forked from microsoft/MaskFlownet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
556 lines (477 loc) · 20.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import os
import sys
import argparse
from timeit import default_timer
import yaml
import hashlib
import socket
# ======== PLEASE MODIFY ========
# where is the repo
repoRoot = r'.'
# to CUDA\vX.Y\bin
os.environ['PATH'] = r'path\to\your\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin' + ';' + os.environ['PATH']
# Flying Chairs Dataset
chairs_path = r'path\to\your\FlyingChairs_release\data'
chairs_split_file = r'path\to\your\FlyingChairs_release\FlyingChairs_train_val.txt'
import numpy as np
import mxnet as mx
# data readers
from reader.chairs import binary_reader, trainval, ppm, flo
from reader import sintel, kitti, hd1k, things3d
import cv2
model_parser = argparse.ArgumentParser(add_help=False)
training_parser = argparse.ArgumentParser(add_help=False)
training_parser.add_argument('--batch', type=int, default=8, help='minibatch size of samples per device')
parser = argparse.ArgumentParser(parents=[model_parser, training_parser])
parser.add_argument('config', type=str, nargs='?', default=None)
parser.add_argument('--dataset_cfg', type=str, default='chairs.yaml')
# proportion of data to be loaded
# for example, if shard = 4, then one fourth of data is loaded
# ONLY for things3d dataset (as it is very large)
parser.add_argument('-s', '--shard', type=int, default=1, help='')
parser.add_argument('-g', '--gpu_device', type=str, default='', help='Specify gpu device(s)')
parser.add_argument('-c', '--checkpoint', type=str, default=None,
help='model checkpoint to load; by default, the latest one.'
'You can use checkpoint:steps to load to a specific steps')
parser.add_argument('--clear_steps', action='store_true')
# the choice of network
parser.add_argument('-n', '--network', type=str, default='MaskFlownet')
# three modes
parser.add_argument('--debug', action='store_true', help='Do debug')
parser.add_argument('--valid', action='store_true', help='Do validation')
parser.add_argument('--predict', action='store_true', help='Do prediction')
# inference resize for validation and prediction
parser.add_argument('--resize', type=str, default='')
args = parser.parse_args()
ctx = [mx.cpu()] if args.gpu_device == '' else [mx.gpu(gpu_id) for gpu_id in map(int, args.gpu_device.split(','))]
infer_resize = [int(s) for s in args.resize.split(',')] if args.resize else None
import network.config
# load network configuration
with open(os.path.join(repoRoot, 'network', 'config', args.config)) as f:
config = network.config.Reader(yaml.load(f))
# load training configuration
with open(os.path.join(repoRoot, 'network', 'config', args.dataset_cfg)) as f:
dataset_cfg = network.config.Reader(yaml.load(f))
validation_steps = dataset_cfg.validation_steps.value
checkpoint_steps = dataset_cfg.checkpoint_steps.value
# create directories
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
mkdir('logs')
mkdir(os.path.join('logs', 'val'))
mkdir(os.path.join('logs', 'debug'))
mkdir('weights')
mkdir('flows')
# find checkpoint
import path
import logger
steps = 0
if args.checkpoint is not None:
if ':' in args.checkpoint:
prefix, steps = args.checkpoint.split(':')
else:
prefix = args.checkpoint
steps = None
log_file, run_id = path.find_log(prefix)
if steps is None:
checkpoint, steps = path.find_checkpoints(run_id)[-1]
else:
checkpoints = path.find_checkpoints(run_id)
try:
checkpoint, steps = next(filter(lambda t : t[1] == steps, checkpoints))
except StopIteration:
print('The steps not found in checkpoints', steps, checkpoints)
sys.stdout.flush()
raise StopIteration
steps = int(steps)
if args.clear_steps:
steps = 0
else:
_, exp_info = path.read_log(log_file)
exp_info = exp_info[-1]
for k in args.__dict__:
if k in exp_info and k in ('tag',):
setattr(args, k, eval(exp_info[k]))
print('{}={}, '.format(k, exp_info[k]), end='')
print()
sys.stdout.flush()
# generate id
if args.checkpoint is None or args.clear_steps:
uid = (socket.gethostname() + logger.FileLog._localtime().strftime('%b%d-%H%M') + args.gpu_device)
tag = hashlib.sha224(uid.encode()).hexdigest()[:3]
run_id = tag + logger.FileLog._localtime().strftime('%b%d-%H%M')
# initiate
from network import get_pipeline
pipe = get_pipeline(args.network, ctx=ctx, config=config)
lr_schedule = dataset_cfg.optimizer.learning_rate.get(None)
if lr_schedule is not None:
pipe.lr_schedule = lr_schedule
# load parameters from given checkpoint
if args.checkpoint is not None:
print('Load Checkpoint {}'.format(checkpoint))
sys.stdout.flush()
network_class = getattr(config.network, 'class').get()
# if train the head-stack network for the first time
if network_class == 'MaskFlownet' and args.clear_steps and dataset_cfg.dataset.value == 'chairs':
print('load the weight for the head network only')
pipe.load_head(checkpoint)
else:
print('load the weight for the network')
pipe.load(checkpoint)
if network_class == 'MaskFlownet':
print('fix the weight for the head network')
pipe.fix_head()
sys.stdout.flush()
if not args.valid and not args.predict and not args.clear_steps:
pipe.trainer.step(100, ignore_stale_grad=True)
pipe.trainer.load_states(checkpoint.replace('params', 'states'))
# ======== If to do prediction ========
if args.predict:
import predict
checkpoint_name = os.path.basename(checkpoint).replace('.params', '')
predict.predict(pipe, os.path.join(repoRoot, 'flows', checkpoint_name), batch_size=args.batch, resize = infer_resize)
sys.exit(0)
# ======== If to do validation ========
def validate():
validation_result = {}
for dataset_name in validation_datasets:
validation_result[dataset_name] = pipe.validate(*validation_datasets[dataset_name], batch_size = args.batch)
return validation_result
if args.valid:
log = logger.FileLog(os.path.join(repoRoot, 'logs', 'val', '{}.val.log'.format(run_id)), screen=True)
# sintel
sintel_dataset = sintel.list_data()
for div in ('training2', 'training'):
for k, dataset in sintel_dataset[div].items():
img1, img2, flow, mask = [[sintel.load(p) for p in data] for data in zip(*dataset)]
val_epe = pipe.validate(img1, img2, flow, mask, batch_size=args.batch, resize = infer_resize)
log.log('steps={}, sintel.{}.{}:epe={}'.format(steps, div, k, val_epe))
sys.stdout.flush()
# kitti
read_resize = (370, 1224) # if infer_resize is None else infer_resize
for kitti_version in ('2012', '2015'):
dataset = kitti.read_dataset(editions = kitti_version, parts = 'mixed', resize = read_resize)
val_epe = pipe.validate(dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'], batch_size=args.batch, resize = infer_resize, return_type = 'epe')
log.log('steps={}, kitti.{}:epe={}'.format(steps, kitti_version, val_epe))
sys.stdout.flush()
val_epe = pipe.validate(dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'], batch_size=args.batch, resize = infer_resize, return_type = 'kitti')
log.log('steps={}, kitti.{}:kitti={}'.format(steps, kitti_version, val_epe))
sys.stdout.flush()
log.close()
sys.exit(0)
# ======== If to do training ========
# load training/validation datasets
validation_datasets = {}
samples = 32 if args.debug else -1
t0 = default_timer()
if dataset_cfg.dataset.value == 'kitti':
batch_size = 4
print('loading kitti dataset ...')
sys.stdout.flush()
orig_shape = dataset_cfg.orig_shape.get([370, 1224])
resize_shape = (orig_shape[1], orig_shape[0])
parts = 'mixed' if dataset_cfg.train_all.get(False) else 'train'
# training
dataset = kitti.read_dataset(editions = 'mixed', parts = parts, samples = samples, resize = resize_shape)
trainSize = len(dataset['flow'])
training_datasets = [(dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])] * batch_size
# validation
validationSize = 0
dataset = kitti.read_dataset(editions = '2012', parts = 'valid', samples = samples, resize = resize_shape)
validationSize += len(dataset['flow'])
validation_datasets['kitti.12'] = (dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])
dataset = kitti.read_dataset(editions = '2015', parts = 'valid', samples = samples, resize = resize_shape)
validationSize += len(dataset['flow'])
validation_datasets['kitti.15'] = (dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])
elif dataset_cfg.dataset.value == 'sintel':
batch_size = 4
print('loading sintel dataset ...')
sys.stdout.flush()
orig_shape = [436, 1024]
num_kitti = dataset_cfg.kitti.get(0)
num_hd1k = dataset_cfg.hd1k.get(0)
subsets = ('training' if dataset_cfg.train_all.get(False) else 'training1', 'training2')
# training
trainImg1 = []
trainImg2 = []
trainFlow = []
trainMask = []
sintel_dataset = sintel.list_data()
for k, dataset in sintel_dataset[subsets[0]].items():
dataset = dataset[:samples]
img1, img2, flow, mask = [[sintel.load(p) for p in data] for data in zip(*dataset)]
trainImg1.extend(img1)
trainImg2.extend(img2)
trainFlow.extend(flow)
trainMask.extend(mask)
trainSize = len(trainMask)
training_datasets = [(trainImg1, trainImg2, trainFlow, trainMask)] * (batch_size - num_kitti - num_hd1k)
resize_shape = (1024, dataset_cfg.resize_shape.get(436))
if num_kitti > 0:
print('loading kitti dataset ...')
sys.stdout.flush()
editions = '2015'
dataset = kitti.read_dataset(resize = resize_shape, samples = samples, editions = editions)
trainSize += len(dataset['flow'])
training_datasets += [(dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])] * num_kitti
if num_hd1k > 0:
print('loading hd1k dataset ...')
sys.stdout.flush()
dataset = hd1k.read_dataset(resize = resize_shape, samples = samples)
trainSize += len(dataset['flow'])
training_datasets += [(dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])] * num_hd1k
# validation
validationSize = 0
for k, dataset in sintel_dataset[subsets[1]].items():
dataset = dataset[:samples]
img1, img2, flow, mask = [[sintel.load(p) for p in data] for data in zip(*dataset)]
validationSize += len(flow)
validation_datasets['sintel.' + k] = (img1, img2, flow, mask)
elif dataset_cfg.dataset.value == 'things3d':
batch_size = 4
print('loading things3d dataset ...')
sub_type = dataset_cfg.sub_type.get('clean')
print('sub_type: ' + sub_type)
sys.stdout.flush()
orig_shape = [540, 960]
# %%%% WARNING %%%%
# the things3d dataset (subset) is very large
# therefore, the flow is converted to float16 by default
# in float16 format, the complete dataset is about 400 GB
# please set proper args.shard according to your device
# for example, if args.shard = 4, then one fourth of data is loaded
# training
things3d_dataset = things3d.list_data(sub_type = sub_type)
print(len(things3d_dataset['flow']))
print(len(things3d_dataset['flow'][:samples:args.shard]))
print(things3d_dataset['flow'][0])
from pympler.asizeof import asizeof
trainImg1 = [cv2.imread(file).astype('uint8') for file in things3d_dataset['image_0'][:samples:args.shard]]
print(asizeof(trainImg1[0]))
print(asizeof(trainImg1))
trainImg2 = [cv2.imread(file).astype('uint8') for file in things3d_dataset['image_1'][:samples:args.shard]]
print(asizeof(trainImg2[0]))
print(asizeof(trainImg2))
trainFlow = [things3d.load(file).astype('float16') for file in things3d_dataset['flow'][:samples:args.shard]]
print(asizeof(trainFlow[0]))
print(asizeof(trainFlow))
trainSize = len(trainFlow)
training_datasets = [(trainImg1, trainImg2, trainFlow)] * batch_size
print(asizeof(training_datasets))
# validation- chairs
_, validationSet = trainval.read(chairs_split_file)
validationSet = validationSet[:samples]
validationImg1 = [ppm.load(os.path.join(chairs_path, '%05d_img1.ppm' % i)) for i in validationSet]
validationImg2 = [ppm.load(os.path.join(chairs_path, '%05d_img2.ppm' % i)) for i in validationSet]
validationFlow = [flo.load(os.path.join(chairs_path, '%05d_flow.flo' % i)) for i in validationSet]
validationSize = len(validationFlow)
validation_datasets['chairs'] = (validationImg1, validationImg2, validationFlow)
'''
# validation- sintel
sintel_dataset = sintel.list_data()
divs = ('training',) if not getattr(config.network, 'class').get() == 'MaskFlownet' else ('training2',)
for div in divs:
for k, dataset in sintel_dataset[div].items():
img1, img2, flow, mask = [[sintel.load(p) for p in data] for data in zip(*dataset)]
validationSize += len(flow)
validation_datasets['sintel.' + k] = (img1, img2, flow, mask)
# validation- kitti
for kitti_version in ('2012', '2015'):
dataset = kitti.read_dataset(editions = kitti_version, crop = (370, 1224))
validationSize += len(dataset['flow'])
validation_datasets['kitti.' + kitti_version] = (dataset['image_0'], dataset['image_1'], dataset['flow'], dataset['occ'])
'''
elif dataset_cfg.dataset.value == 'chairs':
batch_size = 8
print('loading chairs data ...')
sys.stdout.flush()
orig_shape = [384, 512]
trainSet, validationSet = trainval.read(chairs_split_file)
# training
trainSet = trainSet[:samples]
trainImg1 = [ppm.load(os.path.join(chairs_path, '%05d_img1.ppm' % i)) for i in trainSet]
trainImg2 = [ppm.load(os.path.join(chairs_path, '%05d_img2.ppm' % i)) for i in trainSet]
trainFlow = [flo.load(os.path.join(chairs_path, '%05d_flow.flo' % i)) for i in trainSet]
trainSize = len(trainFlow)
training_datasets = [(trainImg1, trainImg2, trainFlow)] * batch_size
# validaion- chairs
validationSet = validationSet[:samples]
validationImg1 = [ppm.load(os.path.join(chairs_path, '%05d_img1.ppm' % i)) for i in validationSet]
validationImg2 = [ppm.load(os.path.join(chairs_path, '%05d_img2.ppm' % i)) for i in validationSet]
validationFlow = [flo.load(os.path.join(chairs_path, '%05d_flow.flo' % i)) for i in validationSet]
validationSize = len(validationFlow)
validation_datasets['chairs'] = (validationImg1, validationImg2, validationFlow)
# validaion- sintel
sintel_dataset = sintel.list_data()
divs = ('training',) if not getattr(config.network, 'class').get() == 'MaskFlownet' else ('training2',)
for div in divs:
for k, dataset in sintel_dataset[div].items():
dataset = dataset[:samples]
img1, img2, flow, mask = [[sintel.load(p) for p in data] for data in zip(*dataset)]
validationSize += len(flow)
validation_datasets['sintel.' + k] = (img1, img2, flow, mask)
else:
raise NotImplementedError
print('Using {}s'.format(default_timer() - t0))
sys.stdout.flush()
#
assert batch_size % len(ctx) == 0
batch_size_card = batch_size // len(ctx)
orig_shape = dataset_cfg.orig_shape.get(orig_shape)
target_shape = dataset_cfg.target_shape.get([shape_axis + (64 - shape_axis) % 64 for shape_axis in orig_shape])
print('original shape: ' + str(orig_shape))
print('target shape: ' + str(target_shape))
sys.stdout.flush()
# create log file
log = logger.FileLog(os.path.join(repoRoot, 'logs', 'debug' if args.debug else '', '{}.log'.format(run_id)))
log.log('start={}, train={}, val={}, host={}, batch={}'.format(steps, trainSize, validationSize, socket.gethostname(), batch_size))
information = ', '.join(['{}={}'.format(k, repr(args.__dict__[k])) for k in args.__dict__])
log.log(information)
# implement data augmentation
import augmentation
# chromatic augmentation
aug_func = augmentation.ColorAugmentation
if dataset_cfg.dataset.value == 'sintel':
color_aug = aug_func(contrast_range=(-0.4, 0.8), brightness_sigma=0.1, channel_range=(0.8, 1.4), batch_size=batch_size_card,
shape=target_shape, noise_range=(0, 0), saturation=0.5, hue=0.5, eigen_aug = False)
elif dataset_cfg.dataset.value == 'kitti':
color_aug = aug_func(contrast_range=(-0.2, 0.4), brightness_sigma=0.05, channel_range=(0.9, 1.2), batch_size=batch_size_card,
shape=target_shape, noise_range=(0, 0.02), saturation=0.25, hue=0.1, gamma_range=(-0.5, 0.5), eigen_aug = False)
else:
color_aug = aug_func(contrast_range=(-0.4, 0.8), brightness_sigma=0.1, channel_range=(0.8, 1.4), batch_size=batch_size_card,
shape=target_shape, noise_range=(0, 0.04), saturation=0.5, hue=0.5, eigen_aug = False)
color_aug.hybridize()
# geometric augmentation
aug_func = augmentation.GeometryAugmentation
if dataset_cfg.dataset.value == 'sintel':
geo_aug = aug_func(angle_range=(-17, 17), zoom_range=(1 / 1.5, 1 / 0.9), aspect_range=(0.9, 1 / 0.9), translation_range=0.1,
target_shape=target_shape, orig_shape=orig_shape, batch_size=batch_size_card,
relative_angle=0.25, relative_scale=(0.96, 1 / 0.96), relative_translation=0.25
)
elif dataset_cfg.dataset.value == 'kitti':
geo_aug = aug_func(angle_range=(-5, 5), zoom_range=(1 / 1.25, 1 / 0.95), aspect_range=(0.95, 1 / 0.95), translation_range=0.05,
target_shape=target_shape, orig_shape=orig_shape, batch_size=batch_size_card,
relative_angle=0.25, relative_scale=(0.98, 1 / 0.98), relative_translation=0.25
)
else:
geo_aug = aug_func(angle_range=(-17, 17), zoom_range=(0.5, 1 / 0.9), aspect_range=(0.9, 1 / 0.9), translation_range=0.1,
target_shape=target_shape, orig_shape=orig_shape, batch_size=batch_size_card,
relative_angle=0.25, relative_scale=(0.96, 1 / 0.96), relative_translation=0.25
)
geo_aug.hybridize()
def index_generator(n):
indices = np.arange(0, n, dtype=np.int)
while True:
np.random.shuffle(indices)
yield from indices
class MovingAverage:
def __init__(self, ratio=0.95):
self.sum = 0
self.weight = 1e-8
self.ratio = ratio
def update(self, v):
self.sum = self.sum * self.ratio + v
self.weight = self.weight * self.ratio + 1
@property
def average(self):
return self.sum / self.weight
class DictMovingAverage:
def __init__(self, ratio=0.95):
self.sum = {}
self.weight = {}
self.ratio = ratio
def update(self, v):
for key in v:
if key not in self.sum:
self.sum[key] = 0
self.weight[key] = 1e-8
self.sum[key] = self.sum[key] * self.ratio + v[key]
self.weight[key] = self.weight[key] * self.ratio + 1
@property
def average(self):
return dict([(key, self.sum[key] / self.weight[key]) for key in self.sum])
loading_time = MovingAverage()
total_time = MovingAverage()
train_avg = DictMovingAverage()
from threading import Thread
from queue import Queue
def iterate_data(iq, dataset):
gen = index_generator(len(dataset[0]))
while True:
i = next(gen)
data = [item[i] for item in dataset]
space_x, space_y = data[0].shape[0] - orig_shape[0], data[0].shape[1] - orig_shape[1]
crop_x, crop_y = space_x and np.random.randint(space_x), space_y and np.random.randint(space_y)
data = [np.transpose(arr[crop_x: crop_x + orig_shape[0], crop_y: crop_y + orig_shape[1]], (2, 0, 1)) for arr in data]
# vertical flip
if np.random.randint(2):
data = [arr[:, :, ::-1] for arr in data]
data[2] = np.stack([-data[2][0, :, :], data[2][1, :, :]], axis = 0)
iq.put(data)
def batch_samples(iqs, oq, batch_size):
while True:
data_batch = []
for iq in iqs:
for i in range(batch_size // len(iqs)):
data_batch.append(iq.get())
oq.put([np.stack(x, axis=0) for x in zip(*data_batch)])
def remove_file(iq):
while True:
f = iq.get()
try:
os.remove(f)
except OSError as e:
log.log('Remove failed' + e)
batch_queue = Queue(maxsize=10)
remove_queue = Queue(maxsize=50)
def start_daemon(thread):
thread.daemon = True
thread.start()
data_queues = [Queue(maxsize=100) for _ in training_datasets]
for data_queue, dataset in zip(data_queues, training_datasets):
start_daemon(Thread(target=iterate_data, args=(data_queue, dataset)))
start_daemon(Thread(target=remove_file, args=(remove_queue,)))
for i in range(1):
start_daemon(Thread(target=batch_samples, args=(data_queues, batch_queue, batch_size)))
t1 = None
checkpoints = []
while True:
steps += 1
if not pipe.set_learning_rate(steps):
sys.exit(0)
batch = []
t0 = default_timer()
if t1:
total_time.update(t0 - t1)
t1 = t0
batch = batch_queue.get()
loading_time.update(default_timer() - t0)
# with or without the given invalid mask
if len(batch) == 4:
img1, img2, flow, mask = [batch[i] for i in range(4)]
train_log = pipe.train_batch(img1, img2, flow, geo_aug, color_aug, mask = mask)
else:
img1, img2, flow = [batch[i] for i in range(3)]
train_log = pipe.train_batch(img1, img2, flow, geo_aug, color_aug)
# update log
if steps <= 20 or steps % 50 == 0:
train_avg.update(train_log)
log.log('steps={}{}, total_time={:.2f}'.format(steps, ''.join([', {}={}'.format(k, v) for k, v in train_avg.average.items()]), total_time.average))
# do valiation
if steps % validation_steps == 0 or steps <= 1:
val_result = None
if validationSize > 0:
val_result = validate()
log.log('steps={}{}'.format(steps, ''.join([', {}={}'.format(k, v) for k, v in val_result.items()])))
# save parameters
if steps % checkpoint_steps == 0:
prefix = os.path.join(repoRoot, 'weights', '{}_{}'.format(run_id, steps))
pipe.save(prefix)
checkpoints.append(prefix)
# remove the older checkpoints
while len(checkpoints) > 3:
prefix = checkpoints[0]
checkpoints = checkpoints[1:]
remove_queue.put(prefix + '.params')
remove_queue.put(prefix + '.states')