-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathopt.py
executable file
·79 lines (64 loc) · 2.74 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import logging
import argparse
import os
import time
import numpy as np
class Options(object):
def __init__(self):
self.seq_len = 20
self.vocab_size = 5000
# generator
self.g_emb_dim = 32 # embedding dimension for generator
self.g_hid_dim = 32 # hidden dimension for generator
self.start_token = 0
self.generated_num = 10000 # sample positive files number
# ranker
self.rank_emb_dim = 64 # embedding dimension for ranker
self.rank_filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]
self.rank_num_filters = [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160]
self.dropout_ratio = 0.75
self.gamma = 1 # temprature control parameters
self.num_class = 2
# file path
self.target_path = 'save/target_params.pkl'
self.positive_file = 'save/real_data.txt'
self.negative_file = 'save/generator_sample.txt'
self.eval_file = 'save/eval_file.txt'
def create_logging(FLAGS):
# head = '%(asctime)-15s %(message)s'
head = ''
if not os.path.exists('./log'):
os.makedirs('./log')
log_file = '{}_{}.log'.format(FLAGS.prefix, time.strftime('%Y-%m-%d-%H-%M'))
logging.basicConfig(filename=os.path.join('./log', log_file), level=logging.DEBUG, format=head)
console = logging.StreamHandler()
logging.getLogger('').addHandler(console)
logging.info('start with arguments %s', FLAGS)
def generate_samples(sess, trainable_model, batch_size, generated_num, output_file):
# Generate Samples
generated_samples = []
for _ in range(int(generated_num / batch_size)):
generated_samples.extend(trainable_model.generate(sess))
with open(output_file, 'w') as fout:
for poem in generated_samples:
buffer = ' '.join([str(x) for x in poem]) + '\n'
fout.write(buffer)
def target_loss(sess, target_lstm, data_loader):
# target_loss means the oracle negative log-likelihood tested with the oracle model "target_lstm"
# For more details, please see the Section 4 in https://arxiv.org/abs/1609.05473
nll = []
data_loader.reset_pointer()
for it in xrange(data_loader.num_batch):
batch = data_loader.next_batch()
g_loss = sess.run(target_lstm.pretrain_loss, {target_lstm.x: batch})
nll.append(g_loss)
return np.mean(nll)
def pre_train_epoch(sess, trainable_model, data_loader):
# Pre-train the generator using MLE for one epoch
supervised_g_losses = []
data_loader.reset_pointer()
for it in xrange(data_loader.num_batch):
batch = data_loader.next_batch()
_, g_loss = trainable_model.pretrain_step(sess, batch)
supervised_g_losses.append(g_loss)
return np.mean(supervised_g_losses)