,1D20.10,1D20.10)
105 FORMAT (' Rydberg constant is ',F14.5)
!GG 999 FORMAT(5X,I3,5(F10.4),/,9(8X,5(F10.4),/))
999 FORMAT(10(8X,5(F10.4),/))
RETURN
END SUBROUTINE CF_Hamil